TP 1086

RCA 4100

PROGRAMMERS' REFERENCE MANUAL
[

DATA SYSTEMS DIVISION
DEFENSE ELECTRONIC PRODUCTS
RADIO CORPORATION OF AMERICA



RCA 4100
PROGRAMMERS' REFERENCE MANUAL

Data Systems Division
Defense Electronic Products
Radio Corporation of America



4100 REFERENCE MANUAL

ERRATA
PAGE CORRECTION

2-1 The fourth line in the fourth paragraph should be amended to read,
"content of the selected B-box, denoted as C(B), is algebraically
added -- modulo 214 —_n - '

6-2 { The fifth line below thevinstruc,tion word format which reads, 're-
places the C(AC)O. " should be deleted.

8-2 The first sén'ténce under the SKP instruction word format should
be amended to reaqd, ."This instruction tests the C(L) as specified
by the C-code of the instruction word. "

9-3 The first line of the first sentence in the second paragraph should

read as follows: "If the selected buffer is not available, it does
not accept the control word nor . . .".

ii




Section

10

CONTENTS

General Information . . - « « « « c o . e e e e e e e e e e e e e
Instruction Format . . . « ¢ ¢ ¢ o o o o v o e e e e e e e e e e
4100 Input-Output .« « « « ¢ o e e e e e e e e | e e
Word Transmission Operations . . . . . . . . . . e e e e e e e
Logical Operations . . . . « o« v v e v v vt e e e
Shifting Operations . . . . « o« c v o v v oo e e
Arithmetic Operations . . . . « .« « o v o v o v v e e e e e e
Control Operations . . . « ¢« « v o v v o v e e e
Input-Output Operations « « . o « o ¢ o v v v e e e e e e e e

Programming Examples . . . .« .« o . o e e e e e e e e

iii

5-1

6-1

7-1



SECTION 1

GENERAL INFORMATION

The RCA 4100 is a family of general-purpose digital computers, providing a high de-
gree of flexibility and system adaptability at moderate cost. The members of the 4100
family (Figure 1-1, 1-2 and 1-3) are interchangeable in their electrical, logical, and
mathematical characteristics.

The block diagram of the 4100 Basic Processor (Figure 1-4) illustrates the inherent
simplicity of the computer. Three 30-bit registers (AC, R, and G), one 30-bit adder
(), four 15-bit registers (F, I, L, and P), the random-access core memory, and the
control unit comprise the entire main frame.

Of these items, the accumulator register (AC), the flag register (F), the over-

flow indicator (V), and the core-storage cells are accessible to the programmer. Dual
significance is attached to the block of 128 core-storage words at the upper end of the
memory, termed the '"executive' space. Although these locations can be addressed
and treated as normal storage space, extreme caution must be exercised because they
are also used to control the sixteen programs which the computer is capable of handling.
(See Section 2 on Priority Interrupt and Input-Output.) This block is subdivided into
sixteen sections of eight words each. The first of these is the instruction location
counter, IL, which contains the location of the current instruction in the associated
program. The other seven are the corresponding B-boxes and work space, as indicated
in Table 1-1.

1-1



4101 Computer

-1.

Figure 1

1-2



Figure 1-2. Mobile Version of 4100 or 4150 Computer




O e oot

| -

gw'-‘ﬁzh-ﬂ'- o m
W awesusnswuusLe

Figure 1-3. Desk Version of 4100 or 4150 Computer

1-4



DEMANDS

l

EXECUTIVE SPACE

CORE
g AC
A A
J N A
INPUT OUTPUTq———l \
1 7 ‘_y____g —— ] T/ '
I
Ip | Ly or L s d g |
Lo l . | |
_ _ L__.__._..J T —
i 1 J vl,,

INTERNAL BUS

MISC - — — — <
I \

|
| | —— conTROL |

- -

Figure 1-4. Block Diagram of 4100 Basic Processor

1-5



TABLE 1-1
LOCATIONS IN EXECUTIVE SPACE

B-box | B-box | B-box| B-bo B-box | B-box
o IL 6 5 4 3% P73 1 Work
Priority Space

Lowest 37777 37776 | 3TTT5 | 37774 | 37773 | 37772 | 37771 | 37770
37767 37766 | 37765 | 37764 | 37763 | 37762 | 37761 | 37760
37757 37756 | 37755 | 37754 |37753 | 37752 | 37751 | 37750
37747 37746 | 37745 | 37744 |[37743 | 37742 | 37741 | 37740
37737 37736 | 37735 | 37734 |37733 | 37732 | 37731 | 37730
37727 37726 | 37725 | 37724 |37723 | 37722 | 37721 | 37720
37717 37716 | 37715 | 37714 | 37713 | 37712 | 37711 | 37710
37707 37706 | 37705 | 37704 |[37703 | 37702 | 37701 | 37700
37677 37676 | 37675 | 37674 |37673 | 37672 | 37671 | 37670
37667 37666 | 37665 | 37664 |37663 | 37662 | 37661 | 37660
37657 37656 | 37655 | 37654 |37653 | 37652 | 37651 | 37650
37647 37646 | 37645 | 37644 | 37643 | 37642 | 37641 | 37640
37637 37636 | 37635 | 37634 |37633 | 37632 | 37631 | 37630
37627 37626 | 37625 | 37624 | 37623 | 37622 | 37621 | 37620
37617 37616 | 37615 | 37614 | 37613 | 37612 | 37611 | 37610
Highest 37607 37606 | 37605 | 37604 | 37603 [ 37602 | 37601 [ 37600

Normally, the IL counter is decremented by one, following the execution of each in-
struction. This causes the instructions to be performed in descending sequential order.
Deviations from this sequence are discussed in later chapters.

