RCA

ELECTRONIC DATA
6 O 1 PROCESSING SYSTEM

AUTOMATIC ASSEMBLY SYSTEM

In the preparation of this manual, a thorough
knowledge of the RCA 601 has been assumed on
the part of the reader. As this manual is
preliminary, it may be expected that additional
information regarding the system will be made
available in subsequent publications.

Electronic Data
RADIO CORPORATION OF AMERICA | Processing Division

® Camden, New Jersey

P601-03-022

This manual contains information which is proprietary to Radio
Corporation of America. Its distribution is made with the under-
standing that the information contained herein is solely for use in
connection with the equipment described herein; that further
distribution to other organizations shall not be made without
written authorization of Radio Corporation of America; and that
distribution of this manual shall not be deemed a publication.

The data herein presented is subject to change.

January, 1961

TABLE

Chapter

vi.
Vil.

Viil.

INTRODUCTION
. USING THE PROGRAM SHEET

nmmoow>

C. Rules for Definition of Constants .

. ADDRESSING

A. File Areas and Working Storage v i i
B. Constants.
C. Program..................

SUBROUTINES
AUTOMATIC MEMORY LAYOUT

~I@MmMOOwm>
8%
59

. ASSEMBLY SYSTEM ORDER CODE . .

Description and General Usage . .
Address Modification
Indirect Addressing
Reserved Characters
Reserved Words
Special Formats

USING THE DATA SHEET

A. Describing Files
B. Describing Constants

....................

...................

OF CONTENTS

...................................

...................................

...................................

...................................

...................................

...................................

...................................

....................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

...................................

A. General Description of Order Code Charts. e

B. Order Code Charts

APPENDICES

Appendix | - Standard Locations . ..

Appendix Il - Mask Half-Word Symbols

...................................

...................................

Appendix Il - Special Half-Word Symbols.

Appendix |V - Register Addressing. . .
Appendix V - Sample Problem.

...................................

...................................

Page

NONONON TN N~

—r
N

— i
[« B3, I N)

N
-—

NNN
NN —

N MDD
o O

NN
00 00 ©o

N
0

WWWNNDNNNDNDN
O O O V0 0 VYV

w
N

w W
&N

50
52
53
55
56

I. INTRODUCTION

The 601 Assembly System has been designed to serve as the immediate basis for programming the 601
computer. The assembler has been specified to operate within a minimum 601 configuration which includes one
memory storage unit (8192 words), six tape stations (66KC), a paper tape or card reader, and an on-line printer.
Since the assembler is a machine-oriented programming system, all features of the 601 are reflected.

In addition, the 601 Assembly System is being used as the basis for the development of the total comple-

ment of programs to be offered with the 601 computer. This includes a COBOL Narrator, ALGOL, and various
utility and program testing routines.

Thus, the 601 Assembly System is a foundation upon which RCA is building a complete line of programming
services and upon which the 601 user may depend, not only as an interim measure before delivery of more

complex programming aids, but also as an effective means of preparing the solution for all his computer
problems.

Il. USING THE PROGRAM SHEET

The Assembly System program sheet is used to specify the program instructions and the various Assembly
System directives described in Chapter VIII, Descriptor Verbs.

A. DESCRIPTION AND GENERAL USAGE

1.

Sequence

The number (1-4 digits) entered in the column marked SEQUENCE is used to control the internal order-
ing of the pseudocode instructions. Use of this option allows the programmer to develop his coding
without concern for exact ordering as the Assembly System will put it into proper order before any
actual processing begins.

A sequence number must be entered with each instruction which has been assigned a specific NAME
by the programmer. This number is used to develop a more complete control number within the Assembly
System.

Name

The symbolic name entered in this column is used to indicate a logical group of instructions and to
provide a means of internal relative addressing. The entry in the NAME column may consist of up to ten
characters, and should provide a mnemonic indication of the function of the instructions being named.
Note, however, that certain letters, words, and symbols have been reserved for Assembly System con-
trol. These will be described later in this section.

As indicated above, not all instructions need to be named. Any unnamed instruction will receive an
internal name which is relative to the last one assigned by the programmer. Thus the instruction
following one called SORT would be named internally SORT + 1. It should be noted that, since sequence
numbers are assigned only to those instructions carrying a NAME entry, the relative names are assigned
in the order of the input, with appropriate internal control numbers being developed from the last as-
signed sequence number. The unnamed instructions, then, are handled as a group with the last previous
named one.

Omitted instructions may be entered into any of these groups by a special usage of the NAME column.
If, for example, one had the following sequence of instructions:

SORT OP,,
OP1

o’

3

and wished to insert a new instruction OP between OP and OP , that instruction may be named

SORT + 1.1 in the NAME column and given the same sequence number as SORT. The resultant ordered
sequence will be:

SORT OP0
OP1
SORT +1.1 OP’m
OP2
OP3

Note that internal references to SORT + 2 and SORT + 3 will still go to the lines marked OP and OP
respectively. Thus, the relativity of the original instructions has not been disturbed by the mseruon of
the new one. The value of the digits preceding the point may range from 0 to 9999, whereas the value

NAME

PROGRAM SHEET
601 ASSEMBLY SYSTEM

PAGE

OF

SEQ.

NAME

OPERATION

T NI COUNT

ADDRESS or CONDITION

3.

4.

following the point may range from 1 to 99. This implies that up to ninety-nine instructions may be
inserted between any two existing ones.
Operation

This column contains a symbolic representation of the operation codes available with the RCA 601. It
is also used for the various Assembly System Descriptor Verbs.

The ““T"" Column

Where appropriate, this column is used to indicate what action is to be taken with the tag-bits of the
operands addressed by the instruction.

For all but the input-output instructions, the entry in this column may be either E, U, or D

where:

E = sense origin for tag equal to contents of Tag Register.
U = sense origin for tag unequal to contents of Tag Register.

D = sense origin and destination for tag unequal to Tag Register.
For input-output instructions, the entry in this column may be either E, U, or S
where:

E = sense origin for tag equal to tag specified in P.D. half-word.
U = sense origin for tag unequal to tag specified in P.D. half-word.

S = set tags in destination to tag specified in P.D. half-word.

The absence of an entry where it is required by an instruction, will cause the generation of an *‘ignore-
tag’’ function in the resultant operation half-word.

The *“NI”’ Column

An X entered in this column causes the instruction to be non-interruptable. Leaving this column blank
allows an interupt to occur upon the completion of the execution of the instruction.

Count

A one to three digit decimal number is entered in this column for those instructions that are controlled

by a specified count. The range of the count varies with the particular instruction. (See Order Code
Charts.)

Address or Condition

This column is utilized for three types of information. First it is used to specify those special con-
ditions normally associated with selected operation codes. For instance, the Store Register instruction
requires a register designation to appear in the operation half-word. In using the As sembly System
program sheet, a symbolic register designation is entered into the first position of the ADDRESS or
CONDITION column. Similarly, the column may be used to express various conditions to be set or
sensed. Additional uses for this column are shown in the chapter devoted to the Assembly System order
code.

The second, and perhaps most important, function of this columa is to contain the symbolic addresses
needed by each instruction. The prescribed format for this column requires that an asterisk(*) be placed

immediately to the left of each address. This implies that a conditional or register statement, as
described above, is not preceded by an asterisk, as is the first actual address. Each instruction re-
quires that at least a standard number of asterisks, corresponding to the number of addresses required
by the instruction, appear with the instruction. The requirements for each instruction are given in this
manual in the chapter devoted to the order code. If any of the required addresses is to be assumed, the
asterisk for that address must appear; however, no symbolic appears with that asterisk. For example, if
an instruction requires three addresses, and the B address is to be assumed, the addresses are written
as:

*NAME1 ** NAME2

The generated machine address of NAME2 will occupy the second half-word following the operation
half-word, with the A digit of the operation half-word being properly adjusted by the Assembly System.

Should one wish to supply more than the required number of addresses for any instruction, except the
input-output instructions, and those marked with a ‘1’ in the note column (N) of the order code charts,
he may do so by writing three addresses, each preceded by an asterisk. The Assembly System will con-
sider the supplied addresses to be, from left to right, the A, B, and C addresses respectively. Asterisks
must appear for each assumed address. The Assembly System will adjust the A digit of the operation
half-word accordingly and, unless otherwise specified by the programmer, supply the LHE of the data
addressed by the symbolics appearing in the unused addresses.

All input-output instructions must either be written with the standard number of asterisks for the
instruction or with four asterisks. If written with four addresses, these addresses will be considered by
the Assembly System to be, from left to right, the A, B, and C addresses and the Peripheral Device
Half-Word, respectively. Any of the first three addresses may be assumed but their asterisks must be
present. The Assembly System will adjust the A digit appropriately and, unless otherwise specified,
supply the LHE as explained above.

If the required entries do not conveniently fit on one line, the following lines may be used for the
overflow. However, no address may be split over two lines and not more than 100 characters may be
entered in the Address or Condition column of any one line.

The third use of the ADDRESS or CONDITION column is for comments. Following the last entry for
any instruction, the user may enter a colon(:) and as many as 80 characters of remarks or comments.
The comments may be split across succeeding lines.

B. ADDRESS MODIFICATION

Address modification is expressed by following an address with a comma and Mn, where n is a two digit
octal number. Address Modifiers 10, 20, 30, 40, 50, 60, and 70 perform the normal function of address
modification. However, by writing the second digit as a *‘1’’, the programmer may specify that the Address
Modifier is a self-incrementing type, i.e., it is to be automatically incremented after each address modifica-
tion. Thus, Address Modifiers 11, 21, 31, 41, 51, 61, and 71 are the self-incrementing counterparts of those
numbered 10, 20, 30, 40, 50, 60, and 70. MO1 is reserved for the Lower Limit Register.

An example of address modification would be:
*TAX, M20

where Address Modifier 20 will be applied to the address of TAX before the instruction is executed.

C.

