THE 501

COBOL

NARRATOR

NOVEMBER, 19€0

Revised December, 1960

ACKNOWLEDGMENT

"This publication is based on the COBOL System developed in 1959
by a voluntary committee composed of government users and computer
manufacturers. The organizations participating in the original develop-
ment were:

Air Materiel Command, U. S. Air Force

Bureau of Standards, Department of Commerce ,
Datamatic Division, Minneapolis-Honeywell Corporation
David Taylor Model Basin, Bureau of Ships, U. S. Navy
ElectroData Division, Burroughs Corporation
International Business Machines Corporation

Radio Corporation of America

Remington-Rand Division of Sperry-Rand, Inc.

Sylvania Electric Products, Inc.

_ "The initial specifications for the COBOL language, printed by the
Government Printing Office in 1960, are the result of contributions made

by all of the above-mentioned organizations and no warranty expressed or
implied, as to the accuracy and functioning of the programming system and
language is made by any contributor or by the committee and no responsibility
is assumed by any contributor or by the committee in connection therewith.

"It is reasonable to expect that many improvements and additions will
be made to COBOL. Every effort will be made to insure that improvements
and corrections will be made in an orderly fashion making proper provision
not to invalidate existing users! investments in programming.

"The authors and copyright holders of the copyrighted material used
herein: '

FLOW-MATIC (Trade-mark of Sperry Rand Corporation) Programming for the
UNIVAC ® I and II, Data Automation Systems @© 1958, 1959, Sperry Rand
Corporation; IBM Commercial Translator, Form No. F 28-8013, copyrighted 1959
by IBM, have specifically authorized the use of this material, in whole

or in part, in the COBOL specifications. Such authorization extends to

the reproduction and use of COBOL specifications in programming manuals or
similar publications.

"Any organization interested in reproducing- the COBOL report and
initial specifications in whole or in part, using ideas taken from this
report or utilizing this report as the basis for an instruction manual or
any other purpose is free to do so. However, all such organizations are
requested to reproduce this section as part of the introduction to the
document. Those using a short passage, as in a book review, are requested
to mention "COBOL" in acknowledgment of the source but need not quote
the entire section.®

CONDITION NAMES. . . .

DATA DIVISION:

FILE SECTION:

FILE DESCRIPTION FORMA
RECORD DESCRIPTION FORMAT

WORKING~STORAGE SECTION
CONSTANT SECTION . . .

ENVIRONMENT DIVISION:
CONFIGURATION SECTION:
OBJECT-COMPUTER . .
SPECIAL-NAMES . . .
INPUT-OUTPUT SECTION:
FILE-CONTROL . . .
I-0-CONTROL

FIGURATIVE CONSTANTS . .
IDENTIFICATION DIVISION.
LABEL CHECKING
LITERALS
NOTATION USED IN MANUAL.
OWN-CODE

PROCEDURE DIVISION;
Aecept . . . L. . ..
Add
Alter
Close.
Display.
Divide
Enter.
Examine.
Exit . « « . « « . .
Find
GO « & o ¢ 4 4 4 e
If . o
Move « .« « &
Multiply
Note « « .
Open
Perform.
Read
Stop
Subtract
Use . . « .+ . .« &
Write.

PUNCHING REQUIREMENTS.
QUALIFICATION
RECORD DESCRIPTION . . .
RERUN

-

.

RESTRICTED & RESERVED WORDS.

SEGMENTING
SUBSCRIPTING
TAPE LABLES.

WORDS

- ii -

INDEX

28

19
20
26
54
58

128

120

68
67
70
71
73
74
75
77
79
80
83
85
920
101
102
103
104
108
110
111
113
114

131
30, 64
24
14

141

118
47

126

- iii -

COBOL Compatibility

The following comments discuss the compatibility available among
the RCA 501, 301, and 601 COBOL Narrators. The reader is advised,
however, that these general comments also embrace the area of compat-
ibility involved with competitive COBOL compilers.

In general, "compatibility" refers to a program sharing ability
by different computer systems. If, however, the code used in writing
the program contains certain features not meaningful to the different
computer systems, a transcription must be made of the original problem
code into the order codes of the other computers. This is due solely
because of the hardware-oriented, restrictive nature of machine code.

In particular, "compatibility", means the ability to take a COBOL
program originally written for one system and recompile it to run on
a different system. This is possible because of the substitution of
a problem-oriented program description for the machine code description.
The various Narrators serve as the transcription mechanism to create
‘the order code which is recognizeable to each computer. Because COBOL
is not totally problem-oriented, certain modifications are necessary
to accommodate the machine dependent features of a COBOL program de-
scription.

' To further classify the problems of COBOL compatibility, consider
the following two categories:

1. Language content
2. Language structure

The first category concerns the problem-oriented elements of the
language. Of the three major divisions within COBOL, Environment,
Data, Procedure, only the Procedure Division may contain machine in-
dependent terms exclusively. This means that all the verbs in this
division will operate in the identical manner on any machine having
a COBOL processor. The one exception to this rule is the ENTER verb
which contains a machine-oriented pseudo-ccde. Therefore, Procedure
Divisions are compatible only after the ENTER statements are revised
to reflect the proper pseudo-code for each computer upon which the pro-
is to run. The Environment Division contains totally machine oriented
terms and must therefore be rewritten in order to preserve compatibility.
Information concerning the computer and any special names would not be
applicable when transferring this program to another machine. For
example, the statement, "OBJECT COMPUTER. 501." would have no validity
when processed by the 601 COBOL Narrator. The files to be manipulated
and the rerun information will still be valid such that the rewrite of
this division to maintain compatibility is relatively small. The
Data Division will require the most lengthy revision when it is desirable
to change the memory mapping requirements to take advantage of the

- iV -

features of other computers. Organization of data is strictly machine
oriented and must be revised dependent upen computer requirements. Fille
names, record names, and item names will still be valid. However, the
statement,, "RECORDING MODE IS BLOCK" would have no significance to the
301 COBOL Narrator.

The second category concerns the structure of the language in
relation W each individual implementation. This involves the
problems of format and presence or absence of features. In order
for a program written for one machine to be recompiled on another,
the COBOL compiler used for recompilation must contain at least those
elements included in that compiler which wazs used for the 1nit1al
compilation.

Because it is anticipated that both the 301 and the 601 COBQL
Narrators will contain all of those elements defined as Required
COBOL, compatibility between these machines is affected primarily
by computer capacities and problem-oriented language content. Thus,

- problems written in either 601 or 301 Required COBOL can be inter-
changed. Similarly, 501 programs can be compiled on either 301 or
601 because all 501 COBOL features are either identical to those in
301 and 601 COBOL or are a logical subset of those features.

To compile 301 and 601 COBOL programs on the 501 requires a
similar investigation to determine if all features referenced with
a 301 or 601 COBOL program are included in the 501 compiler.

Currently, the COBOL Maintenance Committee is in a special
session devoted to the definition of those features to be labeled
as "Required COBOL-1961". The completion of this task will prescribe
the final structure of both 301 and 601 COBOL as well as determining
the extent of revision necessary to fashion a compatible 501 compiler.

-1 -

501 NARRATOR

INTRODUCTION

The 501 Narrator is an automatic coding system designed for the RCA
501 computer. ‘The salient feature of the Narrator is that it is a problem-
oriented system, whereby data processing applications may be expressed in
natural English statements, rather than in the restricted language of a
computer. The primary source of appeal is intended for those not familiar
with machine codingj consequently, the language reflects terms common to
business applications, rather than to computing systems.

Basically, the Narrator is an English Language compiler that accepts
a series of English statements and translates them into a 501 machine-coded
program., While it is admitted that complete "naturalness' cannot always be
achieved, the user will find that the language offered with this compiler
greatly simplifies procedures and reduces the time required to describe and
code general business~type problems.

The development of the RCA Narrator was conducted in coincidence with
a Department of Defense committee organized in May, 1959, to specify a com-
mon business language (COBOL). This committee was comprised of major com-
puter manufacturers and users, and its mission was "to consider the develop-
ment of specifications for a common business language for automatic program-
ming of data processing systems.' It was felt that the major needs for a
common language were:

a. Present programming methods are time-consuming and costly.

b. Present methods do not permit rapid responce to changing
problem requirements.

c, Manual reprogramming to shift applications to another make
or model computer causes unacceptable delays.

The 501 Narrator is designed to alleviate these deficiencies by in-
corporating those COBOL features that allow a proper and efficient de-
scription of problems and, at the same time, reflect the features of machine
design.

-2 -

NOTATION USED IN THIS MANUAL

Special notation has been used throughout this manual to describe the
501 Narrator format. The reader should become thoroughly familiar with
their meanings:

1. All upper case words that are UNDERLINED are considered as

KEY words., These words must be present and correctly spelled,
otherwise, an error will occur.

Example: MULTIPLE REEL

2. All upper case words that are NOT underlined are considered as
OPTIONAL words. These words have been included in the language
to facilitate readability; they may be used or omitted at the
programmer*s discretion. However, when OPTIONAL words are used
they must be correctly spelled, otherwise, an error will ocecur,

Example: PQINT LOCATION IS LEFT

3. All lower case words represent generic terms whose value must
be supplied by the user.

Example: ALTER line-no TO PROCEED TO line-no

\

4, Information within braces indicates that a CHOICE must be made.

Data-name
Example: DISPLAY UPON MONITOR.
. literal

5. Information within square brackets represenfs an OPTION that méy

be included or omitted at the user*s choice.

Example: PERFORM line-no [%HRU 1ine—n£] .

PUNCTUATION

The following rules govern the use of punctuation characters:

. Period = must appear where indicated.

, Comma = non-critical character (may be used or omitted).

Semicolon = non-critical character (may be used or omitted).

" Quotation Marks = quotation marks are.used to surround literals;
they may not be used otherwise.

(Left Parenthesis = may only be used to denote "subscripting™’

(see page UT7), or as a character in a literal.
) Right Parenthesis = same as above.

-

. Periods, commas, semicolons, ending quote and right parenthesis must be
followed by a space.

-3 -

WORDS

A Narrator "word"” is composed of not more than 30 characters, and may be
constructed from the following set:

@ thru 9
A thru 2
- (hyphen)

Words are énded by spaces; or they are ended by a period, comma, semi-
colon or right parenthesis, followed by a space. Since the primary purpose
of a "space" is to separate words, "spaces" or'blanks' cannot appear within
words. It should be noted that the number of spaces be'tween words is not
critical.

Note: The'only time that a 'space'" has significance is when it appears
within a literal.

All references in this manual to condition-names, file-names, record-names,
and data-names follow the above rules. In addition, all "names" must contain at
least one alphabetic character (hyphen is not considered as alphabetic).

RESERVED WORDS

All words shown in this manual as KEY or OPTIONAL words may not be used for
data-names. 1In addition, the fillowing words have special significance, and may
only be used as specified in this manual:

BEGINNING~-TAPE-LABEL REEL-NUMBER ALL ZEROS

END ING-TAPE-LABEL DATE-WRITTEN FILLER ZEROES
IDENTIFICATION PURGE-DATE TALIY SPACE
ID BLOCK-~COUNT . ZERO SPACES

" HYPHENS

Hyphens may only appear within words and, as such; are always considered
as being part of the word. It is not permissible to begin or end words with
hyphens.

Example: MASTER-FILE, QUANTITY-ON-HAND

LITERALS

Literals used in the Narrator must be enclosed by quotation marks and
may not exceed 120 characters. Literals may be composed from the following
characters: ‘

A through Z , comma (left parenthesis

@ through 9 . period) right parenthesis

$ dollar sign 1 semicolon # number sign

% percent sign : colon / slant (see note)

+ gpace, or plus - hyphen, or minus * asterisk (see note)

& ampersand (see note)

Examples: "END OF JOB", "1875", "DECEMBER 31, 196#."

Note: 'The slant, asterisk and ampersand symbols have special significance
and may only be used in the CONSTANT SECTION--see page 58.

GENERAL DESCRIPTION

Input to the 501 NARRATOR consists of four d1v1slons, which appear in
the following order:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.,
PROCEDURE DIVISION.

Before treating these divisions in detail, a capsule description of their
functions follows.

Identification Division

The Identification Division contains descriptive information that identifies
the program being compiled. 'This information will appear in the reference
listing provided for each program.

'~ Environment Division

In a sense, the purpose of the Enviromment Division is to describe to
the compiler the "outside world." For example, the compiler must know the
computer upon which the object program will be run and the equipment con-
figuration that will be used -- tape stations, printer, etc. 1In addition,
this Division also supplies lnformatxon concerning re-run procedures and
file selection.

Data Division

The Data Division furnishes the compiler with a description of the
"inside world." It provides a detailed "memory-picture" of the files,
records, working storage and constants that the object program will use
and manipulate.

Procedure Division

This division consists of the steps -~ expressed in meaningful English
statements -- that the computer is to follow during the data processing opera-
tion. These statements are written as simple, imperative commands that in-
clude the concept of yerbs to denote actions, sentences to describe procedures,
and IF clauses to provide alternative paths of action.

If desired, the user may also incorporate into this division coding written
in RCA 501 Automatic Assembly format.

IDENTIFICATION DLYISION

The IDENTIFICATION DIVISION is the first division of the NARRATOR input; it
is used to provide descriptive information on the reference listing to identify
this particular program. It is written in the following format: '

IDENTIFICATION DIVISION.

PROGRAM-1D,

AUTHOR. (Optional)
INSTALIATION, (Optional)
DATE-WRITIEN, (Optional)
DATE-COMPILED. (Optional)

SECURLTY., (Optional)
REMARKS. (Optional)
EF

The PROGRAM-ID entry must always appear; other entries, if present, must
appear inthe order listed. The format for each entry is as follows:

PROGRAM-ID. program-name.

Examples: PROGRAM-ID. PAYROLL.
PROGRAM-ID. INITIAL INVENTORY UPDATING RUN.

Information supplied for this entry may not exceed 30
characters, including spaces.

AUTHOR, author's name.

Examples: AUTHOR, JOHN DOE,
AUTHOR, ROBERT T SMITH, JR.

Information supplied for this ehtry may not exceed
100 characters, including spaces,
LNSTALLATION, installation name.

Examples: INSTALIATION, ANY MFG CO CHICAGO BRANCH,
INSTALLATION., RCA RECORD DIVISION,

Information supplied for this entry may not exceed
100 characters, including spaces. o

DATE-WRITTEN, date.

Exanples: DATE-WRITTEN. SEPTEMBER 23, 196f.
DATE-WRITTEN. 12 MAY, 1961,

DATE-COMPILED, date.

Examples: DATE-~COMPILED. DECEMBER 15, 1964.
DATE~COMPILED., TODAY.

Information supplied for this entry may not exceed
30 characters, including spaces.

If the word TODAY appears for the DATE-COMPILED entry, the
Narratdr will request (at compilation time) that the compilation
date be supplied in a message from the Paper Tape Reader. The
date in this message will theén be used for the DATE-COMPILED
entry. This information is punched as follows: < date >.

Example: <« FEBRUARY 6, 1961 >

SECURITY.,

Examples: SECURITY. CLASSIFIED.
SECURITY. RESTRICTED FOR ACCOUNTING PERSONNEL ONLY.

Information supplied for this entry may not exceed
100 characters, including spaces.

REMARKS.,e0. .

Example: REMARKS. INPUT SUPPLIED BY ACCOUNTS RECEIVABLE
RUN; OUTPUT TO BE USED FOR BILLING RUN.

Information supplied for this entry may not exceed
200 characters, including spaces.
Notes:

1. Periods are not to appear within the information supplied by the
writer except to end the entry.

2. The IDENTIFICATION DIVISION is terminated by an EF symbol.

EXAMPLE

IDENTIFICATION DIVISION.

PROGRAM-ID. MONTHLY REPORT RUN.

AUTHOR. THOMAS W BROWN.,

DATE-COMPILED. TODAY.

REMARKS., MASTER-ORDER-FILE AND BACK-ORDER-FILE REQUIRED AS INPUTS FOR
THIS RUN.

EF

- T7A -~

The Enviromment Division is written in the following order:
ENVIRONMENT DIVISION.

CONFIGURATION SECTION,
OBJECT~COMPUTER.
SPECIAL-NAMES, (optional)

INPUT-OUTPUT SECTION.
FILE~CONTROL.
I-0O-CONTROL. (optional)

EF

A CONFIGURATION SECTIOI

The Configuration Section provides the compiler with a description of
1) the object computer, i.e., the computer upon which the final program is
to be run, and 2) any Special Names which are given to computer breakpoint
switches.

Fovmat:

CONFIGURATION SECTION,

THROUGH
OBJECT-COMPUTER, 5#1 EMEMQRY ADDRESS address-l{THRU }address-‘Z—")

greea—

SPECIAL-NAMES. BREAKPOINT-number QN STATUS IS condition-name-1,

iy

, BREAKPOINT-number ete. —-c-|. |

MEMORY_ ADDRESS:

If the user does not specify MEMORY ADDRESS, the program will be compiled
for memory locations 004000 through 037777.

If the user does specify MEMORY ADDRESS, the beginning address must end
in 0 and should not be lower than 004000; the ending address must end in 7.
It should be noted that if any file is assigned to the On-Line printer, the
ending address must end in X77 (where X is an odd number).

Examples:
a) OBJECT-COMPUTER. 501.
b) OBJECT-COMPUTER. 581, MEMORY ADDRESS #g4@@d THRU 137777.

(Cont'd)

ENVIRONMENT DIVISION

The second division of the Narrator input -~ the ENVIRONMENT DIVISION --

consists of two separate sections that provide the compiler with the following
information:

CONFIGURATION SECTION {1. Memory area available for the object program.
2. Use of computer Breakpoint Switches.

1. Peripheral equipment (tape stations, printer, etc.)
to be utilized by various input and output files.

INPUT-OUTPUT SECTION J2. Program restart requirements.

3. Common file areas and alternate file area
requirements.

- 8 ~

SPECIAL-NAMES

The "Special-Names" statement is optional. If used, "BREAKPOINT -number"
must appear as BREAKPOINT-1 through BREAKPOINT-5. (Breakpoint # is reserved
for the Input/Output Control.)

"Condition-name™ can be any_uniqgue name up to 30 characters; there must
be a "condition-name" for each breakpoint specified.

Examples:
a) SPECIAL-NAMES. BREAKPOINT-3 ON STATUS IS WEEKLY—REPORTS.

b) SPECIAL-NAMES. BREAKPOINT-1 ON IS WEEKLY, BREAKPOINT-3
ON IS MONTHLY, BREAKPOINT-4 ON IS YEARLY.

The programmer may test the status of a particular breakpoint by referring

to its condition-name in an IF statement in the PROCEDURE DIVISION. Thus, if
breakpoint-1 had been assigned the condition-name"MONTHLY-SUMMARY,' the on:
status of this breakpoint may be tested by the following statement:

IF MONTHLY-SUMMARY GO TO 214.

If breakpoint-l is not set (“on'), the next Narrator statement will be
executed.

EXAMPLE :

CONFIGURATION SECTION.

OBJECT-COMPUTER. 5¢1, MEMORY ADDRESS @1@@@@ THRU @76377.
SPEGIAL-NAMES. BREAKPOINT-5 ON STATUS IS CHECK-PRINT.

B, INPUT-OUTPUT SECTION

The Input-Output Section is composed of two parts- the File-Control
and I-~-0-Comtrol.

1, FILE CONTROL

A Pile-Control Section must appear in every program; the function of
this section is to specify what tape stations or peripheral equipment will be
used by the various files during the data processing operation. This section
also informs the compiler if multiple-reel files are being used, and if alternate
read/write areas are not desired.

INPUT-QUTPUT SECTION.

. PRINTER \\

FILE-CONIROL . '

TAPES 1_:1,12, t3, t4

SELECT EP‘I‘IONAE] file-name, ASSIGN integer TAPES y

TCP integer TAPES
TCP TAPES tl1, t2, t3, té’/
, FOR MULTIPLE REEL i ,» RESERVE NO ALTERNATE AREAS .
SELECT

1. A SELECT message must appear for each file used in the program.

2. The word "OPTIONAL" appearing éfter "SELECT" means that this file
may or may not be present during the running program. (Note that
only input files can be designated as OPTIONAL,) If an input file,
designated as OPTIONAL,is not present at program running time, the
Input-OQutput Control will transfer to the end-of-file routine .
when the first read command is encountered for that file. A sub-
sequent read command for that file would cause an error. '

3. The entry tl, t4 should appeér in the following form and
must be two digits.

tn = 06, where 06 is the trunk number.

4, TCP represents Transcribing Card Punch. This entry appears when
the output file is to be written to magnetic tape and subsequently
to punched cards via the Transcribing Card Punch unit.

5.

OUTPUT files cannot be assigned to tapes 76 and 77.

- 10 -

FOR MULTILPLE REEL

When a.file may exceed one reel of tape, "MULTIPLE REEL" must be
specified for that file.

If one tape station has been assigned to a file that has multiple reels,
the object program will stop at the exhaustion of each reel so that a new
ree]l may be mounted. When more than one tape station has been assigned, the
Input-Output Control will automatically provide tape "swapping" without
interrupting the program,

When intermediate reels are exhausted during the running object program,
they will automatically be rewound to BTC. (If the user "closes'" intermediate
reels through a CLOSE REEL statement, the reel will be rewound unless "WITH
NO REWIND" has been specified.)

ALTERNATE AREAS

In order to provide maximum simultaneity, the Narrator will assign alternate

READ-IN areas for all INPUT files that are assigned to magnetic tape. In additionm, .

- if the records for a magnetic tape OUTPUT file are in message format, and not
grouped (batched), an alternate WRITE area will be resefved for that file.

If the user does not desire alternate areas, "RESERVE NO ALTERNATE AREAS"
must be specified.

Alternate file areas will not be reserved for files assigned to the Paper
Tape Reader (tape 77), or to the On-line Printer (PRINTER). In these instances
the clause RESERVE NO ALTERNATE AREAS is not required.

EXAMPLES :

a) FILE-CONTROL.
SELECT MASTER, ASSIGN 1 TAPE, FOR MULTIPLE REEL.
SELECT TRANSACTIONS, ASSIGN 1 TAPE, RESERVE NO ALTERNATE AREAS.

SELECT NEW-MASTER, ASSIGN 1 TAPE, FOR MULTIPLE REEL.

b) FILE-CONTROL.
SELECT MASTER, ASSIGN 2 TAPES, MULTIPLE REEL.
SELECT TRANSAGCTIONS, ASSIGN 1 TAPE,
SELECT SUMMARY-REPORTS, ASSIGN PRINTER.
SELECT NEW-MASTER, ASSIGN 2 TAPES, FOR MULTIPLE REEL.
SELECT BILLINGS, ASSIGN TCP TAPE #7, RESERVE NO. ALTERNATE
AREAS, ‘

1. The singular form 6f TAPES may be used if desired.

2. Tapes are automatically assigned to f£iles in the order
that the files appear under FILE-CONTROL. The order
of assignment is 10, 20, 30, 40, 50, 60, 70, 00, 01,
02, 03, 04, 05, 06, 07, 11, 12, etc. 1If specific tape
trunk assignments have been made by the programmer,
these trunk numbers are eliminated from the above list,
and are not reused for subsequent assignments.

- 11 -

Assigunent of File and Alternate Areas

Assume that the Master-File (input), Transaction-File (input) and New-
Master-File (output) contain single records in message format, and the
programmer has defined the FILE CONIROL as follows:

INPUT-OUTPUT SECTION,

FILE-CONTROL.
SELECT MASTER~FILE, ASSIGN 1 TAPE.
SELECT TRANSACTION-FILE, ASSIGN TAPE 77,
SELECT NEW-MASTER-FILE, ASSIGN 1 TAPE.

The Narrator will reserve the following memory areas

MASTER MASTER

FILE AREA e ALTERNATE AREA S
~ (For processing) (For Simultaneous Reading)

TRANSACTION

FILE ARFA |¢——(PapeT Tape|

(For processing)

NEW-MASTER NEW-MASTER Mag
FILE AREA > ALTERNATE AREA ~——>\ Tape
(For processing) (For Simultaneous Writing)

During the running program, the Input/Output Control utilizes the Master
Alternate area for bringing in records from the Master-File in the Simultaneous
mode. When a READ command is executed for the Master-File, the record appearing
in the Alternate area is transferred to the File area so that the programmer may
process that record. (The next record from the Master-File is then brought into
the Alternate area, awaiting transfer to the File area at the next READ command.)

Tn the case of the Transaction-File (no alternate areas), the Input/Output
Control reads directly into the File area each time a READ command is given for
the Transaction-File.

When a WRITE command is given for the NEW-MASTER, the record appearing in
the New-Master File area at that time is transferred by the Input/Output Control

into the New-Master Alternate area. (This record will then be written to the
output tape in the Simultaneous mode.) It should be remembered that the WRITE
command does not place records into the File area -- this is the programmer's
responsibility. Thus, if record "A" appears in the File area when a WRITE
statement is performed, record "A" will be written out to the output file. If
a subsequent WRITE command is given -- and another reccord has not been placed
in the File area -- record "A" will again be written to the output file.

- 12 -

Generally, alternate areas are used with high-volume files. They should
not be asgssigned for files that are relatively inactive, if the programmer.
wishes to make efficient use of computer memory.

“Batched" Input Files

If an Input File contains "batched" or '"grouped" records, alternate
areas ae reserved somewhat differently. For example, assume that records
in the Master-File appear in groups of three, and each record contains 100
characters:

MASTER FILE AREA
‘ . R
For processing Efjgjgj:i;a:;// ALTERﬁﬁiggAREA
(100) /(j
A

For storage B <«——300 E
(300)

The first group of records (A, B, C) is brought into the alternate area
and transferred to the ''storage" area. At the first READ command, record
"A" (in the storage area) is placed into the processing area, and the programmer
may now process that record. At the next READ command, record "B" is transferred
into the 'processing'" area, and so on.

After the Input/Output Control has transferred record "C" (because of
third READ command) into the processing area, the next group of records in
the alternate area (D, E, F) are moved into the storage area. Thus, when
the fourth READ command is given, record "D" will be placed into the pro-
cessing area.