The 4100 performs all arithmetic operations in two's complement notation. The most
significant bit of any word is its sign (i.e., "0" for a positive number and "1'" for a
negative number). For example, + .25 would be represented by the binary form
001000000000000000000000000000 and - . 25 would be represented by the binary form
111000000000000000000000000000.

It is, therefore, obvious that the range of numbers that can be represented by a machine

word extends from - 1.0 (octal representation 4000000000) to + 1. 0—2_29 (octal repre-
sentation 3777777777). The octal representation of the number '"zero'" is always
0000000000 and can never have a negative sign.

Whenever the result of an arithmetic operation exceeds these limits, the overflow in-
dicator V is set. Unless this indicator is reset prior to the completion of the next
instruction, the computation is interrupted and control is transferred to a pre-assigned
routine. (See pp 3-1,-2.)



Examples

Addition of two positive numbers

1230000000 2340000000
2340000000 3620000000
3570000000 (no overflow) 6160000000 (overflow)

(Note that the first octal digit of each word contains the sign bit).

Addition of two negative numbers

7120000000 4000000000
6300000000 5000000000
5420000000 (no overflow) 1000000000 (overflow)

Addition of numbers of unlike sign (No overflow possible)

4010000000 4110000000
3700000000 3700000000
7710000000 0010000000
4100000000
3700000000
0000000000



SECTION 2

INSTRUCTION FORMAT

The following sections define all the internal instructions of the 4100 and describe
their execution and the time required by each.

A diagram representingthe format of the instructionword is given for each instruction. (See
following illustration.) Preceding this diagram is the unique three-letter code
abbreviation of the instruction name, followed by the instruction name, itself, and

the basic execution time. The numerical operation code, bits 0-5, is given in the

octal number system, easily convertible to binary for reference to the bit pattern

ADD - Add 19. 2us

10 c | D B |S| L

interpreted by the machine. The numbers appearing beneath the diagram indicate the
specific bit positions of each part of the instruction word.

The symbol L appearing in the diagram denotes the address part of the instruction and
is usually 1nterpreted as the address of a word in core storage. Other interpretations
are described in connection with specific instructions.

The presence of the symbol B in any instruction word denotes the availability of a 'tag"
code, used for selecting a B-box, or index register. Except for instructions primarily
concerned with the changing, testing, or storing of B-boxes (specifically noted), the
content of the selected B-box, denoted as C(B), is algebrically added -- module 2 14 _

to the value of L to determine the "effective address'" of the instruction. In other
words, L+C(B) is substituted for L throughout the description of all instructions ex-
cept where noted. When the B-field is empty (B=0), no address modification takes
place. When B=7, the location of the current instruction, C(IL), is added to L toobtain
the effective address. (This type of address modification is defined as ''relative
addressing".) Intermediate values of B are used to specify any of the six B-boxes.

The symbols C and D, in the instructionword format, comprisea secondary instruction,

executed simultaneouslywith the primary instruction denoted by the operation code. This
secondary instruction is used as a program branching control, exceptasw ill be noted in

2-1



conjunction with specific primary instructions. The C code, in normal usage, specifies
the condition for branching and/or subsidiary functions (See Table 2-1). The D code
specifies the address, relative to the current instruction location, from which the next
instruction will be obtained if the C condition is satisfied.

-

TABLE 2-1

NORMAL C INTERPRETATION

C -Value Branch Condition Subsidiary Function

0 (D even) No jump A None

0 (D odd) No jump Reset V

1 Initial C(B)16—29 Z 0 Replace C(B) by C(B) -1
2 Initial C(B)1g_99 = 0 Replace C(B) by C(B) - 1;

Do not add C(B) to L

3 ' 4Final C(AC)=0 None
4 Final C(AC)> 0 None
5 Final C(AC) = 0 None
6 Final C(AC) =0 None
7 Final C(AC)< 0 None

The symbol S, in the instruction word format, is the "suicide" code. The bit in the
flag resister, F, corresponding to the priority level of the currently active program,
is reset if, and only if, this bit contains a one.

Judicious use of these symbols in conjunction with the associated primary instructions
can materially reduce the coding and running time of any program.

The description accompanying an instruction defines the manner in which it is executed

when its tag B, conditional branch code C, destination code D, and suicide bit S, are
equal to zero.

2-2



The shaded areas in the instructions represent fields that are not interpreted by the

4100. Unless otherwise noted, all instructions are subject to the variations delineated

above.

Descriptions of the instructions will use the following special terms and definitions:

1.

C(L) denotes the content of location L, where L refers to some location
in storage. Similarly, C(AC) denotes the content of the accumulator re-
gister, and C(B) denotes the content of the B-box specified by B.

Subscripts refer to individual bit positions of a register or cell in core.
For example, C(B) 14_99 is read "the contents of the bit positions 16-29
inclusive in the B-box core location.