INDIRECT ADDRESSING

Indirect addressing may be indicated by a comma, followed by an I. If special control conditions are to
appear in the rightmost three bits of the indirect address half-word, they are indicated by a number follow-

ing the I. This number is composed according to the standard rules found in the RCA 601 General
Information Manual.

For example,

*TAX,I5
would indicate that 1) TAX is an indirect address, 2) no further indirect addressing is permitted, and 3) the

AM specified in the indirectly addressed location is not to be applied.

Any combination of the above-mentioned symbolics may be used, e.g., *NAME,I; *NAME,M20; *NAME,
M20,15. However, if M is present, it must precede any indirect address indicator.

D. RESERVED CHARACTERS
In the RCA 601 Assembly System, the following characters are not available for use as the first character
of any NAME:
&, #, “‘(quotes), (zero), %, $, /, -
In addition, certain characters may not appear anywhere within a NAME,
They are:
*, comma, +, parentheses, space, <, >, ; (semicolon), : (colon)
E. RESERVED WORDS
The following words may not appear in the NAME column of the coding sheet:
INSERT
DELETE
REPLACE
CON-FIX
CON-SEGxx
where the “‘xx’’ of CON-SEGxx ranges from 1 to 99.
F. SPECIAL FORMATS

Several special formats are necessary to properly represent each of the functions available with the RCA
601 Assembly System. They are as follows:

1. Machine Code Addresses

A machine code address may be specified in the ADDRESS or CONDITION column by using a number
sign (#) followed by eight octal digits as follows:

*#TIHHHHHC
Where:
T = the tag digit (0-7) (See below)

IHHHHH = A six digit octal half-word address (I = 0 or 1)

C = Character address. This digit may take on the values:

0,1, 2,3, 4,5, 6, 7 for three-bit characters
0,1, 2, 3, 4, 5 for four-bit characters

0, 2, 4, 6 for six-bit characters

0, 2, 4 for eight-bit characters

In addition the machine address can be followed by a ,Mn and/or a ,In notation.

For example,
*#30123453
*#60123453,M40
*#60123450,M40,15
*#60123450,15

The Assembly System will automatically assign tags to half-words according to the following scheme:
1 - an operation half-word
2 - a non-floatable address half-word
3 - Constant half-word
5 - JUMP, JUMP.S, JUMP.R half-word
6 - a floatable address half-word

7 - The address associated with a Set
Limit Register Instruction.

This scheme permits editing service routines to distinguish between these different types of half-word
in printing programs and, in addition, permits the loading routine to distinguish between floatable and
non-floatable half-words. In the assignment of tags to machine code addresses, if the programmer fol-
lows this scheme, he can ensure that the edit will print machine code addresses in the proper format.
If, however, the programmer wishes to place special tags on certain machine code addresses, he may
use tags 0 and 4. These tags will never be automatically supplied by the Assembly System unless
specifically requested in a machine address. Upon loading, tag 0 will be considered to indicate a non-
floatable half-word; tag 4 will indicate a floatable half-word.

Half-Word Instructions

Certain instructions in the RCA 601 occupy only one half-word in machine code. However, these
instructions are expressed on the Assembly System program sheet in the normal manner, i.e., with the
symbolic operation code in the OPERATION column and the appropriate entries in the ADDRESS or
CONDITION column.

. Absolute Address

Any of the addresses in the full-word Arithmetic instructions may be indicated as addressing absolute
quantities by enclosing the entire symbolic address within parentheses.

For example:

* (TAX + 14, M20)

Zero Addresses

A pseudocode address of a single zero (0) generates a 19 bit machine code address of all zeros. This
may be used as an address to be modified during the execution of the program. Address Modifiers and
indirect address indicators may be used in conjunction with the zero symbolic, where appropriate.

For example:

* 0, M30
5. Accumulator Addressing

For those instructions which may address the accumulator, the ampersand (&) is used as the accumu-
lator address. Enclosing the ampersand in parentheses indicates that the accumulator is addressed and
its contents are to be treated as an absolute value.

Examples:
*&
* (&)
Address Modification and Indirect Addressing are not available when addressing the Accumulator.
6. Standard Locations
Special symbolics are provided for all standard locations in the RCA 601. Each of these symbolics is
preceded by a dollar sign.
For example, the symbolic address
* $M30
is used when the HSM address of this Address Modifier is to be generated for loading, alteration, etc.

A complete list of standard locations may be found in Appendix I.

7. Special Half-Word

Two options are available with the special half-word.
a. Option 1

The Special Half-Word may be used to cause the generation of a machine half-word which may then
be addressed by the Set Data Register Instruction to set the Control Register or its parts. The
format of the machine half-word is as follows:

* /Rxx, Cn, Tnn, Sx
where:

/- is the introductory symbol of a Special Half-Word.

Rxx - refers to the round indicators. The ‘'R’ is the signal for the round indicator. The xx may
be either H, W, HW or blank. If H, the generated half-word may be used to set the Half-Word
Round Indicator and reset the Word Round Indicator. If W, the generated half-word may be
used to set the Word Round Indicator and reset Half-Word Round Indicator. 1f HW, the gen-
erated half-word may be used to set both Round Indicators, and if blank, both Round
Indicators may be reset.

Cn - refers to the Character Length Register where n may equal 3, 4, 6 or 8, representing the
bit size to which the register is to be set.

Tnn - refers to the tag register, where nn may be one or two digits. If one digit, it is a number
from 0 through 7, representing the tag to be placed in the register. If two digits, the first
is as described above and the second is a one, indicating that the tagtransfer option is
desired.

Sx - refersto the symbol Register, where x is the symbol to be placed into the register. It may
be any punchable 4 or6 bit character with the exception of space, *, >, <, ;, quotes, colon
and comma, or may be three octal digits surrounded by quotes. The second option must be
used for all 3 or 8 bit characters and for the exceptions noted above.

Option 1 of the Special Half-Word may be written with any one or any combination of the four ele-
ments. The Sx option alone, may be used as the symbol half-word of the Fill instruction.

Examples:
* / RH, C4, T31, SA
* / RHW
*/C4
*/ T3
* /S 075
* /R, C8
Note that all bit positions of the generated special half-word for whichno symbolic was designated
will be zero filled. For those symbolics that are designated, the requested bits or characters will be

appropriately positioned within the generated half-word. The symbolics of option 1 of the Special
Half-Word need not be written in a prescribed order.

b. Option 2.

The Special Half-Word may also create a machine half-word that may be used with the Set Address
Register instruction when the Limit Register Condition is specified. In this case the Special Half-
Word is written as follows:

* /LR LLR, ULR
where:

/ -is the introductory symbol of a Special Half-Word
LR - specifies that the Limit Register option of the Special Half Word is desired

LLR - specifies the Lower Limit Register setting desired. It may be LLR, in which case the
lower limit register setting of the program being assembled is automatically supplied by
the assembly system, or it may be specified as a number sign (#) followed by 4 octal
digits.

ULR - specifies the Upper Limit Register setting desired. It may be ULR, in which case the
upper limit register setting of the program being assembled is automatically supplied by

the assembly system, or it may be specified by a number sign (#) followed by 4 octal
digits.

If the number sign followed by four octal digits is used, the four octal digits represent the first 4
digits of the address to which the limit is to be set, where the first digit may be one or zero and the
last digit must be zero or four. The least significant three digits of the address (not specified with
this option) are assumed to be zeros.

Examples:
* / LR LLR, ULR
* / LR LLR, #1750
* / LR #0454, #1750
* / LR #0454, ULR

The symbolics of option 2 of the Special Half-Word must be written in the order shown above.

8. Peripheral Device Half-Word

All input-output instructions require a Peripheral Device Half-Word. The PD half-word is written in
the following format:

* PDon, M, Tn, G, Cn, Sx, F
where:
PDnn - nn specifies the relative teripberal device number (PDnn must always be present).

M - if present specifies that the instruction is to be operated in the tag mode. If not present,
the instruction is to be operated in the non-tag mode.

Tn - if present, n specifies the tag to be sensed or set as specified in the operation bhalf-word.

G - if present, indicates that in case of error, the operation is to go to completion before pre-
forming the error jump. If absent, the error jump will be performed immediately upon detec-
tion.

Cn - The n represents the character size of the information being read or written and may be 3,

4, 6, or 8. A Cn notation may be used to indicate a code conversion where applicable, and
must be present if the Sx is present.

Sx - The x represents the symbol that is to control this instruction. It may be any punchable 4
or 6 bit character with the exception of space, *, >, <, ;, quotes, colon and comma; or it
may be of the form ‘‘nnn’’ where nnn are three octal digits representing a 3 or 8 bit char-
acter, or one of the 4 or 6 bit exceptions noted above. The Sx notation must be present for
all symbol controlled input-output instructions.

F - if present, indicates monitor printer format control.

The Peripheral Device half-word can thus consist of seven elements; however, the PDnn element must
appear in the first position in every Peripheral Device half-word. The relative sequence of the remain-

ing elements is immaterial. When various elements do not appear, the comma and that element are not
written.

Examples:
*PD21
* PD21, M
* PD21, T4, G
* PD21, M, G, C3, S*003”’
* PD21, M, T4, G, C6, SA

10

9. Mask Half-Word
The Mask Half-Word may be used to specify a mask for the following instructions:

SENSE.AND
SENSE.OR
SET .DR (MIR,PIR,PIB)

The first character of the Mask half-word is a minus (-). Following the minus, the programmer lists the

bits he wishes to have set to ‘‘one’’ by their symbolics, separated by commas. All unlisted bits will be

set to zero. The symbolics that may be used are as follows:
VF1 - overflow indicator bit
VF2 - subsidiary overflow indicator bit
UF1 - underflow indicator bit
UF2 - subsidiary underflow indicator bit
ZDI - Zero Divisor indicator bit
TE - Tag equal in origin indicator bit
TU - Tag unequal in origin indicator bit
TD - Tag unequal in origin or destination indicator bit
LLA - Lower Limit Alarm indicator bit
ULA - Upper Limit Alarm indicator bit
PRN - PRN bit
PRZ - PRZ bit
PRP - PRP bit
NFI - Not found indicator bit
TCC - Transfer Control Condition indicator bit
IWI - Instruction Waiting indicator bit
PI1 - Program Indicator 1 bit
PI2 - Program Indicator 2 bit
PI3 - Program Indicator 3 bit
ETI - Elapsed Time Indicator bit
EI - External Indicator bit
SIT - Simultaneous Instruction Termination bit
DO - Do Indicator bit

Not more than eleven symoblics can be listed in any one Mask half-word. The listed symbolics need not
be in any specific sequence.

