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Section I. Summary

HIS REPORT describes a program for inte-

grating the restricted three-body problem using

the TRICE-PB250 system. Difficulties were
overcome by the use of appropriate variables and
programming techniques.

The accuracy of the computer program, together
with the possibility of continuous visual output, re-
sulted in a research tool of considerable flexibility
and versatility.

Section 1l. Statement of the Problem

The restricted three-body problem describes the
effect of two bodies of finite mass on the dynamic
behavior of a body (particle) of infinitesimal mass.
The two bodies of finite mass revolve around one
another in circular orbits, and the particle of infini-
tesimal mass moves in their gravitational field. This
situation is approximately realized, for example, in
the motion of an artificial satellite in the Earth-Moon
system. Figure 1 illustrates the geometry of the prob-
lem (the particle is assumed to move in the Earth-
Moon plane).

Section Ill. Equations of Motion
In a rotating coordinate system, the motion of the
particle is described by the following equations (x =
the relative mass of the body of smaller mass):
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But major difficulties would be encountered if
computation were attempted using the equations for
the rotating coordinate system:
1. The integration step size would have to be
changed frequently.
2. Study of trajectories that pass through a mass
center would be impossible because these equa-
tions eontain terms with r® in the denominator.
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Figure 1. Geometric representation of the restricted
three-body problem in a rotating coordinate
system.

3. The position and velocity terms would vary
greatly in range.

4. Scaling would be extremely difficult.

Therefore, at the suggestion of Dr. Arenstorf, staff
mathematician of the Computation Division, a Thiele
transformation was used to overcome many of the
computational difficulties and also to provide a more
flexible form of the equations. Use of the Thiele
transformation provided a further advantage, in that
broader studies of the problem were possible.

The Thiele transformation is accomplished by
letting
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The new independent variable is then defined by
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FIG. 2. TRICE PROGRAM for the restricted

Making these substitutions into the rotating form

i
1o~ _ 24 o 2
results in the following:* v /3 (cosh? v - cos® ) u!

1 q?
+sinh v l: /2, <—121 +c17_6> cosh v
g

2 - cos u (cos®u - 3 cosh®v
+ sinu [g—+<§+g—6>cosu 16 )

1
+ 16 cosh v cosh 2v:|

u" = 1/3 (cosh? v - cos® u) v!

g

- 7g coshv (cosh? v - 3 cos® u)

i
+ - cos u cos 2

16 of the quantity with respect to s; a double prime (") de-

*A prime (') after a quantity denotes the first derivative
u
} notes the second derivative with respect to s.
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three-body problem in a rotating coardinate system.

where ¢ =1— 2y, and h (Jacobi’s integral) is de-
fined by the following equation:
(u)?+ (v')2+ 0 cos u - cosh v
h i
-3 (cosh v - cos u) - 16 sin? p (cos u + cosh v)?

-I% sinh? v (0 cos u + cosh v)2=0

Via a third transformation, the motion of the
particle was also described in a star-fixed coordinate
system. The equation

s
i
t="/, f (cosh? v - cos?u) ds
0

was used to generate a new independent variable,
and the following new equations were introduced:

2, =xcost-ysint Z,=ycost+xsint

Section IV. The Computer Program
The configuration of TRICE elements that mech-
anize the Thiele form of the equations of motion is
shown on Figure 2. The initial conditions for each



trajectory were entered into the PB250 in terms of
the rotating coordinate system variables g, X,, Vo,

)}0 and )./0
The PB250, under control of an interpretive pro-
gram language, computed a set of initial conditions

that satisfied the Thiele form of the equations.
The following calculations were made:
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3. coshv,=r +r,

4, cos Uy =T =T,

5. (coshvg)?=(r;+ry)?
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8. sinh vy = ’\’cosh ve-1
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The results of these calculations were stored in
the registers of the TRICE modules.

The major function of the TRICE program was to
integrate the Thiele equations. Analog plots of the
solution were made in the rotating coordinate sys-
tem and in the star-fixed coordinate system.