For programming purposes, then, the user processes "grouped'" records as
if they appeared as single records on the file, The actual reading in and
internal transfer of records is automatically handled by the Input/Output Control.

"Batched'" Output Files

If an OUTPUT file is "batched,' the Input/Output Control accumulates
records within the computer wuntil a "batch' has been completed, at which
time it will be written out to tape. If, for example, records in the output
file are to appear in groups of five, the file area would appear as follows
after the fourth WRITE command had been executed for that file:

For processing- E;/;Q,/,/,/ Va4

(100)

batch
accumulation
area
(500)

OUTPUT FILE AREA

- 13 -

record 5) /

e — transferred

(record 1) into
" (record 2) ¢ transferred into
(record 3) ¢———transferred into
(record 4) €« transferred into

area

area

area

area

at first WRITE command
at second WRITE command
at third WRITE command

at fourth WRITE command

When the programmer issues the next WRLTE command, record "5" will be

transferred into the accumulation area and,

this group of records will be written out to the output file.

since the "batch” is now complete,

Here, again, the programmer releases records to the output file as if they
The accumulation of these records into groups of five is
automatically handled by the Input/Output Control. :

appeared singly.

Important Note Regarding Last Batch of File

If the last batch in an INPUT file does not contain the maximum number ofire—
cords, an EF symbol and three spaces must appear immediately following the last

record.

If, for example, records are grouped in batches of five, but there are only

two records in the last batch, the last batch must appear as follows:

BLOCK FORMAT

e ey
§//) Record |Recoxd (EF) sp sp spl/ '/,
% R S S
gap gap
RECORD FORMAT
‘/l;m " '; . . Yt e, B TT I MR ORI Y et {,'!A‘/A ‘/l
%%424< Record | Record >| (EF) SP sp 5214/§5%
¥ SRS A

gap

)
gap

For OUTPUT files, the Input/Output Control will automatically accommodate

an incomplete last batch by inserting an EF symbol and three spaces immediately after
Note that. this only occurs when a batched output file is "closed."

the last record.

- 14 -

II - I-0-CONIRQL

This part of the Input-Output Section is optional. When present it
supplies the compiler with rerun instruction (if any), and specifies files
which will use common memory areas (if any). Tt is written in the follow-
ing format:

1-0-CONTROL.

et

SAME AREA FOR file-name-3, file-name 4,

et

'_

- T ON file-name-1 . END OF REEL |
RERUN EVERY OF file-name-2
ON tape-number integer RECORDS

RERUN OPTLON

1.

2.

Only one RERUN statement may be given for a program.

Specifying RERUN in the Enviromment Division will bring about an
automatic intermuption in the running program at certain points.

As each interruption occurs a memory dump will be taken and placed.
on the tape or file specified by the user; the program then continues
until the next scheduled stop, and so on.

Should it become necessary to restart the program, the user brings
into memory the first block of the object program. (This block will
contain the rerun program.) A paper tape call message is then pre-
pared specifying the restart point desired and any new tape station
assignments. Based on this message, the rerun program then automat-
ically positions all input and output tapes, re-establishes memory,
and continues the program from the specified restart point.

Note: When a program is to be restarted the user will be advised,
‘via the monitor printer, as to what files and tape stations
are required for that rerun point. This permits restarting
programs at any future time.

If a file-name or tape-number immediately follows the word "RERUN,"
the rerun information during the running program will be stored on
this file or tape. If missing, the rerun information will be placed
on the file-name specified at the end of the statement.

Examples:

a) RERUN ON 7§ EVERY END OF REEL OF MASTER-FILE.

Information for each restart point will be stored on
tape 7§ as follows:

Tape Zﬂ

Restart 1 Restart 2 Restart 3 etc. g

- 15 -

b) RERUN ON NEW-MASTER~FILE EVERY END OF REEL OF MASTER-FILE.

When the first restart point is reached (i.e. end of first reel
of Master-File), the New-Master-File reel will be automatically
"closed" and the restart information will be placed following
“the ED symbol, This procedure will occur for all subsequent reels.

c) RERUN EVERY END OF REEL OF NEW-MASTER-FILE.

Rerun itnformation will be stored following the ED symbol
on each reel of the New-Master-File.

Note: If the user selects a FILE to receive the rerun
information, th;s file must

1. be 4 multiple~reel OUTPUT file.

2. have a beginning-tape-label so that the
Narrator can identify it as the rerun
file. 1In addition, both IDENTIFICATION
(or ED) and REEL-NUMBER must appear in
the label format.

3. since the rerun information will be placed
on the output file following the ED symbol,
sufficient magnetic tape must remain to
contain this information. Approximately
five feet of tape will be required for each
module of memory involved.

4. If rerun is determined by "END OF REEL," the user may specify an

OUTPUT file or a special work tape as the "receiver" of the rerun
information.

Lixamples:

a) RERUN ON NEW-MASTER-FILE EVERY END OF REEL OF MASTER-FILE.

b) RERUN'ON 70 EVERY END OF REFL OF MASTER-FILE.
If rerun is governed by a certain number of records, the "R'RUN ON
tape-number" option must be used. The tape nurber spe01f1eu must be a

"work" tape. This tape cannot be used elsewhere in the program, 1.e.,

no File Description or SELECT.
Example:

RERUN ON 1¢ EVERY 2% RECORDS OF MASTER-FILE.
The maximum number of records for restart points is 99999.

"Tape-number' is written as /?)’6, 34, 74, etc.

- 16 -~

AME _AREA OPTION

In order to conserve computer memory, the Narrator user may indicate
at compilation time that certain files are to share a common file area.
This is accomplished through the SAME AREA option. For example:

a) SAME AREA FOR RECEIPTS, DISBURSEMENTS.

b) SAME AREA FOR NEW-MASTER, INVENTORY, SALES-SUMMARY. SAME AREA FOR
RECEIPTS, DISBURSEMENTS, '

Notes:

1. A SAME statement must appear for each "set" or group of files that
are to share the same memory area. A number of SAME statements
may appear for a given program.

2. If two files are "batched" and are active at the same time (i.e.,
"opened"), they cannot share the same area.

3. Although all files designated in the SAME entry will share the same
file area in memory, they will NOT share s common alternate area.
This means, then, that any alternate areas established will not be
affected by this entry.

- 17 -~

Examble A: Master and New-lMaster file, both with alternate areas and not
"~ sharing the same area:

MASTER MASTER Mag
FILE AREA P ALTERNATE AREA Tape
(For processing) (For Simultaneous Reading)
NEW-MASTER NEW-MASTER [Mag
FILE AREA | o ALTERNATE AREA >\ Tape
(For processing) (For Simultaneous Writing)

Note: On the "non-hit" path (i.e., when the Master file does not have

to be processed) the programmer must first move the record from

the Master file area to the New-Master file area before writing.
For example:

MOVE MASTER TO NEW-MASTER.
WRITE NEW-MASTER.

(or)
WRITE NEW-MASTER FROM MASTER.

Example B: Master and New-Master file, both with alternate areas, but sharing

the same file area:

MASTER Mag
- ALTERNATE AREA Tape
l (For Simultaneous Reading)

MASTER/NEW-MASTER

FILE AREA
(For processing) NEW-MASTER Mag
ALTERNATE AREA Tape
?| (For Simultaneous Writing)

Note: On the '"non-hit'" path, the programmer may write the New-Master

record directly from the file area, vis:

WRITE NEW-MASTER.

-~ 18 -
S-A-M-P-L-E

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
OBJECT-COMPUTER. 5#1.
SPECIAL-NAMES. BREAKPOINT-5 ON STATUS 1S WEEKLY-SUMMARY .
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT MASTER, ASSIGN 2 TAPES, MULTIPLE REEL.
SELECT SALES, ASSIGN 1 TAPE,
SELECT REPORT, ASSIGN PRINTER.

EF
S-A-M~P-L-E

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
ORJECT-COMPUTER. 5#1, MEMORY ADDRESS #@5@@¢ THRU 137777.

SPECIAL-NAMES. BREAKPOINT-1 ON STATUS IS WEEKLY, BREAKPOINT-2 ON
STATUS IS MONTHLY.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT MASTER, ASSIGN 1 TAPE.

SELECT OPTIONAL CHANGES, ASSIGN TAPE 7#, RESERVE NO ALTERNATE
AREAS.,

SELECT SALES-REPORTS, ASSIGN 1 TAPE.
SELECT ADDITIONS, ASSIGN 1 TAPE, RESERVE NO ALTERNATE AREAS.
SELECT EXCEPTIONS, ASSIGN PRINTER.
I-O0-CONTROL.
RERUN ON 1f EVERY 15¢¢ RECORDS OF MASTER.
SAME AREA ADDITIONS, CHANGES.

EF

- 19 -

DATA DIVISION

In the third division of the Narrator input -- the DATA DIVISION -- the
user describes in detall the files and records that the object program will
manipulate. In addition, the user also defines in this division working
storage areas and constants required by the program. This information appears
in the following order:

DATA DIVISION.
FILE SECTION.
VWORKING-STORAGE SECTION, (Optional)
CONSTANT SECTION. (optional)

EF

The programmer should bear in mind that the generated machine-coded program
must process records, data fields, ete., in strict adherence to the description
of these areas as specified in the DATA DIVISION. Data descriptions and the
organization of records,therefore, should be undertaken in a thorough manner if
maximum efficiency in the running program is desired. For'example, unnecessary :
editing requirements -- while not affecting the correctness of the object pro-
gram - will, nevertheless, generate additional instructions in the object program.

A. EILE SECTION

The Narrator user may describe up to nineteen (19) individual input or out-
put files within the File Section.

Each file is described in two parts., The first part provides the Narrator
with information regarding the structure of the records within the file (i.e.,
" block or message format), tape labeling requirements, and a listing of the names
of individual records that appear in the file. The second part then describes
each record in complete detail.

Example:
FILE SECTION.
FD file-name.eecesoes (file description)
1 record-name..... (record descriptions)

1l record~-name.....

FD file-name...eeee.o. (file description)
1 record~name..... (record description)
FD file-name....ccees (file description)

1 record-name.....

1 record-name. (record descriptions)

(ete.)

- 20 -

Format for the File Description entry:

FD file-name ERECORDING MODE 1S BLOCE]

E BLOCK CONTAINS integer-1 RECORDS; RECORD CONTAINS [J’.nteger-Z _’133
integer-3 CH.ARAC.TERﬁ .

STANDARD _ '
+ LABEL RECORDS ARE BEGINNING-TAPE-LABEL E:ENDING-TAPE—LABEE]
' OMITTED :

=

D , _
: VALUE OF == : IS 1literal ACTIVE~TIME IS literal
T {IDENTIFICATION} a I . E——-—-—-—-—-—-—- l

; DATA RECORDS ARE record-name-1 [z record-name 2, etc......:] .

FIf identifies the beginning of a file description entry and precedes
each file-name. Clauses that follow the file-name are optional in many
cases. For further details, see the individual explanation for each clause.

The File Description entry is terminated by a period.

RECORD ING MODE

ERECORDING MODE IS _ggo_g&]

Records may appear within files in one of two modes - "message"
format or "block" format. "RECORDING MODE IS BLOCK" informs the
Narrator that the records appear in "block" format, i.e., without start
and end message symbols. For example:

Block format, (single records)
W" e - s “;;:,'_
e A : i B el C D
o T e e >

NS

Block format, (batched records)

When this clause is absent the Narratdr assumes that all records
(singly or batched) appear in message format. For example:

Message format (single records)

s 2 7 7z *%
, //< A > 1}/J< B >] < G > ¢225 < D >

Message format (batched records)

s s ‘ ik
/?A< A >l B >j< C >d< D >l< E =< F 3=

‘ol j B .m:'v.&.d:f{:

- 21 -

Note:

An EF symbol and three spaces has special significance for the
Input/Output Control. These characters, therefore, cannot appear as
the first four characters in any record that is in "block" format.

BLOCK CONTAINS

i; BLOCK CONTAINS integer-l RECORDS; RECORD CONTAINS [}nteger—2 Eé]

R g

integer~3 CHARACTERS

This clause is used to indicate that records in the file are grouped
(batched). For example:

>
vs)
Q
w]
\\ 1

"Integer-1" specifies the number of records appearing in the batch.
"Integer-3" provides the maximum record size. If record sizes vary within
the batch, records MUST appear in message format. In this case, "integer-2"
provides the minimum record size and "integer-3" provides the maximum record size.

The processing of batched records is automatically accommodated by
the Input/Output Control during object program running time. For programming
purposes, the Narrator user processes records as if they appeared in the
files as single records. See page 13 for procedure to be followed when
last "batch' doe& not contain the specified number of records.

Notes:

1. The maximum number of records that may appear within a
"batch"” is 99; the maximum size record in any batch is 9999 characters.

2. Start and End Message Symbols are not to be included in the record size.
EXAMPLES

a) ; BLOCK CONTAINS 1% RECORDS; RECORD CONTAINS 8¢ CHARAGTERS
b) ; BLOCK CONTAINS 5 RECORDS; RECORD CONTAINS 65 TO 126 CHARACTERS

LABEL RECORDS

= (SIANDARD — —_
; LABEL RECORDS ARE | BEGINNING-TAPE-LABEL 1, ENDING—TAPE—LAB?E;J
(| QMITTD L

This entry épecifies what type of labels are associated with the file and
must be present in every File Description. (See discussion on Labels, page 126.)

As indicated in the format, a beginning label may be specified without an
end label, but the reverse is not true.®

Examples:

a) ; LABEL RECORDS ARE OMITTED
b) ; LABEL RECORDS ARE STANDARD
c) ; LABEL RECORDS ARE BEGINNING-TAPE-LABZL

- 22 -

VALUE

° i9]_:.I_)
EV——-—-"L”B OoF {IDENTIFICATION} 18 1“'91”39

If the file being described contains a beginning tape label, the user

must specify the value that will appear as the IDENTIFICATION (or ID) item
in that label. If tape labels are omitted, this clause is not required.

When STANDARD labels are used the literal in this clause must be
eight (8) characters. For example:

; VALUE OF ID is "MASTER++"
; VALUE OF ID is "TRANS++¥"

For user-designed labels, the size of the literal may range from 1 to
12 characters. However, all files in the program must contain the same size
ID entry. For example:

; VALUE OF ID IS "MAST"
;7 VALUE OF ID IS "TRAN"
3+ VALUE OF ID IS "E+++"

ACTIVE~TIME
[E:ACTIVE-TIME Is 1itera£]

This entry provides the Narrator with information for computing the
"purge"” or "obsolete' date for OUTPUT files. This clause must appear when
the file being described is an OUTPUT file which has a PURGE-DATE item in
its beginning tape label.

At program running time, the number of DAYS -- specified by the literal --
will be automatically added to today's date to determine the purge date for
the beginning tape label. The literal may range in size from 1 to 4 characters
and is surrounded by quotes.

For purposes of computing the purge date, January has 31 days, February
has 28, March has 31, April has 30, etc.' Thus, if the active time is "5",
the purge date computed by the program on May 30, 1961, would be 060461; on
June 30, 1961, the computed date would be 07056l.

Examples:

; ACTIVE TIME IS "eg"
i ACTIVE TIME IS "a"

- 23 -

DATA RECORDS

i DATA RECORDS ARE record-name—1 s record-name-2, etc....l .

This clause is required in all File Descriptions and must appear as
the last information in the File Description. It is used by the Narrator
to cross-reference the data records associated with the file. '

The presence of more than one record-name indicates that the file contains
more than one type of data record. These records may vary in size, have
different formats, and need bear little relationship to one another., Similarly,
the order in which they are listed is not significant.

When a file contains more than one type of data record, it must be
remembered that all records within the file will share the same computer memory
area. Thus, if the TRANSACTION-FILE contains both RECEIPTS and DISBURSEMENTS
records, a read command will bring the next "logical record into the Transaction-
File area. It must be determined through programming, however, whether this is
a RECEIPTS record or a DISBURSEMENTS record. (When the record type has been
established, the programmer may then refer to data fields within that record
by their appropriate names.)

Examples:
a) j DATA RECORDS ARE TRANSACTIONS.
b) ; DATA RECORDS ARE RECEIPTS, DISBURSEMENTS, CHANGES.

NOTES:

When the first file includes record entries defining tape labels, these
entries are not considered as data records, and their names must not appear
in this clause.

A maximum of twenty-six (26) different type Records may be described for
each file within the program.

- 24 -

Introduction

"Record” is a generic name that identifies a logical group of information
units pertaining to the same subject, area, individual, etc. For example,
we can specify "PAYROLL-RECORD" as the generic name that identifies the
following units of information:

EMPLOYEE~NAME
DEPARTMENT
PAYROLL-RECORD 4 HOURS-WORKED
HOURLY-RATE
NET-PAY

Thus, when we specify "PAYROLL-RECORD" we are not referring to a single
unit of information but, more accurately, to a group of units (often called
"items'") that make up the PAYROLL-RECORD.

For data processing purposes, each PAYROLL-RECORD can be considered as
a "logical" record within the PAYROLL-FILE, and in the case of magnetic tape,
would appear as follows:
PAYROLL-FILE

~] PAYROLL_RECORDJ- < PAYROLL-RECORD>E-< PAYROLL-RECORD>FZI< PAYROLL-RECORDZ 4

1:_.inter—record gap

The programmer, then, may process this file in the following manner:

1. READ PAYROLL-FILE. -~ bring next "logical" record from magnetic
tape into the computer.

2. MULTIPLY HOURLY-RATE BY HOURS GIVING GROSS-PAY. compute employee’s
3. SUBTRACT DEDUCTIONS FROM GROSS-PAY. net pay for this
, record.

4. WRITE PAYROLL-RECORD, ~- write out updated record to output file.

5. GO TO 1. -- bring in next record and repeat cycle.

Generally, each "logical” record within the file is carried as a "physical™
record on tape, i.e., preceded and followed by an inter-record gap. Thus, when
the programmer requests a record from the file, one physical record (or one
logical record) is brought into the computer. Another method, however, is to

group a number of "logical' records into one "physical' record; this is called
"batching."

PAYROLL-FILE
o~ Ta . - d <
[|<PAYROLL-RECORD><PAYROLL-RECORD>| .| <PAYROL1,-RECORD><PAYROLL-RECORD N

ey e

inter-record gap-J¢

In this case, the prbgrammer has grouped or batched his records. Thus,
when the computer executes a read command for this file, a number of "logical"
records will be entered, instead of only one. (When record "batching" is employed,

- 25 -

the Narrator Input/Output Control will place one '"logical" record into the
file area for each READ command - see page 108)

Describing the Organization of Records

Individual information units within a record must, of course, be organized
and assigned a specific sequence in order to properly locate and process these
items. This organization, along with a specific description of each field, must
be provided by individual data record entries.

The Narrator user may organize records in dther a“fixed- field‘format, a

“variable" format, or a combination of both. The fixed-field method is no doubt
familiar to most of us. In this system, a unit of information, such as employee-
name, is assigned a definite area within the record -~ columns 10 through 35, for
instance, in a punched card. Another method -- one used to great advantage in
the 501 system -- is to organize data in sequence, but not in fixed-field format.
This treats varisble data in its natural form and obviates carrying redundant
- or extra characters for positioning. This accomplished through the use of the

Ttem Separator, SM and EM symbols » which are explained in other 501 publications.

- 26 -

FORMAT FOR A DATA RECORD ENTRY

Qotiion.l:
Level-number data-name ; SIZE IS integer-1 éé] integer-2 CHARACTERS
AN
. ALPHABETIC
i CLASS IS ALPHANUMERIC
NUMERIC

ESIGNEEl EPOINT LOGATION IS LEFT integer-3 PLAC‘Eﬂ

LEFT

o

; JUSTIFIED

RIGHT (

————]

VALUE IS 1literal

Y

PLCTURE IS (any combination of allowable characters)
' maximum of 18

ZERO SUPPRESS
CHECK PROTECT F,EAviNG integer-4 PLACEE]

FLOAT DOLLAR SIGN

E BLANK WHEN ZERQ

E:bCCURS integer-5'TIM%§J -

Option 2.

Level-number record-name-1; COPY record-name-z ,

- 27 -

Level-number

A 501 Narrator Record Description consists of a number of entries,
each entry defining the characteristics of a particular unit of data
within the record. To differentiate between records and units of in-
information that appear within records, the concept of '"level number'" has
been introduced. There are five level numbers:

Level No. Function

1 defines the largest element of data, i.e., a logical
record. ~
2 distinguishes a particular unit of information within

the record, i.e., an item.

3 denotes that this information is part of an item,
i.e., a sub-item. :

77 a special level number assigned to non-
contiguous constants and working-storage areas ~--

see Constant and Working-Storage Sections.

88 specifies a "condition-name" that the user assigns to a value
that may appear in the préceding level 2, 3 or 77 entry

To clarify this concept of level numbers, let us take a hypothetical
file that contains two types of records, organized as follows:

SHIPPING-ORDER RECORD
< OCodeODateOStock»NumberOQuantity-Unit~PricéOAmount >
BACK~ORDER RECORD

< eCodeeWarehousee Stock-Numbe reQuantity >

In defining these records by Record Description entries, the following
hierarchical structure is followed:

1 SHIPPING-ORDER 1 BACK-ORDER

2 CODE 2 CODE

2 DATE 2 WAREHOUSE
3 MONTH : 2 STOCK-NUMBER
3 DAY 2 QUANTITY
3 YEAR

2 STOCK -NUMBER

2 QUANTITY

2 UNIT-PRICE

2 AMOUNT

This example, of course, does not show the complete entries, but only
the relationship of level-numbers. As indicated, level-l entries pertain
to the overall record; level-2 entries pertain to the items that appear
within a record; and level-3 entries provide a further breakdown of level-2
entries.

- 28 -

Sub-Items (Level-3

Sub-items are designated by the level number "3." For example, assume
that a bank assigns an B-character customer account number in which the first
two characters signify the branch office, and the third character identifies:

the type of account. This item may be sub-divided in the record entry as
follows:

2 ACCOUNT-NUMBER; SIZE IS 8.
3 BRANCH; SIZE IS 2,
3 TYPE; SIZE IS 1.
3 FILLER; SIZE IS 5.

When an item is sub-divided the entire item must be broken down into
sub-items, If sub-item addressing is not required for part of the field,
the data name '"'filler" should be used. (Note that FILLER cannot be used

as a data-name within a procedural statement- see note 2 under Data-name,
page 30.) :

Condition-Names (Level 88)

Let us assume that the item, warehouse, contains
« one character, and that the warehouse location depends on*
which’character (i.e., value) is present. For example: if an "A" appears,
the Boston warehouse is indicated; "B" pertains to the New York warehouse,
and so on. This item then is considered as a '"conditional-variable" -= one
which may assume any condition that the user names and defines.

Example : -

1 BACK-ORDER; SIZE IS 15,
2 WAREHOUSE; SIZE IS 1.
88 BOSTON, VALUE IS "A",
88 NEW-YORK, VALUE IS "B",
88 DALLAS, VALUE IS "C".
88 LOS-ANGELES, VALUE IS "D".
2 STOCK-NUMBER; SIZE IS 8.
2 QUANTITY; SIZE IS 6.

In this example the Narrator is|told that the value in the record
for the condition-name DALLAS is "C." In the procedural division the programmer
writes the following statement: IF DALLAS GO TO 116, Because DALLAS is &
condition-name, the Narrator will look for its value (in this case,”C" and
will then comparethis value to the Warehouse item in the Back-Order record.
If the Warehouse item contains a 'C" the program will transfer to line 116;
if not, the next statement will be performed.

To indicate that we are defining a condition-name (i.e., qualifying

the preceding information and not introducing new data) the following format
18 used for condition-names:

a) level-number —-- must be 88,

b) data-name -- follows usual data-name rules (see DATA-NAME)

(conttd)

- 29 ~

c) VALUE IS literal -- the exact "value" that will appear in
the record for this condition-name is specified by the
"literal." Literals used in this clause may not exceed 16
characters and asterisks or slant symbols may not be used.

When describing the value, the programmer ignores the ISS
symbol (1f present) and only describes the data appearlng
in the field. (See VALUE page 37)

d) Condition-names may only be used within IF statements 1n the
PROCEDURE DIVISION.

Only this information (i.e., LEVEL, NAME, VALUE) can appear for these
condition-name entries. '

- 30 -

Data-name

The Narrator user may assign data-names (up to 30 characters, including
hyphens) to identify a file, record, item, sub-item, condition,
working storage area or constant.

Data-names must be unique for all file-names, record-names (level-1), and
level-77 data fields. Data-names appearing within a record (level-2,

level-3 and level-88) need only be unique within the same record description.
For example: '

1 MASTER~-RECORD 1 TRANSACTION-RECORD
2 CUSTOMER-AGCT 2 CUSTOMER-ACCT
2 ADDRESS 2 ADDRESS
2 CILTY-STATE 2 CITY-STATE
2 AMOUNT 2 AMOUNT
2 DATE 2 DATE
3 MONTH 3 MONTH
3 DAY 3 DAY
3 YEAR © 3 YEAR

Qualifying data-names

When the user wishes to refer to a non-unique data-name (level 2, 3 or 88)
~he must qualify that name by the record in which it appears. This
is accomplished by following the data-name by the word OF or IN, and the
name of the record in which it appears. For example:

?

MOVE AMOUNT OF MASTER-RECORD TO BALANCE.
MOVE AMOUNT OF TRANSACTION-RECORD TO BALANCE.

IF MONTH IN MASTER-RECORD EQUALS
MONTH IN TRANSACTION RECORD GO TO 41f.

1. Records may contain up to 999 data fields; this includes all

level-2 and level-3 entries, but does not include condition-name
entries (level-88),.

2. The word "FILLER" may be used as a data-name in a record de-
scription to define areas whose contents are not referenced within
the program. Because of this special use, a FILLER area cannot
be addressed by any procedural statement.