Example:
* © EIl, TCC, PI1, PI2, PRP, PRZ

10. Guarded Address

The C address of input-output instructions may specify a guarded jump or may indirectly address a
half-word specifying a guarded jump. In the Assembly System one may specify a guarded jump address
by enclosing the entire address with quotes. The C digit of such an address will be forced to 1.

Example:

* “NAME 4+ 12, M31”

12

I1l. USING THE DATA SHEET

The 601 Assembly System Data Sheet is used to describe:

File (Read-In) Areas,
Working Storage Areas, and
Constants.

Memory is allocated in the order in which the descriptions appear on the Data Sheets. The user may then
refer to file areas and their parts, working storage areas and their parts, and constants by the name which he
assigned to them. The Assembly System replaces the names with their appropriate leftmost or rightmost ad-
dresses according to the requirements of the instructions in which they are used. Provision is also made in
the addressing scheme for overriding the assignment of the leftmost or rightmost address. (See addressing).

A. DESCRIBING FILES

1. Sequence

In the first column labeled ‘‘SEQ.”’ a sequence number is entered to provide convenient tags to each
line for correction purposes. Each line with an entry in the ““DATA NAME’’ column on the Data Sheet
must have an entry in the Sequence column. This entry may range from 0 to 99999. Entries must be
numbered consecutively.

2. Data Name
The names assigned to each piece of data are entered under “*“DATA NAME". They may be alphanu-
meric but may not exceed ten characters in length.
3. Function
In file and working storage descriptions, the following entries may be made in the “FUNCT’’ column:
ALOC Allocate
REN Rename
DUP Duplicate

or the column may be blank.

4. Size

The “'SIZE’’ column is used to designate the size of the information element described on the line.
It is broken down into three sub-headings, Number, Units, and Repeat.

Under **NO.”’, a number (0-9999) is entered representing the number of words, half-words, or characters
of memory required to store the information element described on the line. Under ‘U, the units in
which the size is expressed is specified by:

W for words,
H for half-words,
C for characters.

Under “‘REP.’”’ a number (0-9999) is entered if this information element appears more than once in the
area being defined. The value entered is the number of times this information element appears. This
column is convenient to use when a series of items of similar format follow each other in a file., One

DATA SHEET

NAME 601 ASSEMBLY SYSTEM PAGE
OF
SIZE BIT LEFT ADDR.
SEQ. DATA NAME FUNCT. NO. u REP. copE | HALF W ! A DESCRIPTION
1 A ALOC w
2 CRITERION 2 w
3 NAME 20 C 6
4 ADDRESS 40 C [
5 AREA CODE 1 H 3 CHARACTER ACCESS REQUIRED
[DEPOSITS 1 H 10
7 BC ALOC 000010 A
8 DATE REN) C 6
9 MONTH 2 (of [
10 DAY 2 C 6
11 YEAR 2 C 6
12 SHOP-ORDER 1 H
13 T DUP H A

€1

14

need not make repetative entries for each item, but may describe the first item, and then request that
the description be repeated. A procedure is available for addressing each of the repeated items
individually.

Bit Code

The character size of the element being described is given in the “‘BIT CODE” column. In file and
working storage descriptions, 3, 4, 6, or 8 may be entered.

Left Address

The Left Address columns are used to indicate that the element described is to overlay another area
or part of another area. Under “*"HALF-W’’ a number (6 decimal digits) is entered which represents the
half-word address within the overlaid area at which the overlay is to begin. Addressing within each
area begins with half-word 000000, The overlaying area is assigned memory starting with the half-word
specified by the Left Address entry. The **A’’ column is used to name the overlaid area. Left Address
entries may only be made on ALOC or DUP lines of file and working storages, and the area named in
an ‘A"’ column of a “LEFT ADDRESS"’ entry may only be one which has been previously defined and
named on an ALOC or DUP line.

Description

For file and working storage descriptions, the “DESCRIPTION"’ column may be used for programmer
remarks.

. Allocating A File Area

The first step in describing a file is to allocate an area of memory. A sequence number is entered
under “'SEQ.”". The ‘“DATA NAME’’ of the allocation line may be left blank or one or two characters
may be entered as the name of the file area. If a file is to be overlaid (through a “LEFT ADDR”’ entry
elsewhere) or duplicated (through a DUP function elsewhere) the “"DATA NAME” column may not be
left blank. ALOC is entered under “‘FUNCT"’.

In the “'SIZE’’ columns, the “*NO.”” and the “‘REP.’’ entries must be left blank on ALOC lines. The
“U”” column may be left blank or a W or H may be entered there. Blank or H specifies that allocation of
this area is to commence in the next available half-word location without regard for word orientation. W
specifies that allocation of this area is to commence in the next available word location. ALOC lines
may not have a C entry in the “‘U’’ column; however, a “'BIT CODE”’ entry of 3, 4, 6 or 8 must be made
if the area is subject to character relative addressing.

If the file being described is not to overlay another allocated area, the ““LEFT ADDRESS” columns
are left blank.

See sequence no. 1 on the sample Data Sheet for an example of the definition of file areas.

The file area is then further defined by following the ALOC entry with a series of subdivision names.
Each of these describes successive areas within: the file area. Note that these lines do not require an
entry in the “"FUNCT.”’ column. The first entry following an ALOC must be defined in units that are
less than or equal to the units specified in the ALOC line; i.e., if the “U" column of the ALOC line is
left blank or contains an H, the next entry may be defined in terms of H or C; if the ALOC line s de-
fined in terms of W, the next entry may be defined in terms of W, H, or C.

Each of these entries must carry a size indication in terms of the number of words, half-words or char-
acters being described. All entries described in terms of characters must carry a “‘BIT CODE’’ entry
(3, 4, 6, or 8) as must every area that will be addressed in terms of characters within the program (see
the section on Addressing for details on character-relative references). Note that all entries in the
SIZE column are considered by the Assembly System to be fixed in length. Therefore, any references to

a field which is smaller than the figure given, or which follows such a field, can result in an improper
address in the object program. Variable fields, then, should not be addressed by name nor should they
appear before any field which is to be addressed by name.

Sequence numbers 2 through 6 on the accompanying Data Sheet illustrate the procedure for describing
a file or work area which has been introduced by the ALOC function.

Sequence number 6 illustrates the use of the “‘REP.”’ column. The area assigned to DEPOSITS will
be 10 half-words long, with each of these half-words being accessible through a subscripting notation
described in the section on Addressing.

The ALOC entry on line 7 illustrates the concept of overlaying a previously defined area. The entry
in the ““LEFT ADDRESS’’ column indicates that the area BC is to overlay part of area A. The LHE of
area BC will be the 11th half-word in area A.

In allocating memory, the Assembly System maintains a series of counters so that the third allocation
of memory (no. 13) will be placed immediately following the highest address assigned thus far. In this
case, it will follow area A.

The use of the REN (Rename) function is illustrated on line 8. The entry in the “‘DATA NAME”’ col-
umn will receive its LHE from the current value of the memory counter and its RHE will be a function
of the size of the entry. The memory counter is advanced in accordance with the units of the REN entry.
Therefore, the next entry will receive the same LHE as the REN entry. Thus, by referring to BCDATE
(the name plus the file area prefix) the programmer may address six characters, which have been further
sub-divided into MONTH, DAY, and YEAR, each of which is, in itself, directly addressable by name.
It is therefore possible to sub-divide a given area into many different groupings by using a series of
REN functions. These may occur not only at the beginning of the area description, but throughout the
description of the sub-divisions. Note that the REN function requires that the units of the entry immedi-
ately following a REN line be less than or equal to the units of the REN line; i.e., if the REN line is
defined in terms of W, the following line may be defined in terms of W, H, or C; if the REN line is
defined in terms of H, the following line must be defined in terms of H or C; if the REN line is defined
in terms of C, the following line must be defined in terms of C.

The DUP entry illustrated on line 13 indicates that the description of area A,named in the “‘BIT
CODE”’ column, is to be copied and assigned to a new area T. As with an ALOC entry, a DUP may
overlay another area through an entry in the ““LEFT ADDRESS’’ column; however, the overlaid area
must have been named on its ALOC line.

B. DESCRIBING CONSTANTS

The Data Sheet is used as follows to define Constants:

1.

Sequence

The ““SEQ.”” column is used in the same manner as it is in describing Data and Working Storage.

2. Data Name

Certain data names have special meanings in the definition of constants.

First, the name
CON-FIX

must appear on the line allocating the area for the Fixed Constants, i.e., those constants which will be
in memory throughout the program. Similarly.

CON-SEGnn

15

must appear when memory is being allocated for the constants that are to appear with segment nn of the
program. The value of nn can range from 1 to 99.

The definitions of constants must always be in the proper order. That is, CON-FIX must precede
CON-SEG 1, etc. Although they must be in order, it is not mandatory that there be an allocation for
every segment within the program. Nor is there a requirement that there be Fixed Constants in every
program.

3. Function
The functions allowable in the definition of constants are the following:
ALOC - Allocate
REN - Rename

FCON - Floating Point Constants

4. Size

Under “'NO.”’ the size of individual constants are given in terms of the units specified under **U”’,
The Repeat function may be used to describe constants of like formats.

5. Bit Code

An entry must appear in the *‘BIT CODE’’ column of every constant being defined. Note that this does
not apply to ALOC Lines. On all but FCON lines, the bit code entry may be 3, 4, 6 or B. On FCON
lines, the entry may be D or B.

