RCA

ELECTRONIC

501

DATA PROCESSING SYSTEM

AUTOMATIC ASSEMBLY SYSTEM

A PROGRAMMER'’S
REFERENCE MANUAL

@ RADIO. CORPORATION OF AMERICA
Electronic Data Processing Division

Camden, New Jersey



RCA

ELECTRONIC | DATA PROCESSING SYSTEM

5 0 1

AUTOMATIC ASSEMBLY SYSTEM

A PROGRAMMER'S
REFERENCE MANUAL

@ RADIO CORPORATION OF AMERICA
Electronic Data Processing Division
Camden, New Jersey

FORM APM-2 REV. SEPT. 1960 P-501.03.02I. PRINTED IN U.S.A.



The data herein presented is subject to minor change without
notice.

Supplements may be provided to advise of such revisions or
additions.



PREFACE

This manual is presented as a programmers’ description of
the RCA 501 Assembly System. It is intended to furnish informa-
tion in sufficient detail to enable programmers to use Assembly
language coding. Reference is made to the RCA 501 Electronic
Data Processing System Programmers’ Reference Manual in this
text and it is assumed that the reader is familiar therewith. Oper-
ating procedures and description of the subroutines and macro-
instruction library are not within the scope of this manual, but
will be the subject of separate publications.

Particular emphasis has been placed on the structure and
uses of the RCA 501 Assembly System language. Master instruc-
tion reference charts are included, for example, as Appendix B.

Acknowledgement is given for help received from several
quarters including the Methods Training Group. The creation and
development of the Assembly System is the work and responsibil-
ity of the Advanced Programming Organization, as is the writing
and editing of this manual.



TABLE OF CONTENTS

DPage

INTRODUCGTION « v« v e e o s o st st s oo oosoaasaosssesssssasnsassosossasessssonsas 1
DATA DESCRIPTIONS . + + o s v o vttt s st oo s onnsesansssosssetnsssssssosassasnsas 3
RCA 501 Automatic Coding Data Sheet. . . . .. oo v ittt ittt 3

THE PROGRAM SHEET AND ITS GENERAL USAGE . ... vcc vt 12
RCA 501 Automatic Assembly Program Sheet . ... ... ...ttt 12
General Methods of Writing Pseudo-Code . .. .o vt v vttt ittt 12
ADDRESSING &« « ¢ ¢ o v ¢t 0 e ot ot s s nsosoonssonansassssssosonssossssssssessasssos 25
Machine AAreSSES « v v v v v e o v o s s ot e o oo s s esonosessssssaassennesaneessos 25

Data AdAreSSES « « v v v v o v et s e e s o s s et e 25
Forward Read Data Addressing . . « « « « v v v vt e i e o niconoeanoeaaonteansnoesss 26
Reverse Read Data Addressing . « v v v o v v v oo v v e v et te o tvoneoseenanencsssasss . 29
General Working Storage Addresses . . . .. e e e e et e e e e e e e e et a e 30
Special Working Storage Addresses . ... ... ...ttt 32
Constant AddreSSEeS « & v v v vt vttt o v ottt oa o asae s e st aaaoaaasss st 34

The Define Constant Descriptor Vetb. . . . . .. ... R 38

Tape Station AddreSSeS ... v oo vt i it ittt ittt st e e 39
InStruction AddreSSeS . v v v v v v e v v v o ottt e i e e e s e e 40
SPECIAL ASSEMBLER FEATURES « tt v vt tvviin sve oo enatateseeseannnnsaseesssns 49
Special Mnemonic INStructions . . . .« .ot v vttt te i it e e e e e et e e 49

The Stash (STSH) Descriptor Verb . . . . v v ot v it e e ittt i iaieononseacctnecennn 52
Variable AddIeSSES &« v v v v v v v v v o e oo o e m s s s s s e e e e e s s e e e 53

The ADV Mnemonic INStrUCtion . « « v v v s v o o v o v s e e ot oo aosooos snosoasaesacsass 54
SPECIAL ASSEMBLY OPTIONS & i i vttt it ittt e o snnaassncnosonnssesanosssossssss 56
The Tape Sense INSTUCHON v v v v o v v v v v et vt v o st noasonsossotoacenesecensas 56
Special Addresses with Unwind and Rewind INSTIUCHIONS « « « v o o o ¢ o o o s o s o s s s o s oov s oo 57
Special Addresses with Locate nth Symbol .. ... ..... ... i 57
Special Addresses with Paper Advance Instruction . . .. v oot ve it ittt 58

Other than **Set’” Generated by “T”’ Entries . .. .. T 58
Random Distribute Special Options . . v o v v v v it e v et ittt oo o eat ettt 60
Multiple Sector Write OPHONS v o v v vt o v v e vt v v i et to e neecencar e conoennan 66
Address Modifier AddreSSEeS v v v v v e v v v et o st s c e s o s s o s s s ast oot s nss oo 69
Special Addressing of Registers . . ... . v v ittt it 72
Symbolic Addressing of Standard Locations . . . « v v vttt v vt e i 76
MEMORY LAYOUT v v v it vttt et aes s e s sanouneassessasss tonsesnnssnnnsnansas . 78
Automatic FOIMAL . v« v v v ot o oo o o e s e s o oo soooaessacososonassosesnssseses 78
Programmer Control of Memory Layout .. ..« v v it e v itan ettt 79
MACRO-INSTRUCTIONS & « ¢ vt v e e et aoa s oo v anoaneaansssseesaansossesseanssss 86
Calling Macro-InStuUCtiOnS + « + v v e v v v oottt ittt te s o nensencsasacecnscocononas 86
Defining Macro-InSTIUCLIONS v« v v ¢ v o o s oo et s ot ot oo s oo sessosaceosnesess 86
Programmer-Written PIeset. . o« c o s v oo v vt vt oo v e nnn e e e e et 92
Macro-Instruction Segmentation. . « < « « v vt ettt i e 93

The Replace Macro-Instruction Descriptor Verb . . ... .. v i vievvivnii i es 94

The Delete Macro-Instruction Descriptor Verb . . .. ... oo vvi i v ian e e e e e 95



SUBROUTINES . . .. it i ittt ittt it et ittt e et aaassanessnasssnnsas

Calling Subroutines . . . . . v v ittt ittt ittt e ettt st an e
Entering Subroutines . . . oo oot ittt i e e et e e et e
The Define Subroutine Descriptor Verb. . . . . . .. ... .. it
The Programmer-Written Preset. . . o o v v v v i i ittt i ettt et e toannsensonassss
Subroutine Segmentation ... v v v v i it i it e et e e e e e e e e e
Dynamic Parameters . . . . o v v v vt o vttt o et oo ne o a et oot e e
The Replace Subroutine Descriptor Verb. . . . . . . ... ... oo i i it iiii e,
The Delete Subroutine Descriptor Verb. . . . . . . ottt it ittt it i i i sttt esnnans

ASSEMBLY SYSTEM OUTPUTS & vttt ittt ittt it aetatonosenssasnsesessnseeansesass

Magnetic Tape OQULPULS « o ¢ o v v v v o v vt o o oo v oo o oo snsoonososanssessonssoansseess
Printed QUIPUES .+ v v v v v v vt ottt vttt et se st e e et eae e e

APPENDICES

A. Programmer Check List Priorto Assembly -. . . .. . . ..o i it ittt
B. Instruction Reference Tables
Table I — 501 Mnemonic InStructions . . v v o v o v v ottt v i it e it e e nn st an e
Table II — Special Assembler Mpemonics . . ... v v it i it ittt ittt ittt
Table III — Descriptor Verbs . . . . .. c ittt ittt ittt ittt itnneeraeeannn
C. Addresses substituted for symbolicnames . . .. ........ ... ... . i i i,
D. Object Program Examiner . . . . . . v v vt vttt ittt ettt et e

................................................................

Page



. INTRODUCTION

The RCA 501 Computer is potentially capable of solving a wide variety of problems. Before it can per-
form this task, however, it must be provided with an appropriate program.

Unfortunately, human beings and computers do not naturally use the same kind of language. A human be-
ing, when solving a problem, prefers to express it in his native language, or at the very least, a version of
his language which, even with certain restrictions imposed upon it, will remain clear and concise.

The computer on the other hand, being an electronic device, must receive its instructions in a special
machine language, consisting of various numeric or alpha-numeric codes. The preparation by human beings
of these coded instructions (called ‘‘programming’’) is accomplished by breaking down the various operations
connected with the problem and arranging them into a series of basic machine operations which must be per-
formed in order for the computer to solve the problem. Since the computer will do only what it is directed to
do, the framing of the instructions must be in precise detail and must state the exact sequence in which data
is to be processed, how it is to be manipulated, where computation is to take place, and where the results are
to be stored. Provision must also be made for the allocation of available storage space. The process of
manual coding is both time consuming and costly.

A plan for alleviating this problem is suggested by the fact that coding is mainly a clerical task and the
computer is well suited to handle clerical functions. A method of programming has been designed which uti-
lizes this circumstance and is generally known as ‘‘automatic programming’’. Automatic programming is de-
fined as the use of a language suitable to human beings for problem preparation together with a computer pro-
gram capable of translating this language to that language which will be acceptable to the computer,

The programmer thus describes problems in a language convenient to himself. This is known as the
“‘subject” progtam. The subject program is then processed in the computer by the translating program. De-
pending upon the type of translating program used, the output may be in one of two forms. In brief, these

types are:

Interpretive — In this type of system, conversion of the subject program into machine language and the actual
manipulation of the problem is performed concurrently. The output is the processed data which results from
the solution of the problem. This procedure must be repeated each time a problem is to be performed.

Compiler — This system is one of pure translation or compilation. The output is the ‘‘object’” program, or
the machine code version of the subject program. The object program may then be used to perform the prob-
lem on the computer. Translation takes place but once for each program.

Interpretive systems are impractical for data processing applications because the translation and problem
solving functions are intermixed. In non-interpretive systems, on the other hand, compilers perform transla-
tion and then problem solving (by means of the object program) takes place without the need to again refer to
the translating program. The RCA 501 Assembly System is of the compiler type.

Compilers may be further classified by the types of languages available to users. These range from lan-
guages which are akin to machine code, to those which resemble basic English. Sub-classifications of com-
pilers may be conveniently defined as either the machine-oriented language type or problem-oriented language
type. The terms used to refer to these types are ‘*Assembly’’ and **Narrative’’, respectively.

From this general discussion of automatic programming systems, a déscription of the RCA 501 Assembly
System specifically, may better be appreciated.

The RCA 501 Assembly System is a machine-oriented, automatic programming system designed to sim-
plify, and thus expedite, the writing of coding for the RCA 501 Electronic Data Processing System. This
Assembly System is said to be ‘‘machine-oriented’’, because the format in which instructions are written
with this system (its pseudo-code) is close to the format of actual machine instructions.



Some of the highlights of the RCA 501 Assembly System are:

1. Relative Instruction Addresses — The user can specify instruction addresses which are not fixed High
Speed Memory locations, but are, instead, keys which indicate the order in which instructions are to be
placed in memory. Relative instruction addresses are automatically translated into appropnate machine
addresses by the Assembly System.

2. Symbolic Addresses — The user can refer to data, working storage areas, and constants by symbolic no-
tations. - Symbolic addresses are translated into appropriate machine addresses by the Assembly System.

3. Machine Addresses — The user may also specify actual machine addresses.

4, Mnemonic Operation Codes — For more easily readable programs, mnemonic operation codes, rather than
octal number codes, are used; e.g., TC for 71, TCA for 44, BA for 41, etc.

5. Machine Code — Actual machine code may also be used anywbhbere in the program.

6. Macro-instructions — In most programs there are a number of common and frequently recurring steps which .
are necessary to accomplish a specific programming task. These groups of instructions have been ex-
tracted and written into short open sub-routines which may be inserted into the program by the use of a
single macro-instruction. This has the effect of greatly reducing the amount of coding necessary to
write a program.

7. Descriptor Verbs — There are a variety of verbs which fall into the category of Descriptor Verbs. They
are used to intervene and modify the process of translating or compiling the object program. While their
use is optional, they offer a convenient means for the programmer to obtain greater efficiency in the
final running program.

8. Variable Address — Certain addresses may not be known at the time a program is being written. The
user may arbitrarily assign a temporary (variable) address and thus provide for future definition of this
address, when it becomes known. This provision is accomplished with a given instruction (DEFV) and
may be inserted anywhbere in the program. Thereafter, whenever the designated symbol (variable address)
appears in the program, the definition of the address is automatically substituted, added or subtracted
by the computer at the proper places in the program.

9. Flexible Format — Assembly System pseudo-instructions may be written as 2, 3, 4, 5 or 6 address in-
structions.

10. Sub-Routines — Sub-routines are generally larger bodies of coding than macro-instructions. They per-
form some major, often recurring, programming function. The Assembly System user may call upon any
one of the sub-routines in the system’s library with one line of pseudo-code anywhere within his program.
Sub-routines may be open-ended or closed and they may call upon macro-instructions. New sub-routines
may be added to the library, new sub-routines may replace outdated sub-routines, or old sub-routines
may be removed from the library, all during the course of assembly,

The RCA 501 Assembly System pseudo-code thus provides the user with greater flexibility and simplicity
in writing coding than does machine code. Moreover, the Assembly System enables its user to employ all
techniques and coding tricks available to the machine code user.



Il. DATA DESCRIPTIONS

To guide the Assembly System in generating a running program from the pseudo-code, the user provides
the system with a description of the data files which the program was designed to process. A ‘*file”’, as de-
fined in the Programmers’ Reference Manual, *“. . . consists of any number of related information units, in
message or block format; it may consist of several tapes (reels) or any part of one tape. A file is terminated
by an End File (EF) Symbol, preceded and followed by an Intermessage Gap.

“In a multi-tape file, all but the last tape are terminated by an End Data (ED) symbol alone, preceded
and followed by an Intermessage Gap. The end of the file on the last tape is indicated by an EF, preceded
and followed by an Intermessage Gap. If this is a full tape, or a partially filled tape with no other valid in-
formation following the file data, an ED follows the EF, separated from it and followed by an Intermessage
Gap.”’

The Assembly System recognizes this definition of a file. Files are described on forms RCA IE 241 and
RCA IE 24]1-1.

RCA 501 AUTOMATIC CODING DATA SHEET, FORM RCA IE 241

The first page, and only the first page, of each file description is written on form RCA IE 241. See sam-
ple at end of this chapter.
Heading

The heading identifies the file and gives some general information about the file. This information is
entered as follows:

Name of File

The file name, abbreviated to a maximum of five characters, is entered in the space provided. The five-
character maximum file name is preceded by an *“F’’ which is pre-printed on the form.

If, for instance, a master employee file were being described, the file name might be abbreviated,
‘‘MASEM”’. The entry would then appear as follows:

NAME GF FILE < & FMASEM

Page ® ] of ®
After the ISS following the ‘‘of’’, enter the number of pages used to describe this file.

Example:

PAGE® 1 ofe 1

No. of Msgs.

Enter the number of messages in the complete file. This need not be an exact count, but should be a
good approximation. A maximum of eight decimal digits can be used.

Example:

No. of Msgs.
30000




Max. Msg. Size

This refers to the number of characters in the largest message in the file. The Assembly System will
compute this number from the information given in subsequent entries on these forms, and use this number to
assign input areas in memory. Unless the analyst bas definite knowledge that the number which will be com-
puted by the Assembly System will, for some reasom, be too small, be should leave this box blank. If the
analyst makes an entry in this box, his entry will take precedence over the figure computed by the Assembly
System. A maximum of five decimal digits may be entered.

No. of Reels

An estimate of the number of reels in the file is entered in this box. Two decimal digits may be used.
This information is for analyst reference only.

Example:

No. of Reels
11

No. of Stations

Enter a number specifying how many tape stations will be used for this file. This information is for
analyst reference only.

Example:

No. of Stations
o2

Keys

This box may be left blank, or the analyst may list from one to five possible sorting keys. Each key
listed can contain a maximum of five characters preceded by a D’ which is pre-printed on the form. This
information is for analyst reference only.

Example:

Keys
¢ DFLINO ®DENO @ DSTNO e DSHNO e DMANO

* Note that in entries on the Assembly System forms, since it is important that the alpha O be distinquished
from the numerical O. The alpha O is always written with an underscore.

Message Format

Is the file in message format? Enter a **Y”’ for “‘yes’’, a **N’’ for “'no”’ in the provided box.

Example:

YorN

y

Message Format Yes or No

Files Terminated by EF

Is this file terminated by an End File (EF) symbol? Enter a **Y” for ‘‘yes”’,a “*N’’ for ““no’’ in the
provided box. If no:



1. If the file is in message format, enter the sentinel that is used after the ISS following ‘‘other”’. A maxi-
mum of sixty-four characters may be used to specify the end file sentinel. The Assembly System will
assume that the sentinel, as it appears on tape, will be preceded by a Start Message Symbol and be fol-
lowed by an End Message Symbol; however, these symbols are not entered on the data description form.

2. If the file is in block format, the entered sentinel must be at least eight characters, and no more than
sixty-four characters long.

In either event no control symbols, SM, EM, EF, or ED, may be entered as the *‘other’’ end file sentinel
other’’ end file sentinel.

or part of the **

Example:

File Terminated
By EF
Y orN

Yes ot No @ N other ® END

Reels Terminated by ED

Is each reel in the file terminated by an End Data (ED) symbol? Enter a **Y”’ for ‘‘yes’’, an **N”’ for
“‘no”’ in the provided box. If no:

1. If the file is in message format, enter the sentinel that is used after the ISS following *‘other’’. A maxi-
mum of eighty characters may be used to specify the end data sentinel. The Assembly System will assume
that the sentinel, as it appears on tape, will be preceded by a Start Message Symbol and followed by an
End Message Symbol; however, these symbols are not entered on the data description form.

2. If the file is in block format, the entered sentinel must be at least eight characters, and no more than
eighty characters long.

In either event no control symbols, SM, EM, EF, or ED, may be entered as the ‘‘other” end data sentinel

or part of the “‘other’’ end data sentinel.

Example:

Reels Terminated
By ED
Yor N
Yes or No Other ®
Py Y

Remarks

Provisions are made for as many as 230 characters (including space between words) of remarks. These
are analyst remarks and may be used at the discretion of the analyst.
Body Message

The body message describes the individual items and sub-items that comprise the messages within the
file. Every item which may appear in any message of the file must be described in the body message. Items
must be described in the same order in which they may appear in messages on magnetic tape, and must be
numbered in that order. Entries are made in the body message as follows:

Item No.
Enter the number of the items. Items are numbered sequentially from 1 to 999.
Sub-Item

If the item described on a line of the form is not preceded by an ISS, enter **NOIS’’ in the Sub-Item



column of that line. If an ISS precedes the item, leave this column on the line blank. If the item is composed
of sub-items, the sub-item column is used to assign letters, in alphabetical order, to sub-items on following
lines. Sub-items are parts of an item which one may wish to consider separately from the other parts of the
item. For instance, consider a Master Employee file which contains, as the first item in each message, an
eleven digit employee number. The number may be considered in five parts:

a. A two-digit plant code, designating the particular plant in which the employee works,

b. A two-digit department code, designating the department within the plant in which the employee works,
c. A two-digit station code, designating the station or machine at which the employee works,

d. A one-digit shift code, designating the shift the employee normally works,

e. A four-digit man number, which is unique to this employee.

For cost accounting purposes, it may be desirable to charge the man’s salary against his department and
plant individually. It would then be convenient to be able to address the sub-items individually. However,
for the purpose of matching his time card information against his master employee file message, the entire
employee number is used, and it would be convenient to be able to address the item as a whole.

To gain this facility with the use of the RCA 501 Assembly System, the user specifies such multiple
code items as a single item which is further divided into sub-items. Both the item and sub-items are given
individual names in the “‘ABBREVIATION’’ column.

If an item is divided into sub-items, the LHE of the first sub-item will be the LHE of the item (the ISS,
if present). There may be up to 26 sub-items per item.

Abbreviation

Enter an abbreviated name for each item and sub-item described on the form. The abbreviation may be
five characters preceded by the pre-printed **D”’.

Each item of the file must be assigned a unique abbreviation. Moreover, the same item in different files
must have different abbreviations.

Example:
Item Sub- Abbreviation
No. Item
<®1 ) D EMPNO
. °A D PLNO
° *B D DENO
° oC D S TNO
° D D S HN O
. ®E D M ANO

Description

Up to twenty-five characters of description for each item and sub-item may be entered in this column for
the analyst’s convenience.

FAA

If the item being described on a line is of fixed character length, in a fixed position with relation to the
first character of the message, and always appears in the message, an **X’’ is placed in this column on the
line. It is not necessary to complete this column for sub-items, since, if the item itself is fixed and always
appearing, it will be assumed that its sub-items are also fixed and always appearing. Up to 240 FAA items
may appear in any one file.



The Assembly System assumes that ‘‘fixed and always appearing’’ means that the right hand end and
left hand end of an FAA item is always a fixed character distance from the first character of the message.
Therefore, once a variable item is described, all succeeding items will be considered variable, regardless of
size.

JY

If the item or sub-item being described on a line is justified right, eater an **R’’ in this column on that
line.

If the item or sub-item being described on a line is justified left, enter an ‘*L”’ in this column on that
line.

Sign

If an item has a sign associated with. it, enter an **X’’ in the column on the line describing the item. If
not, leave this column blank.

If a sign is indicated, the Assembly System automatically allots an extra location in that field to ac-
commodate the sign. Note, however, that the sign is nof to be included in the number of characters specified
for this item.

No. Chars. — Max.

Enter the maximum number of characters (1 to 999) that can appear in the item or sub-item. Note that
only information characters are counted; sign and ISS are not counted as part of an item or sub-item.

No. Chars. — Avg. -

Enter the average number of characters (1 to 999) that will appear in the item or sub-item. Note that on-
ly information characters are counted; sign and ISS are not counted as part of an item or sub-item. The en-
tries in **MAX.” and “*AVG.” should be equal for all FAA items and their sub-items.

% Use

Enter the percentage of the messages in the file in which this item or sub-item will appear. Note that
this must be **100”’ for all FAA items,

Wid. Avg.

The weighted average is the ‘“NO. CHARS.-AVG.” times the % USE’’. This figure will be computed by
the Assembly System, and need not be computed by the analyst. If, however, the analyst wishes to compute -
this figure and enter it on this form, he may do so; however, weighted averages must not be punched and en-
tered as input to the Assembly System.

Totals

At the bortom of the form are spaces for totals. The Assembly System will compute these totals. They
need not be computed by the analyst. If, however, the analyst wishes to compute these figures and enter
them on this form, he may do so; however, totals must not be punched and entered as input to the Assembly
System.

RCA 501 AUTOMATIC CODING DATA SHEET, FORM RCA |E-241-1

As stated previously, the first page, and only the first page, of each file description is written on form
RCA IE-241. All succeeding pages of a file description, if necessary, are written on form RCA IE-241-1,
shown at end of this chapter,

Heading

The heading of form RCA IE-241-1 is a short heading containing merely identification information. All
general information about the file will have been described on form RCA IE-241.



Name of File
Enter the same file name abbreviation that was entered on the first page of this file description,
Page® ofe®

After the ISS following ‘‘Page’’, enter the number of this page in relation to all other pages describing
the file. : .

After the ISS following “‘of’’, enter the total number of pages used to describe this file.

Remarks

Up to 230 characters of remarks may be made by the analyst concerning the data described on this page.

Body Message

The body message is filled out in exactly the same manner as in the body message of form RCA IE-241.

ENDING PAGES

Pages may be ended anywhere on the physical page. The analyst, for instance, may elect to put only a
full item (with all its sub-items) description on one page, or he may elect to fill all spaces on one page be-
fore going on to the next. The amount of information he chooses to put on a page is left to his discretion;
however, he must follow certain rules for ending pages:

1. If the page does not end a file description, place an EM symbol after the **% USE’’ entry of the last item
described.

2. If the page ends a file description, and this is not the last file described, place an EM symbol followed
by an EF symbol after the ‘% USE’’ entry of the last item of the file.

3. If the page ends the file description, and this is the last file described, place an EM symbol followed by
an ED symbol after the “*% USE’’ entry of the last item described.

A form RCA IE-241 showing a single item page, completely entered, is presented at the end of this
chapter.

NUMBER OF FILES

The maximum number of files that can be described for a pseudo-code program is 20.

KEYPUNCHING DATA SHEETS
When punching data sheets the following rules must be observed:

Header:
1. All preprinted ISS’s in the Header message must be punched.
2. Y or N must be punched in the MESSAGE FORMAT block.

3. Except for the F in Name of File entry and the D’s in Keys entry, preprinted words on the Data Sheet
Header are not to be punched.

Body:
1. All preprinted ISS’s on the form must be punched.

2. Weighted Average column and the Totals at the bottom of the form are not to be punched.



&

501

AUTOMATIC CODING DATA SHEET

NAME OF FILE <eF _ paGEs ] ore
NO.OF MSGS. |[MAX.MSG. SIZE|NO.OF REELS | NO.OF STATIONS| KEYS
® ¢ M ’ e bo_ - _ o0 __ ®0__ _ _ _ _ o _ _ eo__ _ _ _ _
Y OR N | FjLES TERMINATEDY OR N REELS TERMI- Y OR_N
MESSAGE FORMAT YES OR NO o BY EF ° NATED BY ED
' YES OR NO OTHER & YES OR NO OTHER®
REMARKS @ N
x
g Z /e e ¥
v [P« [|O <
X @
~ x &
F S NO. CHARS.
| TEM SuB ABBREVIATION DESCRIPTION A |uy |1 % WTD.
NO. | TEM A G USE AVG.
N MAX. AVG.
<. [ [ ] D L [ ] d e (] @ L]
[ ] L [ ] D [ [ od d L ) [ [ ]
L ] [ ] L] D [ 4 [ ] g L L ] [ ®
[ ] (] [ ] D [ ] [ ] o d [ ] [ ] [ ]
° ° e D ° o o o e 3 .
[ [ ] ® D [ ] [ ] Ld L L ] [ ] *
[ ] ® ® D L [ ] o L] ® [ ] o
o ® ® D L J ® L] L] L] *® ®
3 ° e D ® L) lo [ ] [ ) ]
[ 3 ] e D [ ] ] o L] [ ] ] 3
. . e p . . o . . . .
) ) e D ° o ° . e ° °
° ° e D . ) ° ° ° ° °
[ L ) ® D L * L] ® [ ] * [ )
] ° e D [ ) ® ® ) ® °
L) . oD . . o [ . . »
[ 4 [ o D *® [ ] ® L ] [ ] L ] [ J
® [ ] L ] D [ ] [ ) L] L J ® * *
® ) oD I ° . . . ° °
. ° oD [ ° o . ° . .
. ° e D . ° . . . ° °
[ ] L] [ J D [ 3 [ [ o [ ] [ ] L ]
L ] [ 3 [ ) D [ L ] L L] L ) * [ ]
[ ] [ ] L ] D ® [ [ [ ] L] [ [ ]
. . oD . . . s . . °
TOTAL CHARACTERS OF INFORMATION
ADDED CONTROL CHARACTERS
TOTAL CHARACTERS
1E 241 1/59