Example:

1 INVENTORY; SIZE IS 57; CLASS NUMERIC.
2 STOCK-NUMBER; SIZE IS 7.
2 FILLER; SIZE IS 14.
2 QUANTITY~ON-HAND; SIZE 1{.
2 FILLER; SIZE IS 3#.

3. Theuse of the COPY option (see page 51) always produces non-unique
data-names.

- 31 -

3 S1ZE IS [E;tegerml Igj integer-2 CHARACTERS.

All record entries, except condition-names.(1eve1~882,must contain
a SIZE clause, (If the data-name varies in size, or if the data-name does

not always appear in the record, the integer-1 T0 integer-2 notation must be
used.) ‘

Level-l entries:

. The maximum size of a level-1 entry:(complete record) is 9999 characters.
Record size is determined 'by totaling the maximum size of all level-2
entries within the record, but NOT including start and end message symbols.

The maximum size of a level-2 entry (item) is 999 characters., ‘The .
size MUST include the 1SS, if Bresent. (The total of the level-2 entries
must of course agree w1th the maximum size of the level-l entry with which
they are associated.)

level-3 entries;

The size of a level-3 entry must a) be fixed,and b) must NOT include
an ISS. Therefore, if the item contains an ISS symbol, the total of the
level-3 entries will be one less than the item size, If an ISS is not
associated with the item, the total of the level-3 entries will agree with
the size of the item. For example:

(with ISS) : (without ISS)

2 DATE; SIZE 7. 2 DATE; SIZE 6.
3 MONTH; SIZE 2. . 3 MONTH; SIZE 2.
3 DAY; SIZE 2. 3 DAY; SIZE 2.
3 YEAR; SIZE 2. 3 YEAR; SIZE 2.

If a level-3 entry is associated with a level-2 entry that is non-FAA
(i.e., not fixed or always appearing), the level-3 entry cannot be referenced
in the variable area. (The item, however, may be moved to a fixed area and
level-3 items may then be directly addressed.)

- 32 -

Level-88 entries:

Level-88 (condition-names) entries do not include SIZE clauses since
the size is determined from the entry with which it is associated.

EXAMPLE :

1 REQUISITIONS; SIZE 19 TO 23; CLASS NUMERIC.
2 STOCK-NUMBER; SIZE 8.
2 DATE; SIZE 7.
3 MONTH; SIZE 2.
3 DAY; SIZE 2.
3 YEAR; SIZE 2.
2 CODE; SIZE 2.
88 RECEIPT; VALUE IS "R".
88 WITHDRAWAL; VALUE IS '"W".
2 QUANTITY; SIZE 2 TO 6.

When describing the value, the programmer ignores the ISS symbol (if

present) and only describes the Jata that will appear in the field for that
condition-name.

- 33 .

CLASS,
AN
ALPHABETIC
; CLASS IS 4 NUMERIC
ALPHANUMERIC’
This clause defines the type of data that will appear in the field

being described. Note that AN is an accepted abbreviation for ALPHANUMERIC.
The CLASS of a data field is determined in the following manner:
1. NUMERIC - field contains the digits 0-9 (with or without sign)

Examples: ol2456-
° 4287

2. ALPHABETIC -~ field does NQT contain a numeric character.

Examples: ¢JOHN-JONES-m-—
* NEW-YORK-CITY,-N.Y.
eDESK-MODEL(A)

3. ALPHANUMERIC - a) field contains alphabetic and numeric characters

Examples: o4@872A
eAPRIL-25-1965

b) field contains numerics and editing symbols
(See exception below)

Examples: 0$18.75
el1-15-61

Exception: 1If theuser is describing a field that will
receive numeric data, AND EDITING IS 'TO BE PERFORMED ON
THAT FIELD, the field should be defined as NUMERIC.
("Editing" includes zero-suppression, check protect, float
dollar sign, blank when zero, and insertion of decimal
points, dollar signs and commas.)

A CLASS clause must appear for every level-1l entry; other levels may or
may not require a class clause as explained below:

Level-1 defined as NUMERIC

When a level-l entry has been defined as NUMERIC all data entries
in that record are automatically classed as numeric, and cannot be
redefined otherwise.

Example :

1 MASTER; SIZE 27; CLASS NUMERIC.
2 ACCOUNT-NO; SIZE 14.
2 AREA; SIZE 3.
2 AMOUNT; SIZE 14.

- 34 -

Level-1 defined as ALPHABETIC

When the level-1 entry has been defined as ALPHABETIC all data entries
within that record are automatically classed as alphabetic, and cannot
be redefined otherwise.

Example :

1 CUSTOMER-RECORD; SIZE 21 'T0 47; CLASS ALPHABETIC.
2 CODE; SIZE 3.
2 NAME; SIZE 14 10 34.
2 CITY; SIZE 8 TO 1l4.

Level-l defined as ALPHANUMERIC

When a level-1 entry is defined as ALPHANUMERIC, any or all of the
associated level-2 and level-3 entries may be specifically designated
as being numeric or alphabetic. Note, however, that once a class has
been assigned, all succeeding entries will be assigned the game class
until another class is specified.

For example:

1 PAYROLL-RECORD; SIZE 41 TO 68; CLASS AN.
2 EMPLOYEE-NO; SIZE 6; CLASS NUMERIC.

DIVISION; SIZE 2.

HOURS-WORKED; SIZE 3.

HOURLY-RATE; SIZE 4.

NAME; SIZE 1¢ TO 25; CLASS AN.

ADDRESS; SIZE 8 TO16.

CITY-STATE; SIZE 8 TO 12.

NNMNMDDNMDNOND

In this example DIVISION, HOURS-WORKED and HOURLY-RATE will be classified
as numeric, since the last specific class entry was numeric. When
"alphanumeric" was assigned to NAME, the succeeding items (ADDRESS and
CITY-STATE) were classified as alphanumeric also.

Level-3 entries

Classes assigned to level-3 entries cannot contradict the class for the
level-2 entry with which they are associated. For example, the following
is INCORRECT:

2 ACCOUNT—NO;‘SIZE 5; CLASS NUMERIC.
3 BRANCH; SIZE 2.
3 OFFICE; SIZE 2; CLASS ALPHABETIC.

NOTE

During compilation, the classes of all operands involved in arithmetic
operations are verified for class compatability. If the classes are
oPposed (i.e., if all fields are not numeric) an error will be indicated. |
$1milar1y, an error print-out will also occur if a comparison or move operation |
1s attempted which involves fields that are opposite in nature. It would be |
illegal, for example, to move or compare numeric fields to alphabetic fields.
(See rules governing ADD, IF and MOVE verbs.) '

- 35 -

SIGNED

E SIGNED:(‘

The SIGNED clause is only used in conjunction with pumeriec data. This
clause specifies that the numeric data being described contains a sign
located in the least significant position of the field (RHE).

wWhen signs are present they must be reflected as a character location in
the SIZE clause. In addition, if the field structure is further described by
a PICTURE clause, the sign position must also be reflected in the PICTURE.

A numeric field containing four characters, a sign location, and an ISS
would be defined as follows:

2 AMOUNT; SIZE IS 6; CLASS NUMERIC; SIGNED.

ol XIXEX XS

Note that the sign appears as the least significant character within the

field. 1If an item (level-2) is broken down into sub-items (level-3), the sign
location is a character position within the last sub-item described. For example:

2 TOTAL-EXPENSE; SIZE 8; CLASS NUMERIC; SIGNED
3 THOUSANDS; SIZE 3.
3 HUNDREDS; SIZE 4.

[l x{xix]x| x[x]s]
e g e o S

The Total-Expense field could also be described as follows:

2 TOTAL-EXPENSE; SIZE 8; CLASS NUMERIC; SIGNED.
3 THOUSANDS; SIZE 3.
3 HUNDREDS; SIZE 3.
3 FILLER; SIZE 1.

- 36 -

EQINT LOCATION

; POINT LOCATION IS LEFT integer PLACES

This clause sgpecifies the positién of the assumed decimal point (to the left
of the least significant digit)for numerjc data. An actual decimal point may
not be defined by this clause; this is accomplished by the PICTURE.

g) .
b Iﬁfeger" .is one numeric character, ranging from 1 to 9; the value "f#'' cannot
e used.

Examples:

2 BALANCE; SIZE 8; CLASS NUMERIC; SIGNED; POINT LEFT 2.

BALANCE FIELD

4lo]2]1] 514 2]sign]
: gn |

Ll Assumed decimal point.

2 STATE-TAX; SIZE 4; CLASS NUMERIC; POINT LEFT 3.

STATE-TAX FIELD

]

h

1L——-—~Aésumed decimal point.

NOTE :
The POINT LOCATION clause can only appear for NUMERIC fields.

- 37 -

YALUE

;7 YALUE IS literal

The "VALUE" clause 1s used to describe the exact "value" that will appear

for a condition-name (level-88)., 'This clause is not used with level-1l, 2 or 3
entries.

The "literal' used in this clause may not exceed 16 alphanumeric characters;
a quote symbol, slant or asterisk cannot appear as one of the 16 characters.

Example A;

2 TRANSACTION-CODE; SIZE 3.
88 WITHDRAWAL; VALUE IS "14".
88 DEPOSIT; VALUE IS "26".

(Note that when describing the value, ISS symbols are ignored,
and only the actual data is shown in the literal.)

Example B:

2 CUSTOMER-CODE; SIZE 8; CLASS NUMERIC.
3 FILLER; SIZE 5.
3 DISTRICT-OFFICE; SIZE 2.
88 CHICAGO; VALUE IS "42",
88 ATLANTA; VALUE IS "35",
88 BOSTON; VALUE IS "e62".
88 NEW-YORK; VALUE IS "18",
88 LOS-ANGELES; VALUE 18 "22',
88 DALLAS; VALUE IS "17".

- 38 -

JUSTIFIED

L e

- (LEFT
H JQSIIELED RIGHT

T

This option is only required when STANDARD rules of positioning are
NOT desired.

"Justification" is necessary whenever the “net" size of a sending field
is less than the '"net'size of a receiving area. This situation arises in
the following cases:

a) moving a variable field to a fixed field
b) moving a smaller fixed field to a larger fixed field

c) when a field receives the result of an arithmetic operation.

"Justification” simply means the manner in which data will be positioned
in a receiving field -- that is, will the data to be placed into the area
starting at the left-hand end, or at the right-hand end. If justification is
necessary, the remainder of the area will be "padded,” i.e., filled with
Zeros or spaces,

Standard Justification
The "standard" rules for positioning within a field are:

A. If the "receiving” field is NUMERIC, the data will be right-
justified with zero-fill. For example:

Lel2lolalgli]ale]

BERERRER

B. If the "receiving" field is ALPHABETIC or ALPHANUMERIC, data
will be left-justified, with space-fill. For example:

o [7jole{-fgjoiniElS|-|-1- |- |- |-

le Ju]alr|rlvl -5 ofuinls[o]n]-[-]

Non-Standard Justification

If JUSTIFIED RIGHT is specified for an ALPHABETIC or AN receiving field,
data is placed into this field with space-fill to the left. For example:

[E- T Tl =[5 TolnTzls)

When JUSTIFIED LEFT is specified for a NUMERIC receiving field, data is placed
into this field with zero-£fill to the right. For example:

[J1]a qﬁjglaiﬂlﬂl

- 39 -

Note that when data is moved to a numeric field that is specified
as "JUSTIFIED LEFT," the point location in the receiving field will be
ignored, and the data will be placed into the receiving area beginning
at the left-hand end.

NOTES :

1. When "standard" justification is desired the JUSTIFIED

2.

clause is not required.

Justification is performed when data is moved into an area, or
when the area receives the result of an arithmetic operation.

Note that the type of justification will always be determined
by the "receiving" field description. Thus, depending on the
"contents" of the sending field, illogical results may occur.
For example:

Sending (ALPHANUMERIC) Receiving (NUMERIC)

e iloin[els > [+ Ie]elelalsfo|n]els]
Sending (ALPHANUMERIC) Receiving (ALPHABETIC)

LIl 1als) >lefilotsfafs |- |- 1]

- Sending (NUMERIC "edited') Receiving (NUMERIC)

5151 s]al > Flele 551 18]

Sending (NUMERIC "edited") Receiving (NUMERIC)

LLLRRE] > L EEED

- 40 -

PICTURE

e

I saiaal

; PICTURE IS (any combination of allowable characters)
maximum of 18

This clause can only be used with a level-2 or level-3 entry, or with a
level-77 working storage entry.

The PICTURE clause has two functions:

1) To provide a pictorial description of ALFHABETIC or
ALPHANUMERIC fields. For example:

PICTURE IS KAAAABBAA
PICTURE 1S K999AA

When used with ALPHABETIC or ALPHANUMERIC fields, then,
the PICTURE clause is for programmer reference only; it
does not create coding in the object program, nor does

it bring about any modification or examination of data

moved into the field.)

2) To specify editing functions that are to be performed on a
NUMERIC field when numeric data is moved into that field,
or when that field receives the result of an arithmetic
operation. For example: -

PICTURE IS K$99,999.99S
PICTURE IS K$9,999BB99

Unlike the first function, the use of the PICTURE clause
with NUMERIC fields does produce object-program coding.
That is, dollar signs, commas, decimal points, blanks, etc.
are physically inserted into the field when numeric data
is moved into it.

The maximum number of characters that may appear in the PICTURE clause is
18. The allowable characters and their meanings are as follows:

Character Significance
9 a numeric character.
J/] a position into which a zero is to be inserted.
B : a position into which a space is to be inserted.
S a position into which a positive or negative sign is to be stored.
$ a position where a dollar sign is to be inserted. (see EDITING).

a position where am actual decimal point is to be inserted.
(see EDITING).. Note that a decimal point cannot be the last
character in the PICTURE.

) a position where a comma is to be inserted. (see EDITING).
an alphabetic character.
an alphanumeric character.

the first position in the field (LHE) is NOT an Item Separator (ISS).

TV

thq first position in the field (LHE) is an Item Separator.
(When an ISS appears in the field, this position must also be
reflected in the SIZE clause.)

- 41 -

AUTOMATIC EDITING OF NUMERIC FIELDS

A numeric field is considered to be automatically "edited" when the user
desires the insertion of one or more of the following characters:

$ dollar sign

, comma

. decimal point
B blank (space)
g zero

When these characters are desired, the user must describe the field by a
PICTURE clause. For example:

SIZE 1S 6; PICTURE IS K99B99

SIZE 1S 1#; PICTURE IS K$9,999.99
SIZE IS 11; PICTURE IS K$9,999.¢4gS
SIZE IS 9; PICTURE IS J$9,999.99

Note that the SIZE clause must include the total number of characters in
the field, and that the presence (K) or absence (J) of an ISS must be indicated
by the first character. ‘ '

RECORDS THAT APPEAR IN MESSAGE FORMAT‘

When the user describes a record as being in MESSAGE FORMAT, the Narrator
will assume that ALL items (level-2) within that record contain an ISS symbol.
Thus, if the size of an item is 8, it will be assumed that the field contains
an ISS and seven characters of data.

If a level-2 entry within the message does NOT contain an ISS, the programmer
must make this known to the Narrator by specifying that:

PICTURE IS J.

Therefore, if the item size is 8, and PICTURE IS J is specified, it will
be assumed that the field contains eight characters of data.

When a PICTURE is used with a level-3 entry, the first character in the
PICTURE should always be "J," because level-3 entries cannot contain ISS symbols.

RECORDS TIUAT APPEAR IN BLOCK FORMAT

When a record appears in block format, 15S sywbols are usually not present;
and the Narrator will assume that ALL items (level-2) within that record appear
without ISS symbols. Therefore, size is 8 would denote that the field contains
eight characters of data.

I# any item contains an ISS symbol, the user must indicate this by specifying:
PICTURE IS K. Thus, SIZE 8; PICTURE IS K would specify that this field
contains an ISS and seven characters of data.

- 42 -

Alternate Method For Expressing Characters Within Field

When using the PICTURE clause, the programmer may indicate by a decimal
number -- enclosed by parenthesis -- that the preceding character appears in
the field "n" times. For example, if the field contains six numerics followed
by two alphabetics, any of the following examples would be permissable:

a) PICIURE IS J999999AA
b) PICTIURE IS J9(6)AA
¢) PICTURE IS J9(6)A(2)

S8ince a maximum of 18 characters may only appear in the PICTURE clausge;
this option is especially useful when the field contains more than aelghteen
character locations, TFor example:

PICTIURE IS JA(14)999999BB

GENERAL COMMENTS REGARDING USE OF PLCTURE CLAUSE

1. PICTURE clauses can only be used with level-2 or level-3 entries, or
with a level-77 working storage area.

2. When automatic editing is desired, the receiving field must be
NUMERIC and the data in the sending area is considered to be
NUMERIC without editing symbols.

Example :
Sending (AN) Receiving (NUMERIC; PICTURE IS8
J$999,999.99)
alalafsf2]1|7]7 }——m s islalalal, I5]2]1].17]7

If editing symbols appear within the sending field, editing will
be attempted on the data appearing in the field and the result
will be unpredictable.

Example :

Sending NUMERIC (EDITED) Receiving (NUMERIC; PICIURE I3
J$999,999.99)

|8 1-{-1-1-{-1s]5} > [sfs [-[-LI--1- 1[5

Sending (AN) ‘Receiving (NUMERIC; PICTURE IS
J$999,999,99)

BNEREREPE S[sIale[7[] elal5].12]2|

- 43 -

3. When the PICTURE contains a decimalApoint,a POINT LOCATION
clause must also appear for that entry. The position of the
decimal peint should be the same in both clauses:

CORREGCT

Sending; POINT LEFT 2 Receiving; POINT LEFT 2; PICTURE J$9.99

7|1]4 > | $)7].11]s

1;.sus.sumed
decimal
point

INCORRECT

Sending; POINT LEFT 2 Receiving; PICTURE J$9.99
T ,
7(1i4 —3 | $|0].10{7

3

"assumed
decimal
polint

Note: 1In this example, the receiving field did not have
a POINT LOCATION clause, thus, the move operation con-
sidered the receiving field as consisting of a whole
number without decimal locations. ("Editing", then,

was applied to the integral digits transferred.)

4. When the PICTURE contains a "sign" (S) the SIGNED clause must
also appear for that entry.

5. The SIZE clause must reflect all locations shown in the PICTURE
clause. For example:

2 AMOUNT; SIZE 11; PICTURE IS J$99,999B99S.

2 BALANCE; SIZE 12; PICTURE IS K$99,999B99S.
2 BALANCE; SIZE 9; PICTURE IS J9(6).99.

- 44 -

)

EDITING

Function: To specify special editing operations that the user wishes performed

rm" mmenigtsbog

ZERO SUPPRESS P
+ { CHEGK PROTECT EEAVING integer PLACEE} ELANK WHEN ZERO |
? (FLOAT DOLLAR SIGN . I

on a field when data is moved into it, or when the field receives the

result of a decimal operation. (Note that the editing function can
only be specified for NUMERIC fields.)

ZERQ SUPPRESS

When ZERO SUPPRESS is specified, all leading '"zeros" up to the decimal

point (real or assumed) will be replaced by spaces. If the LEAVING option is
included, the designated number of integer places (to the left of the decimal
point) will not be checked for zeros.

A,

B.

C.

D.

Examplest

Sending Field Receiving Field
AN AV AV AN AN siglolefolole]

Sending Field Receiving Field (ZERO SUPPRESS)

(Bl P[Pl 6l—>[-T-T-[-T-T¢]

Sending Field Receiving Field (ZERO SUPPRESS LEAVING 2 PLACES)
glejole]|o] 6> - [-[-[-12]6]

Sending Field (POINT LEFT 2) Receiving Field (POINT LEFT 2% ZERO SUPPRESS
LEAVING 2 PLACES)

pglojole! glel 5| -] -j0O[0O[F]6]
/ .
-Assumed lAssumed
decimal decimal
point point

CHECK PROTECT

This option is identical to ZERO SUPPRESS except that leading zeros will

be replaced by. "asterisks" instead of "spacesl’l] For example:

Sending Field Receiving Field (GHECK PROTECT)

[eJe (o] o5 [B]3][2y]e]*] *[* 57 087 3 2]

Sending Field Réceiving Field (PICTURE 1S K$9999999 CHECK PROTECT)

(Tolg (g s 1o sTo]— (TSI *I*15]18:3[2

- 45 -

This option is also identical to ZERO SUPPRESS, except that a dollar sign
will be inserted into the location of the last leading zero. For example:

Sending Field Receiving Field (FLOAT DOLLAR SIGN)
[Telola oo 2—[sT-[-ls] lelal 2l

Note: 1In order to allow for a dollar sign insertion, at least one
leading zero must exist in the data, If it does not, the
results will be unpredictable. .
BLANK WHEN ZERO

When this option is used, and the value of the field is "zero," all other
editing options are overruled and the field is converted to spaces.

Sending Field (POINT LEFT 2) Receiving Field (POINT LEFT 2; FLOAT DOLLAR SIGNj
BLANK WHEN ZERO)

BFRGGLY S s s e B

FUORIN JRUPUS ST SIS
\
assume d — assumed
decimal decimal
point point

IMPORTANT NOTES

1. USING EDITING OPTIONS WITH PICTURE CLAUSE

a) When ZERO SUPPRESS and CHECK PROTECT are used in conjunction
with PICTURE, redundant commas will not be inserted in the
field.

Sending Field Receiving Field (PICTURE IS K$9,999.99; ZERO SUPPRESS)
clglolole|ols|—»

sl =Tl el 5]

b) When FLOAT DOLIAR sign is used with a PICTURE clause, the dollar

sign may not necessarily appear in the position shown in the
PICTURE.

Sending Field Receiving Field (PICTURE IS K$9,999.99;
FLOAT DOLLAR SIGN)

[folelolals sl [-T-[-]-Ts]1[-]5]3]

- 46 -

OCCURS

e]

; OCCURS integer TIMES

e

The OCCURS clause enables the programmer to create areas within a record
for tabks or other homogeneous sets of data. This option may only be used
with level-2 entries.

Assume that the programmer wants to define a record consisting of five
- amount fields, followed by five tax fields. Instead of describing this record
“as containing ten individual data fields, it may be defined as consisting of
two tables. For example:

1 TABLE; SIZE 4ff; CLASS NUMERIC.

2 AMOUNT; SIZE 6; SIGNED; OCCURS 5 TIMES.
2 TAX; SIZE 2; PICTURE IS J; OCCURS 5 TIMES.

The file area for this record would appear as follows:

AMOUNT AREA TAX AREA
Sy SN ~ e sty

POOCX XX | XXXXXX | XXX XXX | XXXXXX XXkaX”XX XX XX| XX] XX

tEntry iREntry 2 t\Enm Entry 2

As indicated, five 6-character fields (entries) will be reserved for
the amount area, and five 2-character fields (entries) will be reserved for
the tax area. The format for each amount entry will be identical, i.e.,
lOIXlXIX[XlSI . Each tax entry will also be identical,ie., two numeric characters,

If desired, a level-2 entry containing an OCCURS clause may be further
described by sub-items (level-3). For example:

2 TAX-TABLE; SIZE 8; CLASS NUMERIC; PICTURE IS J; OCGURS 10 TIMES.
3 STATE-CODE; SIZE 2.
3 TAX-RATE-STATE; SIZE 3.
3 TAX-RATE-FEDERAL; SIZE 3.

Because of this entry, an 80-character area will be reserved for the
tax-table; this area will consist of ten 8-character entries, each of which
will contain three sub fields: (.

entry-1 entry-2 entry-3

&Jiﬂx XIx !ﬁlff,’f]’i lxlx@X!XIx[x lxlexlx’i S

sub-fields sub-fields sub-fields

Note that each entry is considered as being a numeric field of 8 characﬁers
(without- an ISS).

- 47 -

Rules Governing the Use of the OCCURS Option.

a) The OCCURS clause can only appear in a level-2 entry.
b) The size of each entry within the table must be fixed.

c¢) "Integer' must be a decimal number ranging from 1 to 999, and
represent' the total number of occurrences.

d) Care should be exercised when computing the maximum record size
for a level-1 entry when level-2 entries contain the OCCURS
clause. In these instances, the size of the level-2 entry is
actually the item size multiplied by the number of occurrences.

e) If an ISS or sign is indicated in the level-2 description,
each entty in the table will be assumed by the Narrator to
have an ISS and sign within the field.

£) Data for tables is not generated by the Narrator.
Loading tables must be accomplished by the user by'
one of the following methods:

1) Loading into a level-1 working storage area
through use of the ACCEPT verb.

2) Loading the table through individual MOVE's

of literals. It is recommended that this
be accomplished in a "housekeeping" section
which can be overlaid by sudsequant sections.

3) Assigning a file area to the table and loading .
it from a peripheral device.

Addressing Tables

When a table (or list) has been created through an OCCURS clause, the first table
entry may be directly addressed by its data-name., ALL OTHER ENTRIES MUST BE ADDRESSED
BY SUBSCRIPTING. :

SUBSCRIPTING

"Subscripting" provides a means by which the user may address entries in a table
or list that has been created by an OCCURS clause.

There are two methods of subscripting. The first, subscripting by decimal number,
is used when the location of the specific entry in the table is known to the programmer.
The second, subscripting by a data field, is used when the location of the entry is not
known until object program running time, or when the programmer wishes to vary a subscript
reference in order to address another table entry.

Subscripting is accomplished by following the data-name with a decimal number ora
data field enclosed by parenthesis. For example:

AMOUNT (5)
- AMOUNT (CODE)

The data-name being subsecripted must be the name of a level-2 entry that contains an
OCCURS clause, or one of the level-3 data-names associated with that level-2 entry.

When the data-name being subscripted is not unique, the qualifier (record-name) must
appear AFTER the subscript! For example:

AMOUNT (5) IN TRANSACTION
AMOUNT (CODE) OF TRANSACTION

It must be remembered that whén the level-2 data-name is used, a complete entry will

be referenced. When the data-name of one of the sub-items (level-3) is used, only that part
of the entry will be referenced. ‘

- 48 -

Subscripting by Decimal Number

Decimal numbers used for subscripting may range from 1 to 999. The

number one (1) denotes the first entry in the table, number two (2) specifies
the second entry, and so forth. Thus, if the user writes CODE-TABLE (63),
he is referring directly to the sixty-third entry in the CODE-TABLE.