6. Left Address

This column is not available for the description of constants.

7. Description

The constant being defined is expressed in this column.

C. RULES FOR DEFINITION OF CONSTANTS

1. ALOC Lines

ALOC lines for constant description:

a. Must have a name in the form CON-FIX or CON-SEGnn in the **DATA NAME’’ column.
b. May not have an entry in the “NO.”, ““REP.”’, ““LEFT ADDR."’ or “*DESCRIPTIONS’’ columns.

c. May take a W or H entry in the ""U’’ column, or it may be left blank. If H is used or it is left
blank, the constaat area will begin in the next available half-word without regard for word orien-
tation. If W, the constant area will begin in the next available word location.

d. May take an entry of 3, 4, or 6 in the “'‘BIT CODE"’ column.

e. The entry immediately following an ALOC line must be defined in units less than or equal to the
units of the ALOC line.

2. REN Line

Rename Lines give the programmer the facility to give a common name to agroup of constants. Rename
lines;

a. Must have an entry in the ““DATE NAME”’] *‘NO’’, **U’’, and *'BIT CODE”’ columns.

i3]

b. May have an entry in the “'REP.”’ column.

c. May not have an entry in the “*DESCRIPTION’’ and “‘LEFT ADDR’’ column.

d. The entry immediately following a REN line must be defined in units that are less than or equal
to the units of the REN line.
3. FCON Lines
FCON lines are used to define floating point constants. FCON lines:

a. Must have an entry in the ‘“DATA NAME’’, **NO.”’, “*U’’, “*BIT CODE’’ and "*‘DESCRIPTION”’
column. A floating point constant may occupy one or two words.

b. May have an entry in the “‘REP.”’ column.

c. May not have an entry in the *"LEFT ADDR”’ column.

d. The entry in the units column must be W.

e. The entry in the “*BIT CODE’’ column may be either D or B, where

D - indicates that the constant described in the ““DESCRIPTION’’ column is to be converted into
a decimal floating point number in 4 bit code.

B - indicates that the constant described in the ““DESCRIPTION’’ column is to be converted into
a binary floating point number.

Floating point constants may be specified in the "“DESCRIPTION’’ column in any of the following
formats:

XXX
IXX. XX
*XXXXE+n
XX.XXE#+n

A number may be written without a sign. In this case the sign is considered to be plus. If, however, a
sign appears as the first character of the description it is considered to be the sign of the floated
number. The constant, itself, may contain a decimal point which will be taken into consideration
in floating the number. In addition, an exponent may be specified with the constant. This is done by
following the number with an E, followed by the exponent itself. The exponent may be a one or two
digit number and may be preceded by a sign. If no sign is written, the sign is assumed to be plus.

4. Bit Code Rules

An entry of 3, 4, 6 or B in *"BIT CODE”’ of non-FCON constants will cause the constant described in

the ‘““DESCRIPTION’’ column to be converted to the designated code and placed in the next available
area as specified by the ““U’’ column.

Should the programmer specify less information in the ‘‘DESCRIPTION’’ column for a particular con-
stant than indicated by the size field, then that information will be right justified within the specified
size, with the remainder of the field filled with zeros of the specified bit code. All octal digits will be
accepted for conversion to 3 bit code; all those characters representable in four-bit code will be ac-
cepted for conversion to four-bit code, with the exception of comma; and all RCA 601 six-bit characters
will be accepted for conversion to six-bit code, with the exception of comma.

17

18

A B entry in *'‘BIT CODE”’ will cause the decimal number entered in the ““DESCRIPTION’’ column to
be converted to a binary number. Only H or W may be used to describe the units of a B bit code con-
stant. If H, the "'NO.”’ entry must be either 1 or 2. If W, the “*NO.”’ entry must be 1. If the B bit code
entry is described as being one half-word long, and the constant is described with a sign, the sign is
placed in the rightmost bit of the half-word. If the B bit code entry is described as being two half-words
long and the constant is described with a sign, the sign is placed in the rightmost bit positions of both
half-words. If the constant is described as being one word long and the constant is described with a
sign, the sign is placed in the rightmost bit of the word.

In any case, if the constant is not described with a sign, the constant will be right justified in the
specified size.

B bit-code constants are described in the ‘‘DESCRIPTION’’ column in the following format:
XXX
IXXXXEtn
XXXXPn
XX.XXPn
IXXXXEtnPn
XX.XXEinPn

If the leftmost characteris a sign it is considered to be the sign of the number. If the leftmost character
is not a sign, the number is considered to be unsigned. If the number does not contain a decimal point,
and no P notation is given, the binary point will be considered to be to the right of the rightmost bit of
the generated binary number. If a decimal point is given in the constant to be converted, a P notation
must be given, i.e., a P followed by a one or two digit number indicating how many places to the right
the binary point should be removed from the P@ position. Pg designates that the binary point is just
to the left of the most significant bit of the field. In addition, an E notation may be used to describe
the number where E may be followed by a one or two digit exponent preceded by a sign. If no sign pre-
cedes the exponent, it is considered to be positive. The presence or absence of a sign in the exponent
does not affect the signed or unsigned condition of the number.

Repeating Constants

To use the *‘REP’’ column for constants, the number of constants of like format to be described are
entered under ““REP"’. They are then described in the “*“DESCRIPTION’’ column, separated by commas.

The accompanying DataSheet illustrates the various procedures for defining constants.Lines 1through
5 on the sample Data Sheet illustrate the procedure for allocating memory for Fixed Constants.

Line 2 does not contain an entry in the *“FUNCT’’ column since it is not allocating memory, it is
merely defining the constant to be generated. It calls for an 11 character constant which is found in the
“‘DESCRIPTION”’ column. The characters are 6 bits each.

The next line shows a similar constant. However, the generated characters are only 4 bits in length.
Since the preceding definition did not end in such a position as to allow an immediate assignment of a
4 bit character, the Assembly System will determine the next legitimate starting place for the constant,
leaving zeros in the two unused bit positions (19 and 20).

The succeeding definition calls for a full half-word to be devoted to the constant appearing in the
“‘DESCRIPTION” column. Since it is smaller than the area specified in the ‘‘SIZE”’ column, it will be
right-justified within the area, with zeros filling any unused positions. It should be noted that this con-
stant will be placed in the next available full half-word following the constant specified on line 3.

A series of three bit characters is defined on line 5.

DATA SHEET

NAME 601 ASSEMBLY SYSTEM PAGE
OF
SEQ. DATA NAME | FUNCT. SIZE pit | -EFT ADDR. DESCRIPTION
NO. | U | REP.| CODE |HALFW | A
) CON-FIX ALOC W
2 PRINT -1 n c 6 CHANGE-PAGE
3 PRINT-2 10 c 4 123456789 +
4 CONST-1 1 H 6 21
5 CONST-2 8 c 3 01253257
6 CON-SEG1 ALOC w
7 NUMBER-1 FCON 1 W D +2.54
8 NUMBER-2 FCON 1 w 3 D 21.4, 157, +521.75
9 NUMBER-3 FCON 1 w © 4.15
10 NUMBER-4 FCON 2 w D +154EQ) 2
n PRINTOUT 3 W 6 SEGMENT-1-IN
12 CON-SEG2 ALOC W
13 FACTOR-1 FCON 1 w B ©15.4
14 FACTOR-2 FCON 2 w 2 B O 254E (©) 2, 125E D1
15 CON-SEG3 ALOC
16 INCRMTS 1 H 5 3 0, 10, 100, 1000, 10000
17 CON-SEG3 ALOC
18 NUMBER-5 1 H 3 B 125, +1.25P3,(@ 1.25E (©) 5P0

61

20

The next set of definitions describe the constants for segment 1 of the program. They are mostly
floating-point constants. The number appearing in the ““DESCRIPTION’’ column will be converted into
a proper floating-point constant occupying 1 or 2 words, as specified in the “SIZE” column of each
entry. The characteristic of the floating-point number is determined in either of two ways. First, if the
decimal point is given in the description of the constant, the characteristic will be adjusted according-
ly. If it is not present, it is assumed to be at the right-hand-end of the number being described. An
examination is then made to determine if an exponent (E) has been specified. If it has, the decimal
point will be shifted left or right according to the sign following the E. A plus sign (or the absence of a
sign) will shift the point to the right, while a minus sign will shift it to the left. Every floating-point
constant will receive a sign, regardless of whether the programmer has supplied a sign in his
description. If none is given, a plus sign is supplied. The sign of the number, if given, is theleftmost
character of its description.

The “'BIT CODE’’ entry, B, in line 13 indicates that the floating-binary equivalent of S 15.4 is de-
sired.

Lines 8 and 14 illustrate a procedure for listing a series of floating-point quantities. The number of
entries in the list (up to 9999) is placed in the ““REP’’ column. Thus, three words will be allotted for
the entries on line 8 and four words for those on line 14. Note that the entries are separated by commas.

Similarly, lines 16 and 18 illustrate a procedure for listing a series of 3 bit constants and a series of
binary constants, respectively.

IV. ADDRESSING

FILE AREAS AND WORKING S TORAGE

All subdivision names appearing on the DATA SHEET are directly addressable by the name appearing in
the “DATA NAME"’ column. However, they must be prefixed by the name assigned to the area in which they
appear if that area was assigned a name in the ALOC line. For example, if NAME appears in area A, refer-
ences to it must be to ANAME. This then allows the programmer to have duplicate symbolics in different
areas and still be able to address them directly. If, however, NAME appears in an unnamed area, reference

to it must be to NAME alone.

The area itself may be addressed by using just the letters found in the “‘DATA NAME” column of the
ALOC or DUP entry, if such an entry was made, i.e., area BC may be addressed directly as BC. If no name

was assigned to the area, it may not be addressed directly.

References may also be made in terms of the following relative notations:

1.

