RCA 3301

REALCOM
TRAINING MANUAL

94-06-000
November 1964

The information contained herein

is subject to change without notice.
Revisions will be provided to advise
of such additions and/or corrections.

FOREWORD

Although some people may find this manual (particularly
Section III) helpful in self-study, it is designed for
use by experienced programmers in more or less formal
training situations. Inexperienced programmers should
consider a course in programming the RCA 301 before

attempting to work with the RCA 3301 REALCOM System.

Of the three major sections in the text, only the third,
which describes Assembly Language programming, is thought
to be complete from a teaching point of view. Sections I
and II, which contain descriptions of certain hardware
elements and of the Operating System, respectively, depend
heavily on other RCA documents. For further details of the
REALCOM System itself the reader is referred to the 3301
System Reference-Manual (94-16-000). A more comprehensive
discussion of the Operating System is contained in the

3301 Operating System Manual (94-08-000).

Prepared by:

Education and Training
Electronic Data Processing
Radio Corporation of America
Camden 8, New Jersey

SECTION
SECTION
SECTION
SECTION
SECTION
SECTION

INTRODUCTION. .

TABLE OF CONTENTS

PART 1 - 3301 SYSTEM GENERAL INFORMATION

I
II
IIT
v

VI

PART 2 - RCA 3301 OPERATING SYSTEM

* 00 0t 0 00000000

INTRODUCTION........

SIMPLIFIED DATA FLOW..

GENERAL TIMING INFORMATION......e000s.

3301 SYSTEM PERIPHERAL BASICS....0c0eee..

® ¢ 000000 c 0000 e0 0000000000000

3301 SYSTEM COMPONENTS..eeietueeeneosasonnnanoes

® % 060 000000600 c000 0000000000

3301 SYSTEM INTERRUPT MECHANIZATION.....0eeeeass

- v o0 0o

@ 00 0600t 00 0000 000000000000 sc00000

PART 3 - RCA 3301 ASSEMBLY SYSTEM

SECTION I - INTRODUCTION TO THE RCA 3301 ASSEMBLY.:::.0ceesaces

General Format RequUirementS....ececeececesecssocss

LOCATION Field..eveeevennnnsns
OPERATION Field......
SIZE Field......
UNIT Field.'.l........’...‘.

® 00 o0 0

SECTION II - ADDRESSING AND VALIDATION.

Addressing..

® e e @ e 00000000000 00

Symbolic Addressing...cececessecas

0000 0o s s s 00
L A N IR S S B I B I A X

®® 00 00 00000000000 00

® 065 00 0t 00 000000 0 s

ADDRESS Field..ccoacscererscsasrocaconasscacasoces
IDENTIFICATION Field.:.eceeoeaosessasossacocansanse
REFERENCE KEY Field..ecevervearevecenocscosanannsa

© 98 ® o0 s ee 00t 0000 000 e

0 ® o0 0000000 00000

Automatic Orientation of Symbolic Addresses.......
Machine Addressing and Mask Generation......coessse
Standard Location Addressing..e.ecseccerescesssees
Instruction Self-Relative Addressing....eeeseueces

Indirect Addressing..

LR R R I I R R R A A I A N N A A N R]

Symbolic Address ModificatioN..e.e.ececscecocscncs
Address Modification by IndeXing....eeeceoeeececoss

Address Qualification..cecec.ceo.

Validation.e.eeeeo..

® 0 0 00 00020008 0000000000

SECTION III - ALLOCATION OF DATA AREAS AND CONSTANTS....e0c004

DEFSEQ. .

FIXCON..
FIXNUM..

Examples...ccceceesss
ADRCON, ..

@ o0 0 00 00000000

ATOC....ccvveenenn

@8 0000 0000000000000

*0 e 00 00000

@0 00008 0000000 000 0c00000c00 00

e

® 08 00 0 000 0

® 00 00 00 o

®° 0 00006000000 g0

I-10
I-23
I-34

II-1

ITI-1

ITI-5

I11-7

ITI-11
III-13
III-15
III-17
III-19
III-21

ITI-23

III-23
II1-23
III-24
III-26
ITI-26
III-27
ITI-28
III-30
III-31
III-34
ITI-34

III-35

III1-37
II1-39
III-43
III-45
III-47
III-49

TABLE OF CONTENTS (Cont'd)

Page
SECTION 1V - RENAMING AND REDEFINING DATA AREAS.........0.0... III-53

RENAME.....DOO.IOOooo000.0.0...0..00....'-0.00000 III—53
REDEF...O.-o-oonoooooo.-.-oc-.ooo..-.oo---o.oooco III_59

SECTION V - PREPARATION OF THE FILE CONTROL PROCESSOR
FILE SEQUENCE.. . v.vevroeeervaceossocessessonsonas LII-67

Record Format ConventionS....c.eccivopeeessns vese III-67
BatChing................o.-...-.................. III_69
Labels.eeeieeeeeeeieneaioreesncssssseessensonssnnas III-69
Simultaneity..eeeesescoencocensocscscsosasocasssss LII-71
Explanatory Problem..vceviiierereveronecenns . III-72
Example.........-...........................-.-.. III—73
Preparation of FCP File Sequence....eeevesececs., 1II-74
Format RequirementsS....eeecececcoccscopssocecssess LII-74
FCP File Sequence - Example Input File........... III-80
FCP File Sequence - Example Output File.......... III-81

SECTION VI - FILE CONTROLLING CODES...¢.icevveseeecessescases LII-83

File Control Processor FunctionS....c.cecececee.. LII-83
File Controlling Codes (General)..ese.seeeeesees. LII-84
OPEN..Q-o-aoooncoo.-¢-loooo‘--.o.-.o-..ooooocoooo III"SS
CLOSE........ T B & Y
READ .. et eeooavesososnscsososasccsesececocncnsansees LII-89
WRITE e .ot eeecoaseeceoctecocsonsocsesscsocasscenssssa I1II-91
RELS .t et cvvesesonoeesotossososesssssasososaseenss III1I-93
Example.......................................-.. II.I'_94

SECTION VII - INSTRUCTIONS FOR DATA TRANSFER OF FIXED
LENGTH FIELDS..eeviteeieeneoennneccnsassecnnsas 1II-97

Transfer by Count InstructionS.....ceeceeeeeesess III=97
Transfer Decade by Count Instruction..e..veee..o. LII-99

SECTION VIII - COMPARE AND TRANSFER CONTROL INSTRUCTIONS..... III-103

Compare Data Instruction......e.eeeceeeceveceesss III-103
Conditional Transfer of Control Instruction...... ITI-105
Example.. e eeieeeeeeeeecooossrorecasscnnsnanasses LII-105
PRZ Sensinge:eeveaceceeeiecscosrosssssnesasssssss LII-106
Alteration Switch Sensing......eoeceevevseoeesess III-107
Overflow Sensing..ececeeceescteccecscscacoasecassss LII-108
EXIT Controlling Code............. ereserscensess LII-109
Unconditional Transfer of Control Instruction.... III-110

SECTION IX - DATA ARITHMETIC INSTRUCTIONS....e:¢toeveesoceass III-113

Add and Subtract Data InstructionSe.eeeeeceeees.., III-113
Multiply InstruCtion..ce.eeeeiveeeronsassnnseeasss 1II-114
Divide INsStrUCtiONe. esoesscevecsscscscsoseasensescees LII-116

SECTION X - DATA EDITING INSTRUCTIONS....etecvcesvessacasasss 1II-119

Symbol Fill Sector Instruction.........eeseee..., III-119
Symbol Fill to Non-Zero Numeric Instruction...... III-120
Float Dollar Sign to Non-Zero Numeric

Instruction.. ceeseeeecocescanncncansaneaenaes LII-122

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

TABLE OF CONTENTS (Cont'd)

X - DATA EDITING INSTRUCTIONS (Cont'd)

Transfer by Count to Edit Field Instruction...

Locate Absence of Symbol Instruction..

Translate by Table Instruction....

XI - LOGICAL INSTRUCTIONS........

Logical And Instruction......

Logical Exclusive Or Instruction..

Logical Inclusive Or Instruction.

e 00 0

“e o0

o o o e

XII - VARIABLE FIELD TRANSFER AND ADDRESS

ARITHMETIC INSTRUCTIONS.....

Transfer by Symbol Instruction....
Address Arithmetic Instruction.

Compare Address Instruction..

XIII - REPEAT AND TALLY INSTRUCTIONS......

Repeat Instruction..............

Tally Instruction....eveeee..

e 20 o o

XIV - REGISTER MANIPULATION INSTRUCTIONS..

Load Register Instruction....

Store Register Instruction.....

e s 0 o o ¢

XV - PREPARATION OF THE SEGMENT DESCRIPTION.

SGMT Centrolling Code..osees ..

SEQ Controlling Code...... oo
SEQX Controlling Code........
Example...... et cee e

* e o0

................

oooooooo

XVI - ASSEMBLY OPERATION CONTROLLING CODES..

START Controlling Code.......
NAME Controlling Code..e.....
REMARK Controlling Code......
CALL Controlling Code........

END Controlling Code....e.on..

e oo o

XVII - CORRECTION PROCEDURES.. :.vvvevuvnss

STARTC ..ot innenveenennncsns
DELETE.......coovvunn. cevenes
ENDC.. vvveinneinnniareneaonnns

* e e e e

O X

e o ¢ o 0 e

o e o e

e o0 0 o

Page

I1I-124
III-126
ITI-128

ITI1-133
III-133
ITI-136
II1-137
III-141
ITI-141
ITII-145
II1I-146
ITI-149

ITI-149
ITI1-152

I1I-157

III-157
ITI-159

ITI-161

ITI-161
III-162
ITI-163
III-165

ITI-171

I11-173
ITI-175
I11-177
IT1-179
I11-181

II1-183
I11-185
III-187
II1-189

I11-191

APPENDICES
APPENDIX A -

APPENDIX B -
APPENDIX C -~

TABLE OF CONTENTS (Cont'd)

DEVICE CONTROLLING CODES....vveevesacesssoss A-1

OPENL Line..sesvveeceeaseesssensecesasoasaesa A2
CLOSEL Line..eveveen.. P A-3
SWAPDV Lin€..vveeeeeienoceecsceccscscaceneseas A5
ISSUE Line........ et seesssssessencscesscas A6
Command Line......ocveeiecerecenesecrasseses A9
FREEDV Lin€.. st eieeereceeereocnosseseasnseoes A1l
TESTDV Lin€e.oeeseeessssnsescsncesssconssoes A-13
Device Control ExampleS....cioeeeeeeecenasss A-17
Special Device Controlling Codes............ A-19
TYPE...ceenernnnn e ertascacssseasssacsesssases A-20
TYPERD:.veveecooacocnnss eecsssiessrsecenases A-22

IN-PLACE PROCESSING...vtecvevocasecesonssoas B-L
STUDENT PROJECT..s: evstovessecocarocasncsaass C-1

RCA 3301 SYSTEM

GENERAL INFORMATION

3301 SYSTEM - GENERAL INFORMATION

SECTION I - INTRODUCTION

The RCA 3301 system is a significant step in the evolution of the RCA 501/301
generation of computers. The two factors which have allowed achievement of
this step are (1) the inclusion of an automatic interrupt system, (2) up to
four modes of simultaneity for operation of Input/Output devices. These
factors, incorporated with a high-speed main memory, and a Micro-Magnetic
memory taking the place of conventional registers, fill the need for a high-
speed, large capacity, economical, general purpose system with high through-
put rates.

The 3301 incorporates an automatic interrupt system which enables immediate
processing on two classes of interrupts; General or Real-Time. The hardware
interrupt system is facilitated by use of controlling software. The software
Operating System enables efficient handling of all types of interrupts, which
may be generated by the necessity of Input/Output Control, machine errors,

or Communications Devices,

Throughput operation is further enhanced by use of two standard Simultaneous
Modes, which control all Input/Output operations. A third Simultaneous

mode may be incorporated in a system to execute tape and random access
operations., In addition, a Communications Mode Control may be utilized for
Real-Time data flow.

SECTION II - 3301 SYSTEM COMPONENTS

A. Main Memory

The 3301 Main Memory is a decade-oriented, linear-select device., The
term decade~oriented refers to the fact that any memory operation will
access ten, seven-bit characters of information. As in the 301 system,
where two characters were called a diad, the ten character word of the
3301 is called a decade.

The term linear-select refers to the method of electronically choosing
the specified decade in memory. It indicates that only a single access
wire passes through all 70 cores of a decade, as opposed to two wires
per core in a coincident-current-selection memory. This allows neater
and more compact packaging, as well as a higher level of reliability.

HSM (High Speed Memory) is physically arranged in a basic configuration
of 40,000 locations, and may be field-modified in increments of 20,000
locations, with a maximum size of 160,000 characters. It is addressed
by means of a decimal four-character address, whose scheme is
compatible with 301 addressing.

B. Addressing

At first it may be difficult to comprehend how four decimal digits may
represent 160,000 locations, since four decimal digits can only express
quantities up to 9,999. Reviewing the 301 addressing scheme will show
that in the 20K memory system, the 24 bit of the Most Significant Digit
(MSD) was used to indicate a "carry bit". All addresses from 10,000

to 19,999 were represented by a 24" bit added to the MSD position.

I-1

When the 301 40K memory was designed, the 23 bit of the MSD of the
address was mechanized to designate the additional 20,000 address
locations., Thus, a binary count had been set up, utilizing the zone
bits of the MSD of the address, to represent each segment of 10,000
locations. Chart 1 illustrates the relationship between the binary
count and the groups of 10,000 locations.

ZONE BITS OF MSD 301 ADDRESS RANGE
22 24 Erom TIo
0 0 0000 9999
0 1 10000 19999
1 0 20000 29999
1 'y 30000 39999

CHART 1

Note that the binary count of the zone bits is equal to the Most
Significant Digit of the address range.

Since the zone bits of the MSD (CO) were completely utilized in
expressing addresses up to 39,999, two more bits are necessary to
express higher addresses up to 159,999, The zone bits of the second
digit (Cl) of the address is used to express these addresses, and
follows the pattern of Chart #2.

ZONE BITS 3301 ADDRESS RANGE
Cl co
5 4
2 2 25 24 From To
0o 0 G 0 0000 9999
0 0 0 1 10000 19999
0 0 1 0 20000 29999
0 0 1 1 30000 39999
0 1 0 0 40000 49999
0o 1 0o 1 50000 59999
0 1 1 o 60600 69999
0 1 11 70000 79999
S ;
11 11 150000 159999
CHART 2

I-2

Again, the zone bit binary count is equal to the number of the group
of 10,000 locations, the address specifies.

As an example, the address of location 127,429 would be:
7029
that of location 151,293 would be:

/593

Core-Plane Configuration

The Main Memory has a destructive read-out system, with one core per
bit. The cores are arranged in planes, constructed of 200 x 70 cores.
Each plane is grouped into 200 - 10 character words, since a single
access line is wired through 70 successive cores. Since each 3301
memory plane holds 2000 characters, the basic 40K 3301 memory must
contain 20 planes. If memory is expanded, each 20K increment will
add 10 planes. A full 160K memory will thus contain 80 planes.

- 200 CORES >
00000 S5 c0-20 (A
c0-21 (
c0-22)
3301 MEMORY PLANE 70 CORES
c9-2° (
c9-26 q |

~—
200 ACCESS LINES

(ONE PER DECADE)
FIG. 1

These 80 planes are grouped into 4, 20 plane banks.

I-3

Fig, 1 is a drawing of a single 3301 memory plane, illustrating the
200 access lines that are required to enable each 10 - 7 bit
character decade to be selected. When a current pulse is gated onto
one access line, each of the 70 cores will be affected during a read
or regenerate operation,

Note that each core along a single access line represents a bit
position of each character of the decade. The characters in a decade
are labelled CO through C9, with their bit positions labelled as 20
through 26, The CO character - 20 bit is at the top of the plane,
and the C9 character - 20 bit is at the bottom of the plane. All

bit positions of each character are grouped in that order. Each
plane holds 2000 consecutive memory locations such as: 00CU to 9999,
2000 to 3999, &000 to A999, etc.

Address Decoding and Selection

In order to enable access of a specific HSM location, an address is
placed in the Memory Address Register (MAR) at the beginning of a
memory cycle. This address would have arrived via the four bus lines
used for register communication in the 3301 system, after being trans-
mitted (gated) from an address register.

The address is placed in the MAR to enable a decoding matrix to select
one of the access lines in a plane; thus choosing a decade. The
decoding matrix has the function of decoding the BCD and zone bit
information in the address, to develop selecting signals for the
desired access line. These selecting signals will allow read and
write currents, generated by the HSM timing generator, to magnetically
effect a decade in the core stack.

Memory Communication - Read/Regenerate

In order to allow communication between HSM and the Memory Register
(MR) during the read portion of a memory cycle, an additional wire

is wound through each core of each decade in a plane. It is called
a sense winding, since it senses the magnetic state of each bit of

the selected decade, and places the result, of either a one or zero
bit, into the MR.

During the read portion of the memory cycle, a pulse is gated onto
the selected decade access line, which tends to change the state of
the 70 selected cores to the zero state. Any core which had been in
the one state would generate a voltage pulse onto its sense line,
during the change of state. Any core which held a zero bit would not
change state, and therefore, would not generate a significant voltage
pulse onto its sense line.,

The voltage pulse on each sense line, whose core held a one bit,
would be amplified, and would set a one bit into the proper stage of
the MR. The MR had previously been reset to zero bits. Thus, the MR
now contains the coding of the ten characters located in the selected
decade of HSM.

Note, however, that the 70 cores of the selected decade are now all
storing zero bits., The contents of the decade have been destroyed
by reading. This is termed Destructive Read-Out. In order to retain

I-4

the decade content for future use, which is now stored in the MR, the
MR content must be written back into memory during the last half of the
memory cycle, This is called regeneration.

In order to regenerate the bit configuration of the decade into the
core location, a reference is necessary to determine which bits of the
decade are to contain ones, and which are to contain zeros. This

can most easily be done by referencing the MR.

Since all the cores of the selected decade now contain zeros, it is
necessary to write back only the one bits to specific cores. A one
bit may be recorded in a core by generating a magnetic field; about
the core, of a specific magnitude and polarity. As in the case of
reading data from the core, the necessary magnetic field (to change
it from the zero to the one state) may be generated by passing a
current of sufficient magnitude along the access line. This would,
however, change all cores of the decade to the one state,

A means is necessary to write one bits only to selected cores,
referenced by the content of the MR.

All cores of a decade are serviced by only one access wire, but each
core has its own sense wire. If the two may be used in a matrix system,
one bits may be written to the selected cores.

Note that it was stated previously, that a magnetic field of a specific
magnitude is necessary to cause a core to change its state. Only half
the necessary value will have no effect on the core. If two adjacent
wires (having currents passing through them generating only half the
necessary magnetic field in each wire) cross each other, the total
magnetic effect at their junction will be the summation of the magnetic
field in each. This total field will be of sufficient magnitude to
change a core to the one state.

Thus a "half current" pulse may be passed down the access wire and be
felt by all cores of the selected decade. Another half current pulse
may be passed down each Sense wire, servicing only each core which should
contain a one bit. The net result is that the ha{f current pulses

will combine their magnetic fields about each core which will have a
one bit regenerated to it, and all other cores serviced by either the
sense lines or access lines will not be affected. Thus, one bits,
referenced by the MR contents feeding the sense lines, are recorded
in specific cores of the selected decade.

Main Memory Timing

It should be obvious from the previous discussion that the events
concerned with memory operation must occur in a definite sequence.
This sequence is developed by a logic block called the HSM timing
generator.

The sequence of steps necessary are:

1, address memory decade
2. read selected decade into MR
3 regenerate decade

In order to mechanize these steps into the necessary detail of memory
timing, we will find that the above three steps can be broken down
into:

1. a. gate address from bus lines into MAR

b. decode address and generate selections signals for
desired decade access line

2. a. reset MR to all zero bits
b. generate read pulse on access line
c. place contents of sense lines into MR
3. a. generate write pulse along access line
b. generate one bits from MR along sense lines
Due to certain physical properties of the cores and flip-flops used
in the memory, each of the steps takes a certain amount of time. 1.5
microseconds is required to perform all the operational steps of
memory, even though certain of the steps occur simultaneously.
Fig. 2 illustrates a time period of 1.5 microseconds, broken down into

214 nanosecond increments, and the memory timing relationship of each
of these steps.

« 214 ns—> |
STEP O | STEP 1' STEP 2 ISTEP 3 'STEP 4' STEP 5 ISTEP 6'
- 1.5 us g
RESET
MAR
ADDRESS ON BUS
PLACED INTO MAR |
RESET MR
¢HALF
READ AND WRITE CURRENT
ACCESS CURRENTS READ WRITE PULSE
GATE SENSE
LINES INTO MR
¢HALF
ONE BITS FROM MR R1TE | CURRENT
GATED ONTO SENSE W | _PULSE
WIRES
FIG. 2

HIGH SPEED MEMORY TIMING

(APPROXIMATE)

I-6

The first operation performed, at STEP 0, had not been discussed
previously. The pulse shown is used to reset the previous contents
of the MAR, before gating the new address into it. The MAR had
initially contained the address from the previous memory cycle.

-7

SECTION III - GENERAL, TIMING INFORMATION

A,

Instruction Timing

Since the 3301 Processor is part of the 501/301 family of systems, it
too is a synchronous machine., That is, all instructions are executed
utilizing three basic control-timing signals. These are based on the
memory cycle timing and switching speeds of the logic circuitry.

The same three types of operation execution levels are utilized; namely,
Time Pulses, Status levels, and Operation Code levels,

1'

Operation Code Levels

An Operation Code Level is a signal which exists during the entire
length of time an instruction is being executed. It is generated
by logic which determines which Operation Code Character is in the
Operation Code Register., Its function is to select all the logic
blocks within the system that may be used to execute the instruc-
tion, and allow the proper linkage pathways between them to be
constructed.

Status Levels

Any operation (or instruction) which is performaed must be done in
specific discrete steps, executed in a given sequence. In the
3301 processor, each instruction is executed by utilizing each
logic block (such as a comparator or adder) at a specific time and
in a specific sequence. The sequenced timing steps which are used
to operate each logic block when executing an instruction are
called Status levels,

There are 33 basic status levels used in the 3301 system. Each
one performs a certain basic operation, such as: reading a
character from memory using the A address, adding two characters
and writing the result in memory, taking a character from an
Input/Output buffer and writing it to a memory location, etc.
Using a certain combination of these status levels, executed in
the proper sequence, allows an instruction to be performed.

Note that a status level generally must coincide with a memory
cycle operation. Because of this fact, the basic 330l status
level duration time is the same as that of a memory cycle time.
A basic status level exists for 1.5 microseconds, so that data
may be read from, or written to memory, if necessary. Because
certain status levels perform more transfers than others, they
will require 1.93 microseconds duration time, since additional
use of the Bus Lines is required. ‘

I-8

LONG STATUS
LEVEL

TIME PULSES

SHORT STATUS
LEVEL

TIME PULSES

Time Pulses

As each status level paerforms a single operation of an instruction,
a timing pulse is necessary to execute each incremental step of

a status level, Each time pulse is 214 nanoseconds in duration,.

A short status level of 1.5 microseconds duration consists of 7
time pulses and a long status level of 1.93 microseconds contains

9 time pulses.

- 1.93 MICROSECONDS >

2l4ns
&>

TPCO‘ TPC1| TPCZI TPC3| TPC4' TPCS' TPC6| TPC7 'TPC8

g 1.5 MICROSECONDS —————¥|

TPCO lTPCl 'TPCZ |TPC3 |TPC4| TPC5| TPC8

STATUS LEVEL AND TIME PULSE

RELATIONSHIPS
FIG. 3

Fig. 3 illustrates Status Level and Time Pulse relationships.

Note that the time pulses are labelled TPCO through TPC8. Ths
ljetters TPC stand for Time Pulse Clock, since a specific time

pulse tells when a certain step should be performed. Tha numbering
of the time pulses during the short status level follows the normal
counting sequence until TPC5, since IPC8 is next. Effectively,

to generate the short status level, TPC6 and TPC7 have been skipped
over. This causes TPC8 to be generated immediately after TPCS.

Time pulses are generated in the machine by a logic block which

is controlled by a fixed-frequency oscillator. They are generated
continuously while power is applied to the machine.

I-9

OPERATION

LEVEL

STATUS LEVELS LEVEL "AM LEVEL "B"

TIME PULSE

POSSIBLE
OPERATIONS

4. Combined Timing

S
CODE COMPARE INSTRUCTION s

SHORT STATUS |SHORT STATUS IiLONG STATUS Sf
LEVEL "X"

=g

S 7] /tl'mc‘ PR el TA] rfcirﬁc'mirft, 7rc77=cr mrm‘rﬁc 7SS
011121314l 518101123 415181011 2'3 415 ﬁ 7181 Gl1

READ CHARACTER READ CHARACTER COMPARE TWO CHAR-~
FROM MEMORY USING FROM MEMORY ACTORS. SET

EXECUTED DURING "A"™ ADDRESS. USING "B'" ADDRESS. APPROPRIATE
EACH STATUS STORE IN D2 REGISTER STORE IN D3 REGISTER INDICATORS. (PRI's)

LEVEL

SECTION I

COMBINED TIMING RELATIONSHIPS
FIG. 4

COMBINED TIMING REIATIONSHIPS of Fig. 4 illustrates how TPC's
and Status Levels (STL's) are utilized during an Operation Code
Level to execute an instruction. The example given is that of
a Compare instruction, and illustrates the possible status
levels that would be needad to execute one comparison, Note
that each necessary operation is listed.

Each STL (status level) is given a name: A, B, X. Ths name
generally refers to the register address it uses for specifying
a memory location, The first STL uses the A address, therefore
it's called an A STL. Since the last STL performs a function
which does not require an address, it is called an X STL.

Each TPC would be responsible for executing each minor step of a

status level such as: addressing memory, gating a character
from the MR to a Bus line, etc.

V - SIMPLIFIED DATA FLOW

A,

Basic Instruction Execution

The objective of this segment will be to explain the representative
data flow concepts in the 3301 Processor, covering address and data
transmission from register to register via the bus lines. Representa-
tive instructions will be covered in some detail, as well as the
functions of Staticizing, utilizing Status ILevel and Time Pulse
Clocking,

I-10

1. Execution Concepts

In order that any problem may be solved, whether by machine or
human, its solution must be carried out in specific sequential
steps. In a machine, the list of these steps to be taken is called
a program, and each step is called an instruction. In order that

a machine execute the program, it performs these instructions one at
a time, in a definite sequence.

In order to execute each instruction, the machine must perform four
basic steps:

a. Read - It must read the instruction from its memory.

b. Remember - The instruction must be "remembered" or stored
while it is being executed..

c¢. Interpret - Before it can be executed, the machine must
interpret the instruction to learn its parameter.

d. Execute - The interpreted instruction may now be executed
correctly,

In the 3301 system, the functions of Reading and Remembering the
instruction are performed by a process called Staticizing. The
process of Staticizing consists of reading the instruction from
its location in memory, and storing it in its operating registers
so that it may be interpreted, and then executed.

B. Staticizing

co Cl C2 C3 C4 C5 Cé C7 C8 C9

()3 N A A A A B B B B
CODE | CHAR

3301 INSTRUCTION FORMAT
FIG. 5

Fig. 5 illustrates the 3301 instruction format. Note that it is
compatible with 301 format. Each instruction is specified by 10
characters, which are always placed in a single decade of memory.
That is, it must have its Operation Code Character located at an
address ending in XXX@, and its B3 character located at an address
ending in XXX9.

There are 4 registers in the Control portion of the Processor, which
are used to store the instruction while it is being executed, These
are the OP, N, A, and B Registers. The OP and N Registers are single
character registers, each constructed of 7 flip-flops.

The A and B Registers are not constructed by utilizing conventional
flip-flops, in the 3301 system. Because of the various modes of
simultaneity and the automatic interrupt system, multi-level storage
for operating registers, and other machine conditions, are required.
It is most economical to incorporate a small, rapid~access memory,

in place of registers, to achieve this storage. This device is called
the Micro-Magnetic Memory.

l’

Micro-Magnetic Memory

The MMM (Micro-Magnetic Memory) incorporated in the 3301 system is

a word-oriented, octally addressed, core memory.
sists of 50 4~-character words.,

Its format con-
A four-character word was chosen

since each location generally is used to store a machine address.

Each word location of the MMM is given a standard name, relative to

the address or machine condition which it will store.

Fig.

6 illus-

trates the MMM layout, as well as the octal address necessary to
specify any location.

MICRO MAGNETIC MEMORY LOCATIONS

g0 '
1 2 3 4 5 6 7
81\
() (€9) (8) (B) (T) (©) (E)
P Register |A Register|S Register [B Register|T Register |[C Register |[E Register
A-Add of B-Add of |A~-Add of |B-Add of
Simo 1 Simo 1 Simo 2 Simo 2
Inst. Inst. Inst. Inst.
- [Storage of Machine Conditions During General Interrupt4+————3p
P-Reg A-Reg STA B-Reg | STP Machine lsrer

¢——————Storage of Machine Condi

tions During Real Time Interruptd—m-——%

P-Reg A-Reg STA B-Reg STP Machine STPR
Indicators

General 4—Storage of last Simc 1 Inst,—p€&——Multiply and Divide ————>
Interrupt Storage

Routine A-Address |OP code & |B-Address MD 1 MD2 MD3
Entry N char.
Multiply i¢— Storage of last Simo 2 Inst .

and

Divide A-Address (0P code & |B-Address Not Not Not
Storage N char. Assigned Assigned Assigned

MD4

¢—Storage of last Simo 3 Inst—#F Register |G Register
STP on A-Address {OP code & |B~Address |A-Add of B-Add of Not
STOP N char. Simo 3 Simo 3 Assigned
Inst. Inst.
Index Increment Index Increment Index Increment
Not Field Field Field Field Field Field
Assigned #1 #1 #2 #2 #3 #3
Real Time
Interrupt |4 DO NOT EXIST »
Routine
Entry

FIG.

I-1

6

MEMORY

ADDRESS
AUTO-
‘ 4 MATIC
A\DDRES S READ REGENERATE
ING COMMAND COMMAND
l LOGIC
\ $d
MICRO
T T % MAG. | TIME
' MEMORY | GENERA-
) TOR
REGENERATION
PATH
]
{11
MMM ¢
REGISTER
BUS @ ,!
BUS 1 ¥ PROCESSOR
BUS 2 N BUS LINES
BUS 3 ¥

MICRO MAGNETIC MEMORY BLOCK DIAGRAM
FIG. 7

Fig. 7 shows a block diagram of the MMM. Note that it has all the com-
ponents of the Main Memory; i.e., a corestack, a Memory Register,
addressing logic, and a Timing Generator.

Since the MMM "Register" location to be used is dependent upon which
sub-step (status level) of an instruction is being executed, the address
of that location is automatically generated. For example, when storing
the A address of an instruction during staticizing. the automatic
addressing logic will generate the address of the "A" storage location.
Referring to Fig. 6, the reader will note that this is location 02(8)'

The MMM is wired to perform either a read cycle or a write cycle at any
given time. This is done in order to simulate register operation.
Either a read cycle or a write cycle requires 214 nanoseconds to be
executed; one processor time pulse, Again this simulates register
operating speeds., Note the Read and Regenerate Command inputs to the
Timing Generator. These are generated at the proper time during a
status level in order to achieve the desired operation.

All communication with the corestack is via the MMM Register., It is a

full, four character register to coincide with the word format of MMM.
Note that all external communication is via the Processor bus lines.

I-13

Staticizing Data Flow

Because the 3301 instruction occupies a single decade location in
HSM, only one memory cycle is required to access it during Stati-
cizing., Once it has been read into the Main Memory Register (MR)
it must then be placed in its appropriate operating registers.

The entire process of Staticizing thus requires only one status
level, called Pl (it is called Pl because it utilizes the P reg-
ister to address memory when accessing the desired instruction),
The Pl status level is one of the long status levels which require
1.93 microseconds for execution.

The Pl status level requires this time because it must store both
the A and B addresses of the instruction in the MMM. Only one ad-
dress may be stored at a given time due to the four character
format of MMM, and because only a single address may be transmitted
via the processor bus lines at a given time.

Two MMM cycles are required to store each of the two addresses.
This is a total time of 428ns + 428ns = 856ns., Since the instruc-
tion itself does not exist in MR until TPC3, 1 microsecond after
the beginning of the status level, a minimum of 1.7 microseconds
is requred to staticize an instruction. 1.93 microseconds or 9
time pulses is the figure actually chosen to ensure enough time
for proper operation.

The following operating steps must occur during the Pl STL.

a, Access "P address™ from MMM and address MAR.,

b. Start Main Memory cycle and increment P + 10,

c. Place N character and OP code in N and NOR Registers after
read-out occurs to MR.

d. Store "A address" in A location of MMM.
e. Store "B address" in B location of MMM.

f. Partially interpret the instruction in order to choose the
necessary status flow for proper execution.

I-14

FIGURE 8 - STATICIZING DATA FIOW

P1 STATUS LEVEL

TPC¥

Pl status level generates the address 0l for the "P location" of MMM,
and a read cycle is performed. The P address is placed in the MMMR.

TPCl

The P address is transmitted via the bus lines from MMMR into the
MAR to address the desired instruction. The Main Memory cycle begins.

TPC2

A MMM read cycle is performed to "reset" the contents of the P loca-
tion so that the P address may be incremented by +10 in order to
address the next instruction in sequence. The Bus Adder increments
the address in MAR by +10.

TPC3

The contents of the Bus Adder are now transmitted over the bus lines
into MMMR, and a MMM write cycle (with the P locations addressed)
places the modified "P address" into its proper location. At this
time, the decade from Main Memory has been placed into the MR.

TPC4

The OP code and N character are now gated from the MRf and MRLl stages
and into their appropriate registers. An MMM Read cycle is performed
on the "A" location of MMM so that it may be "reset" to receive the
new A address.

TPCS

The Interchange transmits the MR2, MR3, MR4, and MR5 characters onto
the Bus lines. These four characters of the A address are then
placed into MMMR while a write cycle is executed to the A location.,
Main Memory Regeneration occurs.

TPC6

Address the B location of MMM and generate a Read. cycle to "reset" it
for the new B address,

TPC7

Transmit the MR6, MR7, MR8, and MR9 characters onto the processor
Bus lines, and place the four B address characters into MMMR.. A
write cycle must be generated to write the B address into the B lo-
cation of MMM.

TPC8

The Operation Code and the N character of the instruction are decoded
to allow the next status level to be '"selected". Since the next
status level is the first of execution, it is called the FPL (First
Processing Level),

I-15

Instruction Execution

Once an instruction has been staticized, it may then be executed., In-
struction execution consists of performing the necessary sequential
status levels, each of which perform a specific function. The total of
these specific functions results in the completion of the instruction.

1. Instruction Data Flow

Each status level is able to perform an operation such as: trans-
ferring the content of one register to another via the bus lines,
adding two characters and placing the result in a memory location,
comparing two characters and setting an indicator to show the re-
sult, or transfer a character via the bus lines and Input/Output
channels to an I/0O device so that it may be written on the storage
medium (such as tape).

In addition to performing each of these major functions, each
status level performs several minor ones. These minor functions
are performed to set up machine conditions for proper execution of
the next status level. Some minor functions that are performed are:
incrementing or decrementing the contents of an address register,
counting down a register which determines a specific number of
major operations to be executed, sensing for equality between two
addresses, etc,

2. Add Instruction Data Flow

In order to better understand the "big picture" of status level
data flow, we will consider an Add instruction, since the need and
function of adding may be readily understood.

Consider the operands 42 and 37. For a human being to add them to-
gether, he must first group them in a special way.

42 (Augend)
+37 (Addend)
XX (Sum)

Note that a name is given to the operands in each of these positions.
The upper operand is called the Augend, etc.

The operands are groupad in this manner because it is far easier to
add one character of one operand to one character of another, at
one time, than it is to add each entire operand to the other.

Knowing this, a human would look at the rightmost digit of the
Augend, and the rightmost digit of the Addend and say "two plus
seven is nine". While he remembered the two digits, he searched
in the addition table stored in his mind for the result. He then
remembered the result, and wrote it in its proper position on his
worksheet,

He then performs the same sequence of operations on the next two
digits (read each digit, remember it, search for the result, and
write the result onto the worksheet), and achieves the sum of 79,
Note that he had to perform the same basic steps twice in order to

42 (Augend)
+37 (Addend)
79 (Sum)

develop the sum; one cycle of steps for each digit of each operand.

I-16

A computer performs the Add in much the same way as a human being.
Just as the operands and the result were stored on his worksheet,
the operands and result are stored in the computer's main memory,
with each digit at a specific location. Because of this, the com-
puter must perform the same basic steps of reading and remembering
a digit from each operand, adding them together, and storing the
resultant digit in its memory.

Each of these basic steps is performed by status levels.
00 01 02 03 04 05 06 07 08 09
os [+ [T 2] 1] of o 1 1 0 0 3

00 01 02 03 04 05 06 07 08 09

10 4 2 3 7 A B C D E F

FIGURE 9
ADD INSTRUCTION AND PARAMETERS

Fig. 9 illustrates an Add instruction and the two operands, located
in the computer's memory. After the instruction is staticized, it
looks like the following to the computer. Once it is interpreted,

MICRO-MAGNETIC MEMORY

!
1
+ 2 ! 1 0 0 1 1 0 0 3
1
NOR N i

A ADDRESS B ADDRESS

- em wm e e e e e ea e ae wee am eme e e mem e

!
t
I
i
1
{
t

the computer knows it must Add two operands, each having two digits,
the rightmost digit of the augend being located at 1001, and the
rightmost digit of the addend located at 1003. Note that the in-
struction format has no third address to specify where the result

is to be stored. Because of this fact, the result is stored in the
same locations that the augend occupied and the augend is, of
course, destroyed.

FIG. 10 - ADD DATA FLOW

STATICIZING
(P1)

IF N COUNT IS NOT
EQUAL TO ZERO, CYCLE
WILL BE REPEATED FOR
NEXT CHAR. IN
SEQUENCE.

A

-

B REGISTER——3MAR

CHAR. ADDRESSED BY

B (ADDEND)~———— D3

B ADDRESS DECREMENTED
BY ONE

REGISTER ———J MAR

CHAR. ADDRESSED BY
(AUGEND) D2
N REGISTER COUNTED
DOWN BY ONE
ADDRESS RETURNED TO
MMM NOT MODIFIED

A ADDRESS ——-—3 MAR

AUGEND AND ADDEND

CHARS. ADDED. RESULT

WRITTEN INTO HSM

A ADDRESS DECREMENT-
ED BY ONE

"B " STL

HA " STL

"AT STL

IF N COUNT IS EQUAL TO ZERO
COMPUTER WILL TERMINATE IN-

STRUCTION AND SELECT Pl STL
TO CONTINUE PROGRAM EXECUTION.

Fig. 10 is a drawing of the status levels necessary to execute a
simple Add instruction. After staticizing, note that three status
levels must be executed, and that these status levels perform the
major operations mentioned previously.

The first status level after staticizing (always called the First
Processing Level) uses the B address to access the rightmost digit
of the addend and place it in the D3 register for storage. Note
that, in addition, the contents of the B address are decremented by
a quantity of one. This is done to prepare the address so that the
next digit in sequence may be accessed if it is to be part of the
operation, Fig. 11 illustrates the data flow in more detail. Note
that it is called a "B" STL since it uses the B address to specify
a memory location. The encircled numbers indicate the order of
occurence of an operation.

™M M M 7
\B_ADDRESS, ! == 1 D‘: &
\} @ AODIEAR
1]c|o] %]
MM M!
! T -
-
LrV_rill @MODIF’/CA'TION
1]0[0| 3 ,ZIOIO[;L___Q) INTERCHANGE
AR @ Bui ABGER] L ANVeL i @ B STL
/_/ S M EREGENENKTJEIV 4 2 317 A B C DI\E |~ @
=E7p-0uT DEABE N MR SELECT
NEXT
STL
(N

FIG. 11 - B STL DATA FLOW

Step #3 illustrates the modification of the B address by the Bus
Adder. Note that this operation is performed before the desired
character is placed in D3. This is done at the specified time be-
cause the desired decade is not read out of the HSM until sometime
after the middie of the status level.

The bus lines are free until the decade is read out, so the hardware
takes advantage of this fact in order to transfer the modified ad-
dress from the Bus Adder, via the bus lines, into the MMMR for re-
generation to the B address location. This is the usual procedure
for any status level which is used to read a decade from memory
without changing it,

Note that a very significant operation is performed at the end of
the STL (step 6). The next status level is selected. This is the
operation that allows the hardware to achieve its proper sequence
of continuity when executing an instruction.

Fig. 12 is an illustration of the data flow through the 3301 block
diagram for the A status level which was selected by the B type.
Note that it uses the A address to access the necessary decade from
HSM, but that no Bus Adder modification signal is generated.

Since the result must be placed in the same HSM locations occupied
by the augend, the initial A address must be retained until the re-
sult is generated and written into that location, during the next
status level, Though no change is to be made to the A address, the
unmodified Bus Adder content is transmitted via the bus lines into
MMMR, because the MMM has destructive read-out.

Once the address has been placed into its proper location in MMM,
the chosen character of the decade is transmitted via the Inter-

change, and the bus lines into the D2 Register for storage. Note
that D3 still contains the character from the ADDEND.

MMM (T
TTA T Cé%%uxv 2 j7
o wNE (B) 03
\ADDRESS, @ ¥ L j,
’’’’’ 2/ ®
f N ADDER
/ 1010}/
M MR
v
nx MCDIFICATION .
lolo]s ool] 5 INTERCHANGE| (3 A STL
MAR BUS ADDE R ~ 5
1\ @ LEVEL

) T ©

H S$M RESENERATION | #|2|3]7|A |&|<|p|E] £ SEAST
e
READ-CCT DECADE M R §;§

FIG. 12 - A STL DATA FLOW

The N Register content is counted down during step 4, and represents
the fact that one digit from each operand is now ready to be added.

When this indicator reaches a count of zero, the hardware will know

that the addition of all digits of both operands has been completed,
and the instruction may terminate.

Now that the D Register contains the two digits to be added, the re-
sult may be generated and placed in its proper memory location. This
will be done during the third STL, which is selected just before the
end of the first A STL (step 6).

The third status level will use the Adder, located near the D Regis-
ter, to generate the result. It is a single-character decimal adder,
which is wired to generate the result of the addition of any two
decimal digits, In our example, because a 2 is in D2, and a 7 is in
D3, the Adder will generate a result of 9.

I-20

MMMR N @
Y nN
. ry N7
y b W . N COUNT
Jololi} @ |lololop—] INTenCHANGE colilp N=ERO
® @

w ® @)

L.
0SS M REGENERATION ¥ 9131 71A|B|CIPIE|F
e P M R - ERMINATE
READ OUT DECADE SELECT TRsTRUCTION
To REPEAT se)ER7
cyctle P1

FIG. 13 - A STL DATA FLOW

Fig. 13 describes the data flow for the second A status level. Note
that all the operations described in the previous paragraph are per-
formed. The Adder generates a 9 as the result, and it is written to
memory during the regeneration cycle of memory.

This process is performed by preventing the character 2 from being
placed in the MR during the read-out portion of the memory cycle.
The new character, 9, is then placed in its proper decade position
of the MR (by the interchange) before regeneration occurs. This is
the method by which any new information is written to memory. The
character location to be changed is stopped from being placed in the
MR during read-out, and the new character is placed in that position
just before write-in (regeneration).

Note that this process occurs before the A location of MMM is modi-
fied by the Bus Adder content. The Bus Adder cannot modify a given
address in MMM until the bus lines are free of any other operation;
in the case of any status level which writes new information to
memory, this modification of an address cannot occur until regenera-
tion is performed.

Again, the last operation that is performed is to select the next
status level in sequence. Since one character of each operand has
been added, the computer must now determine whether any more char-
acters exist in each operand, so that it may terminate the instruc-
tion or perform another cycle of three status levels.,

This operation is performed by sensing the N count. Note that if
the N count is not equal to zero, the computer realizes that it must
perform the same cycle on the next character of each operand. There-

fore, it will select a B status level in order to begin the cycle
again.

I-21

If N is equal to zero, the computer knows that it has added all
characters of each operand, and that it may terminate the instruc-
tion. An instruction is terminated simply by selecting a Pl status
level, which will access the next instruction in sequence.

In our particular example, another cycle of three status levels
would be performed in order to add the next (last) digit of each
operand., Memory locations 1000 and 1001 would contain a 7 and a
9 respectively, when the instruction terminates, as the result of
the operation.

Instruction execution for the majority of 3301 instructions will
follow the same data flow patterns developed in this example, es-
pecially relating to use of bus lines, address updating, and memory=-
to-register communications.

SECTION V - 3301 SYSTEM INTERRUPT MECHANIZATION

A.

Interrupt Evolution and Definition

Stored-program computing systems have always had a method by which a
machine condition could cause a variation in program execution.
Generally, this variation in program sequence was mechanized by util-
izing a special instruction that sensed for an indicator, which was
set by the machine condition.