Examples:

MOVE AGE (11) IN TRANSACTION TO YEARS OF MASTER.
(Move the eleventh AGE entry in the TRANSACTION record)

ADD AMOUNT (4) AND TOTAL-TO-DATE.
(Add the fourth AMOUNT entry to TOTAL-TO-DATE)

MULTIPLY PAY BY TAX-RATE (36) GIVING DEDUCTION,
"~ (Multiply PAY by the thirty-sixth TAX-RATE entry)

When subscripting by decimal number, the entry indicated in the statement
may not be changed by the programmer. Thus, if the statement is executed a
gecond time, the same table entry will be referenced.

Subscripting by a Data Field
When this method is used, the CONTENTS of the data field will determine

W s e e i

which entry is to be referenced. 'This occurs at object program running time.

Data field subscripting provides the following advantages:

1. In many cases, table searching may be eliminated. For
example, if the data field appears as part of a record, the
value in the field can vary according to the record being
processed. That is, the contents of the data field in one
TRANSACTION record may select the sixth table entry, while
the same field in another TRANSACTION record may select
the twenty-second entry.

2, The programmer may vary the contents of the data-field)

according to program requirements. He may move values
into the fileld, add to or subtract from it, etc.

Example:
MOVE BOND-DEDUGTION (TYPE) TO BONDS.

In this example, the decimal number appearing in the field, TYPE, will
dictate which table entry is to be moved. If the value in this fleld is 14,
the fourteenth entry in the BOND-DEDUCTION table will be moved; if a three
appears, the third entry will be moved, and so forth,

The following rules must be followed when using a‘data field for subscripting:

1) Pleld must be UNIQUE. Also, this field cannot itself be subscripted
by another data field.

2) Field must be numerile,

3) Fleld must be fixed in size and cannot exceed three integral
digits. Fleld may include an ISS and/or sign.

4) The valua in the field must be an integral value from 1 to 999.

- 49 -

If the value in the data field is zero, or if the value is
greater than the number of table entries, an error will occur

at program running time. Thus, it Ls the programmer's responsibility
to Insure the validity of the number appuaring in that field.

5) Constants and record-names (level-1l) cannot be used for sub-
scripting purposes.

NOTES

The use of data-name subscripting can eliminate table searching,
since the "value" in the data field automatically selects the desired table

antry.

Any field, provided it meets the requirements for a subscript field,
may be used for subscripting purposes. In addition, the same data field
may be used to subscript more than one table.

If desired, the programmer may modify the value within the data field
to suit his programming requirements, for example, the contents of the 15
entries in the tax table may be accumulated into the DEDUCTION field by using
the data-field, RATE, for subscripting: ° '

12¢. MOVE "1'" TO RATE.
130, ADD TAX (RATE) AND DEDUCTION.

14¢. ADD "1" AND RATE. ‘

15¢, PERFORM 13¢ THRU 144 EXACTLY 14 TIMES.

EXAMPLE

- 50 ~

Assume that an automotive manufacturing company has fourteen district
offices, and that the programmer has set up a SALES-STATISTICS file in the
following manner:

1 GROSS-SALES-BY-DISTRICT; SIZE 56f; CLASS NUMERIC.
2 AUTOMOBILES; SIZE 1§; SIGNED; OCCURS 14 TIMES.
2 TRUCKS; SIZE 1¢; SIGNED; OCCURS 14 TIMES.

2 FARM-EQUIP; SIZE 1#; SIGNED; OCCURS 14 TIMES,
2 TOTAL; SIZE 1f; SIGNED; OCCURS 14 '[‘IMES

The TRANSACTION-FILE is comprised of: indlvidual records which contain
appropriate sales figures in the SALES-AUTO, SALES-TRUCK and SALES-FARM fields.
In addition, each transaction message contains a two-digit field, DISTRICT,.
in which a special code (01 to 14) identifies what district is to receive
credit for that particular transaction.

The programmer may process these transactions in the following manner:

2¢. READ TRANSACTION,

3¢, ADD SALES-AUTO AND AUTOMOBILES (DISTRICT).

4¢f, ADD SALES-TRUCK AND TRUCKS (DISTRICT).

5¢. ADD SALES-FARM AND FARM-EQUIP (DISTRICT).

69. ADD SALES-AUIO, SALES-TRUCKS, SALES-FARM AND TOTAL (DISTRICT).

Because the programmer has organized his GROSS-SALES-BY-DISTRICT record
in table fashion, and has arranged a coding scheme to correspond to table
entries (i.e., 01 to 14), a considerable amount of coding and programming
effort has been eliminated.

If this approach had not been taken, the program might have appeared
as follows:

24.
39.
49.
5.
6.
74.
8d.
90.
124.

READ TRANSACTION.
IF DISTRICT IS NOT EQUAL TO "g1" GO TO 84.
ADD SALES-AUTO AND AUTOMOBILES-1.
ADD SALES-TRUCK AND TRUCKS-1.
ADD SALES-FARM AND FARM-EQUIP-1.
ADD SALES-AUTO, SALES-TRUCK, SALES-FARM AND TOTAL-1; THEN GO TO 440,
IF DISTRICT IS NOT EQUAL TO '"@2" GO TO 13§.
ADD SALES-AUTO AND AUTOMOBILES-2.
ADD SALES-TRUCK AND TRUCK-2.

v

ETC.

Note: Four statements required to process each record when

"subscripting' was employed; approximately 70
statements required without subscripting.

- 51 -

COPY

Level-number record-name-l; COPY record-name-2.

The COPY option permits the user to automatically duplicate record
descriptions that are identical in organization. For example, assume that
the organization of the UPDATED-MASTER record is identical to the MASTER
record. Instead of defining both records, the user may define the UPDATED-
MASTER record as follows:

1 UPDATED-MASTER; COPY MASTER.

Because of this entry the Narrator will:

1. duplicate the MASTER record description.

2. change the level-1 name in the duplicated description
to UPDATED-MASTER.

3. insert this description for the UPDATED-MASTER record
description.

Example:
BEFORE

FD MASTER-FILE
1 MASTER ..e..
2 EMPLOYEE-NO
2 DEPT-NO
2 NAME
FD NEW-MASTER-FILE .cc..
1 NEW-MASTERj; COPY MASTER.

AFTER

FD MASTER-FILE
1 MASTER
2 EMPLOYEE-NO
2 DEPT-NO
2 NAME

FD NEW-MASTER-FILE
1 NEW-MASTER
2 EMPLOYEE-NO
2 DEPT-NO
2 NAME

The COPY option can only be used to duplicate complete records -- not files.
In addition, the use of this option creates duplicate data-names and qualification
must be used in the PROGEDURE DIVISION -~ see Qualification, page 30.

No other clauses can appear in this entry.

~ 52 -

GENERAL, GOMMENTS REGARDING REOORD DESCRIPTION ENTRIES

A el

A‘

LEVEL-NUMBER, DATA-NAME, SIZE and CLASS must appear in this
sequence when present in a record description entry. All other
clauses within the entry need not be in any spacial order.

B. Only LEVEL~NUMBER, DATA-NAME and VALUE can appear in a condition-

c.

name entry. :

VARIABLE RECORDS
1) An item is considered VARIABLE when:

a) its size can vary, or

b) it is not always present within the record.
2) ALL VARIABLE ITEMS MUST INCLUDE AN ISS SYMBOL.

3) Once an item has been defined as variable, ALL ITEMS FOILOW-
ING IT WILL ALSO BE CONSIDERED VARIABLE, REGARDLESS OF SIZE.

4) Level-3 entries associated with a variable item cannot be
addressed by name in the variable file area. The variable
item, however, may be moved to a fixed field which is broken
down by sub-items. The programmer may then use sub-item
addressing in the fixed area.

RECORDS IN MESSAGE FORMAT

When a record appears in '"'message' format (see page 20), all

level-2 items within that record will be assumed to contain an
ISS symbol, unless otherwise specified in the PICTURE clause.

RECORDS IN BLOCK FORMAT

When a record appears in '"block™ format (see page 20), all level-2
items within that record will be assumed not to contain ISS symbdls,
unless otherwise specified in the PICIURE clause.

t
1
(&)

1

SAMPLE FILE SECTION

DATA DIVISION.

FILE SECTION.

FD MASTER-FILEj; LABEL RECORDS ARE STANDARD; VALUE OF ID IS UMPABE ++4+"
DATA RECORDS ARE MASTER.

1 MASTER; SIZE 6@ TO 92 CHARACTERS; CLASS ALPHANUMERIC.

2
2
2

MN NN

ACCOUNT-NUMBER; SIZE 8; PICTURE J.
ACCOUNT-TYPE; SIZE 23 PICIURE J.
DATE; SIZE 7; GCLASS NUMERIG.

3 MONTH ; SIZE 2.

3 DAY; SIZE 2.

3 YEAR; SIZE 2.

CODE; SIZE 2.

88 ACTIVE; VALUE IS "1".

88 INACTIVE; VALUE IS "2".
BALANCE; SIZE 83 SIGNED.

NAME; SIZE 13 TO 27; CLASS AN.
ADDRESS; STIZE 12 TO 22.
CITY-STATE; SIZE 8 TO 16.

FD TRANSACTION-FILE; RECORDING MODE IS BLOCK; LABEL RECORDS ARE OMITTED j
DATA RECORDS ARE TRANSACTLON.

1 TRANSACTION; SIZE 17; CLASS ALPHANUMERIG .

2
2

ACCOUNT-NUMBER; SIZE 8.

TYPE; SIZE 1; CLASS ALPHABETIC.
88 DEPOSIT; VALUE IS "D".

88 WITHDRAWAL; VALUE IS "W".

2 AMOUNT; SIZE 8; CLASS NUMERILC; PIGCTURE K.

FD NEW-MASTER-FILE; LABEL RECORDS ARE STANDARD; VALUE OF 1ID IS "M@@5++++"
ACTIVE-TIME IS '"3'"; DATA RECORDS ARE NEW-MASTER.

1 NEW-MASTER; COPY MASTER.

ioiE

(Note: If WORKING-STORAGE or CONSTANT SECTION follows, the

EF symbol is omitted.)

- 54 - WORKING
STORAGE

WORKING-STORAGE SECTION

The Working-Storage Section is optional. When present, it begins with
the header "WORKING-STORAGE SECTION."” followed by a series of entries de-
scribing the working storage areas required for the program. During program
running, these areas will be available to all segments of the program.

A working storage entry'is written similar to a data record entry, with
the following differences:

Non-Contiguous Working Storage Areas

Working storage fields that bear no relationship to one another are
called '"non-contiguous" working storage. These fields are defined as separate
record description entries and are assigned the special level number 77.

In the WORKING-STORAGE SECTION, all level 77 entries must be defined first.

Initial Value of Working-Storage Aleas

At the start of each program, all working storage areas will be automatically
cleared to spaces.

In addition, an Item Separator symbol will be placed in the leftmost position
of all level-77 and level-2 fields, except where "PICTURE IS J"has been specified.
(I8S's will not be inserted in level-2 fields of records that contain a REDEFINES

clause.)

Data-names

Data names assigned to level 77 and level-1 entrie s must be unique.
Level 2 and 3 entries need only be unique within individual records..

Condition names may be associated with the non-contiguous as well as
contiguous working storage fields.

level -Numbers

Level 77 must be assigned to all non-contiguous working-storage areas.
The assignment of level numbers to contiguous areas follows the same rules as
outlined under the Record Description entry, page 27.
SIZE

All working storage areas must be FIXED in size.

CLASS

All entries defining non-contiguous working storage (level-77) must contain
a CLASS clause. The assignment of CLASS for contiguous areas follows the same
rules as outlined under the Record Description entry, page 33.

PICTURE IS

It will be assumed that all level-77 and level-2 entries:in WORKING-STORAGE

contain an ISS. If an ISS is not present in the field, "PICTURE IS J'must be
gspecified. :

_ 55 WORKING
STORAGE

COPY
The COPY option cannot be used in defining working storage records.

NOTE

All other options appearing in the Recorddescription section may also
be used with working storage areas. See general format, page 26.

REDEFINES
The REDEFINES option is unique to the WORKING~STORAGE SECTION. This

feature permits the user to specify that different working-storage records are
to share the same memory area. When this option is used, it must immediately
follow the record-name being described.

Format:

1 record-name-~1 REDEFINES record-name-2 ——- etC¢ —=-.

This option has the following advantages:

A. It can be used to reduce the amount of working-storage
required for the object program. For example, assume
that the programmer requires two working-storage records --
WORK-A and WORK-B -- and that he defines them as follows:

1 WORK-A; SIZE 8§; CLASS AN.
2 NAME; SIZE 3¢.
2 ADDRESS; SIZE 25.
2 CITY; SIZE 15.
2 STATE; SIZE 14.

1 WORK-B REDEFINES WORK-A; SIZE 5@f; CLASS NUMERIC.
2 TOTAL-A; SIZE 14; SIGNED.
2 TOTAL-B; SIZE 1¢; SIGNED.
2 TOTAL-C; SIZE 1¢; SIGNED.
2 TOTAL-D; SIZE 1¢; SIGNED.
2 TOTAL~E; SIZE 1§; SIGNED.

In working storage, the Narrator will assign a common area of 80 characters
for these records, instead of reserving an area of 80 characters and an
area of 50 characters:

COMMON AREA FOR WORK-A and WORK-B

80 characters

Note: The first 50 characters will be used for the WORK-B record; the entire
area will be used for the WORK-A record. Since both records occupy tie

same memory area, the programmer must exercise caution when processing

them. He cannot, for instance, attempt to create both records in this

area at the same time. He should first create one record and process it,
before attempting to create the next record.

B. The REDEFINES option can be used to specify different formats for % - 56 -
the same physical record. For example, assume that WORK-A is defined
as follows:

1 WORK-A; SIZE 54; CLASS NUMERIC.
2 COUNTER-1; SIZE 93 SIGNED.
2 COUNTER-2; SIZE 9; SIGNED.
2 COUNTER-3; SIZE 9; SIGNED.
2 COUNTER-4; SIZE 9; SIGNED.
2 COUNTER-5; SIZE 93 SILGNED.
2 COUNTER-63 SIZE 93 SIGNED.

For programming purposes, the user wishes to address these counters as

individual areas. However, at other times he wants the record in table
for? fgr subscripting. To accomplish this, he could redefine the cecord
as follows: . A

1 WORK-A~TABLE REDEFINES WORK-A; SIZE 54; CLASS NUMERIC.
2 'IDTAL; SIZE 9; SIGNED; OCCURS 6 TIMES.

Memory Layout for WORK-A Record
COUNTER~1 | COUNTER-2 | COUNTER-3 | COUNTER-4 { COUNTER-5 | COUNTER-6 1

Memory Layout for WORK-A-TABLE Record

3 e

Entry~1 Entry-2 | Entry-3 Entry-4 Entry-5 Entry-6

I1f the programmer desires to move the fourth field in this
record area, he may use either of the following methods:

MOVE COUNTER-4 TO AMOUNT.
or

MOVE TOTAL (4) TO AMOUNT.

Rules Governing Use of REDEFINES Clause

1. The REDEFINES clause immediately follows the data-name of the entry,
with the balance of the entry following the normal rules for describing
working-storage. This clause can only be used with level-1 working-
storage records.

2. The sizes and formats of each record need not agree.

3. Records that contain a REDEFINES clause will not have Item Separator
symbols inserted in level-2 fields at the start of the program.

NUMBER OF WORKING-STORAGE RECORDS

The user may define up to twenty-four (24) records (level-1) in the WORKING-
STORAGE SECTION. An error will occur at compilation time if this number is qxceeded.

- 57 -

SAMPLE WORKING-STORAGE SECTION

WORKING-STORAGE SECTION.

77 RECORD-COUNT; SIZE 1ff; CLASS NUMERIG; SIGNED.
77 NET-BALANCE; SIZE 9; CLASS NUMERIC; SIGNED; PICTURE

77 ACCOUNT-NO; SIZE 6; CLASS AN.

1

WORK-TRANSACTION; SIZE 233 CLASS NUMERIC.
2 CUSTOMER-NO; SIZE 8.
2 AMOUNT; SIZE 83 SIGNED; POINT LEFT 2.
2 DATE; SIZE 7.
3 MONTH; SIZE 2.
3 DAY; SIZE 2.
3 YEAR; SIZE 2.

WORK-ERROR; SIZE 7#; CLASS AN.
2 NAME; SIZE 34.

2 ADDRESS; SIZE 22.

2 CITY; SIZE 18.

WORK-REORDER; SIZE 34; (CLASS NUMERIC.

2 STOCK-NO; SIZE 6; PICTIURE IS T,

2 ON-HAND; SIZE 8,

2 REORDER-LEVEL; SIZE 8,

2 UNIT-PRICE; SIZE 4; ZERO SUPPRESS,

2 AMOUNT; SIZE 8; SIGNED; ZERO SUPPRESS.

IS K$999.998.

WORK-~ERROR~A REDEFINES WORK~ERROR; SIZE 7#; CLASS AN.

2 DATA; SIZE 74; PICTURE IS J.

EF

(Note: If CONSTANT SECTION follows, EF symbol is omitted.)

- 58 -

CONSTAN'T SECTION

The Constant Section is optional. When present it begins with the
following header: CONSTANT SECTION. This is followed by a series of
entries that define the constantsassociated with the program. Duripg object
program running time, these constants will always appear in memory and
will be available to all segments.

Constant entries are written similar to data record entries, however,
they must conform to the following format:

Level-number data-name

7 SIZE IS integer-l CHARACTERS

AN
) , ALPHABETIC 3
; CLASS Is {imim—m=a ' SIGNED

ALPHANUMERIC

—1

amitrsnd
e s

i POINT LOCATION IS LEFT integer-2 PLACES

e g P ——

3 VALUE IS literal .

Level-number

The level-number for all constants must be 77.

Data-name

All data-names in the constant section must be unique and an error will
occur if identical names appear elsewhere in the Data Division.

SIZE

The SIZE clause must be present and cannot be specified as variable.
The size of a constant may not exceed 120 characters.

CLASS

———

ALL entries in the CONSTANT SECTION must have a class designation;

an error will“occur if this rule is violated. Classes are determined as
follows:

NUMERIC - constant contains the digits @-9 (with or without sign)

Example:

77 AGE; SIZE 2; CLASS NUMERIC; VALUE IS ''32",
77 DATE; SIZE 7; CLASS NUMERIGC; VALUE "*@13161'".

77 BOND-DEDUCTION; SIZE 6; CLASS NUMERIC;SIGNED; VALUE IS "*1875+",

(Note that when a sign appears within the constant,
the SIGNED clanse must also be used.)

- 59 -

ALPHABETIC - constant does not contain a numeric character,
Examples:

7'7 HEADING; SIZE 8; CLASS ALPHABETIC; VALUE IS "#MONTHLY".
77 ERROR; SIZE 4@; CLASS ALPHABETIC; VALUE IS
IO TALA+++%++++VALUE(NET) ++++VALUE(GROSS) "'.

ALPHANUMERIC - constant contains alphabetic and numaric characters,
or the constant is a numeric f£ield that includes editing symbols or spaces.

Examples:

77 BOND-AMOUNT; SIZE 7; CLASS AN; VALUE IS "*$18.75".

77 DATE; SIZE 8; CLASS AN; VALUE IS "@3-1l4-61". '

77 ADDRESS; SIZE 2#; CLASS AN; VALUE IS "CLEVELAND,+(14)+OHIO".
77 CREDIT-LIMIT; SIZE 7; CLASS AN; VALUE IS '+++5@@g",

SIGNED and POINT LOCATION

These clauses are optional and, if used, may only appear for NUMERIC

fields. Note that when a sign appears in the field, it must appear as the last’
character.

VALUE

This clause appears in every constant entry, Note that the size of a

constant may not exceed 120 characters, and since this value is surrounded
by quotation marks, a quote symbol is not permitted as one of the 120 characters.

Correct IncorEEEE
VALUE IS "MONDAY". VALUE IS ""MONDAY'',

Literals Used In The VALUE Glause

Literals used in the VALUE clause may include all characters listed under
LITERALS, page 3. The slant, asterisk and ampersand symbols, however, have the
following special connotations in the CONSTANT SECTION:

* asterisk -- An asterisk will always be converted to an ISS symbol.
/ slant -~ If a slant appears as the last character in the literal,
it will be converted to an EM symbol. In all other positions,
. slant symbols will produce slant symbols in the constant.

(Note that a slant symbol cannot appear alone, or as the first
character of a constant.)

& ampersand - An ampersand symbol will be converted to a 501 Page Change symbol
for off-line printing purposes. The ampersand symbol must appear
as a one-character literal ("&").

IMPORTANT NOTE

The maximum area available for constants in NARRATOR programs is 960 characters.
The programmer can determine his constant requirements by adding the sizes of each
entry in the CONSTANT SECTION.

- 60 -

SAMPLE CONSTANT SECTION

CONSTANT SECTION.

77 CITY-TAX; SIZE 3; CLASS NUMERIC; POINT LEFT 3; VALUE "g@5".

77 STATE-TAX; SIZE 2; CLASS NUMERIC; POINT LEFT 2; VALUE "'@2".

77 HEADER-A; SIZE 24; CLASS ALPHABETIC; VALUE "MONTHLY+SALES+STATISTICS".
77 HEADER-B; SIZE 23; CLASS ALPHABETIC; VALUE "WEEKLY-*SALES-'-STATISTICS"
77 1883 SIZE 1; CLASS AN; VALUE IS "*",

77 MESSAGE-FILL; SIZE 6; CLASS AN; VALUE IS "*****/"

77 PRINT-LINE; SIZE 124; CLASS AN; VALUE 1S
LD T O R T T & o T S A e e S e s 2 S S L

bbb kbbb bbb bbb bbb bbb bbb bbbk bbb bbb bbb R bbb bbb bR b

EF

- 6l -

THE PROCEDURE DIVISION

The PROCEDURE DIVISION specifies the steps that the user wishes
the computer to follow in order to produce the desired results. These
steps are expressed in meaningful English statements which include the
concept of verbs to denote actions, sentences to desrribe procedures
and IF statements to provide alternative paths of action.

This aspect of the Narrator system is nften referred to as the
"program,' but by itself is not sufficient. to describe the entire
problem. This is true because repeated references must be made --
either implicitly or explicitly -- to information appearing in other
. divisions.

HEADER.

The Procedure Division begins with the following header: PROCEDURE
DIVISION. It is terminated by an EF symbol.

Note: If the input information for the Narrator ends with the
procedural statements, ie., there is no own-coding, an ED symbol follows
the EF symbol..

SECTIONS

The largest unit in the PROCEDURE DIVISION is a gection, which identifies
points at which the object program is to be segmented. Each section is identified
in the following manner: ,

line-number SECTION.

The Narrator treats each section as being a segment of the object program.
The absence of SECTION headers indicates that the PROCEDURE DIVISION is one
section and that the object program is not to be segmented. Segmentation is
discussed on page 118.
* SENTENCES

The Procedural statements are expressed in a manner similar (but
not identical) to normal English prose. There are two types of statements:

A. SIMPLE IMPERATIVE SENTENCES
Examples: READ MASTER-FILE.
SUBTRACT DEDUCTIONS FROM PAY.

B. SIMPLE CONDITIONAL SENTENCES

Examples: IF BALANCE IS LESS THAN ZERO GO TO 46.
IF DATE OF MASTER EQUALS REVIEW-DATE GO TO 15.

LINE NUMBERS

Each Procedural statement is identified by a iine number which may
be any decimal number ranging from 1 to 99999, followed by a period.
For sequencing purposes the Narrator sorts the procedural statemants into
ascending line number order. It is not a requirement that the initial
program be written in line number sequence, although it must be remem-
bered that the program will operate in sequential order.

- 62 -

Line numbers do not have to be in consecutive
misaable to "skip” numbers. This facilitates applying additions and
corrections to the program. For example, assume thatthe original pro-
gram was written in the following order: 10, 20, 30, 40, 50, 60, etc.

If the user now desires to add three statements following line number 20,
he could insert them as line numbers 21, 22 and 23.

order and it is per-

Methods of making additions and corrections are -covered in a
separate publication.

- 63 -

USE OF LITERALS WLTHIN THE PROCEDURE DIVISION

The format for most Narrator verbs permits the user to write literals
within statements. For example:

MOVE "5'" TQ CODE.
ADD "6@' AND BALANCE.
IF AREA-CODE IS EQUAL TO "ABC' GO TO 317.

When used within statements, literals must be enclosed by quotation
marks and may not exceed 120 characters. (The quote marks are not included
in computing the size)

User-Specifie d-literals

The user may create literals from the character set listed on page 3.
Note that the slant and asterisk . are not acceptable characters for literals used
in the PROCEDURE DIVISION.

The Narrator will "expand" user-specified literals if required in the
destination area. That is, ISS symbols, positive signs, zeros or spaces will
be added to the literal to conform with the description of the receiving field.
For example, if the literal "5" is moved to a three-character field that includes
an ISS and sign location, the literal will be expanded to "e5+",

Narrator—generated Literals
The Narrator will create literals to accommodate the following cases:

a) Use of Figurative constants ZERO or ZEROS .

b) Testing condition-names.

c) Moving data into larger-sized fields.

d) Alignment of decimal locations.

e) Editing symbols and editing functions (BLANK WHEN ZERO, etc.)

Number of Literals

Each SECTION of the program may contain up to 74 literals that are 17

characters or less, and 40 literals that range in size from 18 to 120 characters.
' These include both user-specified literals as well as those literals generated
by the Narrator. (Note that identical literals within each section will not

be duplicated in the object program and that dupllcated literals are not
included in the above count.)

Llass of Literals

At compilation time, all literals within procedural statements are examined
and assigned a "CLASS," based on the normal rules for determining CLASS (see
page 33). Thus, the literal "12-15-61" would be assigned an alphanumeric class;
and an error would be indicated if the user attempts to add this literal to'a
numeric field. |

. 64 -

THE ALL _OPTION

The Narrator user may precede a literal with the word ALL, in which case
the Narrator will generate that literal as a string of homogenous information.