&

501 AUTOMATIC CODING DATA SHEET

NAME OF FILE

~~~~~ PAGE® OFe
REMARKS @
S5s [sF
> x &~ > 3
IL(?.A ISliJ'EM ABBREVIATION DESCRIPTION E JY |SiGN n:fx CHAZSV'G. U:E :’58:
<o . e D . . . . . . .
[ ] ® e D . L] . . ] L] L]
. . e D ° . [ ° 3 . .
o [} e D . e . [ ° . °
[ ] [ e D ° L] [ ° . . [
L] ] e D e ® L] [ L] ° °
. . oD . . . . . . .
. * e D ) ° [ [ . ° .
. . e D ® ® . . L) ] .
. . LI . . . . . ° .
» ° *p . . . . L) ) ]
. ] e D * . ® L] [ ] [ ] L)
. . e D . . . . . . .
. . e D . . . o . . .
. 3 e D ° ° [ [ L] [ [
L) . e D . . . [y . . O
. . L) . L] . . . . 'S
. . e D . L) ° . . . .
[ ] [} e D . [} ° o ° [ .
. . e p . . ] . . 3 L
. . e D . . . . . . o
L] [ ] e D . [ [ ] . L] [ ]
. . * p . . . . . . | o
L . *5 . . . L . . .
. . e D . . . . L e .
° ] e p . . ] . . . .
) . e p . * . . K . .
o L e p . . . . . o )
. . e D L) . . . . . .
. . L) . . . . . . .
TOTAL CHARACTERS OF INFORMATION
ADDED CONTROL CHARACTERS
TOTAL CHARACTERS
IE 241-1 1/59

10




&

501

AUTOMATIC CODING DATA SHEET

NAME OF FILE

PAGES 1 oFe 8

NO.OF MSGS.

MAX.MSG. SI ZE

NO.OF REELS

NO.OF STATIONS| KEYS

e 30000 |o . . oo oo eo_ oo _ oo
Y OR N | pjLES TERMINATEDY OR N REELS TERMI- Y_OR N
MESSAGE FORMAT YES OR NO Y BY EF » NATED BY ED
YES OR NO OTHER & YES OR NO OTHER®
REMARKS @ [
> o .%‘ 3 @ ¥
Employee sp No s [0 [°3
- >x s‘
F s NO. CHARS.
'R | 3B | ABBREVIATION DESCRIPTION Aoy L e wTo.
N MAX. AVG.
<1 0 ®*D|E|M|P |N|0|* Employee No. *X *L[® [*11 [|* 11 |* 100
. e A ep|PILIN|O e Plant No. X oL je o 2 o 2 e 100
° B |*PID|E|N |0]| |° Department No. XL |* 2 |* 2 * 100
* *c |°°ols|TIN|0]| |° Station No. X PLP |* 2 |* 2 |*100
° D [*PISH|N |O0]| |° shift No. X PL[f * 1 [|* 1 |[* 100
* * g |°D|M[A|N|O| |®* Man No. X IPL* |* 4 |* 4 |* 100|>
[ ] ® ® D [ ] [ ] L] L] * L ] L]
. [ ® D ° ) 3 ® . L .
[ 3 3 e D ) ) 03 [ . ® L]
[ J L] e D L] [ ® ° 3 [ °
[ ) o L] D [ ] ® o ® L] L] ®
® [ ) e D [ ] L] (] [ ] [ ) @® [ )
o o oD ° . o o ° ® ®
[ ] L] [ 2 D [ ] ® L] ® ® L ] L]
) [ e D o [ ] ® L] [ ] e L]
[ ] [ ] e D [ ] [ ] [ ) [ L ] o -
L 2 L ] [ ] D [} ® L] [ ] [ ] [ L]
[ ] [ ] ® D [ 2 L ] [ ) [ ] ® [ ] *
o . e D ® o . ° ° ° °
° ° e D ® ° o ° ° ° °
® ° oD . ° ° ® . ° °
) ° e D [ ° . ® ° o 3
[ ] L [ D L] L J L [ ] [ ] [ ©
[ ] [ ] L] D [ ] ® ® L L ] ® [ ]
® [ 3 [ J D L ) o L L ] L] ® 2
TOTAL CHARACTERS OF INFORMATION
ADDED CONTROL CHARACTERS
TOTAL CHARACTERS
IE 241 1/59

11




I1l. THE PROGRAM SHEET
AND ITS GENERAL USAGE

An RCA 501 Automatic Assembly Program Sheet, form RCA IE-240 is provided for writing programs to be
assembled by the Assembly System. A sample coding sheet is shown at the end of this chapter.

HEADING

The heading of this sheet provides space for the user to enter the title of the project, the programmer’s
name, the date, and a page number. Entries in Title, Programmer, Date and page number may be made in any
way the user desires.

GENERAL METHODS OF WRITING PSEUDO -CODE

Pseudo-code is written in the body of the form. General use of the columns on this form is as follows:

Instruction Number

Numbers, indicating the relative order in which instructions are to be placed in memory, are entered in
this column.

Instruction numbers are composed in the following format:
PAGdd
where: PAG is three alphabetic characters, the first character of which is always *'P’’.

dd is a two-digit numeric specifying the sequence of this instruction relative to the other instructions
within this block of pseudo-coding. It is advisable to make **dd’’ assignments in multples of ten.

Instruction numbers are written in ascending sequence in consecutive order; however, each line on the
form need not contain an instruction number, in which case the Assembly System will assign a relative in-
struction number as explained in Chapter IV,

For example, instruction numbers may be entered as follows:

PABO®

PAB 19

PAB 20

PAC 19

An Instruction number having ““PAGdd” format is often referred to as being an ‘‘explicit P-address.”
This terminology will be used throughout the remainder of this manual. An “‘explicit P-address’ must appear
in the instruction number column of the first line on each page of pseudo-coding, except where the first line
is the continuation of a pseudo-code instruction from the previous page. In this case, an explicit P-address
must appear for the first instruction following the continued one,

When the program is initially written, or when corrections are to be applied to an initial assembly, only
explicit P-addresses or addresses using decimal point insertion may appear in the instruction number column.
Decimal point insertion is explained in detail in Chapter IV.

12



Certain pseudo-code instructions require that an explicit P-address appear in the instruction number
column. These will be so specified as they are discussed,

Except for these special cases, the user enters instruction numbers at his own discretion.

Comments

Under **Comments’’, the user may enter any brief descriptive remarks he wishes to make for each pseudo-
instruction. Any EMP printing characters may be used. Control symbols, themselves, must not be used, but
may be specified by the letters “*SM”’, ““EM’’, ““ED”’, or “‘EF”’.

An entry in the Comments column may never exceed 44 punchable characters.

The comments column of the first P-address of the sorted pseudo-coding should contain the name of the
program and the date that the program was written. This information, when provided, must be a fixed field
containing exactly forty-four characters in the following format:

(Positions) 1-35 36 37 — 44
NAME  sp  DD/MM/YY

OP.

Under “*OP”’, the user specifies the operation code of the pseudo-instruction. Operation codes may be
mnemonic 501 operation codes, machine operation codes, special mnemonic operation codes, Descriptor
Verbs, macro-instructions, or subroutines. The latter three categories will be discussed in detail in later
chapters.

Mnemonic codes available are shown in the following chart with their corresponding octal machine codes.

Mnemonic OCtt'll Instruction Name
Notation
PES 01 Programmed Error Stop
PR 02 Print
PA 03 Paper Advance
LRR 04 Linear Read Reverse
BRR 05 Block Read Reverse
UNS 06 Unwind n Symbols
TCW 10 Transcribing Card Punch Write
SSw 11 Single Sector Write
LW 12 Linear Write
Msw 13 Multiple Sector Write
LRF 14 Linear Read Forward
BRF 15 Block Read Forward
RNS 16 Rewind n Symbols
RWD 17 : Rewind to BTC
IT 21 Item Transfer
OCT 22 One Character Transfer
STC 24 Sector Transfer by Character
TCT 25 Three Character Transfer
STT 26 Sector Transfer by Tetrad
RD 27 Random Distribute
LNS 31 Locate nth Symbol in Sector
zs 32 Zero Suppress
JR 33 Justify Right
SCC 34 Sector Clear by Character
J SCR 35 Sector Compress Retain
Redundant ISS’s

SCT 36 Sector Clear by Tetrad

(Continued on following page)

13



Mnemonic ) OC“{l Instruction Name
Notation
SCD 37 Sector Compress Delete
Redundant ISS’s
BA 41 Binary Add
BS 42 Binary Subtract
SC 43 Sector Compare
" TCA 44 Three-Character Add
TCS 45 Three-Character Subtract
LO 46 Logical ‘‘or’’
LA 47 Logical *“*and’’
DA 51 Decimal Add
DS 52 Decimal Subtract
DM 53 Decimal Multiply
DD 54 Decimal Divide
CTC 61 Conditional Transfer of Control
SSM 62 Sense Simultaneous Mode
TS 63 Tape Sense
SSG 65 Sense Simultaneous Gate
TA 66 Tally
TC 71 Transfer Coatrol
SET 72 Set Register
STR 73 Store Register
CSG 75 Control Simultaneous Gate
ST 76 Stop
RAI 1 77 Return After Interrupt

Most of the mnemonic instructions listed in the above chart perform exactly the same functions in a sim-
ilar manner, and are written in similar formats to that described in the RCA 501 Electronic Data Processing
System Programmers’ Reference Manual. The exceptions to this statement are described in a later chapter,

Special Mnemonic Operation Codes

The Assembly System also permits the use of four other mnemonic operation codes which have no
counter-parts in machine code language. These are:

IGN — Ignore

ADV — Add Variable
RES — Reserve
DUP — Duplicate

The functions and format of these mnemonic operation codes are described in Chapter V.

Mnemonic Operation Codes

The Assembly System is designed to be used primarily with mnemonic operation codes. If mnemonic
operation codes are used, all of the options available with the Assembly System may be used.
Machine Operation Codes

If machine operation codes are used, the octal operation code notation must be preceded by an **M’’ or
'(G”

When an M operation code is used, the entire instruction must be written in machine code, in exact ma-
chine code format. When a *‘G’’ operation code is used, the A and B columns may contain symbolic addresses
and/or M-addresses. No entries may be made in columns to the right of the **B-Address’’ column, and none
of the various options generally afforded to the Assembly System user can be used.

14



Thus, to perform a Conditional Transfer of Control ,

CTC
M61
or
G61
may be written in the “*OP!’ column.

A Address

If 2 mnemonic or *‘G’’ operation code is used, the user may specify either a relative instruction address
or an actual octal machine address under ‘“A-address’’. The various addresses and addressing systems will
be described in detail in the chapter devoted to addressing. In all but the exceptional cases (to be discussed
in Chapter VI), the A-address entry will perform the same function in mnemonic instructions as in machine
instructions.

If an M operation code is specified, the A-address must be an actual machine address written in for-
mat specified in the Programmers’ Reference Manual, and will perform the same function as described in that
manual.

N A
An entry in “*N,”’ will specify the particular address modifier whose contents will be added to the A-

address when the instruction is executed in the object program.

If a mnemonic or *‘G” operation code is used, a symbolic notation (see Chapter VI) is used to specify
the address modifier location; if no modification is desired, N, may be left blank.

If an M operation code is used, octal notation must be used to specify the address modifier location; if
no modification of the A-address is desired, an octal zero must be entered under “N ,”’.

Ng

An entry in “*N g”’ will specify the address modifier whose contents will be added to the B-address when
the instruction is executed in the object program.

If a mnemonic or “‘G’’ operation code is used, a symbolic notation is used to specify the address modi-
fier location; if no modification is desired, Ng is left blank. '

If an Moperation code isused, octal notation must be used to specify the address modifier location; if
no modification of the B-address is desired, an octal zero must be entered under “NB”.

B Address

If a mnemonic or ‘G’ operation code is used, the user may specify either a relative instruction address,
an actual octal machine address, or a symbolic address under ‘‘B-address’’. In all but the exceptional cases,
the B-address entry will perform the same function in mnemonic instructions as in machine instructions.

If an M operation code is specified, the B-address must be an actual machine address, written in the
format specified in the Programmers’ Reference Manual, and will perform the same function as described in
that manual.

T Address

The **T-address’’ column and all other columns to the right may only be used with mnemonic operation
codes. In general, an entry in the T-address column will cause the Assembly System to generate a **Set T’
instruction and place it before the instruction specified in the operation code. For example, let us look at
how a T-address entry may be used with the Decimal Multiply. The instruction may be written as follows:

OoP A N N B T
A B

DM WPAY WRATE | WTAX

15



where: WPAY = a symbolic address specifying the rightmost character of multiplicand
WRATE = a symbolic address specifying the rightmost character of the multiplier
WTAX = a symbolic address specifying the destination location of the sign of the product.

The Assembly System will generate the following machine instructions as a result of this one pseudo-
instruction:

opP A N,Ng B
72 WTAX 00 600000
53 WPAY 00 WRATE

Notice that this option (the T-Address column on the form) allows the user to write what is, in effect, a three
address instruction. In the Decimal Multiply instruction shown above, the A-address specifies the multipli-
cand, the B-address specifies the multiplier, the T-address specifies the product location.

Ny

An entry in ‘N {’’ will usually specify the address modifier whose contents will be added to the A-ad-
dress of the generated **Set T’’ instruction, when the instruction is executed in the object program,

A symbolic notation is used to specify the address modifier; if no modification is desired, N is left
blank.

For example, if the T-address of the previous example is to be modified by the contents of address mod-
ifier 1, the pseudo-instruction is written as follows:

oP A NANB B T NT

DM WPAY WRATE | WTAX B1

The machine instructions generated would be:

op A N,Ng B
72 WTAX 10 600000
53 WPAY 00 WRATE

Note that if any entry is made in either the T-address or Ny columns, except for the special cases to be
discussed in Chapter VI, a “‘Set T” instruction will be generated pteceding the instruction specified under
!KOPY,.

If the T-address is left blank, but an entry is made in the Ny column, a **Set T”’ instruction with an A-
address of (000000), is generated preceding the instruction specified under “‘OP”’.

Example:
P seudo- code:
opP A NAN B B T NT
DM WPAY WRATE B1

16



Generated Machine Code:

oP A N,Ng B
72 000000 10 600000
53 WPAY 00 WRATE

If a zero is entered in the Ny column, and the T-address column is left blank, a *‘Set T’ instruction,
with an A-address of (000000)g and a N octal digit of 0, is generated preceding the instruction specified un-
der “*OP .

Example:
Pseudo-code:
OoP A NANB' B T NT
DM | WPAY WRATE 0
‘Generated Machine Code:
opP A NANB B
72 000000 00 600000
53 WPAY 00 WRATE

These options provide the user with the ability to generate ‘‘Set T’’ instructions which may be set to
any A-address with any A-address modifier by later programming steps.

CsG

The CSG column stands for *‘Control Simultaneous Gate’’. If a Control Simultaneous Gate instruction is
desired after the instruction specified in the **OP.’’ column, an entry is made under CSG. If the letter *‘O”’
is entered, the generated Control Simultaneous Gate instruction will open the simultaneous gate. 'If the let-
ter *‘C”’ is entered, the generated Control Simultaneous Gate instruction will close the gate. The Control
Simultaneous Gate instruction, if called for, will always immediately follow the instruction specified in the
*‘OP.”” column, whether or not a T-address entry is made.

Example:
Pseudo-code:
C
A
oP A N AN B B T N T G
DM WPAY WRATE | WTAX Bl C
Generated Machine Code:
oP A N AN B B
72 WTAX 10 600000
53 WPAY 00 WRATE
75 000000 00 010000

17



IF - GO TO

The right hand nine columns are used to specify conditional or unconditional transfer of control instruc-
tions. Three conditions may be specified in the three sets of *IF — GO TO’’ columns. The “IF” column is
used to specify the condition; the **GO TO’’ column specifies the address of the instruction to which control
will be transferred if the condition stated in the previous “‘IF’’ column prevails.

Either one or two of the following instructions will be generated as a result of entries in the “'IF — GO
TO” columns, '

TC
CTC
TS
SSG
SSM

The instructions generated will be placed immediately following the CSG instruction, if one was called for,
or if no CSG was called for, immediately following the instruction specified in the “*OP.’’ column.

TC
A single Transfer of Control instruction may be specified by:

1. Entering TC in the first “'IF’’ column, and entering in the first “‘GO TO’’ column the relative or machine
instruction address of the instruction to which control is to be transferred if no breakpoint bits are to be
set to one.

2. If any breakpoint bits are to be set to one, enter *‘SW”’ followed by numbers of the breakpoint bits which
are to be set to one in the first “IF”’ column. In the first “GO TO’’ column, enter the relative or machine
address of the instruction to which control is to be transferred. SW3 would cause a test of breakpoint 3,
SW 025 would cause a test of breakpoints 0, 2 and 5.

Example:
Pseudo-code;
C
A
oP A NaNg B T Ny| G | IF |GOTO| Ny | IF |{GOTO |[Ny|IF GO TO N3
DM |DPAY DTAX |DNET TC |[PAB25
Generated Machine Code:
oP A N AN B B
72 . DNET 00 600000
53 DPAY 00 DTAX
71 PAB25 00 000000

CTC

The insertion of a Conditional Transfer of Control instruction may be specified by the use of two (or
three) of the “'IF — GO TO’’ columas in accordance with the following:

1. In one of the first two *‘IF’’ columns enter a *‘+’’. In the ‘GO TO’’ column to the right of the *‘+”, enter
the relative or machine instruction address of the instruction to which control is to be transferred if PRP
is set.

2. In the other of the first two *‘IF’’ columns enter a ** =",

18



In the ““GO TO” column to the right of the **—’’, enter the relative or machine instruction address of

the instruction to which control is to be transferred if PRN is set.

3. If PRZ is set, control is transferred to the next instruction. If, however, the user wants a TC instruction
to be inserted as the next instruction, the third set of ““IF — GO TO’’ columns is used in the following

manner;

a. If no breakpoint bits in the inserted TC instruction are to be set to one, enter **0’’ in the third “IF”
column, and in the third *“GO TO” column, enter the relative or machine instruction address of the
instruction to which control is to be transferred.

b. If any breakpoint bits of the inserted TC instruction are to be set to one, enter in the third *IF’’ col-
umn an “‘SW”’ followed by the bit numbers which are to be set to one. In the third **GO TO”’ column,
enter the relative instruction address to which control is to be transferred.

c. When *“+’’, **="" and **0’’ are used together, their order is immaterial. However, if **SW’’ is used it
must appear in the 3rd column.

Example:
Pseudo-code:
C
s
oP | A |[NNg| B T |N| G |IF|GoTO| N, |IF |60 TO|N,|IF | GoTO | N,
SC |DCODE [DCODE{DMCODH + |PAB10 — |PAB20 0 | PAB 30

where: DCODE
DCODE
DMCODE
PAB10

1

PAB 20

PAB30

Generated Machine Code:

address of left-most character of the item, DCODE.

address of right-most character of the same item.

op A N ANB B

72 DMCODE 00 600000
43 DCODE 00 DCODE
61 PAB 10 00 PAB 20
71 PAB 30 00 000000

TS

address of right-most character of the comparison quantity, DMCODE.

the address of the instruction to which control is to be transferred if PRP is set.
the address of the instruction to which control is to be transferred if PRN is set.

the address of the instruction to which control is to be transferred if PRZ is set.

The Tape Sense instruction tests to see if any number of six possible tape conditions prevail. The 501
Assembly System user can specify the insertion of a Tape Sense instruction through the use of the first two
“IF -~ GO TO” sets of columns .in the following manner:

1. In the first *IF” column, enter letter codes indicating the condition, or combination of conditions, to be
tested for. The following code letters are used:

= mw

Is the tape positioned on BTC?
Has ETVW been sensed?

Is the tape now stationery or moving forward?

Is the tape now moving in the reverse direction?

(Cont’d)

19



M
N

Is the tape now in motion?
Is the Tape Station non-operable?

Any one or a combination of these code letters may be entered in the first “‘IF’’ column.

2. The relative or machine instruction address of the instruction to which control is to be transferred if any
one of the conditions specified in the “IF’’ columns is found to be present, is entered in the first ‘GO
TO” column.

3. A symbolic or machine Tape Station number (Tape Station Addressing is covered in Chapter V., Address-
ing) indicating the station to be tested is entered in the second ‘GO TO” column.

4. The third set of “IF — GO TO” columns may be left blank, or can be used to generate a transfer of con-
trol instruction — see TC.

Example:
P seudo- code:
C
S
opP A NANB B T N_r G IF | GO TO N] IF GO TO N2 IF GO TO N3
DM |DPAY DTAX |DNET RN |PAC43 IMAS
where: IMAS = Tape Station 10
Generated Machine Code:
op A N A N B B
72 DNET 00 600000
53 DPAY 00 DTAX
63 PAC43 00 105000

An entry in N,, where a Tape Sense instruction is called for, will cause address modification of the A-
address of the generated machine instruction.

An entry in N,, where a Tape Sense instruction is called for, will cause address modification of the B-
address of the generated machine instruction. The B-address of the generated machine instruction will be
generated from the entry made in the second ‘GO TO” column (the Tape Station) and from the entry in the
first “'IF”’ column (the condition to be tested). An N, entry in this case may, therefore, effect a change in
these two specifications.

Example:
P seudo-code:
C
s
OP | A |[NuNg| B T |Ny| g |IF|GoTO|Ny | IF|GOTO|N,| IF | GO TO | N3
DM |WPAY WRATH WTAX B |PAB40| B1 T10 |B2
Generated Machine Code:
oP A N,Ng B
72 WTAX 00 600000
53 WPAY 00 WRATE
63 PAB 40 12 100100

20



$SG

Two conditions are tested by the Sense Simultaneous Gate instruction. Is the simultaneous gate opened,
or is the simultaneous gate closed? To generate an SSG instruction, “'SGQ’’ is entered in one of the first
two “IF”’ columns, and SGC is entered in the other of the first two “IF’’ columns. The order in which they
are entered is immaterial. The third “IF — GO TO’’ set of columns may be left blank, or can be used to
generate a TC instruction.

In the “‘GO TO”’ column to the right of the ““IF”’ column in which SGC was entered, enter the relative or
machine instruction address of the instruction to which control is to be transferred if the simultaneous gate
is found to be closed.

In the “GO TO” column to the right of the ““IF’’ column in which SGO was entered, enter the relative
or machine instruction address of the instruction to which control is to be transferred if the simultaneous gate

is found to be opened.

Example:
Pseudo-code:
C
A
orP A N,Ng B T Nt| 6 | IF |GOTO| Ny | IF | GO TO | N,| IF | GO TO N,
DM |WPAY WRATE | WTAX ' SGO |PAB 10 SGC|PAB 20
Generated Machine Code:
oP A N,Ng B
72 WTAX 00 600000
53 WPAY 00 WRATE
65 PAB 10 00 PAB 20

SSM

The Sense Simultaneous Mode Instruction tests for one of four conditions:
Is the simultaneous mode occupied by a read instruction?
Is the simultaneous mode occupied by a write instruction?

Is the simultaneous mode occupied by a Paper Advance?

L

Is the simultaneous mode unoccupied?

A Sense Simultaneous Mode instruction which makes special provisions for all but condition 3 (i.e., the
Paper Advance is occupying the simultaneous mode) may be entered in the *IF — GO TO’’ columns in the
following manner:

1. Enter “‘SMR”’ (simultaneous mode occupied by read) in one of the first two *'IF’’ columas.

In the GO TO’’ column to the right of the SMR entry, enter the relative or machine instruction address of
the instruction to which control is to be transferred if the SSM finds a read instruction in the simultaneous

mode.

2. Enter **SMW” (simultaneous mode occupied by write) in the other of the first two “IF”’ columns. The or-
der is immaterial,

In the ““GO TO” column to the right of the SMW entry, enter the relative instruction address of the instruc-
tion to which control is to be transferred if the SSM finds a write instruction in the simultaneous mode.

21



3. If the simultaneous mode is found to be unoccupied, control will normally be transferred to the next in-
struction. If this is desired, leave the third set of “IF — GO TO’’ columns blank.

4. If a transfer of control to some instruction other than the next instruction is desired, when the simultan-
eous mode is found to be unoccupied, a TC instruction may be inserted as the next generated instruction
through the use of the third set of ““IF — GO TO’’ columns. Enter either “‘SW’’ followed by from one to
six digits or *'TC"’ in the third ““IF’’ column according to the following:

a. If no breakpoint bits in the inserted TC instruction are to be set to one, enter a ““TC’’ in the ‘‘IF”’
column.

b. If any breakpoint bits are to be set to one, enter “‘SW’’ followed by the numbers, from zero through
five, of the bits that are to be set to one. Any number of the bits may be set to one; e.g., SW2, SW4,
SW245, are all legitimate entries.

5. If a ““TC” or “*SW”’ entry has been made in the third “‘[F’’ column, enter, in the third **GO TO’’ column,
the relative or machine instruction address of the instruction to which control is to be transferred by the
generated TC instruction.

Example:
P seudo- code:
C
S
OP | A |N,Ng| B T |N¢| g |IF |GoTO| N, |IF | Go TO|N,| IF | GoTO | N,
DM |WPAY WRATE |WTAX SMR| PABI0 SMW | PAB20 SW234 | PAB 30
Generated Machine Code:
opP A N,Ng B
72 WTAX 00 600000
53 WPAY 00 WRATE
62 PAB 10 00 PAB 20
71 PAB30 00 340000

N'I' N2' N3

Entries in the N}, N,, and N ; columns, in all cases but the Tape Sense instruction, specify the address
modifier locations whose contents are to be used to modify the ““GO TO’’ addresses immediately to the left
of the particular “'N’’ column in which an entry is made.

Example:
Pseudo-code:
C
M)
oP| A |NusNg| B T |Ny| G.IF |GOTO| Ny |IF |[Go TO | N,| IF | 6o TO | N4
SC | DPAY ‘DPAY | DTAX | B1 + |PAB22} B2 | - |{PAB25|B2{ O PAM19 B3
Generated Machine Code:
opr A NANB B
72 DTAX 10 600000
43 DPAY 00 DPAY
61 PAB 22 22 PAB 25
71 PAM 19 30 000000

22



ADDRESS LENGTHS

Entries in the A-, B-, and T-address columns may not exceed nineteen characters in length.

THE “N” ADDRESS IN GO TO COLUMNS
The Assembly System will recognize an N entered in a **GO TO’’ column on the coding sheet. It will

substitute for the N the address of the next pseudo-instruction. Note that this feature carnot be used in
other columns. ’

GO TO COLUMNS LEFT BLANK

If the programmer has made an entry in an “IF’’ column and has left its corresponding ‘GO TO’’ column
blank, the assembler will substitute a (000000) 8 address in the generated machine instruction.

23



i TITLE PROGRAMMER DATE PAGE
@ 501 AUTOMATIC ASSEMBLY PROGRAM SHEET
1 2 3 ) 7 8 s [0 it 12 13 14 15 16 17 18 19
INSTRUCTION COMMENTS oP. A ADDRESS B ADDRESS T ADDRESS N, |cse| TF o To | Ny IF o o | N2 IF 60 TO 3

ALNINIANINIANTATALAIATAIATAIANTATATA TN IATNIN AN TATATALA

RCA 1E-240 <
2/59

<

(Page 24)

VIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIV




IV. ADDRESSING.

Various methods and systems for addressing instructions, data, \ constants, working storage areas and
address modifier locations are available to the RCA 501 Assembly System user. This chapter describes the
available systems and their usage.

MACHINE ADDRESSES
Machine addresses may be used to address all five types of information:
1. Instructions,
. Data,

2

3. Constaats,
4. Working Storage Areas,
5

. Address Modifiers.

Format

When used with mnemonic operation codes, machine addresses are written as six-digit octal numbers
preceded by the letter “*M’’. They may be entered in the *‘A-address’’, ‘‘B-address’, *‘T-address’’ and
‘GO TO” columns of the coding sheet. If a mnemonic or **G’’ operation code is used for a particular pseudo-
instruction, any combination of addresses of that pseudo-instruction may be machine addresses; however,
each machine address used must be preceded by an ““M’’.

If the octal operation code is preceded by an ‘*M’’, all other entries (A, N,, Np, B) must be machine
addresses, not preceded by an **M’’. '

‘Example:
Pseudo-Code: .Machine Code:
oP A N AN B B opP A N AN B B
IT M002000 M002050| = 21 002000 00 002050
M21 002000 00 002050 = 21 002000 00 - 002050

Addresses preceded by an ‘*M’’ are called ‘*M-addresses’’. Note that M-addresses may be entered for
all addresses except address modifier locations. If a mnemonic operation code is used, address modifier
locations for that instruction must be specified symbolically. If an octal operation code (preceded by an

**M’’) is used, address modifier locations for that instruction are specified octally and are not preceded by
an ((M,’.

DATA ADDRESSES

The data descriptions entered on forms RCA IE-241 and IE-241-1 are entered as input to the Assembly
System. The information provided on these forms will be used by the system to allocate read-in areas in
memory for the various input files to the run being assembled. The amount of memory allocated by the As-

sembly System for each file read-in area will be based upon the maximum message size as determined from
the data sheets.

25



FORWARD READ DATA ADDRESSING

To cause data from a file to be read into its allocated read-in area, the file is addressed by its file
name. The file name for each file is the name entered on the data sheet describing that file (an F followed
by a maximum of five characters).

Example:

To effect a Linear Read Forward of the next message on the Master Employee File tape from Tape Sta-
tion 10 into the allocated read-in area, the Assembly System user writes:

OoP A N,Ng B

LRF FMASEM T10

If the Assembly System has allocated memory locations 037000 through 037143 as the read-in area of this
. file,.the generated machine code will be:

opP

A

NoNg

B

14

037000

00

100000

Notice that the file name, FMASEM, corresponds to the memory location into which the SM of the message
will be placed (037000).

The following general statement may, therefore, be made:

If data is read into memory with a Linear Read Forward instruction, the symbolic file name, when placed
in an address calling for an LHE specification, will address the memory location into which the SM is placed
by the read instruction. The LHE of the read-in area will always be a CO position to properly accommodate
the SM. The RHE of the file area will always be the C3 position of the last tetrad in that area. It will not
necessarily be the last character read in.

Symbolic Addressing

If a message is read in with a Forward Read Instruction, FAA (fixed and always appearing) items and
sub-items in the read-in area may be symbolically addressed by item names. Item names are those names
entered under *‘Abbreviation’’ on the data sheets. They are a maximum of five characters preceded by a
(!D,’.

For instance, the Employee Number item of a Master Employee file can be addressed as DEMNQ. When

items are so addressed, the Assembly System will insert the address of either the right or left hand end of
the item in the generated instruction according to the requirements of the particular instruction.

Example:

Assume that the first two items .of every message in a Master Employee file are Employee Number, ab-
breviated DEMNO, always fixed at eleven digits preceded by an ISS and Social Security Number, abbreviated
DSSNO, always fixed at nine digits preceded by an ISS.

The message is read into memory with a Linear Read Forward Instruction and the SM of the message is
placed in memory location 037000.

A Sector Transfer of these two items from the read-in area may be written as follows:

where WBAL is the destination address.

26

opP A

N

A

N

B

B

T

STC

DEMNQ

DSSNO

WBAL




Generated Machine Code:

opP A N,Ng B
72 041510 00 600000
24 037001 00 037026

where 037001 is the left hand end of the Employee Number item, its ISS; 037026 is the right hand end of the
Social Security Number item; and 041510 is the right hand end of the work area, WBAL.

Character Addressing

Particular characters of any FAA item or sub-item are addressable by use of the following format:

R R tn
NAME (L)or NAME(L in)

where: NAME is the address of the reference item or sub-item.
R specifies the right hand end of the item, the sign if present,
L specifies the left hand end of the item, the ISS if one is present,
+ specifies that the addressed character is n places to the right.
— specifies that the addressed character is n places to the left.
n is the number of places that the addressed character is removed from the specified end.

Note that character addressing must be enclosed by parentheses.
Examples:

Assume that the FAA item DNAME is 10 characters in length, including an ISS. The following refer-
ences may be made:

DNAME (R) = addresses rightmost character of field.
DNAME (L +2) = addresses third character in field.
DNAME (R —4) = addresses sixth character in field.

Characters of FAA items within a message read in with a forward read may also be addressed relative
to the LHE in the following format:

FILE NAME(L + n)
where: FILE NAME represents the address of the LHE, n is the number of characters to the right of the LHE.
Example:
FMASEM(L + 10) addresses the 11th character of the message
FMASEM(L + 25) addresses the 26th character of the message
Relative Addressing

Any FAA item or sub-item read into a file area with a forward read instruction may be addressed relative
to the left hand end of the file area, or relative to other FAA items.

Relative to LHE of the file area:

Since the LHE of a file is addressed by the file name, and all FAA items are fixed with respect to the
LHE, it is possible to address these items by their relative position to the LHE in the following manner:

FILE NAME + k

Where k is the number of the addressed item within the file. Thus, in the Master Employee file where the
Social Security Number is the second item, it may be addressed as follows:

27



FMASEM + 2
The second sub-item within Social Security Number may be addressed:
FMASEM + 2B
Relative to Other FAA ltems:

FAA items within a message read into memory with a forward read instruction may also be addressed by
their relative position to other FAA items. FAA item addresses which are relative to other FAA items are
written in the following format:

ITEM NAME *k

where: k is the number of items the addressed item is removed from the reference item.
+ means to the right of the reference item. '
— means to the left of the reference item.

Thus, if the Stock Number is the second item and Date is the sixth item, Date can be addressed as
follows:

DSTKNO + 4
The first sub-item within Date may be addressed:
DSTKNO + 4A
Character addressing may also be used with relative addresses; for example:
FMASEM + 6 (L+3)
This will address the fourth character of the sixth item of the file FMASEM.

As with symbolic addressing, the Assembly System will supply the address of the right or left hand end
of the relative item according to the requitements of the instruction in which it is used. It should be noted
that an ISS (if present) is considered as the left band end; a sign (if present) is considered as the right-bhand
end.

ISS Considered As LHE

When an item contains an ISS, the ISS location is considered as the left-hand end of the item. Therefore,
if DITEM is used in an address requiring the LHE, the Assembler will supply the location of the ISS. Simi-
larly, DITEM(L) would address the same location.

If an item contains an ISS, the LHE of its first sub-item will be the ISS location, also.

Alternate Read-In Area Addressing

Since the RCA 501 Data Processing System has simultaneous operation features, the Assembly System
provides for up to four possible read-in areas to facilitate alternate read programming.

1. The **F’ read-in area

2. The **X”’ read-in area
3. The **Y"’ read-in area

4, The “'Z" tead-in area
The primary, or *‘F’’, read-in area is addressed by the methods previously discussed.

To read a message into the second read-in area, the file name preceded by an **X’’ is used as the A-
address of the Linear Read Forward instruction. FAA items, sub-items and characters may be addressed
symbolically and relatively within the **X’’ read-in area in the same format described for the “‘F’’ read-in