This instruction held an address (or Program Count) of the next in-
struction to be executed, if the machine condition had set the sensable
indicator. The Program (subroutine), located at the address the com-
puter would jump to, would be designed to somehow handle the machine
condition,

Usually, if the indicator had not been set when it was sensed for by
the sense instruction, the sense instruction would simply terminate and
not change the Program Count Register. This would allow the next in-
struction in normal sequence to be executed.

This combination of a sensable indicator, and an instruction to sense
for it, gave the system the ability for hardware conditions to communi-
cate with software operations. This communications facility enabled
special exception conditions to be handled almost as_soon as they
occurred.

In addition to changing the Program Count Register in order to effect
the jump in normal program sequence, the sense instruction had to
store the address (or program count) of the next instruction that
should have been performed. This was done to allow the "Exception
Program" to return to the proper point (instruction) of the main pro-
gram, This enabled its continuity once the exception had been handled.

This system, however, has its disadvantages, First, the machine condi-
tion cannot be sensed for efficiently unless the sense instruction is
staticized often., This tends to elongate the timing of the main
program, since there are usually many types of machine conditions to
sense for. Therefore, many sense instructions must be included in any
program,

This very fact makes it quite difficult to program a system of this
type. The programmer must perform rigid timing summaries in order to
efficiently place the sense instructions in effective locations of his
program. He must avoid redundancy, and yet ensure that enough sensing
is performmed during small, seldom used loops. Timing becomes even more
critical in loops where iteration is "data sensitive",

In a Real-time system, the task of programming becomes even more diffi-
cult, Real-time equipment generally sets an indicator to specify that
input data is being received., The buffers which hold this data must be
serviced, under program control, within certain time limits, else data
may be lost due to buffer cycle timing. This causes the programmer to
be very restrictive in his sensing operations for the Real-time
indicator.

Where a large group of parallel communications lines are connected to a
buffer interface, the complexity of the sensing instructions becomes
very great, A large percentage of program time must be devoted to
sensing, in order to properly service the buffers., 1In addition, the
data transfer rates of the communications lines may vary, and the higher
speed lines must be serviced more often. A priority system for buffer
servicing must then be established.

I-23

Whenever any software operation must be repeated over and over again,
the proper conclusion to be reached is that it should be performed by
hardware, as an automatic function. Within economic limits, hardware
is always designed to make the programming task more simple and
versatile,

A hardware logic block may easily be mechanized to gutomate the function
of the sense instruction.

Basically, this hardware operation will automatically sense for a ma-
chine indicator being set, and transfer control to a specific program
point upon finding one set. In order to affect this transfer of con-
trol, as in any transfer of control, the content of P must be changed.
In order to allow P to be changed to some pre-determined address, a
register (storage location) must be added to contain the jump P address.
This will simulate the transfer address of thz sense instruction. In
the 3301, this is done by designating locations of Micro-Magnetic-
Memory to hold the address.

In a system which utilized sense instructions, to jump out of the normal
program path for exception conditions, the jump was always performad
after a previous instruction had terminated. This is obvious, since
only one "compute!" instruction may be executed at a time.

There is an added advantage given to the automatic hardware system if

it does not sense the indicator and perform the jump until the instruc-
tion presently being executed has terminated. The advantage is that it
may store all machine conditions of that instruction so that the condi-
tions may be used for further processing when the computer returns to
the main program. In the case of the 3301 system, when the jump occurs,
the A and B addresses, standard Store #A, Store P of a Repeat, the
PRI'S, Arithmetic indicators, etc. are stored in addition to the storage
of the P address of the next instruction in sequence. These conditions
are stored in appropriate locations of MMM.

Because this operation diverts Program Control from the main processing
flow for some period of time, it is called an Automatic Interrupt

System,

Spacifications and Operation of 3301 Interrupt

Section A defined an Interrupt system as: a method by which a machine
condition could affect an automatic variation in program execution se-
quence. This variation in program sequence enables exception conditions
to be handled immediately by software and then provides for a return to
the next instruction of the main program.

The Interrupt system of 3301 has been developed to a high state of the
art. Since the 3301 system has both Real-time and General processing
abilities, a two-level priority system has been established.

1. Interrupt Class and Priority

As Section A described, Real-time operations require great care in
buffer service timing since data may be destroyed. General process-
ing capabilites do not require this care, therefore, the 3301 has
two classes of interrupts.
As you might imagine, the two classes of interrupt are:

a. Real-time

b. General

I-24

Real-time interrupts have a higher servicing priority over that of
General interrupts. This means that if a General and a Real-time
interrupt condition occurred simultaneously, the Real-time would be
serviced before that of the General. This may be done since Gen-
eral conditions are usually not time-sensitive.

Each class of interrupt has several types of conditions which may
cause interrupt. Fig. 14 lists the types of interrupt by class and
the pumber assigned to their indicators.

The number assigned to the interrupt indicators is significant
since it will be used to generate an address in determining which
indicator had been set.

3301 INTERRUPT INDICATORS

REAL TIME GENERAL
01 Systems Error 07 Arithmetic Error 13 Simo 2 Terminated
02 CMC Service Request 08 Overflow Abnormally
03 Reserved for Future 09 Off-Line Operation | 14 Simo 1 Terminated
Enhancement Complete Abnormal ly
04 External Interrupt 10 301 Compatibility 15 Simo 3 Terminated
05 Console Request 11 Busy or Inoperable Normally
12 Simo 3 Terminated 16 Simo 2 Terminated
Abnormally Normally
06 Programmed Interrupt 17 Simo 1 Terminated
Normally
18 Program Test
FIGURE 14
2. Basic Interrupt Operation

The basic method of interrupt operation in the 3301 system is simi-
lar to that described in section A. (Interrupt Evolution and Def-
inition). During the execution of an instruction of the main pro-
gram, running in the machine, one of the interrupt indicators may
become set due to a machine condition of some type.

Whan the instruction terminates, instead of the machine selecting a
Pl status level to enable staticizing the next instruction in
sequence, special interrupt status flow is selected and generated.

The interrupt status flow will perform four operations necessary to
the proper execution of the interrupt function. These four are:

a. Change the P address to that of the first instruction of
the interrupt subroutine,

b. Store all machine conditions to allow proper return to the
main program. Machine conditions which are stored are the
final register contents of the interrupted instruction,
the PRI settings, STPR, the content of the NR Register,
etc.

c. Set the interlocks which prevent another interrupt of the
same class or a lower priority level from interrupting the
interrupt being processed.

d. Select a Pl status level to enable the interrupt routine
to be executed.

When the interrupt condition has been processed by its appropriate
subroutine, the last instruction of the subroutine will return the
normal mode to the task of processing the interrupted main program.
This is a special instruction called Return After Interrupt (RAI).

Basically, the RAI instruction will restore all machine conditions,
remove the interlocks, and return the P Register content to that of
the next main program instruction that would have been executed.
Figure 15 (below) illustrates a flow diagram of the interrupt

process,
N s N
2 Time Flow ?
Termination“‘"l
Main Program Main Program
Instruction Continuation
A
Select Interrupt Status
Flow Instead of Executing
Next Instruction
Interrupt
Indicator v
Set 1) Change "P" 4) Select P1
2) Store Machine 3) Return to
Conditions ¢— Interrupt Main Program RAI
3) Set Interlocks S;?SES 2) Remove Status
4) Select Pl Interlocks Flow
1) Restore all
Machine
Conditions
N
Interrupt Subroutine RAIL
Instructions
FIGURE 15

BASIC INTERRUPT PROCESS FLOW DIAGRAM

3. Detailed Interrupt Operation and Processing

Now that the "Big Picture" has been discussed, we may cover the de-
tails of interrupt processing. It is a hardware responsibility to
determine when an interrupt indicator has been set, and effect the
proper transfer to its appropriate subroutine, and a software re-
sponsibility to return to the main program at the desired exit
point.

Figure 15 shows that even though the interrupt indicator became set
during the execution of an instruction, interrupt did not occur un-
til the instruction had terminated, and the computer was about to
staticize the next instruction in sequence. This is done simply by
selecting the proper interrupt status flow when an instruction
terminates, instead of selecting a Pl status level.

I-26

The last operation performed during the last status level of a
"compute" instruction is to select a Pl status level., If any flip-
flops of the interrupt register are set at this time, however, an
I1 status level will be selected and the Pl inhibited. The Il
status level is the first status level of the interrupt entry
status flow.

Six status levels comprise the interrupt status flow; Il through I6.
These six I status levels require a total execution time of 9.42
microseconds since five of them require 7 time pulses and the sixth
requires 9, Figure 16 illustrates the specific functions performed
by each of these status levels.

Termination of !
Previous Instruction |

Contents of P location 1s
stored in either Gen/R.T.

P address storage.

Rightmost diad of STA is
stored in D2 & D3.

If General, inhibit general
(INHG) interlock is set, If
Real-time, INHR interlock is
set.

Il

A location content is stored in Gen/R.T.
A storage location,

Leftmost diad of STA is accessed and
stored with content of D2 & D3 in
appropriate Gen/R.T. STA location.

12

L

B Address content is stored
in Gen/RT storage location.
Rightmost diad of STP is
accessed and stored in D2 &
D3.

13

Content of either "General Interrupt
Routine Entry" or "Real-Time Interrupt
Routine Entry" is accessed and stored in
the P address location,

Leftmost diad of STP is accessed and
stored in Gen/RT location along with
content of D2 & D3.

14

I-27

FROM I4
H

!

Content of Rightmost diad ofﬁ:TP of repeat is accessed
and stored in D2 & D3,
All control flip~flop settings are stored in the 4
character "machine indicators" section of the Gen/RT
storage area..

NR Register c3 20 - 23

INHG Flip-Flop c2 20

FREP Flip-Flop c2 21

SCAR 2 c2 22

PRP cl 20

PRN ClL 21

PRZ cl 22

INHA c2 23

INHB c2 24

301 Compatibility c2 25
Correct parity is generated in all character locations.

I5

Leftmost diad of STPR is accessed
and stored in STPR location of
Gen/RT storage along with D2 &

D3, Select Pl to allow processing
of interrupt subroutine.

16
]
i

FIGURE 16
DETAILED INTERRUPT STATUS FLOW

Note that in each status level of Figure 16 the computer had to
decide whether a Real-Time or General Interrupt had occurred, in
order to store the machine conditions in the appropriate area of

I-28

Micro-Magnetic Memory. This decision also must be made in order to
determine which of the "Entry" addresses will be placed in the P
Register location.

The significant factor to note is that though 18 types of interrupt
conditions exist, the hardware only determines which class of in-
terrupt had occurred, in order to effect a transfer to the appro-
priate subroutine of the Executive Control System.

It will be the function of the ECS to determine which indicator (of
a class) had been set before processing of the interrupt may occur.
Once the specific type of indicator has been determined by the ECS,
the specific cause of the interrupt condition must be determined,
since several machine conditions may set the same interrupt
indicator.

In other words, there are three levels of sensing to be performed
in order to determine which machine condition generated the inter-
rupt condition,

a, Hardware determines the class of interrupt, and transfers
control to either the general or Real-time interrupt sub-
routines of ECS.

b. The ECS now has the responsibility of "scanning'" the con-
tents of the interrupt register to determine which indi-
cator of that class was set. This is accomplished by

performing a Scan Interrupt Instruction.

C. Once the specific indicator has been determined, sensin
routines must be performed to determine what machine con-
dition generated the interrupt. This is especially true
in the case of I/O operations, and the FCP would have the
function of performing the necessary sensing processes.

The first level of interrupt sensing (hardware) already has been
described in the detailed interrupt status flow. The second level
consists of the Scan Interrupt Instruction.

The Scan Interrupt Instruction (Pgs. VII-14, 3301 System Reference
Manual) has the function of scanning the interrupt register to de-
termine which indicator caused the interrupt. It scans the indica-
tors sequentially, in multiples of six, and generates a special
address constant for the first indicator that it discovers set.
This address constant is stored in the standard STA location of HSM
before the instruction terminates.

The indicators are scanned in the order of their numeric symbol
(lowest to highest) and the numeric symbol of the first indicator
found set, is used as the Cl and C2 digits of the address constant.
If, for example, indicators 07 through 18 were scanned, and 11
(Busy or Inoperable) was found to be set, the address constant gen-
erated would be X110. The MSD (Most Significant Digit) of the
address would be supplied by the program.

This address constant must now be used to transfer control to the
specific routine which will process the interrupt condition. The
simplest method of doing this is to set up a table of transfer in-
structions in HSM. One transfer instruction would be required for
each interrupt condition (18), in order to TC to its associated
processing routine. The address constant would be used as a
transfer address to reach its appropriate TC instruction. This
means that the TC instructions must occupy 180 locations of HSM,
and the location of each TC instruction would be the address
constant of its related indicator,

I-29

As an example, locations 4010 through 4180 would contain 18 transfer
instructions. If indicator #12 was found set by the Scan Interrupt
Instruction, it would store the address 4120 in STA. Th2 next in-
struction in sequence (to the SIN) could be a Store P instruction,
indirectly addressing STA, as its transfer address. Thus, the ad-
dress constant could be used to allow the interrupt to be processed,
with very little encoding or decoding necessary.

An option available to the SIN instruction is the ability to inhibit
the scan of a certain indicator or group of indicators. This 1is
done by setting up 18 bit positions in memory to present a one-for-
one bit relationship to the 18 interrupt indicators. The 18 bit
positions are set up in 3 character positions (six X three informa-
tion bits for each character). This is why the interrupt register
is scanned in groups of six. Each character is called an inhibit
mask character.

Scanning occurs such that the 25 bit of the leftmost Inhibit Mask
Character corresponds to the Ol indicator, and the 2¥ bit gf the
leftmost character corresponds to the 06 indicator. The 2° bit of
the middle (2nd) Inhibit Mask Character relates to the (7 indicator,
etc. Any one bit in the inhibit mask area will inhibit the de-
tection of its associated, set, interrupt indicator. Scanning will
continue on until an indicator is found set and not inhibited, or
all indicators are scanned with none found set and not inhibited.

If no indicators are found set, the address constant remains as
X000, and this, too, can lead to some specific subroutine.

A very important point is that the indicator which is discovered to
be set is reset upon termination of the SIN instruction. If another
interrupt should be generated during the interrupt processing, it
will not be reset until a scen is performed for it.

Once the specific processing routine has been initiated, the third
level of interrupt sensing may occur. Since several machine con-
ditions may set the same indicator (especially in the case of I/0
instructions), sensing instructions must be performed in order to
determine which device, and specifically which machine condition,
set the indicator. Normal I/0 Sense instructions must be used for
this function. This will be the responsibility of the FCP portion
of thes Operating system,

Once the three levels of sensing have been performed, and the spe-
cific machine conditon has been isolated, it may be processed by a
specific routine (which may be user oriented).

After the interrupt processing routines have been completed, the
return to the main programmay be executed. As previously pointed
out, this is accomplishad by performing a special instruction called
Return After Interrupt (RAI).

The RAI function is essentially an "N character" modification of the
Control Interrupt Logic instruction, (Pgs. VII-7, 3301 System
Reference Manual)., It has the function of providing a return from
interrupt processing to the next instruction of the main program.
This is the next instruction, in sequence, that would have been
executed if interrupt had not occurred.

The RAI instruction provides this return by accessing all machine
conditions from their Real-time or General Interrupt Storage Areas
of MMM, and restoring them to their proper registers, memory loca-
tions, and program indicators. It also removes the associated
Interrupt class interlocks to enable the hardware to sense for any
other interrupt condition which might exist., It then selects Pl,

1-30

as its final operation, to allow return to the main program, since
the P Register now contains the appropriate address.

The proper storage area of MMM which it will access in order to
restore the proper conditions, is determined simply by sensing to
determine which class of interrupt the computer had just processed.
If a General interrupt had been processed, it would access the
General Storage areas and place them in their appropriate normal
mode storage locations, etc.

The RAI instruction performs its operations by executing six status
levels in addition to its staticizing status level., These six are
called X1 through X6. The first four require 9 time pulses, and
the last two require only seven. Including staticizing, a total
time of 12,63 microseconds is required for execution. The six
status levels perform basically the same operations as did the

I] ————» 16 status levels, except that they access their data
from the appropriate storage areas of MMM and place their informa-
tion into the normal mode registers and HSM storage areas, Any
contents of STA, STP, STPR from interrupt processing will thus be
destroyed.

The last status level, X6, selects a Pl to allow normal processing
of the main program. Note that if another interrupt indicator had
been set during processing of the initial interrupt, it would have
been prevented from interrupting by the interlocks, Since the in-
terlocks are removed by the RAI, interrupt may occur again as soon
as the X6 attempts to select the Pl., An Il would be generated in-
stead of the P1.

Other options available through N character modification of the
Control Interrupt Logic instruction, provide for setting several

of the interrupt indicators. In addition, interrupt class inhibits
may be set to prevent an interrupt of that class from affecting the
main program, or when performing debugging or testing procedures.,
In these cases, the indicator will be set by the interrupt condi-
tion, but interrupt status flow is not executed until the inhibits
are removed, In fact, the inhibits are nothing more than the
interlock flip=flops INHG and INHR, which are set by an interrupt
condition.

Multi-Level Interrupt Processing

In an earlier segment of this write-up, the priority of the inter-
rupt classes was described. Real-time interrupts have priority
over that of general interrupts, and both interrupts have priority
over normal processing.

Just as a General condition may interrupt normal mode processing,

a Real-time condition may interrupt General interrupt processing.
If a General interrupt is being processed, and a Real-time inter-
rupt condition occurs, the Real-time condition will interrupt the
General at the end of the instruction currently being executed.

The Real-time condition will be processed, and the RAI will return
program control to the General interrupt processing routine., Figure
17 illustrates a flowchart of this process.

Figure 17 shows normal mode processing interrupted by a General In-
terrupt condition. The normal mode machine conditions are stored in
the General storage area of MMM, and General processing begins.

General processing is interrupted by a Real-time interrupt condi-
tion, and the General processing machine conditions are stored in
the Real-time storage area of MMM. After Real-time processing is
complete, the RAI instruction (R-T process) returns program control

I-31

Normal
Mode
Instruction

General
Interrupt

> Time Flow

General
Interrupt
Status Flow

I1—>16

General

'3{ Processing

Instruction

Real-Time
Interrupt

Real~-Time
Interrugt
Status Flow
IL 16

——

MULTI-LEVEL INTERRUPT PROCESSING

\

Normal
Mode

Processing

RAI to

Normal Mode
Processing

General
rocessing
Routine

-

RAI to
General
Processing

Real-Time
Processing
Routine

H > %

N\

FIGURE 17

I-32

to the General process routine simply by accessing the General ma-
chine conditions from the R-T storage areas of MMM. Once the Gen-
eral process is complete, the RAI (General process) restores the
normal mode machine conditions from the General storage areas of
MMM,

The two storage areas of MMM are thus necessary to allow Multi-level
interrupt processing to take place. Note that due to the interlocks
involved, an interrupt of the same class, presently being processed,
cannot immediately cause interruption.

I-33

SECTION VI - 3301 SYSTEM PERIPHERAL BASICS

A.

BASIC PERIPHERAL CONTROLS AND DATA FLOW

A stored program computing system performs all processing operations
upon data which is stored in its main memory. This data must be ac-
cessed from main memory and placed in some operational logic block in
order to be processed. Of course, the instructions which direct the
processing are also stored in main memory.

The size of main memory is usually limited by economic considerations,
and all the data necessary to the solution of a problem cannot be stored
at one time. HSM usually does not contain enoughlocations to hold both
the entire data file, and the program, in order to solve a problem.

This means that the parameter data, as well as the program, must usually
be segmented. It must be divided into logical portions, and placed in
memory only when it is needed to solve a specific portion of the problem.

Once the result of each portion of the problem has been derived, it must
be stored. It cannot be stored in main memory since it would then occupy
area necessary to the solution of the next portion of the problem. In
addition, a user will usually require access to the results,

The result is generally stored on some storage medium external to main
memory; on a peripheral device such as a printer, or a tape station, etc.

In either case, devices are required which will act as an input storage
or output storage medium. These are the peripheral devices which sur-
round a processor, and whose function is basically to act as an extension
of main memory; for storage, display, or input.

Data may be stored on many media, the two most popular media being paper
(punched holes) and magnetically-sensitive surfaces (magnetic field
variations). The devices which handle these storage media take many
forms due to considerations of desired speed of data access versus
economics. The most commonly used devices are magnetic tape stations,
card readers and punches, paper tape readers and punches, disc file
storage units, and magnetic card storage units.

A discussion of the simplest of these devices is in order to enable an
understanding of the basic concepts inherent in all.

The simplest of these devices stores its data in the form of coded holes
on a strip of paper tape -- the paper tape reader.

—
< 123AaBCr"*=D 2

e D

FIGURE 18
STOCK TICKER TAPE

Fig. 18 illustrates a strip ofpaper which has information printed onto it.
One character is printed on it at a time by a device which operates simi-
larly to a typewriter. As the information is being printed (one charac-
ter at a time) the strip of paper must move from the right to the left,
one character space at a time.

Each character occupies a definite position in the line of information

on the tape, and this position is given a name. It may be called a
fcharacter frame”. Because of the fact that each character frame is of

I-34

equal size, only a given number of characters may be placed, per inch,
along the length of the tape.

The number of character frames per inch is an important measurement of
tape recording, and is called the packing density of the tape. If ten
character frames occupy one inch of tape, the packing density of that
tape is ten characters par inch.

In order that a human being may make use of the information printed on
the tape, he must read it. In reading it, he places the data contained
on the tape into the storage areas of his mind. He may then make use of
this data in solving some problem,

The process of '"reading" printed information is a very complex function
in a human being. It can be mechanized electronically, but is a very
expensive process. It is far more simple and inexpensive to mechanize
the reading of data, which exists in a form more similar to the language
of the machine.

This can be accomplished by representing each printed symbol on tape by
a coded symbol, more easily "understood" by the machine. Fig. 19 illus-
trates how a printed symbol may be replaced by a coded symbol, recorded
by means of punched holes on the tape.

21 2 3 A B C "™ % =D =
2 0 3
Z_ 0 %

< 0 0 0

R o o o ‘<
J 0O 0 0 !

= 0 <
~z 0 0 0 g
kS <

FIGURE 19
PRINTED AND' CODED TAPE COMPARISON

In order that a computer may "read" the data encoded on the tape into its
memory, some device is necessary to detect the presence or absence of
holes in the paper tape. This device must be able to "translate" the
configuration of holes in the tape into the electronically coded signals
understandable to the computer.

Certain semi-conductor devices are able to sense the presence or absence
of light, and are called "photo-diodes". A photo-diode is a semi-
conductor element enclosed in a small tube, having a lens (to focus
light) formed on one end. The two leads from the diode element exit at
the opposite end. Fig. 20 is an illustration of a cut-away view of the
photo-diode.

I

35

TUBING WIRE LEADS

LENS
H < ;
l' . N / 3
DIODE SEALING
(JUNCTION) EPOXY
(COMPOUND)
FIGURE 20

PHOTO~-DIODE CONSTRUCTION

Essentially, the junction point of the two semi-conductor materials (N
and P) in Fig. 20 has an electrical resistance (which tends to limit the
flow of current in a circuit). The value of this resistance will vary
when light is focused on the junction, and allow a greater amount of
current to flow. If the varying current from the photo-diode is ampli=-
fied and shaped by a special circuit, an output pulse can be produced
when light is flashed on the photo-diode.

FOCUSING
LENS
OUTPUT
PULSE
RS pamn
PAPER SIGNAL
TAPE AMPLIFIER AND
RE
Lq,% SHAPER CIRCUIT CISTER
3
FIGURE 21

Figure 21 illustrates a basic circuit to enable a bit to be placed in a
register, when a hole is sensed in paper tape.

This circuit can be expanded to include provisions for sensing the entire
bit configuration of a coded character by incorporating seven photo-
diodes, signal shapers, and register circuits; one for each bit (coded
hole) of the character., Figure 22 illustrates the expansion of the
reading station for the paper tape reader.

I-36

BULB

FOCUSING
LENS

| 11
DIRECTION ™%, °°H | I ., PAPER
.
OF TAPE “L\,\ © -\TAPE
MOTION =TT PHOTO-DIODE
| F \§‘ READING BLOCK
S AMPLIFIER
7 & SHAPER
5
7 STAGE
RYFFER
TO @ ¥
PROCESSOR® ™~ '
FIGURE 22

The entire purpose of mechanizing a scheme to enable '"reading" coded in-
formation from paper tape is to enable the information to be placed
(transferred) into the processor memory. In order to enable this
function to be mechanized, the operation of memory must be considered

in some detail.

In order to place (write) information into memory, it is necessary to
perform a memory cycle. This memory cycle will consist, of course, of
the three operations ADDRESS LOCATION, READ OUT, REGENERATE (write-in).
These three functions are detailed in the section pertaining to memory
operation. To write data into memory, then, the old character, occupying
the location to receive the new character, must be destroyed during read
out. This is accomplished by preventing it from being placed into the
Memory Register during read-out.

In order to "write-in" the new character, it must be placed into the
corresponding stage of the MR before regeneration occurs. Regeneration
will then record the character in the specified location.

To enable a character (read from a storage medium) to be written into
memory, requires that the character be transferred from the Buffer in
the I/0 device and into the MR during a memory cycle,

In order to synchronize the timing of the memory cycle and when the
character (to be placed in memory) exists in its device's buffer, some
form of synchronization control is required. All I/O devices, at the
present state-of-the-art, read characters into their I/0 buffers at a
much slower rate than main memory can generate its cycles. To prevent
main memory from generating a useless sequence of cycles during the time
that no new character is to be stored, the most efficient method would
be to allow the presence of the character in the I1/0 buffer to permit a

memory cvcle to be generated.

TO STATUS
LEVEL
GENERATOR

The character's presence in the I/0 buffer must somehow be detected by
the synchronizing control logic. There are usually two methods of ac-
complishing this function. One method commonly used is to record a
special indicator in each character frame on tape, as well as the bit
code of that character, This indicator may be read, along with the
coded character, and used to develop a timing signal. The timing signal
indicates to the main memory that a cycle should be generated.

Another method used is to detect the presence of any one of the coded
bits of the character. This is accomplished simply by looking at all
the bits of the I/0 buffer, in parallel, and, if any stage is set, it
is assumed that the character has been read.

In either case
acter has been

then, a signal is developed which specifies that a char-
read into the I/0 buffer and the buffer requires servic-
ing. For this reason, the signal developed from detecting the presence
of a character is called a Buffer Service Request. This Buffer Service
Request now has the function of telling the processor that a memory
cycle may be generated.

In the
corded
of the
output
Figure

case of a paper tape reader, the timing indicator which is re-

on tape is the Sprocket hole. It is read (along with the bits
character frame) and stored in a single register of its own. The
of the register may then generate the Buffer Service Request (BSR).
23 illustrates the generation of the BSR.,

INPUT FROM
READING
PHOTO-DIODES

¢«—8 SHAPER AND
AMPLIFIER CKT'S

\

@

4

-
SPROCKET
HOLE INPUT
REGISTER BUFFER
BUFFER ‘
SERVICE €
REQUEST
TO P
PROCESSOR €
MEMORY
FIGURE 23

Normal "Compute' type instructions require a constant flow of status
levels; one immediately following the other., In the 3301 system, these
are generated by means of selecting the next status level to be gener-
ated by means of selecting the next status level to be generated during
the last time pulse (TPC8§ of the preceeding STL (status level). The
presence of the next time pulse, TPC enables the next STL (the one that
has been selected) to be generated.

I-38

Thus, this constant train of STL's may be interrupted, when desired, by
the simple measure of allowing a previously selected status level to be
generated when a BSR exists in conjunction with TPC@. The 3301 STL
generator does, in fact, have this provision. This enables a status
level to be generated during the execution of an I1/0 instruction only
when 9 characters have been recognized in the 1/0 device's buffer.

Figure 24 illustrates the synchronization and Data flow paths which
exist in the 3301 system, as previously described.

______ o e e e e e e e = = =y
STL SELECTION ' | INPUT FROM
| | 1/0 DEVICE
I | READER !
STL i |
TPC@ -8 GENERATOR BSR_ ' |
I ! RESET !
7 (| R s
‘ | [SPROGRET| | Y '
| [HOLE | | INPUT !
| |REGISTER| BUFFER I
| _/iBsEy | .
STATUS N STATUS |
o LEVEL N) LEVEL i |
A \ |
PROCESSOR | BUS LINES CHARACTER |
(7717717111 71]] < |

INPUT-OUTPUT

{

|

CHANNELS |
| CONTROL MODULE |

\>.\“~ I
U4 ~
CORE MR | | ! |
READ OU X ‘ I
- - - — — e T e s v mmn — — —_— o G wm— vt a— — — —— d—— m— m— ——— o— — ——— w—— S
BPU
FIGURE 24

SYNCHRONIZATION OF DATA FLOW

The final sequence, then is that the staticizing of the instruction
would select but not generate the status level required to transfer a
character from the I/0 buffer into memory. Once the first character

had been read into the Input Buffer, its Sprocket Hole signal would
generate a Buffer Service Request. The BSR would start to generate the
Status Level at TPC@ and the STL would initiate the required memory
cycle. The STL also would be sent to the I/0 Control Module to transfer
the contents of the Input Buffer onto the Input/Output Channels, onto
the Processor Bus lines, and then into memory. During regeneration, the
character would be placed in core storage from the MR. The last
function of the Status Level would be to select the next STL in sequence
and reset the Sprocket Hole Register and Input Buffer to prepare these
to receive the next character in sequence.

Of course, the selected STL would not be generated until the next charac-
ter had been read.

To give an example of the timing that would exist, if the data transfer
rate of the paper tape reader was 1000 characters per second, this would
indicate a time of 1 millisecond between characters being placed in the
Input Buffer. Thus, only one STL would be generated every millisecond
as Figure 25 illustrates.

I-39

) é——1 ms. ' 1 ms ,———

BSR'S i §f 1 5§ -
STATUS
LEVELS __ [> I r 11
FIGURE 25

STATUS LEVEL AND BUFFER SERVICE REQUEST RELATIONSHIPS

Figure 24 also shows something which has not been previously described:

the Input/Output Channels (I/O Channels). The 1/0 Channels exist in the
301/3301 systems for an engineering design reason, and have no relation
to the number of I/0 devices which may be connected to a Basic Process-

ing Unit (BPU).

The design reason relates to the distortion of signals which occurs
whanever pulses are transmitted over any great length of wire, The
major function of the 1/0 Channels is simply to act as an extension of
the Processor Bus lines from the main frame to the I1/0 control module.

Since the I/0 device is usually situated at some distance from the main
frame, the data and command signals transmitted between the two will
receive a great deal of signal distortion between thz transmission and

receiving points, This distortion can lead to gross inaccuracies in
data transfer.

Compensating circuits are placed at thes two ends of the I/0 Channels to
correct for this distortion. Figure 26 shows the two types of compensa-
tion networks and what the pulses would look like at significant points
along the data path.

I I-0

|
—_— -
< CHANNELS |
i |
i i
PROCESSOR i
BUS LINES , ‘ , INPUT FROM
2L 777777777777 DATA BUFFER
| !
I ’ |
| f '
' TRANSMITTER |
I RECEIVER
| I
| {
.\ PR [I
b ! oA
i
PULSE PLACED ON ! EX%EEngggR
PROCESSOR BUS LINES
(COMPENSATED) AMPLIFIED PULSE
DISTORTED PULSE FROM TRANSMITTER
AT INPUT TO RECEIVER
FIGURE 26

I-40

In summation then, the I/0 channels actually perform two functions;

(1) that of acting as an extension of the processor bus lines for the
purpose of data and commands transmission, and (2) compensation of

pulse distortion along the transmission paths to ensure greater accuracy.

It will be discovered that a typical 1/0 control module has two other
functions including the major function we have considered. The three
functions it performs are those of:

a. Synchronization of timing for Data Flow.

(1) Includes code translations

b. Motion Control of the Storage Medium.

c. Accuracy Control of Data and Commands.
Motion Control relates to the necessary movement of the storage medium
in order to transfer the appropriate block of data. Figure 27 illus-

trates the components that must exist to start tape moving QOn Demand
and to stop it from moving when desired.

STOP
RUN
BRAKE
BULB SOLENOID
RUN LENS
SOLENOID ——
© . BRAKE ARM
PINCH
ROLLER
, IMMOVABLE STOPPING
CONSTANTLY‘////a<:>PHOTOE < BLOCK
ROTATING . PAPER
DIODE
CAPSTAN READ BLOCK TAPE
FIGURE 27

PAPER TAPE READER MOTION CONTROL

Illustrated in Figure 27 is the basic reading assembly of a paper tape
reader surrounded by its start and stop mechanizations.

The paper taps movement assembly consists of a constantly rotating cap-
stan which will be used to drive tape forward at its rated speed. Since
the capstan is constantly rotating, all that is needed to impart motion
from the capstan to the tape is to create friction between the two.

This can be accomplished by use of an electrically-operated pinch roller,
When the RUN command is transmitted to the Reader (by the initiation of
the Read instruction) it will energize the pinch roller solenoid, forc-
ing the tape against the capstan. The tape then will begin to move.

Some time is required, however, to cause tape to accelerate from zero
speed to its rated movement. This time is called Up-to Speed time.

Once all desired data has been transferred and a gap on tape has been

detected, the tape motion must be stopped. This is accomplished by a
Brake Arm assembly operated by a solenoid. A metal "Stop Block" is

I-41

positioned below the taps, while above the taps is a pivoted Brake Arm.
If the Brake Arm is forced downward, the end of the arm will force the
tape against the "Stop Block'" and the friction created will cause the
tape to stop. At the end of the Brake Arm is a rubber shoe, to prevent
damage to the tape, and to create a higher coefficient of friction to
stop the tape faster,

The control module, by recognizing the instruction initiation and the
existence of a gap on tape, generates the desired RUN and STOP commands.
Thus, it serves the function of providing Motion Control for the 1/0
device.

The final function to be discussed is that of Accuracy Control, This
will consist primarily of performing parity checks on data in the Control
Module's Input/Output Buffer in order to set a program sensible indicator,
In the 330l system, when a character exists in the Input Buffer with bad
parity, the output of the parity generator is used to perform two
significant operations.

The first operation is to set a Read Error (RE) indicator to be used by
the program in error-correction procedures. The second operation is to
prevent the "bad character" from being transmitted to memory. If the
character were placed in the MR with improper parity, a Memory Register
Parity Error would be generated (MRPE). Instead, the parity checker
will place a special error character in the Input Buffer for regeneration
into memory. Each "bad" character which is read will be replaced in
memory with an 17(g8), a lower case e. All control modules in the 301/
3301 perform these Same functions; no matter what peripheral device they
operate. (The 30l, however, places an 57(8) in memory as an error char-
acter.

I

42

RCA 3301 OPERATING SYSTEM

RCA 3301 OPERATING SYSTEM

INTRODUCTION

A.

This section of the manual contains an introduction and general description
of the 3301l Operating System. It outlines the advantages inherent in a
modular approach to systems programming. It includes a description of the
Sequence, Segment, Process and Task, and serves as an introduction to PART 3
of this manual. For details of the Operating System, refer to "RCA 3301
REALCOM OPERATING SYSTEM" (94-08-000).

The RCA REALCOM Operating System is a total software package designed to per-
mit effective utilization of the RCA 3301 Computer. It is important to
understand the reasons which have led to the development of this comprehen-
sive package. The advent of electronic computers is causing dynamic changes
in our present day economy. Significant improvements in computer hardware
have permitted the wide use of computers for collecting, processing and
evaluating data. In the process of solving these business problems, however,
new difficulties in implementation have arisen to plague management.

1. Programming

One of the most significant problems is the complete linkage of all
functions of a program at assembly or compilation time. Because of
this total linkage, changes in any particular function necessitate a
re-programming effort and subsequent reassembly or recompilation. A
change in computer configuration normally results in a substantial re-
programming effort. In addition, a change in program function (i.e.,
a change from serial data processing to random data processing), requires
that many changes be programmed and that complete reassembly or recom-
pilation take place. It is significant to note that in most instances
the major reason for reprogramming is that all linkage within the pro-
r s formally completed gt assembly time.

With the development of present day programming languages certain in-
consistencies become apparent at object time. It was difficult or often
impossible to create linkage for program segments whose source language
was different. A system which eliminates this linkage problem and per-
mits the collection of segments at other than assembly or compilation
time became highly desirable.

Programmers today are concerned with the need to schedule the use of
core memory and input/output devices within their particular program.
As a result, memory allocation and device assignment are buried within.
each individual program. To be effective, a complete software package
should eliminate these considerations from the programming level. This
ability to dynamically allocate memory and devices at object time pro-
vides a computer system with maximum flexibility and operating effi-
ciency.

As a result of these present day inefficiencies, a large portion of
every computer operation involves a maintenance function. This main-
tenance function, in many instances, is created solely by the inclusion,
linkage and allocation within each program's coding.

2. Operations

The task of an operations group is becoming more difficult due to the
complex uses being made of a computer. A lack of standardization in
operating procedures requires that voluminous and detailed documenta-
tion be produced and maintained in order to operate each program. In
addition to requiring substantial operator training, the need to refer
to this material places a burden of efficient use of the computer.

The problem of controlling and mdintaining adequate documentation at
running time places an additional workload on the operator. He must

I1-1

maintain detailed logs and reports concerning the operation of each
program within the system.

The scheduling of computer operations in itself requires that the opera-
tor have detailed descriptions as to the sequence in which programs are
to be run. As each program terminates, he is concerned with loading the
next program in sequence and proceeding with the operation.

3. Management

The cost of these problems presents management with serious difficulties
in initiating, maintaining or re-evaluating any computer application.
The advantages of a particular change in function or computer configura-
tion must be weighed against the cost of the reprogramming effort in-
volved. In addition, substantial review of all program steps involved
is required to determine the effects of a change in any particular

function. A computer application whose functions can change dynamically
is linked today with programs which themselves cannot change dynamically.

As a result of these factors, management is burdened with many daily
problems and decisions created by today's programming and operations
limitations. These requirements limit management in its prime duty of
developing and evaluating new applications to be integrated into the
computer system. The major cost to a firm with these conditions is the
inability to effectively utilize the computer system in serving the
present and future needs of the firm.

The RCA 3301 is based upon a design concept called "functional modularity."
This concept permits growth, as applications require, by the incorporation
of new units or "modules" that add not only speed and unit capacity but
functional capabilities as well. This open-ended expansibility and growth
design enables the RCA 3301 to present the right equipment configuration for
any digital computer application.

The concept of functional modularity can also be extended to RCA 3301 user
applications. All computer applications can be divided into individual
units, each of which can be implemented independently, without burdening the
programmer with the responsibility of fitting each unit into the overall
problem solution. In other words, a user may program individual units of

an application without the need to tie the units together at the coding level.
This technique permits the application units to be considered as independent
"building blocks" that can be grouped together to form larger blocks on the
basis of user descriptions supplied to various RCA 3301 software packages.
Consequently, it is possible to assign the coding responsibility to one job
level while assigning the integration of the coding units to a higher job level.

Four levels of building blocks are provided in the 3301 modular programming
system; i.e., sequence, segment, process, and task.

1. The Sequence

The basic building block of the REALCOM system (i.e., the most detailed
level) is called a "sequence." Technically, a sequence is defined as
the "unit of logical manipulation." Stated in other words, the sequence
is the smallest logical unit of an application which can be considered
independently of the other logical units of that application. Using
more familiar terminology, a sequence may be thought of as a "sub-
routine"; however, since subroutines are not the only basic units re-
quired in an application, the more inclusive term is used. Within
individual sequences, the user may provide not only programming logic
(i.e., subroutines), but may also describe data files, working storage
areas, and constants. To take a payroll application, for example, the
routine that computes an employee's gross pay can be considered as one
sequence whereas another routine that computes an employee's income tax
deduction can be another sequence. The individual user can decide how
large or how small his logical units should be. The choice largely de-
pends on the amount of freedom desired in implementing an application.

II-2

2.

The Segment

Sequences in the modular system are organized into operational units
called segments. The segment therefore is the next higher level above
the sequence and is defined as the "unit of loading and execution."”
The segment is usually interpreted as the portion of an application
which fits into memory at any one time. In the RCA 3301 system, this
concept is expanded to include a listing of all the logical units
(e.g., data files as well as subroutines) required at any one time. A
segment therefore can be considered as a user building block requiring
a certain amount of hardware for execution purposes. The hardware in
this case can include core memory, external (random access) memory,
input/output devices, etc. and is assigned to the various sequences by
the RCA 3301 Operating System. A segment is defined by the user through
a "segment description" which provides: '

a. A list of the sequences in the segment, and

b. A specification of the manner in which control is to be transferred
between sequences.

The segment description thereby supplies the linkage from sequence to
sequence as opposed to coding the linkage within the sequences them-
selves. In addition, the segment description provides the means by
which the Operating System can make specific hardware assignments at
execution time.

The_ Process

The next building block above the segment is called the process. From
the user's viewpoint, the process affords a level for grouping together
related segments. Since each segment represents a unit of execution,
the process provides the means for describing the order in which seg-
ments are to be executed. This is accomplished by a "process descrip-
tion" which specifies:

a. The segments which comprise the process

b. The order in which segments are to be called during execution
c. The information to be passed from one segment to another

d. The manner in which linkage is accomplished between segments

A process can be considered as an operational unit since the RCA 3301
Operating System will load segments as specified in the process de-
scription without operator intervention. Technically, the process is
defined as the "unit of scheduling and allocation" for the RCA 3301
Operating System. When a process is to be initiated, the Operating
System determines whether or not sufficient hardware is available for
executing the process. If so, tentative assignments are made and the
process is started. Final hardware allocation is performed as each
segment is loaded.

The Task

The highest level in the RCA 3301 building block system is called the
task. This level provides the user the facility for listing a number
of processes to be executed as an operational unit. These processes
may be related to each other (in the case of a large application) or
may be unrelated for the user who desires automatic execution of a
series of independent operations. The task is defined as the "unit of
external priority." In other words, this is the unit with which the
operator and the Operating System are concerned. Regardless of the
number of processes comprising a task, and the complexity of these pro-

cesses, the only subjective operation required at the console is task

II-3

initiation. All subsequent actions required during the execution of the
task (e.g., tape reel changes) are directed by the Operating System via
messages on the Console Typewriter,

Note that the term "program" does not appear in the hierarchical struc-
ture previously described. In the RCA 3301 system, a program represents
a unit of assembly; not a unit of execution. This distinction permits
the user to separate the function of translating source coding from the
function of machine code execution.

An outstanding feature of modular programming is the ease with which an
RCA 3301 application can be modified. The serial processing applica-
tion, for example, can be modified to an on-line, random access appli-
cation by modification of only those sequences containing serial
processing logic. In many cases, modifications or enhancements may be
made by changing only the user supplied descriptions (i.e., regroup
existing building blocks). Modularity in hardware can now be matched
by an equally effective modularity in application design and implementa-
tion so that new equipment and new techniques can be employed by users
without requiring a significant reprogramming effort.

Functional modularity is also the basis for the design and implementa-
tion of the RCA 3301 software. In the RCA 3301 Operating System, for
example, each major function is designed and implemented as an independ-
ent building block. Upon initiation of the Operating System, the seg-
ments necessary for the performance of desired functions are automatic-
ally selected from the software library, thereby allowing the system to
be tailored for each specific application.

Note: See the application example utilizing modular programming
techniques on page 1I-6.

The nucleus of RCA 3301 software is the Operating System which co-ordinates

and controls the execution of computer tasks. In performing this function,

the Operating System assumes the responsibility for controlling the complete
physical environment of the computer. The user, on the other hand, has the

responsibility for supplying logical solutions to his tasks. This division

of responsibility eliminates user concern regarding the physical character-

istics of the computer, thereby reducing his total programming effort.

1.

Objectives

The objectives of the RCA 3301 Operating System are to:

a. Free the user from concern regarding physical conditions in the
computer (input/output operations, error recognition and handling,
interrupts, etc.) so that he may concentrate upon problem solution
logic.

b. Provide standard routines to perform functions required by all
tasks utilizing the computer.

c. Optimize the use of high speed memory by:
1) loading only those segments actually required at a given time

2) permitting common usage of Operating System segments by one
or more tasks operating concurrently

3) loading infrequently needed segments only as required rather
than reserving memory for those functions on a permanent basis

d. Provide 3301/301 compatibility.

I1I-4

D.

€. Minimize lost computer time due to excessive operator intervention.
£. Provide standardized operating procedures.
g. Minimize set-up time in an installation.

h. Simplify the user's testing procedures.

2. Components

The RCA 3301 Operating System is composed of a File Control Processor
(FCP) and an Executive Control System (ECS). The File Control Processor
performs functions related to input/output operations. The Executive
Control System controls the execution of both user and software pro-
gramming.