Example A: MOVE ALL "4" TO FIELD.

Before After
---------- 4 4 4 4 4 4 4 4 4 4

(The literal generated for this statement would be: "4444444444",)

Example: MOVE ALL "FOUR" TO FIELD.
Before After

e e e e e o FOURFOURFO

(Note that the literal is truncated when the field is filled.
The generated literal for this example would be: "FOURFOURFO".) .

FIGURATIVE CONSTANTS

The Narrator will also accept the following "figurative' constants when
the user desires to specify the actual value of a literal as being "zero" .
or "space'': ZERO, ZEROS, ZEROES, SPACE and SPACES.

Examples: IF BALANCE IS EQUAL TO ZERO GO 'TO 318.
MOVE ZEROS TO AMOUNT.
MOVE SPACES TO PRINT-AREA.

Note that "figurative' constants are not enclosed with quotation.
marks and may only be used within the PROCEDURE DIVISION. Also, the
use of ZERO(S) produces a ''generated'" liteml equal to the number of
data characters in the corresponding field.

QUALIFICATION

In the discussion of data-names in the Record Description, page 30, it

was stated that duplicate data-names may be used as long as they do not appear
within the same record. When the user desires to refer to a duplicate data -name
in the procedural statements, he must qualify that name by the record in which
it appears. This is accomplished by folluwing the data-name being addressed

with the word QF or LN, followed by the record-name in which it appears. For
example:

ADD AMOUNT OF MASTER AND BALANCE.

ADD AMOUNT IN TRANSACTION AND BALANCE IN MASTER.
IF TRANS~CODE IS LESS THAN CODE IN MASTER GO TO 47.

_Note that the use of the COPY option in the DATA DIVISION creates
duplicate data-names.

VERBS

Verbs available to the Narrator user are listed under the following
categories:

Arithmetic Input-OQutput Procedure Branching
ADD | READ | GO
SUBTRACT WRITE ALTER
MULTIPLY DILSPLAY ’ PERFORM
DIVIDE OPEN FIND

CLOSE *IF
ACCEPT
Gompiler Directing Data Movement Ending
ENTER MOVE STOP
EXIT . EXAMINE
NOTE
USE

*Although the word IF is not a verb in the strictest sense, it
possesses one of the most important characteristics of one --
namely, the generation of coding in the object program. The
IF statement is a vital feature in the PROCEDURE DIVISION,
and is fully discussed in this section under IF Statements.

- 66 ~

RULES GOVERNING ARITHMETLC QPERATIONS

The following rules apply to all arithmetic operations -- ADD, SUBTRACT,

DIVIDE and MULTIPLY.

1.

OPERANDS

All operands used in arithmetic operations MUST BE NUMERIC. Operands
CANNOT contain editing symbols ($.,space), nor should they be specified
as'edited," i.e., ZERO SUPPRESS, CHECK PROTECT, FLOAT DOLIAR SIGN
or BLANK WHEN ZERO.

The maximum size of any operandsis 18 digits, which includes both
integer and decimal locations, but not including ISS symbol or sign..

An arithmetic operand cannot be a record-name or a condition-name.

STORAGE, OF RESULT

a) The result field must have standard justification.
b) Constants, literals, condition-names and records cannot
be result fields. '

¢) Lf the GIVING clause is not specified, the result will be
stored in the last operand. For example:

ADD A, B, C, D, E, F.
(Accumulated sum will be stored in "F'" field.)

d) If the GIVING option is used, the result will be stored
in the "data-name'" specified. For example:

MULTIPLY A BY B GIVING C.
(Product will be stored in '"C" field.)

Special rules governing GIVING field:

1.

The result stored in the GIVING field replaces whatever appeared

in that field previously. It is not necessary, therefore, to clear
the GIVING field to zero. (Note that the result is not accumulated
to the previous value.)

The GIVING field is the only field in an arithmetic operation that

may be "edited." When this field is to be edited, it camnnot contain
more than eighteen numeric characters, exclusive of editing characters
and symbols which are to be inserted. For rules governing editing, see
pages 40 through 45. Note that editing symbols cannot be expressed

in the PICTURE clause by parenthentical notation.

- 67A -

5. TRUNCATION OF DECIMAL LOCATLONS

When the result field contains fewer decimal locations than the
computed result, automatic truncation of decimal locations occurs.
For example, assume that in the following operation the result
field had been defined as having two decimal positions:

Operand A 13.6666 '
Operand B 6.22 Result Field

19.8866 ————————> 19.88

(Note that decimal points are assumed.)

6. ROUNDING

When truncation of decimal locations occurs and the ROUNDED option
has also been specified, a 'one" is added to the least significant
digit of the result if the most significant digit of the- decimal
excess is "five" or greater. If this digit is less than "five," no
rounding occurs.

Thus, in the preceding example, if ROUNDED had been specified, the
result field would have been 19,89.

If decimal locations are not truncated, the ROUNDED clause is
redundant and will have no effect on the result.

7. EDITING

As stated previously, operands in arithmetic operations cannot be
"edited." However, the programmer may obtain an "edited" result by
using the GIVING option (provided the GIVING field is not also one
of the operands).

To illustrate this point, let us assume that the programmer wrote
the following statement:

ADD A, B, C, GIVING D.

The computed result of this operation amounted to 477.33 (two assumed

decimal locations). This result would be placed in field "D" as follows:

A) FIELD-D; SIZE 7; POINT LEFT 2; PICTURE K999.9§.

[eTal7]71.13] 3]

]
B) FIELD-D; SIZE 9; POINT LEFT 2; PICTURE J$9,999B99.

[s 1T, Jal7[7]-]5]5]

C) FIELD-D; SIZE 9; POINT LEFT 2; PICTURE J$9,999B99; ZERO SUPPRESS.

(s [-[-Tal7[7]-[5]5]

D) FIELD?D; SIZE 8; ZERO SUPPRESS.

e [-T-1-]-]al717]

- 67 -

3. USE OF LITERALS

Literals cannot exceed eighteen numeric characters. Figurative
constants or the "ALL any-literal” option cannot be used.

4. TRUNCATION OF INIEGERS

a) An error warning will be indicated at compilation time when
the number of integral locations in the result field cannot
accommodate the integral digits in the computed result. For
example, if a field with four integers is added to a field with
two integers, the result field should contain at least four
integral locations.

When the result field does not contain sufficient integral
locations, the excess integral digits will automatically be
truncated. For example, assume that the result has two integral
places:

Operand A 61744,22

Operand B 5781.11 Result Field
67525.33 > 25,33

(Note that decimal points are assumed)

b) A potential "overflow'" condition can exist even though the
size of the result field indicates that it can accommodate
integers of the computed result. For example, a two-integer

" result field can accommodate the following addition:

Operand A 44
Operand B 23

67

However, the data may be such that at object program running
time a one-digit overflow could occur. For example:

Operand A 44
Operand B 72

16
overflow—/ﬁ

Therefore, when overflow in the result field is dependent on
the data at object program running time, the ON SIZE ERROR
option should be used. This option will cause truncation of
the overflow digit and a transfer to the designated line-
number when such a condition occurs. If overflow arises, and
this option has not been specified, the result will be
unpredictable.

Note: Since the ON SIZE ERROR option generates additional
coding in the object program, its use is recommended
only when the integral digits to be stored in the
result field may exceed the size of that field.

ACCEPT

ACCEPT VERB

Function: To enter into the computer low volume information from
magnetic tape or the Paper Tape Reader.

PAPER -TAPE-READER

ACCEPT record~name FROM
TRUNK -- numbe 1

When an ACCEPT statement is to be executed in the object program, a
message to this effect will be displayed on the Monitor Printer, and the
program will stop to allow for mounting this data.on the appropriate
equipment. Depressing the start button will then cause this information
to be read into the record-name area, and the program will be resumed.

NOTES :

1. "Record-name" may be either a level-l file area or a level-1 working-

storage area. ''Number" is written as two charactersqd6, 54, ete.

2. The data to be entered must appear in message format.

3. If a file area is specified, the record must be defined as being in
message format.

4, If a working-storage area is specified, the user must include the
SM and EM symbols in the size of the working-storage area, and
must also define these symbols as items within the record.

For example, assume that today's date is to be accepted from the
Pape r Tape Reader into working-storage:

1 DATE; SIZE 8; CLASS NUMERIC.
2 SM; SIZE 1; PICTURE J.
2 TODAYS-DATE; SIZE 6; PICTURE J.
2 EM; SIZE 1; PICTURE J.

(Today's date may now be directly referenced by name.)

EXAMPLES
a) ACCEPT DATE FROM PAPER-TAPE-READER.

b) ACCEPT LIABILITY-TABLE FROM TRUNK-#3.

- 69 - ADD

ADD VERB

Function: To add two or more quantities and store the sum in either the last
named field or in the specified one.

pormerom— e—y.

literal-1l literal-2 1literal-n

data-name -2

data-name~1 data-name-n \....

orm—

GLYING data~name{§} {%QgND%%M [;}HISLZE ERROR GO TO line-number| .

- * NOTES:

1. See RULES GOVERNING ARITHMETIC OPERATIONS, Page 66.
Note that when the integer locations of the result.field equals
the integer locations of the largest operand, a possible "overflow"
condition may exist.

2. In addition to the above rules, the following appiy:

a) A maximum of 10 operands can be specified in any single ADD
statement. 'This includes the GIVING field, if present.

b) Literals must contain the game number of decimal locations
as the result field. If, for example, the literal s
has been used, and the result field has two decimal locations,
the literal is considered as being 5.@%. If the result field
has no decimal locations, the literal is considered to be

500,

EXAMPLES

4. ADD BALANCE AND NET.
7¢. ADD AMT-A, AMT-B, AMT-C, AMT-D.
13¢. ADD GOST, MFG-EXPENSE GIVING NET-COST ROUNDED.
44g. ADD SALE, TAX, SHIPPING GIVING AMOUNT; ON SIZE ERROR GO TO 582,

270 -
ALTER

——
1
L.

ALTER VERB

Function: To change the line-number appearing in a GO TO statement. (The
statement being modified must be an independent GO TO statement
that contains only one destination address.)

ALTER line-number-l TO PROCEED TO line-number-2.

"Line-number-1" specifies the GO TO statement to be modified;
Y] ine—number-2" indicates the NEW destination address that is to appear
in that statement.

The GO TO statement is frequently used as a switch which the programmer
can “set" to alternate among various processing paths. The ALTER statement,
therefore, provides the user with a convenient method of setting GO TO state-
ments to particular processing paths. For example, assume that the GO statement
at line 4@7 is being used by the programmer as a "switch.""

4g. ALTER 4@7 TO PROCEED TO 514.

27%. ALTER 4¢7 TO PROGEED TO 534.

-

-

33¢. ALTER 4#/7 TO PROCEED TO 564.

4@7. GO TO 54#.

Note that when a GO TO address is modified it will retain that address
until changed by another ALTER statement. Also, a GO TO statement in one SEGTION
cannot be changed by an ALTER statement within another SECTION -- see Segmenting,
page 118,

- 71 .
. i CLOSE

Function: To terminate the processing of input and output reels and files.

CLOSE VERB

A———

CLOSE file-name-~1 E{EE} WITH NO REWIND
- I I

, file-name-2 rgg,g_xd} |WITH NO REWIND § ...BTC..... | .

[m—— [ReS——~ B

N]

GLOSE file-name

Examples:

CLOSE MASTER TRANSACTION, ERROR, NEW-MASTER.
~ CLOSE MASTER. ,

CLOSE NEW~-MASTER.

A, TNPUT FILES

When an Input file is closed, the tape is rewound to BTC, unless
the NO REWIND option has been specified. If the programmer closes
an Input file which has not been completely proceéssed, the End
Label checking procedure will be bypassed.

B. OUTPUT FILES

When an Qutput file is closed, the End Label procedures are performed,
if required. See Tape Labels, page 126. The end of file sentinels
(i.e., EF and ED) are then written and the tape is rewound to BIC,
unless NO REWIND has been indicated.

(The above pxocedures do not occur when a PRINT file is closed.)

CLOSE file-name REEL:

Examples;

CLOSE SALES~FILE REEL.
CLOSE REPORTS-FILE REEL.

When a file contains multiple reels, the opening and closing of
individual reels is automatically performed by the Inputf/Output Control.
It is only required that the user close the file when processing is to
be terminated. If, however, the user desires to close individual reels,
the following events will occur:

A, INPUT files:

NO End Label checking will be performed. The tape will be rewound

to BTIC, unless the NO REWIND option bhas been specified. If NO
REWIND is used, the tape will be positioned after the ED file sentinel.

Note: CLOSE REEL cannot be used for an input file that is being
used as the re-run control file. If this is attempted, an error
will be indicated at compilation time.

(Cont'd)

- 72 -

CLOSE

CLOSE file-name REEL: (Gont)

B. OUTPUT files:

The End Label is created and written to the output file -~ see Tape
Labeling. An ED file sentinel is then written to the file
and the tape rewound to BTG, unless NO REWIND has been specified.

The next reel for this file is then opened following the standard
procedure for this file,

NOTE
A "CLOSE file-name" must appear for each file that has been "opened”
in the program. A file must be closed before it can bg reopened. If

an OPTIONAL file is not present during object program running time all
CLOSE statements for that file will be ignored.

EXAMPLES

CLOSE MASTER-FILE, TRANSACTION-FILE WITH NO REWIND, NEW-MASTER-FILE,
CLOSE ERROR-FILE.

- 73 -
DISPLAY

DISPLAY VERB

Function: To allow for visual display of low volume information on the
monitor printer.

1itera1~1 literal-2
DISPLAY , etc.... UPON MONITOR .
data-name-1 data-name-2 | -

Each DISPLAY statement will position the monitor printer on the next print
line, and printing will start at the left-hand margin. As indicated in the
format, multiple literals or data-namesmay be included in a single DISPLAY
statement.)

It a space is desired to separate iiterals or data fields, the programmer
may use the figurative constant,"SPACE." (No other figurative constants are
permitted.)

EXAMPLES ,

™ DISPLAY "INVALID STOCK NUMBER" UPON MONITOR. ‘
DISPLAY "OVERDRAFT" SPACE, ACCOUNT-NO OF MASTER UPON MONITOR.
DISPLAY COUNTER-1, SPACE, COUNTER-2, SPACE, COUNTER-3 UPON MONITOR.

- 74 - .:
DIVIDE

DIVIDE VERB

Function: To divide one number by another and to store the result in
the last named field or the specified one,
literal-1 literal-2
DIVIDE © INTO

data-name~1 data-name-2

[E%VING data—name§3 l

NOTES:

1. See RULES GOVERNING ARITHMETIC OPERATIONS, page 66.

2., In addition to the above rules, the following apply:

a) Literals used in the DIVIDE statements must be integer
values (whole numbers).

b) If the value of the divisor is '"zero,'" a machine alarm
will occur. Therefore, if this condition could exist,
the user must test for a "zero" divisor and, if present,
avoid the execution of the DIVIDE statement.

EXAMPLES

16. DIVIDE TOTAL-SALES INTO DEPARTMENT-A GLVING PERCENTAGE.
117. DIVIDE "1gg" INTO AMOUNT GIVING TAX-BASE ROUNDED.
412. DIVIDE UNITS-ON-HAND INTO INVENTORY GIVING UNIT-COST.

Ez:OUNDE?] ; ON SIZE ERROR GO TO

line-number

- 75 =

ENTER

ENTER VERB

Function: 'To permit the user to anorporate coding written in RCA 501
Automatic Assembly format into the Narrator program.

ENTER ASSEMBLER P-number

The explicit P-address of the FIRST instruction in the block of Assembly
to be entered is supplied as the "P-number." The format to be followed in
writing 501 Automatic Assembly coding is discussed in the Own Code Section,
page 120.

Assume that the programmer wishes to imclude 501 Assembly coding follow1ng
statements 40 and 80:

{
4. MOVE BALANCE IN MASTER 'TO WORK-BALANCE,
41, ENTER ASSEMBLER PAClf.
42. WRITE NEW-MASTER.

8¢. ADD BALANCE IN MASTER AND NEW-BALANCE,
81. ENTER ASSEMBLER PAC1f.
82. WRITE ERROR.

The 501 Assembly coding will be inserted into the object program at
the place where it is called, i.e., in line. A second ENIER statement,
having the same P-number, will produce another copy of this Assembly coding
in the program,

Once a block of Assembly coding has been entered, further references
of this coding can be made through PERFORM or GO TO statements, that refer
to the line-number of the ENTER statement. For example:

4ff. MOVE BALANCE IN MASTER TO WORK-BALANCE.
41, ENTER ASSEMBLER PAClg.
42, WRITE NEW-MASTER.

8#. ADD BALANCE IN MASTER AND NEW-BALANCE.
81. PERFORM 41.
82. WRITE ERROR.

148. GO TO 41.

- 76 ~ EN

If PERFORM is used, control will be transferred to the Assembly coding
and returned to the statement immediately following the PERFORM line. If
GO TO is used, control will be transferred to the ENTER line and processing
will continue "in-line'" from that point.

NOTE: Up to 50 ENTER statements may appear in the program.

EXAMPLES
ENTER ASSEMBLER PAS14.

ENTER PARZY.

EXAMINE
- 77 - _—

EXAMINE VERB

Function: The EXAMINE verb has two purposes:

a) REPLACING: to replace a specific character in a data
field by another specified character.

b) TALLYING: to count the number of times a apecific
character appears in a data field. (This
option can also be used to replace these
occurrences, if desired.)

i

: ALL
REPLACING LEADING literal-l WITH literal-2 ,
ENTIE FIRST
EXAMINE data-name
ALL
JALLYING LEADING literal-3 [EEPLACING WITH literal-zl .

UNTIL FIRST

NOTES:

1. The literal must be a single character, or the "figurative" constants
ZERO(S) and SPACE(S) may be used. For example:

EXAMINE NUMBER REPLACING ALL "A'" WITH "B".
EXAMINE NUMBER REPLACING LEADING ZEROES WITH SPAGES.

2, The examining process always starts from the left-hand end of the
field. (Note that an Item Separator before the field is NOT con-
_sidered as the LHE.) ‘

3., If UNTIL FIRST is used with the REPLACING option, all
characters up to the first occurrence of literal-l
will be replaced by literal-2. For example:

EXAMPLE FIELD-A REPLACING UNTIL FIRST "5" WLTH ZERO.

Before After
[eTalaT7]51712] [«1glglgl517]2]

Note that if the literal-l character did not appear
in the field, the entire field would heve been changed
to the literal-2 character. .

4. When the TALLYING option is used, the tally ‘''count'" is automati-
cally placed in a special data field called TALLY. TALLY is a
7-character field containing an ISS symbol and positive sign,
which the user may directly address by name. The "count' may
vary from 00000 to 99999. The name, TALLY, cannot be used for
any purpose other than to address this special field.

- 78 ~

Example :
20, EXAMINE AMOUNT TALLYING ALL - ",".

AMOUNT FIELD TALLY (BEFORE) TALLY (AFTER)

BELEAEL L5 []oele|s]el+] [Tddalglals]

Note that each time the tallying function is used, the previous
contents of the TALLY field are destroyed. If the contents are to
be retained; the user should move the field to another area.

If the ALL option is used, the tally count will be the number of
occurrences of "literal-3.'" When LEADING is used, the count will

be the number of occurrences prior to encountering a character

other than "literal-3." If UNTIL FIRST is specified, the tally

count will be the number of characters encountered before "literal~3,"

EXAMPLES
a) EXAMINE AMOUNT REPLACING LEADING ZEROES WITH SPACES.
. Before After .
[«Ig(polglelalal-]l |el=l=l-l8lalai-]

b) EXAMINE STOCK-NO REPLACING FIRST "A'" WITH "B".

Before After

lalelel-Jalzlsld {alelel-Inj7]3]2l

c) EXAMINE NAME TALIYING UNTIL FIRST SPACE.
NAME FIELD TALLY (BEFORE)
Llofel-[-]-1-1-| te[glg|gle]5] +]

TALLY (AFTERj
le|@gl8]0]3] +|

d) EXAMINE CODE TALLYING ALL "A" REPLACING WITH "Bﬁ.

CODE FIELD (BEFORE) TALLY (BEFORE)

[als]elelalc] [lglalgTa[3] +]

CODE FIELD (AFTER) TALLY (AFTER) -

(]]6 [6 [B]C] oIz lglglgla] +|

- 79 - ' ’ i

EXIT VERB

Function: To furnish a common exit point for a subroutine.

EXIT.

The EXIT statement permits the user to interrupt the normal sequence of execution-
within a subroutine and to go directly to the “exit" of that subroutine. This verb produces
NO coding in the object program and is only used to provide a method of leaving the sub-
routine without executing any more statements in the subroutine. . ¢

The EXIT statement must appear as the last line of the subroutine.

Example A

PERFORM 2. MOVE A TO B.
RANGE 3. IF B IS GREATER THAN "5@¢" GO TO 64.
' 4¢. ADD B AND WORK-AMOUNT, '
5¢. MOVE WORK-AMOUNT TO PRINT-AMOUNT.
— 6@, EXIT.

In this example the program will leave the perform range when statements
20 through 50 are executed, or if field B is greater than "500."

Example B .
— 4. IF SECURITY-CODE IS EQUAL TO "C" GO TO 44f.
USE 41¢. IF SECURITY-CODE IS EQUAL TO "RY GO TO 444.
SUBROUTINE 42¢. IF SECURITY-CODE IS EQUAL TO ngr GO TO 444.
43%. STOP "“SECURITY CODE INVALID".
44, EXIT.

< .
1f a valid security code appears in the tape l1abel, the programmer leaves

the USE Subroutine by transferring to the common exit line.

NOTES

1. Control is transferred to the line-number of the EXIT statement.

2. EXIT lines are initially set to go to the next statement in sequence.
However, when the subroutine is executed as a PERFORM range, the exit
will be reset to transfer to the statement following the PERFORM line.
See PERFORM verb for further clarification of the process of setting
and resetting the BY-PASS.

- 80 -

|

FI

&

Function: To determine the relationship that exists between a specified
data field and entries that appear in a list or table.

FIND data-name WITHIN table-name -} (subscript-name)

;IF relation-1 THEN GO TO line-number-1

—
IF relation-2 THEN
31 {OTHERWISE ‘G0 10 line-number-2 .
ELSE

The FIND verb enables the user to compare the value in a data field against
entries that appear in a table or list, according to the following relations:

[rot] 2ouar 1o UNEQUAL TO

[@Zg] LESS THAN EXCEEDS ,

Eﬁgj;_‘l GREATER THAN EQUALS
Examples |

2¢. FIND CODE WITHIN CODE-TABLE; IF EQUAL TO GO TO 43ﬁ<

The value in the data field, CODE, will be compared to the value in the .
first entry in the CODE-TABLE. If these values are not equal, the data field
will then be compared to the second entry, and so on. This comparison process
continues until: '

1) Equality is found. (At this point the program will
‘ transfer to line 430.)

2) The entire table has been searched without finding an

equal condition. (When this occurs the next statement
in sequence will be executed.)

T 1 : " 3
Using "Subscript-name' Option

If the (subscript-name) option is used, the Narrator will store the relative

position of the table entry that satisfied the condition in the "subscript-name'"
field.

Examglé:
2¢.FIND CODE WITHIN CODE-TABLE (LOCATION); IF EQUAL TO GO TO 43¢.

In this case, each time the data field, CODE, is compared to a table entry,
the Narrator will add a "1" to the data field, LOCATION. Thus, if the 18th f
entry in the table was equal to the CODE fleld the data field LOCATION would
contain the wvalue "18." (The programmer may now use the LOCATION field for |
subscripting purposes -- see Subscripting, page 47 .) '

- 81 - U

rab le—-name

The user substitutes for "table-name" the level-2 data name
that contained the OCCURS clause, if he wishes to reference the entire entry. If.
only part of the entry is to be referenced, the data-name of one of the level-3
sub-items is used. For example:

2 ANNUAL-EXPENDITURE; SIZE 1#; PICTURE J; OCCURS 3¢ TIMES.
3 YEAR; SIZE 2.
3 AMOUNT; SIZE 8.

41%. FIND TRANS-AMT WITHIN ANNUAL-EXPENDITURE, IF EQUAL TO GO TO 42.
(In this casz, the TRANS-AMT field will be compared t the
full 10 characters of each entry in the ANNUAL-EXPENDITURE
table.) :

32¢. FIND TRANS-YEAR WITHIN YEAR; IF EQUAL TO GO TO 207.

(In this case, the TRANS-YEAR field will be compared to the
first two characters of each table entry.)

203, FIND TRANS-AMOUNT WITHIN AMOUNT; IF EQUAL TO GO TO 24.

(In this case, the TRANS-AMOUNT field will be compared to the
last 8 characters of each table entry.) ' '

By using the "subscript-name” option in the FIND statement, the programmer

may take advantage of the table location (which is automatically stored for him)
to process other parts of the same entry. For example, assume that the following
statements appeared in the program:

4¢, FIND TRANS-YEAR WITHIN YEAR (LOCATION); IF EQUAL TO GO TO 33¢.

33%%. MOVE AMOUNT (LOCATION) TO WORK-AMOUNT.

After statement 40 has been executed, the subseript field LOCATION will
contain the relative number of the entry that was equal to TRANS-YEAR. (IEf
this happened to be the seventh entry, then a 71 would appear in LOGATION.)

The programmer then uses the LOCATION field to specify which AMOUNT entry
is to be used in the MOVE operation. 1In effect, the user is saying "Mowe the
seventh amount entry to WORK-AMOUNT."

NOTES

1. When the reclations EQUAL TO or EQUALS are used by thewselves, the entire
table will be searched until equality is found or the end of the table
has been reached. For example, assume that the field CODE contains the
value 08, and that CODE-TABLE has fifty entries ranging in value from
01 to 50: .

6f. FIND CODE WITHIN CODE-TABLE; IF EQUAL TO GO TO 42.
79. MOVE +.v. .