area except that file names and item names are prefixed with X’s,

28



Similarly, data is read into the Y and Z read-in areas by prefixing the file name in the A-address of the
LRF with the letter corresponding to the read-in area desired. Data is addressed within these read-in areas
by referring to file names and item names prefixed with Y or Z (depending upon the read-in area being used).

All addressing procedures previously described also apply to the alternate areas.
Examples:

The following Linear Read Forward instructions will read successive messages from the same file into
the four different read-in areas.

oP A NaNg B
LRF FMASEM T10
LRF XFMASEM T10
LRF YFMASEM T10
LRF ZFMASEM T10

The following Item Transfer instructions transfer the Employee Number item from the four different read-
in areas to four work areas.

oP A NaNg B

IT DEMNO WAREA 1
IT XDEMNO WAREA 2
IT YDEMNO WAREA 3
IT ZDEMNO WAREA 4

Use of Data Addressing

Note that the symbolic and relative addressing systems described herein apply to data in original read-
in areas only. Once data is removed from its original read-in area, it is no longer addressable by these
methods. W-addresses, to be described under Working Storage Addressing, are assigned to data transferred
from read-in areas to other areas of memory.

Addressing Non-FAA ltems
Two systems may be used to address non-FAA items:

1. The message may be transferred into working storage by use of the Random Distribute instruction. The
items in working storage may then be addressed symbolically by working storage addresses. A complete

description of the use of working storage addressing is given in this chapter under Working Storage Ad-
dresses.

2. The Locate nth Symbol instruction may be used to obtain the machine address of any desired item. The
address thus determined may be used in subsequent instructions.

Any attempt to make direct symbolic or relative reference to a non-FAA item in the read-in area will
cause the Assembly System to leave that address blank, and an error print-out will indicate this occurrence.

REVERSE READ DATA ADDRESSING

If files are read into memory with reverse read instructions, several options are available to the pro-
grammer for addressing data within the file. ‘

29



Reverse Reads of Complete FAA Files

If a file is composed of all FAA items, and the RHE falls in the C3 position of a tetrad on a forward
read, all the rules of data addressing applying to data read with a forward read, would apply to this file if
it were read with a reverse read.

Reverse Reads of Data Containing Non-FAA ltems

Data read with reverse reads will be placed in memory such that the RHE will always be in a C3 posi-
tion of a tetrad. If the file contains non-FAA items, the LHE of the file (and all items designated as being
FAA) will no longer be fixed. Thus, it will not be possible to address these items relative to the LHE. The
Assembly System, therefore, makes the following options available to the user for addressing data read with
a reverse read.

Character Relative with Respect To the RHE

Individual characters within a message read into memory with a reverse read may be addressed in the
following format:

FILE NAME (R - n)
where: FILE NAME is the name of the file.
n is the number of characters to the left of the RHE.

The % Address

When a file is read into memory with a reverse read, the machine address of the last character read is
lefe in the A Register. The contents of the A Register may then be stored in an address modifier location.
This address modifier location can then be used to modify all addresses in subsequent instructions referring
to FAA items. In addresses modified in this manner, the names of the addressed FAA items, preceded by a
% symbol is entered; e.g., DEMNO for Employee Number, %ZDSSNO for Social Security Number, etc.

The Assembly System will substitute, for all % addresses, the octal number of characters the LHE or
RHE of the item is removed from the left-hand end of the file, depending upon the requirements of the in-
struction.

E xample:

If the Employee Number item is the first item of amessage, and is composed of eleven digits preceded by
an ISS:

%DEMNO will be replaced by 000001 in instruction addresses requiring the LHE.
%DEMNO will be replaced by 000014 in instruction addresses requiring the RHE.

GENERAL WORKING STORAGE ADDRESSES

Working storage addresses are always written with a *'W” as the first character of the address, and are
therefore referred to as ‘*W-addresses’’. There are two classes of W-addresses:

1. General Working Storage Addresses

2. Special Working Storage Addresses

General working storage addresses are written in the following format:
WANNNNN

where: W must be the first character of all W-addresses, A specifies the particular section of working stor-
age memory into which the working storage specified by this address is to be placed. *“A’’ may be
any letter or number except 0, 1, D, F, X, Y, or Z. ‘A’ equal to 1 refers to print working storage

30



areas covered later in this chapter. ‘*A’’ equal to D, F, X, Y or Z designates Disuributed Data Work-
ing Storage areas created by the Random Distribute Instruction as explained in Chapter VI.

NNNNN may be any combination of five numbers or letters naming the particular location to which this
address applies.

Length of General Working Storages

The length of all general working storages must be defined as part of a W-address once and only once
within the program. Working storage lengths are specified by writing, after the W-address, a decimal point
followed by a decimal number of up to four digits which specifies the number of character locations to be
reserved for this working storage. Having once specified the length of a particular working storage, the user
makes reference to that working storage by the W-address, alone, without the length designation.

Example:

Suppose that it is desired to multiply two items, place the product in working storage, and zero suppress
the product. Further suppose that the multiplier is an FAA three-digit item named DMULTR, the multiplicand
is an FAA four-digit item named DMULTD, and the product is to be placed in a working storage location in
the ““A’’ working storage block. The pseudo-coding to accomplish this may be written as follows:

op A NaNg B T
SCC | WAPROD.8 WAPROD
DM DMULTD DMULTR | WAPROD
zs WAPROD WAPROD

Note that in the above pseudo-code ““WAPROD’’ is used as both the left and right hand address in the SCC
and ZS instructions. The Assembly System will generate the left or right hand end of the working storage
area from the W-address according to the requirements of the address of the particular instruction.

Note also that the length of the working storage area into which the product is placed is specified only
once (in the above case in the A-address of the SCC instruction). Should the length be specified more than
once, more than one memory allocation will be made; however, only one of the allocated memory areas will
be consistently referred to by this W-address.

Positioning Working Storage Within Tetrads

In the above example, an SCC instruction was used to clear the product destination area. Notice, how-
ever, that eight character locations were reserved for the product destination area. If the programmer could
be assured that the eight characters reserved by the Assembly System for “*WAPROD’’ were two complete

tetrads, rather than one full tetrad and two partials, he could use the faster SCT instruction rather than the
SCC instruction to clear the product destination area.

The Assembly System, therefore, provides the user with the option of specifying which particular char-
acter within a tetrad is to be the left hand end of the working storage area. Left-hand-end-character-within-
tetrad-designation is written in the following format:

W-ADDRESS.NC (Cn)

where: W-ADDRESS is the W-address the user has assigned to this working storage area.
.NC is the number of characters to be reserved for this working storage area preceded by a decimal
point. :
(Cn) is the character position within the tetrad which is to be the left hand end of the working storage
area, where n may equal 0, 1, 2 or 3.

31



The (Cn) notation need only be specified if it is important that a working storage area be positioned properly
with respect to tetrads in memory. If such positioning is important the (Cn) notation must be specified in the
same W-address as the length specification. All other references to the same working storage areas are made
by the W-address, alone.

Example:

With the use of this option, the previous example may be coded as follows:

oP A N,Ng B T
SCT | WAPROD.8(CO) WAPROD
DM | DMULTD DMULTR | WAPROD
zs | WAPROD WAPROD

Character Addressing Within Working Storage

Individual characters within working storage areas may be addressed by following the W-address with
(R %n) or (L *n) in a similar manner to character addressing within FAA items.

Note that a W-address referring to a particular character within a working storage must not be used in
a W-address which also specifies the length of the working storage.

SPECIAL WORKING STORAGE ADDRESSES

There are two types of special working storage addresses:
1. Print working storage addresses.

2. Disuibuted data working storage addresses.

Print Working Storage Addresses (On-Line Printer)

The Assembly System makes special provisions for setting up working storages from which information
is to be printed. Print working storages are addressed in the following format:

widd

where: W must be the first character of all working storage addresses.
1 indicates that this is the address of a print working storage.
dd is a two-digit number ranging from 01 to 99, inclusive. This is the number assigned to this parti-
cular print working storage.

Length and Position of Print Working Storages

The Assembly System automatically assigns print working storages. The programmer does not; he im-
plies these specifications to the Assembly System when he writes a *‘1’’ as the second character of a W-
address. However, to cause the Assembly System to act upon this implication, for each unique print working
storage address, the programmer must place a decimal point after the address once within the program.

Example:
wi1o1.

The RCA 501 Print instruction always prints the contents of 120 successive character locations in mem-
ory. Furthermore, this instruction requires that the address of the first of the 120 characters to be printed
have an even number in its C2 digit and (00)g in its C3 digit. The Assembly System always reserves (128);,
= (200) g character positions in memory for each unique print working storage addressed in the pseudo-code.

Each of the reserved print working storages will begin ina memory location whose C2 digit is even and whose
C3 digit is (00)g.

32



Print Working Storage References

It was stated above that 128 character positions were reserved for each print working storage, but only
120 characters are printed with each print instruction. W1 addresses, theréfore, when used in instructions
where the right hand end of a sector is required, will generate the machine address corresponding to the 120th
character of the print working storage rather than the 128th character. W1 addresses, when used in instruc-
tions where the left hand end of a sector is required, will generate the machine address corresponding to the
first character set aside for the print working storage.

Example:

To clear a print working storage, designated as W105, the programmer may write:

op A NaNg B

SCT w105

W105.

If W105 were assigned to memory locations 031200 to 031377 the generated machine code would be:

oP

A

NaNg

B

031367

36 031200 00

Character Addressing Within Print Working Storage

Characters within working storage areas may be addressed with (L tn) or (R *n) notation following the
W1 address. ''L’’ refers to the first character of the print working storage. ‘R’ refers to the 120th char-
acter of the working storage. To refer to the normally unused eight characters (characters 121 through 128)
of the 128 characters reserved by the Assembly System for print working storage areas, (L +120) to (L +127),
or (R+1) o (R+7) may be used.

Example:

To address the 121st character of print working storage location W105, the following addresses may be
used:

W105(R+1)
W105(L+120)

Note that the (R tn) and (L £n) notation must not be used in a W-address with a period in it.

Use of W1 Addresses with Print lnstmc’tiéns

Assume it is desired to print the following FAA items from the read-in area in the indicated print posi-
tions on one line.

Item Abbreviation ‘ N o Pr,"ft
Digits | Positions

Employee Number DEMNO 11 5-15

Social Security No. DSSNO 9 20-28

Date DDATE 6 35-40
Yearly Salary DYRSAL 4 45-48




The pseudo-code to accomplish this may be written as follows:

oP A N AN B B
SCT W103. w103
IT DEMNO w103 (L + 14)
IT DSSNO w103 (L + 27)
IT DDATE w103 (L + 39)
IT DYRSAL W103 (L + 47)
PR w103

Distributed Data Working Storage Addresses

Special WD, WF, WX, WY and WZ working Storage areas are created by the Random Distribute ALL in-
structions. These distributed data working storage areas are covered in Chapter VI.

CONSTANT ADDRESSES

Constants may be referred to in two different ways:
1. Literals

2. Symbolic Addressing

Literals

The Assembly System permits the programmer to write constants within the A, B or T columns of in-
structions having mnemonic operation codes. These constants will be generated by the Assembler and as-
signed specific memory locations within the segment of the program in which they are used. The generated
machine instruction will contain the address of the LHE or RHE of the constant, depending on the require-
ments of the instruction. When the constant, itself, is written in an address, the entry is called a literal.
Two types of literals may be written, RCA 501 character literals and octal literals.

RCA 501 Character Literals

Literals which the programmer wishes to use as decimal or RCA 501 characters can be written as the
RCA 501 characters; they need not be written as their octal equivalents. RCA 501 character literals are
written enclosed with quotes.

Assume that a transaction file contains a one-character code of either an R (Receipt) or I (Issue). As-
sume also that this one-character code has been defined within the file description as having a data name
“DCODE”’, and is preceded by an ISS. If it is desired to compare this code with a constant “R’’, the in-
struction may be written as follows:

Example:
op A NN, B T
SC | DCODE(L +1) DCODE | “R”

All RCA 501 characters may be specified in an RCA 501 character literal, except the SM, EM, ED, EF,
and quote symbols. These characters must be specified in an octal literal (see below). The ISS when speci-
fied is an RCA 501 character literal is represented by an asterisk. The space is represented by “‘sp’’. Al-
gebraic sign is represented by placing a plus (+) or minus (-) sign as the rightmost character of the literal.

34



Examples of RCA 501 Character Literals:

3146+

«*00001 -’

“*RERUN sp TAPE sp A”
““CHECK sp TAPES™

Octal Literals

Constants which are to be used in binary arithmetic operations may be specified as octal literals. Octal
literals are enclosed with the number sign (#). All entries between # signs are decoded such that each two
characters of the literal become one 501 or two octal digits in memory. Therefore, octal entries must be com-
posed of an even number of octal digits (digits between 0 and 7 inclusive). No RCA 501 characters, as such,
may be written within # signs. Symbols such as SM, EM, ED, *’, and letters may be represented by their oc-
tal equivalents.

Examples:

#73# = ED
#TT7777 # = (T77777)4
#4455430163405744 # = End Tape

Length of Literals

The length of the literal is specified by the literal itself. The literal is stored in memory exactly as
written.

The maximum size of a literal in the A, B, or T columns is 19 punchable characters, which includes
quotes, number signs, and all RCA 501 control symbols.

Unique and Non-Unique Literals

When a literal is specified in an address, the Assembly System stores the literal in some memory loca-
tion. ' The address of this location is substituted by the Assembly System for the literal itself. Should the
programmer again specify this literal (the same literal in the very same format is written in another address
in the program), the Assembly System will not re-store the constant. Instead, the Assembly System will re-
cognize the repeated literal as being exactly equal to an already stored constant. It will then substitute the
address in which the constant was originally stored in the instruction in which the literal was repeated.

Example:
opP A N,Ng B T
TCA MO000113 # 000001 #
TCA M000133 #000001 #
TCA M000153 # 000001 #

If the #000001# literal is stored in memory locations 002001 through 002003, the generated machine code

would be:
oP A AN B B
44 000113 00 002003
44 000133 00 002003
44 000153 00 002003

35



This elimination of duplicated literals is a memory space saving feature of the Assembly System; how-
ever, there will be occasions when the programmer will want to specify the same constant more than once in
his program, but want the constant to be stored in different memory locations each time it is specified.

For instance, suppose two different tallies were to be set to (777777)g initially. If #777777#, alone,
were written in the B-address of both TA instructions, both of these instructions would decrease the same
quantity. But two unique tally quantities are desired.

To specify unique memory locations for repeated constants, the programmer writes a ““U’’ followed by a
one- or two-digit decimal number. The number specifies to which parsticular constant of the set of alike, but
unique, constants reference is being made.

Example:

If two different tallies are to be kept, each initially set to 777777, the following pseudo-code may be
written:

oP A NaNg B
TA PAM10 #7777774U1
TA PAB20 #777777#02

where: PAMI1O is the instruction address of the instruction to which control is to be transferred if the first
TA instruction does not find its unique tally to be exhausted.
PAB20 is the instruction address of the instruction to which control is to be transferred if the second
TA instruction does not find its unique tally to be exhausted.

Fixed and Non-Fixed Literals

The Assembly System user will have the option of segmenting his program; i.e., he may choose to read
one segment of coding into memory, operate from it, read another segment into the same memory area, oper-
ate from it, and so on. Each succeeding segment of coding may be read into the same memory area, erasing
the previous segment.

Segmentation will be accomplished by Descriptor Verbs, to be covered in a later chapter.

Literals will normally be considered to be part of the segment in which they are specified. Therefore,
constants generated by literals in one segment will normally be destroyed when another segment is read
into memory.

Should the programmer wish to place a constant in a fixed constaat pool, so that the constant is avail-
able to all coding segments, he may do so by writing the letter *"F’’ after the literal, or if the literal is also
to be unique, after the ““U”’ designation. Literals followed by an *“*F’’ are called *‘fixed constants’’. Having
once designated a literal as a fixed constant, the programmer must always refer to it with the suffixed “*F’’.

Examples of Fixed Constants

206" F
“*06+ ’U3F
#000010#U1F
#000010#U7F
#000001#F

Character Position Within Tetrad

Just as it may sometimes be important for the programmer to be able to specify the position within tetrad
for working storages, so it is just as important to have the same option with constants. Therefore, any literal
may be followed by a (Cn) notation in parentheses, where *‘n’’ is the number (0, 1, 2, or 3) of the character

36



position within a tetrad in which the left hand end of the literal is to be stored.
If the literal has no other notation associated with it, the (Cn) notation immediately follows the literal.

If the literal has a **U” notation, the *“*U’’ notation follows the literal, and the (Cn) notation follows the
““U’’ notation.

If the literal has an *“F’’ notation, the “F"’ follows the "U"’, if any, and the (Cn) follows the “*F”’.
Examples:

#000001#(C0)
#000010#U2(C1)
#001000# U1F(C2)
#000100# F (C3)

Having once specified a (Cn) notation for a literal, the programmer should not repeat the (Cn) notation again.
Further references to the same literal are written without the (Cn) notation. Specifying the same literal with
a different (Cn) notation will have no effect. The constant will be considered to be oriented according to the
first (Cn) designation.

Symbolic Addressing of Constants

Constants may be referred to by addressing them with “K-pames”. K-names are symbolic addresses,
composed by the programmer in the following format.

KNNNNN

where: K must be the first character of all symbolic constant names.
NNNNN may be any combination of up to five alphabetic or numeric characters. It is advisable
to make NNNNN a mnemonic representation for this constant.

Example:

In order to calculate the withholding tax to be deducted from an employee’s salary, his taxable earnings
are multiplied by the current tax rate. His taxable earnings were previously calculated and stored in a work-
ing storage addressed by WPAY.The current tax rate is a constant which may be addressed by a K-name. If the
programmer designates KRATE as the symbolic address for the current tax rate, the multiplication operation
may be specified as follows:

op A NNg B T

DM WPAY KRATE| WTAX.8

Note that the product of this multiplication is the withholding tax deduction and is stored in a location speci-
fied by WTAX.

Constant Specification

In the above example, the programmer merely specified an address for the constant. This is the symbolic
address of the memory location in which this constant is to be stored. What the constant actually is must
also be specified. This is done through the use of a special Descriptor Verb called the Define Constant Verb
which is described below.

Should the programmer wish to refer to the same constant more than once in the program he may use the
same K-name each time he refers to that constant; however, he need define the contents of that K-name, by a
Define Constant Descriptor Verb, only once.

37



THE DEFINE CONSTANT DESCRIPTOR VERB

Format:

Inst. No. oP A B

DPxxxx DEFK constant K-NAME

where: DPxxxx is a Descriptor Verb instruction number. Each DEFK verb must have a unique DP-address.
DEFK specifies the operation code for this Descriptor Verb.

K-NAME is the symbolic name assigned to the constant appearing in the A-address — where K is the
first character, followed by up to five alphanumeric characters.
Example:
Assume that the symbolic address KRATE has been used in the program to represent a tax rate. Furth-
er, the actual tax rate is defined to be 18%. When this number becomes available to the programmer the fol-

lowing instruction would be written:

Inst. No. OoP A B

DPAR 23 DEFK 18+ KRATE

Note that when the A column is used the Comments column may be freely used for descriptive remarks.

When using the A column of a DEFK instruction, the maximum number of characters (including control
symbols) is 19. If space in the A column is not sufficient, the A column may be left blank and the constant
may be defined in the comments column. In this case, the constant may then contain up to 44 characters. If
more than 44 characters are required, the entry in the comments column may be continued on succeeding lines
provided all other columns on these lines are left blank. In no event, however, can the maximum size of the
constant (including control symbols) exceed 320.

The following option is available when a constant is defined by @ DEFK Descriptor Verb. If the first
character following the quote is a slant ( /), it will be converted to a SM symbol; if the last character within
quotes is a slant, it will be converted to an EM symbol. In all other cases, slant symbols will produce slant
symbols in the constant.

Example:

Assume that the symbolic name KERROR has been used in the program to represent an error condition when
the transaction input is improper:

Inst. No. COMMENTS opP A B

DPABI10 **/ TRANSACTIONspINPUTspIMPROPER/”’| DEFK KERROR

All rules discussed previously with regard to specifying a literal as unique, fixed or non-fixed, and its
position within a tetrad, also apply to the constant that is defined by the DEFK verb. For example:

Inst. No. COMMENTS OoP A B

DPAR16 | DEFK | 125" U1F| KVALUE

Character Addressing Within K-constants

Individual characters within a K-constant may be addressed relative to the right or left hand end in the
following format:

38



R R +n
K-name L or K-name L_“'_“

It should be noted that character addressing can nof be used with octal or decimal literals,

Assembly Rules Applying to Constants

The following rules govern the use of constants within an Assembly program:

Fixed: Non-Fixed:
75 fixed literals 75 non-fixed literals per segment
40 fixed K-constants 40 non-fixed K-constants per segment

Note: See Assembly Check List, Appendix A, for total number of characters that may appear in the fixed
and non-fixed constant blocks.
TAPE STATION ADDRESSES
Tape stations may be addressed in two ways:
1. Directly
2. Symbolically

Direct Tape Station Addressing
Tape stations may be directly addressed by their octal numbers preceded by a **T”’.
Example:

To cause a linear read forward from tape station 30 into read-in area YFMASEM, the programmer writes:

oP A N,Ng B

LRF YFMASEM T30

Symbolic Tape Sfafion Addressing

In input-cutput instruction addresses, in which particular tape stations are to be specified, the program-
mer may write symbolic notations in the following format:

I
or NNNNN
2
where: or = the first character, which must be either an “I”” or an *Q’’. ‘I’ is used to specify input

tapes. ‘“O”’ is used to specify output tapes.
NNNNN =-Any five character maximum mnemonic name the programmer wishes to use.

Each I or O symbolic name used will later be assigned an actual tape station number by the programmer
through the use of the TAPE Descriptor Vertb. Use of symbolic tape station addressing allows the program-
mer to defer tape station allocation until after the completion of the major body of pseudo-code. In addition,
it is recommended that symbolic addressing be used throughout the program if the user wishes to take ad-
vantage of the tape switching feature of the RCA 501 Sequencer Routine.

39



The TAPE Descriptor Verb
The TAPE Descriptor Verb has the following format:

Inst. No. opP A B
DPxxxx TAPE I NNNNN XX
0

where: TAPE is the operation code; the symbolic tape designation is specified by the A address; the ac-
tual tape number, written as two octal digits is specified by the B address. Note that this verb re-
quires a DP-address.

Example:

Assume that a program uses a reference tape designated IREF, a transaction tape designated ITRANS
and produces two output tapes designated OREF and OPRINT respectively. When tape station assignments
became known they were 10, 06, 30, 05. The following instruction may be written in the program:

Inst. No. COMMENTS oP A B
DPAMI13 TAPE | IREF 10
ITRANS 06
OREF 30
OPRINT 05

Thus, the actual tape station numbers (10, 06, 30, 05) are associated with each of the tapes used in the pro-
gram. Note that the tape station numbers written in the B column are not preceded by the letter *T"’. Also,
“TAPE”’ need only appear in the OP code on the first line.

INSTRUCTION ADDRESSES
Instruction numbers are used by the Assembly System for two purposes:
1. To pemmit reference to other instructions or their parts.

2. To indicate the sequence in which instructions are to be placed in memory.

Instruction References

Several options are available to the Assembly System user for addressing instructions or parts of in-
structions.
Direct Symbolic Addressing of Instructions

Any pseudo-instruction to which an instruction number has been assigned may be directly addressed by
that instruction number. As explained in Chapter III of this manual, *‘explicit P-address’’ instruction numbers
are composed in the following format:

PAGdd

where: PAG is three alphabetic characters, the first character of which is always a *'P’’.
dd is a two-digit number specifying the sequence of this instruction number relative to the otherin-
struction numbers within that block of pseudo-coding.

Example:

IF GO TO N, IF GO TO N, IF GO TO N,

+ PABI10 - PAB20 0 PAGG60

406



The above example shows a CTC instruction specified in the *'IF — GO TO”’ columns of the coding sheet.
In this example, if the CTC instruction generated finds PRP set, control will be transferred to the pseudo-
instruction numbered PAB10; if the CTC instruction finds PRN set, control will be transferred to the pseudo-
instruction numbered PAB20; if the CTC instruction finds PRZ set, control will be transferred to the pseudo-
instruction numbered PAG60. '

Relative Instruction Addressing

In the above example, each of the instructions referred to in the *“GO TO’’ columns, was assigned an in-
struction number. But each instruction written need nof be assigned an instruction number. How, then, does
one refer to instructions which have no assigned instruction numbers?

This is accomplished by indicating the number of pseudo-instructions that the addressed instruction is
removed from the last instruction that has an explicit P-number. The format of relative instruction addresses
is as follows:

PAGdd+k

where: PAGdd is the number of the first pseudo-instruction, preceding the one addressed, which has been
assigned an explicit P- instruction number. :
k is the number of pseudo-instructions the addressed instruction is removed from the reference in-
struction. This number may range from 1 to 99.

Example:

The following sequence of instructions are written somewhere within the program:

Instruction
Number OP A N,Ng B
PAA30 IT |**GREATER”’ M002700
TC | PAA40 '
IT |*“*LESS” M002700
TC PAA40
IT |[**EQUAL” M002700

It is desired to perform a CTC instruction somewhere else in the program, and transfer ““*GREATER” to
memory location 002700 if the CTC instruction finds PRP set, ***LESS’’ if the CTC instruction finds PRN
set, and “*EQUAL”’ if the CTC instruction finds PRZ set. The CTC instruction may be written in the “IF
— GO TO’’ columns of the coding sheet as follows:

IF GO TO N. IF GO TO N, IF GO TO N

+ PAA30 - PAA30+2 0 PAA30+4

When the instruction address notations described above (PAGdd or PAGdd+k) are used, the Assembly System
generates the machine address of the operation code of the first machine instruction generatedby the address-
ed pseudo-instruction.

Example:

The following DM instruction may appear in a program as shown:

Instrucition A N T
Number op NA B B
- PAA30 DM WATXER.6 *“*18+’’| WATXDE.8

41




Note that the TC instruction transfers control to the generated SET (72) instruction rather than to the DM (53)
instruction, since the machine address assigned to PAA30 becomes the address of the first machine instruc-

Later in the program a TC instruction may be written as follows:

The generated TC

Instruction
Number or A NANB B
PABS50 TC PAA30
If the Assembly System makes the following address assignments:
Assigned
Pseudo-address Machine Address
PAA30 002000
WATXER 037000
WATXDE 037006
18+ 027000
PAB50 002700
The generated machine code for the DM instruction will be as follows:
Inst. No. oP A N4Ng B
002000 72 037006 00 600000
002010 53 037000 00 027000
instruction will appear as:
Inst. No. opP A N,oNg B
002700 71 002000 00 000000

tion generated by the pseudo-instruction on that line.

Instruction Numbers Specify Sequence

As shown above, instruction numbers are used as tags, i.e., they are used in addressing to make refer-
ences to other instructions, but instruction numbers also have another important purpose.

un-numbered by the programmer:

42

PAAIO

PAA20

They indicate to
the Assembly System the order in which instructions are to be placed in memory. To illustrate how the As-
sembly System uses instruction numbers to sequence instructions, consider a sample instruction number col-
umn on the coding sheet. This column may appear as follows where lines represent pseudo-instructions left



PAA30

PAA40
PAAS0

PAA60

When the pseudo-code is read into the computer for assembly, early in the assembly process, the pseudo-in-
structions are sorted in ascending sequence, with DP-addresses appearing first, followed by the P-addresses.

Sorting is accomplished by first supplying relative instruction numbers to the un-numbered pseudo-in-
structions, following the same scheme that the programmer uses to address un-numbered instructions. Then
both programmer assigned, and Assembly System-assigned instruction numbers are used as sorting keys for
their corresponding instructions.

The list of instruction numbers shown above, will, therefore, appear as follows after the Assembly Sys-
tem assigns un-numbered instruction numbers.

PAAIO

PAA10+1
PAA10+2
PAA1O+3
PAA10+4
PAA10+5
PAA10+6
PAA20

PAA20+1
PAA20+2
PAA20+3
PAA30

PAA30+1
PAA40

PAA50

PAAS0+1
PAA50+2
PAAS0+3
PAA50+4
PAASO+5
PAA50+6
PAAS0+7
PAA6O

When sorted by the Assembly System, this group of instructions will remain in the same sequence since
the programmer wrote them in ascending order. However, should the programmer write the following set of
instruction numbers, the Assembly System will assign instruction numbers, and sort the instruction in se-
quence as indicated:

43



Instruction ‘Assembly
Sorted
Nos. As System
Written Assignments Sequence
PAA10 PAA10 PAA10
PAA10+1 PAA10+1
PAA10+2 PAA10+2
PAA30 PAA30 PAA20
PAA30+1 PAA20+1
PAA30+2 PAA30
PAA30+3 PAA30+1
PAA20 PAA20 PAA30+2
PAA20+1 PAA30+3
PABI10 PAB10 PAB10
PAB10+1 PAB10+1
—_— PAB10+2 PAB10+2
PAB10+3 PAB10+3

This feature of the Assembly System can be used to excellent advantage by the programmer to insert for-
gotten or additional instructions into his program.
Insertions

Two methods of effecting insertions are available to the Assembly System user:
1. Explicit P-Instruction Insertions.

2. Decimal Point Insertions.

Explicit P-Instruction Numbers
Suppose the programmer has written the following instruction numbers:

PAA10O

|

PAA20

He then wishes to insert, between the third and fourth pseudo-instructions, a set of additional pseudo-in-
structions. He may replace the fourth line with an explicit P-number which falls between PAA10 and PAA20
(i.e. PAA15). The instructions to be inserted may now be written anywhere in the program provided the in-
serted pseudo-instructions are written in proper sequence relative to each other, and the first of the inserted
instructions is assigned an explicit P-instruction number.

Example:

It is desired to insert three pseudo-instructions between lines three and four of the indicated list of in-
struction numbers:

Original Revised Assembly A.ssembly
Coding Coding S'ystem System
Assignments Sort
PAA10 PAA10 PAA10 PAA10
PAA10+1 PAA10+1
PAA10+2 PAA10+2
PAAIS PAAIS PAA1l4
PAA20 PAA20 PAA20 PAAl4+1
PAA20+1 PAA14+2
PAA14 PAAL4 PAA1S
PAAl4+1 PAA20
PAA14+2 PAA20+1

44



Note that three instructions, the instruction to which number PAA 14 was assigned and the following two in-
structions, were inserted, by the Assembly System sort, between the third and fourth lines of the original
coding.

When using this method for insertions, the programmer must bear in mind that he has to change the in-