The sequences comprising the RCA 3301 Operating System are not made part
of each user task; rather, they occupy a portion of software reserved
memory at execution time and consequently are available to as many user
tasks as are being executed concurrently. This feature minimizes pro-
gram translation time by eliminating the need for including Operating
System sequences with every user program. In addition, enhancements
and/or modifications may be made to the Operating System without re-
quiring regeneration of user coding.

Implementing the Application

A user preparing to code an application has a choice of three programming
languages: RCA 3301 COBOL, RCA 3301 FORTRAN IV, and RCA 3301 Assembly.
Using the basic building block approach the user may code in any one system
or a combination of the three languages. This means that various sequences
of an application could be coded in different languages without considering
linkages within the user's coding. The required linkage is generated by
the programming systems, in that they provide linkage between the user's
coding and the Operating System.

It should be noted at this point that the basic building block (sequence)

can be defined as either a data sequence or a core sequence. A data sequence
basically defines the characteristics of a data file and requires an input/
output device in addition to core storage. A core sequence is a sequence
requiring core storage and may consist of instructions, working storage
areas, constants, and/or tables. The core sequences therefore contain the
blocks of coding logic which solve the user's problem.

Usually the programmer of a core sequence need not be concerned with the con-
tents of other core sequences. The use of exit statements at each logical
termination point provides the ability at assembly time to link the sequences
to form a segment. This is accomplished by a "segment description " which
provides information to the programming language regarding linkage to be
generated at each sequence exit. The "segment description” also defines each
sequence which is to be included within the segment.

In addition, at assembly or compilation time, the user must define the logic-
al termination points within the segment. These exits will be utilized at
the next level (Process) to generate linkage between segments. Therefore,

as a result of assembly or compilation, the linkage between sequences is
formalized and the output prepared to be linked with other segments to form
a process.

The establishment of a process is basically the process of collecting the
various segments which comprise the logical solution of the problem, de-
fining the relationship between these segments, and providing the necessary
information and control blocks for incorporation within a master library
tape (MLT). This collection and generation process is accomplished by a
computer run known as the Process%Task Generator. By means of process de-
scription parameters the user defines the segments required, the segment

II-5

linkage, and devices required by the various segments.

The process description parameters are prepared on cards or paper tape and
introduced into the Process/Task Generator along with the Assembly Output
tapes containing the required segments. The process generation is performed
producing the process on an output tape (MLT). Once the process is gener-
ated, testing procedures can be initiated.

Once a process has been generated and tested, the user may desire to incor-
porate it with other processes to form a task. The ftask is generated by
preparing a task description. This description provides the Process/Task Gen-
erator withalist of the processes to be included within the task, linkage
between processes, and device identities shared by the processes. The output
of the Task Generator phase of the Process/Task Generator is a tape (MLT)
containing the control information and the processes necessary to execute

the task.

Operating System Usage

Reference should be made to the RCA 3301 REALCOM Operating System Manual
(94-08-000) for additional descriptive material and programming information
relative to the use of the individual components of the Operating System.

Application Example

The key to a successful computer operation is a careful and detailed systems
analysis prior to implementation. With the flexibility of a building block
approach, the user is provided with the tools needed to most effectively
perform his systems analysis. In order to briefly familiarize the user with
some of the considerations that can be made, a sample analysis of a payroll
application is presented below. The analysis is concerned with the tech-
niques used to break an application down to its lowest level; i.e., the
sequence. No attempt is made to present a completely accurate and detailed
analysis of the particular application; the prime purpose being to describe
the building block approach in familiar terms.

1. The basic operation to be accomplished is to prepare both a weekly and
a monthly payroll. The monthly payroll is prepared at the same time as
the last weekly payroll of that month. As analysis begins, a determina-
tion is made that two broad functions are required weekly, (1) payroll
calculation and preparation and (2) payroll analysis reporting. An
additional function, the preparation of federal and state tax reports,
is required monthly. Two additional factors are also noted. The first
is that payroll analysis reporting will not be affected by the addition
of the monthly payroll while the second is that payroll calculation and
preparation will be affected by the monthly payroll. The user now sees
that two tasks will be required to accomplish the payroll application.
These tasks are charted on the following page.

II-6

WEEKLY

Weekly
Payroll Task

I
[|

Weekly Payroll Payroll Analysis
Process Process
MONTHLY
Monthly
Payroll Task
1

Weekly/Monthly State & Federal Payroll/Analysig
Payroll Process Reports Process Process

It is apparent that although two different tasks are required, a common
process is present in both tasks. This process would be created once,
and included in each task by means of a task description. The order in
which processes are to be executed within the task would be specified
in the task description, as well as the formalizing of the process to
process linkage. The State and Federal Reports process would only be
described in the task description of the Monthly Payroll Task. To
further continue this analysis, the processes concerned with payroll
calculation and preparation will be considered.

In analyzing the payroll calculation and preparation function six major
areas are evident. Four areas, (1) input preparation, (2) bank state-
ment reconciliation, (3) weekly payroll calculation and (4) weekly
check and register preparation, are required in both processes. The
Weekly-Monthly Payroll process will require two additional areas to

(1) calculate the monthly payroll and (2) prepare monthly checks and
registers. The users can now outline the segments which will be re-
quired in the payroll processes. These processes are charted on the
following page.

I1-7

Weekly
Payroll
Process

|

Input Weekly Weekly Bank Recon-
Preparation Calculation Check & Reg- ciliation
Segment Segment ister Segment Segment
Weekly/Monthly
Payroll
Process
Monthl Monthl
Input Weekly Weekly Check 7 Y Bank Recon-
Preparation | |Calculation| |& Register Caicu%aglon thck g Reg; ciliation
Segment Segment Segment Sebmonc. | [tSter Segren Segment

The four segments which are present in both processes need only be programmed
once. The process description will be used to include the programmed seg-
ments into the processes. Programming can proceed without concern for seg-
ment-segment linkage. This linkage will be defined via the process
description.

In order to complete the analysis it is necessary to break a segment down
into sequences. For this example the weekly calculation segment will be
considered. In the analysis it is determined that five coding groupings are
present in the segment. The segment can be charted as follows:

Weekly
Calculation
Segment

Overtime Gross Pay Tgﬁggignge— Net Pay ng?iﬁeggza
Calculation Calculation Calculation Calculation Creation
Sequence Sequence Sequence Sequence Sequence

In addition to determining the coding sequences required, it is appropriate

to consider file sequences.

In this example, the user notes that the same

input file will be required by the Weekly and the Monthly Calculation seg-
He can require that this file sequence be described once and then

ments.

be included in the segment descriptions of both segments.

the Weekly Calculation Segment could be programmed independently.
quences can be linked together at a later time by means of the segment de-
scription.

Each sequence in

The se-

The applications breakdown presented above is a simple example of the
building block approach. Using this as a basis, therefore, many of the
advantages can be readily pointed out.

The first advantage is that programming effort is minimized. Once the
application is completely analyzed all the sequences that must be pro-
grammed are known. Sequences can be programmed without concern for
Iinkage or core and device allocation. These sequences can now be
placed in one or more segments via a segment description. The segments
which are assembled or compiled can be placed into one Or more processes
via a process description. The processes can again be placed into tasks
via a task description. The various descriptions are the means by which
linkage is formulated. Since additional programming is not needed when
linkage requirements change, complete flexibility in creating segments,
processes, and tasks is provided to the user.

To further point out this flexibility in linkage two examples can be
considered. The first example is the situation in which the user has
decided that input data would come into the Weekly-Monthly Payroll
Process in sequence with weekly payroll followed by monthly payroll.

In this case he would have created a process description describing to
the Operating System that the segments are to be executed as follows:

a. Input Preparation Segment

b. Weekly Calculation Segment

c. Weekly Check and Register Segment
d. Monthly Calculation Segment

e. Monthly Check and Register Segment
f. Bank Reconciliation Segment

At a point after production has begun, a request comes in asking that
monthly reports be prepared first due to a higher priority. The user
now prepares a new process description telling the Operating System
that monthly segments are to be executed prior to the weekly segments,
and changes the sort parametexs to sort in a monthly-weekly sequence.
The change is accomplished.

A second example is the situation where a user decides that a sort is
required between two processes of a task. The task description is re-
written to include the sort, and the change is accomplished.

Another feature of the Operating System is the ability to link segments
coded in different source languages into a process. It is possible,
for example, that the Input Preparation Segment was compiled using the
RCA 3301 COBOL Compiler while all other segments were coded using the
RCA 3301 REALCOM Assembly System. No difficulty occurs when these

segments are linked via a process description.

A third feature of the Operating System is the ability to assemble or
compile and test a segment independently. Facilities are available to
permit this individual segment testing. By this means, it is not
necessary to complete all segments of a process before testing can take
place.

In addition to the flexibility available when creating processes and
tasks, programming changes are simpler within the Operating System. If
in our examples a new employee stock purchase plan is instituted, the
affected segments are readily changed. The new sequences which are re-
quired would be programmed, and the affected segments reassembled or

recompiled. The new segment could be tested independently and, when

I11-9

ready, included into the appropriate processes. There is no need to re-
assemble those segments not affected by this additional benefit. In
addition, when programming the new logic, those sequences not affected
within the segment are left exactly as they are and merely included in
the new assembly or compilation.

When the various tasks are placed into operation, the effort required
by the Operations Group is minimized. In order to run the weekly pay-
roll, the operator need only notify the Operating System that the
Weekly Payroll Task is to be initiated. At that point the Operating
System would take control, and initiate and execute the task. The oper-
ator would be notified whenever external intervention is required
(e.g., a need to mount a new tape, etc.).

I1-10

RCA 3301 ASSEMBLY SYSTEM

SECTION I
INTRODUCTION TO THE RCA 3301 ASSEMBLY

The RCA 3301 Assembly language is oriented to the RCA 3301 computer
hardware. It is a language that is enhanced by features that simplify the tasks
of preparing, testing, correcting, and implementing programs.

The RCA 3301 Assembly System, used with the associated Operating System,
frees the programmer of input/output functions of batching and unbatching records,
simultaneity control, and the assignment of devices, to cite just a few examples.

The modular concept of programming, if used to its fullest extent, can free
the programmer of such tedious tasks as linkage generation. Thus, with the proper

design and definition, sequences may be utilized in more than one segment or pro-
cess.,

Automatic orientation of addresses is another sophistication of the RCA 3301
Assembler. Once a field has been defined with a symbolic name, use of this name
will generate either the left or right-end address of the field as required by
the instruction in use.

The Assembly System portion of this manual has been designed so that it may
be used in two training situations. It may be used by students attending a formal
training class as a text for classroom use and as a reading reference in prepara-
tion for classroom presentation of a subject. It may also be used as an explana-
tory reference text by persons with programming experience who are unable to
attend a training class.

When used in a training course, it should be recognized that this portion of
the training manual is oriented solely to the use of the 3301 Assembly System.

To the extent necessary in each training situation, the introductory part of
the course should familiarize students with subjects that are fully documented in
other RCA publications.

Examples of such subjects are:

History and Development of Computers
Computer Terminology

Elements and Functions of a Computer
Numbering Systems

Data Layout

Flow Charting

The Assembly System Codes presented include the controlling codes for the

assembly operation, the codes used to generate proper file control, and the Opera-
tion Codes for instructions.

An attempt has been made to present these in a logical sequence such as the
way in which a programmer might use them.

In using the Assembly System, for example, a programmer must first be
familiar with the format requirements. Secondly, with knowledge of the system
definition of input and output file formats, he would want to be able to allocate
I1/0 file areas. This is the second general area covered.

I11-1

In following through with this concept, the general topical areas are pre-
sented in the following sequence:

Format and Addressing Requirements
Sections I and II

Allocating and Defining Data Areas
Sections III and IV

Input and Output Control
Sections V and VI

Instructions
Section VII through Section XIV

Preparation of the Segment Description
Section XV

Assembly and Correction Parameters
Sections XVI and XVII

Sample Problem
Section XVIII

For each Assembly Code developed in the manual, the format requirements are
explained, examples are furnished, and where deemed necessary, an example is fur-
nished which associates the code being discussed with other related codes or
options.

In the Format portion for each code encircled numbers are used across the top
of an assembly form. These are used primarily as a quick method of pinpointing
fields being referenced by explanatory remarks on lines which follow. They should
also be helpful when used in formal training classes as a reference point for
discussion.

At the option of the user of this manual, notes may be added in the space
provided on the right.

ITI-2

The following is an example illustrating the Format Requirements portion of
a code:

© @ Q0 Q .

'S N

LOCATION OPERATION SIZE

U
N
[ADDRESS
T

1011712 | 13| 14| 15]16 17|18 |19]20{21|22(23 |2u|25|26 2728 | 29 30131 |32{33]34]35(36(37 |38{39 (10

-
N
AN
=
(&}
(e
~
@
Vel

A N NAAN

FORMAT NOTES

1.OCATION

OPERATION

IZE

UNIT

x

OOOOO

ADDRESS
R

*Explanatory remarks pertaining to this field for the code concerned.

In the "Examples" portion for each code, encircled numbers are used along
the side of an Assembly form. The numbers are referenced by comments below the
form as illustrated on the next page.

It should be noted that examples of incorrect entries preceded by an "X" are
provided for illustrative purposes,

I11-3

LOCATION OPERATION SIZE ADDRESS

- —=Zzc

112314516)7]8)|9110f11]12]13|14]/15}16 17118 19420f21|22]23|24|25(26 127128 | 29]|30(31 |32

AN NNANANANANN AN

Explanatory comments
Line 1

Explanatory comments
Line 2

Explanatory comments
Line 3

etc.

ONOMONCONC,

etc.

X (:) INCORRECT ENTRY

or
POSSIBLE ERROR ENTRY
Explanatory comments regarding error entry.

Examples of some of the other features of the RCA 3301 Assembly System that
will be explained in detail in other portions of the manual include:

®* Optional output listings
®* Reassignment of Reference Keys

¢ Calling of Source Language Routines

II1-4

GENERAL FORMAT REQUIREMENTS

On the following pages of this section, the general information required for
preparing lines of assembly coding will be explained under each of the columnar

headings: LOCATION, OPERATION, SIZE, UNIT, ADDRESS, IDENTification, and REFERENCE
KEY. %A,copy of the complete form is shown on the following page.

For each of the columnar headings, the format requirements will be given and,
in addition, examples of appropriate entries and examples of typical types of
error entries will also be given for illustrative purposes.

ITI-5

9-III

RCA 3301

PROGRAM REALCOM ASSEMBLY PAGE NO. oF
PROGRAMMER PROGRAM SHEET DATE
U
N REFERENCE
LOCATION OPERATION SIZE { ADDRESS IDENT. KEY
T

123 [a 5|67 [8]9|10)t1|12]1314[15(16 (17]18[19}20|21|22|23|2u|25]26 {27)2829}{30(31 3233343513637 |38(29 {40 u1 {42|u3 un|u5 u6fu7ius|u9(50{51 [52]5354(55[56[57}58{5916C{61|62]63(64 |65 |66[67]68]69[70 71472| 73] 74)75| 76 |77]78 [79 |80

1023815161718} 9110111112113 14115]16 117(18]19|20|21122[23|24|25]26|27(28|29|30(31 |32|33[34|35136 |37 | 38|39 [uo|ut[u2{u3]un]usius (47 |u8|uo]s0 |51 52(53)54155) 56 |57158/59|60(61 (62|63 |cu 65 [66 |67 |68 |es [70f71|72173 |74]75(76 |77 |78 (79 |80

28.00-109 REMARKS:

LOCATION Field (Cols. 1 to 6)

¥

FORMAT REQUIREMENTS

LOCATION OPERATION SIZE ADDRESS

—_N—_—=c

NOTES

LEFT-JUSTIFICATION

Each entry appearing in the LOCATION Field must
be left-justified; i.e., spaces may not appear
to the left or in the middle of any entry for
this field.

LENGTH

May be from one to six characters in length.

NUMERIC and/or ALPHABETIC CHARACTERS

An entry (tag) in the LOCATION Field may include
alphabetic (A to Z) characters, numeric (0 to 9)
characters, or a combination of alphabetic and
numeric characters. The use of other characters
in this field is not permitted.

UNIQUENESS

Each tag must be unique within the sequence in
which the entry appears. Note that an entry on
this line may have a prefix character assigned.
This character would be considered the first
character of this entry even though not included
on this line. (See ALOC controlling code -
Section III.)

OMISSION OF ENTRY

It is not necessary or even desirable to assign
an entry to every assembly line. Reference may
be made to either a line of instruction coding
or a data field entry by addressing the line
relative to a line in which an entry appears.

LOCATION Field
Format

Requirements

III-7

ADDRESS ASSIGNMENT

The leftmost address of the data field or instruc-
tion generated by the assembly line will be
assigned to the tag appearing in this field. This
address will be considered the primary address. A
secondary address of the right end of the field
will also be assigned bv the Assembly System.

LOCATION Field
Format
Requirements

III-8

LOCATION FIELD EXAMPIES

LOCATION OPERATION SIZE

- -z Cc

ADDRESS

25126 127128 12913031

o= (- |

All of these are examples of wvalid
entries, or the lack of an entry as
on line .

Incorrect Entry
Tag is not left justified.

Incorrect Entr
Invalid character in tag.

The same tag appears on line

Tag would not be unique if

these examples were considered
part of the same sequence and

no prefix character was assigned.
(ALOC controlling code, Section III
of this manual.)

Possible Error Entr <:>

III-9

NOTES

LOCATION Field
Examples

NN SAAANNANANAAANS

OPERATION Field (Cols. 7 to 12

FORMAT REQUIREMENTS

2

LOCATION OPERATION SIZE ADDRESS

—_—=c

1123 14}5]6 71819]110{11|12]13[14[15]16 |17[18F19J20]|21}22]23(24|25(26 |27128 2913031]32|33|3u[35]36|37|38}|39]u0

NOTES
LEFT-JUSTIFICATION

Each entry appearing in the OPERATION Field
must be left-justified; i.e., spaces may not
appear to the left or in the middle of any
entry for this field.

LENGTH

May be from one to six characters in length.
CONTENT

May contain one of the following:

a. Machine Operation Code

b. Mnemonic or Extended Mnemonic
Operation Code

c. An assembly or a file (FCP)
controlling code

d. May be left blank (not used) on
some specified assembly lines.

IMPORTANT

It should be noted that an entry is not
assumed in the OPERATION Field. For a
specific line, any required entry in this
field must be made; i.e., the Assembler
makes no assumption that an entry made on
a preceding line is to be repeated.

OPERATION Field
Format
Requirements

ITI-11

OPERATION FIELD EXAMPLES

U
LOCATION OPERATION SIZE \ ADDRESS
'
11213141516 F7]1819 (10111112 |13}14]|15{16 |17 (1819202112223 |2u25|26 [27128 29|30
O K
@—————> clalL|L
@_. Mlp|Y
@————> w|r|1[T[E
@-—» s|t|p

NAVSIAANANN AN~

Valid entry of Machine Operation Code.
(Locate absence of Symbol Left Instruc-
tion.)

Valid entry of an Assembly Controlling
code.

(Multiply Instruction)

Valid entry of File Controlling Code.

(:) Valid entry of Mnemonic Operation Code.

Valid entry of Extended Mnemonic
Operation Code. (Store P Register
Instruction)

OPERATION Field
Examples

ITI-12

SIZE Field (Cols, 13 to 18

FORMAT REQUIREMENTS

LOCATION OPERATION SIZE ADDRESS

_— -z

11234]5]6 171819 |10]11|12)13|14|15]16 |17[18]19]20|21|22]23|24(25]26 |27}28|29|30{31]32]33|34|35{36|37|38[39|u40

LEFT-JUSTIFICATION

Each entry appearing in the SIZE Field must

be left-justified; i.e., spaces may not appear
to the left or in the middle of any entry for
this field.

LENGTH
May be from one to six characters in length.
CONTENT

An instruction may contain the value to be
used in generating the second (N) character
such as:

A decimal number or a symbol as required
by the specific instruction or the data
field it references.

For a controlling code:

A decimal number designating the size as
required, or a program identification
number.

OMISSION OF ENTRY

For an instruction with an Extended Operation
Code, the field may be left blank. For these
codes, the N Character is automatically
generated.

May also be left blank for controlling codes
that do not require a SIZE Field entry.

VY%

SIZE Field
Format
Requirements

ITI-13

P

»<

SIZE FIELD EXAMPLES

u
LOCATION OPERAT 10N size |} ADDRESS
T
112 |3|s |56 71891011112 13|14|15[16 17|18 F19)20|21)22|23{2u]25(26 27128
@——» s|T|A|R|T 2|50
@——————» T|Cc|R
@—» T|c|R
@__—__, L|A|R
Gr— s|T|a
@-——> Fl1|x|N{UM|7]|5
()— R|p|T 2/6

NOTES
Valid entry of a Program Identification
No. (START controlling code)

Valid entry for a decimal count of 15.

Valid entry for a symbolic character
representing a decimal count of 15.

Valid "Entry" assuming a space (left
blank) is the character desired in the
SIZE Field for this instruction.

No entry required in the SIZE Field for
an Extended Operation Code.

Error entry - Excessive SIZE entry for
this controlling code (50 max.).

ONOMOMONONOMNG

Error entry - Excessive SIZE entry for
a Repeat Instruction (15 max.).

SIZE Field
Examples

I1I-14

NN NN NN AN A NN

UNIT Field (Col. 19)

FORMAT REQUIREMENTS

LOCATION OPERATION SIZE

ADDRESS

wlstief7|8|9o10]11]12]13]14[15}16 |17|18)19]20|21|22{23 |24}25(26 |27}28|29}30]|31}32|33|34|35]36(37 |38

40

NOTES
SE
An entry in the UNIT Field may be made to
perform one of the following functions:
a. Specify how the allocation of
memory is to be oriented.
b. Specify the type of Validation to
be performed at the time of assembly.
CHARACTERS USED
The following characters may be used to specify
the type of orientation desired for an applicable
line: (See Section III, ALOC Controlling Code
for a more detailed description.)
SPACE (Blank)
or
C Character Orientation
D Diad Orientation
W Word (Decade) Orientation
H Hundreds Orientation
T Thousands Orientation
The following characters may be used to specify
the type of Validation required on a DEFSEQ line:
(See Section III, DEFSEQ Controlling Code for a
more detailed description of the use of each of
these characters.)
0 or Space Segment Validation
1 Sequence Validation
2 Sequence Validation
4 Special use for Indexing
UNIT Field
Format
Requirements

III-15

UNIT FIELD EXAMPLES

The following example depicts how the UNIT Field may be used for desired
orientation when the Assembler is allocating memory on the basis of the
number of characters to be allocated for each line as specified in the
SIZE Field.

lele

© O

then

U
LOCATION OPERATION SIZE T AD DE
!
112|314]51|6 7189 |10f11{12)13]14)15]16 |17(18119]20(|21]|22 7
9
7 W
5o T i

Character oriented (space in UNIT Field).

Assuming as an example that memory locations
0000-0008 have been allocated for this entry

for subsequent lines the allocation of

memory would be as follows:

®

®

O,

IMPORTANT NOTE

0010-0013 Allocated

Diad orientation - First character
position in next location with an even
address (0010).

0020-0026 Allocated

Word (Decade) orientation - First char-
acter position in next location with an
address ending in zero (0020).

1000-1049 Allocated

Thousands orientation - First character
position in next location with an address
ending in three zeros (1000).

ASSUMED HSM
ALLOCATION

Left-End Right-End
Address Address

0000
0010
0020
1000

- 0008
- 0013
- 0026
- 1049

The above example is used only to illustrate how these orientation characters
may affect the allocation of memory.

Unless care is taken in the use of this field, excessive memory wastage may

take place as in this example between 0026 to 1000 (Lines

UNIT Field
Examples

ITI-16

and (:)).

ADDRESS Field (Cols. 20 to 70)

FORMAT REQUIREMENTS

LOCATION OPERATION SIZE ADDRESS

——_—=ZCc

PURPOSE OF ADDRESS FIELD

The ADDRESS Field is used for the following
purposes:

1. To contain the addresses for an instruc-
tion.

2. To specify the value in memory to be
allocated for data constants, working
storage, or other program areas or infor-
mation as required by specific controlling
codes.

3. Users' comments desired on the output
listing of the assembled program.

USE _OF THE FIELD FOR INSTRUCTION ADDRESSING

The A or B Address may be either a machine or
a symbolic address with the various applicable
options desired as specified in the following
section (Section II - Addressing and Validation).

A comma must be used to separate the A from the
B Address and may not appear for any other pur-
pose as a part of the A/B Address entry.

A space must follow the last character of the
B Address and may not appear for any other pur-
pose as a part of the A/B Address entry.

The entry consisting of the A Address, a comma,
and the B Address must be left-justified in the
ADDRESS Field.

Programmers' comments for output listing purposes
may appear in any unused portion of the ADDRESS
Field following the space used to terminate the
A/B Address entry.

6716816970

Vg

ADDRESS Field
Format
Requirements

USE OF THE FIELD FOR VALUE TYPE ENTRIES

For the specific formats of these type of entries,
reference should be made to pertinent controlling
codes. The following are general rules:

1. Entries that give the value of a field (such
as a constant) are left-justified and may
consist of any RCA 3301 characters including
the space character.

2. In these types of entries the value should
be consistent with the value of the entry in
the SIZE Field. Otherwise, either truncation
or the generation of unwanted characters may
result.

USE_OF THE FIELD FOR OUTPUT LISTING REMARKS

The entire ADDRESS Field may be used for a comment
to appear on the output listing with the use of
the REMARK controlling code (See Section XIV -
Assembly Parameter Controlling Codes).

In general, the ADDRESS Field may be used for
comment on any line subject to the following
restrictions:

1. The portion (columns) in which the comment
is made is not required for other purposes.

2. At least one space must follow any required
entry in the ADDRESS Field.

3. Care must be taken in left-justifying comments
without use of the REMARK controlling code.

IMPORTANT NOTE

The above are general remarks concerning the use
of the ADDRESS Field, and are for general infor-
mation purposes. Specific use of this field is

governed by the appropriate controlling code or

instruction being used.

ADDRESS Field
Format
Requirements

III-18

IDENTIFICATION Field (Cols. 71 to 73)

FORMAT REQUIREMENTS

U
N
LOCATION OPERATION SIZE | ADDR
T
1l2lslulsle]7|s|olwo]ee]rz]z]aufasjuerzftefiojeojarj2z]23|2u}2s :)
USE

The IDENTification Field may be used at the
option of the programmer for such purposes as:

1. To provide, for the line of coding, a
reference to other documentation such as
a flow chart number.

2. To provide a uniquely coded field for
identification with a particular segment
or process.

This field is for use on the Program Sheet and
input data only. An entry appearing in this
field will not appear on the output listing.

This field may only contain 3 or a lesser
number of characters and any 3301 character
may be used.

ITI-19

REFERENCE

IDENT. KEY

69

70

71

72

73 74|f75176 |77(78 79|80

IDENTIFICATION
Field
Format

Requirements

REFERENCE KEY Field (Cols. 74 to 80)

FORMAT REQUIREMENTS

LOCATION OPERATION SIZE

——

REFERENCE
IDENT. KEY

3|uls]e]7ls]ofw]|1a]iz]13]ru|15]16 [17[18]19]20|21}22|23)24[25]26 69|70}71 172|173 78llrs| 76 {7778 |79

-
~

0

NUMERIC VALUE

The value of this field should be all numeric
characters.

This REFERENCE KEY Field, if present, is used
by the Assembly System to:

1. Verify and, if necessary, sort the input
source data.

2. Provide a reference for the making of
corrections. (See Section XV - Correction
Procedures.)

FIELD NOT PRESENT

If this field is not present it will be assumed
that:

1. Source statements are in sorted order.
2. Corrections are not desired.

OPTIONAL USE OF THIS FIELD BY ASSEMBLY SYSTEM

An option of the Assembly System provides for
automatic renumbering of these fields. If this
option is used, the lines will be renumbered in
increments of 100 and the first line of sorted
and/or corrected input will be assigned a value
of 0000100.

REFERENCE KEY
Field
Format

Requirements

I1r-21

RIGHT JUSTIFICATION

The numeric value assigned to the line in
this field should be right-justified.

High-order insignificant zeros to the left of
the most significant digit may be omitted

if a sort is not desired for the source
(Assembly) data.

NOTE that in the assignment of values to the
REFERENCE KEY Field, a sufficient increment
value should be assigned to each successive
entry to facilitate the insertion of additional
lines of coding using the Correction Procedures.

Example:
Poor Better
0000111 Insufficient 0001110 Up to nine in-
0000112 for insertions 0001120 sertions can
0000113 at these points 0001130 be made at

these points

REFERENCE KEY
Field
Format

Requirements

I11-22

SECTION II
ADDRESSING AND VALIDATION

The purpose of this section is to outline the various methods that may be
used in the RCA 3301 Assembly System for addressing and validation of ad-
dresses in the user's written program.

ADDRESSING
The ADDRESSING portion discusses the various options used in writing and, if
necessary, in modifying addresses. The discussion and examples will be
largely restricted to writing such addresses in the A and B Address portion of
an instruction.
The options to be covered are:
1. Symbolic Addressing

. Automatic Orientation of Symbolic Addresses

. Machine Addressing and Mask Generation

2
3
4. Standard Location Addressing
5. Instruction Self-relative Addressing
6. Indirect Addressing
7. Address Modification by:

a. Incrementing and Decrementing Addresses

b. Using Index Fields

8. Address Qualification

SYMBOLIC ADDRESSING

A symbolic address is a label (or tag) used to specify a defined location
within the context of a particular program.

In the previous section on format requirements, the first field (the LOCATION
Field) of the Assembly Program Sheet was discussed.

It was stated that, if this field was used, two addresses will be generated
by the Assembly System for the tag appearing in the LOCATION Field. The two
addresses generated are the address for the right-hand-end and the address
for the left-hand-end of the field generated for the tag.

As an aid in understanding how this is accomplished, the user should be aware
that the Assembly System is using a Location Counter to generate an object
(or machine language) program from a source (or assembly language) program.

This Location Counter might be considered as any other type of internal

counter. It is given an initial wvalue; for example, 0000 before any addresses
are assigned for any symbolic tags.

II11-23

Then, assuming that the user's input has been sorted and corrected, a part
of the assembly operation is to assign values to each of the user's tags.

Certain types of lines of coding call for the Location Counter to be ad-
vanced to the next diad, word (decade), hundreds, or thousands location,
rather than using the next character location.

Certain types of advancing the Location Counter may be done at the option of
the user and certain types are performed automatically by the Assembler to
conform with machine processing requirements.

The user may specify for certain types of storage that the beginning charac-
ter position allocated be in the first position of a diad, word, etc. If,
for example, the user specified that the beginning position of a diad be
used, the Location Counter would be advanced if necessary to the next posi-
tion that had an even address.

The Assembler, as an example, will automatically advance the Location Counter
to the next word when an instruction is encountered as instructions must be
word oriented.

AUTOMATIC ORIENTATION OF SYMBOLIC ADDRESSES

Two addresses are generated for each tag. The left-end address is the first
character position assigned (after proper orientation mentioned above) and
the second address is the last character position assigned. This last posi-
tion address which is assigned is based on the size of the area required by
the information as given on the assembly line of coding.

EXAMPLE

User defines a seven character area to be used as a working storage area.

In the LOCATION Field for the line describing this area the user has
assigned the tag of WAREA.

Assuming that the Location Counter contained a machine address value of
5000, then the left-end address assigned would be 5000 for the first loca-
tion of storage, and it would be incremented by a value of six for the next
six characters of storage.

Thus, the right-end address assigned would be 5006 as illustrated below:

WAREA (left-end address) LWAREA (right-end address)
J
v v
5000 5006

v

5000 | 5001 | 5002 | 5003] 5004 | 5005 | 5006

It should be noted that the left-end address might be considered the primary
address to be assigned whenever the tag is used in a situation where it is
not obvious that the right-end address is called for.

III-24

As an example, in a situation where a programmer desired to fill the above
area (WAREA) with spaces, he might use one instruction. The A Address of
the instruction requires the left-end address of a field and the B Address
requires the right-end address.

This is an example of a situation in which it is obvious that the right-end
address is needed. Thus, if the programmer wrote in the ADDRESS Field for
this instruction as described:

WAREA, WAREA
$ i

— e -
-~ - - - -

V3
(A Address-5000) (5006-B Address)

If, however, the programmer wanted to fill only the first two locations
(5000-5001) with spaces, he would have to use an incremented address for the
B Address as described under Address Modification later in this section.

When in the Assembly process of assigning machine addresses, an instruction
is encountered, the Location Counter is advanced to the next word; i.e., the
next location having an address ending in a zero.

This is necessary because, as explained earlier in the Hardware portion of
the manual, all instructions are word (decade) oriented. The Assembler
recognizes a line of coding as an instruction by the entry in the OPERATION
Field.

The example below illustrates the assignment of machine addresses for sym-
bolic tags and the manner in which the Location Counter is advanced for a
sequential series of Assembly lines:

EXAMPLE

In this example, assume that the Location Counter value is set to 5000 for
the first assembly line shown.

FOR THIS

LINE,

ADVANCE
ASSEMBLY CONTENTS TAG ORIENTATION LOCATION LEFT-END RIGHT-END

LINE OF LINE ASSIGNED REQUIRED COUNTER TO: ADDRESS ADDRESS
First A 6 char. field WAREA Character 5000 5000 5005
Second A 4 char. field CADDR Diad 5006 5006 5009
Third A 7 char. field WHDR Word 5010 5010 5016
Fourth A 5 char. field CSTR Character 5017 5017 5021
Fifth An instruction START Word* 5030 5030 5039
Sixth An instruction (none) Word* 5040
Seventh An instruction END Word* 5050 5050 5059
Eighth A 50 char. WHDR Hundreds** 5100 5100 5149
cons tant

*Location Counter advanced by the Assembler.

**Note that it would have been a better utilization of memory to have written the
eighth line as the first line. The positions from 5060 to 5099 inclusive have
not been allocated for any stated purpose in this example. (See, also, the
example in this manual in Section III for the ALOC Controlling Code.)

II1-25

MACHINE ADDRESSING AND MASK GENERATION

As previously discussed in this manual, the modular concept of programming
provides for efficiency in the writing of programs and the utilization of
the memory required for the execution of programs.

To efficiently utilize memory at program running time therefore, all se-
quences are assembled relative to the lowest memory address of 0000. Then
when the sequence is loaded at the program execution time, it can be "floated"
to and referenced at the relative position it occupies.

Thus, the sequence may be floated and a float factor may be applied to every
address used in the sequence except those referring to standard locations as
discussed below. A more detailed discussion of this process appears in the
portion of the manual on the Operating Procedures but the user should be
aware of this concept and avoid the use of machine addresses to address other
than the standard locations of memory.

Machine addressing should be used only for such functions as:
1. Addressing standard locations (see below - Standard Location Addressing)

2. Incrﬁmenting and Decrementing Addresses (see below - Address Modifica-
tion

3. Zero Value (Ignored) addresses

In order for the assembler to distinguish between a machine address and a
symbolic numeric tag, the machine address must be prefixed by a dollar sign
($). Following the dollar sign, the user writes the machine address as an
all numeric address,

Examples:

$0 - A zero address

$212 ~ The left-end address of STA (See Standard Location
Addressing below)

$159000 - Machine address value Z"00

The user may generate a four character 'mask' by prefixing the four char-

acters with an ampersand (&). This mask may be used in either the A or
the B Address fields.,

The mask, however, may not be modified by incrementing, decrementing, in-
direct addressing, or indexing as explained in other parts of this section.

Example:

&000" - A mask requiring that the least significant character
position have 1 bits in the 2, and 25 bit positions
and O bits in the 20 to the 25 bit positions.

STANDARD LOCATION ADDRESSING

There are three standard location fields that may be addressed with the
dollar sign prefixing the symbolic name assigned to the field. These
standard location fields are as follows:

I11-26

Assembly

HSM_ Address Name of Field Purpose of Field Address
0212 - 0215 STA Store final contents of $STA

the A Register after
selected instructions

0216 - 0219 STP Store the contents of the $STP
P Register following se-
lected transfer of control
(jump) instructions

0222 - 0225 STPR Hold the contents of the $STPR
P Register during the
repetition of an instruc-
tion using the Repeat
instruction

Each of these names may be used; $STA, $STP, $STPR, in the ADDRESS Field and
proper right-end or left-end addressing will be generated based on the re-
quirements of the instruction used.

As an example in the use of $STA, the address generated by the Assembler
would be 0215 if the right-end address was required, and 0212 would be gen-
erated if the left-end address was required.

NOTE:

In addition to the above standard locations certain other locations
use the same type of notation.

$SYST for System Standard Locations
SPROC for Process Standard Locations
$USER for System Standard Locations (USER)

A complete aescription of the format of these fields appears in an
Appendix in the Assembly Reference Manual.

INSTRUCTION SELF-RELATIVE ADDRESSING

In the ADDRESS Field of the instruction coding portion of a user's program,
the Assembly System furnishes him with the ability to reference other loca-
tions in the sequence. He may do this with an address relative to the in-
struction in which the address appears.

The quote sign (") is used in this option to obtain the value of the left-
end of the instruction in which the quote sign appears. Following the quote
sign will be either a plus or minus sign and the value which is to be added
to or subtracted from the value of the current instruction.

I11-27

EXAMPLE

U
N ASSUMED ASSIGNED
| ADDRESS INSTRUCTION (SELF-RELATIVE)
T __ADDRESS ADDRESS
1841920 21|22|23]2u25126 [27]28 2913031 |32 A §
wl+|1]o],|T|1|M[E 0000 0010 -
<EEAEAREN 0010 0006 -
O—={| | [slol,]"]+]s]0 0020 —~ 0070
@] | |r]+]7]0],|"]+]1]5]0 0030 0100 0180
/
&

(:)(::) Caution should be used in self-relative addressing in these types of
situations. The user should be aware of the condition that would be
present if corrections in the form of insertions or deletions of lines
of coding were made between these lines and the lines of coding refer-
enced. The self-relative addresses on these lines would have to be
revised. A better procedure would be to tag the referenced line and
use the tag in place of these self-relative addresses. Then insertions
and deletions would not affect proper addressing.

Note that the dollar sign ($) prefix is not necessary in self-relative ad-
dresses. The Assembler makes the assumption that the decimal value follow-
ing the quote sign is an increment or a decrement.

INDIRECT ADDRESSING

Indirect addressing is used when four characters which are sequentially
stored in two diads are desired as an address.

Indirect addressing is normally used when the programmer cannot address a
desired field directly because its actual location varies with each record.
This is usually the situation when programming variable sized records.

However, the programmer is aware that following an instruction which is de-
signed for use with variable sized field that an address, relative to the
first or last character of the field, will be placed in a known standard
location as a function of the hardware.

The programmer can obtain this address by the location where it is stored.
The hardware distinguishes an indirect address from a direct address by the
presence of a 1 bit in the 2, bit position of the least significant charac-
ter of the address.

The Assembly System recognizes an indirect address by the number sign (#)
used as a suffix to the address.

The example below is an illustration of using the standard location of STA
(0212-0215) in direct and indirect addressing:

I11-28

EXAMPLE 1:

Assume the contents of STA are as follows at the time of execution of the
assembled program for each of the following lines of assembly coding:

0212 | 0213 | 0214 | 0215

6 7 5 1
ADDRESS Assembled Execution Type of
Field A Address A Address Address
S$STA,WAR 0215 * 0215 * Direct
SSTA# ,WAR 021E 6751 Indirect

<0215 is furnished if the instruction address logic calls for the right-hand-
end address.

Some of the key points to be considered when using the Assembly option for
indirect addressing are as follows:

1. An address to be indirectly addressed must be stored in two con-
secutive diads.

2. An indirect address is recognized by a number sign (#) following
the address.

3. The rightmost diad of the two consecutive diads must be specified.
Note that the Assembler will use the right-end address of a field
assigned a symbolic tag, if this field is indirectly addressed.
The user should assure that the field is diad oriented.

EXAMPLE 2:

This example is an illustration of how STA might be used in the ADDRESS
Field of instructions.

Assume that a programmer is writing a portion of a sequence for processing
records having variable sized fields. Assume also for this example that
the record being currently processed occupies memory as indicated.

TAG IT1
HSM LOCATION-#| 5000 { 5001 5009 | 5010 5018 | 5019 5023 | 5024
[] L 4 e —————————— []] —
CONTENTS -#» Item 1 Item 2 Item 3

In the above example, it should be noted that each item is variable in size,
and that this is the item size format of one sample record.

111-29

Each item in the record is preceded by a control character, in this case an
Item Separator Symbol designated by ®. Assuming that the left-end location
of Item 1 is known, the programmer could access Item 2 following the instruc-
tion for handling Item 1 as follows:

ASSEMBLED CONTENTS OF STA *%*
ADDRESS A ADDRESS AFTER EXECUTION

®—> IT1,WAR 5001 5011
@-. $STA#,WAR2 021E* 5020

*Executed address equals 5011 for this record.

**For this record as an example.

(:) This is the ADDRESS Field of an instruction which transfers Item 1
(IT1) to a Work Area (WAR). The instruction terminates after the first

symbol is transferred. The final contents of the A Register are stored
in STA.

<:> The programmer knows that following execution of line (:) s STA will
contain the address of the first significant character of Item 2. He
uses STA as an indirect address to obtain the address of Item 2 to
move it to Work Area 2 (WAR2). The programmer also has an option of
placing the four-character contents of an address register into two
consecutive diads. This option is explained in a later section -
Register Manipulation Instructions. Thus, the user has the option
of using the final contents of the A and/or the B Registers
following any instruction as either a direct or an indirect address.

SYMBOLIC ADDRESS MODIFICATION -~ Incrementing and Decrementin

When the user has assigned a symbolic name (tag) to a field, an assembled
address is assigned to that tag as explained earlier under SYMBOLIC
ADDRESSING.

When the tag has been assigned in the LOCATION Field of the Assembly Program
Sheety the programmer may address any character position following or pre-
ceding the left-end address assigned to this tag. He has this ability
through the use of an incremental (or decremental) address.

As an example, assume that a programmer had defined a rive character field
as WORK and the Assembler assigned the left-end or primary address of 5000
for WORK. He would thus have a field allocated as shown:

PRIMARY ADDRESS OF WORK

5000] 5001 5002 { 5003 | 5004

ITII-30

I1f the user wished to address the third position of the field (5002) he
could use an address incremented by two locations as follows:

WORK+$2

When using a decimal number of memory locations as an increment or decrement
the following key points should be remembered:

1. The dollar sign ($) prefix must be used before the decimal value.

2. The plus (+) or minus (-) sign must precede the prefixed dollar
sign.

3. Whenever incremented or decremented addresses are specified, the
value assigned to a symbolic tag is the left-end (or primary)
address. A symbolic name may also be used for incrementing or
decrementing. As an example, assume that the tags WORK and SCOPE
have been assigned addresses 1000 and 2000, respectively. If the
programmer then wrote an assembly address of WORK+SCOPE, the
assembled address assigned would be 3000.

EXAMPLES

In the following examples of incremented and decremented addresses assume
that the Assembler has assigned machine address values as indicated:

LEFT-END
TAG ADDRESS ASSIGNED
START 0100
WORK 1000

The Assembler would then assign addresses as shown below:

ADDRESS Field ASSEMBLED A ADDRESS
START+$2, $0 0102
WORK~START , $0 0900
$STA+SL, $1 0213
$STP-$4, 50 0212
WORK+$25, $0 1025

Note that when a symbolic address is incremented or decremented by a
machine value, that the symbolic address must be specified first.

ADDRESS MODIFICATION BY INDEXING

Indexing is a hardware function that automatically increments designated
addresses by a value which is prestored in an Index Field.

An address to be incremented must contain a specified arrangement of 1 bits
in the zone portion (24 and 25) bits of the third character of the machine
address.

There are three Index Fields and any one of these may be designated in the
address to be modified.

I11-31

The programmer may specify indexing by the first, second, or third Index
Field following the address with a colon (:) and the characters ML, M2, or
M3, respectively.

For example, if the programmer had defined a field by the symbolic tag TABLE
and wanted incrementation by the second Index Field, he would write:

TABLE: M2

To illustrate the manner in which indexing may be specified by the user and
how it is implemented by the Assembly System the following example shows how
the programmer writes an address to be indexed, the machine address as
assembled, and the address that would be executed at object program running
time.

EXAMPLE

Assume that the value of the address assigned the symbolic tag, and the
values stored in each of the Index Fields are as follows:

TAG ASSIGNED ADDRESS

READIN 5000
INDEX Field 1 2 3
Contents 0010 0150 0600

Zone Bits Assembled Machine

Assembly Indexing of 3rd Char. Machine Address
Address Field 25 24__ Address As Executed
READIN None 0 0 5000 5000
READIN:M1L 1 0 1 50&0 5010
READIN:M2 2 1 0 50-0 5150
READIN:M3 3 1 1 50"0 5600

The wvalue in the Index Field is always added to the address as illustrated
above. However, if the effect of subtraction from an address is desired,
the Index Field may contain the complement of 160000 as the quantity. For
example, assume that it was desired to decrement READIN (5000) by 2000 and
using Index Field 3

CONTENTS OF INDEX FIELD 3
158000 (or Y"0O ACTUAL)

Assembly Assembled Execution
Address Address Address
READIN:M3 50"0 3000

Each of the Index Fields is contained in Micromagnetic memory and associated
with each Index Field is an Increment Field also in Micromagnetic memory.
The contents of each Increment Field may be added to the contents of its
associated Index Field at the option of the programmer.