- 82 - S

FIND

WP a—— 1

In this case, 08 will be compared to each table entry until an
“equal" is found, at which time a transfer will be made to statement
42. 1If 08 is not one of the values in the table, the next statemznt
in sequence will be performed.

2. AIL OTHER RELATTIONS (NOT EQUAL TO, UNEQUAL TO, LESS THAN, NOT LESS

N
.

THAN, etc.) WILL TERMINATE THE TABLE SEARCH AT THE FIRST TABLE ENTRY
THAT COMPLIES WITH THE RELATION SPECIFIED. For example, assume that

the field PAY contains the value 075, and that the SALARY-RANGE table
contains ascending values starting with 050, 060, 070, etc., up to 200:

64. FIND PAY WITHIN SALARY-RANGE (RATE); IF
LESS THAN GO TO 53; OTHERWISE GO TO 174.

In this example, "075" will be compared to each entry in the list --
starting with the first -- until this value is less than the list
entry. This condition will occur when the fourth entry (080) in the
list is compared. At this time the subscript field, RATE, will contain
the value "4," and control will be transferred to statement 53.

The FIND statement may be used to search one table in order to gain
entrance to another table. For example, assume that a TAX table contains
the corresponding tax rate for each entry in the SALARY-RANGE table.

In this case, the value appearing in the subscript field, RATE, would

now contain:the number of the entry in the TAX table that affects that
salary range. Thus, statement 53 might appear as follows:

5%. MULTIPLY PAY BY TAX (RATE) GIVING DEDUCTION.
(That is, multiply PAY by the 4th TAX entry.)

"Mata-name” and "table-name™ must contain the same number of data
characters and must be fixed in size.

- 83 -

0 RB

—— ———

Function: To interrupt the normal sequence of statements by specifying the next
statement to be performed.

e —y

GO TO line-number |.

bocmsmemsion. |

This option permits the user to specify that processing is to be transferred
to the designated statement,. instead of the next sequential statement. For
- example, let us assume that the programmer wishes to transfer processing to
statement 410 after line 40 has been executed:

4¢. MOVE A TO B.
5¢. GO TO 41f.
6@. MOVE A TO C.

It may be desired to omit the line number in a GO TO statement when it is
being used as a program "switch.'" In these cases, the ALTER verb must be
used to set this "switch" to a specific line number when desired. (If this
switch is never set by an ALTER atatement, an error will occur in the object
program,) :

Example :

54. ALTER 414 TO PROCEED 'TO 500.

.

41p. GO TO.

OPTION 2
GO0 10 line-no-1, 1ine—no—2‘,line—no—3,...etc.::] DEPENDING ON data-name.

This option permits the:user to designate a number of destinations in a GO TO
statement. The actual line-number to which the program will transfer is determined
by the numeric value appearing in the "data-name’ field.

Example :

4f. GO TO 314, 62, 188, 2¢, 3¢2, 28, 178, 54f DEPENDING ON TRANS-CODE.

If the field '"TRANS-CODE" contains the wvalue "3'" when statement 40 is
executed, control will be transferred to line 180. 1If the value "6" is present,
the program will transfer to line 20.

- 84 - ' &0

The following tules apply when using the GO TO DEPENDING ON option:
1. Up to 60 line numbers may‘be specified in the statement.

2., "Data-name" field:

a) may be any 1éve1-2 or level-3 entry, or a level-77 working-storage
area. (Constants and condition-names cannot be used for this
purpose.) :

b) The size of the data-name field must always be constant (fixed S
This field may be defined as being one, two or three characters
(not including an ISS, if present). The field cannot contain a
sign position, . .

c) The value in the data-name field must be an integer value which
is right-justified and zero-filled. Also, since the value in
this field determines the destination address, this value should
range between 1 and the total number of addresses appearing in
the GO TO statement. If the .value in the data-field is zero, or it exceed

the number of destination areas, the next statement in sequence
will be performed. :

SPECIAL OPTION

p———
s |

3 THEN GO TO line-number

The optional clause "THEN GO TO" may be appended to all statement Q;Qggg
those which contain the following wverbs:

USE ENTER STOP

IF GO " NOTE

EXIT FIND '
Examples:

a. MOVE PAY TO AMOUNT; THEN GO TO l4.
b. CLOSE MASTER-FILE; THEN GO TO 63.
c. ADD TAX AND SALE; THEN GO T0 11l4.
d. READ MASTER, AT END GO TO 68; THEN GO TO 46.

e. WRITE ERROR; THEN GO TO 15.

~ 85 - IF |

IF STATEMENTS
The IF statement is designed to perform the following functions:

OPTION 1 - To determine if a certain condition(s) exists.
OPTION 2 - To compare the wvalue of one field to another.

OPTION 3 - To determine the status of a field.

A GO TO clause is associated with each IF statement to indicate, the next
logical statement to be performed when that condition exists.

OPTION 1 (CONDITION-NAMES, BREAKPOINT SETTINGS)

This option permits the user to test the '"ON" status of a computér breakpoint
switch, or to test a "condition-name" against its specified value.(See Condition-
Names, page 28, and Special-Names, page 8.)

Format:

IF condition-namé THEN GQ TQ line-number-1

ke atay]

 (OTHERWISE o 10 1 .
ELSE GO 10 line-number-2 | .

The user may substitute for "condition-name'" a special-name assigned
to a breakpoint switch, or a condition-name used in the DATA DIVISION.

Exémgle A: (Assume Breakpoint-1 has been assigned the special-name,
MONTHLY -SUMMARY..) -

2¢. 1IF MONTHLY-SUMMARY GO TO 47.
21, MOVE
If Breakpoint #1 is '"'set'" (ON) when this statement is executed, the program

will transfer to line 47. If this switch is not set (OFF), statement 21 will be
executed.

Example B: (Assume that the CODE field had been described as fOllOWS{)

2 CODE; SIZE 1.
88 DEPOSIT; VALUE IS "A".
88 WITHDRAWAL; VALUE IS "B".

3¢. IF DEPOSIT GO TO 106.
4. IF WITHDRAWAL GO TO 114.
50. MOVE

When statement 30 is performed, the Narrator will test the CODE field against
the value "A"™. 1If an "A" appears in that field, control will be transferred to
statement 106; if not, the next statement will be executed.

- B6 -

OPTION 2: (RELATIONS)

This option allows the programmer to compare the value in a data field (or
literal) to another data-field (or literal).

Formats
literal-1l literal-2 :
IF relation-1 THEN GO TO line-number-1

data-name-1 data~name-2

; LE relation-2 THEN GO TO0 line-number-2

IF relation-3 THEN

; { OTHERWISE ' GO T0 line-number-3 .
ELSE

The user may substitute for "relation" one of the following:

IS yg_ﬂ EQUAL TO IS UNEQUAL TO
IS Eoﬂ LESS THAN EQUALS

IS E\mj GREATER THAN EXCEEDS

Example A: IF AMOUNT IS LESS THAN BALANCE GO TO 62.
~ (Note: program continues in sequence on an "equal" or
"greater" condition.)

Example B: IF REORDER-QTY EXCEEDS ON—HAND GO TO 63; IF EQUAL TO GO TO 62.
(Note: program continues in sequence on a 'less" than condition.)

Example C: IF DATE OF MASTER EQUALS TODAYS-DATE GO TO 41; OTHERWISE GO TO 76.

(Note: on a "less" or "greater'" condition the program transfers
to line 76.) '

OPTION 3: (STATUS)

This option permits the programmer to test the status of a numeric or
alphanumeric field. (This option cannot be: used with an alphabetic field.)

Format:

IF data-name-1 IS test-1 THEN GQ IO line-number-1

; IF test-2 THEN GO TQ0 line-number-2

A IF test-3 THEN
OTHERWISE GO TQ line-number-3 .
ELSE

-

- 87 -
IF

One of the following may be substituted for "test' if the field is NUMERIC:

[vor] rosrrave [wor} zeo

[_310”.?__} NEGATIVE l"iiloi‘*w] NUMERIC

St

If the field is ALPHANUMERIC, the programmer may only test for the following:
[E#g{] NUMERIC

Example A: IF BALANCE IS ZERO GO TO 14; IF NEGATIVE GO TO 43; IF POSITIVE GO TO 56.

(Note: Erogram will transfer to the path correspondlng to
' he first ''satisfied" test.) .

Example B: 1IF BALANCE IS ZERO GO TO 73; OTHERWISE GO TO 64.
: (Note: program will transfer to line 64 on both "posxtlve"
and 'megative" quantities.)

Example C: IF BALANCE 1S NEGATIVE GO TO 64,

(Note: program continues in sequence on a 'positive" or
""zero" quantity.)

~IMPORTANT GOMMENTS REGARDING IF STATEMENTS

1. The CLASS of each term involved in the test or relationship must
be compatible. The following combinations are illega}l:

A field B field
Alphabetic « » numeric

Numeric (edited) &-———3 Numeric (non-edited)

2. When comparing relationships, the followiﬁg rules must be observed:

a) Both terms must be fixed in size. (Variable fields
cannot appear in an IF statement.)

b) Both terms must include the same number of DATA characters.
(ISS symbols and signs are not considered as data characters.)

c) If either term includes a sign, coding will be generated in
the object program to interrogate the sign locations and to
determine if negative values are present, before actually
comparing the values in the fields themselves.

If "negative" quantities will NOT appear in these signed
field the minimum number of machine instructions will be
generated if the programmer compares data only. He should,
for example, define these fields as follows:

2 TOTAL; SIZE 6; CLASS NUMERIC; SIGNED.
3 T-AMOUNT; SIZE 5.
3 FILLER; SIZE 1.

2 AMOUNT; SIZE 6; CLASS NUMERIC; SIGNED.
3 A-AMOUNT; SIZE 5.
3 FILLER; SIZE 1.

Comparing the level-3 entries would then produce the least
amount of machine instructions:

- 88 -
| IF,

31¢. IF T-AMOUNT EQUALS A-AMOUNT GO TO 517.

d) If the data description for a NUMERIC field indicates
"editing," the USER CANNOT COMPARE A PURE NUMERIC VALUE

TO THAT FIELD.

A numeric field is assumed to be 'edited" if:

1. the PICTURE clause contains editing symbols
($? [] WB)O

2. one of the following clauses appear:

ZERO SUPPRESS

CHECK PROTECT

FLOAT DOLLAR SIGN
or

BLANK WHEN ZERO

Example A
Assume that the field, TOTAL, had been defined as follows:

2 TOTAL; SIZE 7; CLASS NUMERIC; POINT LEFT 2; ZERO SUPPRESS.

When the value in this field is zero, the field will appear as follows:

Lo]-1-1-1-]als|

tassumed'decimal point.

Thus, if the programmer wishes to check this field for a zero quantity,

he CANNOT write:
IF TOTAL ‘IS EQUAL TO ZERO GO TO 44,

Instead, he must write the following statement:
IF TOTAL IS EQUAL TO '"++++@@" GO TO 44.

If the user wanted to compare this field for a value greater than 50"

IF TOTAL IS GREATER THAN "++5¢@@" GO TO 4#.
Example B:
Assume that the field, TOTAL, had been defined as follows:

2 TOTAL; SIZE 8; CLASS NUMERIC; POINT LEFT 2; PICTURE IS K$999.99.

/

If a numeric value of "4411" had been moved to TOTAL, the field would a

as follows:

feigolala [LTITT]

?pear

-89 - iE

The following statement, then, would test this field for a value greater
than $50: -

IF TOTAL IS GREATER THAN "$85¢.0p" GO TO 44.

e) Literals appearing in IF statements must agree with the format

of the other operand in the statement. The user cannot,- for
instance, compare numeric literals to alphabetic fields; nor
may he compare literals that are not equal in size to the
contents of a data field.

£) 1If an alphanumeric field is compared to a gigned numeric field,
the user may only test for an equal or unequal condition. 1In
this case, the sign location in the numeric field will be con-

sidered as a gharacter of data, and not a sign. For example:
FIELD-A (AN) ' FIELD-B (NUMERIC, SIGNED)
XXXX XXXS .
IF FIELD-A IS EQUAL TO FIELD-B GO TO 440.

The coding generated in the ob ject program for this statement will compare
the four characters in field-A with the four characters in field-B.

- 90 -~

OPTION 1.

g e —————

data-name-1
MOVE)i1iteral TO0 data-name-~2 §, data-name-3...etc..,.| .

Function: To transfer data to one or more areas, performing any editing,
padding, or truncation as required by the description of the
receiving area(s).

1. GENERAL RULES
A. CLASS

In all movements of data,the class of the sending and receiving areas must
conform to the following rules; otherwise, an error will occur:

SEND ING RECEIVING AREA
AREA. ALPHA | AN NUMERIC NUMERIC(EDITED)
_ALPHA Yes Yes No No
“AN Yes Yes Yes Yes
NUMERIG No Yes Yes Yes
NUMERIC (EDITED) | No Yes No Yes
B. SIZE

In all moves the "net'" size of the sending area must be less
than or equal to the "net" size of the receiving area.

"Net" size is determined by subtracting the following from the
length specified in the SIZE clause:

a) ISS symbol (if present)

b) sign (if present)

¢) decimal locations (if present)

Examgleqj
2 BALANCE; SIZE 8; CLASS NUMERIC; POINT LEFT 2; SIGNED.
}T. TﬂmrwlmM{mqw”Fj

N

net size 4

2 CODE; SIZE 5; CLASS ALPHABETIC; PICTURE J.

L

N —— o
net size 5

Note: TIf the receiving area is other than NUMERIC, signs and
decimal locations will not be subtracted from the sizes
of the sending and receiving areas.

- 91 - MOVE

C. JUSTIFICATION

When the net size of the receiving area is larger than the
net size of the sending area, data will be "justified" in the
receiving area according to the CLASS of the receiving area.
The balance of the receiving area will then be "padded," i.e.,
filled with zeros or spaces. : ‘

The rules governing standard and non-standard justification
are discussed on page 38, subject to the following exception:

Only'"standard' justification is permitted when
either the sending or receiving area is variable.

Example éj
MOVE AMOUNT TO BALANCE.

-AMOUNT BALANCE

gioi1 7l 41 Before 315171112]2

agter [#lof1]7]4]1

Example B:
MOVE AMOUNT TO BALANCE.

AMOUN'T BALANCE

312151414 Before 1i4 3]1216] 6} 7 7!

After \ﬂ!ﬂ%ﬂnB 2‘5 4l 4

Example C:
MOVE CITY TO LOCATION.
CITY LOCATION

°1® OlgtTLO‘;] Before [;ngLlEiv B L A‘N D'ij\

Lo !

S T,

After

sfo]srjo]n]-[-]-]-]

- 92 - VYOYE

1L FIXED FIELDS

A.

e

B.

ISS SYMBOLS

If the sending field contains an IS8, but the receiving
field does not, the ISS is .not moved:

Sending Receiving

[x[x[x]x]

If the sending field does not contain an ISS symbol, but
the receiving field does, an ISS will be generated in the
receiving field.

[«] x| x| x|x]x

Sending ‘ Receiving
> [Ix{xix{x[x

[xIx[xx]

NUMERIC RECELVING FIELDS

1. Signs
When both fields contain signs, the sign will be moved

into the receiving field:

Sending Receiving

If the sending field contains a sign, and the receiving
field does not, the sign will not be transferred:

Sending Receiving

x1+]

3 [X[xX]

[

If the sending field does not contain a sign, but the
receiving field does, a positive sign will be generated in
the receiving field:

Sending Receiving

S

RIETR] ey R

-~ 93 - MOVE |

2. Decimal Locations

When numeric data is moved to NUMERIC receiving fields

with standard justification (i.e., right-justified) decimal
locations will be aligned with 'truncation" or "zero-f£ill"
in the receiving area, as required.

Example of "zero-fill'

Sending Receiving
5 [2]6[afal——s [g]s]5] 2] s]4 [4]0] 0]
T;nassumed W;_.assumed
decimal decimal
point point

Example of ''truncation”

Sending Receiving
3]2]6]4f216] »g|ol312]6]4]
W:assumed Tassumed
decimal decimal
point point

As indicated, data stored into the receiving field is
governed by the specifications of the recelving field. It
is possible, therefore, to truncate decimal locations that
appeared in the sending field. It is an error, however,
if the receiving field cannot accommodate all of the integral
digits (not decimal locations) in the sending area. For
example, the following is INCORRECT:

Sending Receiving
|
[x[xlxlijmFGAL-ﬁvB [x]xixi x) x| x| x|
assum;awuﬂ (assumed
decimal decimal
point point

(Receiving field can only accommodate two integral digits.)

When numeric data is moved to NUMERIC receiving fields
with non-standard justification (i.e., left-justified),
decimal locations will not be aligned. For example:

Sending (POINT LEFT 2) Receiving (POINT LEFT 3; JUSTIFIED LEFT)

slalal7islgini o]

- assumed W;.assumed
decimal decimal
point point

- 9% - MOVE

3. Editing

"Editing" will be performed on pumeric data moved into a
numeric receiving area, if

a) RECELIVING field has been specified as ZERO SUPPRESS,
FLOAT DOLLAR SIGN, CHECK PROTECT or BLANK ZERO.

Example: Assume that the clause "FLOAT DOLLAR
SIGN" appeared in the description of the
field, BALANCE.

144, MOVE DIFFERENCE TO BALANCE.
DIFFERENGE BALANCE

[#]dl 2[4 4] o] 5 Before |$lalg|s|7]|7]2]g

Aster [--[-[$[1]4]9]5]

b) Receiving field description includes a PICTURE
clause which contains editing symbols (§,.9B):

Example: Assume that the field BALANCE was
defined as follows:

2 BALANCE; SIZE 11; CLASS NUMERIC; PICTURE K$99,999.99{
ZERO SUPPRESS.

144, MOVE DIFFERENCE TO BALANCE.

DIFFERENCE BALANCE

[oTol2[1]4]e]s 2] Before [ef$]-|-]-]7]ol6].[2]2]

after [o] 81 2[,]1[4]8].] ¢ 2]

Note: Locations must be allowed in the size of the
receiving field to accommodate the insertion
of editing symbols.

C. ALPHABETIC OR AN FIELDS

When moving data to ALPHABETIC or AN receiving fields, a straight
copy is performed, ignoring any editing, decimal point alignment or

sign considerations. Unless specified otherwise, data will be left-
justified with space £ill.

Example :

Sending (NUMERIC; POINT LEFT 2; Receiving (AN; POINT LEFT:;SIGNED)
SIGNED) ?

aRBER > PSS 1=

- 95 - e
MOVE |

L.

rm et oy et

ITI VARIABLE FIELDS

A. REDUNDANT ZEROS AND SPACES

Redundant zeros or spaces will not be transferred into variable
receiving fields. Redundant zerdghgppear to the left of the first
non-zero character in NUMERIC fields; redundant spaces appear to
the right of the last non-space character in ALPHABETIC or AN
fields.

In cases where the sending field contains all redundant zeros or
spaces, only an ISS symbol will be transferred.

ltﬂ

. ISS SYMBOLS

Variable fields must always contain ISS symbols. In addition,
if the sending field is variable, the receiving field (regardless
of whether it is fixed or variable) must also contain an ISS symbol.

|

STIGNS

When a sending field is signed, and the receiving field is not, the
sign will not be transferred.

When a sending field is not signed, but the receiving field is,
a positive sign will be generated in the receiving area.

!U

. DECIMAL LOCATIONS

Both fields must contain the same number of decimal locations.

|=

. EDITING

If the receiving field is variable, editing will not be performed.

l'T.I

. ASSEMBLING VARIABLE RECORDS VIA FIELD MOVES

Variable fields are located by means of their relative 1SS
position within the record. That is, the fourth field in a
variable record would he accessable by locating the fourth ISS
symbol starting from the beginning of the record.

- 96 - ' MOVE

If a variable record is being "assembled" by the user, all
fields that include ISS symbols must be moved into the area
IN THE SEQUENCE IN WHICH THEY APPEAR IN THE RECORD. If data
for a particular field is not present, then the user must
move an ISS into that field in order to maintain proper
positioning.

When data is moved to a variable field, the Narrator places
an ISS symbol immediately following the last data character.
This permits the next variable field to be located. When the
Narrator recognizes that this is the last variable field in the
record, an End Message symbol is inserted in lieu of an Item
Separator.

Example: Assume that W-AMOUNT and W-NAME appear as follows:

W-AMOUNT W-NAME

BEEEEBE Lelof-leirly]-|-]-1-]-]-1-]

The user then moves these fields to the last two items in a
variable record:

11¢. MOVE W-AMOUNT TO FIELD-A.
111. MOVE W-NAME TO FIELD-B.

Record area Before Moves

FIELD-A ~ FLELD-B R

ST BLle el o T fa ool dolo s IS 5k

Record area After First MOVE

21| 2|g]el6]6l 6|e|Elp|w|a|rlD| -] 7]o| n]E|S|>

PR S T TR S

- 97 = MOVE |

MOVING LITERALS

A. A literal may be moved into any data area other than a CONSTANT or another
literal.

If the receiving area is fixed, literals will be moved according to the
class of the receiving area (zero or space filling will occur, if necessary).

If the receiving area is yariable, literas will not be expanded unless the
FILLING option is specified. (Note that an ISS symbol will be added to the
RHE of the literal to permit the Narrator to locate the next variabk item),

B. When moving literals to "edited'" NUMERIC fields, the editing function will be
ignored and the literal assumed to be in the exact format of the receiving
area. (Exceptions will be ISS symbols and positive signs, which will be
added to the literal, if required.)

. Example: MOVE "$18.75'" TO BOND-DEDUCTION.

C. When the receiving area format indicates an assumed decimal point, the literal
is assumed to contain the proper number of decimal places.

Example: When moving eighteen dollars to a four character field
with two decimal places, the literal should appear as
"1800", ‘The literal "18" would be assumed to be eighteen
cents.

D. Since“unedited" NUMERIC fields cannot contain spaces, a literal moved to
such a field cannot be the figurative constant SPACE(S), nor may spaces
appear within the literal, (Note that a positive sign is not considered as
a space.) :

E, If a figurative constant, ALL any-literal or ALL figurative-coustant is
used, the FILLING option is implied, In these cases, the Narrator will
generate a string of characters for the literal which will be the same
size as the number of data positions in the receiving field.

Example; If MOVE ZEROS TO BALANCE is specified, and there
are 8 data locations in the BALANCE field, a literal
of eight zeros will be generated.

The generated literal will include an ISS and/or a positive Sign if required
in the receiving area. Decimal points, justification and editing will be
ignored.

F. If a numeric literal is moved to a gigned numeric field, a positive sign
is not required within the literal. Negative signs, however, must appear.

literal Receiving Field (SIGNED)
467" = [4l 6]7] +!
literal Receiving Field (SIGNED)

"4 67aM > 7:—*“!6 i"_@l

- 98 -
MOVE

MOVING CONSTANTS

In general, constants (level-77) are treated as normal data fields and,
as such, follow the standard rules governing data field movement.

Constants, however, that are comprised of '‘a single control symbol ("*')
or contain more than one control symbol ('*AB*42"), are considered as SPECIAL
constants., These constants are governed by the following mles:

1. If the constant 1s a single ISS (i.e., "*'"), and it is moved to any
data field (variable or fixed), only an ISS symbol will be moved. The
balance of the data area will remain unchanged. ‘

2., If more than one control gymbol appears in the constant, the constant
may only be moved to a variable area or to a fixed level-l area.
(If moved to a fixed level-l area, the literal will be placed in the
area according to the level-l class. (Zero or space filling will
occur if necessary.)

- 99 .

MOVE

MOVE VERB
QPTION 2

MOVE literal FILLING data—name—li , data~namu~2...etcl .

This option permits the user to move a "literal" (or "figurative constant")
to one or more destination areas. The value of the literal will be placed into
the destination area starting at the left-hand end.. If the
receiving area is larger, the transfer will be repeated until the area is filled,
at which time truncation occurs, if necessary.

Examble A
MOVE "6" FILLING AREA-1, AREA-2.

Area-1 before execution Area-l after execution

lafs]2i8ls l8]8]-] ———— lel6l6lelelo[6]-]

Area-~2 before execution Area-~2 after execution
16183 - 5 [<lele]e]
Example B

MOVE "ABC" FILLING AREA-1.

Area-1 before execution Area-1 after execution

| E|E|E|E|E|E |E ;~£ABCABCA

NOTES:

1. Literals are moved into data positions of receiving
fields,only -- see example A.

2. If the receiving field is a gigned numeric field,
and the literal doednot include a sign, the literal
will be assumed to be positive, and a plus sign will
be generated in the destination area.

3. When using the FILLING option, editing, justification,
or alignment of decimal locations is ignored.

- 100 -

MOVING RECORDS TO RECORDS (Level-1)

When Both Records are Fixed

The following rules apply when both sending and receiving records are fixed:
1. The classes must be compatible.)

2. The SIZE of each record must be the same.

3. The sending record is moved into the receiving area as a straight
copy, ignoring all field descriptions for either record. Thus,
the presence or absence of level-2 entries has no effect on foed
record moves.

Because individual fields are not considered in this typé of‘MOVE; no

editing, justification, decimal point alignment, truncation or padding
will occur, '

When Both Records arelVariable

Same rules apply as when both records are fixed -- see above.

When One Record Is Fixed and Other Record is Variable

The following rules apply'when one record is variable and the other record is
fixed:

1. The classes must be compatible.

2, Both records must contain the same number of level-2 entries. .

3. The corresponding "fixed portions'" 6f each record must be identical,.
except for data-names.

4. The remaining portions Bf each record must be identical, except
for the following: :

a) All fields (fixed and variable) must have ISS symbols.
b) Receiving fields may be larger than sending fields..

c) If a sending field is SIGNED, its corresponding receiving
field must also be SIGNED. However, if the sending field is
. not SIGNED, the receiving field may or may not be SIGNED.

d) Justification for all receiving fields must be standard.