struction number designation of the fourth instruction. For instance, in his original coding the fourth line
would have been assigned number PAA10+3 by the Assembly System. - The programmer may, therefore, have
made reference to PAA10+3 as a P-address elsewhere in the program. But to effect the insertion, what was
PAA10+3 in the original coding has now become PAA15. All program references to PAA10+3 will no longer
address the proper instruction. It, therefore, becomes necessary, when using this insertion method, to make
certain that either no relative references were made to the changed instruction numbers, or if such references
were made, that these references be changed accordingly.

To avoid the necessity for this concern, the user may wish to use the second method for effecting in-
sertions.
Decimal Point Insertions

Again, let us assume that three pseudo-instructions are to be inserted between the third and fourth
pseudo-instructions whose instruction numbers are written as follows:

PAA10

PAA20

The programmer is aware that the Assembly System will assign PAA10+2 to the third instruction, and PAA10+3
to the fourth instruction. If he could, therefore, write instruction numbers which fall sequentially between
PAA10+2 and PAA10+3, the Assembly System will automatically insert the pseudo-instructions associated
with these numbers between PAA10+2 and PAA10+3 during the sort.

The Assembly System makes this possible by permitting the programmer to write instruction numbers for
instructions to be inserted in the following format:
1

PAGdd+k.n

where: PAGdd+k is the instruction number the Assembly System will assign to the instruction which is to
precede the inserted instructions.
.n is a number (1 through 9) preceded by a decimal point. This number indicates the relative order of
the inserted instructions.

The desired insertion can therefore be specified as shown:

Original Revised Assembly Assembly
Coding Coding System System
Assignment Sort
PAA10 PAA1O PAA1O PAA1O
PAA10+1 PAA10+1
PAA10+2 PAA10+2
—_— , ~PAA10+3 PAA10+2.1
PAA20 PAA20 PAA20 PAA10+2.2
PAA20+1 PAA10+2.3
PAA10+2.1 PAA10+2.1 PAA10+3
PAA10+2.2 PAA10+2.2 PAA20
PAA10+2.3 PAA10+2.3 PAA20+1

45



Note that PAA10+3 remains undisturbed by the insertion. Any references to PAA10+3 still address the
same instruction as they did in the original coding.

Descriptor Verb Designations

The methods for specifying instruction numbers described above apply to all Assembly System instruc-
tions except Descriptor Verbs.

A characteristic of Descriptor Verbs is that they generate no equivalent machine instructions in the final
or object program. They are used during compilation to assist in language translation. Hence, the manner in
which Descriptor Verbs are assigned instruction numbers for sequencing is somewhat different than in the

case of other types of instructions.

First, no references may be made to a Descriptor Verb by another instruction. Descriptor Verbs cannot
be used as destinations for transfers of control, for example. Neither can a Descriptor Verb be the subject of

modifying instructions.

For sequencing purposes, every Descriptor Verb must have an entry in the Instruction Number column on
the program sheet. The format of this entry is DXXXXX, where XXXXX is written exactly as any standard in-

struction number; e.g., PABI10.

Thus, Descriptor Verbs are assigned instruction numbers which are used during compilation for purposes
of identification and segmentation. It is recommended that the same scheme adopted for numbering other in-
structions be extended to include Descriptor Verbs.

Example:

Assume that a Descriptor Verb appears in the program:

Instruction Number oP
PABI10 DM
DPAB20 Desc. Verb
PAB30 TC

Note that the number given to the Descriptor Verb (DPAB20) is in sequence with numbers given immedi-
ately before (PAB10) and after (PAB30). In this way any possibility of duplicating numbers or confusing the
meaning of instruction numbers is avoided.

It is further noted that instructions following DPAB20 are addressed relative to PAB10. The Descriptor
Verb is treated, for this purpose, as if it were non-existent. The same program would appear after the As-
sembly System had sorted the pseudo-coding and completed the Instruction Number column as follows:

Instruction Number oP

DPAB20 Desc. Verb
PABI10 DM

PAB10+1
PAB10+2
PAB10+3
PAB10+4
PAB10+5
PAB10+6
PAB30 TC

46



Referring to Parts of Instructions

Provisions are also made to provide the user with the ability to address any part of any instruction of
the generated program by writing P-addresses in the following format:

PAGdd+k (Q)

where: PAGdd+k is the P-address of the pseudo-instruction.

(Q) may be either a one- or two-valued designation, and must be enclosed in parentheses.

If (Q) is a one valued designation, it may be either:

nnn

H® >

G
C
U

where nnn is a three-digit maximum decimal number from 1 to 999. This number represents the
relative position of the addressed digit from (the operation code of the first machine instruction
generated by line PAGdd+K. (PAM22(1) would refer to the Al character of the first instruction).
refers to the A3 character of the instruction generated by the entry in the OP column.

refers to the B3 character of the instruction generated by the entry in the OP column.

refers to the A3 character of the instruction generated by the entry in the T column. This is
usually a “SET T’ instruction. - (Note that the T notation may not be used when the T entry is
associated with the TCA, TCS, DA, DS, SSM or RAI instructions).

refers to the operation code of the instruction generated by the entry in the OP column. If a DM
instruction with a T entry is written on line PAB30, a reference to PAB30 will address the opera-
tion code of the generated “'SET T” instruction; however, PAB30(S) will address the machine
operation code of the generated DM instruction.

refers to the operation code of the generated Control Simultaneous Gate instruction (CSG)

refers to the operation code of the generated Condition Transfer of Control instruction ¢CTC).
refers to the operation code of the generated Unconditional Transfer of Control (TC).

If (Q) is a two valued designation, the first value must be either S, G, C or U. ' The second value may be any
one of the following:

m

A
B
N

a one-digit decimal number ranging from 1 to 7. This number represents the relative position of
the addressed digit from the operation code specified by the first value.

refers to the A3 character of the instruction referred to by the first value.

refers to the B3 character of the instruction referred to by the first value.

refers to the address modifier digit of the instruction referred to by the first value.

Example:

If, for the following pseudo-instruction:

C
Inst. A
No. |OP A NANE B T NT G |IF| GO TO N IF| GO TO N2 IF| GO TO N3
PAB10{DM |WATXER.6 **18+"|WATXDE. 8 C |+ |PAB10+2 — | PAB10+4 0 | PAB10+8

the Assembly System makes the following address assignments:

P seudo-address Machine Address
PABI10 002000
WATXER 037000
WATXDE 037006
“*18+7 027000
PAB10+2 002070
PAB10+4 002140
PAB10+8 002270

47



The following machine instructions will be generated:

. orP A N B
Insi.

No. 0 1 2 3 4 5 6 7
00200 72 03 70 06 00} 60 00 00
00201 53 03 70 00 00} 02 70 00
00202 75 00 00 00 00| 01 00 00
00203 61 00 20 70 00] 00 21 40
00204 71 00 22 70 0] 00 00 00

The following pseudo-addresses will, then, correspond to the indicated machine addresses.

Pseudo-address Machine Address
PAB10 002000
PABI10(8) 002010
PABI10(S) 002010
PAB10(S3) 002013
PAB10(A) 002013
PAB10(B) 002017
PABI10(3) 002003
PABI10O(T) 002003
PABI10(G) 002020
PAB10(GA) 002023
PAB10(CB) 002037
PAB10(U) 002040
PAB10(U4) 002044
PAB10(39) 002047
PAB10(C) 002030

48



V. SPECIAL ASSEMBLER FEATURES

Thus far, this manual has covered the RCA 501 Assembly System Data Sheet, the RCA 501 Assembly
System Coding Sheet, their general usages, and the various addressing systems. This chapter will discuss a
group of special Assembly Operation Codes (which have no counterpart in 501 machine-coding) and additional
Assembly features.

SPECIAL MNEMONIC INSTRUCTIONS

Ignore Instruction

It was mentioned in Chapter III that the Assembly System allows the use of an IGN mnemonic instruction
code in the "OP”’ column. This instruction has no counterpart in the RCA 501 repertoire of machine instruc-
tions.

The IGN instruction, itself, generates no machine instruction in the object program. When this instruc-
tion is used all entires on that line up to and including the B-column will be ignored when machine instruc-
tions are generated. Thus, the IGN instruction allows the programmer to take advantage of the options provi-
ded by the columns to the right of the B-address column, even if the instructions to be generated by the use
of these columns are to be the first instructions of a block.

The programmer may use the A and B columns of IGN instructions to define working storage areas. In
addition, when a relative P-address is to be deleted it should be replaced by an IGN instruction. This will
preserve the relative order of instructions following the one deleted, and insure that all references made to
those instructions will remain unaffected by the deletion.

Example:

If the programmer wishes to close the simultaneous gate with the first instruction in his program, he can
specify this as follows:

C

Inst. s
No. oP A NaNgB B T Nt G IF GO TO

PAA1O IGN C

Reserve Instruction

The Reserve instruction, mnemonic operation code, RES, provides the Assembly System user with the
ability to reserve program space in the object program. ‘It is written in the following format.

Instr,
P
No. 0 A NAN B B

RES [ Total number
of instrucdons
to be reserved
{(max = 510)

Instruction Number
May be an explicit-P, relative or decimal point P-address.
A-address:

The total number of instruction locations to be reserved is entered in the A-address. This is a decimal
number, and may not exceed 510. Eight character locations will be reserved for each instruction.

49



NA‘ NB’ B, etc.:
All columns to the right of the A-address column must be left blank.

The RES instruction causes the number of instruction lines specified in the A-address to be reserved
and filled with octal zeros. These instruction lines will be reserved in the place where the RES instruction
is written. To address locations in the reserved instruction lines, the programmer uses character relative

designations.
Example:
P seudo-code
Insir.
No. OP A N,Ng B T
IT | WDSSNO W101(L +15)
PAG20 RES 5
STC KHEAD KHEAD W101(L +55)
Generated Machine Code
Inst. No. op A NaNg B
003000 21 015750 00 037620
003010 00 000000 00 000000
003020 00 000000 00 000000
003030 00 000000 00 000000
003040 00 000000 00 000000
003050 00 000000 00 000000
003060 72 037670 00 600000
003070 21 016750 00 016764
The following character relative instruction addresses, then, refer to the indicated machine addresses.
PAG20 = 003010 PAG20(15) = 003027
PAG20(8) = 003020 PAG20(39) = 003057
PAG20(24) = 003040 PAG20(27) = 003043

The Duplicate Instruction

The special Duplicate, DUP, mnemonic instruction provides the programmer with the ability to duplicate
various portions of his program in other parts of the program. The duplicated portion will be duplicated with
some modifications.

Formai:
Instr. No. opP A NANg | B T
|
explicit DUP explicit relative Data Address
P-address P-address P-address| Modification,
if any

Instruction Number:

An explicit P-address must be entered by the programmer in the Instruction Number column of a DUP
instruction. The next pseudo-instruction must also be assigned an explicit P-address. Note that only 10
DUP instructions may appear in a program.

OP:

DUP is entered in the **OP”’ column.

50



A-address:

The P-address of the first instruction in the section to be duplicated is entered in the A-address. This
address must be an explicit P-address which the programmer has assigned to that instruction.

B-address:

A P-address, which must be relative to the P-address entered in the A-column, is entered in the B-address
column. The entry in the B-column, therefore, is the address of the last relative instruction in the section
to be duplicated.  (Note that no other explicit P-address can appear in the area to be duplicated.)

T-address:
The T-address is left blank if no data address modification of the duplicated coding is desired.
Data Address Modification

The option is given to the programmer to ask for the following data address modifications by appropriate
entries in the T-address column of the DUP instruction.

Entry in
the T-address | Modificatior Effected
Column :

F All data addresses suffixed with dollar signs ($) in the duplicated area referring to data
in the X, Y, and Z read-in areas will be changed to address the same item and file names
in the F read-in area. All WX, WY, and WZ addresses ‘suffixed with dollar signs ($) will
be changed to W addresses. )

XF All data addresses suffixed with dollar signs ($) in the duplicated area referring to datal
in the F, Y, and Z read-in areas will be changed to address the same item and file names
in the X read-in area. All W, WY, and WZ addresses suffixed with dollar signs ($) will be
changed to WX addresses. '

YF All data addresses suffixed with dollar signs ($) in the duplicated area referring to data
in the F, X, and Z read-in areas will be changed to address the same item and file names
in the Y read-in area. All W, WX, and WZ addresses suffixed with doliar signs (§) will be
changed to WY addresses.

ZF All data addresses suffixed with dollar signs ($) in the duplicated area referring to data
in the F, X, and Y read-in areas will be changed to address the same item and file names
in the Z read-in area. All W, WX, and WY addresses suffixed with dollar signs (§) will be
changed to WZ addresses. ‘

Special Treatment of RD and MSW Instructions in Duplicated Areas

As shown in Chapter VI, if a programmer wishes to Random Distribute messages from alternate read-in
areas to a common working storage, he uses the Random Distribute All option. - He then uses the machine
format Random Distribute option to accomplish the distribution of data from other read-in areas to the same
working storage area by specifying the same L-address that was named in the Random Distribute All option.
In this way he avoids the Assembly System generation of two separate, but exactly alike, destination lists.

Suppose, however, that a Random Distribute All instruction is included in the section to be duplicated.
Will this cause two or more Random Distribute All instructions for the same file, to the same list, to be gen-
erated? No, because the Assembly System scans all of the coding to be duplicated and eliminates the word,
ALL, in the T-addresses of any Random Distribute instruction in which it appears.

Similarly, the Assembly System user is provided with various other Random Distribute and Multiple Sec-
tor Write options, some of which specify destination lists. The Assembly System makes special provisions
for these options when they are duplicated, such that two separate lists are not generated as a result of the
duplicated instruction.

51



Modification of References to First P-address

Any reference, within the area to be duplicated, to the first, and only the first, line of the area to be
duplicated, will be changed to refer to the first line of the duplicated area; i.e., if an area to be duplicated
begins in PDQ50 and is duplicated by a DUP instruction on line PJW40, all reference within the duplicated
coding to PDQ50 will be changed to PJW40.

Summary of DUP Modifications
The DUP instruction makes the following modifications automatically:

1. Provides for non-duplication of lists specified in duplicated Random Distribute and Multiple Sector Write
instructions.

2. Changes all references to the first line within the duplicated area to address the first line of the new area,

3.  The option is left to the programmer to change data addresses to alternate read-in area data addresses
and distributed W-addresses to alternate read-in distributed W-addresses.

4. Duplicated coding may be addressed character relative to the P-address of the DUP instruction in exactly
the same manner as reserved instructions and their parts may be addressed character relative to the P-
address of the RES instruction. Duplicated coding may also be addressed relative to the beginning P-
address in the same manner as other P-relative addressing, e.g. PAB10+ 13 (CA).

The last instruction of an area to be duplicated cannot be followed by an ADV, nor can the last instruc-
tion contain a list. Multiple duplications of the same area must all be of the same length, i.e., the A and B
addresses of the DUP verb must all be the same.

THE STASH DESCRIPTOR VERB

The Stash, STSH, Descriptor Verb provides the user with the ability to store the machine address as-
sociated with any P-address or a special tally quantity in a symbolically addressable memory location. The
Stash Descriptor Verb is. especially useful when combined with some of the special options to be discussed
in the following sections.

Instr,
No. op A N AN B B
DP-address STSH A-Symbolic P-address
to be stored
or
Tally Quantity

Instruction Number:

A DP-address Descriptor Verb instruction number must be entered in the Instruction Number column.
Each STSH instruction must have a unique DP-address and up to 49 STSH verbs may appear in any one seg-
ment.

OP:
STSH is entered in the ‘*OP’’ column,
A-address:

An A followed by up to five alphanumerical characters is entered in the A-address column. This entry
then becomes the symbolic name of the location in which the machine address or tally quantity is stored and
is called an A-symbolic.

B-address:

Enter in the B-address, the P-address or tally quantity whose corresponding machine address is to be
stored.

52



If a tally quantity is specified, it is entered as a decimal number which is no# enclosed in quotes. The
tally quantity will be stored as a six octal digit number in a memory location addressable by the A-symbolic.

Example:
Instr,

No. opP A N,Ng B
DPAL10 STSH ATA2 2
PAL20 TCT | ATA2 WATA2

[ ] [ ] [ ] [ ]

[ ] [ ] o ®

[ J [ J [ ] L]
TA PAL20+1 WATA2
TCT | ATA2 WATA2

In the above example the computer will go through the coding loop three times. Upon emergence from the
loop the tally quantity is reset. -

Note that addresses stored by use of the STSH verb are considered non-fixed constants; i.e., they are
considered to be part of the segment in which they are specified and may be overlaid by a following segment.

VARIABLE ADDRESSES

The RCA 501 Assembly System provides the programmer with the option of deferring the naming of some
addresses until after the major body of pseudo-code is completed.

For instance, a run may be split into two sections, each section being written by a different programmer.
One programmer may have need to address an instruction in the section written by the other programmer; how-
ever, the address of that instruction is not yet known. The programmer may then write a variable address
instead of the P-address. ' Once the exact P-address becomes known the variable address is then defined by
the Define Variable Descriptor Verb.

A variable address consists of at most six characters, the first of which must be a **V’’. The other five
may be an alphanumeric mnemonic composed by the programmer for his own convenience.

For example, a programmer wishes to transfer control to some entry point in a section of coding written
by another programmer. ' The instruction number of this point, however, is not yet established. The program-
mer may write:

oP A NaNg B

TC VENTRY

Once it is established that the entry point is PL.Z80, a Define Variable verb may be written defining VENTRY
as PLZ80.

Define Variable Descriptor Verb

The format of the Define Variable Address instruction is:

Inst. No. OoP A B

DP-address DEFV VNNNNN Machine (M) or any

Symbolic Address

where: DEFV is the operation code; V specifies a variable address‘; NNNNN is an arbitrary designation of
up to five alphanumeric characters assigned by the programmer; the actual address, machine or sym-
bolic, which is to be substituted for the V-address is specified in the B column. This may no¢ be
another V-address.

53



Note that each Define Variable Instruction must have a DP-address; also, up to 99 variables may be
defined in a program.

Example:
VENTRY will be defined as PL.Z80 by the following Descriptor Verb.

Inst. No. Comments OP A B

DPANG2 DEFV | VENTRY | PLZ80

V-addresses may be used to define any symbolic (constants, P-addresses, work-areas, etc.) except an-
other V-address. Note that when a variable is defined it CANNOT have appendages. ' For example: PLZ80+2,
WPAY (L+1), etc. are incorrect. Once defined, however, appendages may be used with the V-address in the
same manner as other symbolic addresses. (These appendages must comply with the rules governing relatives
used with the substituted value.)

Assume that VENTRY has been defined as PL.Z80, and the programmer desires to transfer to the second
relative instruction following VENTRY.

TC VENTRY +2

The assembler will substitute for this entry:

TC PLZ80+2

THE ADV MNEMONIC INSTRUCTION

The ADV mnemonic instruction is a special option which permits the programmer to automatically in-
crement or decrement addresses appearing in a pseudo-instruction by other symbolic addresses. When this
function is desired a line is written immediately following the instruction to be modified. The letters ADV
are placed in the OP column of this added line, and the incrementing or decrementing addresses are placed
in the column(s) below the addresses to be modified.

If a minus sign appears to the left of the modifying address, that address will be subtracted from the ad-
dress appearing above. A plus sign would cause an addition.

Example:

Assume that a routine is to be written such that it is self-relative. A transfer of control in this routine
must have as its destination address the distance between this instruction and the destination instruction.
Further, this address must be modified by the contents of the program register (BP, B4, RP). If the TC ap-
pears at PAB10 and the destination is PAB20 the instruction is written:

Instruction
Number or A NA
PABI0 TC PAB20 BP
ADV -V 1(8)
Somewhere in the program V 1 is defined:
oP A B
DEFV \4! PAB10

The effect of this coding is to subtract the machine addresses given to PAB10 and PAB20 and to store
the result as the address of the TC instruction. Note that a minus sign to the left of V1 indicates that the
operation is a subtraction. A plus sign would have caused the addresses to be added. Further note that V1
was adjusted in the example by (8) to compensate for the setting of the program register to the address of the
next instruction.

54



No entry may be made in the Instruction Number column on a line that has ADV as the OP code. Such
a line is considered part of the previous pseudo-instruction for purposes of relative instruction addressing.

Instruction
Number

oP

PABI10

PAB20

TC
ADV
DM
IT
TC
LRF

When the Assembly System fills out entries in the Instruction Number column they appear:

Instruction opP
Number

PAB10 TC
ADV

PABI10+1 DM

PAB10+2 IT

PAB10+3 TC

PAB20 LRF

The ADV may be used to modify a V address as well as any other symbolic or machine address. Only

one ADV line can be used after a pseudo-instruction.
be modified with ADV. ADV may not be used with call lines and entrance lines.

Any pseudo-instruction except a Descriptor Verb can
It can, however, be used

within subroutines. Finally, the V entries on an ADV line may be made in one or more of the address columns

(A, B, T, GO TO) but not in the Instruction Number, OP, N, CSG, IF or Comments columns.

The ADV verb may also be used to modify addresses by other known addresses.

For instance, in the previous example, where the A-address of a TC instruction was to be decremented
by PAB10+1, it could have been written directly on the ADV line:

Instr.
No. opP A N A
PABI10 TC PAB20 BP
ADV -PAB10+1

In this case no DEFV verb is necessary.

55



VI. SPECIAL ASSEMBLY OPTIONS

The Assembly System user may write most 501 instructions in a form close to that of machine coding, tak-
ing advantage, of course, of symbolic addressings and other Assembly features.

This chapter will discuss the use of special Assembly options available with certain 501 instructions.
Some of these options will involve a change in format only; others will introduce special addresses not cov-
ered in the chapter on addressing. All options have been designed to provide the Assembly user with greater
versatility and more powerful pseudo-instructions.

SYMBOLIC ADDRESSES IN TC INSTRUCTION

The B-addresses of TC instructions written on their own lines may be entered with the SWO ... 5 nota-
tion described in Chapter III.

Example:
opP A NaNg B
TC PAB10 Sw235

THE TAPE SENSE INSTRUCTION

As shown in Chapter III, a Tape Sense instruction may be specified in the **JF—GO TO” columns of the
coding sheet; however, the Tape Sense instruction may also be written in the following format:

oP A NaNp B T
TS Jump Tape Sense
Address No. { Condition(s)

A-address:

An M-address or P-address is entered in the A-address of this instruction. The A-address entry is the
address of the instruction to which control is to be transferred if the condition, or one of the conditions,
specified in the T-address is found to prevail.

B-address:

An 1, O, or T Tape Station designation is entered in the B-address of this instruction. The B-address
entry designates the Tape Station to be tested.

T-address:

The T-address entry specifies the condition or combination of conditions to be tested by entering any
one, or combination, of the following letters:

for Is the tape positioned on BTC?

for Has ETW been sensed?

for Is the tape now stationary or moving forward?
for Is the tape now moving in the reverse direction?
for Is the tape now in motion?

for Is the Tape Station non-operable?

ZZTwWwmmw

56



SPECIAL ADDRESSES WITH UNWIND AND REWIND INSTRUCTIONS

The Unwind n Symbols and Rewind n Symbols instructions may be written in the following format:

oP A NaNg B
UNS Symbol, Tape
or No. of Symbols No.

RNS

A-address:

The symbol and the number of symbols to be unwound or rewound is designated in the A-address in the
following format:

SYM,n

where: SYM is the designated symbol.
Symbols are designated by one of the following notations:
EM = End Message Symbol
ED = End Data Symbol
EF End File Symbol
SM Start Message Symbol
GAP = Intermessage Gap
,n is a comma followed by a decimal number up to 4095 indicating the number of symbols to be re-
wound or unwound.

I

B-address:

An I, O, or T tape station designation is entered in the B-address.

Example:
op A NaNg B
RNS EM,29 T10

SPECIAL ADDRESSES WITH LOCATE nth SYMBOL

The Locate nth Symbol instruction may be written in the following format:

OoP A N Ng B T
LNS LHE of RHE of | Symbol,
Sector Sector | Number

A-address:

An M-address or any symbolic address designating the left hand end of the sector to be searched is
entered in the A-address.

B-address:

An M-address or any symbolic address designating the right hand end of the sector to be searched is
entered in the B-address. '

T-address:

The symbol and the number of the designated symbols to be located is entered in the T-address in the
following format:

SYM,n
where: SYM may be any RCA 501 character. The Start Message, End Message, Item Separator, End Data and

57



End File Symbols are represented by:

SM
EM
ISS
ED
EF
respectively.
;0 isa comma followedby a decimal number up to 4095 indicating the number of symbols to be located.

Examples:
opr A NaNg B T
LNS FMASEM FMASEM | 1ISS,5
LNS FMASEM FMASEM M,20
LNS FMASEM FMASEM 1,5
LNS FMASEM FMASEM L,30

It should be noted that the symbol to be located can only be shown symbolically in the T column of a
LNS instruction. Symbols cannot be shown symbolically within a separate SET instruction.

SYMBOLIC ADDRESSES FOR PAPER ADVANCE INSTRUCTION

The Paper Advance instruction may be written in the following format:

oP A NaNg B

PA PC
vT
Decimal Number

or
M-address

A-address:
Either PC, VT, a Decimal Number (not in quotes) or an M-address may be eatered in the A-address.
If PC, the PA instruction will cause a loop controlled page change.

If VT, the PA instruction will cause a loop controlled vertical tabulation.

If a decimal number, the instruction will cause the paper to advance the number of lines specified by the
decimal number.

GENERATED SET INSTRUCTIONS

It was stated in Chapter III that generally any entry in the T-address or Nt columns of the coding sheet

will cause the Assembly System to generate a ‘*Set Register T’ instruction and place it before the instruction
specified by the mnemonic operation code.

OTHER THAN “SET'* GENERATED BY “T*’ ENTRIES

“T'" Entries Generating TCT Instructions:

A T-address or N1 entry on a line with the following four mnemonic instructions will generate a TCT
instruction rather than a SET instruction:
TCA SSM
TCS RAI

58



The generated TCT instruction will immediately precede the instruction generated by the mnemonic oper-
ation code.

Examples:
P seudo- Code Corresponding Machine Instructions
op A NANg| B T Nt op A N B
TCA PAB20 #000030# | PMA74 25 PAB20 00 PMA74
44 PMA 74 00 #0000304#
TCS PAC30 #000020# | PFA10 25 PAC30 00 PFA10
45 PFA10 00 #006020#

Note from the above chart, that the use of the T-address column allows the programmer to write what is,
in effect, a three-address instruction.

For the TCA instruction, the A-address specifies the augend, the B-address specifies the addend, and
the T-address specifies the sum location.

For the TCS: instruction, the A-address specifies the minuend, the B-address specifies the subtrahend,
and the T-address specifies the difference location.

Pseundo-Code : Corresponding Machine Instructions
oP A N,Ng B T Ny op A N B
SSM | PAC22 PAC26 AS3 25 AS3 00 1000203 |
62 -PAC22 00 PAC26
RAI | DPAY WPAY AS3 ;; 283 00 99900

As stated in Chapter III, the SSM instruction may be generated by entries in the “IF-GO TO”’ columas.
This method, however, does not provide for the possibility of a Paper Advance occupying the simultaneous
mode. If the programmer wishes to make special provision for this possibility, the SSM instruction may be
written as shown on the above chart. If this option is exercised, the A-address must specify the instraction
to which control is to be transferred if a ‘‘read’’ instruction is occupying the simultaneous mode; the B-
address must specify the instruction to which control is to be transferred if a *‘write’ instruction is cccupy-
ing the simultaneous mode; and the T-address must contain the A-Symbolic name of the location containing
the address of the instruction to which control is to be transferred if a Paper Advance is found to be in the
simultaneous mode.

Note that to accomplish this, operation code 71 must be placed in memory location 000200. This may be
accomplished by a prior One Character Transfer instruction, or through the use of the Assign Descriptor verb.

For the RAI instruction, the A-address specifies the address to appear in Register A when the program
is re-entered, the B-address specifies the address to appear in Register B when the program is re-entered, and
the T-address specifies the A-Symbolic of the instruction to which control will be transferred by the RAI in-
struction.

“T*’ Entries Generating JR Instructions

Entries in the T-address or NT columns of DA aand DS instructions generate preceding Justify Right in-
structions:

Pseudo-Code Corresponding Machine Instructions

oP A NaNg B T Nt op A N B
DA DPAY DTAX DAMT 33 DPAY 00 DAMT
51 DAMT 00 DTAX
DS DPAY B1B3 DTAX DAMT B5 33 DPAY 15 DAMT
: 52 DAMT 53 DTAX

59



SPECIAL NOTE: In the TCA, TCS, DA and DS instructions the T-address is repeated in both the in-
struction generated by the T-address or N entry, and in the instruction generated by the operation code.
Because of this repetition of the T-address in two of the generated instructions, the programmer may not re-
fer to the T column entry of these special instructions in the PAGdd +k(T) format.

It should also be noted that if an address modifier is specified for the repeated address, the address
modifier will be associated with that address in both instructions.

RANDOM DISTRIBUTE SPECIAL OPTIONS

Several options are available to the Assembly System user for writing Random Distribute instructions.

Random Distribute All

The Random Distribute All option causes the Assembly System to automatically assign working storage
addresses for every item distributed by the instruction. This option is written in the following format:

opP A N N B T
A B

RD | File name L-address | ALL

A-address:

FILE NAME is the name of the file read-in area from which all items in the message are to be distribu-
ted. This may be an F, X, Y, or Z read-in area. If the file name is used alone the SM will also be distribu-
ted. ’

If it is not desired to distribute the SM, or any of the first several FAA items, the File Name+k notation
may be used in the A-address. When this notation is used, the kth item, and all following items, will be dis-
tributed. Note that item names cannot be used with this option.

B-address:

L-ADDRESS is a list name provided by the programmer. The first character must always be **L"’, fol-
lowed by up to five alphanumeric characters. The L-address becomes the symbolic address of where the list
of addresses is stored in memory.

T-address:

ALL specifies that this particular Random Distribute option is being used. Use of the ‘*ALL’’ option
causes the Assembly System to automatically generate a destination list for all items to be distributed. Items
will be placed in the destination area in contiguous memory locations, with the amount of memory reserved
for each item depending on the maximum item size (including sign) as given in the data sheets.

A W-address is assigned to each item placed in the destination area. This W-address is the symbolic
name of the item, preceded by the read-in area letter, preceded by a **W’’. For example, if XFMAST is dis-
tributed, individual items in the destination area can be addresses as:

WXDNAME

WXDPAY

WXDATE
etc.

(If FMAST were distributed, individual items would be addressed in the destination area as WDNAME,
WDPAY, WDATE, etc.)

The entire distribution area is also assigned a symbolic naw.. which will be the name of the read-in area
preceded by a **'W”’. For example WXFMAST would address the entire distribution area. When used in an
address requiring the LHE of the area, WXFMAST would address the distributed SM. When used in an address
requiring the RHE of the area, WXFMAST would address the distributed EM —— this location will contain an
ISS symbol at the completion of the RD instruction (see 501 Programmer’s Reference Manual). ’

The size of the distribution area will be the sum of the maximum number of characters in all of the items
of the message, plus 2. The extra two locations are used for the SM and EM.

60



The generated address list is automatically stored by the Assembly System and may be later referred to
by its L-name.

Example:

Suppose it is desired to process the Master Employee File shown on the data sheet on page 62. Toread a
~message from this file into memory, and Random Distribute it, the programmer may write the following in-
structions:

oP A NN B T
LRF | FMASEM IMAS
SCC | WFMASEM WFMASEM

RD | FMASEM LMAS | ALL

Note, from the above example that “WFMASEM”’ is the address of the working storage area into which the
“‘Random Distribute All’”’ instruction distributes the file. *““WFMASEM’’ can be used for either the leftor