I11-32

This function of incrementing the Index Field is performed as an option of
the execution of the Tally instruction. The details of the Tally instruc-
tion will be discussed in another section of this manual and only the manner
in which Index Fields may be incremented will be illustrated in this section.

The incrementing function is designated by an arrangement of 1 and O bits in
the second (N) character of a Tally instruction. The programmer specifies
in the SIZE Field(s). This SIZE entry generates the N character of the
machine instruction. Examples of the increment function specified in the
SIZE Field are as follows:

Increment Index Field SIZE Field Entry of Tally Inst.
1 I1
1 and 2 11,2
1, 2, and 3 11,2,3

The programmer has the ability to load values in both the Index and Increment
Fields through the use of the Load Register instruction which is covered in a
later section of this manual.

The programmer will find many uses for Indexing. An example of one way in
which indexing may be used is the processing of fixed length records, a
series of which are contiguously stored in memory.

In this example, assume that a programmer has five 80 character records
stored in an area with a left-end address tagged READIN.

In processing each record he will use Index Field 2 as a modifier. Initially,
for processing the first record, the Index and Increment Fields would be as
follows:

INDEX 2 INCREMENT FIELD 2

0000 0080

Thus, all addresses in the processing path would be modified by 0000.

After processing the first record, he increments the Index Field 2 using the
Tally instruction which also returns control of his program to the first
processing step. The Index and Increment Fields are as follows for pro-
cessing the second record.

INDEX 2 INCREMENT FIELD 2

0080 0080

Thus, in going through the processing path for the second record, every
address is incremented by a value of 0080.

These steps would be repeated for the processing of the third, fourth, and
fifth records. After processing the fifth record, however, the Tally in-
struction would not return to the first processing step. When another five
records are in the area READIN, the Index Field would be set to 0000 and the
processing steps outlined above would be repeated.

I11-33

ADDRESS QUALIFICATION

The modular concept of programming, as discussed previously in this manual,
provides many advantages in all phases of program planning, preparation, and
implementation.

As an example of one efficiency in the area of program preparation, individ-
ual sequences may be prepared by different programmers, each programmer
writing the type of sequence for which he is best qualified.

Unless there are adequate control standards governing the assignment and use
of symbolic names (tags), two or more programmers might inadvertently use
the same tag.

In such a situation, the programmer must qualify any reference to another
sequence by the name of sequence followed by symbolic tag as in the following
format:

SEQLETAGL

where TAGl is the symbolic name in another sequence and SEQL is the name of
the sequence in which the tag appears. The symbol "@" must be used follow-
ing the sequence name.

This type of address qualification should be required for all out of sequence
references where the possibility of duplicate tags exist.

Address qualification is not necessary when it is known that all tags are
unique within the segment being assembled.

VALIDATION

Every symbolic tag which is used in the ADDRESS Field must be defined by
appearing in the LOCATION Field. As explained in the beginning of this
section under Symbolic Addressing, an entry in the LOCATION Field is
assigned addresses. In addition, each entry in the LOCATION Field must be
unique within a sequence, and may be written so as to be unique within the
segment being assembled.

"Validation" is an operation of the Assembler that insures that all symbolic
tags used in the ADDRESS Field have been so designed.

A one character entry may also be used to indicate whether or not the se-
quence requires loading at object time; i.e., a sequence that may consist
only of working storage areas does not require loading at object time,

The codes and the specifications for each are as follows:

CODE VAL.IDATION OF TAGS LOADING AT OBJECT TIME
ZERO or Each tag unique in the segment Will be required
SPACE

1 Each tag unique only within Will be required

each sequence

2 Each tag unique only within Will not be required
each sequence

4 Not to be performed* Will not be required

*This is a special code used for assigning zero relative addresses to tags
for use as increments in indexed addresses. An example of the use of this
code is given in Appendix B, In-Place Processing.

III-34

SECTION III

ALLOCATION OF DATA AREAS AND CONSTANTS

The purpose of this section is to outline the manner in which data areas may
be allocated and how constants may be specified.

This is normally one of the first steps in the writing of a program.

The controlling codes used in this section will be discussed by giving the
format requirements and examples of the use of each code as well as pro-
gressive examples which show the combined use of two or more controlling
codes.

As indicated earlier, this training document is intended to supplement
rather than replace the Realcom Assembly Manual which should be used as a
basic reference.

For each controlling code there will be first an outline of the format re-
quirements and this will be followed by explanatory comments and an example.

The controlling codes to be covered and the general purpose of each is as
follows:

DEFSEQ

This code notifies the Assembler that a new sequence is being started. Every

line following this code will be included in the sequence until another
DEFSEQ code or the END of the program is encountered.

0ocC

This code is used to notify the Assembler that the allocation of memory is
required for subsequent lines. This code may be used for example to allo-
cate data record, file read-in, and scratch pad work areas.

FIXCON
This code is used to set up alphabetic and alphanumeric constants of speci-

fied values. Each constant may be given a name (tag) which may be used as
a later reference to this constant.

FIXNUM
This code is very similar to the preceding code but may be used only for

numeric fields consisting of the characters zero (0) through nine (9) and a
sign which is included as a bit in the least significant digit.

ADRCON

This code is used to store an address in a location where it may be used as
a constant.

III-35

DEFSEQ

Specifies the begimning of a sequence to the Assembler.

-~
|
{
!
t
I

Al M W

LOCATION OPERATION SIZE ADDRESS

g =

11213 |u |56 §7]|8|9[10]11)12|13[14|{15}16 |17]|18]19]20]21|22|23|24]25]26 |27[28|29{30|31|32(33]34|35]36]37]38]39|40

FORMAT NOTES

@ LOCATION

The name (tag) of the sequence must be
entered in this field. This name is
necessary for the Segment Description
which will be discussed later.

@ OPERATION

DEFSEQ must appear in this field.

[92]
=
N
<3

NOT USED (SIZE Field)

May contain one of the following charac-
ters to indicate type of validation for
tags in the sequence.

Code 0 (Zexro) or Space
Each tag should be unique within the segment.
Code 1

Each tag unique only within the current se-
quence. This code also indicates that
loading of this sequence at object time
will be necessary. Contains coding and/or
constants.,

\A\/

DEFSEQ
Format

I1I=-37

FORMAT
Code 2

Same as Code 1 except that loading at
object time will not be required. No
coding or constants included.

Code 4

Used to obtain zero relative addressing
for tags (to be used for index referenced
addresses). Also a sequence that is not
to be loaded.

(:) ADDRESS

® OO

USED ONLY IN file description sequence.
See Section V. May be used otherwise for
comments.

Cco NTS

The first line of a sequence must be a
DEFSEQ entry and this sequence must be
tagged in the LOCATION Field.

Code 0 (or space) will check each tag
in this sequence for uniqueness against
all other tags in the segment.

Code 1 and Code 2 checks each tag for
uniqueness only within the current se-
quence. Thus, any out of sequence
reference should be qualified by the
name of the reference sequence.

DEFSEQ
Format
and
Comments

III-38

NOTES

ALOC

Used to allocate memory for data and work areas.

I SR ¢

- — = = = = = = = =

1l

LOCATION OPERAT!ON SIZE ADDRESS

-_—_=Zcc

1{2(3|s 5167|819 ({10]11§12[13]14[(15|16 (17|18]19]20}21(22]|23(2u|25])26 |27]128|29(30|31|32(33{34|35]|36(37|38(39(u40

\\AANAS

FORMAT NOTES

@ LOCATION

This is an optional entry of one character
only which is left-justified. This char-
acter, if used, will be considered a prefix
to all tags that follow until the ALOC
operation is terminated. (See Comments.)

@ OPERATION

A10C must appear.

192}
—
N
[e]

NOT USED

®
:

Specifies how allocation of memory is to
be oriented; i.e.,

C or Space - Use the next character
location

D - Use the next diad (begin
allocation in the next loca-
tion having an even address)

W - Use the next decade (word)
(Begin allocation in the next
location with an address
ending in zero - "XXXO0")

H - Use the next hundred's loca-
tion (Begin allocation in the
next location with an address

ending in two zeros - "XX00")

AL.OC
Format

II1-39

FORMAT NOTES

T - Use the next thousand's loca-
tion (Begin allocation in the
next location with an address
ending in three zeros - "X000")

@ ADDRESS

NOT USED unless for the listing of programmer
comments.

NOTE that when allocating areas for specified Input/
Output functions a required type of orientation
may be required for:

Printing - the area should be word oriented and
120 or 160 contiguous locations.

Card Punching - the area should be diad oriented
and 80 contiguous locations.

ALOC
Format

II1-40

ALOC (EXAMPLE)

This is an example of how a data area may be allocated.

LOCATION OPERATION SIZE ADDRESS

—“—-=c

213145167 (8|9 10]111{12)13]1u|15{16 [17}18)19)20)21]22]|23]2uf25]26 [27]|28] 20

RGN
‘ I9)
-

COMMENTS NOTES

(:) Prefix of T will be assigned to all tags on
lines (:) s <:> , and . For ex le,
later reference to the first entry

would be TACCT. (The symbolic tag T could
also be used for the left-end address of
this first field.)

(:) If a prefix is assigned in the ALOC entry it
will prefix all tags that follow until the
ALOC entry terminates. ALOC terminates by an
entry in the OPERATION Field other than:

REMARK
RENAME
ADRCON
FIXCON
FIXNUM
FLTNUM

Thus, the prefix, if assigned, would prefix
all tags used with these controlling codes
which follow the ALOC code.

(:) Allocation of memory begins with the next
decade, but: (See next page)

4\/\/\/\/\/\/\/\/\/\/\/\/\/

ALOC
Example
and
Comments

I11-41

a COMMENTS NOTES

All of these following entries are
\. character oriented (space in UNIT
Field).

@.4

User is allocating 25 characters not referenced
by a tag.

® ©

Allocation will begin in the next hundreds loca-

tion (address ending in XX00). Note that unless

care is taken in allocating memory with the

hundreds (H) and thousands (T) options, excessive
wastage (unused areas) of memory may take place.

For example, if allocation of memory for line
terminated with an address of XX0l, then 98

unused positions would follow this entry (TBAL + $31).

(:) Reference to these entries are as indicated in the
LOCATION entry as there is no prefix assigned in the
ALOC entry (Line 6). Note that the tags for lines

(:) and <:> are unique; TACCT and ACCT respectively.

ALOC
Comments

I111-42

FIXCON

Used to set up an alphabetic or alphanumeric constant.

I S

ir R
U
N
LOCATION OPERATION SIZE | ADDRESS
T
vl2fsfuysfe]7]|8|9]|w0]tr]|12]13|1u|15{16 |17]18|19]20|21|22|23|on]25 |26 [27]28 | 29]30]31 32|33 |34 |35 |36 |37 | 38]30 |0
M| AjClH FII|X[C|O|N|8 CIR{C|A 13/3/0]1 %;
FORMAT NOTES
LOCATION

Constant is referenced by the tag which
appears in this field (with ALOC prefix
if applicable).

OPERATION

FIXCON must appear in this field.

The size of the constant may not exceed
50 characters.

UNIT

® ©0 O
-

Constant is stored in the next available
unit of memory as indicated in this field.
If left blank, the constant will begin in
the next available character location.
(See ALOC entry for this field.)

ADDRESS

©

The value of the constant is written in
this field. The number of characters
written must equal the SIZE Field (:) .

FIXCON
Format

I11-43

FIXCON (EXAMPLE)

u
LOCATION OPERATION SIZE \ ADDRESS }
!
1121341516 71819 (10)11|12813[14]15]16 |17 |18)19 }20 212223 f2u{25(26 |27128 }29|30(31]32(33]3u}i35]|36 37 38>
@"MODEL Fl1|x|clo|N]1 wlo|7|-E N[0 |M %
X@—-“ 1 1|2]-|{s|p A
@"ITEM Fl1|x|clo|N]e o|1l8]. 3
X@—"PRFLD Flr|x|clo|NL |20 W
X@"TITL FlI|x|clo[N]s p|r|E|s|1|D|E[N|T >
H|E|A|D|E|R|F|I|X|c|o|N][5]0 wiplalT|E alclc|r|. [nlol.
Fl1|x|clo|n]s]o RIE|C|E[T[P]|T WIB
Fl1|x|clo|N]2]0 PlA|G|E olF Pcsg
FORMAT NOTES

Word oriented constant.

>

Nothing allocated for this line because
FIXCON is omitted (assuming ALOC code
not previously used).

This line would not be acceptable if input
was from paper tape as the ISS (®) is used
to specify separation of fields on paper
tape input.

>

Error entry Maximum size per line for con-
stant is 50 characters.

O © OO

>

Possible error. SIZE Field does not agree
with value in ADDRESS Field. Last character
(T) will be truncated.

©

This is an example of how a constant of over
50 characters may be written. NOTE, however,
that to refer to the right-hand-end of the
120 character constant, a character relative
address must be used such as HEADER+$119.

FIXCON
Examples

II1I-44

FIXNUM

Used to store a fixed numeric constant.

I D G o

NAA/

]
N
LOCATION OPERATION SIZE | ADDRESS
T
{23 fu]s|6]7(8|9|10|11[12]13)14|15]16 |17{18|19]20|21]|22[23|2u 25|26 2728 | 2930|531 |32{33|3u (35 36|37 | 38]39 |40
O|N|E FII|X|N|UM]|3 cl|l
FORMAT NOTES

LOCATION

Numeric Constant is referenced by the
tag appearing in this field (with ALOC
prefix if applicable).

OPERATION

FIXNUM must appear in this field.

Size of the generated constant is speci-
fied in this field (Maximum of 50 per
line).

Constant is stored in the next available
unit of memory as indicated in this field.
(See ALOC entry for this field.)

ADDRESS

© ©®© ©0 O0
:

The value of the constant is stored in
this field. If the SIZE Field specifies

a greater number of characters than the
value in this field (as above) the stored
constant will be zero filled (i.e., 001
above). If the value of the constant is
minus, the minus sign must precede (be the
first character) in this field.

FIXNUM
Format

III-45

FIXNUM (EXAMPLES)

CANANAANNAASAA

U
N
LOCATION OPERATION SIZE I ADDRESS
T
1123|456 71819101112 413]14|15]16 |17|18419}20)2122]|23|2425}26 127128129130
@—»TH F|I|X|N[UM]3 c
X@_————’“SEV N|F|I|X|N|UMI5 clojojojo|1]|7
@———» FlI|X|N[UM]I2 cl-18
X@————-TWOMI F|I|X|N|UM|5 clojolo|o|K
X@——>7M u|s|F|1|x|N|UM|7 c|7|-
@———>ZER s| |Fl1|x|N|UIM]6 clo
FORMAT NOTES

The stored constant

The stored constant
of the 7 will occur
The stored constant
Error entry - Alpha

Error entry - Minus

The stored constant

will be 003 (zero filled).

will be 00001 - Truncation
because of SIZE entry.
will be 8N.

character not permitted.

sign must precede entry.

will be 000000.

(At least one numeric character must be
present in the ADDRESS field.)

FIXNUM
Examples

II1I-46

DEFSEQ

ALOC
FIXCOM EXAMPLES

FIXNUM

(SAMPLE CONSTANT SEQUENCE)

LOCATION

OPERATION

—_—zc

ADDRESS

[
N
W
=
o
o

-
o]
o
=
=3
-
[N
-
N

29130131132

Oliwm | |O

U

mlo|a|la
olz|IR |

o= == | |O
Hlm | A
O |HiX|[X|[(HK|O|™
Ojniaoli=z|Z2 1 0ln

[oll5ls

each DEFSEQ line.

OXC

line as follows:

CONST
WBOND
WDEPR

©

Even though the previous entry WBOND is word
oriented it contains only 15 characters (1-1/2
words). Thus, WDEPR, which is character
oriented, will use the last five character
locations of the second word allocated for W.

(:) Constant of six characters is not tagged.
erence to the first character of this field

would be WDEPR+S$5.

COMMENTS

A tag must appear in the LOCATION Field for

The ALOC entry is used here only to furnish
a prefix (W) to each tag that follows.
FIXNUM and FIXCON codes will allocate memory.

Thus, this example could have omitted the ALOC

DEFSEQ

FIXNUM etc.
FIXNUM etc.
FIXCON etc.

WBOND is word oriented.

DEFSEQ
ALOC
FIXCON
FIXNUM
Examples

33

NAAANANAANNAANAANANS

COMMENTS NOTES

A separate sequence in which a 250 character
area is allocated and is word oriented.

GO

DEFSEQ
ALOC
FIXCON
FIXNUM
Comments

ITI-48

ADRCON

This code is used to generate an address as a constant.

I G O G G

-

]
LOCATION OPERATION SIZE T ADDRESS

I

123 |ufs]6f7|89]0]1r|12]13|1af15]16 |17 |18]19}20|21|22{23)2u 25|26 |27 |28 [29|30 (31 |32[33]3u]35|36]37 | 38]30|uo :>

S|WiB|2 A|D|R|C|O|N RIEIA[D|T|[R ;>

D

FORMAT NOTES

TL.OCATION

The Address Constant is referenced by
the tag which appears in this field.

OPERATION

ADRCON must appear in this field.

NOT USED

® © O O
s

=

Specifies the type of orientation for the four
character positions allocated as follows:

C - Character Orientation
D (or space) - Diad Orientation

W ~ Decade Orientation

H = Hundreds Orientation
T - Thousands Orientation

<:> ADDRESS

A symbolic name or an actual machine
address may appear in this field., For

a pure symbolic name, the address stored
as a constant will be the left-end address.

ADRCON
Format

III-49

ADRCON (EXAMPLES)

: ASSUMED ADDRESS
LOCATION OPERATION SIZE % ADDRESS ALngXTIONC?IiigéNT
123&567891011121311115161718,19202122232M25262728>
AlL|o|C W)
B{o|N|D| S| |F|I|x|c|lo|N]|5 0/1]8]7|5)4010_4014
F|I|X|C|O|N]|5 0/3/7/5/0 4015-4019
F|I|X{C|O|N 0(7{5/0{0 4020-4024
®—>BOND 5]A|D|R|C|O|N B|O|N|D|S 4026-4029 4010
B D A|D|R|C|O|N B|O|N| D| S|+ $|5 4030-4033 4015
2 B ol o]alp| R/ clo|N Bl o| N/ p| s| | $|1] 0] > 4034-4037 4020
)
COMMENTS NOTES

(:) Address value stored for a pure symbolic tag
(BONDS) is the left~end address (4010).

(:) Address value stored for an incremented (or
decremented) symbolic tag is the location
referenced.

ADRCON
Examples

I111-50

RCA 3301 ASSEMBLY SYSTEM

PRACTICE QUESTIONS

REFERENCE T & E MANUAL SECTIONS I-11I

Indicate the addresses assigned to each of the following fields assuming the
Location Counter was set in the beginning at 6000:

LOCATION OPERATION SIZE UNIT

W ALOC C
ACCT 3 C
CODE 5 D
NAME 17 W
BAL 8 W
WORK 10 W

Using the fields in question 1 as a reference, would the following addresses
in an instruction be valid in the ADDRESS Field?
Explain.

BAL ,WORK

Assume the following fields in Col. I have addresses assigned as in Col. II
(as LHE assignment).

COoL, I COL, TI1
ABLE 2000
TIME 2425
CHECK 2650
BAKER 2730

What machine addresses would be assembled for each of the following?

ABLE+BAKER
TIME+CHECK
CHECK-TIME
CHECK+$50
TIME#

III-51

RCA 3301 ASSEMBLY SYSTEM

PRACTICAL EXERCISE NO. 1

GENERAL REQUIREMENT

Prepare a sequence to be used for setting up a file record area, read-in
areas, and fixed numeric and alphanumeric constants.

FORMAT REQUIREMENT

1.

The format of the record is as follows:

ITEM NAME NO. OF CHARS.

ACCT NO

CLASS OF ACCT
NAME OF CUSTOMER
STREET ADDRESS
CITY STATE CODE
CREDIT CODE
AMOUNT DUE
ARREARS CODE

N
WNNNUBTON WO

TOTAL NO OF CHARS 60

Assign a five character tag for each item and the first character of
each tag must be an "M." This record area is decade oriented.

These records are batched by 5 records to a block on tape so allocation
of a file read-in area must also be made in this sequence. The tag of
this area is also a five character tag with the first character being
an "F."

To allow for maximum simultaneity, allocate an alternate read-in area
with the first character of a five character tag being an "A."

In addition to the record, file, and alternate areas, set up the
following constants within this sequence as follows:

a. A table of two character constants with the values 01, 04, 07, 10,
and 24 respectively with the beginning of the table decade oriented.
The tag of this table will be a five character tag, the first char-
acter of which will be an "M."

b. Four constants of the following values:
END OF RUN
ACCOUNT NO
ENTRY DATE
CLOSE FILE

Each tag will be a five character tag with the first character
being an "M."

III-52

SECTION IV

RENAMING AND REDEFINING DATA AREAS

Section III was an explanation of how data areas and numeric and alphabetic
constants may be allocated.

In this section we will discuss how such areas may be RENAMEd and REDEFined.

RENAME

As the name of this controlling code implies, it enables the user to assign

a different name (or nmames) to an area which has been previously named
(tagged).

The word "previously" in the preceding sentence refers to the order in which
statements are entered to the assembly process. In other words, the area to
be renamed must have been described to the Assembler prior to using the
RENAME option; i.e., the RENAME lines will have higher reference keys.

The format and examples of the RENAME option follow.

II1-53

RENAME

To rename an area previously defined in the same sequence.

R G O (R R

\

u
LOCATION OPERATION SIZE T ADDRESS
T
112 13|u]sfef7|8|otrwo]jrt|izfi3{1ufro|16|17(18F19]20|21[22(23(2u]25(26 |27}28}29|30|31|32]|33|3L4{35]36]37[38(3940
RIE|N|AIM|E M|A|C|C|T
FORMAT NOTES
LOCATION
Not used
OPERATION

RENAME must appear in this field.

Not used on a RENAME line.

Not used on a RENAME line.

ADDRESS

© 00 0
;

The name (tag) of an area previously de-
fined in this same sequence. Tag relative
(+ or -) addresses must not be used.

RENAME
Format

III-55

RENAME

Example - Breaking down an item into sub-items

In this example, let us assume that a programmer in describing his record
area has provided for a ten character account number as follows:

U
LOCATION OPERATION SIZE T ADDRESS HSMASAE%ERTION
T
112)3 (4567819 ([10]11112013]18115]16 {17 [18)19]20|21|22{23)2u]25]26 |27]28]|29]30]:
F|I[rR|s|T| |D|E|F|S|E|Q g
M AlL|o]c
Alc|c|T 10 C >——> 0000-0009

This account number (MACCT) however consists of significant sub-items as

follows:
lst CHAR. - STATION NO.
2nd and 3rd CHARS. - CYCLE NO.
4th CHAR. - BOOK NO.

5th thru 9th CHARS. CUSTOMER NO.

10th CHAR. - CUSTOMER SUFFIX
The programmer may now RENAME the MACCT Field as shown in the example which
follows:
U ASSUMED HSM
N ALLOCATION BASED
LOCATION OPERAT{ON SIZE I ADDRESS ON PRIMARY FIELD
T
123&56789101112131111516171819202122232&252627282930>
RIEIN|A|M|E M|A|C|C|T
S|T|A|N 1 c ~—& 0000-0000
C|Y[N|O 2 d — 0001-0002
B|K|N|O 1 c — 0003-0003
cluls|n 5 c) —#0004-0008
clulslx 1 . D —0009-0009
AlL|0|C :>
Assuming the RENAME option falls within the preceding ALOC area, the pro-
grammer now has the ability to use either the tag of the 10-character field
(MACCT) or the tags of individual sub-items (MSTAN, MCYNO, MBKNO, MCUSN,
and MCUSX).
RENAME
Examples

III-56

RENAME - Examples (Cont'd)

The RENAME option thus makes it unnecessary for example to use the tag
MACCT+$3 to refer to the sub-item for the Book No. (MBKNO).

Example - Grouping of Items

In this example let us assume that the programmer had defined and allocated
a forty character area as follows:

ASSUMED

LOCATION OPERATION SIZE HSM ALLOCATION

ADDR

—1—=c

———— 0000-0009
—— (0010-0011

————p» 0012-0015
— 0016-0023
—» 0024-0031
—— 0032-0039

I~

\
W™ R0 ln

S

=

@)

=
ANAANAANAN

IT <

Al HI® o |3
ook O|lg =

T 8O (Y|m|o
(o =B e o R I o oI I SRS O O]

At a point in his program however he wants to handle the first three items
(I above) as a unit, and the second three items as a unit also (II above).
In addition, as a part of the second group he wants to add a 10 character
work area. He might do this immediately after the last entry above and
using the RENAME option as follows:

RiEIN/AM|E S|T|NIO

——— 0000-0015
— 0016-0049

— 0050- --

I)

AiL|O|C

QD
w |
o |O
(=N [=
sv)
N
w |~
~
AANAANAN

Note that the RENAME option used in this way must immediately follow the
primary area. This is necessary because the Location Counter has been ad-
vanced an additional ten locations (to 0049) over its final setting for the
primary field (0039).

Unless immediately following, the RENAMEd field would have included the
first 10 characters of the field following the Primary field.

RENAME
Examples

III1-57

RENAME

Summary of Important Points

1. The RENAME controlling code must be preceded in the assembly process
by the description of the area being renamed.

2. If the RENAMEd area falls within a ALOC entry with a prefix assigned,
that prefix character will also be assigned to the RENAMEd Fields.

3. The RENAME option must be terminated by an entry in the OPERATION
Field other than REMARK.

4. An incremented or decremented address (+ or -) cannot be used in
the ADDRESS Field of a RENAME line.

5. The type of orientation (character, diad, decade, etc.) should be
mutually consistent in the previously defined and the RENAMEd Fields.

RENAME
Summary

IT1I-58

The REDEFine controlling code is very similar in one of its functions to the
RENAME controlling code. It may be used to assign a different set of names
(tags) to a previously allocated area.

The primary purpose of the REDEFine code, however, is to utilize a previously
allocated sector of memory for the storage of data in either a different for-
mat or with different assigned values.

An example of the use of REDEFine would be in a situation in which a user
had a file in which records were in different formats. In this example, let
us assume that a user had a transaction tape on which there were three types
of transactions; receipts, payments, and new accounts with the following for-
mat for each type respectively:

Receipts Payments New Accts.
Acct. No. 10 Acct. No. 10 Acct. No. 10
Code 2 Code 2 Code 2
Date 4 Date 4 Date 4
Amt. Rec'd 7 Amt. Paid 7 Customer Name 25
Total Chars. 23 Total Chars. 23 Street Address 27
City State Code 3
Type of Account 2

Amount of Purchase _7
Total Chars. 80

In this example the user will allocate a read-in area for the largest size
record, 80 characters in this case, and then redefine the allocated area for
the receipt and payment type of transactions. So that, in this example,
following the read of the transaction tape, the user determines the type of
transaction that is present in memory by use of the two-character code which
is of a different value for each type of transaction.

An example of this use of the REDEFine code is furnished following the format
of the REDEFine line.

Another example of the use of this controlling code is the sharing of data
work areas -- assuming that a programmer had need of two separate work areas.
If these two areas.did not have to exist concurrently he might share the use
of the common area by allocating it for one work area and REDEFining it for
the other work area.

Edit areas may be shared in the same manner. Assuming that a programmer will
determine whether a record must be printed or punched as an error, he might
share a common area in the same manner.

We might say then that the REDEFine option has three major functions; it may

be used to define an area for different purposes; it may be used to give
different values to a common area of memory; it may be used to save memory.

II1I-59

REDEF

Used to specify different values for an area of memory previously defined
and allocated by an ALOC controlling code.

B S U

- T Ty

LOCATION

OPERATION SIZE ADDRESS

—_——_—zc

6 1718 lol10]11l12 13| 1uj15]16 J17j18)19]20(21122(23|2u[25]26 [27]28729|30|31 |32{33{34|35

36|37 | 38139

40

©

ONOONO

FORMAT NOTES

LOCATION

This is an optional entry of one character.

If used, it will be considered a prefix to the
tags in the following lines in the REDEF area.
The LOCATION Field entry may be the same char-
acter assigned on the ALOC line or a different
character. (See General Comment below.)

OPERATION

REDEF must appear.

Not used on the REDEF line.

Not used on the REDEF line.

ADDRESS

Mandatory entry of one character that has been
previously specified in the LOCATION Field of
an ALOC line. Note that the REDEF option, if
used, makes it mandatory that the previous ALOC
line contain a prefix character assignment.

GENERAL COMMENT

It should be noted that the REDEF controlling
code terminates the ALOC controlling code op-
eration. If additional areas are to be allocated
following the REDEFined area(s) another entry in
the LOCATION Field would be required; i.e., ALOC,
FIXCON, FIXNUM, INSTRUCTION, OPERATION CODE, etc.

REDEF
Format

III-61

REDEF

(Example based on the situation on page III-59 in which an input area is

allocated and defined for different record formats.)

U
N
LOCAT I ON OPERATI ON SIZE | ADDRESS
T
~ 112314516718 9110]11]12 131’41516171819202122232&2526 27128129
@ A AlLio|c W
AlclelT 10
clo|p|E 2
NEW AGCT. DIA|T|E 4
RECORD C|U|S|N 215
s|T|AlD 2
clslc|p 3
T|Y|AlC 2
_ AM|P|R 7
r“
@ R R|E[D|E|F A
Alclc 1l0
RECEIPT 4 clolp 2
RECORD NAE A
L AM|T 7
o
@ P R|E(D|EIF A
Alclc 110
PAYMENT =~ _J clo|D 2
RECORD olalT 4
AM|T 7]
L AlL|o|C T
COMMENTS NOTES

©
®

®

A prefix must be given an ALOC line if the ALOC
area is to be referenced by a REDEF controlling code.

The REDEF line must refer to the ALOC prefix character
(A) in the ADDRESS Field. Note that the UNIT Field on
each of these REDEF lines is left blank. Word orienta-
tion will take place, however, based on the ALOC UNIT
Field entry of W.

REDEF
Example 1

I11-62

/'\/-_/\/\/—\/\/\/\/\ PPV N NN \/\/\/\\/\,/“\/

RENAME
REDEF

Example of Combined Usage

This example is based on the assumption that the user is allocating an area,

renaming a portion of the allocated area and then is redefining the area for
a record of a different format.

" ;
N ASSUMED
LOCATION OPERATION SIZE | ADDR HSM ALLOCATION
T
1123|456 718911011 {12 13| 14)15]|16 |17 |18)19]20] 21 (22|23 |2u|:
@—* N AlL|O|C W 0000-0053
@—-————P A|C|N|O 8 0000-0007
(G)—clon|E 2 0008-0009
(4)——=in|alm(E 2 0010-0034
@——~b~ S|T|A|D 117 0035-0051
(:)*——————.»C S|C|D 2 0052-0053
@———b R|E N|AM|E N|A C|N|O
s|T A 4 0000-0003
(O)—=cluls 4 0004-0007
M R|E|D/E|F N
@——-> Alcly|o 8 0000-0007
@-—» clo|plE 2 0008-0009
@——+ AM| T 7 0010-0016
@-———>0NE F|1/X/C|O|N|3 1 > 0054-0056
A
COMMENTS NOTES
@ The allocated area is Word oriented.
Do @m @ O
The prefix character of the ALOC line (N) will be assigned
to all tags on these lines; i.e., RENAME does not term-~
inate the ALOC function.
@ RENAME used here to obtain prefix of N to the subdivided
first field (NACNO). Note that if the RENAME Field
(lines @, ’ and @ y followed the REDEF area, no
prefix would be assigned.
REDEF
Example 2

I11-63

COMMENTS ‘ NOTES

These lines rename the NACNO Field so that it is
subdivided into two four character fields, NSTAT

and NCUSM.

Note that the entry in the ADDRESS Field must refer
to the previous ALOC tag (1 character).

Prefix of M assigned to these tags.

No prefix assigned to the tag (ONE) of this field
as REDEF function is terminated by an entry in
the LOCATION Field.

Note that the HSM allocation (0054-0056) is set on
the basis of its last setting, line (:).

® © 006 ® e

REDEF
Example 2

III-64

Assume the following is a portion of a sequence.
ence for the questions that follow.

RCA 3301 ASSEMBLY SYSTEM

PRACTICAL EXERCISE NO. 1A

It will be used as a refer-

M AlL|0|C

A|C|C 1|0 W
c|0|D 3

N|A|M 1|7

BlA|L 1

Rename the MACCT Field so that the first two and last two characters
may be addressed with pure symbolic names.

Redefine M so that it may be used for an area having the following
format:

ACCOUNT NO. 10
CODE 3
AMOUNT 7

Assuming the addresses assembled for MACCT were 0110-0119, what
addresses would be assembled for MBAL?

III-65

SECTION V
PREPARATTION OF THE FILE CONTROL PROCESSOR

FILE SEQUENCE

Thus far in the Sections in this Assembly System part of the Manual, we have
discussed the format of the Assembly Program Sheet, and how to allocate, re-
name, and redefine data areas.

In this, and the following section, we will discuss topics related to input
and output functions under control of the File Control Processor (FCP).

For the purposes of simplicity, only the primary level of FCP or file control
will be discussed in this and the following section. The secondary level
called device control will be discussed in an Appendix at the end of this
part of the manual.

Also omitted from this section will be options that a programmer might use
for processing in place by utilizing Index Fields. These methods are ex-
plained also in an Appendix at the end following a discussion of the use of
Index Fields in a succeeding section.

The user should be aware that FCP will control an entire range of peripheral
devices including magnetic tape, paper tape, card, and printing devices to
name just a few. Also, the user should be aware that at execution time,
interchangeability of selected devices may be made. As an example, a file
may be written to a magnetic tape instead of the printer in certain
situations,

The subject material in this and the section that follows will be developed
on the basis of the solution of a small problem involving the duplication of
records on an output file with a different batch size. The problem will be
concerned with the allocation of data areas, preparing the FCP file sequence,
and using the file controlling codes.

Before presenting the problem, however, certain basic FCP conventions and re-

quired formats must be explained with emphasis on the particular conventions
and format requirements to be used in the problem.

RECORD FORMAT CONVENTIONS

There are four record formats and they are referenced by types A, B, C and D.

Type
A Fixed Length oxr Variable ILength Records, Character Oriented
and Unbatched
May only be processed as unbatched. User must provide
sufficient area for largest record in the file.
*B Fixed Length Word Oriented

Requires least amount of time to process.

User provides INPUT (or OUTPUT) area and, if desired, a
record area. All areas must be decade oriented.
Maximum record size is 4500 characters (450 words).

May be processed when in batched format.

*(Explanatory problem will use this format.)

I111-67

C Variable Length, Decade Oriented, Count in Record Controlled

Facilitates processing of variable sized records.

The first six characters are used for FCP processing control.

The last character position is reserved for a record symbol
if used.

The three characters adjacent (to the left) of the last char-
acter are for FCP processing control when records are pro-
cessed in a reverse direction.

User provides Input (or Output) area and if desired a record
area equal in size to the largest record of the file. All
areas must be decade oriented.

May be processed when in batched format.

NOTE: FCP will generate in output records a decade count
and control field characters only if, at the time
of a WRITE (See Section VI) is issued, the first
three characters are zero,

‘EXAMPLES OF RECORD TYPE C

Three decade record

Decade ~ 1 Decade - 2 Decade - 3

4809 %98 | lgPATé Plopr bt bt qoé Reserved for

symbol 1f
Number of Decades } uT- L‘ rzguired for

in the Record Number of De- 30T
cades in the

45 decade move is Record

not required)

Repeat instruction not required

3 decades to be moved

Forty-seven decade record

Decade - 1 'Decades 2-46 [Decade - 47
047 [2 0 |paTA $ <. DATA 047
Ll b L LIS rd AR NE
B e Reserved for
Number of Decades Number of symbol if
in the Record Decades in required for
the record 301

45 decades to be moved

—————— Move of 45 decades is not to be repeated.

L .Two additional decades are to be moved

D Variable Length, Character Oriented, Symbol Controlled

This type of record may be processed only in a forward
direction.

A user specified symbol, which may not otherwise be used,
is the last character of the record.

User provides Input (or Output) and a record area equal to
the largest record of the file.

II1-68

BATCHING

There are four types of batches and these also are referenced by the letters
A, B, C and D.

Type

*A Fixed Number of Fixed Length Records

B Fixed Number of Variable Length Records

FCP handles both types of batches in essentially the same way.
For output, it constructs a batch based on a counter and when
the required number of records have been accumulated, the

batch is written to the output device.
The last block does not have to be a "full" batch.

C Variable Number of Fixed Length Records

FCP processes essentially the same as Batch Type A.

User specifies maximum number of records per batch and pro-
vides sufficient areas for Input (or Output) batch.

User may cause FCP to physically write a batch of a lesser
than maximum number of records. (See RELS controlling
code - Section VI.)

D Variable Number of Variable Size Records

FCP checks to see if each succeeding record will fit in 1
batch, the size of which is user specified.

If record will not fit, the batch is physically written, and
the current record is used to begin construction of another
batch.

Valuable option where wide variation in actual record sizes
exists.

*Explanatory problem will use this format.

LABELS
For FCP to properly verify data files, labels may be used.

If standard labels are used, FCP will check such 1labels on input files and
create appropriate labels on output files.

The user has three options in place of the use of standard labels. He may
specify and use labels of his own design or he may use the standard label
with added fields. He may also omit the use of labels for all or selected
files.

In addition to the above options, the user may omit just the beginning or
the ending label.

Regardless of the type of label in use, an E/I character must be the last
character of the label.

For a non-standard (user-designed) label, the user must provide his own

label creation and checking procedural routines. The first character of a
non-standard label may not be an E/B character.

ITI-69

For labels which include the standard label fields plus label fields of his
own design, FCP will pass control to the user for the creation and checking
of such fields as he has specified. It will be the user's responsibility to
overlay the terminal E/I at the end of the standard fields and place an E/I
at the end of his label fields.

The format on tape is as follows:

Beginning Format

l‘

2.

If a beginning label is used, it is the first block on tape
followed in turn by an E/F character block and the first data
block.

If a beginning label is omitted, the E/F character block is the
first block followed by the first data block.

Ending Format

1.

2.

The ending label, if present, is always preceded by an E/F char-
acter block.

Following the ending label is an E/D character blcck or an E/F
character block and an E/D character block depending upon whether
the reel is an intermediate or final reel of a file respectively.

If the ending label is omitted an E/D character block follows the
last data block on an intermediate reel. An E/F character block
and an E/D character block follow the last data block of the last
reel of a file.

*Standard label Format

The beginning label has 29 characters in the following sequence of
fields:

Field No. of Chars.

E/B Char. 1
(Space) 1
File Ident. (User-Named) 8
(Space) 1
Reel-No 3
(Space) 1
Date Written 6
(Space) 1
Purge Date 6
E/I Char. 1

29

The ending label has 19 characters in the following sequence of fields:

Field No. of Chars.

E/B 1
(Space) 1
Block Count 7
(Space) 1
File Ident. (User-Named) 8
E/I Char. 1

19

*(Explanatory problem will use this format.)

III-70

SIMULTANEITY

Simultaneity is the sharing of time of the 3301 Processor between 1/0 and
other processing functions. The FCP will provide control of input/output
functions and will attempt to provide the maximum saving of time through
use of simultaneity.

The user, however, should be aware that he must allow sufficient areas in
memory to obtain the maximum benefit of this option.

For an easy to understand example, let us consider the processing of an in-
put tape with single record blocks.

If the user provides only an input block area (BLKAR) for one record and this
area is to be used also for processing, no simultaneity on this file will be
obtained. FCP has no other area to read into while the record is being pro-
cessed. This might be illustrated as follows:

BLOCK AREA
—
(BLKAR)

I1f, however, the user provides FCP with a Record Area (RECAR) as well as an
Input Block Area (BLKAR), he would obtain a degree of simultaneity. While
processing the Record area, FCP could be reading into the Block area. This
might be illustrated as in the following:

INPUT BLOCK AREA RECORD AREA
FILE > (BLKAR) ™ (RECAR)

To provide for the maximum simultaneity, the user might provide still another
(alternate) area (ALTAR). With this added area, FCP now can have two areas
to read into alternately as each is moved to the Record area. This is
illustrated below:

BLOCK AREA
(BLKAR) \
RECORD AREA
(RECAR)
ALTERNATE /
AREA
(ALTAR)

*(Explanatory problem will illustrate this option.)

While the above illustrates the allocation of areas for an input file, the
same concepts apply to output files. For the maximum simultaneity FCP must
have the areas within which to operate.

111-71

EXPLANATORY PROBLEM

With an understanding of some of the major functions of FCP as explained thus
far in this section, let us now see how we can associate the allocation of
areas previously discussed in the preceding sections of this manual with the
requirements demanded by FCP.

To take a fairly simple problem involving only input and output processing,

let us say that a bank, we will call it the First Savings Bank, has decided

to change the batch size for a particular file. It has also been decided to
write a short "run" to do this job.

The input file consists of 100 character fixed length records and the records
are batched by eight on the input tape. The file Identification for label
purposes is "DEMDEPFI".

The output file is of the same record size and format but the batch size is
to be twenty records. The file ID, for label purposes of course, will re-
main the same.

The record format, while not pertinent to the solution of this problem, must
(in accordance with the standards of the First Savings Bank) be fully
described for all input and output files. The record format is as follows:

Item No. of Chars.

Acct. No. 10
Name 25
Street Address 20
City State Address 20
Total Deposits 9
Total Checks 9
Balance 7

Total Chars. 100

The record format for FCP purposes is Record Type B -- a Fixed Length, Word
Oriented Record. The Batch Type is Type A -- a Fixed number of Fixed Length
records on both input and output files,

In the solution of our problem we will provide for the maximum amount of
simultaneity by providing input block and alternate areas for each file and
a common record area for both files as illustrated below:

INPUT OUTPUT
RDIN WROUT
BLOCK AREA BLOCK AREA
(BLKAR) MSTR (BLKAR)
RECORD AREA
(RECAR)
ALTIN ALOUT
ALTERNATE ALTERNATE
AREA AREA
(ALTAR) (ALTAR)
(8 RECORD (20 RECORD
BLOCKS) BLOCKS)

III-72

Before attempting to prepare the FCP File Sequence we must first allocate
the memory for our input, output and record areas.

We will do this in a separate sequence to which we will give the symbolic
name INOUT.

To each of the other areas we will give the symbolic names as indicated at
the top of each of the boxes in the above illustration.

In addition, we will describe the Record Area item names using the RENAME
controlling code and prefix all item names with an M.

EXAMPLE

Based on preceding problem.

LOCATION OPERATION SIZE ADDRESS

——=c

-
~
W
=
o
(=)
~
@
O

1011112 J13f14{15|16 |17 |18 J19)20|21122]23]2u]25]26 [27128 | 29|30

»n [(H
>
-
[
o
=

N | N |00 |0
o|lo|lo|©
ololo|o
5 |=|= |2

[e1s ¢ 9

> = > |=®
O |t |=® |0
2lojo|H |H
wnwigljlalH |2
===

w0 [n (= >
=0 g |1 (> |0
= e (R =
® Y |0 (O [\ |O
7

]

=4

LS

=

=1

N0 O I N
[IoEV, N

=

wn

3

7]

COMMENTS NOTES

Every DEFSEQ must be given a symbolic name.

LOCATION entry provides prefix character of M,

© OO

This line allocates the Record Area (referred
to as RECAR in the FCP File Sequence).

III-73

ONONOROXO

®

COMMENTS NOTES

RENAME code used to furnish item names for
the MSTR record area.

Used to describe record items and furnish
symbolic tags.

ALOC used to terminate use of prefix M on line <:>

These provide for the input block and alternate
areas.

These provide for the output block and alternate
areas.

Note that Word orientation (W) is provided in
the UNITS Field, but would not be necessary
as a 100 character word oriented area as
provided above. It is not, however, an un-
necessary precaution as the insertion of
lines may destroy the desired positioning
based on a preceding allocation.

This entry is necessary for the output file
descriptor sequence. An ADRCON is necessary for
the OUTLHE entry requires a location where FCP

can find the left-end address of the output record.
(See the example for an output FCP File Sequence
Page III-81).

PREPARATION OF FCP FILE SEQUENCE

Having allocated the necessary block, alternate, and record areas in the prev-
ious sequence and having a system knowledge of the input and output speci-
fication for labels, batch size, and record type, we can now prepare the FCP
File Sequence for each file.

There must be a separate sequence for each file and this sequence will con-
tain the information necessary for FCP to properly control the processing of
this file.