The magnitude of a number is the number itself if it is positive and its
two's complement if it is negative.

The word "place" in the title of an instruction always implies the trans-
mission of a word from or to some location in core storage to or from
some register (e.g., the accumulator or the B-boxes).

In all logical operations, the number is treated as a full 30-bit unsigned
binary integer.



SECTION 3

4100 INPUT-OUTPUT

PRIORITY PROGRAM - INTERRUPT

The 4100 provides for servicing a multiplicity of input-output channels on a priority
basis. With this "priority program interrupt" arrangement, peripheral devices having
short holding times can be accommodated with no waste of computer time.

- Associated with each priority level is a set of eight pre-assigned memory locations, as
described in Section 1. For each priority level, the instruction location register contains
the address of the next instruction that the 4100 is to execute when it enters that level.

If a "demand' signal arrives from a channel while the computer is performing a lower
priority program, it causes the computer to interrupt the active program and jump to

the higher priority program. The machine logic ensures that the address of the next
instruction of the interrupted program is saved in the IL register.

To maintain the integrity of interrupted programs, it is only necessary that each pro-
gram detect no discontinuity in the C(AC). Therefore, each program which changes
the C(AC) is responsible for preserving and restoring the original C(AC).

When the high priority demand is satisfied and control returns to the interrupted pro-

gram, the latter proceeds oblivious to the interruption. In this way, the priority pro-
gram interrupt feature enables the 4100 to interleave a number of different programs.

FLAG AND DEMAND REGISTERS

The priority program interrupt is implemented by means of two flip-flop registers,
called the flag (F) and the demand registers. The flag register is composed of fifteen
flip-flops, each of which functions as a priority request indicator, or flag. An implied
sixteenth stage is permanently "set" and assumes control whenever no higher priority
request is present.

In the recommended normal mode of operation, two priorities are reserved for service
routines. A high-priority flag, selected by the operator, is set whenever:

1) the overflow indicator, V, has been set, and
2) V is not reset by the instruction which caused it to be set (page 2-2), and

3) V is not reset by the next instruction in the same priority level (page 8-1).

3-1



This feature can be used as an immediate automatic fail-safe program jump to an error
analysis or alarm analysis routine, when unanticipated overflows occur during arith-
metic operations. The lowest priority program, which is automatically activated when
the flag register is cleared, is normally a self-check routine, which automatically exer-
cises and tests the computer during "idle" time.

The remaining flags may be associated with input-output channels and may be set either
under program control or at the command of a peripheral device. For the latter case,
provisions are made at the computer terminal strip to connect the demand signal from
each peripheral device to the "set' terminal of any particular priority flag. A flag can
be reset only by an instruction in the program of corresponding priority.

The demand register has four stages. It is connected by logic to the flag register and
always contains the binary representation of the priority of the program currently in
effect (active). The demand register has two major purposes: its content is used in
addressing the core memory executive space; and it is used in addressing external
equipment. For the latter function, one lead from each demand register stage is brought
out to the terminal strip. Each peripheral device decodes and responds to one of

the sixteen possible combinations of states of these four wires. When the decoder

is connected to the demand register at the terminal strip, the priority becomes an
external address for its accompanying peripheral device.

INPUT-OUTPUT OPERATIONS

The transfer of information between the 4100 and ancillary equipment takes place
through an input and an output bus. Each consists of thirty data lines that connect to
the peripheral equipment at the computer terminal strip. Internally, the input data is
received from the bus by the R-register, while output data is transmitted to the output
bus by the G-register. '

The 4100 exercises control over input and output by means of three instructions: PIM,
PMO, and IOC. The PIM instruction transfers data from the input bus to memory.
The PMO instruction transfers data from memory to the output bus (Exception: when
B =17, the PMO instruction transfers the accumulator content to the output bus). The
IOC instruction transmits the instruction word to the output bus for peripheral device
control. "

When either a PIM or a PMO is executed, the C-code behaves as a subsidiary peripheral
equipment address. (During any instruction, the C-code is held in stages 6, 7, and 8

of the I-register. One lead from each of these stages is brought out to the terminal
strip. By connecting an external decoder to these terminals , these stages of I become
part of the external address ‘register.) This feature permits the computer to discrimi-
nate among several devices attached to the same priority flag, thus increasing the



number of devices that the computer can service. It also allows the computer to trans-
mit different instructions to one device.

The interconnection of the 4100 and any peripheral device involves the input or output
bus, the two external address registers and three control signals. One signal is the
demand signal from each external device to the flag register. A second signal is that
generated by the computer during the PMO instruction, informing all peripheral devices
that the computer has put information onto the output bus. The third control signal,
emitted during execution of the PIM instruction, straddles the computer's internal strobe
of the data from the input bus to the R-register. It is used to inhibit changes in the input
data being transmitted.



SECTION 4

WORD TRANSMISSION OPERATIONS

PAM -- Place Accumulator in Memory 19.2 us
41 C D B |S L
| I 10 T 0 T N O T Y I
0 5l6 8|9 12 14}15{16 29

This instruction replaces the C(L) with the C(AC). Overflow is not possible. The
C(AC) is unchanged.