+ nnnn (0-9999)

The programmer may reference a particular element of an area defined with the REP (Repeat) func-
tion by using the + nnnn notation. For example, if ENTRY has been described as being one word
long, but repeated 10 times, then 10 contiguous words of HSM will be reserved within the data area.
References to ENTRY will generate the address of the first word of that area. References to ENTRY
+ 5, however, will generate the address of the 6th word of the area. Note that the absence of a sub-
script notation is identical to + 0, i.e., they both refer to the first element of the area.

(* nnnn) (0-9999)

Use of this form of reference allows the programmer to address a particular word, half-word or
character within a defined area. The particular unit involved is determined by the definition of the
area. For example, if TAX is defined in terms of words, TAX (10) would refer to the 11th word within
the area defined by TAX. If it were defined by characters, TAX (10) would refer to the 11th charac-
ter, etc. The absence of a sign preceding nnnn is taken to mean that the value is positive. A minus
sign, however, means that the element desired precedes the referenced area. For example, TAX (-10)
refers to the 10th word preceeding TAX.

. (L = nnnn) or (R * nnnn) (0-9999)

Particular characters within an area may be referenced by this notation, where L refers to the LHE
of the area and R to the RHE.

All of these forms of addressing may be used in combination with each other. However, certain rules of

hierarchy must be observed. The order of combination is:

1.

2.

3.

4.

NAME
+ nnnn
(* nnnn)

(L * nnnn) or (R + nnnn)

21

22

In addition to the NAME, any or all of the relative notations may appear. They are all considered as part
of the symbolic name which may then have Address Modifier and Indirect Address indicators appended to it.

For example:
* ENTRY + 3 (4), M5, IS
might be an address that would appear in the “*ADDRESS or CONDITION"’ column of the program sheet.

CONSTANTS

Constants, like File and Working Storage, may be referenced using the + nnnn, (+ nnnn) and (L * nnnn) or
(R % nnnn) notations for relative addressing.

PROGRAM

Instructions are referenced relative to the symbolic appearing in the NAME column of the program sheet.
In addition, the following relative notations are available:

1. + annn.on

Since not all instructions need be named, the programmer must refer to the unnamed ones with rela-
tive addresses. This particular notation provides access to unnamed instructions by relating them to
the last named one.

Thus,
SORT +1

refers to the first instruction following the instruction called SORT. The .nn notation deals with
inserted instructions as explained under the discussion of the program sheet in Chapter II.

2. (% nnnn)

Use of this notation allows the programmer to access any half-word within an instruction, a RSRV
area, or a LIST. The use of (0) produces the operation half-word or the first half-word in the RSRYV
or LIST area. A minus sign preceding nnnn gives rise to the address of a particular half-word pre-
ceding the referenced instruction.

3. (L * nnnn) or (R * nnnn)
This notation allows access to a particular 3 bit character within a half-word.
For example:
SORT +1 (2) (L + 2)

would generate the address of the third character within the second address half-word of the instruc-
tion following SORT.

The order of combination of program references is:

1.

As

NAME

+ nnnn.nn

. (% nnnn)

(L £ nnnn) or (R * nnnn)

with the other forms of addressing, these symbolics may be followed by Address Modifier or Indirect

Address indicators on the program sheet.

23

24

V. SUBROUTINES

The RCA 601 Assembly System has been designed to permit the use of a library of subroutines. These
subroutines are stored in pseudocode format on a library tape, and most of the features of the Assembly System
are available to the subroutine programmer; i.e., subroutines may make use of certain Assembly System verbs
and have their own data sheets for the description of constants and working storage.

Basically, there are two forms of subroutines that may be written for the 601 Assembly System. They are
OPEN and CLOSED subroutines. An OPEN subroutine is one that is executed in sequence with the instruc-
tions of the calling routine. A CLOSED subroutine, however, is one which may be entered from several places
in the calling routine and which will ultimately return control to the instructions following the exit from the
calling routine. In order to enter a CLOSED subroutine, the programmer must use a JUMP AND STORE
instruction.

The programmer may call a subroutine from the library through the use of an inclusion line. The entry in the
NAME column of the inclusion line is the name by which the programmer of the calling routine wishes to refer
to the subroutine. In many cases this will be identical to the name of the subroutine; however, if it is desired
to have more than one copy of the same subroutine included in the coding of the object program, this will not
be the case. As an example, if it is desired to include three different versions of the SINE subroutine, the
entries in the NAME column might be SINA, SINB, and TRIGFUNCT. The first entry in the ADDRESS column
is the name of the subroutine desired, such as SINE or ENCODE.

Parameters may be supplied either at the time the subroutines are inserted into the psuedocode or at the
time they are executed in the object program. If, while writing a subroutine, the programmer wishes to operate
upon a parameter which must be supplied by the user, he may specify that the parameter may be found in a par-
ticular address in the inclusion line. He does this by writing %nn in place of the required parameter. The
characters nn may range from 1 to 99 and refer to the 1st to 99th address of the inclusion line. The user then
follows the name of the subroutine with its parameters. Each of these must be preceded with an asterisk. For
example, if the SINE subroutine required the location of the argument Z (LOCZ) and accuracy to which it
should be computed (ACCZ) as parameters, the inclusion line might be as follows:

SUBR *SINE*LOCZ*ACCZ

The Assembly System will automatically substitute the symbolic LOCZ for every address within the subroutine
which originally contained %1 and ACCZ for those which contained %2.

In addition, a closed subroutine may obtain ‘‘dynamic”’ prameters from the half-words following the JUMP
AND STORE instruction which was used to enter the routine. These may be picked up at the time of execution
by referring to them relative to the address of the JUMP AND STORE instruction. It is the responsibility of
the subroutine programmer to save this address for such references and to generate the return JUMP to the
calling routine. The parameters may be entered into a LIST verb following the JUMP AND STORE instruction.

Each symbolic in the NAME and ADDRESS columns within a subroutine is automatically prefixed with a
specified symbol to avoid a duplication of names between the subroutine and the calling routine. Since each
subroutine should receive a different prefix, all communications between subroutines, and with the calling
routine, except for dynamic parameters, must be through the addresses appearing in the inclusion lines.

It should be noted that the line immediately following an inclusion line in any routine must be assigned a
name and a sequence number. Thus, if an inclusion line has the name SINZ, and the succeeding line in the
calling routine is given the name STEP2, the latter may be referenced only by using the symbolic name STEP2,

not SINZ + 1. Reference to SINZ will yield the address of the first instruction, of the SINE Subroutine, SINZ
+ 1 the second instruction, etc.

The Assembly System Subroutine Library, which appears on the Assembly Library tape, is maintained
through the use of a special service routine supplied with the system. This routine, in addition to providing
various edits, allows the programmer to define new subroutines and modify or delete previously-defined
ones.

Additional information on the writing and use of subroutines will be published as an addendum to this
manual.

25

26

VI. AUTOMATIC MEMORY LAYOUT

Memory for the object program will be laid out in the following manner:

LOWER LIMIT

STANDARD LOCATIONS

FIXED CONSTANTS

PROGRAM SEGMENT

SEGMENT CONSTANTS

WORKING STORAGE

AANUENRARARARRNRN

The LOWER LIMIT of memory may be assigned by the programmer at the time of Assembly. However,
each object program is produced in a relocatable format so that a new LHE may be specified at the time it
is loaded into memory for execution. The RHE of the area occupied by the program and working storage is
variable according to the requirements of the program. That is, working storage is assigned following the
longest segment of the program or following any particular segment, as specified through the DEFW Descriptor
Verb. Each program segment consists of the instructions and constants appearing in one block of the object
program.

27

VIl. OPERATION

CORRECTIONS

Corrections may be applied to the input to the RCA 601 Assembly System either during initial assembly

or reassembly. Provisions are made to insert, delete or replace any number of instructions, constants or
data definitions.

B. INPUT

Input to the Assembly System is from either cards, magnetic tape, or paper tape, In addition to the in-
structions and Descriptor Verbs, it includes a “‘description’® of the computer being used to assemble the
program, and the computer on which the program will be run.

Although instructions need not be written in the proper sequence for initial assembly, the storage and
constant definitions must be entered in the proper order. That is, Fixed Constants must be defined before
those for segment one, etc. Memory will be assigned for storage in the order in which it is defined in the
input.

C. OUTPUT

28

As output, the Assembly System produces an object program on magnetic tape in proper PLT format. In
addition, certain printouts are produced for the on-line printer. These include:

1. A listing of the constants and storage allocations made by the programmer and the associated
memory assignments made by the Assembly System.

2. A cross-reference between the ordered pseudocode and the generated machine code.

3. A complete listing of all format errors detected by the Assembly System during the assembly
process. These errors are retained on magnetic tape until the assembly has been completed and
some form of object program has been produced. The programmer may then decide whether to reas-
semble with corrections or to debug the program as produced.

In addition, all information necessary for reassembly will be retained on magnetic tape.

Complete operating instructions will be available in a subsequent publication.

VIiil. DESCRIPTOR VERBS

Certain operation codes have been provided with the RCA 601 Assembly System to allow the programmer to
further describe various aspects of his program to the Assembly System. These Descriptor Verbs are identified
by their operation codes and thus, may appear at any position throughout the program. However, they must each
have a name and sequence number, as must the instruction following each of them. Comments may not appear
on Descriptor Verbs. The Verbs are as follows:

A. NAME

One NAME verb must appear in every program. It takes only one address, the name that the programmer
has assigned to this program. This name must be alphanumeric and may not exceed 32 characters in length.

B. RSRV

The single address for this verb indicates the number (0-9999) of half-words to be reserved in the place
where the RSRV appears. The first half-word to be reserved is assigned the name on the RSRV line. How-
ever, references to the RHE will yield the RHE of the entire area. In this case, only half-word and
character-relative addresses are applicable in referencing the half-words in the reserved area.