For illustrative purposes, the complete format of the input and output file
sequences will be shown. The symbolic names INFILE and OUTFILE will be
given to the sequences for the input and output files respectively. The
file descriptor sequences appear on pages III-80 and III-81 following the
format requirements for the file descriptor sequence.

FORMAT REQUIREMENTS

The first line of the sequence, as in every sequence, is a DEFSEQ line. The
following lines contain entries in the LOCATION Field as follows:

Devi Reoi USEIN
evice Region BACKUP

ITI1-74

IDENT

USEBEG
Label Region Xg%?sg
LABELS
| BLKAR
rALTAR
RECAR
VARRHE
Data Region < OUTLHE

OUTRHE
BATCH
RECORD
_ERROR

Each of the above entries in the LOCATION Field must appear even though the
line may be for an option that is not desired.

An exception to the requirement for all of the entries would be when the
user is exercising his own control over device(s) for a given file. In this
case only the Device Region entries may be required. A full example of this
exception appears in Appendix A - Device Control.

A brief description of the purpose and format for each of these entries
follows.

LOCATION OPERATION SIZE ADDRESS

——=Zc

Wm0 |0

= jc|cirs|m|ic|e|rlolvule o> v
wlo HH KW loHkixniw|H oo oo

.

AN NN AT NN AN

Coolm it |wip el lm|iniole|=|x]|~
Flew oo | m | wwwH < |zm|Hcl=

o

"mw wlolo|e|w|p|w|[oplale|~]w o

II1-75

FORMAT
1 DEFSEQ Line

The name assigned to the file must appear

in the LOCATION Field.

In the ADDRESS Field of a file descriptor
sequence the entries for Cols. 20 to 26
are required as indicated below:

COL. REQUIRED ENTRY

20 F
D
L
P
c
21 ,
22 Y
N
23 ,
24 0
A
25 ,
26 W
H
T

2 USEIN Line

REMARKS

File Sequence (Complete File Description
generated)

Device Sequence (Device Region generated)

See Appendix on Device Control, *

Device Sequence with FCP Label processing
(Device and Label Regions generated) *

Print File Sequence

(Complete file description) *

Card File Sequence (Complete file description) *
These include files to be written to or read
from the respective devices directly or written
to magnetic tape with control information for
later use in transcribing to the device,

Comma required

Interchangeability of device is permissible
at object time
Interchangeability of device is not permissible

Comma required

Optional Region type (Only permitted with types
F, P, or C as indicated by Col.20.
Always present.
Comma required only if the entry in Col. 26
which is optional actually appears.
This sequence to be WORD oriented

HUNDREDS

THOUSANDS

ADDRESS Field may contain symbolic address

of a routine the user desires to enter prior
to physical initiation of an input/output
instruction. In this routine, an FCP con-
trolling code or a Repeat instruction may be
used; however, the user must save the orig-
inal setting of STPR and Ml. At the comple-
tion of this routine,the user must return to
FCP at the address originally stored in STPR.

3 BACKUP Line

Required entry if an output file for card
punching. ADDRESS Field must contain symbolic
address of an area to be used for error re-
covery. Must be a minimum area of 16 or 32

decades.

I1I-76

FORMAT NOTES

(:) IDENT Line

ADDRESS Field must contain the Label
Identification Item if standard or
combined labels are used as either
beginmning or ending labels.

(:) USEBEG Line

ADDRESS Field contains symbolic address
of a routine to be used during label
processing for the beginning label. At
the end of the routine, the return to FCP
is by an LDP instruction with addresses
as follows:

A ADDRESS B_ADDRESS
$STPR S0 To continue normal processing
$1 To reject a file or reel in

this routine

This entry must be filled when the be-
ginning label is combined or non-standard.
No FCP controlling codes may be used in
this routine.

(:) USEEND Line

ADDRESS Field contains symbolic address

of a routine to be used during label pro-

cessing for the ending label. At the end

of the routine, the return to FCP is by an
LDP instruction with addresses as follows:

A ADDRESS B_ADDRESS
$STPR $0

(:) ACTIVE Line

ADDRESS Field for output file contains the
number of days (three decimal numasrics) to
be used to create the purge (inactive) date.
If entry is 000 or left blank, the current
date at object time will be used for the
purge date.

LABELS Line

ADDRESS Field contains the type of label

used for the beginning and ending labels.

The beginning label type is indicated in

Col. 20, a comma is entered in Col. 21, and
the ending label type is indicated in CTol. 22.
The label type is indicated with one of the
following characters in Cols. 20 and 22.

S - Standard Label
C - Combined Label
0 - Labels Omitted
N - Non-Standard Labels
Entry must be present unless Device Control Pro-
cessing without labels. (See Appendix A - Device Control.)

I11-77

FORMAT
@ BLKAR Line

ADDRESS Field must contain the symbolic

name of the input or output area for the
file. The area allocated must be large
enough to accept the largest block of the
file, including the labels. The area must
be decade oriented and should be an integral
number of decades in size.

ALTAR Line

ADDRESS Field contains the name of an
alternate input or output area if one is
used for this file. If assigned, it must
be the same size as the area allocated in
the BLKAR line, and oriented in decades.

@ RECAR Line

ADDRESS Field contains the address of an
area used for processing a record. For
other processing methods, the use of this
entry is described in Appendix B - In-Place
Processing.

@ VARRHE Line

ADDRESS Field must contain an entry for an
input file consisting of variable length
records. The entry is the address of a four
character location. FCP will use this loca-
tion to store the address of the rightmost
character of the record.

@ OUTLHE Line

ADDRESS Field must contain the location in
which FCP can find the leftmost address of
each logical record prior to the issuance

of a WRITE. The ADRCON controlling code may
be used to initialize this field. See

Example 2 of this Section. This entry is

not required for an output file using address
modifier processing (see Appendix B - In-Place
Processing).

@ OUTRHE Line

ADDRESS Field must contain, for a file con-
taining variable length records, the location
in which FCP can find the rightmost address
of each logical output record. The user must
store the address in this location before
issuing a WRITE.

(::) BATCH Line

SIZE Field is used for the entry of the char-
acter used to terminate a batch. This entry
if present, is left-justified (i.e., Col. 13).

UNIT Field contains an F if there is a Fixed

number of records or V if there is a Variable
number of records per batch.

III-78

FORMAT
(::) BATCH Line (Cont'd)

ADDRESS Field contains a four character
decimal field (Cols. 20 - 23) indicating
the number of records per batch if the
UNIT Field contains an F.

NOTE: For a file which contains one record
per block, an F would appear in the
UNIT Field and 0001 in the ADDRESS
Field.

RECORD Line

SIZE Field contains the record type (A,
B, C, or D) in Col. 13. If the record
type is D, a comma will be entered in
Col. 14 and the "end record" symbol will
be entered in Col. 15.

If the record type in the SIZE Field is B,
a four character decimal number indicating
the record size will appear in the ADDRESS
Field (Cols. 20 - 23).

@ ERROR Line

ADDRESS Field specifies the address of the
user routine to which FCP transfers con-
trol on non-recoverable read or write
errors. For input files FCP transfers
control to this routine upon delivery of
the logical record in which the error
occurred. For output files the FCP trans-
fers control to this routine upon attempt-
ing to write the physical block in which
an error is contained. Any further
handling of the error record on input or
the error block on output must be provided
by the user.

II11-79

NOTES

FCP_FILE SEQUENCE (Example for Input File)
(This example is based on the preceding problem for the Input File.)

LOCATION OPERATION SIZE ADDRESS

——_—=c

11234 |5)6)718]9|10]11}12|13]14115]16 |1718 19§20 21122123 j2ujosias {27128 129{30|31132(33|34|35]36(37

miw |2 |W ||

Mmoo

-

FSEENEREE

w |t | O
H i3 |H |0 |O
Z

PDlalkmim ki ok | RiwH |B|Em|mo|m =
Big ol |z wm mEklg |2|mH|c |2 |

Kl w (oo < W p |w (e il |H|w | |H
R S (=R o - I [L s R L AR 2
O lo o|w |t % |p x> p |m|-

FCP FILE
SEQUENCE
Example

Input File

ITI-80

NS

ANNNANCNNAUNAANANANAN AN

FCP FILE SEQUENCE (Example for Output File)

(This example is based on the preceding problem and is for the Output File.)

u
LOCATION OPERATION SIZE \ ADDRESS
T

112|314]|51}6 718910111213 1u]15]16 {1718 F19)20|21|22(23 2825126 [27}28|29|30|31}32133|34 35136137 |38][39|40 >
AN
/

olult|FlI|L|p|E|FIS|E|Q Fl, N|,|s >

uls|E|T|N S

B |alc|k|ulp %

1Ip|E|N|T D|EM|D|E|P|F|I

U|S|E|B|E|G >

uls|E|E|N|D S

Alc|T|I|V|E 060)

L|aIB|E|L|S s|,|s 7

B|L|K|A|R w|R|0|U %

AlL|T|AlR AlLlo|u

R{E|[C|A|R >

V|A|R|R|H|E 5

o|u|T|L|H|E AlpDM|s|T|R

0|U|T|R|H|E |

B{A|T|C|H F|0/0{2|0 | ? z

R|E[C|O/R|D B 0l1]0]0 !)

E|R|R|O|R }

FCP FILE

SEQUENCE

Example
Qutput File

I11-81

RCA 3301 ASSEMBLY SYSTEM

PRACTICAL EXERCISE NQ. 2

ALLOCATING FCP AREAS AND
PREPARING THE FCP FILE SEQUENCE

SITUATION

You are programming a file maintenance job in which there is some internal
checking to be done on certain fields of a record. It is necessary that you
have an input and an output record area.

The record fields that you need to access in the record, both input and out-
put, are as follows:

Stock Number 8
Charge Code 3
Usage Code 2
Reorder Level 7
Balance on Hand 7

(Unused fields) 23

Total Record Size 50 characters

REQUIREMENT NO. 1

Write one sequence in which you allocate record, block, and alternate areas
for both the input and output files to provide for maximum simultaneity;
i.e., as follows:

INPUT OUTPUT

BLKAR

/)(BLKAR
A N

arar |7

ALTAR

!
i
|
t
RECAR y RECAR
i
|
|
!

Prepare your sequence with the following conditions:
a. Each record is fixed in length (50 characters).

b. Records will be batched on both input and output tapes and there
are five records in a batch.

C. All areas are decade oriented. (The first character is in a
location with an address ending in zero.)

d. Assign location tags with an "M" prefixing all input record
items and with an "N" prefixing all output record items.

REQUIREMENT NO. 2

Prepare an FCP file sequence for both the input and the output file. Assign
symbolic tags to each sequence and assign a label identification for the
files. Assume standard beginning and ending labels. Assume an Active Time
of 60 days.

III-82

SECTION VI

FILE CONTROLLING CODES

FILE CONTROL PROCESSOR FUNCTIONS

The File Control Processor, which is a part of the Operating System, has the
function of controlling input/output operations. Through the use of Macros
OPEN, CLOSE, READ, WRITE, and RELS, the FCP provides the following functions:

Batching

The FCP will operate on batched input and output files. For input files, the
FCP will obtain sequential records from the batch and automatically read in
a new batch when it is depleted. For output files, the FCP will include rec-
ords in a batch and automatically write the batch when it is full.

Simultaneity
The FCP will schedule the use of the various simultaneous modes available in

the 3301. The allocation of alternate input/output areas will allow the FCP
to automatically read or write concurrently with other operations.

Queuing
In instances when all the simultaneous modes are busy, the FCP will maintain
a backlog of I/0 requests. The backlog list is serviced whenever an 1/0

instruction terminates.

Exrror Recovery

An abnormal I/0 termination will cause a hardware interrupt and a transfer
to the FCP recovery routine. The FCP provides various aqutomatic error recov-
ery procedures, such as re-reading the block that caused the abnormal term-
ination.

Multiple Devices

The FCP will perform automatic tape swapping for files that require more than
one reel of tape. This allows processing of one reel while the preceding
reel is rewinding.

Multi-File Reels

The FCP allows the processing of reels that contain more than one file. Only
one file may be OPEN on a reel at a given time.

Real Time Processing

Upon a Real Time interrupt, the FCP will collect the input message and trans-
fer to the user's routine. Through the use of the FCP Macros, the user may
process real time data as though it were just a logical record from an input
device.

Device Interchangeability

Device interchangeability allows the user to switch the device type used to
read or write a file without changing the program. For example, a file
normally directed to the printer can be switched at object time to a magnetic
tape. Controlling characters are automatically attached to each record so
that a service routine can print the data from the tape in exactly the same
format as intended.

III1-83

FILE CONTROLLING CODES

OPEN

The OPEN Macro instructs the FCP to perform the housekeeping necessary to .
prepare an input or output file for processing. For magnetic tape, OPEN will
process the label and position the tape for either reading (input files) or
writing (output files) to the first data block.

CLOSE

The CLOSE Macro instructs the FCP to perform the housekeeping necessary to
terminate the processing of an input or output file. For magnetic tape,
CLOSE will write the last partially completed batch, process the label, and
at the user's option, rewind the tape. End label procedures are not per-
formed for input files when a CLOSE command is issued.

READ

The READ Macro instructs the FCP to obtain the next logical record from an
input file. For "in-place processing'", the READ Macro will cause the FCP

to place the LHE address of the record (of a batched file or where alternate
areas are used) in the address modifier (2 or 3) as indicated in the RECAR
entry of the DATA sequence. For "record area processing," the READ Macro
will cause the FCP to move the record from the input area to the record area.
Control is transferred to a user specified address after the last record is
processed.

WRITE

The WRITE Macro instructs the FCP to include a logical record in an output
batch. For "in-place processing," WRITE will cause the FCP to place in the
address modifier (2 or 3) the LHE address of the next record to be included

in the batch. For record area processing, WRITE will cause the FCP to move
the record into the output batch, and if the batch is completed, to physically
write the batch.

RELS

The RELS Macro instructs the FCP to write the current output batch to an
output file, or to bypass the remaining records in the current input batch.
A READ issued after RELS will access the first record of the next batch.
The remaining records in the released batch are no longer available to the
programmer. For output files, RELS will cause the current output batch to
be written unless a previous WRITE had filled the batch in which case RELS
will be ignored.

III-84

\ANANNANNANY

©@ 600 0

Symbolic name or left blank.

OPERAYFION
OPEN

SIZE
Blank

UNIT
F = input processing in Forward direction.
R = input processing in Reverse direction.
0 = output processing.

ADDRESS

Name of the file sequence; the same name which
appeared in the LOCATION Field of the DEFSEQ
entry for this file.

COMMENTS

1. OPEN must be issued before any other File
controlling codes are issued.

2. OPEN will cause the FCP to perform label pro-
cessing and position the tape at the beginning
of the file for forward processing or at the end
of the file for reverse processing.

3. A file must be terminated by CLOSE prior to
issuing another OPEN.

II1-85

[) | | N
]
N

LOCATION OPERATION SIZE | ADDRESS

T

1123|456 7V8 1910|1112 13| 14]15}16 j17]18 19]20i21(22423]2u]25]26 {27128 }29]30}31 32133|3u4135136137 | 38|39 |40

O{P|E|N n|la|lmle
o)
FORMAT NOTES
LOCATION

OPEN

CLOSE

Terminates the processing of an input or output file.

P2 e e

5
U
LOCATION OPERATION SIZE T ADDRESS }
T
1231156789101112131’41516171819202122232112526272829303132333“353637383940>
clL|o|s|E Flin|alm|e Ve
N
())
FORMAT NOTES
(1) Locarion
Symbolic name or left blank.
(2) opERaTION
CLOSE
(:) SIZE
Blank
(+) wur
_ (space) = Rewind to BTL.
L = Rewind to Load Point.
N = Do not Rewind.
(5) AppRESS

Name of the file sequence; the same name
which appears in the LOCATION Field of
the DEFSEQ entry for this file.

COMMENTS

1. A file must have been initiated with an OPEN be-
fore it can be terminated with a CLOSE.

2. A CLOSE issued to an input file will not cause
end label processing.

3. A CLOSE issued to an output file will cause:
a. Partially completed batches to be written.
b. End label procedures.

CLOSE

I1I-87

|

1. Obtains the next logical input record.

2. Transfers to end-file-jump-address after the last record is processed.

R S A S

U
N
[

LOCATION OPERATION SIZE ADDRESS

T

AV

1123 (4|56)78 |910fj11 |12 13| 14[15]16 [17[18019}20|21122]232u|25(26 {27128]29|30131|32|33|3u135]36(37|38}39|u40

FORMAT NOTES
LOCATION

Symbolic name or left blank.
OPERATION
READ

Blank

—
-3

Blank
ADDRESS

© 06 6 0
s

name = Name of the file sequence. The same
name which appeared in the LOCATION
Field of the DEFSEQ entry for this file.

Address of the first instruction to be
executed in the user's end-of-file routine.

COMMENTS
1. A file must have been OPENed before issuing a READ.

address

2. FCP, upon recognition of the end of an intermediate
reel, will automatically perform:

a. End label processing for the old reel.
b. Tape swapping.
c. Beginning label processing for the new reel.

3. End label processing will be performed prior to
transferring to the user's end-of-file routine.

CLOSE and OPEN must be issued before issuing
any subsequent READ commands for this file.
READ

I1I1-89

WRITE

Instructs the FCP to include a logical record in the output batch.

A G O G S

LOCATION OPERATION SIZE ADDRESS

—_—=Zc

11213 u|s5|le6ef7}8|9oj10]t1|12]13}14]15{16117[18]}19 20121122123 2ul25]26 (27128 1 29|30(31 |32]33[34{35}36(37138(39{40

W|R|I|T|E nlalm|el,|lald|d|r|e]|s]|s]

\/

FORMAT NOTES
LOCATION
Symbolic name or left blank.
OPERATION

WRITE

Blank

Blank

CHCICHONC
;

ADDRESS

The first entry (name) is the name of the file descriptor sequence.
This is the same name which appears in the LOCATION Field of the
DEFSEQ entry for this file.

The second entry (address) is the address of a decade containing con-
trol information if this is a card or a print file.

The format of this decade is as follows:

For a printer control decade:

XXXXXXABCD
where:

X = unused characters
and:

A=1, 2, or 4

WRITE

I11-91

where:

1 = paper advance via the C printer control character.
2 = advance paper via the tape loop.
4 = page change via the tape loop.

B=20,1, or 2

where:

0 = Asynchronous Mode printing.
1 = no printing.
2 = Synchronous Mode printing.

number of lines to advance if A =1

(@]
I

where the maximum number of lines is 15. The numbers 10 to
15 must be specified in one character and are represented
respectively by the following characters:

sp, #, @ (,), e.
D=20,1, 2, or 4

where:
0 = no high speed memory to buffer transfer.
1 = print 120 characters
2 = print 160 characters.
4 = transfer 64 contiguous Print Table characters to

to the Print Table portion of the buffer.

For a card punch control decade:

XXXXXFXXXX
where:

X = unused characters
and:

F = Card Punch Mode. Insert zero for the translate mode or
one for the binary mode.

COMMENTS
1. A file must have been OPENed before issuing a WRITE.

2. FCP, upon recognition of the end of an intermediate
reel, will automatically perform:

a. End label processing for the old reel.
b. Tape swapping.

C. Beginning label processing for the new reel.

WRITE

II1-92

1. Release currently active output batch to an output file,

2. Bypass remaining records in current input batch.

R G G (R |

ITI-93

- - - = 7 ™/
U
N
LOCATION OPERATION SIZE f ADDRESS
T e
11213 u]s|le]7]8]9|10f11|12f13]1u]15l16 |17 (18019|20)21]22|23|24]25(26 |27}28{29{30(31|32|33|34|35]|36|37}38{39]|u0
R|E{L[S njiajme
FORMAT NOTES
@ LOCATION
Symbolic name or left blank.
(2) oeerarION
RELS
(:) SIZE
Blank
(:) UNIT
Blank
(5) AbpRESS
Name of the file sequence. The same name
which appeared in the LOCATION Field of the
DEFSEQ entry for this file.
COMMENTS
1. RELS issued to an input file causes the next READ
command to access the first logical record of the
next batch.
2. RELS issued to an output file causes the current
batch to be written unless, due to a previous
write, the batch contains no logical records.
RELS

EXAMPLE

The statements below are based on the "First National Bank" example in
Section V.

u
LOCATION OPERATION SIZE | ADDRESS
T
1123141567819 (10111({12 13| 141516 [17[18§19)20 212223 {24{25|26 |27 128 29130 (31 [32(33[34|35]36(37|38{239|u0
D[U|P D E|F[S|E Q)
0P |E|N I|N|F|I|L|E b
oP|E|N Olo|u|T|F|I|L <
B|E|G|I|N| |R|E|A|D INFII|LIE| |glnlD >
W|R|I|T|E olU|T|F|I|L
U|T|C B|E|G|I|N
E|N|D clL|o INJFII|L)
clLlo 0|U|T|F|I
E|X|I|T 0|1
¢

The above sequence, along with the core sequence "INOUT" (page III-73) and the
data sequences "INFILE" and "OUTFIL" (pages III-80 and 81), will duplicate
the input file changing the batch size from 8 to 20 records per block.

III-94

RCA 3301 ASSEMBLY SYSTEM

PRACTICAL EXERCISE NO. 6

A master tape contains fixed length records in batches of thirty. The
format of each record is:

NAME 20 CHARACTERS

EMPLOYEE NUMBER 8 CHARACTERS

HOURLY PAY 4 CHARACTERS

TOTAL PAY-TO-DATE 6 CHARACTERS

TOTAL TAX PAID TO DATE 5 CHARACTERS

REQUIREMENTS

1. Reproduce the master tape, but write out batches of fifty records.
2. Prepare a separate tape in the output format as shown below:

NAME 20 CHARACTERS

(SPACES) 5 CHARACTERS

EMPLOYEE NO. 8 CHARACTERS

(SPACES) 5 CHARACTERS

TOTAL PAY TO DATE 6 CHARACTERS

(SPACES) 6 CHARACTERS

III-95

SECTION VII

INSTRUCTIONS FOR DATA TRANSFER OF

FIXED LENGTH FIELDS

INSTRUCTIONS INCLUDED IN THIS SECTION

Transfer by Count Left

Transfer by Count Right
Transfer Decade by Count

TRANSFER BY COUNT Instructions

There are two instructions that may be used to transfer a fixed field of a
given number of characters, The two instructions have the same format in
the SIZE and ADDRESS Fields as follows:

TRANSFER BY TRANSFER BY
COUNT LEFT COUNT RIGHT
OPERATION TCL TCR
SIZE Number of characters to be trans-
ferred (0-45)
A ADDRESS Tag of the Sending Area
B ADDRESS Tag of the Receiving Area

The instructions differ, however, in the way in which each is executed. The
significance of the words Left and Right is that they specify the direction
in which the actual transfer of characters take place.

Assembly of the Transfer by Count Left instruction generates left-end ad-
dresses for pure symbolic names in the A and B ADDRESS Fields. Assembly of
the Transfer by Count Right instruction generates right-end addresses. When
the instruction is executed, one character at a time is transferred as il-
lustrated in the following example:

EXAMPLE

Assembly
Instruction

Generated
Instruction

Transfer by Count Left Transfer by Count Right
TCL 4 DATA, WORK TCR 4 DATA, WORK
M 4 0400 0600 N 4 0403 0603

II1-97

Transfer by Count lLeft Transfer by Count Right

TAG-———————4»“k___.-—DATA"-‘~_4._ “f_,__———DATA“-N\“~

Contents 0400 0401 0402 0403' 0400 0401 0402 0403’

before

and after 0 1 2 5 ’ 0 1 2 5 !

execution

—_—

TAG g WORK ~—_ - WORK—0_
Char. Transferred 0600 0601 0602 0603 0600 0601 0602 0603

First 0 5

Second 0 1 2 5

Third 0 1 2 1 2 5

Fourth 0 1 2 5 0 1 2 5

FINAL REGISTER CONTENTS

il

0399

I

B. = 0604 Be = 0599

As the above example illustrates, both of the instructions produce the same
result when the transfer is to another separate area in memorv. However, if
it is desired to transfer data in place, the proper instruction (Right or
Left) must be used.

As an example, assume that it is desired to shift the following field

one position to the right so that it will appear as follows:

6000 | 6001 | 6002 | 6003 | 6004

0 0 1 2 5

——

It should be obvious that the following instruction could not be used

TCL 4 DATA,DATA+$1
(M 4 6000 6001)
because as the first character (0) is transferred, it replaces the second

character to be transferred (1) and this process continues so that the re-
sulting field after execution of the instruction would be:

I1I-98

6000 | 6001 | 6002} 6003 | 6004

To obtain the result desired with a Transfer by Count instruction it must be
written as follows:

TCR 4 DATA,DATA+$4

(N 4 6003 6004)
It should be noted that in transferring data, the contents of the sending
area remain undisturbed and that whatever existed in the receiving field

prior to any data transfer instruction is replaced by the contents of the
sending field.

TRANSFER DECADE BY COUNT Instruction

This instruction may be used to transfer an integral number of decades from
one to another area of memory. It transfers ten characters at a time and is
therefore ten times as fast as instructions which transfer by individual
characters.

The instruction works from left to right in operation, thus, the left-end
address is used in the A and B Addresses. The format of the instruction is
as follows:

INSTRUCTION TRANSFER DECADE BY COUNT

OPERATION TDC

SIZE Number of Decades to be transferred (0-45)
A ADDRESS Tag of Sending Area

B ADDRESS Tag of Receiving Area

The instruction should be used when transferring decade oriented fields such
as records to another area of memory. It may also be used for filling de-
cade oriented areas to a special character such as to a zero for numeric work
areas and clearing printing areas to a space. Thus, the programmer might set
up one decade filled with spaces (or zeros) and using the Repeat instruction
fill 16 decades with spaces (or zeros). (See REPEAT Instruction --

Section XIII.)

EXAMPLE 1 (Filling a Decade with zeros)

TAG—= — ZEROF—_ TAG— —WORK—_

HSM Before 5000 5009 5070 5079
Execution

000000C0O0CO0O 0725468971
Instruction TDC 1 ZEROF,WORK

Subscript 10 1 5000 5070

II11-99

HSM After
Execution

FINAL REGISTER CONTENTS

Af = 5010
Bf = 5080
EXAMPLE 2

ZEROF
-~ —
5000 5009

0000000O0O0OO

WORK—__

5079

5070

000000O0CGOODO

The Transfer Decade by Count instruction may also be used to transfer
assembled instruction(s).

HSM Before
Execution

Instruction

HSM After
Execution

FINAL REGISTER CONTENTS

Ap = 8010
Bg = 9010

8417 8610

TDC 1 SUBIN,ADDSUB
8000 9000

Subscript 10 1

o — SUBIN—_
8000 8009

- 7 8417 8610

8417 8620

_q—ADDSUB
9000 \900:]

III-100

- 7 8417 8610'

RCA 3301 ASSEMBLY SYSTEM

PRACTICAL EXERCISE NO. 3

SITUATION

A Master Record consists of the following items:

ACCT NO. 7
NAME 23
ST. ADDR. 17
CITY ST. ADDR. 15
TOTAL DEPOSITS 9
TOTAL CHECKS 9
BALANCE 10

An output record is to be constructed in the following format:

ACCT NO. 7
NAME 23
BAL 10

REQUIREMENT NO. 1

Write a sequence to allocate a record area for each of the above records
(decade oriented).

REQUIREMENT NO. 2

Write a sequence to construct the output record.

IT1I-101

SECTION VIII

COMPARE AND TRANSFER CONTROL INSTRUCTIONS

INSTRUCTIONS COVERED IN THIS SECTION

Compare Data

Conditional Transfer of Control
Unconditional Transfer of Control
EXIT Controlling Code

COMPARE DATA Instruction

This instruction is used to compare two fields of equal length. The two
fields are not affected by this instruction but an indicator is set based
on the relative value of the fields. This indicator, called the Previous
Result Indicator, is set as follows:

PRP (Previous Result Positive)

The A addressed field is greater in value than the B addressed field.

PRZ (Previous Result Zero)

The A and B addressed fields are equal.

PRN (Previous Result Negative)

The A addressed field is lesser in value than the B addressed field.

Comparison is based on the relative binary values of each field. The in-
struction operates from left to right comparing one character at a time from
each field. The instruction terminates when all characters (as determined
by the SIZE Field) have been compared if both fields are equal in value. 1If
the fields are unequal in value, the instruction terminates after the un-
equal character in each field has been compared. The final contents of the
A and B Registers are one to the right of the last character compared.

The format of the instruction is:

COMPARE DATA

OPERATION CDT

SIZE No. of characters in each field
to be compared (0-45).

A ADDRESS Tag of one field to be compared.

B ADDRESS Tag of second field to be compared.

III-103

EXAMPLE 1

MACCT - TACCT
el ~Sa
HSM Before 5000 5004 5100 5104
and After
Execution 0 1 2 4 7! I 0 1 2 4 8

Instruction CDT 5 MACCT,TACCT
(Y 5 5000 5100)

FINAL, REGISTER CONTENTS

Af = 5005

Bf = 5105
PRI'S

PRN is set.

Both fields should be of equal length and properly initialized. Alphabetic
values, if compared, should be left-justified in the comparison fields and
space filled in rightmost positions. If numeric fields are to be compared
for their relative values, the significant characters should be right-
justified in the comparison field and zero filled to the left. Otherwise,

the PRI setting may not reflect the relative value of the numeric fields as
in the following example:

EXAMPLE 2
°«— BOND ~a . :WBOND ~a
HSM Before 6000 6004 ' 6100 6104
and After
Execution 0 3 7 5 0 'gg 1L 8 7 5
Instruction CDT 5 BOND,WBOND

Y 5 6000 6100

FINAL REGISTER_CONTENTS

Ay = 6001
Be = 6101

PRI'S

PRN is set.*

*A space has a higher binary value than a zero.

I11-104

CONDITIONAI, TRANSFER OF CONTROL Instruction

This instruction tests an indicator and, based on the setting of the indica-
tor, transfers control to a given location. The indicators it will sense
are the PRI's, the Overflow Indicator and the Alteration Switches.

PRI Sensing

There are several instructions that set the PRI's; the CTC instruction may
be used following each of these instructions to gain a transfer of control
based on the setting.

The instruction may be written using the CTC Operation Code and a SIZE entry
of 1 or with an Extended Operation Code of TPM as in the following format:

COND. TRANS. OF CONTROL

EXTENDED
OP. CODE
OPERATION CTC TPM
SIZE 1 (BLANK)
A ADDRESS Location to transfer to if PRP
is set.
B ADDRESS Location to transfer to if PRN
is set.

If PRZ is set, the next instruction in sequence will be executed.

EXAMPLE (Compare and CTC Instruction)

In this example assume that a master record and a transaction record are
present in memory and the 10 character account numbers of each are to be
compared. The tags MACCT and TACCT have been assigned to the account number
fields of each, respectively. If MACCT and TACCT are equal, the master acct.
will be updated. If MACCT is greater, transfer will be to a preparation of
a new master sequence. If MACCT is less than TACCT, transfer will be to a
write master sequence.

The following is an example:

III-105

u
LOCATION OPERAT I ON SIZE \ ADDRESS
T
112]3ls|516 7189101112 13| 1u|15(16 [17]|18}f19)20121|22]|23|2ul25(26 27128 29130131132
M|a|s|u|p|p|p|E|F|S|E|Q
clo|m|p clp|T 10 alciclT],|T clT
®———> T|P|M Llwir 3
@—_—>UPDATETCL 2 clolp|El, |w/clo|Dp|E

Conditional Transfer of Control Instruction.
(TPM Extended Operation Code) Transfer to
NMAST if PRP is set (MACCT greater than TACCT).
Transfer to WRTMAS if PRN is set (MACCT less
than TACCT).

First instruction of UPDATE routine.
Last instruction of UPDATE routine EXIT from
Sequence.*

EXIT from Sequence for preparation of a new
master record.¥*

OO O

EXIT from Sequence for writing of the master
record.*

*See EXIT controlling code at end of this section.

PRZ Sensing

The CTC instruction may also be used to generate a transfer of control if
the PRI's are set to PRZ (Previous Result Zero). This instruction may be
used following any of the instructions that set the PRI's, It tests,
however, only the setting of PRZ and transfers control to a specified loca-
tion if PRZ is set. If PRZ is not set, the next sequential instruction is
executed. The format of this instruction with the option of using an
Extended Operation Code is as follows:

ITI-106

AN NN

TRANSFER ON ZERO

EXTENDED

OP CODE
OPERATION CTC TRZ
SIZE + (BLANK)
A ADDRESS Location to transfer to if PRZ is set.
B ADDRESS ($0) Zero (Ignored) Address¥*

*If PRZ is not set, the next instruction in sequence will
be executed.

AL TERATION SWITCH Sensing

On the console, there are four Alteration Switches. Each of these may be
set to an "On" or "Off" position. A CTC instruction may be used to test
the status of a given switch and transfer control to one location if the
switch is set (ON) or to another location if the switch is not set (OFF).

The format of the instruction using the Extended Operation Codes are as
follows:

TEST ALTERATION SWITCH

No. 1 No. 2 No. 3 No. 4

OPERATION TAS TAS TAS TAS

SIZE 1 2 3 4

A ADDRESS Location to transfer to if the
Designated Alteration Switch is set.

B ADDRESS Location to transfer to if the
Designated Alteration Switch is not
set.

As the name implies, the Alteration Switches allow a program to be altered
in its execution by a manual switch on the console.

As an example, assume that a program is written and is to be run (executed)
on a daily cycle. Each day's totals are accumulated but only on the last
day of the week are the accumulated totals to be written on a prepared re-
port. A sequence may be written to include both the daily and weekly
activity. When the weekly report is to be written, the operator sets
Alteration Switch No. 1. An example of the sequence is shown on the
following page.

I11-107

EXAMPLE - Use of Alteration Switch (No. 1)

LOCATION OPERATION SIZE ADDRESS

-_——Z

12314156789 10f11(12])13]14]15]16 |17}18)19%20|21§22|23|2u(2526 |27128129|30|31

L]
wn
I—l
=
=~
(o
<
=
wn
=1
O

[am}

[av}

=

[

=

O
NN AANANA AN

O——- Als E|N D
@———_—>WKLY T|c|E 1|0 Tlo|T|L|, |P|B |A|L

=1
=z
w)
w
(o]
o
o
>
—
=3
o
-
NN

Daily Accumulation Routine

Test Alteration Switch Instruction

Weekly (WKLY) routine is bypassed unless
Alteration Switch No. 1 is set (ON).

Weekly Preparation of Report routine

Exit from Sequence

O O

OVERFLOW Sensin

Whenever an overflow (carry) takes place in an Arithmetic instruction, a
flip-flop, the Overflow Indicator, is set.* This indicator may be tested
with a CTC instruction in the following format:

TEST OVERFLOW INDICATOR
EXTENDED OP. CODE

OPERATION CTC TOF
SIZE 2 (BLANK)
A ADDRESS Tag of the instruction to which control

is to be transferred if the Overflow
Indicator is set.

B ADDRESS Tag of the instruction to which control
is to be transferred if the Overflow
Indicator is not set.

*It should be noted that when overflow occurs in data Arithmetic instructions,
an interrupt occurs. This instruction might be used as a part of the inter-
rupt routine. This instruction might also be used to test overflow in an
address Arithmetic instruction (see Section XII of this manual).

ITI-108

EXIT Controlling Code

As shown in previous examples, all transfers out of the sequence are by way
of an EXIT controlling code. As many as 99 EXIT lines may be present in a
sequence. Each line is numbered in the SIZE Field consecutively beginning
with O1.

Linkage to the desired location in another sequence is obtained by the Seg-
ment Description (see Section XV).

The format of the EXIT controlling code is:

N B I A
| 3

T

LOCATION OPERATION SIZE

11213 4156 [F718 19101112 })13114|15|16 j17|18]19)20|21|22|23]2u[25]26 |27)28|29]30|31(32]33|3435]36

FORMAT NOTES

(:) LOCATION

A symbolic name may be used in this field to
reference the EXIT.

(2) oEraTION

EXIT must appear.

(:) SIZE

The EXIT sequence number must appear in this
field for each EXIT line in the sequence. It
is a two digital decimal number from 01 to 99.

(:) The UNIT and ADDRESS Fields are not used for the

<:> EXIT line.

II1-109

UNCONDITIONAL TRANSFER OF CONTROL Instruction

An Unconditional transfer of control instruction may be written using only
the OPERATION and ADDRESS Fields as follows:

OPERATION UTC
SIZE Not used
ADDRESS Tag of the Next Instruction to be executed

The address written in the ADDRESS Field however must be a direct address.
No indirect addressing or indexing may be performed on this address.

EXAMPLE

Assume that the symbolic tag BEGN has a value of 4020
Assembly Instruction UTC BEGN

Generated Instruction W * 0000 4020

II1-110

RCA 3301 ASSEMBLY SYSTEM

PRACTICAL EXERCISE NO. 4

SITUATION

A Master Inventory File consists of 100 character records. The stock number
is the first 10 characters of each record. The stock number (in another se-

quence) has been assigned the symbolic tag MSTKNO.

REQUIREMENT

Write a sequence in which you will test this stock number and go to:
EXIT 01 if the Stock No. is less than 0000010000
EXIT 02 if the Stock No. is higher than 0000199999
EXIT 03 if the Stock No. is from 0000010000 - 0000199999 inclusive.

The sequence will include all necessary constants as well as the coding re-
quired.

ITI-111

SECTION IX
DATA ARITHMETIC INSTRUCTIONS

INSTRUCTIONS COVERED IN THIS SECTION

Add Data
Subtract Data
Multiply
Divide

ADD AND SUBTRACT DATA INSTRUCTIONS

These instructions may be used to perform decimal addition or subtraction on
fixed length numeric fields. The result after execution of each of these in-
structions is found in the field specified by the A Address. Each of the in-
structions operates from right to left. Thus, right-end addresses will be
generated for pure symbolic names appearing in the A and B Address fields.
Each of the equal length fields may contain a maximum of 45 characters and
should be long enough to accept the result without a carry (overflow) out of
the most significant character position.

The sign ofSeach field is carried as a zone bit of the least significant
digit. A 2° bit of one in the LSD signifies a negative field. A zero in the
22 bit position signifies the field is positive.
The PRI's are set for each of the instructions based on the Result field.

PRP is set if the result is positive.

PRN is set if the result is negative.

PRZ is set if the result is zero.

The format of the instructions are as follows:

ADD DATA SUBTRACT DATA
OPERATION ADT SDT
SIZE Number of Characters in each field (0-45)
A ADDRESS Tag of first field (This field will contain
the result after execution of the instruction.)
B ADDRESS Tag of the second field

EXAMPLES: (ADD DATA and SUBTRACT DATA Instructions)

BAL
.‘r”‘w —
HSM Before Execution 5001 5006
003236
WAMT
i
HSM Before and After 6001 6006
Execution
l 003254

III-113

ADD DATA SUBTRACT DATA

Instruction ADT 6 WBAL,WAMT SDT 6 WBAL,WAMT
+ 6 5006 6006 - 6 5006 6006
WBAL “r,/IWBAL
r‘::::_____:::In; -~ T
HSM After 5001 5006 5001 5006
Execution
006 490 00001Q

FINAL REGISTER CONTENTS

Af = 5000 Af = 5000
Bf = 6000 Bf = 6000
PRP is set. PRN is set.

MULTIPLY INSTRUCTION

Multiplication is performed on two eight character numeric fields. The
multiplicand is stored in the A addressed field and the multiplier is stored
in the B addressed field before execution of the instruction. The product
is stored in a sixteen character field which includes the 8 locations used
to store the multiplier and an additional 8 character field to the right of
the multiplier. Thus, after execution of the instruction, the multiplier

is replaced by the eight leftmost characters of the product.

The eight digit field to the right of the multiplier (B addressed field)
should be zero filled unless rounding or accumulation is desired; for what-
ever numeric value is present in this field will be added to the product.
The PRI's are set based on the result as in addition and subtraction.

The format of the MULTIPLY instruction is as follows:

MULTIPLY
OPERATION MPY
SIZE (BLANK) No entry required
A ADDRESS Tag of Multiplicand Field
B ADDRESS Tag of Multiplier Field and field which
will contain the 8 most significant
digits of the product.

EXAMPLE 1 - MULTIPLY Instruction

HSM Before and After 5003 5010
Execution

00015000

II1-114

HSM Before
Execution

Instruction

HSM After
Execution

FINAL REGISTER CONTENTS

Af = 5002
Bf = 5109
PRP is set.

- YRWAGE ——
5110 5125

0000005200000000

MPY WAGE , YRWAGE+$7
+ $ 5010 5117

5110 5125

0000000000780000

EXAMPLE 2 - Multiply With Rounding

HSM Before and
After Execution

HSM Before
Execution

Instruction

HSM After
Execution

FINAL REGISTER CONTENTS

l 00015185

a ——— PROENT—
6090 6105

0000012500000005

MPY CRTL,PRCENT+$7
+ $ 6079 6097

- —— PROENT —
6090 6105

Af = 6071

B
PRP is set.

I

6089

0000000001898130

II1-115

When PRN is set, both the eighth and sixteenth characters of the product will
contain a negative sign (22 bit of 1) as illustrated in the following example.

EXAMPLE 3 (Multiplication of fields with unlike signs)

HSM Before and 6013 6020
After Execution

N
-~ UMBER
HSM Before 6021 6028 6036
Execution

00000002 00000000
Instruction MPY TOTL , NUMBER

+ $ 6020 6028

“k_,ﬂfNUMBER-~_\.F

HSM After 6021 6028 6036
Execution

000000O0J 8000001K

FINAL, REGISTER CONTENTS

Af = 6011
Bf = 6020
PRN is set.

DIVIDE INSTRUCTION

Division is performed on two eight-character numeric fields. The dividend

is stored in the A addressed field and the dividend is replaced by the quo-
tient after execution of the instruction. The remainder following execution
will be stored in an eight character area immediately to the right of the
quotient (A addressed field). This remainder field must be zero-filled prior
to execution of the instruction.

The divisor is stored in the B addressed field and the B addressed field
(divisor) must be greater in value than the A addressed field (dividend).

The format of the instruction is as follows:

DIVIDE

OPERATION DVD

SIZE (Blank) No entry required.

A ADDRESS Tag of the dividend field and the field which
will contain the quotient after execution of
the instruction.

B ADDRESS Tag of the divisor field.

III-116

As mentioned above, the divisor must be greater in value than the dividend.
A way of insuring this in most cases is to left-justify the divisor and
right-justify the dividend in the B Address and A Address Fields, respectively.

As an example, assume that two fields have been defined and contain the
values as indicated below:

ALOC PARTS
PARTS 6 ‘ 01960 4|
PERIOD 2

PERIOD

52

The user, to divide the first field by the second, has defined a dividend
field and divisor field as follows:

ASSUMED
ALLOCATED AREA
A|L|OlC
Dividend (and Quotient) D|I|V|I|D 8 9000 - 9007
Field 8 9008 - 9015
Divisor Field W|E| E| K 8 9016 - 9023

Before moving the fields to be divided, the Dividend and Divisor Areas would
be zero-filled (Symbol Fill Sector instruction - Section X) and then use the
following instructions prior to the DIVIDE instruction.

OPERATION SIZE ADDRESS REMARKS
TCR 6 PARTS, DIVID Right Justify in Dividend Field
TCL 2 PERIOD, WEEK Left Justify in Divisor Field

The fields of the Dividend (DIVID) and Divisor (WEEK) would thus appear as
in Example 1 before execution of the instruction.

EXAMPLE 1
4 — DIVID—_
HSM Before 9000 9007 9015
Execution
00019604 00000000

I11-117

rﬂ:———"'WEEK“B
HSM Before and 9016 9023

After Execution

52000000

Instruction DVD DIVID,WEEK
+ 9007 9023
DIVID
——
HSM After 9000 9007 9015
Execution
00037700 000000O0CO

FINAL REGISTER CONTENTS

Af = 9007
PRP is set.

The location of the assumed decimal point in the quotient can be determined
by use of a Scale Factor. The Scale Factor is the number of digits between
the assumed (or problem) decimal point and the machine decimal point. The
machine decimal point is assumed to be to the left of each 8 character field
being divided.

The formula for determining the location of the assumed decimal point in the
quotient is as follows:

Quotient Dividend Divisor

Scale Factor ~ Scale Factor ~ Scale Factor

Assuming in the preceding example that both fields were integers, then the
machine and assumed decimal points and scale factors would be as follows:

DIVID
Before Execution l 0019604
T B
SCALE
FACTOR DIVIDEND SCALE FACTOR 8
WEEK
52000000 (MINUS)
/ N
S’
SCALE
FACTOR DIVISOR SCALE FACTOR - 2
After Execution DIVID (EQUALS)

00037700 -
QUOTIENT SCALE FACTOR 6

4

A
SCALE FACTOR

TMachine Decimal Point
A Assumed Decimal Point
III-118

SECTION X
DATA EDITING INSTRUCTIONS

INSTRUCTIONS INCLUDED IN THIS SECTION

Symbol Fill Sector
Symbol Fill to Non-Zero Numeric

Float Dollar Sign to Non-Zero Numeric
Transfer by Count to Edit Field
Locate Absence of Symbol Left

Locate Absence of Symbol Right
Translate by Table

SYMBOL FILL SECTOR Instruction

This instruction may be used to place a specified character into all loca-
tions of a sector as defined by the A and B ADDRESS Fields. The character
to be inserted in each location is written in Column 13 of the SIZE Field.