SPECIAL MOVES
1. Moving Data Fields (lLevel-2, -3, and -77) To a Record

Data fields moved to a record area must be fixed, regardless of whether
the level-1 area is fixed or variable. Data will be placed into the record
area left-justified and the remainder of the record area, if any, will remain

undisturbed. Note that if an ISS is associated with the sending field, it
will be transferred.

If the record area is in message format, an End Message Symbol will be
automatically inserted after the last character placed into the record area.

2. Moving a Record to a Data Field (Level-2, -3, or -77)

Records (variable or fixed) may be moved to a data field grOVLded the data fleld
is fixed. In moves of this type, data will be placed into the receiving field
left-justified, regardless of the receiving field CLASS, and space filling will
occur, if required.

An ISS location in the receiving field will be overlaid by the first character nf
the record area. Thus, it is assumed that the £iTst character in the record area is
an ISS Symbol.

"

- 101 - !
10 MULTIPLY
e

Bl

MULTIPLY VERB

© Function: To multiply two quantities together and store the result in
the last name field or the specified one.

literal-1 literal-2
MULTIPLY BY ' .
data-name-1 data-name-2
GIVING data-name-3. RUﬁNDED ‘ "]; ON SIZE ERROR GO T0 line-number

ritamennl

NOTES :

1. See RULES GOVERNING ARITHMETIC OPERATIONS, page 66.

Note that the integer locations in the result field should
be equal to the sum of the integer locations in the Multiplier
and Multiplicand.

2. In addition to the above rules, the following applies:

a) Literals used in the MULTIPLY statements must be integer
values (whole numbers).

EXAMPLES *

17. MULTIPLY SALE BY STATE-TAX GLVING TAX-AMT ROUNDED.
211. MULTIPLY "2'" BY AMOUNT.

423, MULTIPLY DEPENDENTS BY "6¢¢'" GIVING DEDUCTION.

- 102 -

NOTE YVERB

Function: To allow the user to include explanatory comments in his program.

Ng;g o-ooooa;-0-0000000000000. .

Example :

12¢. WRITE NEW-MASTER.

13¢. NOTE SPECIAL REPORT LISTING ROUTINE FOR CUSTOMER ACGOUNTS THAT
HAVE HAD NO ACTIVITY DURING PAST YEAR.

14¢. MOVE AMOUNT TO BALANCE.

15¢. MOVE ACGOUNT-NO TO REPORT-ACCOUNT.

LX X]

NOTE statements are for programmer use only; they have no effect on the

object program. In the above example, then, statement 140 will be executed
in the object program immediately following statement 120.

All NOTE atatements must be assigned a specific line-number, and may not
exceed 300 characters which includes the word NOTE and spaces.

NOTE statéments cannot bé referenced within the program.

- 103 -

OPEN

OPEN VERB

Function: 'To initiate the processing of both input and cutput files and
to Perform the checking or writing of tape labels.

OPEN l INPUT file-name-1 , file-name-2 .,.etc...
;T OUTPUT file-name-3 ¥, file-name- ...etc.] .

When an OPEN statement is executed for any file, the tape labelbrocedures
are instituted, if required. See Tape Labels, page 126. The file is then
positioned to release or to receive the first data record.

NOTES

1. The OPEN statement appears in the program at the point where

the file(s) would logically be opened. It should be remembered
that the programmer must indicate in this statement which files
are INPUT and which files are OUTPUT.

2. The OPEN verb does not affect records that appear in the file. File
records may only be obtained or released by appropriate READ and
WRITE statements. Alsoy an OPEN statement must be executed prior
to any READ or WRITE command for that file.

3. A second OPEN of a file cannot be executed until a CLOSE of that
file has been performed,

4. If an OPEN statement refers to an input ‘file that has been designated
as OPTIONAL (See page 9), the Input/Qutput Control will request this
information at object program running time. (This procedure is
explained in a separate publication.)

If the file is not present, it will not be ""opened" and a print-out
indicating the absence of the file will occur. When the first READ
for this file is encountered, control will be transferred to the line-
number specified in the AT END GO TO associated with the READ state-
ment.

5. When tape files are "opened'" they are assumed to be properly positioned,
as they are not automatically rewound to BIC.

6. No label procedures are performed for files assigned to the PRINTER.

EXAMPLES

OPEN INPUT MASTER-~FILE.

OPEN QUTPUT ERROR-LISTING,

OPEN INPUT MASTER-FILE4 TRANSACTIONS-FILE.

OPEN INPUT MASTER-FILE4 TRANSACTIONS-FILE; OUTPUT NEW-MASTER-FILE, DELETIONS,
ADDITIONS.

- 104 - PERFORM

PERFORM VERB

To permit the execution of one statement (or a group of
statements) a specified numberbof times, and to return
control to the next statement in sequence.

Function:

BERFORM line-number-1 {%%‘EUGH} 1ine-number-2 EK_A.Q....TW integer LLMEEI

During the data processing operation, there will be many occasions where
the programmer will be duplicating a statement, or a group of statement, that
appear elsewhere in the program. Instead of writing these statements a second
time (thereby generating the same machine instructions in: the object program)

" the programmer may use the PERFORM verb.

HOW THE PERFORM OPERATES

When a PERFORM statement is encountered during compilation, the Narrator
will generate in the object program a "BY-PASS" GO TO instruction following
the last statement in the perform range. This BY-PASS will be initially set
to the next statement in sequence. Thus, if the statements "PERFORM 5." and
"PERFORM 80 THRU 86.'" appear in the program, the Narrator will generate two
BY-PASS instructions -- one following statement 5 and another after statement 86.

Example A

READ
MOVE
ADD -
WRITE
READ

g
EGO TO 7 | g BY-PASS

- — - - >

7. SUBTRACT
8. WRITE

o e
e s

25.
26.

When a PERFORM statement is

PERFORM 3 THRU 6.

MOVE

executed (for examplé, at line 25 above), the

following events occur:

1. The line-number of the statement following the PERFORM is placed into
‘the BY-PASS. In example A, then, the by-pass would be 'set" to line 26.

2. Control is transferred to the first statement in the range (statement 3).
3. At the completion of the range, the by-pass is automatically reset to its

initial line number (i.e., line 7) and control is transferred to line 26..

(Conttad)

- 105 -

PERFORM

PR

EXACTLY integer TIMES

When this option is specified, the Narrator establishes an internal
counter that is checked each time the range has been performed. This counter
is reduced by "one" after each performance, and control is returned to the
first statement in the range. When the counter is recognized as "zero,"
the BY-PASS is reset to its initial line-number, and control is transferred
to the statement following the PERFORM.

"Integer" may range from 1 to 4095.

IMPROPER USAGE OF THE PERFORM VERB

The following conditions must be avoided when using the PERFORM verb:

A. Last Statemermt In Range Is A Branch Statement (GO TO, 1E).

Example B

1. READ

2. MOVE

3. ADD

4. WRLTE

5. READ

6. GO TO 72.
.Go TO 7_l.<

BY-PASS

7. SUBTRACT
8. WRITE

e oo

66. PERFORM 3 THRU 6.
67. MOVE

If we look at this example, we see that the last statement in the range
(line 6) is a GO TO statement. Thus, if any attempt is made to perform this
range, control will always be transferred at line 6 to line 72, AND THE BY-PASS
WILL NEVER BE EXECUTED. In this case, then, a return to the statement following
the PERFORM can never be accomplished.

B. Transferringbggf Of The Perform Range

The BY-PASS is only reset (ie., returned to its original line number)
after the last statement in the range has been executed. Therefore, if control
is transferred outside the range, and never returned back into the range, the
BY-PASS will not be reset. Should the user subsequently execute this part of
his program in sequence, the BY-PASS will NOT be set to the next sequential
statement, but rather to the line number following the last PERFORM that affected
that range.

(Cont'd)

- 106 - o PERFORM

G. Improper Nesting

"Nesting'" (i.e., PERFORM statements appearing within a PERFORM range)
is permitted, provided there is no overlapping. The following examples
illustrate both proper and improper nesting.

Example C: Correct Nesting I'xample D: Incorrect Nesting

— 2. — 2.
3. PERFORM 82 THRU 89, 3.
4. 4., PERFORM 8 THRU 12.
5. I s. '
s
7. A 7.
8. — 8.
9. 9. ’
— 18. e 147, BY-PASS
11. 117
12. 12, BY-PASS
13,
83. PERFORM 5 THRU 7.
94. PERFORM 2 THRU 1. : 67. PERFORM 2 THRU 14.
95, , 68.

To understand the problem of incorrect nesting (as illustrated in example D)
let us assume that the program is now at statement 67. Since this is a PERFORM
statement, the BY-PASS after line 10 will be "set'" to return to line 68 before
control is transferred to line 2. '

While performing this range of statements, another PERFORM is encountered
at line 4 in which the range 8 through 12 is to be executed. If we follow the
program from this point we see that the BY-PASS following line 10 will transfer
out to line 68. 'Thus, improper overlapping has prevented the execution of the
statements at lines 11 and 12.

USING THE EXIT VERB

If, while executing statementéyithin a PERFORM range, it is desired to exit
from the range, a COMMON exit point must be provided. This is accomplished by
using the EXIT verb as the last statement in the range. For example:

r2ﬁ'
3.
PERFORM 4, IF NEGATIVE GO TO 7.
RANGE 5.
6.
7. EXIT.

T T
1GO TO 8{{
8.
9.

BY-PASS

Note that the EXIT verb does not produce additional coding in the object
program.

- 107 -

PERFORM

GENERAL COMMENTS CONCERNING TiHE PERFORM VERB

1. A PERFORM statement cannot vefer to line-numbers appearing in
another SECTION -~ see Segwentation, page 118.

2. There is no necessary relation between "line-number-1"
and "line-number-2," except that the sequence of steps
starting at "line-number-1" must proceed logically to the
statement at "line-number-2" in order to complete the
range.

3. In general, "line-number-1" should not be the next
statement after the PERFORM. If it is, the result will be
that the loop will be completed one more time than was
probably intended, because after the PERFORM has been
satisfied, control will be returncd to “"iline-muiber-1"
and the program will continue Lrom that point. TIn the
following example, then, statement 22 THRU 26 would actually
be performed three times.

21. PERFORM 22 THRU 26 EXACTLY 2 TIMES.
22,
23,
24,
25.
26.
EXAMPLES
PERFORM 5.

PERFORM 5 EXACTLY 2 TIMES; THEN GO 1O 444.
PERFORM 2¢@ THROUGCH 347.
PERIFORM 207 'THROUGH 387 LEXACTLY 1¢4 TIMES.

Ly o

- 108 - READ

READ VERB

Function: To make available the next '"logical' record from an input file, *-
and to permit the performance of an imperative statement when
the end of file (EF symbol) is detected.

RFAD file-name RECORD{:AT END GO TO line-number i .

NOTES :

1. The READ statement applies to file-names, not record -names.

2, An OPEN statement for the file must be executed before the first
READ command is given.

3. The READ command places the next "logical' record into the f ile area
for processing. (Lf the file contains more than one type of record,
it must be determined through programming what type record appears
in the file area.)

4, Every READ statement must have an implicit or explicit AT END GO TO
option.

If the AT END GO TO options are identical for all reads of the
same file, the programmer need only include this clause with
one read statement. The compiler will then append this clause,
with its associated line-number, to all other READ commands for
that file. If different AT END GO TO statements apply to the
same file, ALL reads for that file must have explicit AT END GO
TO statements. (If no END statement exists for a file, the
compiler will indicate an error.)

5. After executing an AT END GO TO° statement, any attempt to perform

another read from that file will constitute an error in the OBJECT
program, unless the file had been closed and reopened again.

6. When the Input/Output Control recognizes that all records have been
processed on an intermediate reel, the following occurs:
a) The End-Label is checked (if present)..
b) The USE subroutine is performed (if present).

c) A tape swap is effected if more than one tape station
has been assigned to that file. If only one tape
station was assigned, the program will stop and indicate
that a new reel is to be mounted.

d) The Beginning-Tape-Label of the next reel is checkéd (if present).
e) The USE subroutine is performed (if present).
£) The next 'logical'" record is made available.
7. When the Input/Output Control recognizes that all records have been
processed on the last reel, the following occurs:
a) The End-Label is checked (if present).
b) The USE subroutine is performed (%§,present).

c¢) Control is transferred to the AT END GO TO line-
number associated with the last READ command.

-109 -

READ

8. If an OPTIONAL Input File is not present at object program running time,
the first READ encountered for that file will cause a transfer to the
"AT END GO TO" routine. Subsequent READ commands will cause an error
print-out.

EXAMPLES

READ MASTER-FILE; AT END GO TO 4#47.
READ MASTER-FILE.

READ SALES-FILE; AT END GO TO 514.
READ SALES-FILE; AT END GO TO 5¢¢.

- 110 -

STOP VERB

Function: To stop the computer when the program has been completed, or
to cause a temporary halt during processing.

RUN
.STOP .
literal

Example A:
414. STOP RUN.

When the word RUN is specified, "END OF RUN" will be displayed on the
monitor printer and the computer will stop. At this point the ending procedure
established by the installation should be instituted.

If the object program will be used with the RCA Program Sequencer, the
next program will be processed when the STOP RUN statement '1s executed.

Example B:
54@. STOP "INVALID TRANSACTION ACCOUNT NUMBER".

When a literal is specified, the literal will be displayed on the monitor
printer when the program stops. Depressing the start button at this point will
cause the sxecution of the next sequential statement. '

- 111 -

SUBTRACT

SUBTRACT VERB

Function: To subtract one quantity (or a sum of quantities) from a specified

quantity, and to store the result in the last named field or in
the specified one. '

D |

K literal-1 , literal-2 literal-n
SUBTRACT etc... | FROM

data-name-1 AND data-name-2 data-nameeh

GLVING data—name551| ROUND%%H ; ON SIZE ERROR GO T0 line-number |.

hcamavenser ——r——

NOTES :

1. Sei RULE? GOVERNING ARITHMETIC OPERATIONS, page 66. Note that when the
integer locations of the result field equals the integer locations of the
1argést operand, a '"possible" overflow iti ist.

2, In gdditign to the above rules, the olfgggnglngT?Y exist
a) A maximum of 10 operands can be specified in any single

SUBTRACT statement. This includes the GIVING field, if
: present. ‘

b) Literals must contain the same number of decimal locations
as the result field. If, for example, the literal "5g0"
has been used, and the result field has two decimal
locations, the literal is considered as being 5,#@. If the
result field has no decimal locations, the literal is
considered to be 5¢f,.

c) When dealing with multiple subtrahends, the effect is
the same as if all subtrahends were first summed, and this
sum then subtracted from the minuend. Note that minuend
is literal-n or data-name-n.

EXAMPLES

17.SUBTRACT DEDUCTIONS FROM PAY.

129, SUBTRACT DEDUCTIONS FROM PAY GIVING NET-PAY,
473, SUBTRACT AMT-1, AMT-2, AMT-3, AMT-4, AMT-5 FROM BALANCE.

- 112 -

[

USE RB
Function: To designate special procedures that are to be performed when a
tape label is checked or created.
USE line—number-1 gﬂﬁgﬁﬂ} 1ine-number-2 © AFTER STANDARD

BEG

rase,

file-name

TNNING

REEL LABEL PROCEDURE ON INPUT .
ENDING OUTPUT

When a USE subroutine has been specified for a file, the statement(s) in
that routine will be performed immediately FOLLOWING the tape label
routine. In the case of an Input file, the following sequence of events

takes place:

1. Label is read.

2. The "Standard'" label items are checked -~ see Tape Labels, page 126.

3, USE subroutine is performed.

4. Program continues in sequence.

When an Output file is involved, the procedure is ‘as follows:

NOTES
1.

2.

1. The "Standard' label items are placed in the label area.-- see Tape

Labels, page 126.
2. USE subroutine is performed.

3. The tape label is written to the file.

4., Program continues in sequence.

The line numbers specified within the USE statement MUST be greater
than the line number in which the USE wverb appears. For example, the
USE statement at line 307 cannot contain references to statements
whose Aine numbers are less than 307,

During compilation, all USE statements and their associated
sub-routines are REMOVED from the normal statement sequence.
These routines are executed, as required,by the Input/Output
Control.

Therefore, when USE statements and USE subroutines appear within

_the program, they must be considered as "outside" the normal

- 113A - ==

112. USE 113 THRU 114 AFTER STANDARD BEGINNING REEL LABEL
PROCEDURE ON NEW-MASTER-FILE.

113, MOVE "B'" TO PRIORITY-CODE.
114. MOVE ACCOUNT-NUMBER OF MASTER TO FIRST-MSG-CRITERIA.

Example B Assume that a program has three files: MASTER-F ILE (input),
ERROR-FILE (output), and NEW-MASTER-FILE (output). It is

desired to cross-foot the record counters; i.e., the record
count for the ERROR and NEW-MASTER files are to be added and
compared to the record count of the input file during the
end-of-run procedures.
62. USE 63 AFTER STANDARD ENDING REEL LABEL PROCEDURE ON ERROR-FILE.
63. ADD BLOCK-COUNT AND CHECK-AREA-A.
64. USE 65 AFTER STANDARD ENDING REEL LABEL PROCEDURE ON NEW-MASTER-FILE.
65. ADD BLOCK-COUNT AND CHECK-AREA-B.
66. USE 67 AFTER STANDARD ENDING REEL LABEL PROCEDURE ON MASTER-FILE.
67. ATD BLOCK-COUNT AND CHECK-AREA-C.

(Note: The BLOCK~-COUNT in the ending label specifies the number of
"physical" records on that reel.)

- 113 - USE

processing path. For example:

As Originally Written As Executed in Program

49@. READ 4@@. READ....

41¢. USE 458 THRU 494... 43¢, MOVE....

43@¢. MOVE..... 449. ADD.....

449, ADD...... 53¢. MOVE....

45¢.

494.

5¢#. USE 51¢ THRU 524...

514.

520.

53¢. MOVE.....

3. The statement containing the USE verb cannot be referenced
by any other statement.

4. USE subroutines are performed during label processing by
the Input/Output Control. Entering these subroutines from
elsewhere in the program, therefore, may cause an error
at object program running time. Similarly, transferring
from the subroutine to another part of the program may
have the same effect.

An error warning will be given at compilation time if any
such transfers of control have been made by the programmmer.

5. Input-Output statements may not appear in a USE subroutine except
for the DISPLAY and ACCEPT verbs. SECTION and other USE verbs,
of course, cannot appear within a USE subroutine.

6. The Label area.can only be accessed through a USE subroutine at
the time label checking is performed. (Note that label checking
occurs not only when files are opened or closed, but also when
reels are exhausted or replenished.)

7. 1f BEGINNING/ENDING is omitted, the designated procedures will
be executed for both beginning and ending labels.

If INPUT is specified, the designated USE subroutine will be

applied to all input files and an error will occur if another
USE subroutine appears for any input file. The same applies

to the use of OQUTPUT. '

Example A The beginning-tape label for the NEW-MASTER-FILE appears as
follows:

< o IDeDate-Written e Priority-Code e First-Msg-Criteria >

Since the Priority-Code and First-msg-Criteria are non-standard
label items, the user must move this information into the
label area through a USE subroutine. (Note that standard
label items are automatically placed in the label area.)

114 - WRLTE

WRITE VERB

Function: To release a "logical"” record for an Output file, and to permit
vertical positioning if the Output file has been assigned to the
On-Line Printer.

WRITE record-name IFROM data—naég]

BEFORE (integer LINES
ADVANCING ¢ PAGE)
AFTER LOOD

"Record-name"

"Record-name' must be an output record; it cannot be an input or
- working-storage record.

Data For "record-name" In Qutput File Area

If the information for the "record-name" appears in the output file area,
the user need only state:)

WRITE record-name.

Data For "record-name" Not In Qutput File Area

When the information for the '"record-name'™ is not in the output file :
area, the user must either move the information into the output area or state:

WRITE record-name FROM data-name.

In this case, the Narrator first "move s" the "data-name" to the '"record-
name ,'" and then executes the WRITE. This performs the same function, then, as:

MOVE data-name TO record-name.
WRITE record-name.

"Data—name'’

"Data-name' may be any level-1, 2, 3 or 77 area. However, the *data-name"
cannot be qualified or subscripted.

If the format of "data-name" differs from "record-name," the 'data-name"
area will be moved into the output area according to the standard rules
governing MOVE operations -- see MOVE, page 90.

ADVANCING OPTION

The ADVANCING clause MUST be used in all WRITE statements that pertain
to files assigned to PRINTER.

This clause is used to specify that the paper is to be advanced a certain
number of lines, the page is to be changed, or that vertical tabulation is
to be controlled by the paper-tape-loop in the printer, itself.

As indicated, the usermust state whether the paper is to be advanced
before or after printing.

For example, it is desired to write the Report record, then advance the
paper 3 lines:

WRITE REPORT BEFORE ADVANCING 3 LINES.

- 115 - WRITE

Paper Advancing In Simultaneous Mode

Paper advancing will only be performed in the Simultaneous mode when the
WRITE statement contains the BEFORE option. Simultaneity during printing will
not occur if the AFTER option is used.

NOTES
1. An OPEN statement must be executed prior to the first WRITE for
any file.

2. End of Reel:

1f the end of reel is recognized when a WRITE command is given,
the following occurs:

a) The end label procedures (if required) are instituted
and the Ending-Taps-label is written to the file.
See Tape Labels, page 126.

b) A tape swap is performed if more than one tape station
has been assigned to the file. Where only one tape
station has been assigned, the program will stop and
indicate that a blank reel is to be mounted.

¢) The beginning label procedures (if required) are
instituted for the new reel and the Beginning-Tape-
label is written. See Tape Labels, page 126.

d) The '"record-name'" is written to the new reel.

e) The program continues in sequence.

ON-LINE PRINTING

When On-Line printing is reguired, the Narrator will reserva a computer
area of 120 characters. This area will be a “"common" area that will be used
for all files assigned to PRINTER. Thus, only one print file may be "opened"
at any one time,

At the start of the object program this common file area is automatically
cleared to spaces. (This is the only time that clearing of the print area is
automatic.) '

Because print files may contain different -types of records, it cannot be
assumed when developing a record in the print area that information from the
previous record has been cleared to spaces. If data froﬁthe previous record
has been completely "overlaid,” clearing, of course, is not necessary.

In defining records appearing within print files, the SIZE of the
record must be specified as 120 characters if the record is in "block" format,
and 118 characters if in "message' format.

- 116 -

EXAMPLES

WRITE NEW-MASTER. v
WRITE NEW-MASTER FROM WORK-MASTER.

WRITE REORDER BEFORE ADVANCING 4 LINES.

WRITE REORDER BEFORE ADVANCING PAGE.

WRITE

- 117 -

SAMPLE OF PROCEDURE DIVISION

PROCEDURE DIVISION.

1¢. OPEN INPUT MASTER-FILE, TRANSACTION-FILE;
OUTPUT NEW-MASTER-FILE, REORDER-FILE.

2¢. MOVE SPACES TO PRINT.
3¢ . READ TRANSACTION-FILE; AT END GO TO 148.
ap. READ MASTER-FILE; AT END GO TO 16f.

Bd. IF PART-NUMBER OF MASTER IS LESS THAN PART-NUMBER OF
TRANSACTION GO TO 11§, IF GREATER GO TO 124.

6f. MOVE MASTER TO REORDER.

7¢. SUBTRACT QUANTITY-USED FROM BALANCE ROUNDED.
8¢. IF BALANCE IS GREATER THAN LEVEL GO TO 104.
9¢. WRITE REORDER BEFORE ADVANCING 2 LINES.

1¢¢. WRITE NEW-MASTER FROM REORDER; THEN GO TO 30.
11¢. WRITE NEW-MASTER FROM MASTER; THEN éo,To 49.
12¢. DISPLAY "INVALID TRANSACTION" UPON MONITOR.
13¢. READ TRANSAGTION-FILE; AT END GO TO 14%; THEN GO TO 50.
14¢. READ MASTER-FILE; AT END GO TO 174.

15¢. WRITE NEW-MASTER FROM MASTER; THEN GO TO 144.
16¢. DISPLAY "MASTER EXHAUSTED" UPON MONITOR.

17¢. CLOSE MASTER-FILE, TRANSACTION-FILE, NEW-MASTER-FILE,
REORDER-FILE.

184. STOP RUN.
EF

- 118 -

SEGMENTING PROGRAMS

If the available computer memory cannot accommodate the object program,
the program must be broken up into segments by the user. This is accomplished
by PRECEDING each segment with the following statement:

line-number SECTION.

Example :
1. SECTION.
2.
Segment 1 3.
4,
S.
6. SECTION.
7.
Segment 2 8.
9.
0.

There may be up to twenty-one (21) segments in a Narrator program; if
segmentation is not desired, SECTION statements are not to appear.

At program running time, segments will be brought into memory automatically,
as required. For example, if a GO TO statement in segment "1" refers to a line-
number in segment "2'", segment 2 will be brought into memory and control trans-
ferred to the line-number specified. Also, after the last statement in a
section is executed, the following section will be automatically entered.
(Assuming, of course, that this last statement does not transfer to another
area of the program.)

Programming Gonsiderations When Using Segmentation

1. When a program is segmented the first line-number must be a SECTION
statement.

2. Only one segment appears in memory at any given time. Because of
this, ALTER or PERFORM statements in one section cannot refer to line
numbers that appear in another section.

%3, Care should be exercised when defining the limits of a segment. For
example, segments cannot end within a PERFORM RANGE,since the exit
by-pass for that range appears in another segment and, consequently,
cannot be properly set. Also, segments are called into memory in
their original form, andpot as modified by the program. This means
that GO TO statements used as program "switches' will always appear
as they were originally written whenever the segment is brought into
the computer.

As a general rule, it is advisable for the programmer to keep the idea
of segmentation "in mind," even though the program need not be segmented.§ If
the user takes this approach -- and it later becomes necessary or desirable to
segment -~ the segmentation may be accomplished with a minimum amount of
program modification.

- 119 -

If, for example, the program originally had been written as shown below,
a good deal of modification might be required if the user wanted to segment as
indicated.