right hand address of that area according to the requirements of the address of the particular instruction in
which it is used. Having distributed a message through the use of the **Random Distribute All’’ instruction,
the programmer may make reference to all items in the message, both FAA and non-FAA items,symbolically
by their destination addresses; e.g. ‘

WDEMPNOQ addresses Employee Number

WDPLNO addresses the sub-item, PLANT NO.

WDNAME addresses Employee Name

WDCEARN addresses Cumulative Earnings
etc.

Having once used the ““Random Distribute All’’ instruction the programmer can cause the distribution of mes-
sages from altemate read-in areas of the same file to the same work area by specifying the same L-address
in the B-address of a machine format Random Distribute instruction.

Example:

The Random Distribute All instruction, shown below, will distribute all items of the message from the pri-
mary read-in area to a work area.

oP A N,N B T

RD FTEST LMAS ALL

To distribute the same items of a message of the same file to the same work area from the X read-in area,
the following instruction is written:

opP A N N B T

RD XFTEST LMAS

The ‘‘Random Distribute All’’ option is not used for this second transfer, because if it were used, the As-
sembly System would assign a different working storage area to the items distributed from the X read-in
area. ' The machine format Random Distribute instruction is used with the B-address specifying the list gen-
erated by the initial ‘*‘Random Distribute All’’ instruction instead.

Having done this, the programmer can address all items in the work area by their names as they appear
on his data sheets, preceded by a “‘W’’, regardless of which read-in area they were distributed from.

61



&

501 AUTOMATIC CODING DATA SHEET

NAME OF FILE <eF MASEM PaGEe 1 oFe |
NO.OF MSGS. [MAX.MSG. SIZE}NO.OF REELS NO.OF STATIONS KEYS
o 30000 |o * ° e pPLNO ,,DENO e0S TNO «pSHNO_ opMANO
Y OR N I kfLES TERMINATEDIY_'_O_B__N REELS TERMI- Y _OR_N
MESSAGE FORMAT YESORNO o |Y BY 55“ oR NO ,I Y OTHER ® angss;kzzo, Y oTHER®
REMARKS @ .
> "f x
MASTER EMPLOYEE FILE Y EE
@ [, x g
F S NO. CHARS.
';g’f‘ |STU€M ABBREVIATION DESCRIPTION : Jy ('; , CHAR uge mg:
N MAX. AVG.
<o 1 | e p|E |M|P | N|O |*EMPLOYEE NO. *XPL[ 11 [|°11 |*100
. oA eppP |L|N |O| |*PLANT NO. X PLF [|* 2 * 2 *100
* ° °*°p |E|N |0| |° DEPARTMENT NO. xP 1l " 2 [ 2 {100
. . *ols |T|N|O| |°STATION MNO. *x Ll "2 2 [|*100
* . *0is |H|N| Ol |°SHIFT NO. xfrpP "1 "1 1°100
. *E °oM [A|N|O| |*MAN NO. xP L ° o4 * 4 ®100
o 2 e *0|S |S|N| O] [*SOCIAL SECURITY NO. *XPL] |*9 * 9 ® 100
e 3 | *DN |A{M| E| |®*EMPLOYEE'S NAME * Ll [*40 * 30 ®100
* 4 | eDD |E|P *NO. OF DEPENDENTS * PLI* |*2 °1 ®100
e 5 |e eD/H |R|R| T| [*HOURLY RATE o P Ll* |* 3 * 3 * 100
e 6 o *p|C [E/A| R|N|® CUMULATIVE EARNINGS * PLI*P | 6 °* 6 ® 100
o 7 |e eD|C |W|/T|H| |eCUMULATIVE WTH TAX e loeLfe |& 5 o 5 *100
e 8 |e DG |S|S| T/X|*CUMULATIVE SS TAX o leple | 4 * 4 *100
e 9 |° *D|B |N|D | D|E|®*BOND DEDUCTION e A M ® 4 * 30
e 10 |e DB |N|D| E| N|*BOND DENOMINATION o o Ll* |* 3 * 2 * 30
o 11 1o *0|C |B|O| N|D|* CUMULATIVE BOND DED. * *Ll* |* 5 * 4 * 30 ’
*12 |° *Olc |clc °COMBINED CHAR. CONTR, |° 1| |* 4 | 2 |° 25
*13 |°® *0 |o|lS | P| |*HOSPITALIZATION DED. A A -
°*14 |° *Ola ju[T | I[N|®AUTO INSURANCE DA s 70 A A * 4 |° 10 BEF
° ° oD ° ° * ° ° . °
° ° oD . ° . ° . . °
® L J oD ® [ ] L ] [ J [ ] * [ ]
° P D . . [ L] . . L)
[ ] [ ] [ ] D [ ] * ® [ ] [ ] ® [ ]
[ J ® L ] D * [ J L L ] ® o [ ]
TOTAL CHARACTERS OF INFORMATION
ADDED CONTROL CHARACTERS
TOTAL CHARACTERS
1E 241 1/59

62



Random Distribute All+1

Format:

opP A N ,N B T

RD File name L-address | ALL+1

When this option is used, the Assembly System will allot one extra position for all items placed in the
destination area if the item contains an ltem Separator symbol.

In all other respects, this option is identical to the Random Distribute AlL

Random Distribute to Specified List

The *‘Random Distribute to Specified List”’ option provides the user with the ability to specify a des-
tination list, containing up to 57 entries, in the Random Distribute instruction. It is written in the follow-

ing format:
op A N,Ng B T
RD LHE of Area L-Address List of
to be Destination
Distributed Addresses
(limit = 57)
END
' A-address:

The A-address may contain an M-address, a Symbolic Data Address (either read-in area name, ‘an ad-
dress relative to the read-in area name or an Item Name) or a W-address. The address will specify the LHE
of the area to bg distributed.

B-address:

In the B-address the programmer specifies some L-address. This will become the symbolic address of
the list specified in the T-address. Having once specified an L-address for a list, the programmer may make
further references to the same list by its L-name.

T-address:

In the T-address column, the programmer lists, on successive lines, the destination addresses. No other
entries may be made on the succeeding lines taken up by the destination list. Entries which may appear in
the destination list are as follows:

W-address — Some working storage
M-address — An actual machine location

D-name  — Some symbolic data address
P-address — Some instruction address
TA — Indicating throw away addresses. The Assembly System will substitute (777777)4 for TA.
END — Must end each list. The Assembly System will substitute (000000)8 for END.
Example:
oP A N AN B B T
RD DBAL LBAL WAMT
WNAME
TA
TA
MO37775
DNET
END

63



Rondom Distribute to Unspecified List

This option allows the programmer to write a Random Distribute instruction where the list is unspeci-
fied. It is assumed that the list will be generated by the program itself. The Random Distribute to an Un-
specified List is written in the following format:

opP A NaNg B T
RD | LHE of Area L-address [ SAVE ]
to be
Distributed

A-address:

The A-address may contain an M-address, a Symbolic Data Address, or a W-address. The address will
specify the LHE of the area to be distributed.

B-address:

Since this option is designed to allow the programmer to generate his own destination list in other parts
of the program, an L-address must be specified in the B-address so that reference can be made to the list
area to load the generated addresses into the list.

T-address:

SAVE ] must be entered in the T-address for this option, where *‘J’’ equals the decimal number of tet-
rads to be reserved for this list. Caution should be exercised in specifying the value of **J’’, since enough
room should be left for throw away addresses (777777)4 and ending addresses (000000),.

The Assembly System will reserve the number of tetrads specified by J, filling them initially with
(000000),. The programmer may load addresses into the list by referring to the L-address using character
relative notation, (L +n)(R —n), to specify particular tetrads in the list.

Example:

Suppose the following ‘“Random Distribute to Unspecified List’’ instruction is written:

opP A N,N B T

A"'B

RD FMASEM+1 LMASEM |SAVE 5

Further, suppose the destination addresses of items, one, two, and four of the message are generated by
other parts of the program and, after generation, are to be found in working storages as follows:

Item one — WAl
Item two — WA2
Item four — WA4

Item three is to be a throw away item.

The list would then be loaded as follows:

opP A N AN B B

TCT WAL LMASEM(L +3)
TCT . WA2 LMASEM(L + 7)
TCT #777777#(C1) LMASEM(L +11)
TCT WA4 LMASEM(L +15)




Random Distribute to Combination List

A Random Distribute option in which the programmer specifies some addresses and reserves room for
others to be program-generated is also available. The list may contain up to 57 entries, and is written in the
following format:

opP A B T
RD LHE of Area | L-address| Address
to be Address or Save J
Distributed Address or Save J
Address or Save |
etc.
END

A-address:

The A-address may contain an M-address, a Symbolic Data Address or a W-address. The address will
specify the LHE of the area to be distributed.

B-address:
In the B-address the programmer specifies some L-address.
T-address:

In the T-address column, the programmer lists, on successive lines, destination addresses or SAVE ]
entries. (Note that SAVE ] cannot appear as the first entry.) Destination addresses may be any one of the
following:

W-address — Some working storage
M-address — An actual machine location
D-name - Some symbolic data address
P-address — Some instruction address
TA - Indicating throw away addresses. The Assembly System will substitute (777777),4 for TA.
END — Must end each list. The Assembly System will substitute (000000)4 for END.

SAVE ] entries will cause the number of tetrads specified by J to be reserved in the list in the place
where the SAVE ] was entered. '
Random Distribute-Machine Format

The mnemonic Random Distribute instruction, just as all instructions, may be specified in a format very
close to the format of machine code. ’

oP A N N B
A B
RD LHE of Area L-address
to be
Distributed

A-address:

The A-address specifies the left-hand end of the area to be distributed. This address may be specified
by an M-address, a W-address, or some symbolic data address. If an entire message is to be distributed from
the read-in area, the read-in area name may be entered in the A-address.

For example,. FMASEM, XFMASEM, YFMASEM, or ZFMASEM, as entries in the A-address will cause a
distribution from the corresponding read-in areas. Naming the read-in area will cause the SM to be distributed
as well as the data. ’

If a part of a message is to be distributed, the item of the file from which distribution is to start, provided

65



the item is an FAA item, may be specified by the item name or by its relative position with respect to the
SM. Thus, if DNAME is the first item in the file, FILE+1 or DNAME will cause distribution of the entire
message except the SM.

B-address:

The B-address specifies the address of the first tetrad of the destination list; this must be an L-address.

It will be assumed that the list which is stored at that L-address has beendefined elsewhere in the program.

GENERAL STATEMENTS ON RANDOM DISTRIBUTE OPTIONS

A.

The programmer must realize that the Random Distribute instruction depends upon the ISS of the next
item for all medial items, and the EM for the last item of a message, to key-it to the fact that it has com-
pleted the transfer of a full item. - Therefore, if some items of the file as described on the data sheets, do
not have ISS’s, they will not be distributed to discrete destination locations. They will be considered
to be part of the preceding item and will be transferred as such.

All references to SM and EM apply only to data that is in message format. When distribution begins with
a relative address, a character location is not allowed for the SM. In addition, if the A-address specifies
an item in a file area, the item must be FAA.

Entries are not to be made in any columns to the right of RD instructions, or on any line associated witha
RD instruction.

There is a maximum of 20 L-lists for any Assembly program. This limit includes lists created by RD and
MSVW instructions.

MULTIPLE SECTOR WRITE OPTIONS

The Assembly System provides the user with various options for writing the Multiple Sector Write in-

struction.

Multiple Sector Write From Specified List

The Multiple Sector Write from Specified List instruction may contain up to 57 entries, and is written in

the following format:

oP A NoNg B T

MSW L-address Tape No.
J Address
] Address
etc.
END

A-address:

An L-address entry must be made in the A-address in the first line. The first character must be ““L”’,

followed by up to five alphanumeric characters.

B-address:

On the first line, the Tape Station number is entered. This may be an I, O, or T Tape Station designation.

On succeeding lines, the numberof characters in each sector to be written is entered on individual lines.

Decimal notation is used. The number of characters in each section is not limited to 64.

The last entry in the B-address column forthis instruction must be **END’’.* No other entries are made

on the line in which “*END”’ is entered.



T-address:
The first line (the line in which **MSW’’ is entered) of the T-column is always left blank.

The T-column on succeeding lines contains the LHE address of each sector to be written. Note that
the number of characters to be written is entered in the B-column on the same line.

Entries in the T-column may be M-addresses, W-addresses, K-addresses, P-addresses, or Symbolic Data
addresses. If a symbolic address is used the Assembler will automatically supply the LHE addzess.

Note that if the B-address is left blank the Assembly System will assume that the sector specified by
the related T entry consists of one character. If the T-address is left blank, the Assembly System will sub-
stitute the machine address (000000)g.

Exampl e:
opP A NANB B T
MSW LWRITE OPRINT
12 WNAME
73 WAAD(L+5)
4 KTWO
END

Multiple Sector Write From Unspecified List

Ar option is provided by the Assembly System to permit the programmer to write a Multiple Sector Write
instruction from an unspecified list. It is assumed that the list will be generated in other parts of the pro-
gram. The Multiple Sector Write Unspecified List option is written in the following format:

oP A . N,N B T

A'B

MSW | L-address Tape No. of
No. Tetrads

A-address:

The A-address entry must be an L-address to provide the programmer with a reference address for use in
loading the list with program-generated addresses.

B-address:
The tape station is specified by an I, O, or T Tape Station address.
T-address:

A decimal number indicating the number of tetrads to be reserved for the list is entered under T-address.
Note that the terminating tetrad (000000) g must be provided for. In loading program-generated addresses into
the list, the L-address with (R ~n) (L +n) character relative notation is used. All tetrads in the list will be
initially filled with octal zeros.

Example:
op A N,Ng B T
MSW | LWRITE | OPRINT 17

Multiple Sector Write From Combination List

The Multiple Sector Write from Combination List option provides the Assembly System user with the abil-
ity to write a Multiple Sector Write instruction in which some addresses in the list are specified, and some
are left unspecified. The unspecified addresses are to be generated by the program. This option is written
in the following format:

67



A-address:

An L-address, which the programmer will use as a reference address to load program-generated ad-
dresses into the list, is entered in the A-address of the first line of this instruction.

B-address:

An 1, O, or T symbolic Tape Station number is entered in the B-address of the first line of this instruc-
tion.

On succeeding lines, either J or SAVE is entered. **J’’ is the number of characters in each sector whose
address is specified in the T-column. SAVE is entered for those sectors whose addresses will be generated
by the program.

The-last entry in the B-column must be ‘"END’’. No other entries may be made on the **END’’ line.
T-address:
The first line of the T-address column is left blank. Succeeding lines are entered as follows:

1. Opposite each **J’’ enuy in the B-column, enter the address of the sector that is defined by that *J’’.
These entries may be M-addresses, W-addresses, K-addresses, P-addresses or Symbolic Data Addresses.
If a symbolic address is entered, the Assembler will substitute the LHE address of that symbolic.

2. Opposite each *SAVE”’ entry in the B-column enter the number of tetrads to be reserved by the Assembly
System for program-generated addresses. All save tetrads will be initially filled with octal zeros.

Example:

The following sample MSW instruction may be written:

opP A N,Ng B T
MSW LLIST T2
15 WA3
13 WAG(L +4)
12 M003000
5 K123
SAVE 3
END

Note that the program must generate the octal character count and also the addresses to be inserted
in the three teirads designated by SAVE 3. For example, assume that these addresses have been generated
and stored in the following work areas:

First address — WB1
Second address — WB2
Third address — WB3

To load the list with these addresses, and the octal number of characters in each sector, the following
instructions may be written.

oP A N N B
A B ) )

OoCT #12# LLIST(L + 16)
TCT WB1 LLIST(L +19)
oCT #04# LLIST(L +20)
TCT WB2 LLIST(L + 23)
oCT #OS# LLIST(L + 24)
TCT WB3 LLIST(L +27)




Note that character relative notation is used to load program-generated addresses into the list, and that the
L-address was considered as corresponding to the first character of the entire list, not the first character of
the saved tetrads.

Multiple Sector Write-Machine Format

The Multiple Sector Write instruction may be written in a format similar to machine code format as fol-
lows:

opP A N,N B

MSw L-address Tape No.

A-address:

An L-address entry must be made in the A-address of this option.  The L-address is the address of the
list designating the sectors to be written. The list referred to by this L-address must be defined elsewbere
in the program.

B-address:

An 1, Q, or T Tape Station specification is entered in the B-address.

GENERAL STATEMENT ON MULTIPLE SECTOR WRITE OPTIONS

When more than 64 characters are specified for a single sector, the list will contain a tetrad address for
each multiple of 64. For instance, if 132 characters are specified in the B-column, the list will contain three
tetrads for that sector. '

The Assembler will supply the LHE address of symbolics entered in the T-column. If other addresses
are required, character addressing must be employed.

A specified list of addresses may contain up to 57 entries. It should also be noted that there is a maxi-
mum of 20 L-lists for any Assembly program (this includes lists created by RD and MSW instructions).

When SAVE is used, the programmer must transfer the octal character count and the starting address into
each SAVE tetrad of the list.

Entries are not to be made in any columns to the right of MSW instructions, oron any line associated witha
MSV instruction.

ADDRESS MODIFIER ADDRESSES

The seven address modifiers may be specified by the following symbolic names:

Symbolic Address Machine
Name Modifier Address
Bl AM1 000111-000113
B2 AM2(STA) 000221-000223
B3 AM3 000131-000133
B4 AMA4 (P Register)
BS AMS 000151-000153
B6 AMG6 (T Register)
B7 AM7 000171-000173

These symbolic names may be used to specify the address modifiers in the A, B, T or N columns of all
mnemonic instructions. However, the following special formats must be observed.

Setting Address Modifiers

The SET instruction may be used to place information into address modifier 2(STA), address modifier

69



4 (P Register) and address modifier 6 (T Register).

Examples:
pseudo-code:
op A EERA B
SET M000010 B2
equals in machine code:
72 000010 00 200000
pseudo-code:
oP A N N B
A B
SET PAB20 B4
equals in machine code:
72 023000 00 400000

where: 023000 is the machine address the Assembly System has assigned to PAB20.

pseudo-code:
op A N AN B B
SET #000010# B6
equals in machine code:
72 033000 00 600000

where: 033000 is the address in which the Assembly System has stored the literal, #000010#

Since the other address modifiers (B1, B3, B5 and B7) are actual HSM locations, information cannot be
placed in them through the SET instruction.

The Assembly user, however, may transfer information into these locations with a TCT instruction; or
he can add to or subtract from these locations using the TCA or TCS instructions. When these instructions
are used in conjunction with these modifiers the symbolic addresses Bl, B3, BS or B7 may appear in the A
or B-addresses.

Examples:
pseudo-code:
op A N AN B B
TCT Bl B3
generated machine code:
25 000113 00 000133

70



pseudo-code:

geherated machine code:

oP A N N, B
TCA BS #001000#
44 000153 00 003750

where: 003750 is the machine address of the location in which the Assembly System has stored the RHE of
the literal, #001000#.

‘pseudo-code:

opP A N,N B

TCS B7 BS

generated machine code:
45 000173 00 000153
Note that the address of the C3 character of the indicated location is always substituted for B1, B3, BS
and B7.
Storing the Contents of Address Modifier Locations ;
All symbolic address modifier addresses may be used as the B-address of an STR instruction.

If address modifier 4 (P Register) or address modifier 6 (T Register) is specified, a machine STR(73) in-
struction is generated.

Examples:
pseudo-code:
opP A N Np B
STR MOOSOOO ' B4

generated machine code:

73 005000 ' 00 © 400000
pseudo-code:

opP A N,Ng B

STR M003000 B6

generated machine code:

73 003000 00 600000

If the other address modifiers (AM 1, 2, 3, 5 or 7), are entered in the B-address, a machine TCT (25) in-
struction is generated.

71



Examples:

pseudo-code:

oP A NpNg B

STR M004000 B1

generated machine code:

25 000113 00 004000
pseudo-code:
opP A N N B
A B
STR M004000 B2

generated machine code:

25 000223 00 004000

Use of Address Modifiers with TA Instruction

Bl, B3, B5 and B7 may also be used as the B-address of the TA (66) instruction.

Example:
pseudo-code:
opP A N A N B B
TA PAA20 BS
generated machine code:
66 022100 00 000153

where: 022100 is the machine address the Assembly System has assigned to PAA20.

SPECIAL ADDRESSING OF REGISTERS

The Assembly System provides the user with the ability to address the five registers and the PRI's sym-
bolically. The symbolic addresses of the registers are as follows:

Symbolic
Addresses Addressed Location
RP Register P
RA Register A
RB Register B
RS Register S
RT Register T
RPRI Previous Result Indicator
RPRN Previous Result Indicator Negative
RPRP Previous Result Indicator Positive
RPRZ Previous Result Indicator Zero

72



Use of Symbolic Register Addresses With SET Instruction
The following symbolic register addresses may be used with the SET instruction:

RP
RA
RT
RPRN
RPRP
RPRZ

The format in which the SET instruction is written is as follows:

oP A N,Ng B

SET Quantity to Symbolic
be Placed Address
in Register of Register

A-address:
The A-address entry may be an M-address, any symbolic address or a literal.

If an M-address is specified, the actual quantity following the ““M’’ will be placed in the register desig-
nated in the B-address when this instruction is executed.

If some symbolic address is specified, the address assigned by the Assembly System to that symbolic
address will be placed in the designated register when this instruction is executed.

If a literal is specified, the machine address of the memory location in which the literal is stored (the
RHE) is placed in the designated register when this instruction is executed.

If RPRN, RPRP or RPRZ is entered in the B-address, the A-address must be left blank.
B-address:
Either RP, RA, RT, RPRN, RPRP or RPRZ may be entered in the B-address.

Example:
pseudo-code:
-OP A N AN B B
SET #000100# RP
generated machine code:
72 032003 00 400000

where: 032003 is the machine address of the location in which the Assembly System has stored the RHE of
the literal, #000100#.

pseudo-code:

opP A N, Ng B

SET M000100 RA

generated machine code:

72 000100 00 200000

73



pseudo-code:

op A N AN B B
SET PAA20 RT
generated machine code:
72 022100 00 600000

where: 022100 is the machine address the Assembly System has assigned to PAA20.

pseudo-code:

orP A N,Ng B
SET RPRN
. generated machine code:
72 000001 00 100000
pseudo-code:
opP A N,Ng B
SET RPRP
generated machine code:
72 000004 00 100000
pseudo-code:
op A N AN B B
SET RPRZ
generated machine code:
72 000002 00 100000

Use of Symbolic Register Addresses With Store (STR) Instruction

All of the symbolic register addresses, except RPRP, RPRN and RPRZ, may be used with the STR in-
struction in the following format:

A-address:

opP

Ao

B

STR

Location in
which contents of
designated register

are to be stored.

Symbolic address
of register whose
contents are to
be stored.

An M-address, or any symbolic address may be entered in the A-address of this instruction. This address
designates the memory location to receive the contents of the register designated in the B-address.

B-address:

Any one of the symbolic register addresses, except RPRP, RPRN and RPRZ may be entered in the B-
address of this instruction.

74



If RP, RB, RS, RT or RPRI is addressed in the B-address, the Assembly System will generate an STR
machine instruction as follows:

pseudo-code:

opP A N AN 8 B
STR M020000 RP
generated machine code:
73 020000 00 400000
pseudo-code:
opP A N AN B B
STR M020000 RB
generated machine code:
73 020000 00 300000
pseudo-code: op A NN B B
STR- M020000 RS
generated machine code:
73 020000 00 500000
pseudo-code:
opP A N AN B B
STR PAA20 RT
generated machine code:
73 022100 00 600000

where: 022100 is the machine address the Assembly System has assigned to PAA 20.

pseudo-code:

opP A N,N B B

STR M020000 RPRI
generated machine code:

73 020000 00 100000

If RA is addressed in the B-address, the Assembly System will generate a TCT machine instruction from
the STA location as follows:

pseudo-code:
op A N ANg B
STR M020000 RA
generated machine code:
25 000223 00 020000

Note that the C3 location of the STA location is addressed.

75



SYMBOLIC ADDRESSING OF STANDARD LOCATIONS

The Assembly System user may also write symbolic addresses for standard memory locations.

Symbolic ,
Addresses Standard Memory Locations
STP Standard STP Location (000241 — 000243)
RRAI Return After Interrupt Setting (000001 — 000003)
RPA]J Paper Advance Jump Location (000201 — 000203)

Use of Symbolic Standard Memory Locations

The following instructions may symbolically address the standard memory locations in either their A- or
B-addresses:

STR
TCT
TCA
TCS
Examples:
pseudo-code:
opP A N AN B B
TCT PAB20 RPAJ
generated machine code:
25 023000 00 000203

where: 023000 is the machine address the Assembly System has assigned to PAB20.

pseudo-code:

op A N AN B B
TCA STP #000010#
generated machine code:
44 000243 00 003200

where: 063200 is the machine address in which the Assembly System has stored the literal, #000010%#.

If a symbolic standard memory address is entered in a STR instruction, the Assembly System generates
a TCT instruction as follows:

pseudo-code:

oP A NAN B B
STR PAA20 STP
generated machine code:
25 000243 00 022100

where: 022100 is the machine address the Assembly System has assigned to PAA20.

76



pseudo-code:

op A N,N, B
STR M007000 RRAI
generated machine code:
25 000003 00 007000
pseudo-code:
opP A NANg B
STR M007000 : | RPA]J
genérated machine code:
25 000203 00 007000

Note that, in all instances, the address of the C3 character of standard memory locations is substituted
by the Assembly System for symbolic standard memory location addresses.

Alternate Symbolic Addresses

1. In a symbolic SET or STR instruction the following symbolic addresses are interchangeable:

B2, BA or RA
B4, BP or RP
B6, BT or RT

2. When address modification is specified in the **N”’ columns, 1, 2, 3, 4, 5, 6, and 7 may be used in lieu of
B1, B2, B3, B4, BS, BG, and B7. (Note that this does not apply to the A and B columns.)

77



Vil. MEMORY LAYOUT

RESERVED MEMORY AREAS

The following memory areas are normally reserved, as indicated:

HSM LOCATION RESERVED FOR

000000 — 000277 Standard HSM memory locations
000300 — 001277 Running Program Insertion Routine
001300 — 002507 Rollback Routine

002510 - 002777 Program Sequencer Working Area
003000 — 003777 Sequencer Call Table Area

It is therefore recommended that all programs be assembled starting at memory location 004000, or high-
er. If lower memory addresses are used certain restrictions are placed on the use of the RCA Program Se-
quencer.

MEMORY ALLOCATIONS AT ASSEMBLY TIME

A paper call tape is required at assembly time which specifies the beginning and ending memory limits
for the program being assembled.

The LHE of memory should be specified as 004000, or higher. (This address must always end with a
‘‘zero.’?)

The RHE is specified as any HSM memory location ending in *7.”” Note, bowever, that if any W1 print
areas are defined in the program, this ending address must end in X77, where X is an odd number.

AUTOMATIC MEMORY LAYOUT

Based on the memory limits specified in the call tape at assembly time, the Assembly System will then
allocate memory in the following manner:

The Fixed Constant Area

Starting at the LHE address, the Assembly System will reserve memory for the fixed constants area --
those constants specified with an ‘'F’’ notation. If fixed constants are not used, two tetrads (starting at the
LHE) will be reserved for a dummy fixed constant block — program block 2.

Working Storage
The working storage area is reserved starting at the RHE memory address specified in the call tape.

Before assigning work area addresses, the Assembler first sorts all W-addresses in inverse alphanu-
merical order, on the second character. Thus, all W1-addresses will be grouped in 2 W1 work-area **block;’’
all WA-addresses will be grouped in a WA *‘block,”’ etc

The W1 “‘block,” if present, is placed at the end of memory (RHE). The W2 “‘block,”’ if any, will pre-
cede the W1 locations, etc. See illustration.

Each working storage ‘“‘block’” will begin in a Co position of a tetrad. However, the order of individual
working storage areas within each block depends’on the order in which they are defined in the sorted program.
Therefore, the first WA-area defined will be placed at the LHE of the WA block; the second WA-area defined
will be placed to the right of the first area, and so on.

Once an individual working storage area has been defined in the program, the programmer may refer to
the eatire working storage ‘‘block.’” For example, if one or more WA working storage areas bave been defined,

78



the programmer may clear the entire WA block by the following instruction:

oP

A

B

SCT

WA

WA

Read-In Areas

Preceding the working storages, read-in areas (F, X, Y, Z) are reserved. Each read-in area is assigned
so that the LHE of the.area always falls in a Co position and the RHE in a C3 position, to accommodate

either forward or reverse reads.

The Program

The memory space remaining between the last constant in the fixed constant area and the first read-in
area is the memory available for the program. Each segment is considered to consist of the instructions with-

in the segment and the non-fixed constants for that segment. Instructions will be placed into memory starting
with the first available last-digit-zero memory location. The segment constants will be placed into memory
immediately following the last instruction of the segment. Thus, the automatic memory layout will appear as

indicated below:

000000 Reserved
*
LHE ‘ac?dress Fixed Constants
(specified by
call tape) Segment
Instructions
Segment
Constants
[ ]
[ ]
[
[ J
o
®
Read-in Areas
wz
[ ]
®
[ J
WA Working
L4 Storage
[ ]
®
w2
w1

*LHE should be 004000, or greater.

PROGRAMMER CONTROL OF MEMORY LAYOUT

The following Descriptor Verbs provide the programmer with the ébility to control the automatic memory

layout:

RHE address
(specified by
call tape)

79



LEVE - Leave

The LEVE Descriptor Verb permits the programmer to instruct the Assembly System to reserve certain

memory locations. The programmer can then make whatever use he wishes of these unassigned areas.

";i f" opr A NiNg B
DP-address LEVE No. of File Name
Characters or
to be Left Wa
Unassigned. or
(max. = 9999) BOM

Instruction Number:

Enter a DP-address according to the rules of Descriptor Verb instruction numbering.
OP;

Enter the Descriptor Verb operation code, LEVE.

A-address:

Enter the total number of characters to be reserved for the area specified in the B-address. (If the size of
the File or working storage ‘‘block” is greater than the number in the A-address, the Assembler will assign
the larger number to the area).

Enter the total number of characters to be reserved for the area specified in the B-address.

B-address:

Enter either: File Name, BOM or Wa. Note that an M-address cannot be used.

where: File Name is the name of the file whose read-in areas (F, X, Y, and Z areas, if used) will be set at
the number of characters specified in the A-address. Note that this use of the LEVE verb may over-

ride any length specification for read-in areas made on the data sheets.

BOM specifies the beginning of memory as indicated by the LHE address in the call tape. Thus, if
the call tape specified 004000 as the LHE, and 100 is entered in the A-address and BOM is entered
in the B-address, memory locations 004000 through 004143 will be left untouched by the Assembly
System. The fixed constant area will commence with location 004144.

Wa indicates thata working storage '‘block’’ length is specified by this LEVE verb, where ‘‘a’’ is the
block designator.

If 100 is entered in the A-address and WB is entered in the B-address, the Assembly System will allocate
100 character locations to the WB working storage block. If references to WB addresses within the program
specify only 50 characters of working storage, the first 50 characters of the reserved WB area will be used
for those working storages specified in the program. The remaining 50 characters will remain untouched by
the Assembly System.

80

INST. NO. oP A NAN B B
DPAF22 LEVE 100 WB
WB Working Storage Block
LHE WB Areas defined in program Reserved RHE

50 characters

50 characters



To address the reserved locations in the WB block, the'programmer may refer to them as WB(L +50) to
WB(L+99) or WB(R) to WB(R — 49).

Note:

If the programmer wishes to use the LEVE verb to reserve locations in a working storage block, he can-
not make reference to this area by W-name unless at least one work area has been defined in the program
within that block.

ASGN - Assign‘

The ASGN Descriptor Verb provides the programmer with the ability to place constants in the standard
memory locations between 000100 and 000277.

Instr. op | 4 NaNg B
No.
DP-address ASGN Literal M-address
between
M000100
and :
M000277

Instruction Number:

A DP-address Descriptor Verb instruction number must be entered in the Instruction Number column.
OoP:

The Descriptor Verb operation code, ASGN, is entered in the *“OP’’ column,
A-address:

An octal or decimal literal is entered in the A-address. The first character of this literal (LHE) will be
stored starting at the machine location indicated in the B-column.

B-address:
An M-address between M000100 and M000277 is entered in the B-address column.

The ASGN Descriptor Verb causes the specified literal to be placed in the designated memory location
as a result of reading in the program block. This verb can be used to set up various necessary constants in
standard memory locations.

Thus, the programmer may assign an initial value of (000020) for address modifier 1, by the following
instruction: 8

INST. NO. orP - A N‘AN B

DPAAO4 ASGN #000020# v M000111

81



Special Note:

An Assign block (Program block 1)will always be generated for the object program, regardless of whether
or not an ASGN verb was used in the pseudo-coding. If ASGN verbs have not been used, the Assign block
will load spaces (01)g into memory locations 000100 through 000277. When ASGN verbs have been used, the
specified literals will be placed in the locations specified, and the remaining locations will be filled with
space symbols.

OVLY - Overlay

The OVLY Descriptor Verb provides the programmer with the ability to conserve memory space by dir-
ecting the Assembler to overlay instructions, read-in areas, and working storage “‘blocks”” with other read-in
areas or working storage *‘blocks.”’