For pure symbolic names, the Assembler will assign a left-end address in
the A ADDRESS Field and a right-end address for the B ADDRESS Field. All
locations between and including the A and B addressed locations will be
filled with the specified character.

The format of the SYMBOL FILL SECTOR instruction is as follows:

EXAMPLE 1

HSM Before
Execution

Instructio

OPERATION
SIZE
A ADDRESS

B ADDRESS

SFS

Actual character to be placed in each location

Tag of the leftmost location of the sector to be
filled

Tag of the rightmost location of the sector to be
filled

(Filling a numeric work area with zeros)

'ua—— WAREA

[~ 5013

5021

017456894

n SFS 0 WAREA,WAREA

J

0

5013 5021

III-119

EXAMPLE 1 (continued)

HSM After _ WAREA \‘h_
Execution 5013 5021

0000000O00O0

FINAL REGISTER
CONTENTS Ag = 5022 Bf = 5021

EXAMPLE 2 (Filling an area with spaces)

PACCNO PFILL9
HSM Before - — ¢ 2 —
Execution 7010 7018 | 7019 3 $ 7126 | 7127 7129
312478543 __ 255 5TER~SMITH L
Instruction SFS PACCNO,PFILLS

J Sp 7010 7129
//"{Also Space Filled)

PACC ~ oo PFILL9~__

HSM After
7018 | 7019 g{ 7126 | 7127 7129

Execution

FINAL REGISTER

CONTENTS Af = 7130 Bf = 7129

SYMBOIL. FILL TO NON-ZERO NUMERIC Instruction

This instruction may be used for such functions as:

a. Suppression of high order zeros in a numeric field.

b. Insertion of a specified character (other than a dollar sign)
in a field until a numeric character other than zero is found.

c. Determination of whether a non-zero numeric character is

present in a field.

The instruction is executed from left to right. Each location, starting
from the left, is examined and a specified character is inserted until
either (1) a numeric character other than zero is found or (2) the right-
end of the field is reached. The dollar sign is the only 3301 character
that may not be specified for insertion. For pure symbolic tags, a left-
end address will be assembled for the A ADDRESS and a right-end address
will be assembled for the B ADDRESS. PRP is set if a numeric character
other than zero is found. PRZ is set if a numeric character (1-9) is not
found. STA is performed.

III-120

The format of the instruction is as follows:

OPERATION
SIZE

A ADDRESS

B ADDRESS

SYMBOL FILL TO NON-ZERO NUMERIC

SFN

Actual Symbol to be placed into each location.
The Dollar Sign ($) may not be used.

Tag of the leftmost location to be examined.

Tag of the rightmost location to be examined.

EXAMPLE 1 (Zero Suppression)

HSM Before
Execution

Instructio

HSM After
Execution

FINAL REGI
CONTENT

00001247

n

SFN

>

¢ SIZE Field left blank for a space character

(space) TOTAL,TOTAL
(space) 9000 9007

B

SP S

STER
S

Af = 9004 By = 9007

*STA is performed.
PRP is set,.

EXAMPLE 2 ("Check Protect" function)

PBAL
HSM Before / \
Execution 9052 9061
$00, 083,82
Instruction . SFN * PBAL+$1,PBAL
* 9053 9061

H

I11-121

EXAMPLE 2 (continued)

-— PBAL \
HSM After __

Execution 9052 9061
§ % * %k x8 3,82

FINAL REGISTER %

w

CONTENTS Af = 9057 By = 9061

*STA is performed.
PRP is set.

FLOAT DOLLAR SIGN TO NON-ZERO NUMERIC Instruction

This instruction examines each location from the left in a specified field
until a numeric character other than zero is found. When the non-zero
numeric character is found, a dollar sign is placed in the location to the
left of the non-zero numeric character. All other locations searched are
space filled. If the first (leftmost) location of the field contains a
numeric character (1-9) a dollar sign will be placed in the location to the
left of the field (see Example 2). For pure symbolic tags a left-end
address will be assembled for the A ADDRESS and right-end address will be
assembled for the B ADDRESS.

STA is performed. PRP is set if a numeric character other than zero is
found. PRZ is set if a numeric character (1-9) is not found.

The format of the instruction is as follows:

FLOAT DOLLAR SIGN TO
NON-ZERO NUMERIC

OPERATION FDN

SIZE (Blank) NO ENTRY REQUIRED

A ADDRESS Tag of leftmost location to be
examined,

B ADDRESS Tag of rightmost location to be
examined.

EXAMPLE 1

HSM Before rA""/PAMNT e

Execution 8013 8020
00124 ,07

I11-122

EXAMPLE 1 (continued)

Instruction

HSM After
Execution

FINAL REGISTER
CONTENTS

EXAMPLE 2

HSM Before
Execution

Instruction

HSM After
Execution

FINAL REGISTER
CONTENTS

FDN

b

PAMNT , PAMNT
$ 8013 8020

4.,,_w———*‘PAMNT

8013

8020

SP

$ 1 2 4 . 07 |

Hh %

*STA is
PRP is

= 8014 Be = 8020
performed.
set.

a—PTOT—0

6024 6025 6033
SP 10,521.75
FDN PTOT,PTOT
s $ 6025 6033
PTOT-—--‘*-
6024 6025 6033
$ 10, 521.75
Ag = 6024 By = 6033
*STA is performed.
PRP is set.

II1-123

EXAMPLE 3

_————EDTOT——u
-k

HSM Before
Execution 6107 6115
o o, 0 O0O0O. 0O
Instruction FDN EDTOT,EDTOT
R S 6107 6115
HSM After L ———
Execution 6107 6115
e L R

FINAL REGISTER

CONTENTS

*
Ag = 6115 Be = 6115

*STA is performed.
PRZ is set.

TRANSFER BY COUNT TO EDIT FIELD Instruction

This instruction transfers numeric data to an edit field. The edit field
contains spaces in locations where the numeric characters are to be placed.
An ISS (°) character in the edit field will be replaced by a space. Other
characters appearing in the edit field will remain unchanged. The instruc-
tion is executed from right to left.

The first characger transferred is tested for the presence of a negative
sign (1 bit in 2° bit position); if present, PRN is set, otherwise, PRZ

is set. Any 1 value zone bits present in this first and succeeding charac-
ters are removed as they are being transferred to the edit field. STA is
performed.

This instruction is executed from right to left. Right-end addresses will
be assembled for pure svmbolic names appearing in the A and B ADDRESS Fields.
The instruction terminates when the specified number of characters (SIZE
entry) have been transferred to the edit field.

I11-124

The format of the instruction is as follows:

TRANSFER BY COUNT TO EDIT FIELD

OPERATION TCE

SIZE Number of characters (0-45) to be transferred
and edited.

A ADDRESS Tag of the edit field (Receiving Area).

B ADDRESS Tag of area containing the numeric data to

be edited (Sending field).

EXAMPLE 1

/JAMT _

HSM Before and 5007 5012
After Execution
0 01 5 2 N

HSM Before 6009 6017
Execution

- N - - -— . - — ®
Instruction TCE 6 WEDIT,IAMT

— 6 6017 5012

/ WEDIT

HSM After 6009 6017
Execution

o, 01 5 . 2 5 - |
FINAL REGISTER *

CONTENTS A. = 6008 B. = 5006

£ f

*STA is performed.
PRN is set.

I11-125

EXAMPLE 2 (Example of splitting dollars and cents fields for use on a
preprinted form.)

“f/’,,f"WBAL‘~\\\i~

HSM Before and 7062 7067
After Execution

6 1L 5 1 7 5

- I —

HSM Before 7346 7356
Execution

- - - - L] ® ® [] — -— []
Instruction TCE 6 PBAL,WBAL

=— 6 7356 7067

/"PBAL \

HSM After 7346 7356
Execution
01 51 - - - - 7 5 -
FINAL REGISTER *
CONTENTS Af = 7345 Bf = 7061

*STA is performed
PRZ is set.

LOCATE ABSENCE OF SYMBOL Instructions

There are two instructions that may be used to search a field looking for
the absence of a specified symbol. The Locate Absence of Symbol Left (LAL)
instruction searches from left to right. The Locate Absence of Symbol
Right (LAR) searches from right to left. Each instruction ends when a lo-
cation is examined that either (1) contains other than the specified (SIZE
entry) character or (2) is the last location to be examined.

III-126

The PRI's are set as follows:

PRN - The specified character is not present in the first location

searched.

PRZ - The specified character is present in each location searched.

PRP - A non-specified character is found after the specified char-

acter has been found.

Assembly of each instruction will generate properly oriented addresses for
pure symbolic names in the A and B ADDRESS Fields.

The format of each instruction is as follows:

LOCATE ABSENCE LOCATE ABSNECE
OF SYMBOL LEFT OF SYMBOL RIGHT

OPERATION LAL LAR

SIZE Specified Character

A ADDRESS (Tag ot Leftmost Rightmost
field to be Location Location
searched)

B ADDRESS (Tag of Rightmost Leftmost
field to be Location Location
searched)

The contents of memory (except STA) are not affected by this instruction.
STA (0212-0215) will contain the address of the last location examined

which contained the specified character.

If the specified character was

not present in the first location examined, the address in STA will be one
location to the left or right in the LAL or LAR instruction respectively.

HSM Before and
After Execution

Instruction

FINAL REGISTER
CONTENTS

LOCATE ABSENCE
OF SYMBOL LEFT

EXAMPLE
ACTNO
- CTNOT—01
5102 5107
000123

LAL 0 ACTNO,ACTNO
K 0 5102 5107

*
Ag = 5104 By = 5107

*STA is performed.
PRP is set.

LOCATE ABSENCE

OF SYMBOL RIGHT

XAMPLE

EXAMPLE

-

III-127

5120 5128
SMITH-~- - -
LAR - NAME, NAME
L - 5128 5120

Ag = 5125 B. = 5120

£

*STA is performed.
PRP is set.

HSM Before and
After Execution

Instruction

FINAL REGISTER
CONTENTS

LOCATE ABSENCE
OF SYMBOL LEFT

‘.//,//WBAL\\\\\1‘

5705 5710 i
726410 l

LAL 0 WBAL,WBAL
K 0 5705 5710

*®

A = 5704 B = 5710
f f

*STA is performed.
PRN is set.

TRANSIATE BY TABLE Instruction

LOCATE ABSENCE

OF SYMBOL_RIGHT

L T T T S S R —

LAR - TITLE,TITLE
L - 7010 7000

Af = 7000 Bf = 7000

*STA is performed.
PRZ is set.

This instruction translates characters of a given code to characters of
anoth%r code using a table which is present in memory. The information

(20-2

) bits of the character to be translated are used to generate the

two least significant characters of the table address.

The table used for translation is stored in memory with the first character
of the table hundreds (H) oriented.

Assuming at execution time the table was loaded at 1500 every table address
in the translation process would have 15 as the first two characters. The
second two characters of the table address would be generated by the bit
configuration of the character being translated.

The information bits are split into two sets of three bits each and the
binary value of each set of three bits are used to generate the last two
characters of the table address as shown below.

BIT CONFIGURATION

OF CHARACTER TO
BE TRANSLATED

BINARY VALUE OF

EACH SET

TABLE ADDRESS
GENERATED

III-128

1 1 1

\’w‘\/
Y
7
7

Thus, in location 1547 would be stored the character desired for the trans-
lation result. This instruction may be used for functions such as:

a. Translation of data in a "foreign" code.

b. In conjunction with (a) above, substitution of characters for which
there is no equivalent character in the translated code.

c. Validation of fields (see Sample problem).

d. Conversion of fields and random address generation.

Translation of data is done in place. The character to be translated is
replaced by the character in the table location addressed. The instruction
is executed from left to right. A left-end address, therefore, will be
assembled for a pure symbolic name appearing in either the A ADDRESS Field
(data to be translated) or the B ADDRESS Field (translation table).

The format of the instruction is as follows:

TRANSLATE BY TABLE

OPERATION TBT

SIZE Number of characters (0-45) to be trans-
lated.

A ADDRESS Tag of the field containing the char-

acters to be translated.

B ADDRESS Tag of the translation table (hundreds
oriented).

EXAMPLE (Coding and allocation of the table for this example is shown in
Sample Problem for this manual.)

In this example the TBT instruction is used to validate a field that should
consist of all numeric characters. A table constructed with the same char-
acter (1) in each location will have an address generated by a numeric
character. In each of the other locations of the table, a different char-
acter (0) is stored. If the field to be translated is a valid (all numeric)
field, it will consist of all characters with a value of one (1) after ex-
ecution of the instruction. This field could then be tested by use of a
LAL (or LAR) instruction followed by a CTIC instruction. A setting of PRZ
would indicate a valid field.

/ WFIELD \

HSM Before 5304 5312
Execution

179430785

I11-129

HSM Before
and After
Execution

Instruction

HSM After
Execution

FINAL REGISTER
CONTENTS

| 54

00 01 02 03 04 05 06 07 08 09 10 11 122276 775

11111111001102%00%

N

Zero
Filled
TBT 9 WFIELD,TRTAB
A 9 5304 5400
WFIELD - It should be noted that the
a i data originally appearing in

this field has been replaced.
If the original data must be
preserved, translation of
111111111 this type should be done in a
work area.

Af = 5313 B, = 5400

III-130

RCA 3301 ASSEMBLY SYSTEM

REVIEW PROBLEM NO. 5.

The problem is to update a master file with a transaction file (See INPUT
Formﬁts). A transaction may be either a check (C-Code) or a deposit (D-
Code).

The following actions are taken for each type of transaction:

Check - Add amount to Total Checks, Subtract amount
from balance.

Deposit -~ Add amount to Total Deposits, add amount to
Balance.,

Assume the following conditions:

1. There will not be more than one transaction per master.

2. Each transaction will match a master record.

The output master record format will be the same as the input format.
For each record having a negative balance, write out a 120 character

record as shown under the output format EDIT. The ll-character Balance

field is to be edited in the following format, zero-suppressed and a floated
dollar sign (---,-==,-=>9),

INPUT
MASTER TRANSACTION
ACCT NO. 10 ACCT NO. 10
NAME 15 CODE 1
ST. ADDR. 17 C=CHECK
CITY ST. ADDR. 15 D=DEPOSIT
TOTAL DEPOSITS 8 AMOUNT 6
TOTAL CHECKS 7 SPACES 3
BALANCE 8
OUTPUT
MASTER EDIT
SAME AS INPUT ACCT NO. 10
SPACES 5
BALANCE 11
SPACES 5
NAME 15
SPACES 74

III-131

SECTION XI
LOGICAL INSTRUCTIONS

INSTRUCTIONS COVERED IN THIS SECTION

Logical And
Logical Exclusive Or
Logical Inclusive Or

The Logical instructions are used to perform operations on the individual
bits of charagter(s). The Logical instructions operate on the information
bits (20 to 2°). Proper parity (26 bit) is generated for each character in
the result field based on the configuration of information bits. Each field
may contain as many as 45 characters. The instructions operate from right

to left on the same relatively positioned bits in each character. In the
Logical instructions, the result after execution of each instruction replaces
the original contents of the A addressed field.

The format of each of the Logical instructions is as follows:

LOGICAL LOGICAL
*LOGICAL AND EXCLUSIVE OR INCLUSIVE OR
OPERATION LAN LEO LIO
SIZE Number of characters in each field (0-45).
A ADDRESS Tag of first field and the field which will contain the

result after execution of the instruction.

B ADDRESS Tag of the second field.

*Logical And is the only Logical instruction that affects the PRIs.
PRP is set if at least one of the information bits in the result is
a 1l bit. PRN is set if all of the information bits are zeros in the
result.

LOGICAL AND Instruction

The Logical And instruction may be used to test the presence of a 1 bit in
any position of a field of one or more characters. The rule of Logical And
is that a 1 bit in the same relative bit position of both fields will produce
a 1 bit in that same position in the result. Any other combination will
produce a zero bit.

PRP is set if any of the information bits in the result are 1 bits. Thus,

by using a character with a 1 bit in any positions desired for testing, the
Logical And instruction followed by a CTC instruction may be used.

IT1~133

EXAMPLE 1

In this example a fgur character field UNIT is to be tested for the presence

of a 1 bit in the 2

position which may be present in any of the characters.

Assume for example the field UNIT contains the following value.

/UNIT\

52 N7

To test the field (UNIT) for the presence of a 1 bit in the 25 position in
any character5 we could allocate a field of four characters with a 1 bit

in only the 2

position as follows:

LOCATION ' OPERATION ' SIZE ' ADDRESS

MINUS ‘ FIXCON | 4 l - -

So that the field UNIT will not be altered by the Logical And instruction,
it would be moved to a work area (WUNIT). The fields would appear and be
executed upon as follows (with assumed HSM allocations):

HSM Before
Execution

HSM Before
and After
Execution

Instruction

FINAL REGISTER
CONTENTS

6010 6013

LAN 4 UNIT,MINUS
T 4 6013 6017

WUNIT
/—‘\
6010 6013

60 o - 0

Ag= 6009 Be

PRP is Set

BIT CONFIGURATIONS
(Only Information Bits Shown)

000101 000010 100101 000111l

100000 100000 100000 100000

000000 000000 100000 000000

= 6013

III-134

By following the Logical And instruction gith a CTC instruction, the PRP
condition would indicate a 1 bit in the 2” position was present in the
field.

The Logical And instruction may also be used to extract 1 bits from any
position in a field of one or more characters., This may be accomplished by
using a masking character of 1 bits in each position except the positions(s)
in which the 1 bit(s) are to be extracted.

The following is an example of masking zone bits (24 and 25) of 1 in a
field of four characters.

EXAMPLE 2
AMT BIT CONFIGURATIONS
/ —\ (Only Information Bits Shown)
HSM Before 5000 5003
Execution
A 1 2 N 010001 000001 O0000Lu 100101
“(/IMMASK’—\\ﬂg
HSM Before 1
and After 5010 5013
Execution e e e e 001111 001111 001111 001111
Instruction LAN 4 AMT,MASK
T 4 5003 5013
/AMT\
HSM After 5000 5003
Execution
1 1 2 5
000001 000001 000010 000101
FINAL REGISTER
CONTENTS Af = 4999 Bf = 5009
PRP is Set

IiI-135

LOGICAL EXCLUSIVE OR Instruction

This instruction may be used to extract 1 bit(s) in specified bit position(s)
of one or more characters. It must be known that a 1 bit is present if the
LEO instruction is to be used. The rule of Logical Exclusive Or may be con-
sidered as the same as binary addition of two bits without a carry being
generated, or as follows:

0+0=20
1 +0=1
0+1=1
1+1=20

As an illustration of the use of this instruction assume that a known neg-
ative field is to be printed and a minus sign has been placed adjacent to
the field so that it appears as follows:

A
5017 5021
1 2 8 P -

5
Before printing, it is desired to extract the 1 bit in the 2~ position of
the LSD of PBAL as the following example illustrates:

EXAMPLE 1 ‘ BIT CONFIGURATION
(Only Information Bits Shown)
_— PBAL
» A
HSM Before 5017 5021
Execution (P) (-)
=
128 P © 100111 100000
Instruction LEO 1 PBAL, PBAL+$4
U 1 5020 5021
‘/-'PBAL\
HSM After 5017 5021
Execution (7) (-)
1 2 8 7| &
& 000111 100000
FINAL REGISTER Af = 5019 Bf = 5020
CONTENTS

III-136

LOGICAL INCLUSIVE OR Instruction

This instruction may be used to insert 1 bit(s) in any (information) bit

position(s)

of a character, The

rule of LIO is that a 1 bit in the same

relative position of either field will produce a 1 bit in the same position
of the result, or as follows:

0
0
1
1

As an example of the use of this
to be either added to or subtracted from an accumulating field. A one
character code field specifies whether addition or subtraction is to be

performed.

+0=0
+1 =1
+0=1
+1=1

instruction assume that an amount field is

A zero (0) in the code field indicates the amount field is to

be added to the accumulating field. A minus (-) indicates subtraction is to

be performed.

The Code field could be tested for the presence of a zero or minus sign., A
transfer of control to an Add or Subtract instruction could then be executed.
However, if the codes have been validated, a Logical Inclusive Or instruction
could be used as in each of the following examples with assumed values pre-
sent in each field:

s T

HSM Before
Execution

Assumed Value
of Code Field

Instruction

HSM After
Execution

FINAL REGISTER
CONTENTS

5035

5041

0 0 0 1 2

5 7

EXAMPLE 1
CODE

5017

0

LIO 1 AMT,CODE
Q 1 5041 5017

EXAMPLE 2
CODE

5017

S

LI0O 1 AMT,CODE
Q 1 5041 5017

— ar— — A —

5035

0 0 0 1 2

A. = 5040 B

f f

5041 5035 5041
5 7 0 6 01 2 5P
= 5016 Af = 5040 Bf = 5016

The above example illustrates that the Code of zero does not alter the LSD
of the AMT field as a zero consists of all zero bits. The minus character,

II1-137

however, contains a 1 bit in the 22 position and when used as % modifying char-
acter with the LIO instruction will insert this 1 bit in the 2-° position.
In this example the AMT field has been made a negative field. After this
use of the LIO instruction an ADD DATA instruction can be used as follows:

1 U
N
LOCATION OPERATION SIZE |
!
1121314 5 6 718 9 (101112 13| 14|15]|16 |17[18]19 20|21 |22{23 242526 |27]128 |29
1|0 1 MiT|,|clo|/D|E
alnlp 7 clulMl ,lalMlT

Thus, the amount (AMT) field is effectively added to or subtracted fgom the
accumulating (ACCUM) field based on the presence or absence of the 2~ bit
of 1 in Code field.

ITI-138

RCA 3301 Assembly System

Practical Exercise No. 6

Show the result at the end of the following operations:
a. (100110), modified by (000111), using a Logical And

b. (111000)2 (llllll)2 modified by (000101)2 (010011)2 using a Logical
Inclusive Or.

c. (101010)2 modified by (110011)2 using a Logical Exclusive Or.

What instruction(s) would you use to determine if the 2, bit of a char-
acter is a one or a zero? What would be the modifying~character?

What instruction would you use to change 1 to a 2 the first time it was
executed, 2 to a 1 the second time, 1 to a 2 the third time, and so
forth? What would be the modifying character?

Suppose you wanted to insert a one bit into the 24 position of a char-
acter. What would be the instruction that you would use and what would
be the modifying character?

If you wanted to extract a one bit, if present, from the 22 position of

a character, what would be the instruction you would use? What would
be the modifying character?

ITI-139

SECTION XIT
VARTABLE FIELD TRANSFER AND
ADDRESS ARITHMETIC INSTRUCTIONS

INSTRUCTIONS COVERED IN THIS SECTION

Transfer by Symbol Left
Transfer by Symbol Right
Add Address

Subtract Address

Compare Address

TRANSFER BY SYMBOIL Instructions

There are two instructions that may be used for the transfer of variable-
sized fields. Both instructions have the same format in the SIZE and AD-
DRESS Fields as follows:

TRANSFER BY TRANSFER BY
SYMBOL LEFT SYMBOL RIGHT
SIZE
Actual Character which, when trans-
ferred, will terminate execution of
the instruction
A ADDRESS Tag of the Sending Area
B ADDRESS Tag of the Receiving Area

The instructions are executed similarly to the Transfer by Count in-
structions. Instead of being terminated by the number of characters being
transferred, each of these instructions is terminated upon the transfer of
a specified (control) character. The actual character upon which to stop
transfer is written in the SIZE Field.

Assembly of the instruction generates left-end addresses for pure symbolic
names in the TSI ADDRESS Fields and right-end addresses for the TSR ADDRESS
Fields.

STA is performed. The A Final Register setting is one location to the

right (TSL) or left (TSR) of the last character (SIZE specified) transferred
in the sending area. The B Final Register setting is in the same relative
position in the receiving area.

III-141

EXAMPLE

HSM Before
and After
Execution

HSM Before
Execution

Instruction

HSM After
Execution

FINAL REGISTER
CONTENTS

TRANSFER BY
SYMBOL LEFT

o TWE~_

5178 5183

SMITHS®

5291

TSL ® NAME,PNAME
e 5178 5280

PNAME
e T~
5280 5291
SMITH® -~ ===
*
Ag B,
5184 5286

*STA is performed

oS
rAY

Ag

5191

TRANSFER BY
SYMBOL RIGHT

5192 5197

* 73125

o BB~

5305 5312

00000000

TST ® BAL,PBAL
P e 5197 5312

“r/,’PBAL~\\\"

5305 5312

0073125

Be

5306

*STA is performed

The following example, given for illustrative purposes, has symbolic names
assigned to the sending fields.

In data records that consist of variable fields, however, symbolic tags are
usually assigned only to the fixed length fields which are at the beginning

of the record.

Any field following the first variable size field will be in

a different area dependent on the size of the first variable field.

As an example, if a record consisted of five items in the format as follows:

ASSUMED
ITEM NO. ITEM NAME MAXIMUM NO. CHARS* SAMPLE RECORD
1 STOCK NO. 9 FIXED LENGTH *02314789
2 ITEM NAME 15 VARIABLE LENGTH ePIN-02
3 BALANCE 8 VARIABLE LENGTH 13
4 TOTAL ISSUES 9 VARIABLE LENGTH e127
5 TOTAL RECEIPTS 9 VARIABLE LENGTH 142
*including control symbol (®) preceding each field.

III-142

The length of the item name would determine the locations assigned to each
of the following items (assuming the record is left justified in a record

area).

Allocation of the area for

storage of the record might be as follows:

LOCATION OPERATION SIZE UNIT REMARKS
I ALOC W
1 ISS of First Item
STKN 8 STOCK NO.
1 ISS of Second Item
VARF 40 Variable Fields

and assuming an object time allocation of a record area from 5110 to 5159
the actual record would appear in memory as follows with symbolic names

shown:

I ‘-—._“*'-."»
ISTKN IVARF ‘\
‘(///_—ﬁl// T~ ‘t////” "‘*--_____~‘-‘~
5110 | 5111 5118 5119 | 5120 5136 5137} §5159

®

02314789

P IN-02 © 13 o 127 & 142

3

It can be seen that the only items that can be addressed by pure symbolic
the Stock No., (ISTKN) and the left-end address of the Item Name
(IVARF) in an instruction whichhas a left-end address assembled.

tags are

The location of each of the other items will vary with each record dependent
upon the relative sizes of the items.

Thus, in the handling of variable records, a variable item is located by
its relative position in the record.
follow the fourth control symbol (assuming all items are preceded by a con-
trol symbol).

Thus, the fourth item will always

When FCP has moved a record to a record processing area, it will store the
address of the rightmost character of the record in a four character loca-
tion specified by the programmer (See VARRHE, Section V of this manual).

Thus the location of both the beginning and end items of a variable input

record can be easily determined.

III-143

As an example of addressing variable fields, assume that the items of the
record used in the preceding example are to be moved to the following
fixed fields with the items justified in the fields as follows:

STOCK NO. PSTKN LEFT 6100-6107
ITEM NAME PNAME LEFT 6110-6124
BALANCE PBAL RIGHT 6130-6137
TOTAL ISSUES PTISS RIGHT 6140-6148
TOTAL RECEIPTS PREC RIGHT 6150-6158

Assume also the VARRHE entry for the file has been specified as follows
with assumed HSM allocation:

VARRHE ENTRY g ENADR

4000 4003]

X X X X

Following the READ of the file, the record would be in the record area and
ENADR would contain values as indicated

ENADR
4000 4003
5 1 3 6
‘/ISTKN —a o LVARF — o
5110 5111 5118 5119 5120 5136
® 02314789 e P IN-02 o 13 e 127 e 142

III-144

A section of the coding for transfer of the

fields would be as follows:

ADDRESS ARITHMETIC Instructions

When necessary to modify

an

ASSEMBLY CODING INSTR. IN HSM INSTR.AFTER
AT OBJECT TIME STATICIZING
OPERATION SIZE UNIT ADDR
TCL 8 ISTKN,PSTKN M 8 5111 6100 No Change
TSL o IVARF ,PNAME # e 5120 6110 No Change
TSR i ENADR# ,PREC P » 400C 6158 P e 5136 6158
TSR ° SSTA#,PTISS P » 02IE 6148 P e 5132 6148
TSR ° $STA#,PBAL P & 02IE 6137 P o 5127 6137

address by addition or subtraction, the ADD

ADDRESS or SUBTRACT ADDRESS instruction should be used. These instructions

give the correct address result in a four character field specified in the
For an address (10,000 and above) with zone bits in the first
characters, these instructions will create proper results whereas the ADD
(or SUBTRACT) DATA instruction would remove zone bits.

A ADDRESS

The format of each of the instructions is as follows:

OPERATION

SIZE

A ADDRESS

B ADDRESS

ADD ADDRESS

SUBTRACT ADDRESS

AAD

SAD

(Blank) NO ENTRY REQUIRED

TAG of first field and field which will

contain the result after execution

Tag of the second field

The PRI's are set for each of the instructions as follows:

PRP

PRZ

PRN

ADD ADDRESS

SUBTRACT ADDRESS

SUM IS POSITIVE

DIFFERENCE IS POSITIVE

SUM IS ZERO

DIFFERENCE IS ZERO

(NOT SET)

III-145

ADDRESS IN FIRST FIELD
IS LESS THAN ADDRESS
IN SECOND FIELD

The Overflow Indicator is set by these instructions as follows:

ADD ADDRESS - When the result is a "wrap around" address with a value above
159,999,

SUBTRACT ADDRESS - When the result is a "wrap around" address with a value
"below™" 0000.

EXAMPLE 1
STA
TN
HSM Before 0212 0215
Execution
G024
‘.(VALUE"-1L_
HSM Before 5016 5019
and After
Execution 0002
Instruction ADD ADDRESS SUBTRACT ADDRESS
AAD $STA,VALUE SAD $STA,VALUE
+ + 0215 5019 ~ + 0215 5019
SSTA
HSM After 0212 0215 0212 0215
Execution
G026 G0 2 2
FINAL REGISTER
CONTENTS A_ = 0211 B_ = 5015 A = 0211 A = 5015
f f f £
PRP is set PRP is set

COMPARE ADDRESS Instruction

This instruction is used to compare two addresses and set the PRI's based on
the relative value of each address. This instruction does not alter either
of the addresses.

This instruction, rather than the COMPARE DATA Instruction, should be used
when addresses are to be compared. The configuration of zone bits in the
first two characters of addresses may not give the true relative values of
addregses if other than the COMPARE ADDRESS instruction is used (see ex~
ample).

III-146

The format of the instruction is as follows:

COMPARE ADDRESS

OPERATION CAD
SIZE (Blank) No entry required
A ADDRESS Tag of the field containing the

first address

B ADDRESS Tag of the field containing the

second address

The PRI's are set as follows:
PRP - The first address is greater than the second address
PRN - The first address is less than the second address
PRZ - The first and second addresses are equal in value

This instruction operates from right to left, thus, right-end addresses
will be assembled for pure symbolic names appearing in the A and B ADDRESS

Fields.
EXAMPLE)
ADRI- ADR
ATy 27Ny
HSM Before 5000 5003 6000 6003
and After
Execution o " 2 7 "n R 9 7
(ACTUAL VALUE) (ACTUAL VALUE)
120027 110997
Instruction CAD ADR1 ,ADR2
- . 5003 6003
FINAL REGISTER Af = 4999 Bf = 5999
CONTENTS
PRP is set

III-147

RCA 3301 ASSEMBLY SYSTEM

Practical Exerise #7.

Write a program which will update a Master Insurance file by posting the

received Premium Amounts to the appropriate Master File Records.

will be no more than one transaction per master record.

cedes each variable field.
Master File

Policy Number

Name

Street Address

City State Address

Total Premiums Paid to Date
Premium Due

Transaction

Policy No.
Premium Amount

Max. Chars.

9
30
30
30

6

6

9
5

An ISS (*) pre-

Fixed

Variable
Variable
Variable
Variable
Variable

Fixed
Fixed

Write any unmatched transactions to an output error tape.

III-148

SECTION XIII

REPEAT AND TALLY INSTRUCTIONS

INSTRUCTIONS COVERED IN THIS SECTION

Repeat
Tally

REPEAT Instruction

In the 3301 complement, certain instructions are designated as "repeatable”
instructions. Thus, if one of these instructions is written following a
Repeat instruction, it is executed once and repeated a number of times
(maximum of 15) as specified in the Repeat instruction.

The instruction to be repeated is executed the first time as written. When
it is repeated (the number of times specified in the Repeat instruction), the
programmer has two options. One of the options is the use of the A (or B)
Address as written each time the instruction is repeated. The other option
is the use of the final register setting when repeating the instruction.

The format of the Repeat instruction is as follows:

REPEAT

OPERATION RPT

SIZE Number (0-15) of Repeats

$0 - Use final A (or B) Register con-
tents each time a repeatable
instruction is repeated

A AND B ADDRESSES

$1 - Use the A (or B) Address as
written in the repeatable in-
struction each time it is re-
peated

Any even or odd machine address may be substituted for the $0 or $1
addresses respectively. If a pure symbolic name is used in either the A
or B ADDRESS Field, the left-end address will be assembled as the address.

EXAMPLE (Cumulative Addition)
(In this example the Repeat instruction is used instead of four separate

ADD DA§A instructions to accumulate the first four fields into the last
field.

III-149

HSM Before
Execution

Instructions

HSM After
Execution

FINAL REGISTER
CONTENTS (ADT

INSTRUCTION)

ITEMA ITEMB ITEMC _ITEMD SUM-
— -
TN 4 LYY 5 ~a 5 R SR
5103 5107 5111 5115 5119
0012 0040 0963 0127 0000

ASSEMBLY INSTRUCTION EXECUTION
INSTRUCTION
RPT 3 $1,$0 R 3 0001 0000
ADT 4 SUM, ITEMD + 4 5119 5115
5103 5107 5111 5115 5119
0012 0040 0963 0127 1142
Ag = 5115 B = 5099

EXAMPLE (Location of a Variable Field)

In this example the Re
Left (TSL) instruction

peat instruction is used with a Transfer by Sybmol
to locate a variable field.
transferred and right-justified in a fixed field (WAREA).

The field is to be
The TSL instruc-

tion is done in place; i.e., each character is placed back in the same lo-

cation.

Assume the record is in the following format and that only the variable
sized items are preceded by an Item Separator (°) Symbol.

STOCK NO.

CODE

MFGR. NAME
STREET ADDR.
CITY-STATE
CURRENT ISSUES
CURRENT RECEIPTS

(ADDITIONAL ITEMS NOT SHOWN)

4
1
15
20
20
8
8

III-150

FIXED SIZE

FIXED SIZE

VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE

The instructions in the following example will locate the Current Receipts
item and transfer it right- justified to the fixed field (WAREA). Assume
a sample record for illustrative purposes as follows:

HSM Before
and After -
Execution CODE FIL"“"'__—’——_—r
-~ *
) 00}01|02}103]04105}06}07}108]09110}11}12j13]14]|15]16{17}18{19
1
Oj1 12 {3 |Aj* |A |B |C c |0 | |1 12 I3 1 |S|T
20121122123124]25126}27]128]29{30|31]32]33]34135}136}37]38]39|4
21
S|Tle IN|Y|C |® |1 {3 |5 | [1]3]0 (e {1]2 17 |5
D
HSM Before 2200 2209
Execution
000000O0O0O0O
Instructions U
N
LOCATION OPERATION SIZE |
T
112|345]6 71891011112 1314|1516 |17|18f19420]|21122|23|2u]|25(26 |27]28129(30}(31 |32|33|34
L{o|C R|P|T 4 $ 10151812
TiS|L . FITL|+|$|L], FIT|L|+{$ 1
SIAID $|SIT|A|,[L|O|C|+{$|9
TS R $|S|T|A|#|, WIA|R|EA

ITI-151

o TAREA ~

HSM After 2200 2209
Execution

000000130

FINAL REGISTER A = 2130 B = 2205
CONTENTS £ £
(TSR INSTRUCTION)

EXAMPLE

(Use of the Repeat instruction to Fill an area with a specified symbol
using a Transfer Decade instruction.)

HSM Before
and After 5700 5709
Execution - - - oo
‘//7 PRINT TTTTTT————
LN
[
HSM Before 5810
Execution § g 5929
7
-=-08796 --A z ng - 01796
)
Instruction RPT 11 $1,$0
TDC 1 SPS,PRINT
AALSO SPACE FILLED
s
{
HSM After 5810 7)) 5829
Execution _5 i
FINAL REGISTER
CONTENTS Af = 5710 Bf = 5830
(TDC INSTRUCTION)

TALLY Instruction

The Tally instruction may be used to perform either or both of the fol-
lowing functions:

1. Loop through a given routine a specified number (99 max.) of times,

2. Increment any or all of the Index Fields.

ITI-152

The format for each of these options is as follows:

FORMAT 1 TALLY (LOOPING function only)
OPERATION TLY

SIZE A zero (0) is written in Col. 13

A ADDRESS Tag of the diad containing the Tally

counter quantity

B ADDRESS Tag of the location to which control
is to be transferred if the Tally
counter quantity is not 00.%*

*When the Tally quantity is 00, the B Address is ignored and the next in-
struction in sequence after the Tally instruction is executed.

FORMAT 2 TALLY (INDEX INCREMENTATION function only)
OPERATION TLY

Ix
SIZE Ix,Y Either of these entries where X,Y,Z

IX,Y,Z represent any combination of 1,2,3
for incrementation of the first,
second, and third Index Fields respectively.

UNIT N (This character entered in Col.19)
A ADDRESS $0 (Ignored Address)
B ADDRESS $0 (Ignored Address)
TALLY (Combination of Looping and Index
FORMAT 3 Incrementation function)
OPERATION TLY
Ix
SIZE Ix,Y (See SIZE entry of Format 2)
Ix,Y,Z
UNIT (Blank) or a Y in Col. 19 specifies
the looping function is to be per-
formed
A ADDRESS Tag of the Diad containing the
Tally counter quantity
Tag of the location to which con-
B ADDRESS trol is to be transferred if the
Tally counter quantity is not 00.

IITI-153

EXAMPLE (LOOPING AND INDEX INCREMENTATION FUNCTION)

In this example assume that there are six 80 character records present in
HSM. The records are contiguous in an area tagged (RECS) and each record

is in the format:

NO. OF
ATEM CHARS.
ACCT NO. 7
BAL. 8
FILLER ITEMS 65

It is desired to move the first two items to a 120 character print area
which has been tagged (PRINT). It is desired to print six Accounts on
each print line with each of the six contiguous 20 character locations

having the format:

NO. OF
ITEM CHARS.
ACCT NO. 7
SPACE 3
BAL. 8
SPACE 2

To accomplish this function the programmer has allocated Index 2 for incre-
mentation of the record (RECS) area address and Index 3 for the Print
(PRINT) area address. The Tally counter and Index Fields would be initial-
ized each time before entering the looping routine as follows:

MICROMAGNETIC MEMORY HSM

INDEX 2 INCR. 2 TLY(;T-“_.k
HSM and ”4!/’
MMM Before 6000 6001
Execution 0000 0080

0 5
INDEX 3 INCR. 3
0000 0020

I11-154

LOCATION OPERA SIZE

—_—=

sl{sle]7is]9 13\ 1 15]16 |17 | 18§10 |20 21 |22 |23 |2u |25 |26 |27] 28 | 293031 {32|33[3%]35| 36|37 | 38|39 10

up ju2

43

INITIALIZATION INSTRUCTIONS

3 C
BlE|G tlclLN17 RIElc|s|:{M2],|P|RlI|N|T|:|M3
‘I‘CRg rRlelclsl+lsl1lal: (M2, (PIRITIN|T|+|$]1]7 M
TIL|Y I(2{,|3 T|L|Y|C|T|,|B|E|G
®§>RES z | L
MICROMAGNETIC MEMORY HSM
TLYCT
HSM and IND. MOD. 2 INCR. 2 y & ~a
MMM After 6000 6001
Execution 0080 0 0 80 0 4
IND. MOD. 3 INCR. 3
0020 0020

Initialization instructions might include setting Index
Fields (see Section XIV) and Tally counter to initial

values and also such functions as clearing the PRINT area
if necessary.

Instruction (RES) will be executed when the Tally instruction
examines the Tally counter (TLCT) and finds a value of 00
present. Otherwise, the instruction BEG would be executed
next.

III~-155

SECTION XIV
REGISTER MANIPULATION INSTRUCTIONS

INSTRUCTIONS INCLUDED IN THIS SECTION

Load Register
Store Register

GENERAL

The Load Register and Store Register instructions, as the names imply, enable
the programmer to address registers in Micromagnetic Memory for the purpose
of either placing a value in a designated register from a four character lo-
cation of HSM, or placing the contents of a register in a four character lo-
cation of HSM.

The four character location of HSM used to load or store a register must be
diad oriented; i.e., consist of two diads.

For the purposes of simplification only, the Extended Operation Codes are
shown in the formats and examples of the instructions.

It should be noted that whenever the P Register contents are changed by

either a Load or Store Register instruction, a transfer of control will take
place.

LOAD REGISTER Instruction

This instruction places the contents of a four-character (two diads) location
of HSM into a designated register or Index Field of Micromagnetic Memory.

The format of the instruction is as shown below.

INDEX
REGISTERS INDEX NO. INCREMENT NO.

REGISTER OR INDEX
FIELD TO BE LOADED —» P A B T C E S 1 2 3 1 2 3

OPERATION LDP| LDA] LDB| LDT}LDC|{ LDE{LDS} LDM LDM LDM LDI LDI LDI
SIZE (Blank) No Entry Required i 2 3 1 2 3
A ADDRESS Tag of the two-diad location whose contents are to

be loaded into MMM.

B ADDRESS Zero ($0) This address is ignored if the B Register
is being loaded. If other than the B Register is
being loaded, this ADDRESS is placed in the B Reg-
ister.

III-157

EXAMPLE (Placing a value in an Index)

HSM and MMM
Locations
Before Execution

Instruction

HSM and MMM
Locations
After Execution

Final Register Contents

HSM

VAL~

5100 5103

0200

LDM 2
CR U

::VAL::

5100 5103

0200

A.f = 5101

EXAMPLE (Loading the B Register)

HSM and MMM
Locations
Before Execution

Instruction

HSM After
Execution

Final Register Contents

HSM

::ADRl:

6106 6109

1247

LDB
CR 4

::ADRl::

6106 6109

1247

Ap = 6107

ITI-158

MMM
INDEX 2

0400

VAL, $0
5103 0000
INDEX 2

0200

B, = 0000

MMM

B_REGISTER

H4O07

ADRI, $0
6109 0000

B REGISTER

1247

Bf = 1247

STORE REGISTER Instruction

This instruction places the four-character contents of a Micromagnetic Memory
location into two consecutive diads of High Speed Memory.

The format of the instruction is as shown below.

INDEX
REGISTER OR REGISTERS INDEX NO. INCREMENT NO. None
INDEX FIELD
TO BE STORED ——» P A B T C E S 1 2 3 1 2 3

OPERATION STP|STA|STB|STT|STC|STE| STS|STM{STM{STM|STI| STI{STI NOP
SIZE (Blank) No entry required 1 2 3 1 2 3 | (Blank)
A ADDRESS Tag of the two diad location to receive the contents of

the MMM location being stored. If the A Register is
designated, the storage will be to STA (0212-0215) and
any direct address (such as $0) must appear in this
field.

B ADDRESS Tag of the next instruction to be executed if the P Reg-
ister is being stored. If the P Register is not being
stored, any direct address (such as $0) must be used.

EXAMPLE (Storing the B Register)

SM MMM
::CADR:: : B REGISTER
HSM and MMM 6106 6109 4 956
Locations
Before Execution 1 258
Instruction STB CADR, $0
v 4 6109 0000
:CADR: | B REGISTER
HSM and MMM 6106 6109 4 9 5 6
Locations
After Execution 4 9 56
Final Register Contents Ag = 6107 Bf = 4956

IT1I-159

EXAMPLE (Storing the P Register)

HSM and MMM
Locations
Before Execution

Instruction

HSM and MMM
Locations
After Execution

Final Register Contents

SM

— $STP -
0216 0219

8540

STP
\Y 1

y— $STP ~

0216 0219

8700

III-160

MMM

P REGISTER

8700

$STP ,BEGIN
0219 7000

P REGISTER
7000

B. = 7000

SECTION XV
PREPARATION OF THE SEGMENT DESCRIPTION

The purpose of the Segment Description is twofold. It informs the Assembler
of all sequences which are contained in the segment and it may be used to
establish linkages between the sequences. For example, where sequences have
been written using the EXIT controlling code, linkage to another sequence is
specified in the Segment Description using the SEQX controlling code.

Actual preparation of the Segment Description might take place after all se-
quences have been written to be certain that the necessary linkages may be
established.