Variations

C - Normal
D - Normal
B - Normal
S - Normal

PMA -- Place Memory in Accumulator 19.2 us
el - C D B |S L
| I L1 1 4 || | 100 VN NS S U O T N W O |
(o] 516 819 Hji2 1441516 29

This instruction replaces the C(AC) with the C(L). Overflow is not possible. The
C(L) is unchanged.

Variations

C - Normal
D - Normal
B - Normal
S - Normal



IMA -- Interchange Memory and AC 21.2 us

57 C D B (S L
T I O A I T W O A T O I B

This instruction replaces the C(L) with the initial C(AC) and replaces the C(AC) with the
initial C(L). Overflow is not possible,

Variations )
C - Normal
D - Normal
B - Normal
S - Normal
PZA -- Place Zero in Accumulator 12.8 us
73
L1 1 11
(o]

This instruction resets the C(AC) to zero. Overflow is not possible. Bits 16-29 of this
instruction are not interpreted by the 4100.

Variations

C - Normal, except C =1lor 2 is meaningless
D ~ Normal

B - Not interpreted

S - Normal



PZM -- Place Zero in Memory 19.2 us

45 C D B |S L
PN N N T T PR T O W T N O I B

0 5|6 8|9 Hp2 141516 29

This instruction resets the C(L) to zero. Overflow is not possible. The C(AQ) is
unchanged.

Variations

C - Normal

D - Normal
B - Normal
S - Normal
PMB -- Place Memory in B-Box 25.6 us
67 Cc D B |S L
[ U U O T I O O B | [N W T T O S O T O O |
(o] 5|6 8(9 Hp2 1415416 29

This instruction replaces the C(B) 0-29 with the C(L) 0-29° Overflow is not possible.
The C(AC) and the C(L) are unchanged.

Variations

C - Normal, except C =1 or 2 is meaningless

D - Normal
B - Specifies B-box to be changed
S - Normal

4-3



PBM -- Place B-Box in Memory 25.6 us

This instruction replaces the C(L) with the C(B) Overflow is not possible,
0-29

0-29°
The C(AC) and the C(B) are unchanged.
Variations
C - Normal, except C= 1 or 2 is meaningless
D - Normal
B - Specifies B-Box to be stored (B= 0 or 7 is meaningless)
S - Normal
PAB -- Place Accumulator in B-Box 19,2 us
56 c D B |S
i I L1 I
o 5|6 8|9 11i2  14{i5}i6 29

This instruction replaces the C(B) with the C(AC) Overflow is not possible,

0-29 0-29°
The C(AC) is unchanged, Bits 16-29 of this instruction are not interpreted by the
4100.

Variations

C - Normal, except C =1 or 2 is meaningless

D - Normal
B - Specifies B-Box to be changed (B =0 or 7 is meaningless)
S ~ Normal



PBA -- Place B-Box in Accumulator 19.2 us

54 C D B |S
N T T O O A
) sle sl nfi2  14fi516 29

This instruction replaces the C(AC) 0-29 with the C(B) 0-29° Overflow is not possible.
The C(B) is unchanged. Bits 16-29 of this instruction are not interpreted by the 4100,

Variations

C - Normal, except C = 1 or 2 is meaningless

D - Normal

B - Specifies B-box to be fetched (B = 0 or 7 is meaningless)
S - Normal



SECTION 5

LOGICAL OPERATIONS

LAN -- Logical "AND" to Accumulator 19.2 us
34 C D B |S L
U T T WO O T I RN N W O Y
o 5|6 8|9 npi2 1415116 29

This instruction matches each bit of the C(AC) with the corresponding bit of the C(L).
When the corresponding bits of both the C(L) and the C(AC) are ones, a one replaces
that bit of the C(AC). When the corresponding bit of the C(L), the C(AC), or both is a
zero, a zero replaces that bit of the C(AC). Overflow is not possible. The C(L) is
unchanged.

Variations

C - Normal

D - Normal
B - Normal
S - Normal

5-1



LAR -- Logical "AND" and Replace 19.2 us

This instruction performs a LAN except that the result replaces both the C(AC) and the
C(L). Overflow is not possible.

Variations

C - Normal

D - Normal

B - Normal

S -~ Normal

LEQ -- Logical Exclusive "@R" 19.2 us

36 C D B |S L
L e et | N A O O O I O

0 5l6 819 np2  14415{16 29

This instruction matches each bit of the C(AC) with the corresponding bit of the C(L).
When the corresponding bits of the C(AC) and the C(L) are equal, a zero replaces that
bit of the C(AC). When the corresponding bits of the C(AC) and the C(L) are unequal,

a one replaces that bit of the C(AC). Overflow is not possible, The C(L) is unchanged.

Variations -
C - Normal
D - Normal
B - Normal
S - Normal



LER -- Logical Exclusive "@R" and Replace 19.2 us

This instruction performs an LE@ except that the result replaces both the C(AC) and
the C(L). Overflow is not possible,

C - Normal
D - Normal

B - Normal
S - Normal

LI@ -~ Logical Inclusive "@R" 19.2 us

32 - C D B |S L

This instruction matches each bit of the C(AC) with the corresponding bit of the C(L).
If the corresponding bit of the C(L), the C(AC), or both contains a one, a one replaces
that bit of the C(AC). If the corresponding bits of both the C(L) and the C(AC) contain
zeros, a zero replaces that bit of the C(AC). Overflow is not possible, The C(L) is
unchanged.