C. LIST

The purpose of the LIST verb is to create a series of half-words containing the machine code definitions
of various symbolics such as instruction or data addresses. The generated list (not to exceed 4 addresses
per pseudo-code line, nor 55 lines of pseudo-code) may also be used for the storage of certain constants,
e.g., switch settings, masks, indirect addresses, etc. The symbolics to be defined are entered in the
address portions of the LIST verb, with each entry being preceded by an asterisk (*). Each entry may then
be referred to relative to the name given to the LIST verb by the programmer by using the half-word and
character-relative notations. The name, itself, refers to the first or last half-word in the list according to
the requirements of the instruction in which it is used.

D. MACH

By the use of the operation code, MACH, the programmer may write sets of machine coding, by entering a
series of half-words, each consisting of 9 octal digits, as the addresses of this instruction. The 9 octal
digits represent the tag bits and the 24 information bits of the half-word. In selecting tags, one should
consider the information given under Machine Code Addresses in Chapter II of this manual. As many as 4
addresses, each preceded by an asterisk (*), may be written on one pseudocode line, and as many as 55
lines may be used for one MACH verb. Addressing is identical to that for the LIST and RSRV verbs.

E. EQUAL

The EQUAL verb requires two addresses. The first address contains a symbolic which does not appear
in the “NAME”’ column of the coding or data sheets, but is to be assigned to the same memory location as
the name appearing in the second address. The latter must be a symbolic that appears in the “NAME”’
column of the coding or data sheet.

F. SGMT

The SGMT verb requires three addresses. The first address indicates the sequence number of the first
instruction of the segment of coding being defined. The second address may take one of three forms:

29

30

1. The sequence number of the first instruction of the area that will be overlaid by the segment.

2, The special symbolic, ESGMT], where] is a number from 1 through 98. This indicates that the
segment being defined is to begin immediately following the constants for the segment whose number

is J.

3. A machine address in the form, #TIHHHHHC, where the sTIHHHHHC represents the machine location
into which the programmer wishes the LHE of this segment to be placed.

The third address is the segment number of the segment being defined. The number may range from two

through 99. Note that segment 1 need not be defined. The first segment is considered to begin with the
first line of pseudo-code in sorted order.

If a sequence number is specified in the second address, that number must be less than the sequence
number specified in the first address. If the ESGMT] option is used in the second address J must be less
than the number specified in the 3rd address.

Examples:
SGMT *25%10*2
SGMT *100*ESGMT1*3
SGMT *250*#00123450%4
G. DEFW

The programmer may, by use of this verb, override the automatic assignment of the LHE of the work area.
This instruction takes only one address in the form ESGMT]J, where] specifies the segment number follow-

ing which the work area is to begin. The LHE of the work area then becomes the next available word or
half-word following the end of segment J.

RINS

This verb will cause the generation of coding in the object program to effect the loading of a new program
segment. The generated coding provides certain parameters to a standard insertion routine which locates
the required program block, inserts it, and transfers control to an address specified in the RINS verb. The
two addresses required by this verb are *N*RETURN, where N is a number from 2 through 99 specifying the

segment being called for, and RETURN is the address to which control is to be returned. RETURN may be
a symbolic or machine address.

. PD

This verb specifies the type of equipment that each relative peripheral device in the program is to ad-
dress. The verb may have as many addresses as are necessary to meet the program requirements. PD verb
addresses are written in the following format:

*
TEn1 0y, Oy0,, N30y, B N .0 0

where TE is the t?pe equipment being defined and may equal:

MT (33) for a 33 KC magnetic tape station
MT (66) for a 66 KC magnetic tape station
MT (120) for a 120 KC magnetic tape station
CR for a Card Reader

CP for Card Punch

PTR for a Bulk Paper Tape Reader

SR for the Strip Paper Tape Reader

PTP for Paper Tape Punch

OLP for On Line Printer

MP for the Monitor Printer
n n, through n n_are those relative peripheral device numbers that address the device named in TE.
No more than 13 relative numbers may be named in any one address. Should a program use more than 13
peripheral devices of the same type a second address with the same TE portion can be written. All

peripheral devices used in the program must be defined by a PD verb. More than one PD verb can be used
in any one program, though, in general, one should suffice.

Example:
The PD verb:
PD *MT(120) 01, 02, 03 *SR10 *MP77

indicates that relative peripheral device numbers 01, 02, and 03 are to address 120 KC Magnetic Tape
Stations; 10 is to address the Strip Paper Tape Reader; and 77 the Monitor Printer.

31

IX. ASSEMBLY SYSTEM ORDER CODE APPENDICES

The accompanying charts show the standard format for each instruction in the RCA 601 Assembly System.
Presented below is a legend of the symbols used on the charts.

A. GENERAL DESCRIPTION OF ORDER CODE CHARTS

1. Instruction

The name of the instruction being described is found in this column.

2. Operation

The symbolic operation codes presented in this column have been grouped into generalized categories
with variation characters following the broken line on the charts. Both the category name and the vari-
ation characters (if any) must appear on the program sheet for each instruction.

3. 7T

An X appears in this column if the T column on the program sheet may be used.

4. NI

An X appears in this column if the NI column on the program sheet may be used.

5. COUNT

The range of the numeric value that may be placed in this column on the program sheet for each in-
struction may be found here.

6. COND.

The conditions that may be entered as the first entry in the Address or Condition column of the
program sheet (no asterisk precedes conditions) for each instruction may be found here. Symbolics
used for CONDITIONS are as follows:

U - for half-word arithmetics, specifies that unsigned arithmetic is to be performed.

REGISTER - those registers that may be affected by an instruction are listed under this beading.

SS,US,SU or UU - for the symbol field controlled arithmetics, one of these four notations is used.
The first letter refers to the first operand; the second letter to the second operand.
S = signed and U = unsigned.

4 or 6 - in the Convert Code instruction indicates the code to which conversion is to be
made.

CONNECTIVE - in the FORM instructions, a connective code of 0 through 7 must be entered.

S - for the Monitor instruction, S specifies store after staticizing.

H - for the Read Blocks Forward instruction, H specifies that the count refers to half-
words rather than blocks. This option is used when reading gapless paper tape.

32

8.

D - for the Rewind instruction, D specifies a rewind and disconnect

P,N,Z - for the Sense PRI instruction P, N, and Z may be entered singly or in any combin-
ation. When in combination they are entered with no separators, i.e.,

P
PN
Pz
PNZ
where P specifies PRP
N specifies PRN
Z specifies PRZ

ALL - in the Shift instructions, ALL specifies a shift including sign.
E - in the WRITE instructions, E specifies Erase.
AD], AD2, AD3, AD4
The standard addresses for each instruction are shown in these columns. Each instruction must be
written with the number of asterisks shown, or with 3 for non-input-output instructions, and 4 for

input-output instructions with the exception of those instructions noted in the N column.

A line through a column means that this column on the program sheet must be left blank.

N

The numbers in this column indicate notes applying to this instruction.
1. No addresses, other than those indicated on the charts, may be specified with these instructions.

2. No operation half-word is generated for these instructions.

3,4,5,6. In general, the addresses given on the charts are, in order, the A, B, C addresses and the
Peripheral Device Half-Word respectively. The following numbers in the N column, however, in-
dicate exceptions and how they vary from the general instruction format.

3. AD, specifies the C address

4. AD1 specifies the C address
AD, specifies the PD half-word

5. ADl specifies the B address
AD, specifies the C address
AD3 specifies the PD half-word

6. AD1 specifies the PD half-word.

33

ve

ORDER CODE CHART

AD

AD

AD

AD

INSTRUCTION OPERATION NI | COUNT | COND. 1 2 3 4
|
ADD WORD ADD | WD X *WORD ADDRESS |*WORD ADDRESS |*WORD ADDRESS
DECIMAL | OF AUGEND OR | OF ADDEND OR | OF SUM OR &
| & (MAY BE & (MAY BE (MAY BE
| ABSOLUTE) ABSOLUTE) ABSOLUTE)
ADD WORD ADD : WB X «WORD ADDRESS |*WORD ADDRESS |*WORD ADDRESS
BINARY | OF AUGEND OR | OF ADDEND OR | OF SUM OR &
— | 777 | & (MAY BE & (MAY BE (MAY BE
! ABSOLUTE) ABSOLUTE) ABSOLUTE)
ADD HALF- ADD | HD X 1 UOR |+*RHE OF AUGEND|* RHE OF ADDEND|* RHE OF SUM
WORD | or BLANK | OR & OR & OR &
DECIMAL |
ADD HALF- ADD | HB X 1 UOR |*RHE OF * RHE OF * RHE OF SUM
WORD ' or BLANK | AUGEND OR & | ADDEND OR & OR &
BINARY i 2
[}
ADD SYMBOL/| ADD | $ X 1 s, US, | *LHE OF * LHE OF *LHE OF SUM
FIELD | to UU, or AUGEND ADDEND
CONTROLLED , 64 su
ADD ADD | ca X * ADDRESS OF * ACTUAL VALUE |* ADDRESS OF
CHARACTER | AUGEND OF ADDEND or | RESULT HALF-
ADDRESS | INDIRECT WORD
| ADDRESS
| THEREOF
ADD HALF-— ADD | Ha X + ADDRESS OF |* ACTUAL VALUE |* ADDRESS OF
WORD I AUGEND OF ADDRESS or | RESULT HALF-
ADDRESS I INDIRECT WORD
| ADDRESS
| THEREOF
ADD TO ADD | AR X REG- |* ACTUAL VALUE
ADDRESS ! ISTER | OF INCREMENT
REGISTER ' — | AAR, or INDIRECT
| BAR, ADDRESS
| Icc, THEREOF
| ECC, TAR
|

or SIC

99

ORDER CODE CHART (Cont’'d)

INSTRUCTION OPERATION NI | COUNT | COND. AD, AD, ADy AD
CONVERT convt ! cp X 4or6 |*LHE OF AREA | *RHE OF AREA | *LHE OF DES-
CODE ! TO BE CON- TO BE CON- TINATION