An example of the use of this verb would be a case where a WA working storage block has been reserved
as a result of references to WA working storages. In another part of the program WB working storage refer-
ences have created a WB working storage block. If the WA and WB areas are never used simultaneously,
there is no reason why these two working storage blocks may not occupy the same memory area. The OVLY
verb may be used to accomplish this double use of memory area.

Instr.
op A NuN B
No. ATB
DP-address OVLY| P-address F,X,Y,orZ
F,X, Y, orZ read-in address
read-in address or
or 7
Va Wb

Instruction Number:
A DP-address must be entered in the Instruction Number column.
oP:
The Descriptor Verb, OVLY, is entered in the “*OP’’ Column.
A-address:
The entry in the A-address column specifies the area which will be overlaid.

If a P-address, this address indicates the beginning of the program area to be overlaid.

If an F, X, Y, or Z read-in area address, this indicates the particular read-in area to be overlaid.

If Wa, the particular block of working storage to be overlaid is specified where ‘*a’’ is the second char-
acter block indicator.

B-address:
The entry made in the B-address column specifies the overlaying area.
If an F, X, Y, or Z address, this address specifies a particular read-in area.

A Wb entry specifies a particular working storage block.

82

Examples:
Instr.

No. opP A NaNg B
DPKD10 OVLY WA WB
DPKD20 OVLY FSALE FMASEM
DPKD30 OVLY PZG50 WK




The following rules must be observed when using the OVLY verb:

1. The area which is being overlaid (A-address) must be the same size or greater than the overlaying
area (B-address).

2. The programmer may overlay one area with any number of other areas. However, if an area is used
as an “‘overlaying’’ area it cannot also be used as an “overlaid’’ area. The following example illu-
strates these points showing the correct and incorrect methods.

Example: ’
Programmer wishes to overlay working storage blocks WL, WM, WN and WP; WL is the largest area:
CORRECT INCORRECT
INST. NO.| oP A NaNg | B INST. NO. oP A NaNg | B
DPZZ10 OVLY WL WM _DPZZ10 OVLY WL WM
DPZZ11 OVLY WL WN DPZZ11 OVLY WM WN
DPZZ12 OVLY WL WP DPZZ12 OVLY WN WP

SGMT - Segment

The SGMT Descriptor Verb provides the programmer with the ability to specify program segmentation.

Instr. '
o, op A N,Ng B T
DP-address | SGMT Explicit P-address ]
P-address ESGMT]
or
M-address

Instruction Number:
Enter A DP-address in the Instruction Number column.

OP:
Enter SGMT in the *“OP’’ column.

A-address:

Enter the explicit P-address of the first instruction in the segment being defined. Note that a relative
P-address cannot be used.

B-address:
Enter the location where the first instruction in this segment is to be placed:

M-address = Any machine location with an address ending in **0.”’

P-address = P-address of an instruction that appears in another segment.

ESGMT] =1If this segment is to be placed in memory following another segment, enter ESGMTJ, where
J is the segment number of the other segment,

T-address:

Enter the segment number assigned to this segment. Segments must be numbered consecutively as they
appear in the program. All segments of a program, except for the first segment, must be defined by a SGMT
verb. Each segment must be defined individually by a separate SGMT verb.

83



Example:

Instr,

No. oP A N,oNg B T
DPZM50 SGMT PBA1l0 PAAIO 2
DPZM60 SGMT PCA10 PBA10+1 3
DPZM70 SGMT PDA10 ESGMT3 4
DPZMS80 SGMT PEA10 ESGMT3 5

Use of ESGMTJ

1. In the previous example, it was specified that segment 4 is to be placed in memory following segment 3.
The programmer must remember that each segment includes both instructions and constants for that segment.
Therefore, these segments will appear in memory as follows:

Segment 3 instructions

Segment 3 constants

Segment 4 instructions

Segment 4 constants

There is no automatic linkage, then, between the last instruction in segment 3 and the first instruction
in segment 4. This must be provided by the programmer.

2. Because of the manner in which the Assembly System processes segment information, the following rule
must be adhered to when using ESGMT]J:

The A-address of the SGMT verb must be GREATER than the P-address of the first instruction of Seg-
ment "j"!

CORRECT INCORRECT
INST. NO.| OP A NaNg B T INST. NO.| OP A NaNp B T
DPZZ10 | SGMT | PAL10 PAA10 | 2 DPZZ10 | SGMT |PALI10 PAA10 | 2
DPZZ11 | SGMT | PAM10 PAL10 | 3 DPZZ11 | SGMT |PAM10 PAL10 | 3
DPZZ12 | SGMT PARlO ESGMT2| 4 DPZZ12 | SGMT | PACIO ESGMT 2| 4

The Effect of Segmentation on Non-fixed Constants, L-Lists and Stashes
Non-fixed K-constants and Stashes:

All non-fixed K-constants and stashes must be defined in the segment in which they are used. The As-
sembly System determines the segment definition in the following manner: If segment 2 starts at PAL20 and

ends at PAN14, all DP-addresses from DPAL20 thru DPAN14, that define non-fixed K- constants and stasbes,
will be considered as applying to segment 2.

If the programmer, then, refers to a particular K-name in segmeant 2, but the K-coastant was not defined
in the DP-address range for segment 2, it will be considered as undefined for that segmenr, This may be
overcome by making the constant “‘fixed,”” or by defining this constant in each segment in which it is used.

Non-fixed Literals:

Normally, non-fixed literals present no segmentation problems since they are written as they are used,
and are therefore defined at that time.

However, the positioning of literals within a tetrad may be affected. For example, if #000030#(C1) is
used in the first segment, all further references to the same literal are made without C notation. Should the

84



same literal be used in the second segment, and the **(C1)’’ notation was not specified again, the constant in
the second segment would be considered as not having a C-notation.
L-lists:

Once an L-list has been defined in the program, it need not be defined again, regardless of the number
of segments. The Assembler will duplicate the address list in all segments which refer to it. The location
of the list will not be the same for all segments since lists are carried in the non-fixed constant section
dfter the instructions for that segment.

STRT — Start
The STRT Descriptor Verb informs the Assembly System of the starting point of the program.

Instr, oP A NaNg B
No.
DP-address STRT P-address Segment
of First Instr. No.
to be Executed

Instruction Number:
Enter a DP-address .in the Instruction Number column.
OP:
Enter the operation code STRT in the ‘*OP’’ column.
A-address:
Enter the P-address of the first instruction to be executed in the subject program.
B-address:

Eanter the segment number of the segment in which the first instruction appears. This is a decimal num-
ber. The B-address may be left blank if the program consists of only one segment.

The STRT Descriptor Verb must appear once in each program.

85



Vill. MACRO-INSTRUCTIONS

A macro-instruction is a single instruction designed to perform some task which would normally require
the writing of several machine or pseudo-instructions.

A single macro-instruction will generate all of the instructions necessary to perform the specified task.
The coding generated by the macro-instruction is an open-ended sub-~outine;i.e., there are no special en-
trance lines and no special exits. This sub-routine is inserted directly into the main body of coding in place
of the macro-instruction call-line.

Macro-instructions usually perform some often recurring programming steps. For example, the assemb-
ler macro-instruction, ALTP, performs the commonly recurring programming task of switching, i.e., it causes
the computer to alternate between two different paths through the program each time it comes to a specified
point.

This alternating path function would normally involve the repetitious writing of several lines of coding.
However, this routine may be specified by the one macro-instruction.

CALLING MACRO-INSTRUCTIONS

A macro-instruction *‘call line’’ is written at the point in the program where the function performed by
the macro is desired. ' The format of this call line is as follows:

INST. NO. COMMENTS oP A B

Explicit P-address Macro-name
(4 characters)

Instruction Number:

te

All macro ““call lines’’ must have explicit P-addresses.
opP:
A four-character macro name is entered in the OP column. This name may be alphanumeric.

Otbher columns:

The macro user enters information in the remaining columns of the call line according to the specifica-
tions for that particular macro.
DEFINING MACRO-INSTRUCTIONS

Since an understanding of the method which the Assembly System uses to process macro-instructions is
essential to the proper creation of macro-instructions, let us first examine this method.

The Macro-Instruction Library

An ED appears following the main body of coding on the Assembly System Tape. (The phrase, “*coding
on the Assembly System tape’’ refers to the actual coding that will perform the function of assembling pseudo-
code into machine code.) Following this ED is a macro-instruction index block. This index block contains
the name and block number of all macro-instructions incorporated in this Assembly System Library Tape.

Following the index block is an EF, followed by all the macro-instruction routines listed in the index
block. Each macro-instruction routine is followed by an EF.

86



Exa?ﬂple: W

ASSEMBLY
SYSTEM
CODING

ASSEMBLY TAPE ED
INDEX BLOCK

EF
MACRO 1
EF
MACRO 2
EF
MACRO 3
EF

MNAARA A

When a macro call-line is encountered during assembly, the index block is searched for that macro-in-
struction name. Associated with the name, is the macro-instruction block number. The Assembly System is
thus referred to the proper macro-instruction block. This macro-instruction block is then read into the com-
puter, and control is transferred to the first preset instruction.

Macro-Instruction Processing

Composition of Macro-Instructions
All macro-instruction routines, as they appear on the library tape, are composed of two parts:

1. Preset

t

2. Macro-Instruction Symbolic Coding (hereafter referred to as “*macro-coding”’).

The Preset

The preset part of the macro-instruction routine precedes the macro-coding and is the part to which con-
trol is immediately transferred when the macro block is read into the computer from the library tape. The pre-
set may bave been prepared by the Assembly System when the macro-instruction routine was originally in-
cluded in the library, or it may have been written by the programmer when the macro-instruction was designed. -

If prepared by the Assembly System, the preset will consist of two machine instructions which 1) places
the address of the first instruction of the macro-coding into Register T, and 2) transfers control to location
003310(8) , where a portion of the Assembly System called the “‘Operator” is located.

If programmer-prepared, the preset may be written such that it operates on the macro-coding to modify it
in some way. These modifications are usually those details necessary to make the general macro-coding
specific to the program into which it is to be incorporated. When the programmer writes the preset, he must
include in the preset coding the placing of the first macro-coding instruction address into Register T and a
transfer of control to the *“‘Operator”’ 003310(8) .

The Operator, having been provided with the address of the first instruction in the macro-coding will then
process the special macro-instruction symbolic format into Assembly System pseudo-code format and incor-
porate it into the program in place of thé call-line.

Macro-Instruction Symbolic Coding

The macro-coding section is written in a special format peculiar to macro-instructions. The following

87



rules apply:

1.
2.

Only a two-address system may be used, i.e., only the OP, A, N, N and B columns can be used.
The macro-instruction, when originally written, cannot contain the following:

literals or K-names.

P-addresses

V-addresses

W-addresses

Descriptor verbs.

DUP, ADV or RES operation codes.

“*Call-lines’’ for subroutines or other macro-instructions.

™o oan P

Note, however, that ‘‘a’’ through **d’’ may appear in the call line and can be incorporated in the macro-
, ’ g y p

coding through the special C-notation addressing explained in note 4.

3.

If a ST operation code appears in the macro-coding, the Assembly System will not recognize this as a
program exit line for the RCA Sequencer Routine.

The macro-coding section may retrieve data from the *‘call-line”’ through a special symbolic addressing
system that permits the addressing of individual columns in the call line. This system is illustrated
below:

C1 |Not Available] C3 | C4|C5| C6 |C7[C8 |C9 |Cl0|C1]| CI2 |CI3|Cl4| C15 |Cl6|CI7| CI8 |CI9

Instr.] Comments [OP | A [NA(NB [B | T |NT [CSG|IF {GO TO|Ny |IF |GO TO| N2|IF | GO TO| N3

where the information entered in each column may be addressed by the C notation shown. For example, C8
addresses the data appearing in the T column.

5.

All references in the macro-coding section to other parts of that section must be ClI relative. CI1(8), for
example, would address the OP code of the second instruction in the section.

After the last instruction in the macro-coding, the word END must be entered in the next OP column. Note
that the END line does not generate an instruction in the object program,

The Define Macro-Instruction Descriptor Verb

The Define Macro-Instruction Descriptor Verb, DEFM, is used to enter macro-instructions into the macro-

instruction library. The use of this verb only defines the macro onto the library tape, it does not generate
instructions in the object program. To include the macro-coding as part of a program, a ‘'call-line’’ must be
used. The general format of the DEFM verb is as follows:

Instr.
P
No. (0] A N AN B B
DP-address DEFM Macro S
Name or
P

Instruction Number:

A DP-address must be specified in the instruction number column,

oP:

The operation code DEFM is entered in the *‘OP’’ column.

A-address:

The name which is to be assigned to this macro-instruction is entered in the A-address. Note that this

must be a four-character name which must be different from all other macro-instructions,

88



B-address:

Enter either S or B S means that the programmer has written no special preset part. This is a Simple
Substitution type of macro-instruction. A two line preset for this macro-instruction will be generated by the
Assembly System before inclusion in the library.

P means that the programmer has written his own special preset for this instruction. No preset will be
generated by the Assembly System.

Note that the first pseudo-instruction following the definition of the macro (i.e., the instruction after the
END line) must have an explicit P or DP-address.

Example:

The following example shows the DEFM coding to incorporate the macro-instruction, ALTP, onto an As-
sembly System Library tape.

DEFM coding:

Instr,
No. op A ‘N AlNs B
DP- address DEFM ALTP S
TA C4 Cs C1(23)
SCC C1(23) C1(23)
TC Cc7 Cé6 M000001
END

When this Descriptor Verb is encountered during Assembly, the new ALTP macro-instruction name will be ad-
ded to the index together with the block number that will be assigned to this macro-instruction routine.

Because an S is specified in the B-address of the DEFM verb, two lines of preset coding (preceded by
the macro-instruction name) will be generated, and prefixed to the symbolic coding. The entire routine —

name, preset, and symbolic coding — will then be stored in the library, and two copies of the updated tape will
be generated.

The form in which this macro-instruction is stored in the library is as follows:

oP A N, ANg B
ALTP
72 000010 410 600000
71 003310 0|0 000000
TA C4 Cs C1(23)
SCC C1(23) ' C1(23)
TC C7 cé M000001
END

Now, let us assume that an ALTP call-line in the following format is encountered somewhere within the
program:

Cl C3 C4 C5 Cé C7
Instr. No. oP A Ny Npg B
P-address ALTP P1 N1 N2 P2

Having encountered this call-line, the Assembly System will search the index for ALTP and will be re-
ferred to the block containing the ALTP macro-instruction routine.

89



The routine, as shown above, will be read into the computer and control will be transferred to the first
instruction of the routine. This will be the (72)8 instruction of the Assembly System generated preset. The
(72)g instruction will place the address of the first symbolic macro-instruction (the TA instruction) in Re-
gister T. The (71)g instruction will then transfer control to memory location 003310, the address of the first
instruction of the Operator.

Having been provided with a starting point, stored in Register T, the Operator will then scan the sym-
bolic coding, looking for symbolic C notations. For each C notation found, the contents of that column in
the call-line will be substituted for the C notation appearing in the symbolic instruction. This will con-
tinue until the END in the ‘‘OP’”’ column is encountered. The operator then inserts the modified macro-coding
section into the pseudo-program in place of the call-line. The entire sequence of coding in all its phases is
presented below so that the reader can see which operations occur during each phase.

Define Macro-Instruction Coding:

[nstr. op A NN B
No. Al B
DP-address DEFM ALTP S
TA c4 Cs C1(23)
SCC C1(23) C1(23)
TC Cc7 Cé6 M000001
END : '
As Placed in the Library:
ALTP
72 000010 40 600000
71 003310 00 000000
TA C4 C5 C1(23)
SCC C1(23) C1(23)
TC C7 C6 M000001
END

If the Following Call-Line is Encountered:

Ccl1 C3 C4 c5 Cé6 Cc7
PABI10 ALTP PAA1O B1 B3 PDQ40+8

The Following Pseudo-Code is Generated at P AB10:

INST. NO. op A Ny INg B
PABI0 TA PAA10 Bl © PAB10(23)
scc PAB10(23) PAB10(23)
TC PDQ40+8 | B3 M000001

Note from the above example that:

1. The Operator substitutes for the C notations the information entered in the indicated column of the call-
line.

Parenthetical expressions that follow the C notations are appended to the entries taken from the call-line.
For example, in the SCC instruction C1(23) appeared in the A-address.The Operator substituted for Cl
the information in the Instruction Number column of the call-line, i.e., PAB10. The modified A-address
then became PAB10(23).

The symbolic macro-instruction coding must therefore be such that when entries in the macro-instruction
call-line are substituted for corresponding C notations, the result is a two-address system of coding whose

90



addresses are symbolic addresses recognizable to the Assembly System.

2. Since the P-address of the call-line becomes the P-address of the first instruction of the generated macro-
instruction, reference may be made to other parts of the macro-coding by addressing them character rela-
tive to the call-line P-address. This is done by using the Cl(n) notation, where C1 will be replaced by
the call-line P-address, and (n) designates the position of the addressed character as it will appear in the
final generated coding.

Defining Macro-Instructions With Presets

Let us look at a possible macro-instruction, the TEST macro-instruction. It would have the following

call-line:

Instr. No. | OP A |No|Ng| B |IF|GoTO| N1 | IF |GOTO| N2 | IF | GO TO| N3
Cl C3 C4 C5 | C6 | C7 |Ci1| C12 Cl3 | Cl4 | CIs5 Clé | C17 Cci8 Cc19
FILE
P-address | TEST | NAME SM P1 N1 | EF P2 N2 ED P3 N3
where: 1. The P-address associated with the call-line is entered in C1.
2. The macro-instruction name, TEST, is entered in C3.
3. The name of the file whose first character is to be tested is entered in C4.
4. SM is entered in C11.
S. The address to which control is to be transferred (P1) if the first character is found to be SM is
entered in C12.
6. The address modifier location to be used to modify P1, if any, is entered in C13.
7. An EF is entered in Cl14.
8. The address (P2) to which control is to be transferred if the first character of the file is found to
be an EF is entered in C15. v
9. The addres s modifier location to be used to modify P2, if any, is entered in C16.
10. An ED is entered in C17. '
11. The address (P3) to which control will be transferred if an ED is found to be the first character is
entered in C18.
12. The address modifier location to be used to modify P3, if any, is entered in C19.
This macro-instruction would be incorporated into the macro-instruction library by the following DEFM

verb:

[nstr. op A NIN B
No. Al B
DP-address DEFM TEST S
SET C4(L) M607300
SC CI1(6) C1(6)
CTC C15 C16| c13| Ci2
TC C18 C19
END

91



It will be incorporated into the library in the following format:

op A N Ng B
TEST
72 000010 4 lo 600000
71 003310 0 lo 000000
SET C4(L) MG607300
e CL(6) C1(6)
CTC C1s C16 | c13 C12
TC C18 C19
END

If, later in the same program in which the TEST was defined, or in some other program, the following call-
line is encountered:

Instr.No| OP A IF GO TO N, IF GO TO Ny IF GO TO N
Cl1 C3 Cc4 ‘ Ccl1 Cci2 Cl3 | Cl4 Cl5 Clé Cc17 Ccis Cci9
PAB10 | TEST | FMASEM SM | PSMI10 | B1 EF | PEF10 ED PEDI10

The coding generated by the operator and substituted for the call-line will appear as follows:

';:” op A NN, B
PABI10 SET FMASEM(L) M607300
SC PAB10(6) PAB10(6)
CTC PEF10 Bl PSM10
TC PEDI10
END

The macro-instruction creator, however, may wish to generalize the macro-instruction still further. He
may wish to allow the user the option of specifying either SM or EM in C11, where an EM specifies that the
read was a read reverse. In order to accomplisk this, the macro-instruction writer must provide a set of cod-
ing which tests for the presence of EM in C11. If EM is specified, the macro-instruction coding must be re-
vised to test the right-hand-end of the area instead of the left-hand-end.

This will have to be done before the Operator translates the symbolic macro-instruction into Assembly
System pseudo-code, and the coding to accomplish this must not itself be incorporated into the pseudo-pro-
gram. This is the role of the preset. The preset, therefore, must have the ability to refer to the call-line,
the symbolic macro-instruction coding, and to other parts of itself.

THE PROGRAMMER-WRITTEN PRESET
When the preset is provided by the programmer, the following rules must be observed:

1. On the DEFM line a *'P”” must be written in the B column to indicate that the preset is written by the pro-
grammer.

2. The Preset block of coding is written in strict machine format. (The Operation code and addresses are
NOT to be preceded by “*M”.)

3. The first instruction in the preset will be read into HSM location 011010 4. Other parts of the preset, or
instructions in the macro-coding, are written relative to this location.

4. The preset coding must place into Register T the address of the SM symbol of the first macro-coding in-
struction, and must also transfer control to the operator, located at 003310 8y

92



5. The Assembler reads the macro “call-line’’ into location 035700(8). See figure A.

6. The location of the symbolic instructions in the macro-coding will vary according to the size of the preset.
The SM of the first instruction, however, will always immediately follow the last preset line. The SM of
the next instruction will be 100 octal locations greater. (To determine the starting address of subsequent
instructions, the programmer adds 0001004, to each SM location.) The format of a macro-coding line, as
it is placed in memory, is shown in Figure B.

To illustrate the preceding rules, let’s examine a more general version of the TEST macro defined below:
INST. NO. COMMENTS oP A Np|l Ng B
DP-address DEFM TEST P
011010 A PAZ00 72 011017 0 0 604454
011020 43 036031 0 0 036032
011030 61 011050 0 0 011050
011040 22 011056 0 0 011125
011050 72 011100 0 0 606100
011060 ‘ 71 003310 0 0 000000
011070 00 000000 0 0 000000
011100 SET C4(L) . M607300
011200 SC C1(6) C1(6)
011300 ’ CTC C15 C16| C13]| C12
011400 TC C18 C19
011500 END
Notes:

A. The first two preset instructions test the first IF column in the call-line for the characters EM. If not EM

the macro-coding remains unchanged. If EM appears, an “‘R’’ is substituted for the *‘L’’ in the first macro-
coding line.

After the call-line has been tested, and the macro-coding modified (if necessary), the location of the first
line of the macro-coding is placed in the T register and control transferred to the Operator., The Operator
will then substitute data in the call-line for all C notations, and will incorporate the modified pseudo-
coding into the program.

It should be noted that a dummy instruction was added to the preset so that the first instruction of the
macro-coding would begin at a location ending in '00’’. Although this is not required, it will make it
easier for the programmer (when using the format in figure B) to determine the exact machine locations in
a symbolic instruction line.

For reference ease, the macro writer should list the HSM addresses of each preset instruction and macro-
coding instruction to the left of the Inst. No. column. (This information is not to be punched.)

A dummy instruction number, PAZ00, was used in the first preset line to facilitate possible corrections
at the time the macro-instruction is defined. For example, if the programmer wishes to change the second
line of the macro-coding during definition, he could refer to that line as PAZ00+8.

If desired, a dummy P-address may also be assigned to the first macro-coding instruction. These P-ad-

dresses, however, will not appear in the macro as placed on the library tape.

MACRO-INSTRUCTION SEGMENTATION

If the coding for a macro-instruction will extend beyond 0377773, it must be segmented.

Segmentation is accomplished by a special line in which “LIM’’ appears in the ‘‘OP’’ column and

XXXXXX (a machine address) in the A-address column.

93



INST. NO. COMMENTS op A Noy| Ng B
DP-address DEFM| NAME P

011010 PAZ00 71 011040 0 0 000000
011020 22 000215 0 0 011035
011030 15 011100 0 0 000000
011040 72 011100 0 0 600000
011050 71 003310 0 0 000000
011060 00 000000 0 0 000000
011070 00 000000 0 0 000000
011100 PAZO1 scc
011200 IT .

VAAAAAAAASAAAAAAS L AR el A AN A Al A et oA el

037400 TCT

037500 LIM 011020
011100 PAZ02 DA

011200 DS

011300 IT

011400 END

In the above example the programmer segmented the macro-coding after the TCT instruction. When the
“Operator” reads in the macro-instruction from the library the first block (up to and including the LIM line)
will be brought into memory. The first preset instruction is then performed.

When the ‘“‘Operator’’ encounters the LIM notation, the macro-coding processed up to that point is in-
corporated into the pseudo-code program. Control is then transferred w the address (XXXXXX) entered in the
A-column. The address in the A column must be some instruction in the preset; control is usually trans-
ferred to that part of the preset which reads in the next segment from the library tape. In this example, a One
Character Transfer was made fromlocation 000215(g)to the B-address of the Block Read instruction. Note that
the Assembler Library tape is always located at 000215(8).

Special Notes

1. Each macro instruction segment may contain its own preset instructions, if desired.

2. The XXXXXX in the LIM line must not be preceded by an “M"’.

3. Only the first segment of a macro-instruction is brought in by the Assembler. Additional segments must
be read in by instructions in the preset.

THE REPLACE MACRO-INSTRUCTION DESCRIPTOR VERB

Just as it was shown that the first TEST macro-instruction written was later improved by making it more
general, so it is expected that macro-instructions will constantly be improved. To facilitate the replacement
of obsolete macro-instructions with improved versions, the Assembly System user is provided with the fol-
lowing Descriptor Verb. )

Instr. op A N N B
No. A B

DP-address REPM Macro- S

Name or

P

Note that, in the B-address, an S is entered if the new version is a simple substitution type; a P is en-
tered if the new version contains a programmer-written preset, regardless of what type of macro-instruction is

94



being replaced. Following the REPM verb the new version of the macro-instruction is entered in exactly the
same format as is used with the DEFM verb.

The REPM verb will cause the Assembly System to delete the macro-instruction listed in the library un-
der the name indicated in the A-address of the REPM verb line.
REPM verb line will be inserted in its place.

address.

The REPM verb will also cause the Assembly System to generate two new updated library tapes.

THE DELETE MACRO-INSTRUCTION DESCRIPTOR VERB
The ability to delete macro-instructions from the library is provided by the DELM Descriptor Verb:

The new version, as written following the

Instr.
P A N
No. o AN B B
DP-address DELM Macro-
Name

The next instruction in the program must have an explicit P-

The DELM verb causes the Assembly System to delete the named macro-instruction from the library and

from the index block. Two updated library tapes are generated as a result of the DELM function.

95



96

FIGURE A.

THE MACRO-INSTRUCTION CALL-LINE IN MEMORY

|oa
oo]o1]oz]o3]ou]osJos[or[1o 111213 1u]15 [16[17]20]21]22 [23 [2u[25] 26 27]30 [31[3233 [34 [35[36[37]uc u1]u2[ua un]us Jue Ju7[s0] 515 2] 53 [su]55]56 57 Jeo[e1 [62[63] 6u] 65|66 [67]70]71]72]73] 78 [75] 76 |7
<|of—1—c1 ofe-C3[s] |- cld —F—+{|cs]e|cc]o| c7 57

N

00 [01|02]03]onJos[os]o7[10 111213 | 18]35 16]17]20|21]22]23 [2u]25]26] 27|30 [31 3233 |34 3536 37| w0 u1]uz[u3|un[u5 [ueu7|s0[51]52[s3 [5u[ss 5657 |so] 61 [62[e3] 6u] 65] 66 [67 70] 74 [72] 73] 7w [75]76 |77

- c8 olo|ca|o|s]ofe— C11 —Pje|= Ccj2 — e[ciz|efe— £14 —60

~N
=]
(=]

(=]

00Jo1]o2]o3[ou]osJosJo7] 10 [11]12[13[1u s [16[17]20]21]22 |23 [2u][2s] 26| 27]30 [31]32]33 |34 [35] 36 [3 7|0 w1 [ u2[u3 [un]usus]ur|so] s1]s2] s3] su]ss 56 [s7)eofs 1 | 62|63 6u] 65 Jes [ 7|70 74 | 72] 73] T8 [75] 76 |77

o] Cls — *lcigofe— C17 —° C |8 — clal> =+ 6/

FIGURE B.

FORMAT OF A LINE OF MACRO-INSTRUCTION SYMBOLIC CODE IN MEMORY

ooJotfo2]o3]ouosfos[o7] 10 1112151 su1s]16]17]20]21] 22 [23 |2u]25]26]27]30[31 3233 [3u]35]36[37[uo]u[uz[u3 un]us ue[u7]50] 51]52[53]5u]55]56]57[60 616263 68| 65]66]67[70] 71]72] 73] 7% [16] 76 17}

<°"'ﬁ’-¢¢¢um“"OP] o [t A - W t—iol NA |°l NB oc—-——B_cdt -—-I)I




IX. SUBROUTINES_

Subroutines differ from macroinstructions in two respects. First, subroutines create coding in full As-
sembly format. That is, they do not turn out two-address symbolic coding as do macroinstructions, but cre-
ate coding in the expanded pseudo-code form. Consequently, all Assembly features are available to the
subroutine in so far as subroutine instructions may include Descriptor Verbs, macroinstructions and the
like. Second, a subroutine may be an “‘open’’or *‘closed’’ routine. That is, it may be inserted into the pseudo-
code program each time the function is desired (*‘open’’); or it may be inserted once, with references in the
program to the subroutine being made by transferring to it (*‘closed’’).

CALLING SUBROUTINES

The programmer may extract a subroutine from the Assembly Library tape and enter it in hisl program
through a subroutine ‘‘call-line.” If the subroutine will be performed in the program by entering it from the
coding preceding the subroutine, it is considered an “‘open’” subroutine. If, on the other hand, the subroutine
will be entered via a transfer of control, it is considered a “‘closed’’ subroutine. As explained later in this
chapter, all subroutines are originally written as ‘‘closed’’ subroutines. The determination of whether a
subroutine will be #sed in the open or closed form is made from the format of the subroutine call-line.

Call-lines for open subroutines are written in the following format:

1. An explicit SP-address must be placed in the instruction number column. (The Assembly System
will remove the *‘S” from this address, and will assign the remaining P-number to the first line of
the subroutine coding.)

The last two characters of the SP-address must always be 00. For example:
SPAB00
The P-address, then, of the first line of the subroutine included at this point will be PAB0O.
2. The Comments column must be left BLANK.
3. The subroutine name (4 alphanumeric characters) is entered in the OP column.

4. The remaining columns on the call-line are used to supply the subroutine with various data (called
“‘parameters’’). Any number of lines following the call-line may be used to specify additional para-
meters. These lines must be identified as parameter lines by inserting ““PARA’’ in the OP column
of each line. (Instruction numbers are no# to be used in the Inst. No. columns of these PARA lines.)

Note: The subroutine write-up will specify what information is to appear in the call-line and
PARA lines.

5. The instruction following a subroutine call-line must have an explicit P-address thatis 100 greater
than that of the call-line.
For example:

SPABOO Subroutine call
PAC00 Next instmction

Call-lines for closed subroutines are identical to those for open subroutines, with one exception. The
Comments column of the call-line must contain the words:

INCLUD E+COPY +n

where ¢*

2"’ is a number, ranging from 1 to 9, that identifies the particular subroutine copy that has been
entered in the pseudo-code program. Suppose, for example, that the same subroutine may take several forms

according to the parameters given in the call-line. Each new form must be identified by a different “*n’’ in

97



its call line. INCLUDE +COPY +1 is used for the first version, INCLUDE +COPY +2 for the second, and
SO on.

Example A: Calling in an *‘open’’subroutine from Library

INST. NO. COMMENTS op A B é
SPADOO SUBI
PAE00 LW | KNAME | T77

Example B: Calling in a “‘closed’’ subroutine from Library

INST. NO. | COMMENTS op A B [7
SPADOO INCLUDE +COPY+1 | SUBI
PAE00 LW KNAME | T77

ENTERING SUBROUTINES

Since “‘open’’ subroutines are placed in the coding at the point where they will be executed, no special
provision has to be made to enter them. *Closed’’ subroutines, however, are entered from other points in
the program. To facilitate this procedure, an entrance line to a closed subroutine is written in the following
format:

1. An explicit SP-address must be placed in the Instruction Number column. The next pseudo-code line
must bave an explicit P-address.

2. The term COPY +n must be placed in the Comments column, where *‘n’’ indicates the particular sub-
routine copy that the programmer wishes to enter at this point. Care should be taken that the proper
copy of the subroutine will be in memory when this entrance line is executed in the object program.

3. The four-character subroutine name is entered in the OP column.

4. No other entries may be made on the entrance line.

When this entrance line is encountered during Assembly, the following events occur:
a) ‘S” is removed from the SP-number.
b) *“*COPY-n’’ is deleted from the Comments column.
¢) “TC” is substituted for the subroutine name in the OP column.

d) The P-address of the fitst line of the requested subroutine copy is inserted in the A-column. This

address depends on the subroutine name in the OP .column and the COPY-n notation in the Com-
ments column. It is important, therefore, that these entries be accurate.

Example:
Entrance line:
INST. NO. COMMENTS op A B 6
SPAN24 COPY +1 SUB6 }

As Modified by Assembly System:

INST. NO. COMMENTS opP A B
PAN24 TC PABOO

where PABOO is the location of the first instruction in the subroutine coding.

98



CONSTRUCTION OF SUBROUTINES
General Rules

Certain general rules apply to subroutines that are to be used with the Assembly System. First, sub-
routines are written in Assembly System language. However, an imposed restriction is that subroutine call-