Variations

C - Normal
D - Normal
B - Normal
S - Normal

5-3



LIR -- Logical Inclusive "@R" and Replace

33

L1 1 1.1

S

o

5

15|16

This instruction performs an LI@ except that the result replaces both the C(AC) and
the C(L)., Overflow is not possible.

Variations

C - Normal
D - Normal
B - Normal
S - Normal

LIM -- Logical Inclusive "R to Memory 19.2 us
53 C D B |S L
TN N o O O A I O T G T T O O
o 5i6 8|9 12 14|15(16 29

This instruction matches each bit of the C(AC) with the corresponding bit of the C(L).
'If the corresponding bit of the C(L), the C(AC), or both contains a one, a one replaces
that bit of the C(L). If the corresponding bits of both the C(L) and the C(AC) contain
zeros, a zero replaces that bit of the C(L). Overflow is not possible, The C(AC) is
unchanged.

Variations

C - Normal
D - Normal
B -~ Normal
S - Normal



SECTION 6

SHIFTING OPERATIONS

SAL -- Shift Accumulator, Logical 16.8-76,8 us
Ol C D B |S L
T T T T T O N T v B
0 5|6 8|9 nji2  14415|ié 23|24 29

This instruction shifts the C(AC) right or left L places. Bit 24 of the instruction

0-29
word is interpreted as the algebraic sign of L.

If bit 24 is a one, bits 25-29 are interpreted as the two's complement of the negative
(left) shift distance. Bits shifted out of the C(AC) o 2Te discarded; vacated positions of
the C(AC) are filled in with zeros, Overflow is not possible.

If bit 24 is a zero, bits 25-29 are interpreted as the positive (right) shift distance.
Bits shifted out of the C(AC) 99 2T€ discarded; vacated positions of the C(AC) 0-29 2T€

filled in with zeros. Overflow is not possible,

Execution time is 16,8 us for shifting one or two places left or one place right. Each
additional two places, or portion thereof, requires 4.0 us.

Variations
C - Normal
D - Normal

B - Normal
S - Normal

6-1



SAC -- Shift Accumulator, Circular 16.8-76.8 us

03 o D B |S L
| S I | 11 [ 1 11 L1111
o sle s8l9 ufi2 14|i5/i6 23|24 29

This instruction rotates the C(AC) 0-29 right or left L places. The interpretation of L
and the execution timing are as described under the SAL instruction. Overflow is not
possible,

When rotating left, the C(AC) 0 replaces the C(AC) 29

replaces the C(AC)O.

When rotating right, the C(AC) 5q TePlaces the C(AC) .

Variations

C - Normal
D - Normal
B - Normal
S - Normal



SAA -- Shift Accumulator, Algebraic 16.8-76.8 us

This instruction shifts the C(AC) right or left L places. The interpretation of L

0-29
and the execution timing are as described under the SAL instruction.

When shifting left, bits shifted out of the C(AC) o 2re discarded; vacated positions of
the C(AC) are filled in with zeros. The overflow indicator is set if the C(AC) 0 changes
during the process. In the absence of overflow, the action is equivalent to multiplying
the C(AC) by a power of two.

When shifting right, bits shifted out of the C(AC) 99 2T€ discarded; the C(AC) 0 is
unchanged; vacated positions of the C(AC) are replaced by the C(AC) 0’ Overflow is
not possible. The action is equivalent to dividing the C(AC) by a power of two.
Variations

C - Normal

D -~ Normal

B - Normal

S ~ Normal

Shift examples

Operation C(AC) Notes
Initial 110 101 010 000 000 000 000 011 100 101

SAL +3 000 110 101 010 000 000 000 000 011 100

SAL -6 101 010 000 000 000 000 011 100 000 000

SAC +12 011 100 000 000 101 010 000 000 000 000

SAC -3 100 000 000 101 010 000 000 000 000 011 -. 7765377772
SAA +3 111 100 000 000 101 010 000 000 000 000 —.07765400002
SAA -9 000 101 010 000 000 000 000 000 000 000 overflow

SAA -3 101 010 000 000 000 000 000 000 000 000 overflow

6-3



SECTION 7

ARITHMETIC OPERATIONS

ADD -- Add 19.2 us

This instruction algebraically adds the C(L) to the C(AC) and replaces the C(AC) with
the resulting sum. Overflow is possible. The C(L) is unchanged.

Variations

C - Normal
D - Normal
B - Normal
S - Normal

ADR -- Add and Replace 19.2 us

This instruction performs an ADD except that the result replaces both the C(AC) and
C(L). Overflow is possible.

Variations

C - Normal
D - Normal
B -~ Normal
S - Normal



ADM -- Add Magnitude 19.2 us

12 C D B |S
[T I T O PO A INNT TR U T W T T O W Y I

0 516 819 2 14|i5)16 29

This instruction forms the absolute magnitude of the C(AC) and then performs an ADD,
Overflow is possible. The C(L) is unchanged.

Variations

C - Normal

D - Normal

B - Normal

S - Normal

AMR -~ Add Magnitude and Replace 19.2 us

13 C D B |S L
| W T T T O I | [ W O O O O O IO O

0 5|6 8i9 Hye 14|isjie 29

This instruction performs an ADM except that the result replaces both the C(AC) and
C(L). Overflow is possible.