MAIN PROCESSING PATH

END OF FILE ROUTINE
& ERROR PATHS

MAIN PROCES SING PATH

Desired Sngentkf
Point i HOUSEKEEPING

ﬁ

Shouldthe desired segment point fall within an "often-recurring" portioAVf
the main processing path, a prohibitive amount of tape movement will occur

at program running time to continually bring segments into the computer. 1In
this case, the programmer may find it necessary to reorganize his program,
requiring extensive changes to line numbers, GO TO addresses, IF datements, etc.

A problem such as this would have been avoided if the program had been
organized as follows:

HOUSEKEEPING

<& Logical segment point.:

MAIN PROCESSING PATH

. -
END OF FILE ROUTINE VQLOglcal segment poin

& ERROR PATHS

ii
i

¥

: In this illustration, segmentation at '"logical" segment points could have
been accomplished without changing statements in the main processing path, or,

creating excessive tape movement at running time.

- 120 -

OWN CODE

The ability to insert 501 Assembly pseudo-code directly into the
Narrator sequence is accommodated by the ENTER verb. Due to the
difference in format between Narrator statements and Assembly pseudo-
code, the pseudo-code instructions do not follow the ENTER verb.

They are written on regular Assembly program sheets and are included afcer
the PROCEDURE DIVISION. (The Assembly coding will be inserted during
compilation at the place where the ENTER statement appears.)

The format for writing pseudo-code is described in the RCA AUTOMATIC
ASSEMBLY SYSTEM manual, subject to the following rules:

FORMAT OF OWN-CODE

The Own-Code section may contain a number of independent "groups" of
pseudo instructions. A '"group" is defined as those pseudo instructions
that pertain to a specific ENTER statement. The user must indicate the
conclusion of each group by inserting 'END" in the OP column of the line
following the last instruction in the group. The entire OWN- CODE section
is terminated by an "ED" symbol.

Example:
T PROCEDURE DIVISION.
1. MVE.....

-

468. DISPLAY....

EF
PAALP DA XXX | XXX j;
o 1O XX KRX
e e e e ! i
ocT b
END f§
{ PAB1@| | OCT XK | XX
' 2L NN N
’ ey -
PAC18! OCT XX | XXX
a ! OoCT XXX XXX
PACLL IT XXX | XXX
: END

ED

P-ADDRESSES

1., The first instruction in each Own-Code group must have
an explicit P-address. (This address must be identical
to that appearing in the ENTER statement.)

2. There must be at least one explicit P-address for every
30 pseudo-instructions within each group. Explicit decimal point
insertion P-addresses may appear in the instruction
number column; relative P-addresses cannot.

- 121 -

3. Each Own-Code group may use P-addresses raaging from
PXX@# to PXX98, with the only restriction being that
the second and third characters (i.e., XX) must be
the same for all instructions within each "group.™
For example: ‘

Group 1 Group 2
PAAGY PBB1#
————— PBB22
PAALE e
PAA6Q PBB25
e PBB22+1.1

REFERENCING OWN-CODING

1) The Narrator language can only refer to own-coding through
the ENTER verb, i.e.:

12. MOVE PAY TO AMOUNT.
13. ENTER ASSEMBLER PAAl@.
14, MOVE ON-HAND TO GROSS.

68. GO TO 13.

2) Instructions in the Own-Code section may directly refer to
Narrator line-numbers,provided the line-number referenced
appears in the same section as the Pseudo-Code instruction.

Inst.No. oP A B T é éIF GO TO} IF | GO 'm;
PAB21 ¢ | 126

PAB22 SC | #l4# #14# | DAMT(R) + 31 - 224
e I T

3) There is no communication between instructions within one
Own-Code group and instructions that appear in another
Own-Code group.

OWN-CODE REFERENCE TO NARRATOR DATA NAMES

The Own-Code section may directly refer to FAA (Fixed and always
appearing) data-names thathave been defined in the DATA DIVISION, subject
to the following rules:

- 122 -

1. A D" must be prefixed to all data-names. For example:

Narrvator Data-name Own-Code Reference

DATE DDATE

NET-PAY DNET-PAY :
ACCUMU LAT I VE~INCOME -FOR-YEAR DACCUMULATIVE-INCOME-FOR-YEAR
MASTER DMASTER

TRANSACTLON DTRANSAC TEON

2. All names must be addressed character relative in the
following format:

Dnamz2(L) or Dname (L+n)

Dname(R) or Dname(R-n)

Example :

oP A B T §
sC DPAY (L) DPAY(R) "k ggg
IT DSTOCK-NO(R) |DPART-NO(R)

LW DTRANSACTION(L) T77

SCC DCOUNTER(L) DCOUNTER(L+118)

1f the data name reference does not include a character
relative designation, the Own-Code Generator will indicate

a possible error and will assign the RUE address for this
field, regardless of the format of the pseudo instruction.

P en e i

3. All Non-unique data namzs must be qualified in the following manner:

oP A . B 5
IT DSTOCK-NO(R) IN MASTER DSTOCK-~NO(R) IN ERROR
DA DAMOUNT(R) OF MASTER "x5@e"

4. Since the Narrator accepts data names up to 30 characters,
the usual 19 character-per-column limit for the Assembly -
system is disregarded in the Own-Code section. If a data
name is too large to fit conveniently into an address
column, the pseudo-code writer may ''squeeze' the name into
a single line as shown below:

Exanple :

op A B T

s e et N T < T T s R e

DACCUMULATIVE-
DA | DSALARY(R) INCOME-FOR-YEAR(R)

NN A

5. The useﬁmay refer to the FIRST wvariable item in a variable
file area by name; however, only the left-hand-end of this field
may be addressed, ie., Dvariable (L) or Dvariable (L+n).

- 123 -

INPU'T/OUTPUT INSTRUCTTONS

The processing of records in the object program is under the direction

of the Input-Output Control, and the useApust be careful NOT TO EXECULE
INSTRUCTIONS IN THE OWN-CODE SECTION THAT DISTURB THE POSITIONING OF ANY
FILE. If this is attempted, an error may occur in the running program.

SIMULTANEITY .

The simultaneous gate will always be QPEN when own-coding is performed.
If the user desires the gate closed, he MUST REOPEN IT BEFORE LEAVING THE
OWN CODE SECTION.

ADDRESS MODIFIERS

All address modifiers may be used in the Own-Code section. However,
the contents of these modifiers (except AM1) will change when control is
transferred from own-coding back to the Narrator.

WORKING-STORAGE AREAS

Working-storage areas in the DATA DIVISION may only be addressed by
prefixing a '"D" to the data-name.

If the user desires to define working storage areas in the OWN-CODE
section, he may only define areas in the W9 working storage "block."

Format:
Woxxxxx.n
where '"n" may be up to four decimal characters,

Example :
oP A B T %

scc | woa.1g¢cg) | woa
stc | pamounT(L) | DAMOUNT(R) | woa

LIMITATIONS ON USE. OF 501 AUTOMATIC ASSEMBLY CODING

The following limitations are imposed on the use of pseudo-coding in
the Own-Code section:

1. Tape station addresses must be designated as Txx, - I and O
symbolics cannot be used.

2. The following mnemonic operation codes cannot appear in the
Own-Code section:

ADV
DUP
RES
SGMT
*ST
**RD
**MSW -

*Although the mnemonic ST instruction may not be used, G76 or
M76 operation codes may appear.

- 124 -

* ¥ he Qwn-Code section cannot create L-list nameg; this imposes a
restriction then on the use of the mnemonic RD and MSW instructions.
If Random Distribute or Multiple Sector Write instructions are
desired, they must be written using G or M opz2ration codes. (The
list of addresses must be created in the A and B columns of the
pseudo instructions.)

3. Descriptor Verbs
Descriptor verbs cannot be used.

4, Macros and Subroutines

Macros and subroutines cannot be used.

SCONSTANTS

The following rules apply to the use of octal and decimal literals
in the Own-Code section:

1. FIXED literals CANNODT be used.
2. K-constants CANNOT be used.

3. Any literal except three quotes (" *' ') may be used.
4, If uniqueness is desired, Ul thru U199 must be specified.

5. As in normal Assembly operation, octal literals must
contain an even number of characters, ranging from
0 - 7. If the Own-Code Generator recognizes an uneven
count it will add a zero to the LHE of the literal and

contiqye,processing. An error will also be indicated at
compLlation time.

6. Literals used in the Own-Code section are not restricted
to 19 characters and may range up to 120 characters. For

example :

Inst. No. orp A _ B f.
"IMPROPER+EMPLOYEE+CODE

PAR21 LW { +FOR+FOLLOWING+RECORD/" T77

Note thatif the literal exceeds 19 characters, a slant symbol as _
the first character will be converted to an SM symbol, a slant as the
last character of the literal will be converted to an EM symbol.

THIS WILL NOT OCCUR IN LITERALS WHICH ARE 19 CHARACTERS OR LESS.

SIZE OF OWN-CODE MESSAGES

The physical size of an own-code message cannot exceed 400 characters (including
a start and end message symbol).

- 125 -

EXAMPLE OF OWN-CODING

EF
Inst.No.| Comments OoP A "Np § Np | B T : <§
PAARY | stclsgorze | #9917# | DSELECT-PRINT(R))
PABGY | | s1C |#gogen #8984 | DSELECT-PRINT(R))
' ' L IR RV S v {
| racgs |10 REWIND ALL TAPES Tor |#00gg7secc1y| | [pacesay | . i
PAC#L | TO BIC AT START OCT [PAC#3(3)) PACH2(5)
PAC#2 | QF PROGRAM - TS |PACH3+l ' T N ”
0CT {PACH3(3) | ’ N
PACH3 TALLY COUNTER | i . ')
A [PACH1 i |PAcH3(A) | 12
END' v /
ED

(Note: Although the Comments column may be freely used, comments

will not appear in the object program listing. They will appear,
however, in the source program listing.)

- 126 -

TAPE LABELS

The 501 NARRATOR System has been designed to provide automatic tape

label checking and creation. In this respect the NARRATOR user has the
following options:

1. to omit label-checking
2. to use RCA Standard Labels
3. to supply his own labels

Reeted

1. LABELS OMITIED

When tape labels will not be used for a particular file, the File Label
entry is written as follows: “LABEL RECORDS ARE OMITTED.'

Files that do not contain tape labels appear in the following fbrmat:

SINGLE-REEL FILES

MULTIPLE-REEL FILES
[EF — “tw”Auwmwuﬁm‘mmmaata - & «_Intermediate
R - o P L reels
EF data EF EF ED M;]<+*Fina1
reel

2. STANDARD TABELS USED

The Narrator user has the option of utilizing the RCA Standard Tape Label
generation and label-checking featureS. In this case, the user does not
define tape labels himself, but merely specifies in the File Description
entry that "LABEL RECORDS ARE STANDARD".

The Narrator, upon recognizing this clause, will:

1. Generate a standard Beginning and End Tape label for this
file.

2. Write these labels on the file when required.

3. Automatically check these labels at the time the file is
opened, when reels are exhausted, and when the file is closed.

Files that contain STANDARD tape labels appear in the following format:

SINGLE-REEL FILES

[<BIL'S" BF v d@tacn oo EF < ETL > EF ED

- 127 -

MULTIPLE-REEL FILES

< BTL > EF e data——— -EF < ETL > ED !4—Intermediate
rvi— Prr— (PR re e 1 s
[<BIL > EF —— data — EF < ETL > EF ED|«Final reel

Format of RCA STANDARD Labels
1. BEGINNING TAPE LABEL (29 Characters)
The Standard Beginning Tape Label is twenty-nine characters in
size and will always appear in message format, as follows:
9 ch's. 4 ch's. 7 ch's, 7‘2h's.

("“‘“—n..,.,.——“’ﬂ\uw“""‘"”“ e Y r—--«—-..-mA ~ —
< e IDENTIFICATIO&W:rkEEL—NUMBER ¢ DATE-WRITTEN {VPURGE—DATE >

LABEL ITEMS
Name Characters Format
IDENTIFICATION (or ID) 9 & XXXXXXXX
REEL-NUMBER 4 e XXX

DATE-WRITTEN 7 o XXXXXX
, (MODAYR)

PURGE-DATE 7 o XXXXXX
' (MODAYR)

The Narrator obtains information for these items in the following manner:

a) ID - The 8-character literal appearing in the '"VALUE" clause
is used as the ID item.

b) REEL~NUMBER - This is initially set to 001, and incremented
by "1" as each new reel is processed.

c) DATE-WRITIEN - today's date (supplied at program running
time by user) is inserted as the date-written
item.

d) PURGE-DATE - the number of days specified in the "ACTIVE-
TIME" entry is added to todayh date to arrive
at the purge-date. (Note that ACTIVE-TIME must -

apfear in the File Description for all output
files using PURGE-DATE.) '

2. ENDING TAPE LABEL (10 characters)

The Standard Ending Tape Label is ten characters in size and always
appears in message format, as shown below:

8 ch's.
I

e
< ¢BLOCK-COUNT >

- 128 -

The BLOCK-COUNT itenkontains the number of '"physical'' blocks (or records)
that appear on the reel. During the running program a count is kept of the
number of "reads" from input files and "writes" to output files. When the
end label is checked or created,the contents of th.se counters are taken as
the "block-count." (Labels and control symbols are not included in the count.)

If records are "grouped" or "batched," each batch will be counted as gng

block in the file.

The format for this item is illustrated below:

Name Characters Format
BLOCK-COUNT 8 * XXXXXXX

Standard Label-Checking

For Input files the Beginning-Tape-Label on each reel 'is automatically
checked for Identification and reel-number. If these items are not correct,
the program will stop and the user will be advised, via the monitor printer,
b take corrective action.

For output files, a special check is made on all reels that are mounted
on output tape stations to ascertain if these reels are "releasable,' i.e.,
may be written upon. This is accomplished by reading the first information
on each reel, which is assumed to be a Beginning-Tape-Label with a PURGE-DATE
entry. If the Purge-Date in the label is not less than today's date, the
program will stop with a print-out to the effect that this reel of tape is
"not releasable.

Notes:

1. If the reel mounted on the Output trunk does not contain a
label (for example, a work tape has been mounted), an EF
symbol must appear as the first information on that tape.
This will cause the program to bypass the Purge-date check.

2. The Purge-Date check will be performed on all reels that are
used for output files, even though a particular output file
was specified as having labels "omitted."”

3, LABEL DESTGNED BY USER

If the Narrator user defines his own tape labels, he must adhere to the
following rules:

A. Each File Description entry must contain one of the following clauses:
1. LABEL RECORDS ARE BEGINNING-TAPE-LABEL
2. LABEL RECORDS ARE BEGINNING-TAPE-LABEL, ENDING-TAPE-LABEL
3. LABEL RECORDS ARE OMITTED

B. A RECORD DESCRIPTION that specifies the format for the user's

tape label(s) must appear within the FIRST File described in the
DATA DIVISION. (These descriptions may not appear in any other

File.)
The Beginning-Tape-Label must be defined as the FIRST Record
Description.

The Ending-Tape-Label (if used) must be defined as the SECOND
Record Description.

- 129 -

The user may design his labels in any format, provided:

a) the labels are in message format

b) the Beginning-Tape-Label includes an IDENTIFICATION
(or ID) item. The ID may not exceed twelve (12)
characters, including an ISS if present.

If desired, the user's label may also include any or all of the remaining

STANDARD 1abe1 entries, provided these items are gorrectly spelled and are
identical in format to that described on page 127. The advantage of usxng the

Rt e —————

standard items REEL—NUMBER DATE-WRITTEN, PURGE-DATE and BLOCK-COUNT, is that
these items will be automatlcally checked and created by the Input/Output Control
-as described under -Standard labels.

For illustrative purposes, assume that .the user's tape labels
appear as follows:

BEGINNING .LABEL:
3 ch’s. 2 ch‘s. 4 ch's. 8 ch's. 7 ch's.

M I N Sl SN I ST

(" ‘«"*‘“‘W
< < ID SECURITY s REEL-NUMBER FIRST-MSG—CRITERIA . DATE—WRITTEN >

ENDING LABEL:
8 ch’s. 8 ch?’s.

./ ‘-.,V_

. B
< LAST—MSG—CRITERIA { BLOCK COUNT >

In this case, the first file in the Data Division would have as its file
label entry: LABEL-RECORDS ARE BEGINNING-TAPE-LABEL, ENDING-TAPE-LABEL. In
addition, the first two Record Descriptions in that file would appear as
follows: .

1 BEGINNING-TAPE-LABEL; SIZE 24; CLASS AN.

2 ID; SIZE 3; CLASS ALPHABETIC.

2 SECURITY; SIZE 2; CLASS NUMERIC; PICTURE J.
2 REEL-NUMBER; SIZE 4.

2 FIRST-MSG-CRITERIA; SIZE 8; PICTURE J.

2 DATE-WRITTEN; SIZE 7.

1 ENDING-TAPE-LABEL; SIZE 16; CLASS NUMERIC.
2 LAST-MSG-CRITERIA; SIZE 8; PICTURE J.
2 BLOCK-COUNT; SIZE 8.

In the above example, the ID, REEL-NUMBER, DATE-WRITTEN and BLOCK-COUNT
items would automatically be processed by the Input/Output Control. The
processing of the other label items must be accomplished by USE subroutines.

For example, during the Beginning-Tape-Label processing for an output
file, data for the FIRST-MSG-CRITERIA would be placed in the label area by
the following USE subroutine statement:

MOVE EMPLOYEE-NUMBER TO FIRST-MSG-CRITERIA.

- 130 -

The format for files containing user-designed tape labels is shown below:

1. Beginning-Tape-Label only

SINGLE-REEL FILES

[<BTL > BF ———mre o data - EF_EF ED
MULTIPLE-REEL FILES
[<BIL > EF — o= dat 8 — _EF_BD J¢-—Intermediate
’ ' reels
TR S —————- PV PU—————— i) [E

reel

2. Beginning-Tape-Label and Ending-Tape-Label

Same as STANDARD label format (see page 127).

IMPORTANT NOTES

1.

All files must follow the same tape label format; one file, for
instance, cannot have standard labels while another has special
labels designed by the user. For this reason, the Narrator assumes
that the tape label format specified in the first file description
entry applies to all files. Thus, if this entry states that labels
are OMITTED, it will be assumed that labels are omitted for all
files. (If label checking has been specified for the first file,
subsequent files may contain the OMITTED clause.)

The label definitions in the first file are not considered as
data records and should not, therefore, appear as record names
in the "DATA-RECORDS ARE' clause.

- 131 -

PUNCHING REQUIREMENTS
501 ¢720L NARRATOR PROGRAMS

Narrator programs are converted to punched paper tape for initial compilation.
After initial compilation, the source program will be available on magnetic tape,
and snbsequent recompilations will use this magnetic tape as the basic source
program. Modifications or corrections to the source program will, of course, be
in paper tape format.

Each Narrator Division is punched in message format, as follows:

IDENTIFICATION DIVISION

< IDENTIFICATION DIVISION.>

< PROGRAM-ID . . . >
< AUTHOR.
<2 INSTALLATION. . . . >
<. DATE-WRITTEN . . =
< DATE-COMPILED . o>
< SECURITY >
<7 REMARKS . -

EF (C/5)

ENVIRONMENT DIVISION

A

< ENVIRONMENT DIVISION.>

CONFIGURATION SECTION, >
OBJECT-COMPUTER. 5#1 MEMORY ADDRESS >
SPECIAL-NAMES. BREAKPOINT-1 . . . , BREAKPOINT-2 . . . >

A /\ I"‘\

A

< INPUT-QUTPUT SECTION. >
< FILE~CONTROL. >

< SELECT MASTER o>
SELECT NEW-MASTER >
SELECT ERROR o>
I-0-CONTROL, >
RERUN o>
SAME AREA >
SAME AREA >

AA

A

A A A

EF (C/5)

- 132 -

DATA DIVISION

< DATA DIVISION.>
< FILE SECTION.>

< FD MASTER-FILE . . ¢ ¢ & « o o o o « o o s =+ &
W« 4 + o o + s & « « « . DATA RECORDS ARE MASTER.>

S e >
< « e e e e & s . >
< o>

A
AANABNDDN-
W OW N

A

A A
© N

8
8 . . L L - L] . . O>

< FD TRANSACTIONS . . . « . « « o ¢ « o « o o &
&« « « « « « « . DATA RECORDS ARE CHECK, DEPOSIT.>

e e e e e e e e o>

<

A B
Q
jos]
=3
Q
N

(= B ST NR N
v

.
.
.
.
.
.
.
.
v

e IS
o]
|73)
=
!
v

E

v

A
AARAA

NMNMAANN
W e
Vv

v

A A

. e o>

< WORKING-STORAGE SECTION, >
K T7T v o v v 6 4 0 o o e e o>
LTT v e v e e e e e e e e >
<l .o c i i e e e e e o>
<2 0 0 e e e e e e e o>
2

< T o>
<1l .00 o>
< -« e * o o e s o .>

o e e 4 e o>
a & & & e s .>

A AN
W W

. - . . . ¢>

AANA
o 0N

8 . v e o v e >
8

e s o e o« o = s o>

< CONSTANT SECTION. >
< T7 v v 6 e 6 e e e e e e e o>
< T7 v e e e e e e e e e e o>
< T7T ¢ v v o 4 o v o o ¢ o >
< T7 v v e e e e e e e e e >

EF (C/5)

-

<

< 1.

PROCEDURE DIVISION

PROCEDURE DIVILSION.>

SECTION. >

< 2. MOVE A TO

<

kY

A

IF .
READ .
ADD .

[I SRV

I\

A
<)

. .

EF (C/5)
ED (A/8)

NOTE:

. MOVE C TO

B.>
D.>

If OWN CODE appears, an EF follows the last Procedural

Statement, and an ED terminates the Own Code sectiom.
Punching requirements for pseudo-code instructions are
described in the 501 Automatic Assembly System manual .

IMPORTANT NOTES

1.

The maximum size (including SM and EM) of a Narrator message
is 400 characters.

Particular attention should be paid to the use of hyphens and
spaces when the program iﬁpunched. Section names, headers and
KEY words, for example, must include hyphens where specified,
i.e., FILE-CONTROL, INPUT-OUTPUT SECTION, ACTIVE-TIME, etc.

At least one space must separate words and periods are critical
punctuation characters.

If data-names or literals have been '"squeezed" into columns on
Assembly Pseudo-code Program Sheets, the key-punch operator

must be instructed to punch this information within the boundaries
of that column. For example:

{

:

must be key-punched as shown below:

A

DACCUMULATIVE-
INCOME

*DACCUMULATIVE-~INCOME

- 141 -
APPENDIX A

RESTRICTED & RESERVED WORDS

The following words gannot be used by the programmer when assigning data-names:

AD VANCING LOCATION TALLY
ALL MODE THAN
ARE OF THEN
AT ON TIMES
ASSEMBLER PLACES WHEN
CHARACTERS PROCEDURE WLTH
CONTAINS PROTECT ZERO
DOLLAR SPACE ZEROES
I5 SPACES ZEROS
LINES STANDARD

In addition, ;L_ig also recommended that the user refrain._ from using KEY or Optional
words as data-names, because of the possibility of creating ambiguities within
the Englisb statements.

The following words have special significance, and may only be used as
specified in this manual:

Tape Labeling Procedure Division Data Division
ID ALL FILLER
IDENTILFICATION TALLY
REEL-NUMBER .ZERO
DATE-WRITTEN ZEROS
PURGE-DATE ZEROES
BLOCK-COUNT SPACE

SPAGES

- 142 -

APPENDIX A

LIST OF KEY AND OPTIONAL WORDS

A. IDENTIFICATION DIVISION

Key Words
AUTHOR INSTALLATION REMARKS
DATE~COMPILED PROGRAM-ID .SECURITY
DATE~WRITIEN
B. ENVIRONMENT DIVISION

Key Words
ADDRESS OPTIONAL SELECT
ASSIGN PRINTER SPECIAL-NAMES
IS RECORDS TAPE
MEMORY REEL TAPES
MULTIPLE RERUN TCP
NO RESERVE THROUGH
OBJECT-COMPUTER SAME THRU
ON :

Qptional Words
ALTERNATE END FOR
AREA EVERY STATUS
AREAS OF
_G. DATA DIVISION

Key Words
ACTIVE-TIME FD RECORDS
ALPHABETIC FLOAT RECORD ING
ALPHANUMERIC JUSTIFIED REDEFINES
AN LABEL RIGHT
BEGINNING-TAPE-LABEL LEAVING SIGN
BLANK . NUMERIG SIGNED
BLOCK OCCURS SIZE
CHECK OMITTED STANDARD
CLASS PICTURE SUPPRESS
COorY _ POINT TO
ENDING-TAPE-LABEL RECORD VALUE
ID : ZERO
IDENTIFICATION

Optional Words

ARE IS PLACES
.CHARACTERS OF PROTECT
CONTAINS LOCATION TIMES
DOLLAR MODE

WHEN

- 143 -~

APPENDIX A

D. PROCEDURE DIVISION

Key Words
ACCEPT FIRST POSITIVE
ADD FROM PROCEED
AFTER GIVING READ
ALL GO REEL
ALTER GREATER REPLACING
AND IF REWIND
BEFORE INPUT ‘ROUNDED
BEGINNING INTO RUN
BY LABEL SECTLON
CLOSE LEADING SIZE
DEPENDING LESS STOP
DISPLAY LOOP SUBTRACT
DIVIDE §8§§T°R TALLYING
ELSE MULTIPLY THROUGH
END NEGATLVE THRU
ENDING NO TIMES
ENTER NOT TO
EQUAL NOTE TRUNK
EQUALS NUMERIC UNEQUAL
ERROR OPEN UNTIL
EXACTLY OTHERWISE UPON
EXAMINE 0U'TPUT USE
EXCEMDS PAGE WITHIN
EXLT PAPER-TAPE-READER WRI'TE
FILLING PERFORM ZERO
FIND

Optional Words

ADVANCI NG LINES WILTH
ASSEMBLER ON STANDARD
AT PROCEDURE THAN
1S RECORD THEN

	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007A
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067A
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113A
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	141
	142
	143