lines may not be included within subroutines. Otherwise, macro-instructions, Descriptor Verbs, variable
addresses, etc., may all be used.

A second rule concerns the fact that subroutines must be written as ‘*closed.”” This means that the
first pseudo-instruction in all subroutines must store the return point (TCT of STP to AM 7); and the last
pseudo-instruction must provide an exit from the subroutine (TC, modified by AM 7).

1st instruction:

op A Na Ng B

TCT STP B7
last instruction:

op A Na Ng B

TC B7

If the subroutine user desires an *‘open’’ routine (i.e., leaves the Comments column of the call-line
blank), the Assembly System automatically deletes the first and last instructions before incorporating the
subroutine-coding into the program. If “INCLUDE +COPY+n’”’ appears, these instructions remain un-
changed.

Composition of Subroutines
All subroutines, as they appear on the library tape, are composed of two parts:
1. Preset

2. Subroutine Symbolic Coding (hereafter referred to as ‘‘subroutine-coding’’).

The Preset

The preset part of the subroutine precedes the subroutine-coding and is the part to which control is
immediately transferred when the routine is read into the computer from the library tape. The preset may
have been generated by the Assembly System when the subroutine was included in the library, or it may have
been written by the programmer when the subroutine was designed.

If prepared by the Assembly System, the preset will consist of two machine instructions which 1) places
the address of the first subroutine-coding instruction into Register T, and 2) transfers control to location
004200 (8) where a portion of the Assembly System called the ‘‘Operator’’ is located.

If programmer-prepared, the preset may be written such that it operates on the subroutine-coding to modi-
fy it in some way. These modifications are usually those details necessary to make a general subroutine-
coding specific to the program into which it is to be incorporated. When the programmer writes the preset,
be must include in bis preset coding the placing of the first subroutine-coding instruction address into Re-
gister T and a transfer of control to the *‘Operator’’ at 004200 gy

The Operator, having been provided with the address of the first instruction of the subroutine-coding,
then processes the subroutine symbolic format into Assembly System pseudo-code format and incorporates
it into the program in place of the call-line.

99



Using the Call-Line and PARA Lines as Data for Subroutine

The subroutine-coding section may use the call-line and PARA lines as data through the use of a special
symbolic addressing system illustrated below. Note that a similar system was used for macro-instructions.

Call _line:

C1 |Not Available| C3 | C4 | C5|C6 |C7|C8 |C9 |C10|{C1]| CI2 |[C13|Cl4| CI5 |Cl6|CI17} C18 [C19

Instr.| Comments |OP | A [INA[NB| B | T |NT [CSG| IF |[GO TO| Ny | IF |GO TO| N2 |IF [ GO TO| N3

1st PARA line:

c20 Cc21 C221C23|C24|C25 |C26{C27|C28| C29(C30| C31 |C32|{C33] C34 |C35|C36 C37 |(C38

Instr.| Comments [OP | A [NA|NB|B | T |NT |CSG| IF |GO TO|N; | IF [GO TO| N, |IF |GO TO | N3

2nd PARA line:

C39 C40 C41|C42|C43| C44 |C45|C46| C471C48| C49] C50 |C51| C521 C53 |C54|C55] C56 | C57

Instr.] Comments |OP | A |NA| NB| B | T |[NT |CSG| IF |GO TO N; | IF |GO TO| N, | IF {GO TO N,

3rd PARA line:

C58 c59 ce0|ce1|ce2| Co3 |cod|cos| cos| co7|cos| c69 |cro|c71| c72 |c73|Cc74 c75 | C76

Instr.] Comments |OP [ A [NAINB| B | T | NT|CSG|IF |GO TO|N; | IF |GO TO| N, |IF |GO TO | N4

4tb PARA line:

C77 C78 C79 {C80 | C81|C82|C83| C84| C85| C86|C87| (€88 |[C89|C90| (91 [C92|C93 C94 | (95

Instr.| Comments |OP | A |NA{NB| B | T |NT |CSG|IF |GO TO| N, | IF (GO TO|N, |IF | GO TO| N,

100

The information inthese columns maybe addressed by the C-notation shown. For example, C8 addresses
the data in the T-column of the call line; C61 addresses the data in the A-column of the third PARA line.
Parenthetical expressions following C-notations will be appended to entries taken from the call-line. Thus,
if CB(L +6) appears in the subroutine-coding, and WPAY appears in the T-column (C8) of the call-line, the
Operator will substitute WPAY (L +6) in the subroutine-coding.

Note that the Comments column of the call-line, and the Inst. No. and OP columns of ALL lines, are not
available for data (parameters). In addition, the subroutine writer cannot use C notation in the Inst. No.,
Comments or OP columns of instructions in the subroutine-coding section.

If more than five lines are required for parameters, additional PARA lines may be used. However, the
Assembler will only process five lines at a time, and it will be necessary for the programmer to call in addi-
tional groups of PARA lines when needed. This is accomplished by the following machine instruction which
must be written in the preset:

op A N B

71 010320 00 000000

Location 010320 is a part of the Operator that will bring in the next group of PARA lines. After this is
done, the Operator returns control to the next preset instruction. When subsequent groups of PARA lines are
brought into memory, they will overlay the previous parameter lines and will be addressable by C1 to C95.



The Define Subroutine Descriptor Verb (DEFS)

A subroutine may be defined anywhere in the program, but it must be remembered that ‘‘defining’’ it
does not incorporate. it into the object program. This is done through the call-line described previously.
The following format is followed when defining a subroutine onto the Assembly Library Tape:

INST. No. op A N,Ng B
DP-address DEFS | Subroutine S000
name or
(4 charactersi P000

Instruction Number:
A DP-address must be specified.
OP:
The Operation code DEFS is entered.
A-address:
The name of this subroutine is entered; the name may be alphanumeric, and. must be four characters.
B-address:

Enter either S000 or P000. S means that the preset is to be generated by the Assembly System. P
means that the programmer is providing the preset. ¢00Q’’ is used if the subroutine will not use **dynamic”’
parameters. Dynamic parameters are discussed in a later section.

On the following lines the coding for the subroutine is written.

Rules Governing Subroutine Symbolic Coding Section

All Assembly features, except a subroutine call-line, may be used in the subroutine-coding section. In
addition:

1. The word END must appear in the OP column immediately following the exit TC instruction: This
END line will not generate an instruction in the object program.

2. The first instruction (i.e., TCT of STP to B7) must have an address of PSR00. All other instruc-
tions in this section must be written relative to PSR00, with the highest usable address, PSR19+99.

For example:

INST. No. | comMENTS| oP A Nal| Ng B T
PSRO00 TCT STP BY

TCA PSRO1(B) PSRO1 +1(B)
PSRO1 scc | ~ c1z | C12

TC B7 M000006

END

As stated previously, one of the functions of the ‘‘Operatot” is to substitute data for the C-notations.
In addition, the Operator will also change all PSR-addresses to the address (minus S) that appears in the
call-line. Thus, if a programmer calls for this subroutine at SPAM00, all PSR-addresses in the above ex-
ample will be changed to PAM-addresses by the Operator.

101



Sample Subroutine Definition

INST. NO. | COMMENTS| OP A Na| Ng B T
DPACI18 DEFS RWND S000
PSR00 TCT STP B7

RWD C7

RWD c8
PSR10 RWD C12

TC B7
END

The Programmer-Written Preset

When the preset is provided by the programmer, the following rules must be observed:

1.

On the DEFS line a “P000’’ must be written in the B-column to indicate that the preset is supplied
by the programmer. (See dynamic parameters for significance of **000’’.)

The Preset block of coding is written preceding the subroutine-coding in strict machine format. (The
Operation code and addresses are NOT to be preceded by **M’’.)

The preset coding and the subroutine-coding are written relative to memory address 000000. The As-
sembly System will automatically place into AM1 the location of where the first instruction in the
preset was placed. Therefore, to specifically address other instructions in the preset, or parts of
the subroutine-coding lines, the relative addresses must be modified by AMI.

The preset coding must place into Register T the address of the SM symbol of the first subroutine-
coding instruction, and must also transfer control to the Operator, located at 004200(g).

The call-line and PARA lines are always read into memory starting at location 013700 (). To de-
termine actual machine addresses for information in these lines, refer to Figure B, page 110.

The first instruction of the subroutine symbolic coding begins immediately following the last preset
instruction. Thereafter, the SM symbol for each succeeding pseudo-line will be (400)g locations
greater. See format of symbolic lines in Figure A, page 109.

After the subroutine has been brought into memory from the Library tape, control is immediately trans-

ferred to the first instruction in the preset. Since the preset is written in strict machine-coding, the sub-

routine writer may use his preset coding to directly address information in the call-line and PARA lines; he

may also address other parts of the preset and subroutine-coding lines by modifying zero-relative addresses
by AM1.

To illustrate these various addressing systems, let us define a hypothetical subroutine, OCTS, that is

designed to allow the user to transfer one character to two destinations, or to transfer one character to five
destinations., The user must include the following data (parameters) in the call-line:

C4 (A-address) = location of character to be transferred.

C5 (NA) = enter a **2”’ or 'S5’ to indicate the number of transfers.
C7 (B-address) = lst destination location

C26(B-address) = 2nd destination location

C45(B-address) = 3rd destination location

C64(B-address) = 4th destination location

C83(B-address) = Sth destination location

102



The following subroutine is then defined:

INST. NO. COMMENTS opP A NA Ng B T

DPAF14 DEFS OCTS P000
000000 PAA20 72 000007 1 0 600025
000010 Check for 2. 43 014044 0 0 014044
000020 No modification 61 000050 1 1 000050
000030 72 002477 1 0 600000
000040 Move TC-END lines 26 003100 1 1 004077
000050 72 000100 1 0 600000
000060 TC to Operator 71 004200 0 0 000000
000070 00 000000 0 0 000000
000100 | PSRO0O Set exit TCT STP B7
000500 to 1st location OoCT C4 Cc7
001100 to 2nd location OCT C4 C26
001500 | PSR10 to 3rd location oCT C4 C4s
002100 to 4th location OCT C4 , Cé64
002500 PSR15 to Sth location OoCT C4 C83
003100 Exit “TC B7
003500 END

The first preset instructions test the character in the N o columa of the call-line for a **2.”’ Ifa <227
appears, the. TC and END lines of the subroutine-coding are moved up to the lines following the second OCT
instruction. If a numeric two is not present, the subroutine-coding remains unchanged.

The *‘Operator” is given the address of the first pseudo-line and control transferred to it. The Opera-
tor then substitutes data in the parameter lines for the C-potations, and changes all PSR-addresses to the

address in the call-line. When END is encountered, the Operator inserts the modified subroutine-coding into
the program.

It should be noted that a dummy preset instruction was added so that the beginning address of each
pseudo-line would end in *°00.”’ Also, a dummy P-address was used in the first preset line to facilitate
possible corrections during definition.

For reference ease, the subroutine writer should list the relative addresses of each preset and pseudo-
instruction to the left of the INST. NO. column. (This information is not to be punched.)

SUBROUTINE SEGMENTATION

If the coding for a subroutine will extend beyond the relative address of 021060, it must be segmented.
Segmentation is accomplished by a special line in which LIM appears in the *OP’’ column and XXXXXX (a
relative machine address) in the A-address column. For example:

INST. NO. COMMENTS opr A Nl Ng B T
DP-address DEFS NAME Pg00
000000 | PAAOQO 71 000030 1 0 000000
000010 22 000215 0 1 000025
000020 15 000100 1 0 000000
000030 72 000100 1 0 600000
000040 71 004200 0 0 000000
000050 , 00 000000 0 0 000000
000060 00 000000 | O 0 000000
000070 00 000000 0 0 000000
000100 | PSR00 TCT STP B7
AAAAAAANAAAAAAAAAAAA A A AA AP A AAAAAN St

103



017500 | PSR14 C12 C12

020100 000010 1

000100 #000030#(C1 PSR10(B)
000500 B7

001100

In the above example the writer had to segment the subroutine-coding after the SCC instruction. When
the *‘Operator’’ reads in the subroutime-coding from the Library the firss block (up to and including the LIM
line) is brought into memory. The first preset instruction is then executed.

When a LIM notation is encountered by the Operator, the symbolic coding up to that point is incorporated
into the program. Control is then transferred to the address (XXXXXX) entered in the A-address. This ad-

dress must be some instruction in the preset; it is usually that part of the preset that reads in the next seg-
ment from the Assembler Library. Note that the Assembly tape is always located at 000215 4g).
Special Notes

1. Each subroutine segment may contain its own preset, if desired.
2. The XXXXXX in the LIM line must not be preceded by an **M’’.

3. A maximum of 35 pseudo-code lines (including the LIM line) can appear in a segment that does not in-
clude preset instructions.

DYNAMIC PARAMETERS

Information may be captured from the call-line and PARA lines when a subroutine is called in from the
Assembly Library. Since these parameters are only available to the subroutine at this time, they are referred

to as “‘static’’ parameters. However, it is often desired to use parameters during the running program; this is
the function of ‘‘dynamic’’ parameters.

“*Dynamic’’ parameters are written immediately following the epfrance line to a ‘‘closed’’ subroutine,
i.e., after the “COPY+n’’ line. For example:

INST. NO. opP A B

SPAT43 COPY +1 SUB1

PAT44 G00 WPAY(L)| WPAY(R)
GO0 WNET(L)| WNET(R)
GO0 M001420 |WAMT(R)

The OP column of these lines contain *'G’’ operation codes and parameters may appear in both the A
and B columns. The first G — line must have an explicit P-address.

When ‘‘dynamic’’ parameters lines are used, the subroutine writer must indicate this when the subroutine
is defined. In the preceding example, then, S003 or P003 would have been entered in the B-address of the
DEFS line. This informs the “*Operator’’ that three parameter lines appear following all entrance lines. The

Operator, therefore, will automatically modify the subroutine exit line (TC) to return control to the fourth
line after the entrance line.

If the subroutine uses dynamic parameters, the user must always include these lines following all
“*COPY-n’’ lines. The data in the parameter lines may, of course, vary accordiog to program requirements.
The user must also remember that dynamic parameter lines will appear in his object program.

Dynamic parameters are incorporated into the subroutine through coding appearing within the subroutine.

104



This information is always addressed relative to AM7, which contains the location of the first G—— line. For
example, if a subroutine instruction requires the address appearing in the B-column of the second G-~ line,
the following instruction may appear in the subroutine:

opP A NA NB B

TCT M000013 B7 PSRO3(A)

Since dynamic parameters are brought into the subroutine coding at program running time, the subroutine
writer must appreciate the fact that HSM addresses are being transferred, not symbolic names.

General Comments regarding Dynamic Parameters lines:
1. Dynamic parameters may only be used with ““closed’’ subroutines.

2. Dynamic Parameter lines must have **G’’ operation codes, and these lines will appear as machine in-
structions in the object program,

3, Parameters must be addressed relative to AM7.

4. The DEFS line must specify (after S or P), the number of dynamic parameter lines.

SPECIAL OPTION FOR ADDRESSING SUBROUTINE-CODING IN PRESET

Addresses of instructions (and parts thereof) appearing in the subroutine-coding may be calculated by
using the relative address for each line and the format in Figure A. Or, the following Cn notation may be
used:

Cn, where '"n’’ is the number of the desired column in the pseudo-line. This, in turn, may be followed by
the number of the desired character within that column, enclosed within parenthesis.

For example, assume that the following instruction appears in the symbolic coding section:

C1 Cc2 C3 C4 Cs Ccé Cc7
INST. NO. COMMENTS op A NA N 8 B
007530 TC |PSR15+3

The preset may refer to the '3’ in PSR15+3 as: 007530C4(7).

Cn notations not followed by parenthetical notations will address the ISS associated with that column.
In addition, the beginning and ending of pseudo-lines may be addressed by using an SM or EM notation. In
the above example, 007530SM would address the SM location of the TC instruction; 007530EM would address
the EM symbol.

The preset shown on page 103, therefore, might also be written as follows:

relative opP A Na Ng B
address

000030 72 002100EM 1 0 600000
000040 26 003100SM 1 1 003500EM

Note: When the subroutine is defined, the special symbols described above will be automatically removed
from the preset coding and the proper addresses substituted.

105



SPECIAL HANDLING OF LITERALS WITHIN SUBROUTINES

The Operator will add a “*U4”’ to all octal and decimal literals that appear in the first subroutine that is
called into the program. ‘A **US’’ will be added to all literals appearing in the second subroutine included, etc.

Example:
C1 C3 C4 Cc7
Call-line ’ SPAB0O0 SUBR 123" -
Subroutine instruction PSR00 DA C4 456"
Adjusted line PABOO DA 123" 456°U4

Notes: a) Literals appearing in the call-line are not modified.

b) If literals within the subroutine coding already carry U notation, the Assembler will substitute a
new U number to minimize the possibility of duplications.

THE REPLACE SUBROUTINE DESCRIPTOR VERB

The Assembly System provides the ability to specify subroutine replacement with the REPS Descriptor
Verb.

Format:
INST. NO. or A B
DP-address REPS Subroutine name | S000
or
P000

Following the REPS line, the new version of the subroutine is entered in exactly the same format as is
used with the DEFS verb. Note that, in the B-address, S000 is entered if the new version is a simple substi-
tution type; P00O is entered if the new version contains a programmer-written preset, regardless of what type
of subroutine is being replaced.

The REPS verb will cause the Assembly System to delete the subroutine listed in the library under the
name specified in the A-address. The new version as written following the REPS line will be inserted in its
place. Thisverb will also cause the Assembly System to generate two new updated library tapes.

THE DELETE SUBROUTINE DESCRIPTOR VERB

The ability to delete subroutines from the library is provided by the DELS Descriptor Verb:

INST,. NO. OoP A NANB B

DP-address DELS| Subroutine name

The DELS verb causes the Assembly System to delete the named subroutine from the library. Two up-
dated library tapes are generated as a result of the DELS function.

106



@D 501 AUTOMATIC ASSEMBLY PROGRAM SHEET e ’ FrostAmER e s

'Nﬁmég'w COMM:NTS of A ADD;ES§ 'Ni N: B ADD7REISS T Annizss Nj. c‘:e l‘l" G(;ZTO '1'? ;; Golio rii :Z G;aTO
< DPAALD. DEFS | SUBL 5000 =
ooooﬁofmm TC => SET T REG 71__| 000040 1 | ol 000000 >
0000169 TC-» CALL FOR MORE PARA'S 71 | 010320 o] o 000000 I - >
000020< TRANSFER TK# - READ 22 000215 0 1 000035 kPR,ESET >
000030 READ IN NEXT SEG 15 | 000060 . 1 | o | [Gd]oooo >
000040< SET T REG 72 | 000100 1 0 600000 >
000050 TG — OPERATOR . 71 004200 |10 0 000000 >
000060< 00 000000 (0] Q 000000 >
000070< 00 000000 0 0 000000 >
000100 PSR00 Ter | STP B7 \ >
000500< . [ L XX XX . XX >
w < - XX x SEG I >
S XX XX XX e S . L N I ?
020600< LIM 000020 1 ) S >_
000100< PSRO5 XX XX XX \ >
000500< XX XX XX >~
w S XX XX XX s T =
" < XX XX XX \ >
020600< ) LIM 000010 1 / >
000100<Y PSR10 xx XX XX \ =
000500< XX XX XX LSEG 111 =
" < XX XX XX - - >
017100< | B7 B [ i >
017500 o | - ‘ | =
< Example of Segmented Jubroutine which uses mpre than >
| 5 "Static" paramefer lines| =
< Note that segments onel and| two will use the g¢all line >
< and the first four PARA lipes for static parfmeter ~ >
B 200. information. Segment ithrep will use the rest of the =
- 1/59 b —
2 < . Parameter lines, >




801

TITLE PROGRAMMER DATE PAGE
€9 501 AUTOMATIC ASSEMBLY PROGRAM SHEET
1 2 3 4 5 3 7 8 9 10 11 12 13 14 15 16 17 18 19
NS on COMMENTS oF A ADDRESS Ny s B ADDRESS T ADDRESS N |CS6| IF o to | Ny IF Go TO 2 IF co 7o | N3
<] >
~ DPMR10 DEFS | SUBR P002
< >
000000 _ ] PAALO TC ~» SET T REG 71 000030 1 |o 000000
0000103 |SET TK# —» READ 22 000215 0o |1 000025 I >_
000020 <Y READ IN NEXT SEG 15 000050 1 | o | [oo]oooo PRESET >
-
000030 < SET T REG 72 000050 1 lo 600000 >
~
000040 << ITC —» OPERATOR 71 004200 0o | o 000000 B >_
000050 <<| PSROO STORE STP TCT STP B7 \ : =
< , | >
000450 ] PSROL DYNAMIC PARA TO LHE CLR INST TCT | M000003 7 PSRO3(A)
001050 f_zsmi_nmmc 3 PARA TO RHE CLR INST TCT | M000007 7 PSRO3(B) { 1 >
001450 <<| PSRO3 CLEAR AREA sct [ j E =
N . _ >
. < - - >“
i
021050 LIM 000010 1 L } , >_
< ) >
000050 DYNAMIC PARA TO DECIMAL ADD TCT __|M000013 . 7. PSR10(A) [ B g
v < pspi0 DA C J w1547 \SEG 1T >
. xx =
|
021050 LIM 000010 1 2
000050 < XX ] =
" < XX II1 ,,>_._
” < xx >
‘/
017450 TC B7 \ . =
021050 < END / - =
< >
< >
< EXAMPLE OF SEGMENTED ;mfmmumgﬂ =
< USES "DYNAMIC" PARAMETERS =
< >
< >
1E 240 | >
1/%8 .
< >




-t

60

50! COMPUTER
Figure A

HSM RECORD

FORMAT OF SYMBOLIC SUBROUTINE LINE AS RANDOM DISTRIBUTED

o0 fo1foz]o3

oufosJosJo7

10f11]12]13

14]15[16]17

20[21]22]23]2u] 25]26] 27

30[31]32]33|3u]35][36]37

wofuifuzlus

ualusfas[urls0]51]s2]53

s5u]55]56 [57

60]e1]e2]63

6u]es5[66]67

70[71]72] 73

74 [75]76]77

P~ADDRE

5S

COMMEN']

S

00 [01102{03

0410510607

10 {11 [12]13

iu115f16[17

20zgpzha2uh5h€ﬁ72051bfb33ﬂ3ﬂ3qﬁ7

uolu1fu2]u3

44|45 Ju6 [47]50{51]52]53

54[55]56 |57

60[61]62[63

64}65]66 67

70[7172]73

74 [75[76 [77

@

oP

4 A-Al

DDRESS

o NA ®| NB

B-A

00 [01]02[03

0x [05 06 [07

10 [11]12]13

111571617

20 2{122123 24125(26]27

30]31[32]33[34]35[36]37

40 ju1fa2]u3

1y [u5 46 u7f50{51]52{53

5415556 [57

60161162163

DRESS

6416516667

70171172173

T4175{76 |77

T-A]

DDRESS

NT

CSG Ij

b

GO TO

N1

00 [01]02]03

0u-{05[06 07

i0i{11[12]13

14115(16 (17

20[21122 123 2u]25]26]27

0[31(3213334135[36(37

40fy1lu2143

U4|45]96]47]50]51]52]53

54155156157

60161162163

68165166167

70[71[72{73

74 |75

IF

GO

T0

o |N2 L

IF

GO

0

N3 >

00]01]02]03

040570607

1011]17 13

18]15]16 |17

20121]22 23 |24]25]26]27

30151132133 391353637

4o[u1{u2[u3

uu]us fue [u7l50]51[52]53

54]55]56 |57

60[61]62]63

64165]66[67

70]71[72]73

74 {75176 |77

00Jo1oz]o3

oxJosJos]o7

16]11]12]13

wlis[i6]17

20[21]22 23 [2u]2s]26] 27

30[31[32[33 |34 35[36]37

uo[u1]uz]as

uusu6[u7]50[51]52]53

54[55[56 [57

60[61]62]63

6u]65]66]67

70[71]72]73

nu]rs]re [17

00Jo1]o2]o3

04 Jos[oe]o7

10 J11]12]13

w]1s]16]17

20]21]22]23 2u]25]26|;7

30[31[32[33 [34[35]36[37

yo[u1fuz]u3

uu[us[u6[u7]s0]51]52]53

s54]55]56 |57

60]61]62]63

6u[65]66]67

70]71]72]73

7 [75]76 17

00]o1fo2]o3

ouJosJosfo7

10]11]12]13

1]15]16]17

20]21]22]23 [2u]25]26]27

30[31[32]|33 34353637

wo[u1fuzfuz

uufus[ue[u7]s0]51]52]53

54[55]56 57

60[61]62]63

70]71]72]73

757617

6u]65]66 |67

00Jo1]o2]o3

ouJos]oe]o7

10f1112]13

1]15]16]17

20]21]22]23 [zn]25]26]27

s0[u1]u2]u3

uaus a6 ]u7[50[51]52]53

5”[55156157

6061 ]62]63

6ul65]66[67

70[71[72]73

7u175[76177

30[31[32[33 ]34 [35[36]37

00Jo1foz]o3

oy JosJos]o7

t0]11]12]13

wf1s]16]17

20]21]22]23 [2u]25]26] 27

30[21(32]33|34]35][36]37

yofuiu2[u3

unfusfueu7{s50]51[52]53

54]55]56[57

60[61[6é|63

64| 656667

70]71]72]73

74]75]76 |77

00101]02[03

ouJosfos]o7

10]11]12]13

1u]15]16]17

20]21]22]23 [2u]25]26] 27

30]31[32]33|34[35]36[37

4oJuifu2]u3

uu[us]ue[u7 5o]51[52]53

5u[55]56]57

eopipzpa

6u[65[66]67

7o]71|7z[7a

7u]75176177

00fo1]oz]os

oufosJosJo7

10[11[&2[13

w]15]16]17

20]21]22]23 [2u]25]26]27

303132]33 [34]35]36[37

uofuifu2fu3

uuJus]uefurfso[51]52]53

54]55]56]57

60]61]62]63

6u[65]66]67

76[7i[72]73

7475]76 77

o0o0Jo1o2]03

oufos]os[07

10]11]12]13

14]15{16]17

20]21]22]23 {2u]25]26]27

30(31[32[33[34]35]36]37

40fu1fuzfa3

[ us g 47 [50[51]52]53

54]55[56]57

60161]62[63

6u[ 656667

10]71]72]73

T [rs]76]77

00Jo1]o2]o3

oyJosJos[o7

10]11]12]13

1151617

20]21]22]23 [2u]25]26] 27

30]31]32]33 [34{35]36]37

yoluifuzfu3

uuJus 46 [u7}s0]51[52[53

54]55]56]57

60[61]62]63

6a]65]66]67

70][71]72]73

7u]75]76]77

00 [o1]oz2]03

osJosfos]o7

10]11]12]13

14]15]16]17

20[21]22]23 [au]2s|26]27

30[31]32[33]34]35[36]37

wofu1]uzfu3

yujusfueJu7]s0[51]52[53

54]55]56]57

60]61[62]63

su[es]es 67

70f71]72]73

n]1s]76]77

[00]o1]02]03

os]os]os]o7

10]11]12]13

w]1s]16]17

20]21]22]23 [24]25]26] 27

30[31]32[33 [34]35]36]37

uo[u1fuz]us

wuJusfusur]so]51]52]53

suls5]56]57

s0[61]62]63

6u[es[e6]67

70[71]72]73

nfrs]76 17

TITLE:

BLOCK NO.:

IE 243

INDEX NO:

PROGRAMMER:

DATE:

PAGE

1 oF




(1181

501 COMPUTER HSM RECORD
Figure B
o1 FORMAT OF SUBROUTINE CALL-LINE AND PARA LINES IN MEMORY
00 o1]o2JosfouJos[os[or]s0 1112 13]1u]1s]16]17]20]21]22]23]2u]25] 26] 27]30]31]32]33]3u 35 [36] 3 7] w0 u1]u2us]un]usJus[u7]s0]51] s2] 53 5u]55]56 [s7JeoJ6 1]62]63 6] 65 [66 J6 1[0 71 [72[ 73] 74 [75] 76 [77
37 |e Cl . Cc2
o0 Jo1jozfo3]oulosfoso7f1o {1112 [13]1u]1s 16 17]20]21 (2223 {24 [25]26]27]30[31[32(33 [3u [35[36 [37]uo[u1[u2]u3 [uufus [uc]u7f50[51[52]53 [54[55]56 {57 |60}6162[63]6uf65 66 [67]70]71 [72[73] 74 [75]76 |77
40 . C3 . C4 . o C5 je] C6 |» c7 o
0 Jo1fo2fo3fox o5 fos o7 10 [1t f12[13T1a 15 16 [17[20]21]22]23 |24]25]26]27|30]31[32]33 |34 |35 |36 |3 7]40 |41 42|43 [Buu5[u6 |47 [50]51]52[53 [5R]55]56 (576061 ]62]03 |68 65166167 |0 71172173 | 81517677
41 cs8 eI C9 |* ClO}e Cll o ClL2 cl3z |®
00701702]03foufos]06 07 1011 [12[13 1u 1516 [17]20[21[22(23 [au[25]26[27[30]31[32[33 34 [35[36 [37]uo u1]u2{u3 [unfus ue [u7]50[51152]53 [5u[55/56]57J60[61[62[63]6ui65]66 6770171 [72[ 73|74 [75]76 |77
42 Cls . C15 o| C1l6 |o Cl7 L Cls Cll9 (e
‘ 00 o1]o2fo3[oufos os o710 111213 1415 16 [17}20[21]22]23 [24]25[26]27 30 31 [32[33 [3u [35[36 [37]uo u1[u2]u3 [uu[us]ue Tu7f50]51[52]53 [54[55[56 [57f60]61 [62[63 [6uf65[e6]67 [70]71[72]73 78 [75]76 177
43 Cc20 . c21
00o1fo2{o3]oufosfos]o7f10]11 1213 1u]15]16]17f20]21]22]23 [2u]25]26]27]30]31[32{33 [34[35{36 37|u0[u1]u2ju3 uu]us u6 u7]50]51152[53 54{55]5657 J6o[61 [62]63[6u]65]66 |67 170 (71 72]73[7u [75]76 [77
44 s} C22 4 C23 e C24 |#] C25 (o ) C26 l'
00 fo1]o2{03]oufos o6 fo7]10 (11112 [13{1u[15]16{17]20 [21]22 [23 [2u [25]26 27]30 [31[32]33 |34 [35[36 [37]uous[u2[us uu]us ue u7]s0]51]52{53 [su{55156 [57 |60 61 [62[63[6u]65]66 [67 70 71 [72]73 [74 [75]76 |77
45 c27 o| C28 le] C2D |eo C30 o (61.3] 8| Q32 |e C33
(00 JO1T0203]08]05]06]07]10 11111213 14]115]16]17]20121122 123 |24125[26]27]30 |31[32]33 |34 3536 37fu0{utuz[u3 unus[ueu7]50]{51{52]53 [5u{55156 57 ]60]6162]63 6ul65]66167]70]71[72][73] 78 [75]76 [77
46 . C34 e[C35 e C3e6 L4 C37 P C38 |#| C39
‘ 00 01{02]03[04 05060710 11112 13 1415 16[17]2021]22[23 [28[25]26]27§30{31[32(33 |34 [35{36[37 40 u1luzu3z |4y uslueiu7'3o|51[52153 54155156 [57[so]61 J62]63 [6u]65]66 [67 70|71 [72]73 71 [75[76 [77
47 Py C40

7378 75176 |17

00 Joifo2fo3]oulos [o6]o7]10 [11]t2[1s[1u]15]16]17[20]21]22 23 [24 25126 [27]30]31[32[33 {34 [35[36 |37 uoui[ua[43[un[u5 U6 [u7[50]51]52]53[54155[56]57]e0[61 (6263 6ul65]66[67 70171 [72]7
50 C4l |e C42 ®l C43 |0 C4ye C45 b

A\

OO 0T 02 03] 00 0506 |O7] 10 (1111213 | TR I5 10 17|20 |21 22 23 |20 251 28] 27]30 31132153 |34 3536 | 3780 41|42 |u3 [UR |45 06 47 [50] ST1]52] 55 (54| 56]56]57 60161 [62]63 | 641 65186167 |70]711]72]73 |74 75176177
51 v C46 8] C47 |®| C48 |eo C49 4 Cpo C51 |e C52

00101102]03]04]05106]07]10 [11]17 13 [18]15]16117]20]121]22 23 [24[25]26]27[30[31{32[33 [3u[35[36 [37]uofuifu[uz uulus]uefu7}s0[51152]53 [54]55[56 |57 J60]61 [62[63]|6u[65[66 67 170]71]72]73 |74 [75]76 |77
52 ® C53 ®| C54 |e C55 L) Cpé6 _ ® | CH7 |» C58

00fo1joz[o3TouTosTose]07f10 [11]12 13141516 [17]20]21]22 23 [2u]25{26[27]30[31][32]33 34 [35[36[37[u0[u1uz a3 uulusucu7]s0]51]52]53[5u]55]56]57]60]61[6263[64]65166[67]70[71]72[73]74]75]76]77
53 ' C59

oofo1foz]o3]ous]os o6 o7f1o[11{12]13]1u]15 16 a7]20] 21122 [23 [2uT25]26]27]30 31132 33 (34353637 0] 1[4 2] 43 [U[ U546 [H 7 50[51[52] 53 [SA[55]156]57[60]61 (8216368 651681671701 71172 [73[78]75]78]77
54 e}l C60 ® cel o1 C64 |#|C63 |» Céa L] 065

00 fo1[o2{o3{ouos[06]o7]10]11[12]13] 1815 [16[17020]21]22]23 [an]2s]26]27[30]31]32]33 [3u[35]36[37[u0jujualuz[un]us usu7]s0[51]52]53[5u{55]56 57 60 616263 [6u]65]66]67]70]71172]73{ 74 |75[76{77
55 e|C6qd |e|Ce67 |0 ce8 ] C69 el q70 | c71 .

‘ 00]01]02]03]04]05]06]07]1011112]13 18|15 [16]17]20}21]22 |23 [ou[25]26]27]30]31]32]33 3435 36 [37]uo[utfuz]a3 [un[us]uelu7|s0[51[52[53]5u]55[56|57)60] 61}62f63[sujesle6i67]70[ 71 [72[73] 78 75]76 |77

56 Cc72 8|C73 |e CTl4 [ C75 8| c76 |o C77
TITLE: BLOCK NO.: IXDEX NO: PROGRAMMER: DATE: PAGE 1 OF

1E 243



01

501 COMPUTER

Figure B (Cont'd.)

HSM RECORD

FORMAT OF SUBROUTINE CALL-LINE AND PARA LINES IN MEMORY

57

00Jo1]o2]o3

ouJos]oe Jo7

10[11]12[13

wl1s]16]17

20[21]22]23

2u]25]26] 27

30]31[32]33

34]35]36]37

yoluilualus

wi]us[us[u7]50[51[52]53

s54]55]s6 [57

sole1]62]63

64]65]66]67

70[71]72]73

74 {75[76 |77

C78

60

00 [o1]o2]o3

04 [05 06 {0

~

10 [11]12 {13

111511617

20212223

2uf25)26 27

30[31]32[33

343536 |37

40 u1fu2]u3

uylus [ue [u7]5051]52[53

54]55]56 [57

60]61]62]63

64[65(66 |67

70[7172]73

74175(76 [77

C79 (@

c80

cgl |e

C82 je

C83

C84

61

00 [01[02]03

0% 10510610

~

10[11]12 13

1”115116 17

20121122123

Z4125126(27

I EEER

34(35(36]37

4ofuifuzfu3z

4414546 [47]50[51]52]53

54755156 |57

A

64165166 167

707117273

74175176 [77

[

Ccs5s |e

cge|e

c87

c8s

& 89

*

C90

62

0101102103

04 [05106[07

101111112113

14115716417

20121]22123

24125{26]27

30131132133

-

24135136 |3

AL

yuiis u6 [u7 150151152153

54155[56]57

60161 /62163

64[65/66[67

7071 {72173

74 |75(76 177

c

D1

#|C92

C93

CY%

C95

00 jo1f02]03

ou{05]06]07

10 [11]12]13

1411516 {17

20[21]22]23

2u 252627

30 {3132[33

~

34 [35[36 3

4Ojuifu2fu3

4ufusue [47150(51]52]53

SNBSS T56 57 [60]T 626

W

64[65 66|67

70]71[72]73

i [7s]76 |77

o0fo1]oz]o3

oufosfos[o7

10]11]12]13

w]15]16[17

20]21]22]23

2425 [26]27

30[31[32]33

34]35]36]37

sofuifuz[az

wu[us [ws 7 [s0]61]52[53

su[55[56[57

60]61J62]63

6u]65]66[67

70[71[72]73

7 [75]76 [77

00Jo1]o2]o3

ouJosJos o7

10 J1112]13

1 ]15]16]17

20 [21]22]23

2u]2s]26]27

30]31[32]33

34353637

uo[utfuzfu3

unus[ueurlso]s1]52]53

54]55]56 [57

60]61]62]63

6ul65]66 [67

10f71]72]73

7 [75]76 [17

JooJo1]oz]o3

oufos Jos[o7

1011]12]13

wfis]16]17

20]21]22]23

2u]25]26]27

30[31[32{33

34[35[36[37

yofutfuzfus

yuTus [ue 47 ]50]51]52]53

5u]55]56]57

60]61 [62]63

cul65]66 67

70]71]72]73

7 ]rs[76]77

ooJo1]o2]o3

oufosJosfo7

10111213

14]15 [16]17

202122023

zn[25|26[27

30[31]32]33

34[35]36]37

uo[uiluz[us

uu]u51u6|u7 solsilsz[ﬁé

5u|55|56[57

6Q61p2p3

cu|65|66|67

70]71]72]73

74 [75]76 [77

00]o1]o02]03

oufos]osjo7

10]11]12]1s

w15]16[17

20]21]22]23

2u]2s]26]27

3031[32]33

34[35[36[37

yo[a1]w2[43

usJusfueTu7[50[51[52]53

54]55]56]57

6of61]62[63

6u]65]66 67

10]71]72]73

5] 17

ooJo1[oz[oa

ouJosos]o7

10]11]12]13

1]15]16]17

20]21]22]23

2y [25]26[27

30[31]32[33

34[35[36[37

yo[u1az]u3

uiTas[u6u7 [50]51[52]53

5u[55]56]57

60]61[62|63

6ul65]66]67

70]71]72]73

7 [75]76 |77

00Jo1Joz]os

ouJos Jos Jo7

10[11]12]13

w|15]16]17

20]21]2223

24]25[26]27

30]31]32]33

34[35[36[37

4ofu1fu2]u3

uufusueJu7ls50]51]52]53

5u]55]56]57

60[61]62]63

6uJ6s]66 67

7o[71]72]73

n]rs[16[77

00fo1]o2]o3

oufos o607

10]11]12]13

wf15[16]17

20][21]22]23

2u]25{26]27

34[35[36[37

sofu1fuz[u3

yufus[ueJu7[5051]52]53

54]55]56]57

60[61]62{63

su[65]66]67

70[71]72]73

m[7s]76]77

30131[§2]35

00Jo1]o2]o3

oulosos]o7

10]11]12]13

14151617

20[21]22]23

21 ]25]26]27

30[31]32]33

34]35[36]37

uofu1fuz]u3

uuTus[ue [u7150]51]52]53

54]55[56]57

60[61]62]63

6a[65]66]67

70]71]72]73

74]75]76[77

00Jo1foz]o3

oufos]o6]o7

10]11]12]13

14f15[16]17

20[21]22]23

24]2s]26]27

30[31[32[33

34[35[36][37

wofu1fuzfu3

uyus]ue[u7]50[51]52[53

54]55]56]57

60J61]62]63

suJe5]66]67

70[71]72]73

wlrs]1e]17

00 Jo1]oz2]o3

oufos]os]o7

10]11]12]13

w]15]16]17

20[21]22]23

4] 25]26] 27

30[31]32]33

34[35[36[37

yoJuifua]uz

su]us[uefu7fs0]51]52]53

54]55]56]57

s0]61Je2f63

su]e5]66]67

70{71[72]73

n{rs[76]77

TITLE:

1E 243

BLOCK NO.:

INDEX NO:

PROGRAMMER:

DATE:

PAGE

OF




X. ASSEMBLY SYSTEM OUTPUTS

Outputs of the Assembly System are of two types—magnetic tape and visual (printed). Visual outputs may
be further classified into two categories—normally expected documents and error indicators. The purpose of
this chapter is to provide a description of these outputs in sufficient detail to indicate the facilities available
for program testing and library handling.

MAGNETIC TAPE OUTPUTS

Object Program

First and foremost, the Assembly System produces a copy of the object program on magnetic tape. This
represents the machine coding which results from the translation of the program written in Assembly language.

The object program will be placed on magnetic tape in library format. That is, all conventions required
by service routines for program handling are observed. Object programs may therefore, be treated exactly as
if they were manually prepared. They may be tested, run, included in the Program Library, etc.

Subroutine and Macro-instruction Library

Six Descriptor Verbs were described in previous chapters which affect the content of the Subroutine and
Macro-instruction Library. They are: DEFM, REPM, DELM, DEFS, REPS and DELS. If any one or more of
these are used in an Assembly language program the Subroutine and Macro-instruction Library is changed
accordingly. The Assembly System prepares two copies of the new tape containing the latest changes.

PRINTED OUTPUTS
Standard Documents

The documents described below are produced as the normal output of the Assembly System. In general,
the purpose of these documents is to provide a permanent hard copy for use in future operations and in pro-
gram debugging.

1. Machine Assignments vs. Assembly Language

This document is the basic record of the machine code which results from translation of Assembly
language. Its purpose is to indicate the high speed memory allocations which have been made and the
relationship of these allocations to statements in Assembly language. Hereafter, this document will be
referred to by the abbreviation MACHAS.

MACHAS will be divided into several sections. One of these is a listing of the machine-code version
of the program in ascending memory address order. This listing also contains a reference to the symbolic
P-addresses which generated these instructions.

Fixed constants will be listed separately as part of the basic document. This listing will appear in
two parts-literals and symbolics. Each fixed literal will be shown with the memory addresses represent-
ing the left and right boundaries. Each symbolic (K designation) constant is listed with the symbolic
name followed by the memory addresses representing the boundaries of the constant. The definitions of
these symbolic names (i.e., the actual constants) are shown with Descriptor Verbs in the listing of DEFK
instructions.

Segment or non-fixed constants are shown in exactly the same fashion as fixed constants, except