! VERTED VERTED AREA
DIVIDE WORR | DIV I wp X 1 * RHE OF * ADDRESS OF * ADDRESS OF
DECIMAL ! or DIVIDEND OR DIVISOR OR QUOTIENT OR

| 2 & (MAY BE & (MAY BE & (MAY BE

| ABSOLUTE) ABSOLUTE) ABSOLUTE)
DIVIDE HALF—| DIV ' HD X 1 U OR *RHE OF * ADDRESS OF * ADDRESS OF
WORD | or BLANK | DIVIDEND OR & | DIVISOR OR & CUOTIENT OR &
DECIMAL J 2

T
DIVIDE HALF—{ DIV | HB X * ADDRESS OF * ADDRESS OF * ADDRESS OF
WORD BINARY: | DIVIDEND OR & | DIVISOR OR & GUOTIENT OR &
DIVIDE DIV I s X] ss, US, |*RHE OF *RHE OF *LHE OF
SYMBOL/ I to SU, or DIVIDEND DIVISOR QUOTIENT
FIELD | 64 uu
CONTROLLED |
DO DO ' X 1

| to

I 256

|
EDIT FIELD EDIT | FL X 1 *LHE OF FIELD | *LHE OF MASK | *LHE OF RESULT
LEFT TO | to _
RIGHT | 256
EDIT FIELD EDIT | FR X 1 *RHE OF FIELD |* RHE OF MASK | *RHE OF
RIGHT TO | to _ RESULT
LEFT | 256

|
ENABLE JUMP| ENABLE X * PERIPHERAL

! DEVICE HALF -

i WORD
FILL FILL X *LHE OF FILL *RHE CF FILL | *SYMBOL HALF

AREA

AREA

WORD

9¢

ORDER CODE CHART (Cont’d)

AD AD AD AD
INSTRUCTION | OPERATION N1 | COUNT| COND. 1 2 3
FIND SYMBOL | FIND : sL X 1 * LHE OF * RHE OF *HALF-WORD
LEFT TO to __ | SEARCHAREA | SEARCH AREA | ADDRESS OF
RIGHT | 256 FINAL SETTING
| STORE
FIND SYMBOL | FIND | SR X 1 * LHE OF * RHE OF * HALF—WORD
RIGHT TO [to SEARCH AREA | SEARCH AREA | ADDRESS OF
LEFT | 256 FINAL SETTING
l STORE
FIND FIND | AsL X * LHE OF *RHE OF
ABSENCE OF | SEARCH AREA | SEARCH AREA
SYMBOL LEFT ! :
TO RIGHT |
|
FIND FIND | ASR X * LHE OF *RHE OF
ABSENCE OF | SEARCH AREA | SEARCH AREA
SYMBOL RIGHT
TO LEFT !
FLOAT FLoaT ! D X * ADDRESS OF
DECIMAL | CHARACTER-
[ISTIC
FLOAT FLOAT ! B X * ADDRESS OF
BINARY ' CHARACTER-
| ISTIC
FORM FOrRM | ca X 1 CONNEC-| * RHE OF *RHE OF * RHE OF DES—
CHARACTERS | to | TIVE OPERAND 1 OPERAND 2 TINATION AREA
A ! 64 0707
FORM Form | cB X 1 CONNEC-| *RHE OF *RHE OF *RHE OF DES—
CHARACTERS I to | TIVE OPERAND 1 OPERAND 2 TINATION AREA
B I 64 0TO 7
FORM HALF— | FORM | Ha X CONNEC-| * HALF—WORD * HALF~WORD * HALF —WORD
WORD A | TIVE ADDRESS OF ADDRESS OF ADDRESS OF
! —— loT07 OPERAND 1 OPERAND 2 DESTINATION
| OR & OR & AREA OR &
|
|

LE

ORDER CODE CHART (Cont'd)

AD AD AD AD
INSTRUCTION OPERATION NI COUNT [COND. 1 2 3 N
FORM HALF- FORM | HB X CONNEC-|*HALF-WORD *HALF-WORD *HALF-WORD
WORD B | TIVE ADDRESS OF ADDRESS OF ADDRESS OF
[0707 OPERAND 1 OPERAND 2 DESTINATION
| OR & OR & AREA OR &
|
FORM WORDS A| FORM | WA X CONNEC-|* WORD ADDRESS | *WORD ADDRESS | *WORD ADDRESS
| — | TIVE OF OPERAND 1 | OF OPERAND 2 | OF DESTINATION
: 0TO 7 OR & OR & AREA OR &
FORM WORDS B| FORM | WB X CONNEC-|* WORD ADDRESS|*WORD ADDRESS | * WORD ADDRESS
| — | TIVE OF OPERAND 1 | OF OPERAND 2 | OF DESTINATION
| 0TO 7 OR & OR & AREA OR &
HALT AND HALT ! 1
WAIT !
1
INSERT TAG INSERT) T X 1 *LHE OF AREA
| to INTO WHICH
: 256 TAGS ARE TO
| BE INSERTED
INSERT BITS INSERT B X *HALF-WORD *HALF-WORD *HALF—WORD
[ADDRESS OF ADDRESS OF ADDRESS OF
| OPERAND OR & | EXTRACT RESULT OR &
| PATTERN OR &
JUMP JUMP f *JUMP ADDRESS 1,2
JUMP IF SET JUMP | S * JUMP ADDRESS 1,2
|
JUMP IF JUMP | R * JUMP ADDRESS 1,2
RESET |
JUMP AND JUMP | AS * JUMP ADDRESS
STORE |
T
JUMP IF SET JUMP | SAS * JUMP ADDRESS
AND STORE .
JUMP IF JUMP | RAS * JUMP ADDRESS
RESET AND I
STORE I

8¢

ORDER CCDE CHART (Cont'd)

INSTRUCTION OPERATION T | NI | COUNT | coND. AD, AD, AD4
LOAD MACHINE | LOAD *WORD ADDRESS
AND JUMP | DESIGNITATING

‘ _ — LHE OF INFOR-

| MATION TO BE

[LOADED
MONITOR MoNIT | X X | |sor

! BLANK
MOVE BY movE | cL X X * LHE OF ORIGIN | * RHE OF ORIGIN |* LHE OF DES-
CHARACTER l AREA AREA TINATION AREA
LEFT TO [
RIGHT [
MOVE BY MOVE | HL X X * LHE OF ORIGIN | *RHE OF ORIGIN |* LHE OF DES-
HALF-WORDS [AREA AREA TINATION
LEFT TO [AREA
RIGHT [
MOVE BY MOVE | wL X X “LHE OF ORIGIN | *RHE OF ORIGIN | * LHE OF
WORD LEFT [— | —— | AREA AREA DESTINATION
TO RIGHT | AREA
MOVE BY Move | cr X X *LHE OF ORIGIN | * RHE OF ORIGIN |*RHE OF
CHARACTER l AREA AREA DESTINATICN
RIGHT TO ! AREA
LEFT l

T
MOVE BY MOVE | HR X X * LHE OF ORIGIN | * RHE OF ORIGIN | * RHE OF
HALF—-WORDS | AREA AREA DESTINATION
RIGHT TO AREA
LEFT '
MOVE BY MOVE | WR X X * LHE OF ORIGIN | *RHE OF ORIGIN |* RHE OF
WORD RIGHT | AREA AREA DESTINATION
TO LEFT | AREA
MOVE FIELD move | FcL | x X 1 *LHE OF ORIGIN | * LHE OF
BY CHAR- ! to AREA DESTINATION
ACTER LEFT ' 256 - FIELD
TO RIGHT {

|

ORDER CODE CHART (Cont'd)

INSTRUCTION OPERATION NI | COUNT | COND. AD, AD, AD, AD
MOVE FIELD MOVE | FHL| x X 1 * LHE OF ORIGIN |* LHE OF
BY HALF— ' to AREA DESTINATION
WORD LEFT TO ' 256 FIELD
RIGHT l
MOVE FIELD MOVE | FwL | X X 1 * _LHE OF ORIGIN | * LHE OF
BY WORD LEFT [to —— | AREA DESTINATION
TO RIGHT [256 FIELD
MOVE FIELD MOVE | FCR| X X 1 * RHE OF ORIGIN | *RHE OF
BY CHAR- ! to - AREA DESTINATION
ACTER RIGHT | 256 FIELD
TO LEFT [
MOVE FIELD MOVE | FHR| X X 1 * RHE OF ORIGIN |* RHE OF
BY HALF— [to FIELD DESTINATION
WORD RIGHT | 256 FIELD
TO LEFT |
MOVE FIELD move | Fwr | x X 1 *RHE OF ORIGIN |* RHE OF
BY WORD ‘ to FIELD DESTINATION
RIGHT TO ' 256 FIELD
LEFT I
MOVE SYMBOL | MOVE | SCL | X X 1 * LHE OF ORIGIN |* LHE OF
CONTROLLED | to ITEM DESTINATION
BY CHAR- | 256 - AREA
ACTER LEFT
TO RIGHT !
MOVE SYMBOL | MOVE | SCR | X X 1 *RHE OF ORIGIN |*RHE OF
CONTROLLED | to ITEM DESTINATION
BY CHAR- | 256 - AREA
ACTER RIGHT |
TO LEFT ,
MOVE TAG MOVE | T X X 1 *HALF—WORD * FIRST ADDRESS
I to ADDRESS OF INTO WHICH
| 256 —— | WORD WHOSE TAG IS TO BE
| TAG IS TO BE PLACED
| | MOVED

6%

oy

ORDER CODE CHART (Cont’d)