Variations

C - Normal
D - Normal
B - Normal
S - Normal



SBT -- Subtract 19.2 us

14 C D B |S
AN T T O O T I I A T N N T I

This instruction forms the two's complement of the C(AC) and adds it to the C(L),
replacing the C(AC) with the resulting sum., Overflow is possible. The C(L) is
unchanged.

Variations

C - Normal

D - Normal

B - Normal

S - Normal

SBR -- Subtract and Replace 19.2 us

15 - C D B |S
[ I O B O | [T N O O N O O A I

0 5|6 8|9 12 1411516 29

This instruction performs an SBT except that the result replaces both the C(AC) and
the C(L). Overflow is possible.

Variations

C - Normal
D - Normal
B - Normal
S - Normal

7-3



SBM -~ Subtract Magnitude 19,2 us

16 c D B |S
S A N I O A T T O N T O O O O
0 5l6 8|9 ufi2 14[isfie 29

This instruction forms the two's complement of the absolute magnitude of the C(AC)
and then adds it to the C(L). The resulting sum replaces the C(AC). Overflow is
possible. The C(L) is unchanged.

Variations

C - Normal

D - Normal

B - Normal

S - Normal

SMR -- Subtract Magnitude and Replace 19.2 us

17 C D B |S L
I N N N T O S T T O Y

(o] 5|6 819 2 141516 29

This instruction performs an SBM except that the result replaces both the C(AC) and
the C(L). Overflow is possible.

Variations

C - Normal
D - Normal
B - Normal
S - Normal



MPY -~ Multiply 137,2 us

This instruction multiplies the C(AC) by the C(L) and replaces the C(AC) with the most
significant 30 bits of the product. The less significant part of the product is discarded.
Overflow is not possible. The C(L) is unchanged.

Variations

C - Normal
D - Normal
B ~ Normal
S - Normal

MPH -- Multiply Half-word 72,2 us

This instruction multiplies the C(AC) by the C(L). The most significant 30 bits of

0-14
the product replace the C(AC). The less significant part of the product is discarded.
Overflow is not possible. The C(L) is unchanged.

Variations

C - Normal
D - Normal
B - Normal
S -~ Normal

7-5



DVD -- Divide 133.2 us

This instruction divides the C(AC) by the C(L) and replaces the C(AC) with the
resulting quotient. The C(L) is unchanged.

If the magnitude of the C(AC) exceeds the magnitude of the C(L), the quotiént sign
replacesthe C(AC) 0’ the C(AC)l_ 29 is meaningless, and the overflow indicator V is set.

If the magnitudes of the C(L) and the C(AC) are equal, the quotient replaces the C(AC).
The overflow indicator is set if the C(L) is negative. (The quotient is 1. 000 000 000
000 000 000 000 000 000 00 if the operand signs were unlike; the quotient is 0,111 111
111111 111 111 111 111 111 11 if the operand signs were like.)

Variations

C - Normal
D - Normal
B - Normal
S - Normal



DVH -- Divide Half-word 77.2 us

This instruction performs a DVD except that the most significant 15 bits ofthe quotient
replaces the C(AC) 0-14 and zeros replace the C(AC)15_ 99" The C(L) is unchanged.

This instruction has the same limitations as to overflow, etc., as has the DVD.

Variations

C - Normal
D - Normal
B - Normal
S - Normal



SECTION 8

CONTROL OPERATIONS

JMP -- Jump 12.8 us

72 C D B |S L
i T T T | [ [ 4 1 I N N N Y W O T O O
o 5[ 8|9 uji2 14816 29

This instruction examines the condition specified by bits 6, 7, 8, and 11 of the instruc-
tion word. If the specified condition is satisfied, the 4100 takes its next instruction
from the C(L) and proceeds from there. If the condition is not satisfied, the 4100
proceeds to the next instruction in sequence.

If bit 10 contains a one, and if the jump condition is satisfied, the jump destination is
not modified by the C(B) and the location of this instruction, C(IL), replaces the

C(B)16-29' The C‘(B)O_15 are meaningless.

Overflow is not possible. The C(AC) and the C(L) are unchanged.

Variations

C - Normal, except C= 0, D even, specifies unconditional jump
C = 0, Dodd, specifies jump if V= 1 and resets V
D - Bit 9not interpreted
Bit 10 controls replacing the C(B) with the C(LL)
Bit 11 not interpreted, except if C = 0
B-If C=1or 2, orif bit 10 contains a one, B specifies B-box to be changed
(B = 0 or 7 is meaningless) Otherwise, B interpretation is normal, and all
values are permitted,
S - Normal



TST -~ Test 19.2 us

T C D B |S L

This instruction tests the C(L) as specified by the C-code of the instruction word. If
the condition is satisfied, the 4100 jumps back D instructions and proceeds from there.
If the condition is not satisfied, the 4100 proceeds to the next instruction in sequence.
Overflow is not possible. The C(AC) and the C(L) are unchanged.