However, the Segment Description may be written even before the individual
sequences have been prepared. For example, a lead programmer might require
that sequences be written in accordance with predetermined specifications
and then assign individual programmers to the task of preparing sequences.
An example outlining this method is given following the controlling code
formats for the Segment Description.

The controlling codes and the format requirements for each are as follows:

SGMT Controlling Code

This controlling code informs the Assembler that a Segment Description is
beginning. The SGMT line also assigns an Identification Number to the Seg-
ment and specifies where control is to be transferred after the segment is
loaded. The format for the SGMT line is as follows:

. Q@ Y Q@

(- = — M/
U
N
LOCATION OPERATION SIZE I ADDRESS
T
t]2]3|s|5|6§7]8)9[10[11]12]13]|14]15(16 17118 19)20l21122123|2uj25(26 [27}28 | 29|30(31|32|33|34[35]36]37
01 SIGMT F|I|R{S|T|@|S|T|A|R|T ‘>
FORMAT NOTES
<:> LOCATION
A Segment Identification Number must be
entered in this field and must be left-
justified. The number assigned each SGMT
must be unique and in ascending order from
1 to 99 for each process.
(2) opERATION
SGMT must appear in this field.
Segment
Description

III-161

(:) SIZE FORMAT NOTES

Not used for SGMT line

(:) UNIT

Not used for SGMT line

(:) ADDRESS

This field is used for designating the lo-
cation to which control is to be transferred
when the segment is loaded at object time.

The entry must be in the format as shown

above where FIRST represents the name of the
sequence used for entrance at object time and
where START represents the location within the
FIRST sequence where entrance is to be made.
The entry in the ADDRESS Field must be a direct
symbolic address that is not modified by incre-
menting, decrementing, or indexing.

SEQ Controlling Code

This controlling code is used in the Segment Description to list all of the
sequences that are included in the segment. Thus, there must be a SEQ line
in the Segment Description for every DEFSEQ line that will appear in the

segment.

I U S A

U
N
LOCATION OPERATION SIZE | ADDRESS
T
t{2]3fsfsfe}7]8|o|wlrr|iz]r3|auj15]|16 {17[18)19)20(21]|22{23]2u]25|26 |27]28 | 29|30{31 |32]33]32 |35 3637
F(I[R|S|T S|E|(Q
FORMAT NOTES

(:) LOCATION

The name of the Sequence is entered in this
field. Note that this entry must be the same
as for the entry in this field on the DEFSEQ
line for the corresponding sequence.

(:) OPERATION

SEQ must appear in this field.

Segment
Description

III-162

<:> FORMAT NOTES
<:> SIZE UNIT ADDRESS

These fields may be left blank for the
(:) SEQ line.

SEQX Controlling Code

This controlling code is used to establish the linkage for a sequence in

which the EXIT controlling code has been used. The linkage established may

be to another sequence within the segment or may be a logical termination
point of the segment.

A N I S

e |

LOCATION OPERATION SIZE ADDRESS

——-—zc

12)3tultsfje7ls|of10]11j12 13| 1u115)16 (171819 f20f21(22|232u|25(26 {27128 1129|3031 |32]33(34(35|36]37

FORMAT NOTES

(:) LOCATION

Not used for the SEQX line.

@@w

SEQX must appear.

<:> SIZE

The two character decimal number appearing in
this field must be the same number as assigned
to the EXIT line in the corresponding sequence.

@ uur

Not used for the SEQX line.

(:) ADDRESS

This field is used for designating the location to
which control is to be transferred. If control is
to be transferred to another sequence within the
same segment the entry would be in the format as
shown above where SECOND represents the name of the
sequence to which control is to be transferred and
STRT represents the location within the SECOND se-
quence where entrance is to be made.

A Ve g

Segment
Description

ITI-163

FORMAT , NOTES

@ ADDRESS (Cont'd)

If control is to be transferred to another segment,
the entry appearing in the ADDRESS Field would be
SGEXITnn, where nn represents a decimal number iden-
tifying an exit from the segment. This is illustrated
in the following example.

Note that the EXIT controlling code must be used in
at least one of the sequences where a transfer of
control out of the segment is necessary.

Segment
Description

III-164

SEGMENT DESCRIPTION (Example No. 1)

The following is an example of a Segment Description for a segment in which
there are four files being processed; an input master file, an input trans-
action file, an output master file, and an output error file., In addition
there are sequences for allocating file areas, work areas, and constants.
The sequences containing instruction coding are divided into Housekeeping,
Process, Test, Edit, Output, and Endrun sequences and the exit from the
segment is through the Endrun Sequence.

U
LOCATION OPERATI0ON SIZE T ADDRESS
T
1123|4516 7189 (10111{12 130 1u115]|16 |17 |18 19420212223 |2u]25]26 |27)28 129{30(31 32
O— X
C}~——>01 s|c|M|T ulo|uls|k|@|s|T|A|R|T)
I|n|M|als|T]s|E|Q
@) I|N|{T|R|A|N|S|E|Q g
olulTimM|als|s|E|Q
o|U|T|E|R|R|S|E|Q g
Fli|L|alr|s|s|E|qQ)
w|o|R|K|A|R|S|E|Q
| [clo|N|s|T|s|s|E|Q _>
Hloluls|k| |s|E|q)
s [E|Q|x 01 P|R|0[C|E|S|@|S|T|R|T)
P|R|0|C|E|S|S|E|Q
S|E|Qlx 1 E|s|T|@B|E|G|I|N g
s|E|q|x 0|2 E T|@|s|P|L|I|T)
s|E|qQ|x 0|3 E|N|D|R|U/N|@|E|S|T|R|T)
GD ’iTEST S|E|Q }
: S|E|Q|x 0|1 P|R|O|C|E|S|@|V/A|L|I|D
S|E|Q|X 0]2 olult|plulT|@ R|OR
E|D|I|T S|E|Q)
s|E|qQ|x 01 olu|T|P|u|T|@|P|R|N|T)
o|u|T|P|ul T|S|E|Q >
s|E|q|x 0|1 p|R|o|c|E|s|@|s|w|1|T|c|u])
| |E|N|D|R|U|N|S|E|Q
C}*ﬂ» s|elQ|x| | lol s|G|E|x|1|T|0|1
C}—~—>INMASTDEFSEQ , 1Yl la
\
etc.
Segment
Description

Example No. 1

III-165

© 0 OO © O

FORMAT NOTES

Preceding the Segment Description would be the
START controlling code, and (if used) the NAME
controlling code. These codes are described in
the following section.

SGMT line must have a number assigned in the
LOCATION Field and an entrance location for a
transfer of control at object time when the seg-
ment is loaded.

These are SEQ lines for the FCP File Descriptor
Sequences.

These are SEQ lines for sequences in which I/0
areas, work areas, and constants have been
allocated.

These are all sequences containing instructions.

NOTE that all of the sequences must have an EXIT
controlling code line if SEQX is used in the
Segment Description.

Note that ENDRUN sequence must contain the EXIT
controlling code and the related SEQX line speci-
fies an exit (SGEXITOl) from the segment.

Assembly lines defining sequences follow the seg-
ment description. (Assuming a one segment program)

Description
Example No. 1

Segment

I11-166

SEGMENT DESCRIPTION (Example No. 2)

This example illustrates how a Segment Description may be prepared in advance
of the actual programming of sequences. It illustrates, in addition, the ad-
vantages inherent in modular type programming. Some of the advantages are
the ability to speed up the programming job by outlining certain specifica-
tions for programming and assigning sequences to individual programmers.

As an example, assume that a lead programmer (or data processing manager) had
a validation type of program to write in a relatively short period of time.

To use a simple example for illustrative purposes, assume that specific
fields in a record must be validated.

Each record in the file has the format and symbolic tags assigned as follows:

ITEM NO. OF CHARS. SYMBOLIC TAG
ACCOUNT NUMBER 8 AACNO
ACCOUNT CODE 2 ACODE
CITY CODE 2 ACITY
AREA CODE 3 AAREA
BALANCE 7 ABAL

The type of validation that must be performed for each of the items is as
follows:

ACCOUNT NO
The second and third digits must be "04"
ACCOUNT CODE

The first digit of the code must be a numeric value of 3 or less
CITY CODE
The code must have a value of 12 or higher
AREA CODE
The first digit of the area code must be 0
BALANCE
The balance must be an all numeric field
The lead programmer delegates the writing of sequences to individual pro-
grammers and specifies how each sequence is to be written. All processing

sequences require moving the portion of the record to be validated to a work
area within the sequence. The sequences to be written are as follows:

SEQUENCE NAME PURPOSE OF SEQUENCE
INREC FCP Descriptor Sequence for input records
OUTVAL FCP Descriptor Sequence for output validated
records

Segment
Description

Example No. 2

111-167

SEQUENCE NAME PURPOSE OF SEQUENCE

OUTINV FCP Descriptor Sequence for output invalid records
HOUSK Housekeeping Sequence
RECALC Sequence in which input/output areas are allocated

and includes input and output routines
ACNVAL Sequence in which the Acct. No. is validated
CODVAL Sequence in which the Acct. Code is validated
CITVAL Sequence in which the City Code field is wvalidated
ARVAL Sequence in which the Area Code field is wvalidated
BALVAL Sequence in which the Balance field is validated
ENDRUN Sequence for end-of-run routines

SPECIFICATIONS

PREFIX FOR ALL
SYMBOLIC TAGS

WITHIN THE ENTRY EXIT FROM SEQUENCE
SEQ. NAME SEQUENCE LOCATION 01 02
INREC (N.AL) (N.A.) (N.A.) (N.AL)
OUTVAL (N.A.) (N.AL) (N.AL) (N.AL)
OUTINV (N.A.) (N.A.z (N.A.) (N.A.)
HOUSK H START To Next SEQ. (N.A.)
RECALC A INPUT2 To Next SEQ. (N.A.)

VALID3 (Internal linkage to AINPUT
INVAL4 after output of record)
ACNVAL B STRT Valid Field Invalid Field
CODVAL C STRT Valid Field Invalid Field
CITVAL D STRT Valid Field Invalid Field
ARVAL E STRT Valid Field Invalid Field
BALVAL F STRT Valid Field 1Invalid Field
ENDRUN G STRT Segment Exit (N.A.)
Notes

1. Initial Entry Location

2. Entry location for the read of a record

3. Entry for output of a valid record

4. Entry for output of an invalid record

With these specifications the lead programmer could write the segment de-
scription as each programmer writes his sequence.

The entire programming of this problem will be included as the SAMPLE PROBLEM
in this Assembly portion of the manual but only the Segment Description is
included on the following page.

Segment
Description
Example No. 2

II1-168

The segment description would be as follows:

2
)
)

Segment
Description
Example No. 2

i

ADDRESS

271282930931 323313435 13637 138z

HIO|UISIK|@H|SIT|ARIT

RIE|C|A|L|C|@|A|I|N|P|U|T

A{CIN|/V|A|L|@|B|S|T|R|T

CiO|D|VIA|L|@|C|S|TIRIT
RIE|C/A|L|C|@|A|I|N|VIAL

CII|T|VIA|L|@D|S TIRIT

RIE|C/IA|L|C|@]A|I|N|V A LE

AR|VIA|LI@E|S|T|RIT

RIE|C|AIL|C/@AI|N/V AL

BIAILIVIAILI@F S|T R T

RIE|C/A|L|CI@/A/I|N VIA|L

R{E[C|A|L|C|@ V|A|LII|D

R|E[C|A[L|C{@AJI|IN VIA'L

S|IG|E/X|I|T|O|1

o= -+

SI1ZE

1

1

1

2

1

2

1

2

1

2

1

2

1

0

0

0
0

0
0

0
0

0
0

0

0

0

9 {10[11)12 |13} 14| 15{16 17|18 §19]20]|21 (22|23 }2u|25]2¢

OPERATION

S|GIM|T

SIE|Q

S|E|Q

SIE|Q|X

SIE|QX

SIE|Q|X
S|EQIX

S|E|Q|X
S|E|Q|X

S|E|Q|X
SIE QX
s|ElQ

SIEIQ|X
S|IE|Q|X

S|E|Q|X
S|E|qQ|x

S|E|Q|X

LOCATION

2
1

cloip|Vv]|A|L|S|E|Q

C|I|T|VIA|L|S|E|Q

A|R|V|A|L

BI/A|LI VA L|IS|E|Q

I|N|R|E|C

o|u|T|V|A|L|S|E|Q
olulT|I|N|V|S|E|Q

H|{O|U|S|K

R|E|C|A|LIC|S|E|Q

A|C|N|V|A|LIS|E|Q

E|N|D|IR|UIN|S{E|Q

I11-169

SECTION XVI
ASSEMBLY OPERATION CONTROLLING CODES

The purpose of this section is to describe the use of the Assembly control-
ling codes that either define the limits of the Assembly Operation or are
used for output listing purposes.

The codes to be explained in this section and the general function of each
is as follows:

START

This code informs the Assembler to begin assembly of a program and
assign a given Program Identification Number.

NAME
This is an optional code that may be used to give an identifying name
to the program for output listing purposes.

REMARK
This is an optional code that may be used to give descriptive informa-
tion on the output listing. It does not generate any object coding but
is valuable for documentation purposes.

CALL
This code may be used at a point in the program where it is desired to
insert a source language routine which has been previously prepared.

END

The END controlling code is used to inform the Assembler that the end
of input for a program has been reached.

Input to the Assembly Operation requires that a START statement be the first
statement and an END statement be the last statement introduced to the Assem-
bly Operation.

The source language statements may be in any order only if (1) every source
statement contains a numeric filled reference key that can be used for
sorting the input and (2) the reference keys are in ascending sequence to
conform with the diagram on the following page. (A one segment assembly is
assumed.)

If reference keys are not present, the input cannot be sorted and the input
will be assumed in the order as shown.

I1I-171

P S POV

r CALL ;
j Inserted at the point(s)!
where a routine(s) is to!
|be inserted. _ _ _ _

SEQUENCE
DEFSEQ

SEQUENCE
DEFSEQ

0 i BT o 0

SEQUENCE
DEFSEQ

SEQUENCE

DEFSEQ \\\\\\\\,
EG_DESCR (" REMARK ~ T 7
SgMT t May be used at anyt
- location desired. !
el - SE i -
-~ _NAME 8¥;-—"/ “““““ '
1
START j

——— -

REQUIRED f'OPTIONAL {
INPUT INPUT [
L. - - 4

NOTE

If two or more segments are assembled at one time, the order of input is the
same as shown above except that the Segment Descriptions are grouped together
and must precede the individual sequences. The sequences may be in any order
following the Segment Descriptions.

I11-172

START Controlling Code (FORMAT)

b

O O

- - T 7 /M

LOCATION

OPERATION SIZE ADDRESS

-— -z

6171819 110]11|12313)14)15]16 (17|18 19}f20(21|22123{2u[25]26 [27}28 }129]|30|31{32{33]|3u4(35(36|37 {38(39|u0

NANANAV

FORMAT NOTES

@ OPERATION

(:) SIZE

START must appear in this field.

A Program Identification Number must be

entered (left-justified) in this field.

This must be a unique five digit decimal
number for each program.

(:) ADDRESS

EXAMPLE

Not used.

The following is an example of a START line for a program with an Identi-
fication Number of 00125.

LOCATION

OPERATION SIZE ADDRESS

Hq—-—=zc

\ANANANS

START
Format

III-173

NAME Controlling Code (FORMAT)

The NAME controlling code may be used if it is desired to furnish a name to
the program on output listings.

79 9y

- - T 7 ™

u
N
LOCATION OPERATION SIZE [ADDRESS
T
tf2|3|uls]e]7]s|olo]rt|12]13]||15]16 [17]|18]19 20|21 22|23 2u]25]26 |27}28 | 29|30(31 [32{33]3u |35 36|37 38|39 |40 j:)
NIA[MIE P{O|S|T| |M{A[S|T|E|R] |[F|I|L|E :)
FORMAT NOTES

@ OPERATION

NAME must appear if this line is used.

<:> ADDRESS

A left-justified entry of 30 characters
maximum length will provide a program name
on the output listings.

NOTE that if this statement is used it must
follow the START statement. If not used,
the Program Identification Number of the
START line will be used to identify the
program on the output listings.

NAME
Format

II1-175

REMARK Controlling Code (FORMAT)

The REMARK code may be used at any place where a programmer's comments are
desired on the output listing. This code does not affect the object program.

T S

LOCATION OPERATION SIZE

J

ADDRESS

——-_—=Zc

112345678 |9}10]11]|12])13|14{15)16 |17118)19420|2122§23|2u[25]26 |27]28|29|30(31}32|33]|34]|35(36(37 38|39 |u0

ANNANNANS

FORMAT " NOTES

(:) OPERATION

REMARK must appear for each Remark line.

<:> ADDRESS

This field will contain a comment that will
appear on the output listing. Any 3301
character may be used except the ISS (°)
which may not appear if the input is from
paper tape.

Note that the REMARK code may be used as
often as required and appear at any point
after the NAME line and before the END line.

Note also that remarks may be made in unused
portions of the ADDRESS Field of other
assembly lines.

REMARK
Format

II1-177

CALL Controlling Code (FORMAT)

The CALL code may be used where it is desired to enter a source language

routine as a part of the assembled program. The routine is identified by

a six character decimal name and is stored on a source language library

tape.
[[M 1/ - — — — M
U
N
LOCATION OPERATION SIZE | ADDRESS
T
1231l5678910111213114151617181920212223242526272829303132333“3536373839&0)
clalLiL ol3]al2(L]5 ‘>
2
FORMAT NOTES

@QEE;RAII_ON

CALL must appear as shown above.

(:) SIZE

The six character routine identifying name
must be decimal numeric.

The routine which is "CALLed" into the program
is contained on a magnetic tape and is in
source (assembly) language. The routine is
entered into the program at the point where
the "CALL" line is encountered.

CALL
Format

I11-179

END Controlling Code (FORMAT)

The END controlling code specifies the last line of a program and is the
required entry to terminate input to the Assembly Operation.

® ®
R v -

i i \ !

LOCATION OPERATION SIZE ADDRESS

—“—=zc

1l2)3juflsfe)7]8}9]10}j11]12 13| 14} 1516 (1718 |19)20} 21 (22|23 |2u4|25(26 {27128 29]30(31(32(33|3u|35]36|37 |38[39140

FORMAT NOTES

(2) oeeraTiON
END is the only required entry for this line.

END
Format

I11-181

SECTION XVII

CORRECTION PROCEDURES

Corrections may be made to source input statements only if Reference Keys
have been assigned to the source input.

The corrections should be entered in ascending sequence by Reference Keys.
The three correction controlling codes are:
STARTC
This code notifies the Assembler that the statements that follow are
corrections to be applied to a designated program.
DELETE
This code is used to delete one or a continuous series of statements
in a program.
ENDC

This code specifies the end of the corrections to the program as
designated in the STARTC statement.

Insertions and/or replacements may also be made to the source input.

To insert a statement, it is prepared in the desired format and assigned a
Reference Key value which will place it in the location desired.

As an example, assume the source program statements appear as follows before
corrections have been applied:

U
N REFERENCE
LOCATION OPERATION SIZE i DENT. KEY
T
2 3juls|ey7|8lo]wofrt|12]13f1ul15[16 [17]|18)19720]21(22]23]|2u]25]26 |27]28]2 172173 747576 {77 78 |79 80
CIDIT 5 WO RIK|,|DIAITI|A 0/0]0 9/0{0
Q|UJA|L EIX|IT|T 011 0/0j0]110/0{0
And a statement such as the following appeared in the corrections:
C [T |C 1 P L US|, M|I N|U|S 0/0]0]/0{9]5/0

IT1-183

Then the corrected output would be as follows:

C D |T 5 WO RIK|, DIATA 0/0)0 0
C [T |C il PLUI|S|, M|IIN|UI|S 0 0/9/5
vlalL] EXI|I|T 0 L olol1

To replace a statement, it is only necessary to write a statement in the
corrected form desired and assign the same Reference Key. As corrections
are applied, statements in the source program are replaced by statements in
the Corrections having identical Reference Keys.

III-184

STARTC (Format)

(This code signifies to the Assembler that the statements that follow are
correction statements to be applied to the designated program.)

P 9 97 ¥

]
N
LOCATION OPERATION SIZE |
T
tl2fs|uls|e]7|s|o]o]1a]r2]13|1s]15]16 |17|18)19)20)21)|22|23]2u]25|26 [2/]28 | 2930|131 |32|33}3u|35]36|37
SITARTICRRLIS[7P0
FORMAT NOTES

@ LOCATION

Not used.

<:> OPERATION

STARTC must appear in this field.

SIZE

The Identification Number of the program
to be corrected is in this field. This
entry will be identical to the Program
Identification Number on the START state-
ment of the program being corrected.

@ @ UNIT and ADDRESS

Not used.

STARTC
Format

III-185

DELETE (Format)

(This code is used to delete one or a series of continuous statements of
the source program.

09 99 9

~
u
N
LOCATION OPERATION SIZE |
T
tl23|ul5]|6)7]|8]9 101112 13]14|15}16 (17118419])20}21122123 2ut25126 127128 | 29|30{31 [32)33|34|35136{37
D|E|L |E|T|E 010{0/0({2]0}0
D [E{L |E|T |E ojojojo|5|0|0]|,|0{0]0{0|7]|0]|0
FORMAT NOTES
@ LOCATION
Not used.
@ OPERATION
DELETE must appear in this field
@ @ SIZE and UNIT
Not used.
@ ADDRESS
The ADDRESS Field contains the Reference Key(s) of
the statement(s) to be deleted from the source
program. One entry as above (0000200) will delete
the source statement having the same Reference Key.
An ADDRESS Field having two entries, as on the
second line above, will cause the deletion of all
source statements having Reference Keys between
and including those shown.
DELETE
Format

I11-187

ENDC (Format)

(This code signifies the end of the corrections within the
program specified by the STARTC statement)

RO G

LOCATION OPERATION SIZE

- wm - -

—“—=ZCc

1l213js]sje 7|8 |9o|10f11f12]13]14f15]16 (17 18 |19}20|21122123 2u|25]26 [27]128 129|30(31|32{33|34|35]|36|37

FORMAT NOTES

OPERATION

©

ENDC must appear. This is the
only field that is used for this
statement.

LOCATION
SIZE

NOT USED
UNIT

ADDRESS

OOOO

ENDC
Format

I11-189

INPUT
FILE

SECTION XVIII

SAMPLE PROBLEM

This Sample Problem is based on Example 2 of Section XV, Preparation of
the Segment Description; an explanation of the problem appears there.

This problem has been simplified and is for illustration of the modular

concept and the organization and structure of input for the assembly op-
eration.

The input and output tapes are unbatched and processing is done in a
single block area as illustrated.

VALID
OUTPUT
. FILE
INPUT/OUTPUT
> AREA
(BLKAR) INVALID
T OUTPUT
FILE

I1I-191

3301

RCA
REALCOM ASSEMBLY

13

OF

1

PAGE NO.
DATE

SAMPLE PROGRAM

PROGRAM

PROGRAM SHEET

PROGRAMMER

gl ol o o olc|o ololojo] o 8

w 2| o] o] o] o] 2o ole|leleole 2
mnv ol 4l] | Ao ~o|o o] ~ 2
=W Flolol ol ololo Olo|O|m]|~ N
W 2l ol ol ol oloje olo|ojo| o 2
= L2l ol ol o]l olo|o olo|o|lo| o 2
flololol olole olo[ololo z
ER A
g (- E
2 B N
s 2

3 5] 2

3 (&) 2

3 w| = 5

3 Ol m b

9 z| D S

=2 | o g

M =B 3

3 | w»n S

M 3 S

5 n| A = = 3

3 ~ (&) [&) o

2 = al o Z = 8

= [S) s = 1] 5

2 L] OE o= = B

5 - O » o € 3

z [[=] 5 £} S

Py H| i oA %) 5

S M| o]) >

2 BIEEE T = s
) vy | Il] = s 2

EY [0 =]] a4 2

» @ Al of <] = = 2
» = = m > - &5) =
w 5 olel «m 1 o 2
- 2 & = Gl [J <
o = ER =) = [EH
= o zZl 2| o Al oA (%) = Py
- E] ol o Al B & = A 3
P Hl m| = o o o = z

E] Hiw| - O] © 2 | 2

= < 2

X =1 ES

= | om =

2) H <

a < 2

2 > A

R -

RS 3] [l &

oy W) B =] B B =

2 -4 [| R

5 | < = | e 5

Q | H - ©nl n &

5 [Z1] < m| O I~

2 = I (VIR 8

= = © (&) | = <

2 | M =] <| Do]

o A7) < > o~ <

S =D &) zZl A N

] < © 1= | = <
2 ES o~ < | m :
SZE—+| g &
=]

Sl 5
Ao[sl|o °
@« ERI=))
|0 — RS B

2o o olo o

o~ o

z e o
= BRG] > | 2
&= ol <] =] =] of of o ool oo o >
I3 o| H| < O ® M m o @ @ e m Ll
~ln| Z | v vl vn n 0l nunln ™~

o Al B> (& ©

z © O « = | | hid
- = ®m > H 2 < =
m - o & & = O -
a ~ —| =z o] o o =) ~
- o H o} o ool o -

III-192

REMARKS:

28-00- 109

€6T-III

RCA 3301

PROGRAM __ SAMPLE PROGRAM REALCOM ASSEMBLY PAGE NO._ 2 OF 13
PROGRAMMER PROGRAM SHEET DATE
ﬂ REFERENCE
LOCATION OPERATION SIZE i ADDRESS I DENT. KEY
T
1{2|3|4|5]6}47 9 (10f11f12 13| 1uf15(16 {17 |18f19)20|21|22|23|2u|25]|26 {27|28{2930|31 {32(33|3u(35}36(37 |38]39 |u0o]|ut |uz|u3{uufus|u6|u7lug|u9|50|51 [52]53|54[55{56|57|56|59|60{61|62]63 (6465 |66)67[68(69(70)71172(73 7uilrs {76 |77]78 |79 |80
Alc|N|V|A[L[SE|Q viAL|ippla|T|E| |alc|c|T].|n|o|.|s|E|QlulEl N CE 010/0}1/2/0]0
S IE |Q |x Jn cloplvialLlelcls|Tir|T *ﬁ 0/0j0]1]30/0
Q 2 E Ci@ TINJVIA L 0/0]0 1] 40/0
coblviaiLsEl viaLzplaltie| |alclelr|.|clolpiE| |s!elqlulrlnlclE 0j0/0|1}50]/0
S E Q 0 |1 tlrivialLi@pls|t|R|T ololo|1|6]0l0
5 E Q X 2 R |E i IN|VAL ololol1i7]olo
ciiltivAlLBER viaAL I plA|TIE] |clT|T|y| Iclop|E| |S|E[QU|E|N|C|E 0/0/0[1/8/0|0
Q AR[VALRIESITR ololo|1}9/0l0
S E QX p 2 RECALICleAll N|VAL ololoj2|o|ojo
ARVAIL| BER VALIDAITE| ARIEA] [ClOIDIE| [S|E|Q|U|E|N|C|E 0/0{042]1/0]0
s koKX Jan AL|IVALREFISITRRIT 0lolo]z2]|2]o0]o
5EEQK D RECAL Cl@AlI NlviAL 0lolo{2|3]|oj0
BALUALBERQ VALIDAITE| BALANICE| SIE|QUIE|INICIE 0/01012/40]0
5 E Q X ! RECALICERAVALID 0lo0]2|5lo]o

f
ilal3fuls|e}7le|olw]an|1z|13]w|15]16]17|18]19]20i21]22|23|2ul25|2¢|27|28]29|30(31 |32]33{3u|35|36 |37 |38|39 uolur{uzjus|uslus|ue [u7 ua{uo|s0 {51 [52[53]54]55) 56|57 158150060 |61|62|63 ¢ (65 |66 |67 68 (€9 |70} 71| 72|73 78] 7576 177 |78

28-00-109 REMARKS:

330!

RCA
REALCOM ASSEMBLY

3 oF_13

PAGE NO.
DATE

SAMPLE PROGRAM

PROGRAM

PROGRAM SHEET

PROGRAMMER

s oo o o] o] of o] of o of o] o| o] o] o] o 9P L[| 8

W el oo o ofof ol of of o o] o] o[o] o] 2| o g2 N[22 2
g o o | w0 oo O 4] | @ @] "] O~ ©] & O] =] ~f A I F[O =
mmm Sl o oo oof of oof o] o] | n[en| o & @] | o I F] T o
I el of of of ol ol of o] of of o] ol o] 0| o| clo| o] g PP 2
& ol oo o ofo]of of of o] o] o] o|o| 0| ojlo| o] g
Sl oo d o oo o ol o] ol o] ojo| ol olo ol gl =

e = 2
& N o
2 = =
= 2

3 = 3

3 o 3

S =4 o

3 =1 g

$ =) o

3 =4 o5 2

b (& =1 o

S = %) S

2 £} S

w - w

B S] B

8 3] 22 [3) 2

5 [3) [Z) %) 3

2 = t=1 3

3] o~ a 2

2 =] () =

& (o4 3] ™ o

& = ~) ~

o «@ H = =

53 o 2

B zZ [®))

» g =) (%] a E)
» = o 1x — =
w 3 [a] -1 ©
o E 3] < o
= 3 (@] ~ = =
=) M [&] ~ o
< s [=) = B
z =z = =

2 =]) =) <

& 2 ~ a

& A~ = 2

= = = -

2 — o 2

E &

) B

i o
a2 2

Al < =

2] > <

b B

| H E)
Sl < — 3] ~

2 © =) = 2

MBS B — B
24 o< [< =

S« <o« 1] — - o
M) [= (%] %] a Z N
S (G Ed g = - =

S - 0l B b, 0| < = [B
SDxZ—+| 2)
B 2
T 5
7] i B
Il — 3

Sl o ol < «

= &) o B

g L= = =2 I
m S N wn | %) E
= ol O O O Mo Iz o
S o o o of m = "
~| w» v o A =) ~

© A A O A m v = m| Rl Aa - ©

z o = BEEEEEEEE R EEEREEREEEREE
= = o] m H oM oE o om - < < < o ol M o OO Pl H| A
mm « = o ml O m E H MmN OE O M H e H O E]
= ~ E Z o <4 A n n O «f A] m\ o« o o ¢ B XD w0~
- =] H oS o H D o < 3 M < M > o of ml M| R OlD| -

III-194

REMARKS:

28-00-109

3301

RCA

REALCOM ASSEMBLY 13

SAMPLE PROGRAM

PROGRAM

PAGE NO.__ 4 OF

DATE

PROGRAM SHEET

PROGRAMMER

gl ol of o © of ol o] o] o]l o] of o o] @ o 2|25 o 2|2

" ol o of of of o of ol o] o o] o]l o o o V| o @ @ o] o o 9| =

mm ol ~| o o] o ~ «|] || o] ~ o o o] O] A | |]|] o ~|F
>

= = < < @ | @]] n] | n]| in] n] n]] o @] o o] vl w]| o o wik

w ol o o of o o ol o] o ol o] o] ol o2 ool ole| o 9 2| °

o HEEEEEEREREEEREEEEE RS R RIS B 2

ol o o o d ol olololololololofe ooloolo o ol

. ~ ~

= ~ =

= o~ o~

w ~ ~

= — =

= - oy

R 2

3) 3

2 o 2

S z %

3 =1 3

S o) S

2 O <

by = M

3 @ <

= =

3 5

2 o 3

& | 3

2 & 3

- % 5

L

B =) 3

o [a) i

= =

kS E

o [5

S o -

3 | R 3

S <

8 2

3 ~ B

» £ = *

» = <t =

w 2 > 2

o E z 2

o =4 — ES

I~ L ~ <

- g B

e = 2

S = B

a 23] K

] = 2

= js] =

R o]

- =

B 2

= =

A kS

= =

R “

~ ™

B R

A A

B S

2 R

2 2

Q 2

S 3] = I

° = e <

g — i 2 <

2 = =l < ~ 2

< = - —~ b =) <

S %] D ©n -5 D = =4 Q| R

< < ™| 4 = =) R ~ o &

2 = ol » <« <) |3 5] ol]

EX Tl B T o,

= ©

® 3

~ =

N 5 ©

)] 9

2 E4

< < by

S o4 s

3 2 m e

m 2 » S

&= o I S

S | = @ °

- a ~

el my ol A ml w SIS I a > ~ ol al m| e

z o] ol =] @ = > A M & M | om om m| M| XM = Z] D B K& | v

= 2 = m m H| m < <] < 2] 2] %] O] o] O] H| H| X & M @m| A =
-<

S | O @ W m =] M M e O M| B B =] O M e | O B |\ E H

~ | <] al v v o] <« A A m <] D B «| W] M D] v < A v v O ©

| m| = o] of <« A @ €| % >| O of m| M| M O D] M H B B < 7

III-195

REMARKS:

28.00.109

3301

RCA
REALCOM ASSEMBLY

OF__13

5

PAGE NO.
DATE

SAMPLE_PROGRAM

PROGRAM

PROGRAM SHEET

PROGRAMMER

2|0l o go|lo| o of oo o o o 3
w 2|0l oo oo olovn oo 2
mW 2l | o+ | | | nlw| w0 N @

S

e iy Tlol ol Nn| NN NSNS NS I
v 2jolol oo|o| of of olo| ol g o I
o
vlolo] oolo|l of o] ol o] Jdo 2
Flolol dololololololol do 2

- = 2

= o~ o~

w ~ ~

a2 = N
IS =
= S
2 2
2 %
£ @
2 g
= -
% S
o <
S 8
- o
8 3
= =
= g
- -
3 Py
< | ~
3 Py
3 © M
g 2| g
B3 = 3
2 o 3
B =4 5
3 =] 8
5) 3
= >
2 2
o [T} by
o = P
5 H 5
3 A~ 2
E] =1 B

@» 2] 2

» =) =

w 2 3] 2

3 2 a B

a ES = 2

a > o <

- g - ~
- =
=) z
2 = B
% I Py
R [¢] R
= =1 =
2 o <
= =
E R
= S
ES R
= =
R N
~ ~
& &
= o
2 R
]]
Y 5
8 g
B -
I IS
< <
& 5 S
3 Jes B
< — — Iy
J|@»n ~ [«] S
SRS o = e
Rlwn| « [=) S

DE -+ 9 [%
@ «©
g 3
= B

(2]

N 3 2

» w P
2 E
) o
o ol M P

3 = w| e =

= 2 wnl < 2

& bl [N -

[-%

S ® S]] ®
- (=101 -
of wm SIS a ©

z ol Al @ M 4ol oo o @ M hid

mm R <l < dqe A Jd I oln =

S sl M H] HH H Y D «

- MR- Bl i O ~
e HEEE o m|om -

III-196

REMARKS:

28.00.109

L6T-1I11

RCA 3301

PROGRAM SAMPLE PROGRAM REALCOM ASSEMBLY PAGE NO._6 OF_13
PROGRAMMER PROGRAM SHEET DATE
u
N REFERENCE
LOCAT I ON OPERATION SIZE] ADDRESS IDENT. KEY
T

123 ufs|e] 7|89 |w0]tr|rz]13]a|15|16|17{18)19]20{21{22]23)2u[25(26 [27 |28 |29|30{31|32{33|34 3536 (37 |38{39|u0|ut ju2|u3|us|u5|u6| 47|48 49|50 151 52|53|5u]5556 |57]58|59)60[51[62]63]64 |65 |66|67168]69{7071]72|73 | 7al75|76 (77|78 (79|80

glsitlalrRlTo P E N i E|C olplEIN| |I|N|PU|T| |[F]IL[E 0,0/ 0/7[9/0/0
o P IE N o |u|T L olPlE|N| lolu|T|P vialLlz Fl1lLlE olololslolo
o P |E [N N olplElN| [olulT|P INlvAlLIIp! |FII|LIE 0lo/0[8]1]0
Elx|1lT 0 |1 Elx|1|T| |[F|RjoM| HOU|S|EK|EE]p|1|NlG 0j0lols|2]0l0
RIElcAlLlcDEIFISIEQ 0/0/0}8]|3|0
WI&EM K BE|GII|N| |[I|/j0| |&] |AIRIEA| ALILIO|CI, | [SIE|QIUIEINICIE 0/0/0(8]4[0

1l2f3(4afste 71891011 |12]13]1m{15{16 171181920 21 22|23 2u{25]| 2627|2829 30|31 |32|333u{35(36 |37 |38[30[40 U1 {u2j43 4ajus|u6 |17 48149(50|51 52153|5u|55[56|57[58|59{60|61162 |63 {ex 65 [66 (67 |68 |69 j70}71|72173 |7u[75[76 (77]78}7980

28.00- 109 REMARKS:

3301

RCA
REALCOM ASSEMBLY

13

OF

7

PAGE NO.
DATE

SAMPLE PROGRAM

PROGRAM

PROGRAM SHEET

PROGRAMMER

2 ol ol of of o] o] ol o] o] o] of ol o] of 9 © 2

w 2 o of o] of of of | o] of o o of of of o o 2
= © i o ~~| o o Of of Hf | ¢ |] V] K 6o o S
mmmm =] | | © ® N o N | o & & N & B on =
e} 3 ol o] ol of o] o] o] o| o] o of o] o © o © 2
o 2 ol ol ol o o] O O ol O] © O O O O O O 4
2 ol ol o] of ol o] 0|l o] o| o] o] o of o o o z

. « =~
- ~ ~
i S o
a = =
S S

m m

2 =] 2

3 [<

S z %

3 m 3

< o) 2

3 w &4 s

3 2] = o

3 = %) B

M -4 2

3 a) z 3

3 =} A =} 3
2 < 23 H 3

& a o = 5

h] - o < 2

3] | O] = A 3

2 = =]] ~ - 2

;) o A > 2 B
B 5] = z| ™ a = < 3

bt mi = jeu] (] - > o

2 = A [A =] =] 2

2 <| 2| © 3 | H < K. B}

» 2 o 'z O M e =) = 4 > Hl O =
) = o Al A [} [= o= 5
w 2 < H| H| QO M | > - . ©
o © z| =] olojo a < B B 2
a H HEE =) | | m ol o E
a B plolol>iad|« ~ = e [O o
- P Al O] O | K- (@] | - H al <« S
5 Z| O] O M| M| < = X~ ~ =1 5

2 Hl < <O« ™ 7] m| = = = = 2

N - N

R [©) 2

= <) =

2 ol 2

2 a

a 3

Q 2

= =

= 2

2 2

T &

® |3 g

& [=] IS

g 5] 2

o - GRS <

2 ol © < 2| &| o 2

< z| = > oA - oA Q

S O ~ = =z e = B

< <| = = = ~

g < = o <« o] « g
DE—F| 2 E
= z

H 5 2
(2] w o
2 — [N]

o o ol N o~ =) [=) @

o =z ™ =

W = [e] [£a} €3] 4 =
= 2 o ol O al & = = = < S
b} o o O o | H H O H O H = o
S @ = WA E] e M e M e X m ©
- < IS = =< =] ~

© =5 A = ©

W © o = ien] - < w
mm = of = X < 42 oy = = =
W - zZ A H R < 22 = <¢ Z [EN
~ ~ O d H ® m a H > — ol ~
- < < 9 9 < <« < < < < =] -

III-198

REMARKS:

28.00-109

330!
REALCOM ASSEMBLY

RCA

oF__13

8

PAGE NO.
DATE

-SAMPLE PROGRAM

PROGRAM

PROGRAM SHEET

PROGRAMMER

g | o] © ol ool o o © 2

w o of o] of o] o] o] of o © 2
e o of A o of «[] o N » 2
mmmm ~|l ol o o ool o o o IS
] | A = A A = =] A A = 2
= ol o] of of ofl o] o] o] o] o 2
2]l ol o] o ol ool ol o © 4

- = o
b S =
2 - =
e 2

: 2

B < s

5 =1 3

3 o~ . 3

M < < 3

2 = . s

S 14 =] 3

S o~ | = <

2 [<) = OO e >

2 = O =& H 3

> Of 4 O 3

3 o H O 3

= 3] g < I

b3 A 9 8

@ o H 4 A 3

2 (%1 = 4 2

o ~ g4 a 4 o

S < B H P

= oo g 4 > =

2 (] H < = 2

% (=] > - EY

» 2 Ql H g 2
» I [+ < o =
w 2 o ™3 o o 2
o B - e ga ¥ I < 2
a E B « o E
o @ A B <
- B A = q H H P
% Zl O A M X 3

2 N O = S

A a

R ES

BN B

R R

2 R

ES ES

R [PN

B (&) = &

2 < < F

=3 = oM D R

2 HIEERE: 2

2 o g g

S | K m <

2 o M 8

2 +] <

2 O H < 2

o z| J S <
S Ol o = S

b <| H 3

2 . &
DE—=| 9 o
< 2

B 5
R m
o 53 g
1 o~ E1

by of NN N~ O O <

3 9 = S

z EE B 3
mm 2| v Y = []
= o Iy O M| H O H H o
. o o = ool A B X = @
~l A <) B O O = M ~

o| A =] ©

z w | < [< ©
= HE EIEGE EE -
3 ~| A EIEE < = -
W ~ O < Of v > o= o~
-« 2 & om mf m -

III-199

REMARKS:

28.00-109

00C-III

RCA 3301

PROGRAM _ SAMPLE PROGRAM REALCOM ASSEMBLY PAGE NO._ 9 OF_13
PROGRAMMER PROGRAM SHEET DATE
: REFERENCE
LOCATION OPERATION SIZE I ADDRESS IDENT. KEY
T
1123 (w516 7|89 |10]11]12|13|14}15|16 |17 (18]19])20121122]|23}28|25(26 (27(28|29|30(31 [32]|33|34(35 (3637|3839 (u0{ul [u2|u3|yu 5 u6lu7iug|u9isc|51152(53|54|55156(57|58[59|60(61[62]|63|64165]166f67|63|69(70)71{72}73 7U|75 76 17778 {79 {80
COD|VIA|LIDIE|IF|SIE|Q BIEIGITIN| lAlciciT|.| IC|O|D viAlL|ID| . SIEQUENCE 0/01 0910]0
c olc ‘7 olojt g lofolo
wialclo|p 1 S r olo 1 f1lojo
ViA FIXNUM 3 L 0{0jL 1 2(0/0
CISITIR|T| JTiClL il CIOIDIE, ICWIAICIOD IS (T| [CHIAR T RIK AQ_EL@ 0|01 1 3/0/0
c DT c c lv u omMPlA|RIE ol |3 0|0l L A4|0/0
C T |C CIIINIVAIL C 1T IN|V QI AT Niv AL T AlCCT . CODE 0/01 5|00
ClvAlL E X D 1 x| rlolR| lvlalultpl lalclelT 0D 0lolt 116 .0lo
clinlylale ek lrir Elx T FloR| [1|n]v 1 cdd1.dong olol & [7lolo

1213 |u |56 f§7|[89(1011]|12]13]18|15}16 j17|18)19§20|21(22{23|24{25]26 27128129 30|31 |32|33|34|35(36 |37 [38|39140 41 |42{43|s4ju5|u6 [47 [48{U9|50 |51 [52153|54(55|56157(58]|59[60]61|6263|cu 65 |66 |67 68169 |70f71{72(73]iu|75{76177]78]79 |80

28.00. 109 REMARKS:

3301
REALCOM ASSEMBLY

RCA

10 of 13

PAGE NO.
DATE

SAMPLE PROGRAM

PROGRAM

PROGRAM SHEET

PROGRAMMER

gl o] of o]l of o] of o] of © 8

w elo] ol o]l ol of o] of of © S
= o 0| ool of A| | o <]] © 2
mem N R R IR BRI =
b ol]|] A A A A A] 2
o= clol ool oo o o] o 2
Slol ool o]olo] o of o 4

. = o
5 2 =
= - =
2 N IS
S =

2 3

3 g

S 3

S| ™ = 8

o O 2] = 2

2| & o =] 2

ol m Ol m o Py

S| = Al o <

5| O < Al © S

sl m 3] Hl o ™ 3

3| »n ~ - = o

3 < < > H 3

s > | O 5

2l /A B4 Z| H B

G 7 H[o] A 3

PR [- 3

o)< = |l aj A b

HES Nl - 5

= Of H| | 1| > a

A = o < = 2
2| A o O | +H E

w0 2! O SIS 2
P P) A | =
w 2 C| W] «f O] © °
o BED ol Ml M| m| & 2
a T H <| A S
o o= Ml al B = <
-« SO | S| H| H P
z | O] =

2| = O O < m| m .