The Thiele variables were transformed into the
rotating coordinate system by TRICE modules gen-
erating the following functions:
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FIG. 3. TRICE PROGRAM for the star-fixed

coordinate system.
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The TRICE program for the star fixed transfor-
mation is shown in Figure 3.

Section V. Conclusions
A. ADVANTAGES OF THE THIELE FORM

Certain advantages of the Thiele form of the equa-
tions of motion are worth noting:

1. The choice of the independent variable

t
( e
0 1 +2

eliminated the need to vary the integration step
size as the trajectory passed through different re-
gions of space. An equivalent effect was accomplished
continuously during the solution as a result of the
mathematical nature of the Thiele form. This effect
can be clearly observed when trajectories approach
either mass. Motion of the particle becomes very
slow during the approach and increases in speed
during departure from the region of a mass center.

2. As was noted earlier, because of terms containing
1/13, the study of trajectories that pass through a mass
center would be impossible using the equations for
the rotating coordinate system. These terms do not
appear in the Thiele form.

3. The terms in the Thiele equations are better
behaved than the position and velocity terms in the
rotating set. The sinusoidal terms are bounded be-
tween -+1 and —1 for all real arguments. The hyper-
bolic functions, in contrast to the position and velocity
terms in the rotating set, do not vary greatly in range.

4. The behavior of the new Thiele variables elimi-
nated many scaling problems.

B. ADYANTAGES OF THE TRICE-PB250 SYSTEM

Use of the TRICE-PB250 system, which combines
advantages of both digital and analog computers,
contributed to an effective and efficient study of the
three-body problem. Some of the advantages of the
system include:

I. Parallel integration without the problem of drift

2. Generation of hyperbolic functions without stability
problems

3. Continuous visual output provided by the converter
and plotter

4. High accuracy and repeatability (6 decimal digits)

5. Automation provided by the PB250.

The orbits shown on Figures 4 through 6 were ob-
tained using the TRICE-PB250 system. The study re-
quired that the initial conditions be adjusted until
the trajectory became periodic. Then, using the visual
output provided by the plotter, a human operator
determined new initial conditions on the basis of
symmetry and orthogonality (a periodic orbit is
symmetrical about the horizontal axis and makes two
orthogonal crossings). An automatic iteration process
for finding proper initial conditions appeared too com-
plex for expression in a useable mathematical form.
Because of the relatively low cost and the ready
availability of the system, the operator was able to
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FIG. 4. TWO-LOOP periodic orbit computed using
the TRICE-PB250, with initial conditions: h = —

1197 xo = 0.994; yo.—= — 2.114; p = 0.1227747;
I
= i T = 5.44.
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FIG. 5. THREE-LOOP periodic orbit computed
using the TRICE-PB250, with initial conditions:
h = — 1.367; xo = 0.994; yo = — 2.0318; p =
0.12277471; m/k = 2/3: T = 11.12.

FIG. 6. FIVE-LOOP periodic orbit computed using
the TRICE-PB250, with initial condition: h = —
045076; xo = 0.9927; yo = — 2.64215; p =
0.122775; m/k = 3/7 retrograde.



FIG. 7. SEVEN-LOOP
periodic orbit usin
TRICE-PB250 with in-
itial conditions: xo =
[.01; xo = 0; yp = O;
Yo = —1.369; p =
1/82.

FIG. 8. FIVELOOP periodic orbit (per-
turbed ellipses) in a star-fixed coordinate
system.

make the detailed studies required for this type of orbit.

The orbit shown on Figure 7 is a solution plotted in the rotating
coordinate system. Figure 8 shows the trajectory as it appears in the
star-fixed coordinate system.

Running times for a periodic solution depended on the initial condi-
tions. Running times as long as 30 minutes were required for very-low-
energy orbits, and as short as one minute for very-high-energy orbits.

Results to date have been of significant value as guidelines for further
theoretical studies. '
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