Variations

C - See Table 8-1

D - Normal
B - Normal
S - Normal
SKP -- Skip ' 19.2 us
76 C D B |S
[ T N O O I | N N T N OO O O N A |
0 5le 819 12 14115{i6 29

This instruction tests the C(L) as specified by the C-code (bits 6-8 of the instruction
word). If the condition is satisfied, the 4100 skips the next D instructions and proceeds
from there. If the condition is not satisfied, the 4100 proceeds to the next instruction
in sequence. Overflow is not possible. The C(AC) and the C(L) are unchanged.

Variations

C - See Table 8-1

D - See preceding description
B - Normal

S - Normal



TABLE 8-1
SKP/TST C-CODES

C-value Branch Condition

C(L)>0
C(L)# 0
C(L) =0
C(L)< 0
C(L) > C(AC)
C(L) # C(AC)
C(L) = C(AC)
C(L) < C(AC)

oUW O

FLS -- Flag Set 12,8 us

71 C D S
I T OO Y O I I T N Y U N T 0
0 5/6 8|9 up2 1415)16 29

16-929 with the priority flags, F1—14' For each bit

of L which contains a zero, the corresponding bit of F is unchanged. For each bitof L -
which contains a one, a one replaces the corresponding bit of ¥. The bit of L corres-
ponding to the priority flag of the current program has no effect. Overflow is not
possible. The C(AC) and the C(L) are unchanged.

This instruction matches the bits L

Variations

C - Normal
D - Normal
B - Not interpreted
S - Normal

8-3



ALB -- Add L to B-Box 19.2 us

This instruction adds L (interpreted as a 14-bit unsigned integer) to the C(B) d

16-29 ™

replaces the C(B) 1-14 and the C(B) with the resulting sum. Overflow is not possible.

16-29
The C(AC) and the C(L) are unchanged. The C(B) 0 and the C(B) 15 2re meaningless.

1f the sum is not less than 16384, the excess over 16384 replaces the C(B)l_1 4 and the
C(B) 16-29° yielding an effective subtraction.

Wwith C = 1, if the sum is not less than 16384, the 4100 loops back D instructions and
proceeds from there, Otherwise, the 4100 proceeds to the next instruction in sequence.

Other C-codes are interpreted normally.

Variations

C - Normal, except C = 1 described above (C= 2 is meaningless)
D - Normal

B - Specifies B-box to be changed (B= 0 or B = 7 is meaningless)
S - Normal



HLT -- Halt

00 C D B |S
(N O U T T T T Y
0 sleé 8[s 1nfi2 14fishie 29

This instruction stops the 4100 if the rollback switch is off (see RLB operation).
When started again, the 4100 proceeds to the next instruction in sequence, unless the
C-code has caused looping or the S-code has caused suicide of this priority level. Bits
16-29 of the instruction word are not interpreted., Overflow is not possible. The
C(AC) is unchanged.

Variations

C - Normal, except C = 1 is meaningless

D - Normal
B - May specify a B-box to be tested by C = 2
S - Normal

8-5



RLB -- Rollback ' Variable Time

00 0

This instruction reads one record from the rollback unit if the rollback switch is on
(see HLT instruction), and stores it in sequential core locations. The first word re-
places the content of the highest location in core storage; successive words enter
progressively lower locations until the end of the record is detected. . Since this action
re-initializes the various instruction location counters, the next instruction to be
executed will be obtained from a core location dependent on the status of the priority
flags and on the initial value of the appropriate instruction location counter. (Because
of the relatively long execution time of the RLB instruction, special attention should
be devoted to the probability that external devices may set their priority flags during
this interval.)

Variations

C - Must be zero

D - Not interpreted
B - Not interpreted
S - Normal

8-6



SECTION 9

INPUT-OUTPUT OPERATIONS

PIM -- Place Input Bus in Memory 19.2 us
43 C D B IS L
| T | .| I | [ | | S T T O O A T I Y|
0 516 8|9 Hj12 1415}i6 29

This instruction replaces the C(L) with the content of the input bus. Overflow is not
possible. The C(AC) is unchanged.

If B# 0or 7, the C(B) -1 replaces the

C(B)

is tested for zero, and the C(B)16*29

# 0, the 4100 loops back D instructions.

16-29

16-29° If the initial C(B)

If the initial C(B)

16-29

16—29=0’ or if B=0 or 7, the 4100 proceeds to the next instruction

in sequence.

Variations

C - Subsidiary peripheral equipment address (see page 3-2)
D - Normal
B - Normal
S - Normal

9-1



PMO -- Place Memory on Output Bus 27.2 us

63 C 0 B |S
I W O U A O T I U O O A O O
0 - 5l 8l nfiz 14]isfie 29

This instruction transmits the C(L) to the output bus. Overflow is not possible.
The C(AC) and the C(L) are unchanged.

If B =7, the C(AC) is transmitted to the output bus, and L is not interpreted. The
C(AC) and the C(L) are unchanged.

is tested for zero, and the C(B) -1 replaces the

If B# 0or7, the C®B)6_og 16-29
C(B)16~29' .If the initial C(B)lﬁ—zg?é 0, the 4100 loops back D instructions. If the
initial C(B)16_29 =0, or if B=0 or 7, the 4100 proceeds to the next instruction in

sequence.