that a separate list is prepared for each segment.

All input memory areas are designated. This consists of the symbolic file names, boundary addresses

112



of the area in memory occupied by the files and the symboiic names and machine addresses for each FAA
item in the files. Alternate file areas are not included in this listing.

The Multiple Sector Write and Random Distribute instructions require lists of addresses to be stored
in the memory. The name and address of each such list will be printed in addition to the symbolic name
and list entry for every item affected by the MSW or RD instruction.

A final listing on this document is the allocation of working areas. This consists of the symbolic
name (W) and the memory address of each such area.

2, Sorted Assembly Coding

This document is a listing of the Assembly Language program after certain processes are effected.
The Assembly coding will be sorted according to instruction number and the coding implied by the use
of subroutines will have been inserted in the program.

3. Descriptor Verbs

A complete listing is given of all Descriptor Verbs used in the program. These verbs are listed in
the order of appearance in the sorted Assembly language program.

4. Breakpoint Bit Assignments

A listing is given of all uses in the program of the breakpoint bits. This listing gives the location
of the Assembly instructions giving rise to unconditional Transfer of Control (TC) instructions which use
breakpoint bits and the location of first machine instruction generated thereby. In addition, the particular
bits used in each instruction are given. The instructions are listed in the order in which they appear in
the Assembly language program.

5. Input-Output Statements

A list is given of all input-output statements in which an I or O Symbolic tape trunk is used.
6. Program Stops

A list is given of all normal stops (ST) that appear in the program.
7. Criss-Cross Listing

A criss-cross listing isalso supplied which lists each symbolic address in alphabetical order against
each instruction which refers to it. Moreover, in that part of the listing in which P-addresses appear, the
entire two-address symbolic instruction is also printed out, in addition to the instructions making reference
to it. This is a valuable part of the listing, as this two-address symbolic listing directly corresponds with
the machine code.

8. Object Program Examiner

The Object Program Examiner scans the generated machine-code instructions for questionable condi-
tions, appending a unique symbol to each instruction in which a potential (suspected) etror condition is
found. Appendix D of this manual lists the instructions tested, showing the symbol appended in the print-
out denoting the possibility of a particular error condition.

Error Indicators

The Assembly System provides exceptional facilities for detecting and correcting errors in Assembly

language coding. These errors fall into two categories—those which can be temporarily bypassed and those
which require immediate action.

Bypassable Error Indicators

As mentioned above, one type of error, which is detected by the Assembly System, causes a printout
called an ‘‘error indicator’’. However, the Assembly System continues to function, ignoring the ‘‘guilty”
Assembly language statement until all of the program has been examined and has undergone initial processing.

113.



This procedure introduces a high degree of efficiency in program testing. Since nearly all error indicators
fall into this class, it is often possible to find all coding errors in one sweep through the program. Thus, all
corrections can be made at one time, avoiding constant re-starting and, consequently, loss of machine time.

Error indicators provide sufficient information to permit immediate diagnosis of the error and the location
of the *‘guilty’’ Assembly language statement. '

Example:
UNDEFINED WAMT IN PAB20

This indicates that instruction PAB20 refers to work area, WAMT, which has not been defined in the pro-
gram.

Many kinds of errors are detected. For example, references to undefined files and data names, improper
mnemonic operation codes, etc., are typical.

Error Indicators Requiring Immediate Action

Certain errors encountered during assembly will cause the Assembly System to produce an Incomplete
Assembly. In these cases, a copy of the data sheets and sorted pseudo-code will be provided so that the
programmer may make the necessary corrections, and return for a reassembly. This type of error is gener-
ally caused by exceeding various Assembler limits, such as defining more than 20 files, exceeding the num-
ber of constants which can appear in the program, defining more than 20 L-lists, and so on.

When a reassembly is required, the errors must be analyzed and the necessary changes to coding deter
mined. Next, these changes must be placed on paper tape using one or more of the following Corrective
Verbs: INSERT (ISRT), DELETE (DLTE), REPLACE (REPL).

The manner and rules governing correction procedures are the subject of a separate RCA publication
titled ““CORRECTION TECHNIQUES.”

114



APPENDIX A

Format:

EREERRERN

Limits:

Hodao

PROGRAMMER CHECK LIST PRIOR TO ASSEMBLY

I DATA SHEETS

FILE NAME on all pages.

Number of pages in all headers (1 of 1, S of 8, etc.)
Files and pages in correct sequence for punching.
Message Format Box has Y or N.

MAX, AVG. and % USE columns filled in.

EM terminates all pages.

EM EF terminates each file (except last).

EM ED terminates last file.

All FAA items have X in FAA column.

20 Files.

240 FAA items per file.

Maximum item size is 999.

26 sub-items per item.

30 Read-in areas (F, XF, YF, etc.)

II PSEUDO-CODE

Instruction Numbers:

]

[l EXPLICIT P-addresses must appear with these instructions:

DP-addresses must appear for these OP codes:

DEFK DEFS ASGN STRT .
DEFV DELS OVLY STSH
DEFM REPM LEVE TAPE
DELM REPS SGMT

All DUP verbs.
Line immediately following DUP verb.
All Macro instruction call lines.

Line immediately following subroutine entrance line.

Mmoo opn o R

Program Limits:

[ ] 75 Fixed literals.
*[ ] 75 Non-fixed literals.
(Note: literals may not exceed 19 punchable characters, including control symbols.)
[ ] 40 Fized K’s.
(Note: 320-character limit per fixed K, including control symbols. Total number of characters

limit is 1,000—-(6 times number of Fixed K’s).

* See segmenting

Line immediately following subroutine call line (100 greater).

Next pseudo-instruction following the ““END’’ line of a DEFS, REPS, DEFM and REPM.

115



*

*

HoOoood o

40 Non-fixed K's.
(Note: 320-character limit per non-fixed K, including control symbols. Total limit is 2520,
63 1/0 Symbolic Names defined.
1 STRT verb.
1 Program Exit Line (ST) —— G76 and M76 used for other stops.
10 DUP instructions.
20 L-lists.
49 STSH verbs.
RES verb (510 limit for instructions to be reserved).

IF YOU HAVE SEGMENTED YOUR PROGRAM.

[]

] Hoood RN

[]

[ OO0

All non-fixed constants maust be defined in the segment of use.

The following limits apply:

a. 75 non-fixed literals in each segment — see program limits for character limitations.
b. 40 non-fixed K’s in each segment — see program limits for character limitations.

49 STSH verbs in each segment.

Segments end in a TC, ST or some other break in instruction sequence.

Only one program exit line (ST) per segment. Limit of 30 per program.

Segments should be called in by programmer using RINS macro.

Il GENERAL CHECK LIST

A STRT verb has been included.

Pseudo-code pages appear in proper sequence for punching.

All machine addresses preceded by ‘'M’’ (unless **M’’ appears in OP column).

All work areas defined as to length — limit of 9999.

Symbolic names:

a. All symbolic names defined in data sheets or in program.

b. In read-in areas only FAA items referred to symbolically.

c. No control symbols (comma, parentheses,’i ISS, SM, etc.) used as part of a symbolic name.

d. All symbolics beginning with **X”’, *'Y”’, or **Z’’ must have “‘F’’ or *‘D’’ as their second character.

Instruction numbers:

a. On initial assembly relative P-addresses cannot appear in the instruction number column (except for
decimal point insertion).

b. Instruction No’s appear only once — no duplicates.

Literals: '

a. must begin and end with quotes or number signs.

b. octal literals must have ever number of characters which range from 0 to 7.

RD and MSW instructions:

a. All RD and MSW instructions must contain an L-list name.

b. When defining an RD or MSW specified list, the maximum limit is 57 entries per list. Each list
must contain at least one destination address.

c. "“END’’ must appear as the last entry in the list.

d. “*SAVE” notations in the MSW must have a decimal number in the T column.

Alpha O’s are distinguished by underlining, or numeric ‘‘zeros’’ are distinguished by slashes.

. Only **C” or *'Q’’ can appear in the CSG column.

Txx cannot be used with TAPE verb — must be 10, 40, etc.
SET instruction can only be used with REGISTERS, not with standard HSM loc.
All DEFK instructions must have a K-name in the B-column.

Macro’s and Subroutines:

a. All macro’s and subroutines used in the program must appear on the Assembler Library tape.
b. All DEFM and DEFS instructions must have name in A-address.

c. All DEFM’s, DEFS’s, REPM’s and REPS’s must have ‘‘END’’ as the last OP code.

d. All DEFM’s, DEFS’s, REPM’s and REPS’s must have *'S’’ or ''P”’ in B address.

* See segmenting

116



"] Descriptor Verbs:
a) Entries cannot appear in any column on a Descriptor Verb line unless specified in the verb .
format.

b) DP-addresses can only be written in the Instr. No. column.

LEVE verb: maximum of 4 decimal digits in A-address.

SGMT verb: A-address cannot refer to a\DP-address.

DEFV verb: V-symbolic cannot be defined as having appendages (i.e., PLA10+1, PLA20(B),
WPAY(L + 6) are incorrect).

00

CALLING IN SUBROUTINES

If you have called for a subroutine within the program, check the following:

[1 Each include line must have a SP——@@ address and the address of the next instruction must be at
least 100 greater.

When calling in a “OPEN’’ subroutine the comments column must be left blank.

When calling in a ““CLOSED’’ subroutine the comments column must have ‘INCLUDE + COPY+n’’.
Call lines for OPEN and CLOSED subroutines must have an SP~——address and the next instruction
must have an explicit P-address. '

Call lines for CLOSED subroutines must have a ““COPY + a”’ in the comments column.

L Uud

117



APPENDIX B

INSTRUCTION REFERENCE CHARTS

TABLE | - 501 MNEMONIC INSTRUCTIONS

oP A B T Remarks
BA Symbolic or Literal Symbolic or Literal Symbolic or Literal A= LHE} of gugend
i Add . B=RHE/S (and Sum)
(Binacy ) T=RHE of Addend
BS Symbolic or Literal Symbolic or Literal Symbolic or Literal A =LHE} of Minuend
(Binary Subt.) B=RHE

(and Difference)
T =RHE of Subtrahend

(Decimal Add)

Symbolic

T entry will generate a
Justify Right of data
from A to T.

BRF Symbolic Octal Tape Address A=LHE of Read-In
(Block Read preceded by T; e.g.T20 Area
Fwd.) Symbolic Tape Address| 11: tccoharacter placed
preceded by ] (must be :
defined elsewhere by
TAPE verb).
BRR Symbolic Same as BRF A =RHE of Read-In
(Block Read Area
Reverse) 1st character placed
in C3.
CTC P-address of next in- | P-address of next in- CTC will not normally
(Conditional struction if PRP is struction if PRN is be used in this manner
Transfer of set. set. since the “‘IF’’ and
Control) ““GO TO’’ columas are
so convenient for this
use.
CSG Ignored M-address CSG will not normally
(Control B1 even =open gate be used: in this manner
Simultaneous Bl odd =close gate since the CSG column
Gate) is available on the
coding sheet,
DA Symbolic or Literal Symbolic or Literal

A =Sign or space to
right of sign of
Augend

B=RHE of Addead

T =Sign of Sum (If no
entry in T or NT,
Sum overlays
Augend)

DD
(Decimal
Divide)

Symbolic or Literal

Symbolic or Literal

Symbolic

A =Sign or space to
right of sign of
Dividend

B =Sign or space to
right of sign of
Divisor

T =LHE of Quotient

DM
(Decimal
Mult.)

Symbolic or Litera]

Symbolic or Literal

Symbolic

A =Sign or RHE of
Multiplicand
B=Sign or RHE of

Multiplier
T =Sign of Product

118




TABLE | - 501 MNEMONIC INSTRUCTIONS (Continued)

opr A B T Remarks
DS Symbolic or Literal Symbolic or Literal Symbolic A =Sign or space to
(Decimal T entry will generate a right of sign of
Subtract) Justify Right of data Minuend
from A to T. B =RHE of Subtrahend
T =Sign of Difference
(If no entry in T or
NT, Difference
overlays Minuend)
IT Symbolic or Literal Symbolic A=RHE of item to be

(Item wansferred

Transfer) . , B=RHE of Destination
JR Symbolic or Literal Symbolic A =RHE of data to be

(Justify justified

Right) B=RHE of Destination
LA Symbolic or Literal Symbolic or Literal Symbolic or Literal A=LHE
(Logical B —RHE of Operand
“‘and’’) to be modified (and-
Result)
T =RHE of modifier
(Mask)
LNS Symbolic Symbolic Symbol to be counted, | A=LHE }

(Locate nth comma, and decimal B=RHE of sector to
Symbol in number of symbols to be searched
Sector) be counted (Limit of

4095) Example: ISS,23
or M,3 or sp,1289
LO Symbolic or Literal Symbolic or Literal Symbolic or Literal A=LHE2 £0 d
(Logical B=RHE) ©' “Vperan
“‘or’’) to be modified (and
Result)
T=RHE of modifier
LRF Symbolic Octal Tape Address A =LHE of Read-In
(Linear preceded by T Area
Read Fwd.) Symbolic Tape address SM I(Log._ OfCSM)
preceded by I (must be v placed in CO.
defined elsewhere by
TAPE verb).
LRR Symbolic Same as LRF above A =RHE of Read-In

(Linear Area
Read (Loc. of EM)
Reverse) EM placed in C3.

~Lw Symbolic, K-name/ Octal Tape Address End Message symbol

(prear or octal literal. preceded by T must stop write,
Vrite) Symbolic Tape address

preceded by O (must be
defined elsewhere by
TAPE verb).

MSw

(Multiple
Sector
Write)

Machine L-address Tape No. Blank List must be defined

Format:

elsewhere.

119



TABLE | - 501 MNEMONIC INSTRUCTIONS (Continued)

oP A B T Remarks
Specified L-address Tape No. Blank o )
List: (Succeeding (Succeeding (Succeeding Limit of 57 entries,
Lines): Lines): Lines): Any number of MSW
BLANK A decimal number, not| Symbolic address of instr. may use the same
limited to 64, design- | 1st character to be list. The list should
nating the number of | written. only be given after one |
chars. in the sector of the MSW instrs. The
(as specified in the other MSW’s need only
adjacent T field) to refer to L-name,
be written out.
(At end of List):
END
Combination L-address Tape No. Blank Same as above.
List: (Succeeding (Succeeding (Succeeding
Lines): Lines): Lines):
BLANK A decimal number, not| Symbolic address of
limited to 64, desig- | 1st character to be
nating the number of | written.
chars. in the sector OR
(as specified in the If SAVE is in B field,
adjacent T field) to. | place here a decimal
be written out. number specifying the
) OR number of tetrads to be
SAVE reserved for generation
(At end of List): by running program.
END
Unspecified L-address Tape No. The number (decimal, |Octal character count
List: with a maximum of threel and addresses must be
chars.) of tetrads to be |loaded by program.
reserved for the list,
OoCT Symbolic (usually Symbolic (usually A =From
(One relative character relative character B =Destination
Character address) or Literal. address).
Transfer)
PA PC=Page Change Ignored
(Paper VT =Vertical
Advance) Tabulation
If a Paper Advance
(Line Shift) is de-
sired, show number of
lines as a decimal
aumber (omit quotes).
PES Ignored Ignored
(Programmed
Error
Stop)
PR W-address from W101 | Ignored This print area must be
(Print) through W199 specified, followed by
a period, once in the
program. The assemb-
ler will allocate 128
chars.
RAI Symbolic Symbolic Normally the A & B
(Return fields will be BLANK.
after
Interrupt)

120




TABLE | - 501 MNEMONIC INSTRUCTIONS (Continved)

opP A B T Remarks
RD
(Random
Distribute) .
Machine Symbolic label for File| L-address Blank List must be defined
Format: (if SM is to be distri- elsewhere.
buted) or relative re-
ference to first item
to be distributed.
OR
A W address (used for
redistribution to an-
other area such as a
print line)
All: File name or File L-address All
name relative
All+1: File name or File L-address All+1 Extra location for
name relative items with ISS’s,
Specified LHE of Area to be L-address The List of destination |Limit of 57 eatries.
List: Distributed (may be addresses (relative sym-
symbolic) bolic).
Use TA for throw away
items
Use END to terminate
list
Unspecified LHE of Area to be L-address SAVE ] Addresses must be
List: Distributed (may be *“}’* =decimal number |loaded by program.
symbolic) of tetrads to be re-
served.
Combination LHE of Area to be L-address Address Limit of 57 entries.
List: Distributed (may be Address or SAVE ]J
symbolic) etc. -
END
(SAVE ] cannot be used
on first line)
RNS Symbol to be rewound |Octal Tape address
(Rewind (ED,EF,SM, or GAP) |preceded by T.
“n’’ followed by a comma | A symbolic Tape
Symbols) and decimal number of | address preceded by
symbols to be re- O or I (must be de-
wound. fined el sewhere by
Example: SM,18 TAPE verb).
RWD Ignored Same as RNS above
(Rewind to
BTC)
SC Symbolic or Literal Symbolic or Literal Symbolic or Literal A=LHE of Minuend
(Sector B=RHE
Compare) T=RHE of Subtrahend
(A Set T Register
instr. is generated)
SCC Symbolic Symbolic A=LHE
(Sector ¢ B =RHE of Sector to
Clear by be cleared
Char.)

121




TABLE | - 501 MNEMONIC INSTRUCTIONS (Continued)

opr A B T Remarks
SCD Symbolic Symbolic Symbolic A=LHE]

(Sector Y B=RHE of area to
Compress be compressed
Delete T =RHE of Destination
Redundant (Set T)

ISS’s)
SCR Symbolic Symbolic Symbolic A =LHE}

(Sector ym B-Rryg, °f area to
Compress be compressed
Retain T =RHE of Destination
Redundant (Set T)

ISS’s)
SCT Symbolic Symbolic A=LHE

(Sector B=RHE of Sector to
Clear by be cleared
Tetrad)

SET Symbolic or Literal BT

(Set B6 P = T Register

Register) RT~
RP
B4} = P Register
BP
BA
BZ} = A Register
RA

BLANK RPRN
RPRP} = PRI Settings
RPRZ
SSG P-address P-address A =Address of next in-

(Sease str. if gate is open
Simultaneous B =Address of next in-
Gate) str. if gate is

closed
SSM P-address P-address BLANK, unless a si- |A=Address of next in-

(Sense multaneous paper str, if a Simultane-
Simultaneous advance may be anti- ous Read is sensed
Mode) cipated in which case |B=Address of next in-

place here: str. if a Simultane-
An A-symbolic address ous Write is
representing the ad- sensed
dress of the next instr.
to be performed.

SSw Symbolic or Literal Symbolic or Literal Octal Tape Address A=LHE f wri

(Single preceded by T. B=RHE({ © Write-out
Sector Symbolic Tape Ad- sector
Write) dress preceded by O T =Tape Designation

{must be defined by
* TAPE verb).
ST Ignored Ignored

(Stop)

STC Symbolic or Literal Symbolic or Literal Symbolic A=LHE

(Sector B =RHE} of Sector to
Transfer be transferred
By Char.) T =RHE of Destination

122




TABLE | - 501 MNEMONIC INSTRUCTIONS (Continued)

op A B T Remarks
STR Symbolic or Literal BP}
(Store B4 = P Register
Register) RP.
RB = B Register A Store Register
RS = S Register Instruction is
BT generated
36} = T Register
RT
RPRI = PRI’s
B1 \
B3| Static Address
B5 | Modifiers
B7
g‘;‘} STA HSM Loc.
Ra) 000221-223 A Three Char.
STP = HSM Loc. Transfer **B’’ field
000241-243 to “*A”’ field is
RRAI = Ret. after generated
Interrupt Loc.
000001-003 '
RPA]J = Paper Adv.
Jump Loc.
000201-203
STT Symbolic or Literal Symbolic or Literal Symbolic A =LHE}

1 (Sector B=RHE; °f Sector
Transfer being transferred
by Tetrad) T=RHE of Destination

TA P-address Symbolic or Literal A =Address of next in-
(Tally) (Literal must start at str. if Quantity not
C1 position in tetrad) (000000)g
B =Tetrad containing
Quantity
TC P-address If Breakpoint Switches
(Transfer are to be set:
Control) SW0 through SW5 or
combinations such as
SW245
TCA Symbolic or Literal Symbolic or Literal Symbolic A =Augend
(Three Char. (Entry here generates | B=Addend

Add) a TCT of A to T) T =Sum (If no entry in
T or NT, sum over-
lays Augend)

TCS Symbolic or Literal Symbolic or Literal Symbolic A =Minuend
(Three Char. (Eatry here generates | B=Subtrahend

Subtract) a TCT of A to T) T =Difference (If no
entry in T or NT,
difference overlays
Minuend)

TCT Symbolic or Literal Symbolic A =From
(Three Char. B =Destination
Transfer) .

TCW Symbolic, K-name or | Octal Tape Address
(16.7K Literal preceded by T.
Write) Symbolic Tape ad-

dress preceded by O
(must be defined by *
TAPE verb).

123



TABLE | - 501 MNEMONIC INSTRUCTIONS (Continued)

opP A B T Remarks
TS P-address Octal Tape address Conditions to be A =Next iostr. if any
(Tape preceded by T sensed for: of conditions spe-
Sense) A bolic T d- Any combination of the cified in **T’’ are
drsym olic 1ape a following letters: present
ess preceded by I or B BTIC T
O (must be defined b est
y
TAPE verb) E ETV Test
: F FWD Test
R REY Test
M Motion Test
N Non-Operable
Test
UNS Symbol (EM,ED,EF, | Same as TS (above)
(Unwind or GAP) followed by
“n”? a comma and decimal
Symbols) agumber of symbols to
be unwound.
Example: EM,29
ZSs Symbolic Symbolic A=LHE?
(Zero B=RHE ' of Sector
Suppress)

124




TABLE [I-SPECIAL ASSEMBLER OPERATION CODES

Inst. No. OoP A B T Remarks
Must no? be ADV P!ace a-plus or
assigned an |(Add Variable) minus s1cglg followed
instruction by a V address or
number other symbo}xc (whicH
must be defined else-
where by DEFV)
directly under the
address to be modi-
fied. Any address on
the coding sheet
{incl. ‘GO TO’’) can
be modified.
This inst. DUP P-address P-address Blank—if no ad- Used to duplicate all
and next inst](Duplicate) (Must not be (Must be relative | dresses within the | coding between and
must both relative) to the address in | area to be dupli- |including addresses
bave Explicig the A field) cated are to be in A & B fields of
P-address modified this instruction.
F will remove X,
Y, or Z from
references
followed by § |[See DUP instruction
XF will cause  {for explanation of
Ref. followed |special cases where
by $ to be XF | Random Distribute
or XD and Multiple Sector
YF will cause | Write are in the Dup
Ref. followed |area.
by $ to be YF
or YD
ZF will cause
Ref. followed
by 8 to be ZF
or ZD
Explicit IGN Ignored Ignored IGN will permit the
P not re- (Ignore) juse of all fields to
quired the right of the B
field on the coding
sheet. - Any entries
in CSG, or the IF
and GO TO fields
will generate the
iastr. that they nor-
mally give rise to.
Explicit RES The number of BLANK 8 characters reserved
P not re- (Reserve instructions to be for each instruction.
quired Program reserved (deci- The P number of
Space) mal number) this instruction de-

Limit: 510

termines the point at
which instruction
space is reserved.

125



TABLE lII-DESCRIPTOR VERBS

(4 digit max.)

OR
BOM (LHE memory
limit for program)

Inst. No. oP A B T Remarks
DP-address ASGN Literals only M address between The literal is placed
(Assign) 000100 and 000277 in memory as part of
an initial program
block.
DP-address DEFK Literal (one line | K Symbolic Comments Column: Q.uotes ot number
(Define a K on coding sheet Any Comments signs must start and
Symbolic) only) end literal.
BLANK K Symbolic Comments Column: |Slant symbol first
Literal (may be |character = SM.
continued on Slant symbol last
succeeding lines |character = EM,
in comments col- |40 fixed K’s per
umn. When doing|program; 75 non-
so, leave all fixed K’s per seg-
other columns ment.
blank on suc-
ceeding lines).
DP-address DEFV V Symbolic being | Definition of V: Limit of 99 DEFV’s
(Define a V defined Symbolic
Symbolic) or Machine
Address
(Appendages can-
not be used)
DP-address DEFM Name of Macro- S (Macro-instruc- Two-address format.
(Define a instruction tion only) or END must appear in
Macro- (4 alphanumeric P (Preset and last OP code.
instruction) chars.) Macro-instruc- Will produce two new
tion) copies of Macro &
Sub-routine Library
Tape with this new
routine inserted.
DP-address DEFS Name of Subrou- S000 (Subroutine Same as DEFM with
(Define a tine only) or exception that Sub-
Subroutine) (4 alphanumeric P000 (Preset and routine follows DEFS
chars.) Subroutine) in complete pseudo-
instruction format.
END must appear in
last OP code.
DP-address DELM Name of Macro- (Leave blank) Will produce two new
(Delete a instruction copies of Macro &
Macro- (4 alphanumeric Subroutine Library
instruction) chars.) Tape with this rou-
tine deleted.
DP-address DELS Name of Subrou- (Leave blank) Same as DELM
(Delete a tine
Subroutine) (4 alphanumeric
chars.)
DP-address LEVE Total number of File name Overides data sheet
(Leave chars. to be re- Wa (working stor- Max. Number of chars.
Memory) served, age “‘block’’) if File name.

M-address cannot be
used.

126




TABLE [II-DESCRIPTOR YERBS (Continued)

Decimal Number

Inst. No. oP A B T Remarks
DP-address OVLY | P,F,XF,YF,ZF, F,XF,YF,ZF, See description of
i (Overlay) symbolic address OVLY verb
(may be relative)
W address (2 W address (not A =Area to be over-
char. symbolic) the same W as the laid
“A” field) B = Area overlaying
F,XF{YF,ZF
symbolic
DP-address REPM Name of Macro- S =(Macro-instruc- Will produce two new
(Replace a instruction tion only) or copies of Macro and
Macro- P =(Preset and Subroutine Library
instruction) Macro- Tape with this new
instruction) routine replacing the
' old version of the
same routine. New
routine follows
REPM in two ad-
dress format. Com-
plete the new coding
with the word END.
DP-address REPS Name of Sub- S000 = (Subrou- Same as REPM with
(Replace a routine tine oaly) exception that Sub-
Subroutine) OR routine follows REPS
P000 = (Preset in complete pseudo-
and Sub- instruction format.
routine)
DP-address SGMT P-address of P-address or M- Number of this Used to define all
(Segment) first instruction address of loca- |segment. Seg- segments (excluding
in segment. tion where in- ments must be the first one) of the
struction specified | numbered conse- | program.
in “A”’ field cutively. See description of
should be placed. SGMT verb.
ESGMT J(J = limit of 50 segments
segment number
and is decimal)
DP-address STRT P-address of Segment number This instruction
(Start) first instruction of instruction must appear in each
to be executed in | identified in **A”’. program,
the object pro- Not required if
gram. program consists
of only one seg-
ment.
DP-address STSH An A-symbolic P-address A =Symbolic Address
(Stash) address OR being defined

B =Definition
(Symbolic)
If B contains a de-
cimal number, it will
be converted to a
three character octal
equivalent and stored
Any stashed informa-
tion (**B’’ field of
STSH) is addressable
by the A-symbolic.
Limit of 49 STSH’s

per segment,

127




TABLE II-DESCRIPTOR VERBS (Continued)

Inst. No.

oP

A

B

Remarks

DP-address

TAPE -~
(Define I and
O Symbolics)

Symbolic Tape
Address (I and Q
Symbolics)

Limit of 63
per program

Two digit octal
tape number (do
not use T).

List the *“*A”” &
*B?’ fields for all
tape references.
Give op. code TAPE
only on first line.
The next op. code
sensed will show
conclusion of the
list.

128




APPENDIX C

The following addresses are supplied by the Assembly System for symbolic names or literals that are
written without character notation. - It should be noted that P-addresses are excluded from this list, since the
Assembler will always supply the location of the operation code of the first generated machine instruction.

Instruction A B Instruction A B
BA LHE RHE RAI RHE RHE
BRF LHE RHE RD LHE LHE
BRR RHE RHE RNS RHE RHE
BS LHE RHE RWD RHE RHE
CSG RHE RHE SC LHE RHE
CTC RHE RHE SCC LHE RHE

SCD LHE RHE
DA RHE RHE SCR LHE RHE
DD RHE RHE : SCT LHE RHE
DM RHE RHE SET RHE* RHE
DS RHE RHE SSG LHE RHE
SSM LHE RHE
IT RHE RHE SSW LHE RHE
_ STC LHE RHE
JR RHE RHE STR RHE RHE
' STT LHE RHE
LA LHE RHE
LNS LHE RHE TA RHE RHE
LO LHE RHE TC RHE RHE
LRF LHE RHE TCA RHE RHE
LRR RHE RHE TCS RHE RHE
LW LHE RHE TCT RHE RHE
TCW LHE RHE
MSW LHE RHE ‘ TS RHE RHE
OCT RHE RHE UNS RHE RHE
PA RHE RHE ZS LHE RHE
PES RHE RHE
PR LHE RHE
ADV LHE LHE
STSH C C .
o o
G — RHE RHE

*When an entry is made in the T-address of a Decimal Divide, the Assembler will assign the LHE in the gen-
erated SET instruction.

129



APPENDIX D

130

OBJECT PROGRAM EXAMINER

Machine Error
Instruction Symbol Suspected Error Condition
Tested Indicated
02 (PR) # A address not (XXX000) g.
06 (UNS) # Illegal symbol in Al character.
11 (SSW) * A-address greater than B-address.
16 (RNS) # Illegal symbol in Al character.
21 (IT) " Destination area overlaps ISS in original area.
24 (STO) * A-address greater than B-address.
26 (STT) * A-address greater than B-address.
32 (ZS) * A-address greater than B-address.
33 (JR) " Destination area overlaps ISS in original area.
34 (SCC) * A-address greater than B-address.
35 (SCR) * A-address greater than B-address.
36 (SCT) * A-address greater than B-address.
37 (SCD) * A-address greater than B-address.
41 (BA) * A-address greater than B-address.
42 (BS) * A-address greater than B-address.
43 (SC) * A-address greater than B-address.
46 (LO) * A-address greater than B-address.
47 (LA) * A-address greater than B-address.
61 (CTC) # A3 and/or B3 character is not (XO) g.
62 (SSM) # A3 and/or B3 character is not (XO) g.
63 (TS) # A3 character is not (X0) g.
65 (SSG) # A3 and/or B3 character is not (XO)g.
66 (TA) # A3 character is not (XO)g.
71 (TC) # A3 character is not (X0)g.
71 (TC) : Breakpoints set in the B1 character.
72 (SET) # Illegal register setting in B1 character.
# Illegal register setting in B1 character.

73 (STR)




INDEX

Page

Address Modifiers
SELting o oo vt v e vt te e 69
Storing ..o v ittt e e 71
Symbolic Addresses . . ... ..o it 69

Breakpoint Settings . .......... .00 18, 56

Constants. . . ¢ v v v vttt eeeencncnannones 34
Definition of:

Fixed and non-fixed . . .. ... ... ... 36
Length ... ...... ..., e e e e 35
Positioning within terad . . . . . ... ... .. 36
Unique and non-unique . ........c.00.n 35
K-CONStants . .« o s ¢ o 0o s s s oo oo ooeeeocae 37
Literals: o v v v v v v vttt e 34
Octal. .« v vttt it i ie i e e e 35
S01 Character « « « « « v o o o s o o s s o s oo 34

Data Addressing . . . . ..... .o 25

Data Sheet. . . . .. it i ittt n e 3
Header . ... oo veeeeeseoensoossenns 3
Body . oot v iiein e 5

Descriptor Verbs (see Verbs)

Files. .« v i ittt i ii i i s tnnenens . 3
Alternate read-in areas . «.. v v v 0 v et v e 28
Descriptionof . « « . v e v o v vt ittt 3
Filearea . . ....... e et e e e 26
Symbolic names. . . . . vttt . 3,28

Instructions
Addressing:

General . . v . v i it i e e e 40

Parts of ¢ « « ¢ ot ottt t b e e e 47
Instruction numbers:

Decimal Point P-address . . . . ... ...... 44

Explicit P-address . . . . ... oo v oot ih 12, 40

Relative P-address . .. e v v v v e v v v v n.n 41
List of 501 Mpemonic Insts.. « + ¢« v v v o v v v 13

Items and Sub-ltems
Addressing:

Relative character . . . .« v o v v v v v v e v o 27
Relative to other FAA items . .. .. ... .. 28
Relative to LHEof File . .. .......... 27
% Addresses « v v« e vt e ittt e 30
FAA ...... e e e e e s e s e e e 6, 26
Forward Read addressing . ............. 26
Nom-FAA .« ¢t vt v et ettt te s e onneenns 29

Symbolicpames . . ................... 5, 26
Literals (see Constants)
Machine Addresses . ................... 25
Macroinstructions. . . . .. ... ... . ..., 86
Call-line .. ... ..ottt 86
Composition of:
Preset.. ..o v v i ittt i i e 87
Macro symbolic coding .. ............ 87
Defining Macros (DEFM verb). . . . .. ...... 88
Memory Layout:
Call-line . . ..o v vttt iiiee e 96
Symbolic inst. line . . . . ............. 9%
Preset, Programmer-written ... .......... 92
Segmenting MACIOS « « + o v v e v v e v v v o v oo an 93
Memory Layout . .. ....... ... 78
Assembly Assignments: ............... 78
Fixed Constants . . .. ......couvon.. 78
InStructions . . ¢ ¢ ¢ v v o vt v et et e v e e 79
Non-fixed constants . . « . . . v v v v v e v, . 79
Read-in ar€as . « v v v v v v et oo v v oo vnsn 79
Working Storage areas. .. ............ 78
Programmer Control: ................. 79
ASGN — Assignverb ............... 81
LEVE —Leaveverb ............... 80
OVLY —Overlay verb. . . ... ......... 82
SGMT —Segmentverb .............. 83
STRT —Start « « ¢ vt v v v e v s e v voooens 85
Object Program . . . . .......... ... .... 78,112
Operation Codes
Machine format . . . . ... o i it it i 14
Moemonic, 501 ...... et 13, 14
Mnemonic, Special . . ... ... i il 14
PrintAreds. . . ... vttt i i ie i e 32
Program Sheet, General Usage . ............ 12
Pseudo-Code, General. . . ... ............. 12
Read-In Areas (see Files)
Registers
Setting . v v v v v it i i i e e 73
SEOring v v v v vt ittt e i e 74
Symbolic Addressing . ................ 72
Segmentation
MacCIOS: « « vt ot v ettt v e nnvennsennas 93
Program............. i, 83
Subroutines . .......... .. 0 L., 103



Special Assembler Mnemonics

ADV — Add Variable ,................
DUP —Duplicate. . . .. .. o viv e v e
IGN —Ignore . .o v v v i i v veven e enenn
RES —Reserve. . ... ..t ii i v
Special Format 501 Insts.
CTC - Conditional Transfer of Control. . . . ..
CSG - Control Simultaneous Gate. .. ... ...
DA —Decimal Add........... oo
DS — Decimal Subtract .. ... ..........
LRF — Linear Read Forward .. ..........
LRR — Linear Read Reverse ... .........
LNS — Locate nth Symbol . ... ..........
MSW — Multiple Sector Write ............
PA —Paper Advance . .........coo0nn
PR —=Print. . ...ttt et oteeosacnsns
RAI — Return After Interrupt . . . . . ... ...
RD - Random Distribute . . ... .........
RNS —Rewind n Symbols ..............
SET —
“Set T’ inSLructions . . . v v o e o v o o s s o
“Other than Set T?” . . . . v v v v v v e v e o
SSG - Sense Simultaneous Gate..........
SSM — Sense Simultaneous Mode .........
STR — Store Register. . . . ..o v e v v oo oo
TA —=Tally ...t
TC — Transferof Control. . .. ..........
TCA — Three Character Add ............
TCS — Three Character Subtract. ... ......
TCT — Three Character Transfer .........
TS —TapeSense .... ..o eeanns
UNS — Unwind n Symbols .. ... .ovuuunnn
Standard Memory Locations, Addressing.......
Sub-ltems (see Items)
Subroutines
Call-line . .. v v v vttt i e i in e v e e
Composition of:
Preset. . « v v v oo v o o v n v s n e s a s u oo

Symbolic Coding . . . ... .o iv e

54
50
49
49

97

99
99

Defining Subroutines ... .............. 101
Dynamic Parameters. ... ... ..o vuue o 104
Entrance Lines . . . ..o v v v v v v v in i n el 98
Memory Layout:
Call-line .. ... it i ii it i 110
Paralines ... ..co i veiiiei s 110
Symbolic lines ... ............0 109
Preset, Programmer-writtén .. .. ... ...« .. 102
Segmenting subroutines . . ... ... 103
Tape Station Addressing . ... ............. 39
Varioble Addresses . . .................. 53
Verbs, Descriptor . . ......... ... ... 46
ASGN —Assign. .. ... iiiv ey 81
DEFK — Define Constant. . . . « ¢ vt e v v v v 38
DEFM — Define Macro . ... ..cvvvvvons. 88
DEFS - Define Subroutine . ............ 101
DEFV — Define Variable. .. .. .......... 53
DELM —Delete Macro .« «« v v v e v vv v vonw 95
DELS - Delete Subroutine . ............ 106
LEVE —Leave . . . ..ttt it v e eonnsns 80
OVLY —Overlay . . .. ... ieino. 82
REPM — Replace Macto ... ............ 94
REPS - Replace Subroutine ............ 106
SGMT —Segment: « «c e v v ovveecnasnan 83
STRT —Start v v o v v v v s v v vt o v osoans 85
STSH —Stash . .......0iiiieieenenn 52
TAPE —Tape. .. .o vi v vneeaanscens 40
Working Storage . .. .... ... .0 30
Character Addressing . « . « v v v v vn v o et 32, 33
Length .. .........0iiieeennn 31, 32
Positioning within tetrad . . . . . ... ... ..., 31
Types:
Distributed Data . . ... .. .. ... .00 34, 60
General . . .. o it e 30
Print. . . ¢ oo o vt v o v v sttt onsononan 32



RCA 501 ELECTRONIC DATA PROCESSING SYSTEM

Printed in U.S.A.

Form APM-2 Rev. Sept. 1960



	0000
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	xBack