A H Y

R © Y

af ™ 2

R| M R

2 B

ES ES

2 2

B > B

_ A2 2

2 Hi A 1S

R O 3| « 2

g < B > I

& =2 AalA S

2 (=] B N

< A H A S

2 o] o« 3

- =l O > Q

S H o< = 3

& N O = - b

I ~ < Al a g
DE—F| % o
= 2

] B B
”n 4 2
B ~ o~ E]

o N| N NN | O] o by

> O = b

-3 S| o= =] =
mm 2| wl o =z [l <
“ o| mf O Ml Al B O k| o
13 o| m| 2 =l Ol Al (=] X » ©
~| A < | o Of Of w| m ~

of 1 =i °

z o | < B > & < w
= = > | [- =
S [=[= o @ = < = -
ur ~ o < =Z| wn > - b
| Ol A F B A al A -

III-201

REMARKS:

28.00- 109

3301
REALCOM ASSEMBLY

RCA

11 _OF_13

PAGE NO.
DATE

SAMPLE PROGRAM

PROGRAM

PROGRAM SHEET

PROGRAMMER

g| o] o] o o] 9 o O 8

w ol o] of ol o] of of o o 9 2

mm . o] = o o] of A of o | | w

nRr_“ K| Nl N N| | | enf N}] M) ™~

W o Al Al A A A A A IS

= 2| of o of o] o o 9 o o 2

2l ol o o]l o] o o o 9o 9 =

T = =
- o

it S S

2 = <

e =

3 3

3 M

5 3

S m =} b3

o © [=] = 3

2| = [=) a <

S| = ol W o S

N Al o P

3| 9 < < © 3

2| m [%] m O <« 3

3w [4 = @

3 < <| <| ™ 3

a1 o < &

2l a 1% =1 3

Sl - Y - < A g

2| 4 o ol 1 | 2

P B oM o< A A P

5| > o e s

= o N| = A S a

| = = o< = 2

EIN=)] > H B

» =) o B 4 S

) sl o o <| o o =

w 2 < ®| P 9O 9 2

P o] < T o of ml 2

o 2l m o < =]

o P [N == L

< I« Bl S o) - M 5

b4 W O I X X s

2| = O] < m| o 2

K| H &

Rl O 2

] “

R m 2

2 S

= ES

R =

S M - &

= < < < =

kS m & > 2

2 M o = &

8 < N| H g

3 = ol m =

° | A A &

g 1 <[~ <

3 <| @ <« 2

< mf K > <

S o < = S

< < =~ b

2 o <l mlm 2

DE—F| g %

] 2

~ =

A 3 2

o v 5

2 —| o E]

o | ol]] -] o] o oy

s o = =

3 S| ™ =) o

= 2l wl o z B e 2

i} ol O | B O] - - b

S ol @l 3 ol ol el x| o ®

~| al < el ol O O W m ~

© I ©

z [o] 4 <| o o < i

m ol o < sl > =

g] > o M = < = i

- S~ <| = »n > H ~

o) | F| N\ = & -

I11-202

REMARKS:

28.00-109

3301

RCA
REALCOM ASSEMBLY

12 ofF 13

PAGE NO.
DATE

SAMPLE PROGRAM

PROGRAM

PROGRAM SHEET

PROGRAMMER

3 d olol d o of of o o g o ©)

w ol o d d ool g o of o o 9 g o o E

vax 2l d N o oo Al o o] o | O N o o i3

=W Sl oo oo e oo | | o & IS RS R S =

e} e . = = | = B e e e =] -

e o]l o d d ool g o of o o d d o o 2

Tl o g d ool g o of o 9 O g o © 4

. ° <

c - o~

it N x

= [T N
N

2 B

S = o 2

2| o = E) B

S| Y [=| a o 5

3| = g [% I~ I g

S| = [= = 3

R = (= b= 3

S| o = o H o S

PR = 22 J S

3| o = (% == S

3 = = 24 d g

3| = 4 <! 3

8l o = - < o o m

S H £~ O Mt O m J ™ o

5| & < = < o I « pi

HE = [=) < a g Ao 3

HIE) «n o % a H = 2

P = (=) M M 143 A 3 o

S| A < [« g oM =] < H &

ol < o o 2 od H B S s

3| > H o g3y H o o 2

B o il]

» 2 W q o H o 4 2

» 51 © o =] H o < o4 o 5

w 2 =& Py =) B 4 g0 99 2

o 2] < =] g 4 o Iy B

o 3| - = =] = = £

= o < = =] « =z H e o

< 3| m) = o - R e e

2 < = d4 o o I X ™ o

3| = = =) g H N o€ o om <

& H [=) &

R © o B

=] M [=] =

R m [=] 2

Q ol o 2

ES o| o EY

BN o] © PN

R o © 3 &

= o] o = < =

R o| © S 4 4 > R

Q of 9 < = 2

< ol © s o 2

N ~ o| o HH e &

& — ol © [T 8

< — o| O - 2

2 — o] o H 3 4 <« S

< o| 9 q4 < « > <

S [ol © o o o o=]

< — o + o o < -] N

2 ~ o ~ of o = I 2

oZ—k| 2 o o)

2 2

= B

W P

@*) -

3 O| O —~ El

2 oo ol | [s NN ~ o o @

S o b > > > P> S

3 N = == = =) e}

mm 2l w ol d =2 = = = -)

] L I I HH O HH i

S o) @\ A = = = e a o o« 5| ©

) O - = = = = H o O =6y =

o A 1 o

z PR = < 2

mm = [> — =i M - > =

S ~| A ~ < H = «

- N < <=1 | S H o~

- el M =l [T -

I11-203

REMARKS:

28.00. 109

%0C-1I11

RCA 3301

PROGRAM SAMPLE PROGRAM REALCOM ASSEMBLY PAGE NO.__13 OF 13
PROGRAMMER PROGRAM SHEET DATE
1]
N REFERENCE
LOCATION OPERATION SIZE | ADDRESS IDENT. KEY
T
1f2f3|lusis5]6 71819 |10}11)12 1516 19 353637 [3839 u0|ut {u2{u3 |uylus]|u6 64 |65 166|67]|68[69]7071]172|73F7ul75]76|77]78 |79 180
EINIDIRIUINDIE|F (S [E|Q BIE|G|I|N| |[E|N|D| |O F|I 0(o|1|5|0l0]0
SITIRIT| |c|L[o|S [E C|L[O|S|E| |I ujT o0joj1]5]|1]0{0
C|L|O|S|E C O|S|E 0 PiU 0l0l1(5/210/0
C[L|O|SIE C|L|O|S|E| |O P|U olof1l{5/3|0|0
E|X|I|T 0/0]1|5/4[0]0
EIN|D 0lof1]5!5[/0[0
1123 |4{5]6 7(819(10]11]12 15]16 19 35(36 {37 | 38139 (40|ur{u2/u3{usus|ue 64165 {56 |67 |68 (69 [70F 71|72 7374175476 17778179 |80

28-00-109

REMARKS:

APPENDIX A
DEVICE CONTROLLING CODES

DEVICE CONTROL (Except Console Typewriter)

The Device Controlling Codes provide the user with the ability to control
devices by issuing commands calling for such physical operations as "reading,"
"writing," and "rewinding."

FCP will retain control, however, over the scheduling of devices, control
modules, and Simultaneous modes.

The actual command to a device (such as for reading, writing and rewinding)
must be preceded by an ISSUE line of assembly coding.

Before another command may be given to the same device a FREEDV line of
assembly coding must be given. The FREEDV line directs FCP to retain con-
trol until the previously ISSUEd command to the specified device has been
completed.

The lines of coding that are required, therefore, are an ISSUE line, the
command line, and a FREEDV line.

Other lines that may appear are the TESTDV line and the SWAPDV line. The
TESTDV line is used to test the physical status of a device. The SWAPDV
line is used to switch devices for a magnetic tape file.

The user must prepare a device sequence witn the Device Region entries re-
quired. (See Example 1.)

If the user, in addition to Device Control, wants FCP to perform its
standard label functions, he must prepare a sequence with both the Device
and Label Regions present. With this option he may use the Device Con-
trolling Codes OPENL (Open Label) and CLOSEL (Close Label) for beginning
and ending label functions respectively.

DEVICE CONTROL (OPENL Line)

9?9 99 %

- = - =\
\
U
N
LOCATION OPERATION SIZE | ADDRESS
T
L1213 [s)s5)6 7|89 |w0f11f12f13|1uf15[16 |17|18)19]20]21(22]23]2u]25]26 {27128 29130(31)32{33{3u4 (35|36 3
O|P{E|N|L
FORMAT NOTES
LOCATION

A symbolic tag may appear in this field
if desired.

OPERATION

OPENL must appear.

® © © ©

Used to describe the usage of the device

where:
F = Forward input processing.
R = Reverse input processing.
0 = Output processing.

<:> ADDRESS

Name of the device sequence to be
opened.

NOTE: The OPENL function is analagous to the
OPEN function of file processing.

OPENL
Format

DEVICE CONTROL (CLOSEL Line)

B S A

N
U
N
LOCATION OPERATION SIZE i ADDRESS
T
1121314]5)6 718 |9 |10]1112 J13| 14145716 |17]18§19]20]| 21122123 2u]|25(26 |27}28 293031 |32|33|34|35
clLio|s [E|L NaME |[|a|D|D|[R|E|S]|S]
FORMAT NOTES
LOCATION

A symbolic tag may appear in this field
if desired.

OPERATION

CLOSEL must appear.

® © o O

For an Qutput file:

Intermediate reel to be closed.
Final reel to be closed.

o

SR

ADDRESS

©

First entry is the name of the device
sequence to be closed.

Second optional entry may specify the
end of file control address for an
input file.

CLOSEL
Format

NOTE:

INPUT

A CLOSEL, issued to a device sequence which issued an OPENL signifying
input processing, provides the ability to specify end of file control,
as in the READ macro for file processing. FCP will perform end label

processing as defined in the LABELS entry of the users sequence.

If FCP sensed the end of file sentinel, it will not rewind the device,
will not swap devices, and will transfer control to the specified
location.

If end of file is not sensed, FCP will rewind the current reel, swap
devices, perform beginning label checking for the new reel, and position
the tape prior to first data block.

OUTPUT

A CLOSEL, issued to a sequence which issued an OPENL signifying output
processing, provides the ability to indicate to the FCP whether to
create an end of reel or an end of file indication in the sentinel
format.

If end of reel is signified, FCP will perform end label processing as
specified in the LABELS entry of the sequence, create end of reel sen-
tinel format, rewind the device, swap devices, and perform beginning
label processing on the new reel. Rerun procedures will be performed if
indicated in the device assignment for this sequence.

If end of file is signified, FCP will perform end label processing as
specified in the LABELS entry of the sequence, create end of file
sentinel format, and return control to the user, Note that the device
is neither rewound nor swapped. If the user desires the first device
to be the current device in the region, a SWAPDV must be issued.

CLOSEL
Format

DEVICE CONTROL (SWAPDV Line)

/

? 2 99 9

AY
A

®

© O O

A symbolic tag may appear in this field
if desired.

OPERATION

SWAPDV must appear.

Not used.

ADDRESS

Name of the device sequence for which a
device swap is to be performed.

NOTE: For users processing multi-reel files.

FCP makes the next device the current
one to be processed. Reverts back to
initial device when the multiple de-

]
N

LOCATION OPERATION SIZE | ADDRESGSS
T

tl2]3fufs|e]7|8]o]w]|t]t2]1a|au|15f16{17{18]19]20]21|22]|23|24|25]26 {27 |28 | 29|30]31 32|33 |5u |35 | 36|37
S|W/A|P|D|V
FORMAT NOTES
LOCATION

vices assigned have been exhausted.

SWAPDV
Format

DEVICE CONTROL (ISSUE line)

® ©) ©) ®
v v ' '

\
U
N
LOCATION OPERATION SIZE | ADDRESS

T
tl2]s|a|s]6)7lslofw|ratiz]1sy1s{15]|16 |17|18)19020]21]22]23 2|25 |26 [27]28 | 29|30(31 |32]33|3u4 |35 36|37
RIDM|S|T I|S|S|U|E

FORMAT NOTES

LOCATION

A symbolic tag may appear in this field if desired.

ISSUE must appear.

SIZE

See following page.

z

©,
©,
O,

Not used.

This field is used for control information only when device interchangeability
has been specified in the Device Sequence.

The characters that should appear in each column are as follows:

COL. CHAR.
13 0 Not defined at present
14 0 Not defined at present
15 0 Not defined at present
16 Device If a device type code (see table below) ISSUE
Code is placed in this location and another Format
device is assigned, the following

A-6

SIZE (Cont'd)

COL.

16

17

17
18

CODE

[NCT

[< @)}

U o w >

©

CI-]AR L]
command line will not be executed and control will be
transferred to the instruction following the command line.

0 If a zero is entered, the following command line will
always be performed.

1 This character is used to specify the appending of printer
control information to the right end of output data when
magnetic tape is substituted for the printer. The pro-
gram must allocate the additional four character area fol-
lowing the output area if the option is used and if the
maximum record exceeds 116 (or 156) characters. This
control information is for the Tape To Printer service
routine.

0 No function performed.

0 Card punch translate mode

1 Card punch binary mode

DEVICE CODES
DEVICE CODE DEVICE
581 Magnetic tape station E Paper Tape Punch

Card Punch Console Typewriter

582 Magnetic tape station F Interrogating Typewriter
681 Magnetic tape station G Data Disc File
3485 Magnetic tape station H 3488
Any Magnetic tape station J Communication Control
Printer K CcMC
Card Reader L DXC

VA

¢

Paper Tape Reader Any Device

ADDRESS

This field will contain the name of the Device Sequence as the first
entry. This first entry may be $0 if the sequence name has been
placed in INDEX 1. The second entry in this field is an optional
four character entry and must appear (separated from the first entry
by a comma) if the following command line may address the printer as
one of the possible devices. (See Note below.)

This four character entry, following a comma, is written as follows:

ISSUE
Format

NOTE :

1st CHAR.
1 Advance paper number of lines specified by 3rd character
2 Advance paper by tape loop
4 Page change by tape loop
2nd CHAR.
0 Asynchronous Mode Printing
1 No printing
2 Synchronous Mode Printing
3rd CHAR.

If the 1st character is 1, this specifies the number of lines to
advance paper. The numbers 10 to 15 must be expressed as SP, #,
@, (,), e, respectively.

4th CHAR.

0 No high speed memory to buffer transfer
1 Print 120 characters

2 Print 160 characters
4

Transfer 64 contiguous print table characters to the print
table portion of the buffer,

The second entry (printer control information) is used when inter-
changeability is specified in the Device Sequence and the printer is
one of the possible devices. If device interchangeability is not
specified and the printer is specified as the device to be designated,
this control information will appear as the second entry of the com-
mand line.

ISSUE
Format

DEVICE CONTROL (Command line)

(This line of coding must follow the ISSUE of command line.)

?@ ONNONNO

LOCATION OPERATION SIZE

ADDRESS

-——_c

1123 lulste]7]8]9|10]11]12]13}14[f15[16 (1718 19120 21122|23)2u 2526 |27128|29{30|31|32{33]|3435]|36|37

FORMAT NOTES
LOCATINN

A symbolic name may be entered in this if desired.

OPERATION
One of the following entries may appear:

RDF (Read Device Forward)
RDR (Read Device Reverse)
WRT (Write to Device)

RWD (Rewind Magnetic Tape)
ERS (Erase Magnetic Tape)
CDV (Control Device)

@ @ SIZE AND UNIT

Not used.

@ ADDRESS

A and B addresses are required in the ADDRESS field of the command line
for the following specified devices. (See NOTE for entries where inter-
changeability of devices may be specified.)

DEV. CONTROL
COMMAND
LINE

Format

DEVICE

Magnetic
Tape
(RDF-WRT)

Magnetic
Tape
(RDR)

Magnetic
Tape
(RWD)

Card Reader

A ADDRESS

Tag of 1/0 Area Tag of I/0 Area

(The left-end and right-end addresses
will be assigned and assembled for the
A and B addresses respectively.)

Tag of 1/0 Area Tag of I/0 Area

(The right-end and left-end addresses
will be assembled for the A and B addresses
respectively,)

$0 $1 (for Rewind to BTC)
$2 (for Rewind to Load-
681 only)
$4 (for Rewind of 1
gap)

Tag of Input Area $0000

(RDF) (The input area must be diad oriented.
A left-end address is assembled.)
Card Punch Tag of OQutput Area $0 (for translate mode)
(WRT) The output area $1 (for binary mode)
must be diad
oriened. A left-
end address is
assembled.)
Paper Tape Tag of Qutput Area Tag of Qutput Area
Punch (Left-end address (Right-end address
(WRT) assembled,) assembled,)
Printer Tag of Qutput Area &abed (where abed
(WRT) Area must be diad represent the
oriented and left- printer control in-
end address will formation as ex-
be assembled. plained for the
ISSUE line)
NOTE: Where interchangeability of devices is specified, the A and B

address entries are written as specified for magnetic tape (RDF-

WRT).

Necessary control information for printer or card punch out-

put are entered in the ISSUE lines in the 2nd ADDRESS and SIZE

entries respectively,

DEV. CONTROL
COMMAND

LINE Format

A-10

DEVICE CONTROL (FREEDV Line)

® ® ®<?@

.

/ / \

LOCATION OPERATION SIZE ADDRESS

—_—_—=c

1{23|u]5)6)7]|8]9]|10|11)j12813]14115}16 1718 §19)20] 21]22]23|2u]25|26 |27]28 | 29|30(31 [32{33|34(35|36|37 |

FORMAT NOTES

@ LOCATION

A symbolic name may appear in this field if desired.

<:> OPERATION

FREEDV must appear.

@ @ SIZE and UNIT

Not used.

@ ADDRESS

This field will contain the name of the Device Sequence as the first
entry (TAG 1). This first entry may be $0 if the sequence name has been
placed in INDEX 1.

The second entry (TAG 2) is the location to which control will be trans-
ferred if an abnormal or non-recoverable termination occurs such as:

a. E/F or E/D

b. A/B equality and no gap.

c. Unrecoverable read parity.

d. Designated device not present.

(For determining the reason of the termination see TESTDV code.)

If this second entry is $U the address of the instruction following
the FREEDV line will be generated.

FREEDV
Format

A-11

NOTE: Following the FREEDV code the address of the location to the right
of the last character read will be stored in MASTER + $16 to MASTER
+ $19. (Where master = device sequence name).

(For reading in a reverse direction the address stored would be
that of the location one to the left of the last character read.)

FREEDV
Format

A-12

DEVICE

CONTROL (TESTDV line)

LOCATION OPERATION SIZE

—_—_-=c

FORMAT NOTES
LOCATION

A symbolic name may be entered in this field if desired.

OPERATION

TESTDV must appear.

SIZE

This entry specifies the test(s) to be performed. A table of the codes
used is on a following page.

UNIT

Not used.

ADDRESS

The name of the Device Sequence is the first entry (TAG 1) in this field.
This first entry may be $0 if the sequence name has been placed and is
present in INDEX 1.

The second entry (TAG 2) is the location to which control will be trans-
ferred if any of the tested conditions are present.

TESTDV
Format

This field specifies which tests are to be performed. The tests are per-
formed based on a 1 or 0 bit present in a character. Only the character is
shown for performing a specific test.

COL. CHAR. FUNCTION
13 % Used to test more than one condition. Additional tests

performed at the location specified in the second
entry of the ADDRESS field.

14 - Has the ISSUED command terminated normally?

14 & Has the ISSUED command terminated abnormally?

14 4 Has the ISSUED command been initiated?

14 2 Has the ISSUED command been queued?

154 See following table for proper column and character

16 for specific test(s).

17 Device If a Device Code (see SIZE entry of ISSUE format) is
Code specified in this location the TESTDV function will

be performed only if that device has been assigned.

17 0 TESTDV will always be performed.
18 1 Ignore if a CDV or RWD command.
18 2 Ignore if a RDF command.

18 4 Ignore if a RDR command.

18 8 Ignore if a WRT command.

18 & Ignore if a ERS command.

TESTDV

Format

A-14

TABLE OF TESTS

COLS. 15-16 of SIZE field

COL. CHAR. Test or Command
MAGNETIC TAPE
15 1 Is the device inoperable?
15 2 Is the tape in motion?
15 4 Has ETW been sensed?
15 8 Is the tape at BTC?
15 & Is the tape moving in reverse?
15 - Is splice detected?
16 1 Is there a Parity Error on read or write (PE)?
16 2 Is there a Magnetic Tape Alarm (MTA)?
16 4 Has A-B equality and no gap been sensed?
16 8 Is the E/F-E/D indicator set?
CARD READER .
15 1 Is the device inoperable?
15 2 Is the device operating (busy)?
15 4 Is there a Photo-Diode Failure (PDF)?
15 8 Is there a Multi-Punch Error (MPE)?
16 8 Is the E/F indicator set?
CARD PUNCH
15 1 Is the device inoperable?
15 2 Is the device operating (busy)?
15 4 Is there a Punch Compare Error (PCE)?
15 8 Is there a Parity Error (PE)?
PAPER TAPE READER
15 1 Is the device inoperable?
15 2 Is the device operating (busy)?
15 8 Is there a Parity Error on a read (PE)?
16 4 Has A-B equality and no gap been sensed?
16 8 Is the E/F-E/D Indicator set?
PAPER TAPE PUNCH
15 1 Is the device inoperable?
15 2 Is the device operating (busy)?
15 8 Is there a Parity Error on a write (PE)?

Cont'd on next page.

TESTDV
Format

A-15

COL. CHAR. Test or Command
ON LINE PRINTER
15 1 Is the device inoperable?
15 2 Is the device operating (busy)?
15 4 Is there a low paper supply?
15 8 Is there a Parity Error (PE)?
15 & Is the paper advancing?
TESTDV
Format

A-16

DEVICE CONTROL EXAMPLE 1

(EXAMPLE OF FORWARD READING OF MAGNETIC TAPE OR PAPER TAPE)

@
©Oae

O
)

OLO ©

0,

U
N
LOCATION OPERATION SIZE | ADDRESS
T
11213 juj516 37|89 |10]11{12 131 1u|15]16 |17 18192021 |22(23 242526 127128 12913031 132133]34(35]36]|37 (38
MIA[S|T|E|R|DI|E|F|S|E|Q D|, |N[,]A
U(S|E|I|N
BIA|C|K|U|P
L~ |+ P i e = i e T e S
R|D|MJA|S U|E M|A T
R|DF MIA RIE|C|{, [MIA|SIRIE|C|+]|$]|9]9
T — —1 - et AT N
FIRIEIE|D |V MIA|IS|TIER|, [EIRIRIT|N

This is the Device Sequence Note that only the USEIN and BACKUP lines are
necessary.

The ADDRESS entry contains the symbolic name of the Device Sequence.
The input area MASREC must have been allocated by the programmer.

The FREEDV command directs FCP to retain control until the previously
ISSUED command has been completed.

The first ADDRESS entry (MASTER) is the Device Sequence name. The
second ADDRESS entry (ERRTN) is the location to which control will be
transferred if any of the following conditions are present:

a. E/F or E/D

b. A-B equality and no gap on tape.

c. Unrecoverable read parity.

Symbolic names may appear in the LOCATION field for these lines if desired.

DEVICE
CONTROL
Example 1

A-17

DEVICE CONTROL EXAMPLE 2

(Example of writing to a device that may include the printer as one of the
interchangeable devices.)

u
N
LOCATION OPERATION SIZE | ADDRESS
T
1213|451} 6 71819 f10f11|12 13| 1u]15]|16 [17|1819)20 21 (22|23 |2u}|25(26 [27}28 29|30 (31 |32|33|34|35{36(37 |38
(:)—ir I|S|S|UJE MIA|ISIFIT|Li, 1110131
2 R|IT M|A|{S|R C
b e B L] R e RS [T~ e —~
FIRIE|[EID |V MIAISIFII|L|,/E|RIR|T|N
(:) First ADDRESS entry (MASFIL) is the name of the Device Sequence. Second
ADDRESS entry is printer control information for printing a 120 character

line in the Asynchronous mode and advancing the paper three lines.

<:> First ADDRESS entry is the tag of a 12 (or 16) decade area allocated by
the programmer and will contain information to be written.

DEVICE
CONTROL
Example 2

A-18

SPECIAL DEVICE CONTROLLING CODES

These controlling codes TYPE and TYPERD used for the console
do not require an associated sequence description.

The two codes and their functions are:

IYPE

This code provides the ability to type a message on the
typewriter

TYPERD

This code provides the ability to type a message on the
typewriter and receive a return message.

These are special codes and do not require the use of either
or FREEDV codes.

A-19

typewriter

console

console

the ISSUE

TYPE (Format)

(The TYPE controlling code provides the ability to type a message on the
console typewriter. The message area is immediately available to the user.)

©) ONONNO.
RN

; '

\ [X
u
N
LOCATION OPERATION SIZE | ADDRESSS
T
1231456789101112131&1516171819202122232112526272829303132333&353637
T|Y|{P|E 715 M[{S|G|A|R
FORMAT NOTES
LOCATION

A symbolic name may appear in this
field if desired.

OPERATION

TYPE must appear in this field

SIZE

The decimal number of characters
to be TYPEd is written in this
field. The range of characters

to be TYPEd may be between 01 and
79 if the UNIT field is left blank.
If a letter I is entered in the
UNIT field the range may be from
01 to 85,

UNIT

If the UNIT field is blank, a six
character area at the beginning
of the TYPEd message will be allocated

for the Task Identification label
followed by a space. If an I is entered TYPE

in the UNIT field, this prefix function Format
will be inhibited and the message may

be 85 instead of 79 characters in length.

A-20

ADDRESS

The name (tag) of the message area (left-end
address) is written in the ADDRESS field.
This may be an address that is modified
and/or indirectly addressed.

NOTE

The use of the TYPE device code destroys the contents of STA and STP.

TYPE
Format

A=-21

TYPERD (Format)

(The TYPERD controlling code provides the ability to type a message on the
console typewriter and then receive a return message from the console,)

O ® e 6 O

~
U
N
LOCATION OPERATION SIZE | ADDRESS
T
112|314]5}6 718191101112 13f1u[15]16 [17]18 1942012112223 (2425126 27128 129(30(31 [32]33(34]35(36]|37
TIY|PIERD 7|51, |4 15 MS|g ,|MS|Gl1
FORMAT NOTES
LOCATION

A symbolic name may appear in this
field if desired.

OPERATION
TYPERD must appear in this field.

SIZE

The decimal number of characters to be
TYPEd is written as the first entry in
this field. A comma follows this entry
and the number of characters of the
input messages is the second entry of
this field. The output message size
(first entry) may range from 0l to 79
if the UNIT field is left blank or from
Ol to 85 if the letter I is written in
the UNIT field., The input message size
(second entry) should be one greater than
the actual input message desired.

TYPERD
Format

A-22

UNIT

If the UNIT field is blank, a six character

area at the beginning of the TYPEd message will

be allocated for the Task Identification label
followed by a space. If an I is entered in the
UNIT field, this prefix function will be inhibited
and the message may be 85 instead of 79 characters
in length.

ADDRESS

The name (tag) of the output messages is written as the

first entry followed by a comma.

The name (tag) of the return message area is written as

the second entry.

Either of these addresses may be modified and/or indirect
addresses.

The terminal address plus one character will be stored in the
four character area following the read area; therefore, four
additional characters must be allocated following the input
area.

NOTE

The use of the TYPERD device code destroys the contents of STA and STP.

TYPERD
Format

A-23

APPENDIX B

IN-PLACE PROCESSING

The type of batch processing discussed in previous sections of this manual has

required the allocation of a record processing area in addition to the input or
output areas.

An illustration of the area allocation for processing of this type would be as
illustrated below for an input file which is batched:

INPUT AREA
(BLKAR)

REC. |REC.] REC.

RECORD
PROCESSING
AREA

RECORD

ALTERN. AREA
(ALTAR)

REC.|REC.| REC.

This method of processing has advantages. It is easily understood and easily
programmed. The programmer can address items within the record area by their
symbolic names without indexing. With the provision of an alternate area, he
can obtain maximum simultaneity without being concerned with which input area
is providing the record.

However, in some programming situations there are disadvantages to processing
in this manner. The programmer may not have sufficient memory to allocate for
either an alternate area or a record processing area. Also in some situations

he might want to save the time required to move each record to a processing
area.

In such a situation, the programmer may decide to process each record in the in-
put area (BLKAR) as in the following illustrations:

INPUT AREA
BLKAR

Each Record processed in
place in the Block Area
(BLKAR)

The above illustrates the use of the block area only for processing, The pro-
grammer might also use an alternate area. This would provide for simultaneity
and would still allow for in-place processing as in the following illustration:

INPUT AREA
(BLKAR)

= ——
Each record processed in

place in the Block and
RECORDS Alternate Areas.

,—-&._\,—-—A—_/'—\

INPUT ALT. AREA
(ALTAR)

When doing in place processing, the programmer must furnish FCP with use of the
second or third INDEX Fields if either or both of the following conditions are
present:*

1. The file is in batched record format.

2., An alternate file area has been allocated.

Example of in-place processing in a Block Area (BLKAR)

As an example of in-place processing of an input file, assume that a file is
batched by five fixed length, 100 character records and each record will be pro-
cessed in place in the input area.

The programmer allocates a 500 character area,decade oriented,as the input block
area and gives the symbolic tag INPAR to this field.

For the in-place processing function, the pertinent lines of the file descriptor
sequence for this file are as follows. (See Section V for complete format of
FCP File Sequence.)

*It should be noted that providing FCP with the use of the INDEX Field (M2 or M3)
as a modifier does not preclude its use by the programmer for other functionms.

LOCATION OPERATION SIZE ADDRESS

——=c

123 |ulsfe7]8tofwy1i|12]13]1uf15]16 [17]18) 1920|211 22|23]|24]25|26 (27128 (293031 {32{33|34

I|NIF|{I|L|EJD|E|F|S|E|Q Fl, |Nl,[|A

INFILE is the name assigned to this file.

BIL [K]A[R I N|PJA RI |
LIT|A|R ,J l \

INPAR is the input block area assigned for this file and
no alternate area is assigned.

The RECAR line specifies in the UNIT field that Index 2 has
been assigned.

Bl lrle s L ol ol s L]
}R;EEC{O}R{D%;IHILHIH'IOll‘O‘OHlHH‘HH

The BATCH line specifies a fixed (F) number of records (0005)
to the batch. The RECORD type is B and there are one hundred
(0100) characters in each record.

FCP, furnished the above information, can perform its input
function and furnish the address of the current record being
processed in INDEX Field 2,

As an example, assume that at object time, the area allocated
for INPAR is HSM 5000 to 5499, When the first READ controlling
code of the program is encountered, the input area is filled
with five records and INDEX Field 2 contains the address of the
first record as illustrated below:

B-3

First READ

Input Area INPAR INDEX 2
After READ

5000 3100 5200 5300 5400

REC 1 REC 2 REC 3 REC 4 REC 5 5000

At the time the next READ is encountered the INDEX Field 2 is incremented by 0100
(the number of characters on the RECORD line) as illustrated below:

Second READ INDEX 2
After READ

This incrementing function of INDEX 2 continues with each encounter of a READ con-
trolling code until the input area is exhausted. This is controlled by the number
of records (5) on the BATCH line. When the area is exhausted, FCP performs a
physical read, refilling the input area and resets INDEX 2 to 5000,

Thus, the programmer is aware that following every read the left-end address of
the record being currently processed is in INDEX 2,

He might use this field as a modifier to each address in the record processing
path. As an example, assume that each record consists of items in the following
format:

Item No. of Characters
ACCOUNT NO. 7
CODE 3
BALANCE 8
FILLER ITEMS 82
TOTAL CHARACTERS 100

To address the Account No., for example, he might write in the ADDRESS field of
an instruction a zero relative indexed address as follows:

$0:M2
and to address the Code item a similar type address each as:

$7:M2
However, the 3301 Assembly System provides an option for this type of addressing
function which allows the use of symbolic names in place of pure zero relative

addresses.

As an option at assembly time, a sequence may be assembled using a code of 4 in
the UNIT field (See VALIDATION - Section III of this manual).

B-4

This code assembles a zero relative address for each symbolic name in the sequence
and further specifies that the sequence is not to be loaded at object time.

The programmer could write a sequence and obtain addresses for this example as
follows:

CODE 4 VALIDATION*

l

MIDIE|S|{C|R|DIE|{F|S|E|Q 4 ASSEMBLED ADDRESSES
AlL|O]|C
M|A|CI{C|N|O 7 0000 - 0006
M|C|O|D|E 3 0007 - 0009
8
MBIAL 0010 - 0017
MIF|I|L|L 812
0018 - 0099

*The only codes other than ALOC that may be used in this type of sequence are
REDEF, RENMANE and REMARK.

Having thus defined the sequence, the programmer might write addresses as follows:

After first READ

INDEX 2 EXECUTED ADDRESS*
MACCNO:M2 5000 5000
MBAL :M2 5010
MFILL:M2 5018
*Assuming generated left-end address.
After second READ
INDEX 2 EXECUTED ADDRESS*
[5100
MACCNO: M2 5100
MCODE : M2 5107
MBAL : M2 5110
MFILL:M2 5118

*Assuming generated left-end address.

Another example of in-place processing may be used to conserve a separate "record"
area. This method allows processing of the record in the output area. The fol-
lowing is an illustration using only the input and output block areas. (Alternate--

B-5

ALTAR--areas may also be used in this method but are not shown for simplification
purposes.)

INPUT AREA (BLKAR) OUTPUT AREA (BLKAR)

OUTPUT
FIL

In this example each successive READ moves an input record to the output area
and is processed in the output area. When a WRITE is given for the output file
the record is included in the output batch.

For this example assume again that there are five 100 character records per input
and output batch and that the programmer has allocated an input area and output
area as INPAR and OUTPAR respectively.

The lines pertinent to the in-place processing function for both the input and
output file are as illustrated below.

INPUT FILE
U
N
LOCATION OPERATION SIZE |

T
tl2]s]ulslel7]a|o|w0]11]12]13|1u]|15[16 [17]|18]10 20|21 |22]|23]2u|25]26 {27
I|F|I|Li{E| |DIE|F{S|E|Q Fl,|N|,|A
BIL|K|A[R IIN|IPIAIR
RIEIC|AIR M|2
B|A|T|C|H F|0]|0|0|5
R CiO{R|D B 0/1]0(0

OUTPUT FILE

O|F|TILE DI{E|F[S|E|Q F|, (N, A
B|L|K[A|R O|U|T|P|A|R
R|E{C|A[R 2

B|A|T|C|H F|0{0|0|5
R|E|/L{O|R|D B 0/1/0]|0

It should be noticed that INDEX Field 2 is used as a reference on the RECAR line
for both the input and output files. Thus, the FCP Controlling code READ for the
input file not only fills the input area when necessary but also transfers a re-~
cord to the location in the output area. The output file however is controlling
the INDEX Field. INDEX 2 is not incremented until a WRITE FCP controlling code is
given,

To illustrate, assume the following allocations are made at object time.

INPAR

5000 5100 5200 5300 5400
i

OUTPAR

KFOOO 6100 6200 6300 6400

INDEX 2
CONTENTS AFTER FCP

PROGRAMMED OPERATION CODE FUNCTION(S) PERFORMED
(FIRST) READ 6000 *Input area (INPAR)
filled. First re-
cord moved to 6000
(INDEX 2)
(PROCESSING STEPS) Processed in output

area. All addresses
modified by :M2

(FIRST) WRITE | 6100 Record included in

output batch by in-
crementation of
INDEX 2

(NEXT) READ 6100 *Next record moved

from input area to
6100 (INDEX 2).
Note that INDEX 2 is

(Processing Steps) not affected by a
READ.
(NEXT) WRITE ! 6200| Record included in

output batch by in-
crementation of
INDEX 2,

*FCP is using INDEX 2 only to move the current record to the output area. It is
using internal counters (number of records per batch) and the number of characters
per record to maintain position control within the input area.

The examples given have been simplified for illustrative purposes. It should be
realized that these same methods may be used with records of a different format
type, with alternate areas provided, and with batch sizes that are of different
size on input and output files,

B-8

APPENDIX C
STUDENT PROJECT

STATEMENT OF THE PROBLEM

This problem is for training purposes only and in no sense is it intended to
be a realistic approach to a problem.

The Standard Gas Company (a public utility) includes the merchandising appli-
cation as a part of its data processing operation. Three types of merchan-
dise are sold on a time payment contractual basis. These are gas ranges,
water heaters, and conversion (gas) burners.

For this problem, the assumption is that only three models of each item may
be contracted for and a table of these items by type of stock is on page
C-9.

The problem requires you to write sequences for two runs in the merchandising
application; a posting run, and a billing message calculation and prepara-
tion run. A systems chart for each of these runs is on the following page.

The posting run is simplified to include only two general types of trans-
actions. One transaction file consists of cash payments and revenue adjust-
ments. These are posted to the master file and accumulated in credit fields.
See format and processing action on page C-7. A second transaction file
consists of new accounts. It will be necessary to construct a master file
record for each new account. See format and processing action on page C-5.

In the billing run, you will prepare a billing message for each record on
the master file and a collection notice message for each account in arrears
after the bill is calculated.

You will be required to prepare sequences for each of these process runs as
outlined in detail under Requirements on page C-3.

MERCHANDISE APPLICATION

PARTIAL SYSTEMS CHART

POSTING
RUN

TRANS
ERRORS

CALC.
BILLING

MSGS. AND
COLL. NOT.
PREP.

REQUIREMENT 1

Prepare the FCP file sequences.

REQUIREMENT 2

Prepare a data sequence to describe the record areas for all files in the
Posting Run.

REQUIREMENT 3

Prepare the PROCESSING sequences for Posting Run. Sequence of preparation
to be given in class.

REQUIREMENT 4

Prepare PROCESSING sequences for Calculating Bill and preparation of billing
and Collection Notice Tape. Sequence of preparation to be given in class.

DATA SHEET
MERCHANDISE MASTER (TAPE)

FIXED FIELD FORMAT

UNBATCHED

MERCHANDISE ACCT NO 10
UTILITY ACCT NO 10
CUSTOMER NAME 30
STREET ADDRESS 20
CITY STATE ADDRESS 18

BAD CHECKS
COLLECTION NOTICES SENT
MERCHANDISE STOCK NO
TYPE OF STOCK
DESCRIPTION 1
SALES ORDER NO
DATE OF CONTRACT (YR MO DA)
TOTAL MOS CONTRACT PERIOD
NO MOS REMAINING CONTRACT PERIOD
ALLOWANCE
TYPE ALLOWANCE
DEPOSIT
FINANCE CHARGE
TIME BALANCE (TOTAL)
MONTHLY PAYMENT
FINAL PAYMENT
TOTAL DUE
AMOUNT CURRENTLY DUE
30 DAY ARREARS
60 DAY ARREARS
90 DAY ARREARS
OVER 90 DAY ARREARS
1st CREDIT CODE (CASH PAYMENT)
DATE (MO DA)
CREDIT AMOUNT
{%nd CREDIT CODE (MISC CREDITS)

Related Items

4} Related Items

DATE (MO DA)
CREDIT AMOUNT

NPLONDLWIINNININNNINININIE I NN O UL AN N

C-4

NEW_ACCOUNT TRANSACTION (TAPE)

MERCHANDISE ACCT NO
TRANSACTION CODE
UTILITY ACCT NO
CUSTOMER NAME
STREET ADDRESS

CITY STATE ADDRESS
MERCHANDISE STOCK NO
TYPE OF STOCK

SALES ORDER NO

DATE OF CONTRACT
ALLOWANCE

TYPE ALLOWANCE
DEPOSIT

DATA SHEET

FIXED FIELD FORMAT

UNBATCHED

10

10
30
20
18

NN W

TITLE

NEW ACCOUNT

ACTION

Construct New Master and insert on
Master File.

Create following fields on New
Master.

All other alpha and numeric fields
space and zero filled respectively.

TOTAL MOS CONTRACT PERIOD

Calculate based on Time Balance Amt.

LESS THAN
$100.00 12 MOS
$100.00 - 199.99 18 MOS
$200.00 - 299.99 24 MOS
$300.00 AND OVER 36 MOS

FINANCE CHARGE

6% per year on Cash Price less
Deposit and allowance.

EXAMPLE:
$300.00 Cash Price less Deposit
& Allowance
54,00 FINANCE CHARGE

TIME BALANCE

(Cash Price less Deposit and Allow-
ance plus finance charge)

MONTHLY PAYMENT

TIME Balance ¥ NO MOS (Nearest full
dollars)

FINAL PAYMENT

(Monthly Payment X (Total Months
Contract Period -1) minus Time
Balance

TOTAL DUE

Amt Currently Due plus Arrears

AMOUNT CURRENTLY DUE

This month's payment
ARREARS FIELDS

Calculated and updated in Billing
Run except for New Accts and Bad
Check Transactions

DATA SHEET

CASH RECEIPTS, CREDIT AND DEBIT

TRANSACTIONS

MERCHANDISE ACCT NO 10
CODE 3
DATE (MO DA) 4
AMOUNT 7
FIXED FIELD FORMAT
BATCHED BY 10
CODE TITLE ACTION
110 CASH PAYMENT 1. Add amount to first Credit Code Amount
field.
2. Date to 1st Credit Code date field.
120 to MISC. CREDITS 1. Add amount to 2nd Credit Code Amount
150 incl. field.
2. Date to 2nd Credit Code date field.
3. Code to 2nd Credit Code field.
160 BAD CHECK 1. Add amount to Total Due.
2. Add amount to last open arrears field.
3. Increase Bad Check Code by 1.
161 BAD CHECK 1. Add Amount to Total Due (plus 10% of
(DEPOSIT) AMOUNT as a bad check charge).
2. Add amount to last open arrears field.
3. Increase Bad Check Code by 1.

DATA SHEET
BILLING MESSAGES
FIXED FIELD FORMAT
VARIABLE NO OF FIELDS
BATCHED BY FIVE

MDS ACCT NO

CUST NAME

ST ADDR

CITY STATE ADDR

TOTAL DUE

AMOUNT DUE

30 ARREARS VARIABLE
60 ARREARS VARIABLE
90 ARREARS VARIABLE
OyER 90 ARREARS VARIABLE
E/I

DATA SHEET
COLLECTION NOTICE MESSAGES
FIXED FIELD FORMAT
BATCHED BY FIVE

MDSE ACCT NO
CUST NAME

ST ADDR

CITY STATE ADDR
COLLECT NOTICES
TYPE STOCK

MDSE STOCK NO
DESCRIPTION
SALES ORDER NO
TOTAL DUE

AMT CURR DUE
ARREARS TOTAL

10
30
20

[a
NN NN NN 00

STOCK AND PRICE

TABLE
TYPE OF STOCK CLASS

0XX GAS RANGE

1XX WATER HEATER

5XX CONV. BURNER

TYPE OF STOCK CASH PRICE DESCRIPTION

011 150.00 #75 ECON
015 195.00 #84 AUTO
016 220.00 #93 AUTO
100 75.00 #25 ECON
110 170.00 #30 AUTO
116 275.00 #40 MAGIC MIND
501 250.00 #17 ECON
503 325.00 #41 MEDIUM
505 1093.00 #85 INDUSTRIAL

POSTING RUN PROCESSING ERROR CONDITIONS

Same Merch. Acct. No. on Master and New Acct. Record

Write new account record to error tape with a "9" as the third digit
of the transaction code.

New Acct. Record with Erroneous Trans. Code
Same as above except with an "8" as third digit of the transaction code.

No Matching Master for Cash Record

Write transaction to error tape with "7" as third digit of transaction
code.

Cash Record with Erroneous Trans. Code

Same as No. 2 above.

CUT ALONG LINE

s e e e s e sememecansccremmete s ol

Dear Reader:

Have you any comments or suggestions concerning this publication?
you feel would enhance its usefulness....are there any errors that should be corrected?

RCA 3301 REALCOM Training Manual

preciate it if you would use this form to tell us about it.

‘CORRECTIONS AND OMISSIONS (Please specify page numbers):

ADDITIONS AND DELETIONS (Please specify page numbers):

Name

Are there any omissions or deletions which

If so, we would ap-

FOLD

Title

Company

Address

NO POSTAGE REQUIRED IF MAILED IN U.S.A,

STAPLE STAPLE

..

FIRST CLASS
PERMIT NO. 16

CAMDEN, NEW JERSEY

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY—

RADIO CORPORATION OF AMERICA
ELECTRONIC DATA PROCESSING
CAMDEN, NEW JERSEY 08101

ATTN: Manager, Education and Training
Cherry Hill
Bldg. 204-2

..

CUT ALONG LINE

	001
	002
	003
	004
	005
	006
	007
	008
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-000
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	3-126
	3-127
	3-128
	3-129
	3-130
	3-131
	3-132
	3-133
	3-134
	3-135
	3-136
	3-137
	3-138
	3-139
	3-140
	3-141
	3-142
	3-143
	3-144
	3-145
	3-146
	3-147
	3-148
	3-149
	3-150
	3-151
	3-152
	3-153
	3-154
	3-155
	3-156
	3-157
	3-158
	3-159
	3-160
	3-161
	3-162
	3-163
	3-164
	3-165
	3-166
	3-167
	3-168
	3-169
	3-170
	3-171
	3-172
	3-173
	3-174
	3-175
	3-176
	3-177
	3-178
	3-179
	3-180
	3-181
	3-182
	3-183
	3-184
	3-185
	3-186
	3-187
	3-188
	3-189
	3-191
	3-192
	3-193
	3-194
	3-195
	3-196
	3-197
	3-198
	3-199
	3-200
	3-201
	3-202
	3-203
	3-204
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	replyA
	replyB