Variations

C - Subsidiary peripheral equipment address (C cannot be zero)

D - Normal
B - Normal, except B = 7 transmits the C(AC)

S - Normal



10C -~ Input-Output Control 20.8 us

This instruction transmits itself to the output bus. FEach peripheral buffer examines
bits 16-21 of L to determine whether it is the buffer being addressed and, if so, to
store, in the buffer, such remaining bits of the instruction word as it needs. Of

those remaining, bits 12-14 are normally used to specify one of the peripheral devices
attached to this buffer, and bits 22-29 (as required) control specific peripheral actions,
such as advance, rewind, feed, backspace, etc. The buffer transmits an "'accept”
pulse to the 4100.

If the selected buffer is not available, it does not accept the control word or
transmit an "accept" signal. Failure to receive an "accept" signal during any I0C
instruction causes the 4100 to skip the next D instructions.

Variations

C - Must be zero

D - See above description
B ~ See above description
S - Normal

9-3



SECTION 10

PROGRAMMING EXAMPLE

The following example illustrates a number of the programming techniques discussed
in the foregoing chapters.

FIXED-POINT SQUARE-ROOT SUBROUTINE

The method used to compute the square root of a fixed-point argument is a modified
Newton-Raphson technique:

Yn +1 Yn B (Yn B X/Yn)/z’

where X is the argument,

Y0 = (X + 1)/2,

and the iteration ceases when the quantity in the first parenthesis becomes less

-29
than 2

The subroutine (included following this section) is entered by placing the argument, X,
in the AC and executing the first instruction of the calling sequence. This transfers
control to the square-root routine after first storing, in B-box No. 6, the location

of this jump instruction.

The first instruction executed in the subroutine, PZM, clears the work space (SQRT -
21), simultaneously checking the argument for a negative sign (C = 7).

If the argument is negative, the square root of the absolute value is computed. The
program jumps back two instructions (D = 2), forms the absolute magnitude of the
argument by subtraction from zero, increments B-box No. 6 by one, and returns to
the PZM instruction. The modification of B-box No. 6 prepares for the ""error return"
at the conclusion of the subroutine. :

The next instruction executed, PBM, saves the content of B-box No. 5 in the work
space (SQRT-22), simultaneously checking for zero argument (C = 6).

If the argument is zero, the program jumps back four instructions (D = 4) and executes
a '"mormal return' with the correct root, zero, in the AC.

10-1



With a positive argument, the program next initializes B-box No. 5 to zero and enters
a normalization loop: instructions SQRT-3, 4, 5.

During each iteration of the loop, the C(AC) is shifted left two bits and the C(B5) is
incremented by one. When the C(AC) becomes greater than the content of (SQRT-19) --
i.e., one-quarter or greater --, the SKP instruction causes an exit from the loop and
the next instruction stores thenormalized argument in a work space, (SQRT-20).

The next three instructions form the initial value:

Y0 = - (-1/2 - X/2)

The four instructions SQRT-10, 11, 12, 13 compute the correction term:

(Y - X/Y )/2
n n

The C and D codes of the instruction at SQRT-13 cause an iteration, refining the
estimated root until the correction term is less than 229,

The resultant root is then placed in the AC and shifted right (using B-box No. 5) to

compensate for the previous normalization procedure, leaving the desired square root
in the AC.

B-box No. 5 is now restored to its original value and control is returned to the main
program.



€-0T

PROGRAM

4100 SYMBOLIC CODING FORM

SQUARE RB5T SOBRBUTINE  (FIXED fgrNT) ,
PROGRAMMER o DATE iovong PRIORITY PAGE o,
SYMBOL OPN [S[ADDRESS* MODIFIER | [B] [CD]COMMENTS _(NO TAPE)

N IMP |SQRT &] |02 CALLT NG £ EQUENCE |
kR pe r=Tuan| || |
NSRMAL FETYRIN Jt
’.—-
t3 [IM.P| |- 2, 6| |00
. +2 |SB. T SQRT -2\ -
- w  |ALB |+ &)
~RART PZM| |S@RT -2 I 1 L1.2

-1 PRPM| SQRT-22 5 b 4|

-2 |IPMB| [SQRT -2 | _2 ,

-3 |SKP| |-V 6 T 17.2

-4 |sARA| |- 2 . L

-5 [ALB] [+ 5| 4.2

% |PAM [SQRRT-20 B




G-01

4100 SYMBOLIC CODING FORM

PROGRAM

SQRT (comt'd) s
PROGRAMMER | & vy OATE o, |PRIORITY PAGE oF
SYMBOL OPN |S|ADDRESS*MODIFIER B| |{CD|COMMENTS (NO TAPE) ,
. -1 sRAl [+ |

-% |8BT| |-10 il

-9 -

) SBR| ISQRRT -2 -

-lo IPMA| SQRT -20 |

-t bVDl ISQRT -2 1| a

12 18R T SR T - 21 L

B gAeAl | 44
. % lPMA| 8@ RT.~2.1 i

1S

S ASHAA o 9]

-t |pPMB| (S@RT-22 5

-

T |[IMP| -2, e oo
R M leeT (2000000200 | |

-9 e 107777772717 L] L

—20

2 T




	000
	001
	002
	003
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	02-01
	02-02
	02-03
	03-01
	03-02
	03-03
	04-01
	04-02
	04-03
	04-04
	04-05
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01
	09-02
	09-03
	10-01
	10-02
	10-03
	10-05