INSTRUCTION | OPERATION NI | COUNT | COND. AD, AD, AD4 AD,
|
MOVE ADDRESS| MOVE A X *ACTUAL VALUE | * ADDRESS OF
TO BE MOVED | HALF-WORD
! OR INDIRECT INTO WHICH
' ADDRESS VALUE IS TO
| THEREOF BE PLACED
MULTIPLY AND| MAC | wD X * ADDRESS OF | * ADDRESS OF | *RHE OF RESULT
ACCUMLATE ! MULTIPLICAND | MULTIPLIER OR & (MAY BE
WORD | OR & (MAY BE | OR & (MAY BE | ABSOLUTE)
DECIMAL I ABSOLUTE) ABSOLUTE)
MULTIPLY AND| MAC ! HD X UOR | ADDRESS OF | *ADDRESS OF |* RHE OF
ACCUMULATE l BLANK | MULTIPLICAND | MULTIPLIER PRODUCT OR &
HALF-WORD | - OR & OR &
DECIMAL |
MULTIPLY MULT | wD X * ADDRESS OF | * ADDRESS OF [* RHE OF
WORD | MULTIPLICAND | MULTIPLIER PRODUCT OR &
DECIMAL | OR & (MAY BE | OR & (MAY BE | (MAY BE
| ABSOLUTE) ABSOLUTE) ABSOLUTE)
MULTIPLY muLT | HD X 1 UOR |*RHE OF * RHE OF * RHE OF
HALF-WORD ! or BLANK | MULTIPLICAND | MULTIPLIER PRODUCT OR &
DECIMAL l OR & OR &
MULTIPLY MULT | HB X * ADDRESS OF | * ADDRESS OF | *RHE OF
HALF-WORD | ——— | ——— | MULTIPLICAND | MULTIPLIER PRODUCT OR &
BINARY | OR & OR &
MULTIPLY muLt s X 1 $S, SU, |* RHE OF * RHE OF *RHE OF
SYMBOL/ [to UU, OR | MULTIPLICAND | MULTIPLIER PRODUCT
FIELD | 64 us
CONTROLLED |
READ BLOCKS | READ | BF X 1 HOR |*ADDRESSIN |* ADDRESS *HALF-WORD |* PERIPHERAL
FORWARD | to BLANK | WHICH TO BEYOND WHICH | ADDRESS OF DEVICE HALF-
! 256 PLACE FIRST | NODATA MAY | LHE OF FINAL | WORD
| HALF-WORD BE READ INTO | SETTINGS
| READ MEMORY (MAY BE
|
|

GUARDED)

1%

ORDER CODE CHART (Cont'd)

INSTRUCTION | OPERATION NI | COUNT | COND. AD, AD, AD, AD,
READ READ | sF X 1 * ADDRESS IN * ADDRESS *HALF-WORD |* PERIPHERAL
SYMBOLS ' to WHICH TO BEYOND WHICH| ADDRESS OF DEVICE
FORWARD ‘ 256 — | PLACE FIRST NO DATA MAY LHE OF FINAL | HALF-WORD

[HALF—WORD BE READ INTO | SETTINGS

| READ MEMORY (MAY BE

| GUARDED)
READ BLOCK | READ 1 BFG X * ADDRESS IN * ADDRESS *HALF—WORD |* PERIPHERAL
FORWARD | WHICH TO BEYOND WHICH| ADDRESS OF DEVICE
GENERATE PLACE FIRST NO DATA MAY LHE OF FINAL | HALF-WORD
LIsT ' HALF -WORD BE READ INTO | SETTINGS

[READ MEMORY. (MAY BE

[LHE MINUS GUARDED)

[ONE OF LIST
READ BLOCKS | READ i BR X 1 * ADDRESS IN + ADDRESS *HALF-WORD |* PERIPHERAL
REVERSE | to WHICH TO BEYOND WHICH| ADDRESS OF DEVICE

256 PLACE FIRST NO DATA MAY LHE OF FINAL | HALF-WORD

| HALF-WORD . BE READ INTO | SETTINGS

| READ MEMORY (MAY BE

| GUARDED)
READ READ | SR X 1 * ADDRESS IN * ADDRESS *HALF-WORD |* PERIPHERAL
SYMBOLS | to WHICH TO BEYOND WHICH| ADDRESS OF DEVICE
REVERSE 256 PLACE FIRST NO DATA MAY LHE OF FINAL | HALF-WORD

' HALF—WORD BE READ INTO | SETTINGS

' READ MEMORY (MAY BE

' GUARDED
READ BLOCK | READ | BRG X * ADDRESS IN * ADDRESS *HALF—WORD | *PERIPHERAL
REVERSE | WHICH TO BEYOND WHICH| ADDRESS OF DEVICE
GENERATE : PLACE FIRST NO INFORMA- LHE OF FINAL | HALF—WORD
LIST HALF-WORD TION IS TO BE | SETTINGS

' READ READ INTO (MAY BE

! MEMORY. RHE | GUARDED)

| PLUS ONE OF

| LIST

|

[

|

ORDER CODE CHART (Cont'd)

INSTRUCTION OPERATION NI | COUNT | COND. AD, AD, AD; AD
REWIND rRwp ! X D OR *HALF ~WORD * PERIPHERAL
' BLANK | ADDRESS OF DEVICE
! _ LHE OF FINAL HALF-WORD
| SETTING (MAY
| BE GUARDED)
SENSE PRI SENSE | PRI X PN, Z
! IN ANY
| COMBIN-
| ATION
SENSE AND SENSE : AND X *HALF -WORD
ADDRESS OF
! MASK
SENSE OR SENSE | OR X *HALF-WORD
1 ADDRESS OF
| MASK
SET ADDRESS | SET | AR X REGIS- |* ACTUAL VALUE
REGISTER ' TER TO BE PLACED
' LR, AAR, IN REGISTER
I —— | BAR, OR INDIRECT
| CAR, ADDRESS
| Icc, THEREOF
| ECC, or
[TAR
SET DATA SET | DR X REGIS- |* ADDRESS OF
REGISTER | TER HALF-WORD
| CR,CLR,| OR WORD
| PIR, MIR,| WHOSE CON-
| ——— | ETC,IR,| TENTS WILL BE
PIB, RI, | PLACED IN
' MWA, SPECIFIED
! LWA, REGISTER
| MHA, LHA,
| SYR or TR
SHIET SHIFT | ABR X 1 ALL OR
ACCUMLATOR ! to BLANK
BITS TO THE | 64
|

RIGHT

134

ORDER CODE CHART (Cont’d)

TO THE LEFT

INSTRUCTION | OPERATION N1 | COUNT | COND. AD, AD AD AD
SHIFT sHIFT | ACR X 1 ALL OR
ACCUMULATOR | to BLANK
CHARACTERS [64
TO THE RIGHT |
SHIFT SHIFT ' ABL X 1 ALL OR
ACCUMULATOR ' to BLANK
BITS TO THE I 64
LEFT |
SHIFT sHIFT | AcL X 1 ALL OR
ACCUMULATOR ! to BLANK
CHARACTERS I 64
TO THE LEFT l
SHIFT MOST SHIFT | MBR X 1 ALL OR
SIGNIFICANT I to BLANK
ACCUMULATOR ! 64
BITS TO THE [
RIGHT |
SHIFT MOST sHIFT | Mcr X 1 ALL OR
SIGNIFICANT ‘ to BLANK
ACCUMULATOR | 64
CHARACTERS |
TO THE RIGHT |
SHIFT MOST SHIFT ! MBL X 1 ALL OR
SIGNIFICANT ! to BLANK
ACCUMULATOR | 64
BITS TO THE |
LEFT |
SHIFT MOST SHIFT | MCL X] ALL OR
SIGNIFICANT ' to BLANK
ACCUMULATOR | 64
CHARACTERS I

|

[

|

|

)|

ORDER CODE CHART (Cont'd)

INSTRUCTION

OPERATION

COUNT

COND.

A
Dl

AD

AD

AD

RING SHIFT
MOST
SIGNIFICANT
ACCUMULATOR
TO THE RIGHT

SHIFT R

to

64

SHIFT HALF-
WORD BITS TO
THE RIGHT

SHIFT

1
|
|
|
|
! HBR
I
|
]

to

64

ALL OR
BLANK

* ADDRESS OF
HALF-WORD
TO BE SHIFTED
OR &

SHIFT HALF-
WORD BITS TO
THE LEFT

SHIFT | HBL

to

64

ALL OR
BLANK

* ADDRESS OF
HALF-WORD TO
BE SHIFTED OR &

SHIFT
HALF-WORD
ACCUMULATOR
CHARACTERS
TO THE RIGHT

SHIFT HCR

to

64

ALL OR
BLANK

SHIFT
HALF-WORD
ACCUMULATOR
CHARACTERS
TO THE LEFT

SHIFT HCL

to

64

ALL OR
BLANK

SHIFT DOUBLE
HALF-WORD
ACCUMULATOR
BITS TO THE
RIGHT

SHIFT DBR

to

64

SHIFT DOUBLE
HALF-WORD
ACCUMULATOR
CHARACTERS
TO THE RIGHT

SHIFT DCR

to

64

194

ORDER CODE CHART (Cont'd)

INSTRUCTION OPERATION Nt | counT | conp. AD, AD, AD AD
SHIFT DOUBLE | SHIFT ' DBL X 1
HALF-WORD ! to
ACCUMULATOR { 64
BITS TO THE 1
LEFT |
SHIFT DOUBLE | SHIFT ' pcL X 1
HALF-WORD ! to
ACCUMULATOR I 64
CHARACTERS I
TO THE LEFT {
STORE STORE : AR X REGIS- | * ADDRESS OF
ADDRESS TER HALF-WORD
REGISTER ' LR, AAR,| INTO WHICH
! — | BAR, REGISTER IS
! CAR, TO BE STORED
| Icc,
i ECC or
| TAR
STORE AND STORE | LM * WORD ADDRESS
LOAD MACHINE I DESIGNATING
| - LHE OF
| STORAGE AREA
STORE INPUT—| STORE ! 10 X *HALF-WORD * PERIPHERAL
OUTPUT AND ! ADDRESS OF DEVICE
JUMP | LHE OF FINAL | HALF-WORD
1 SETTINGS (MAY
| BE GUARDED)
STORE DATA | STORE ! DR X REGIS- | * ADDRESS OF
REGISTER | TER HALF-WORD OR
! MIR, PIR| WORD WHERE
| IR, MWA,| SPECIFIED
i LWA,CR| REGISTER IS TO
| SYR,TR,| BE STORED
| MHA or
| LHA
|

9y

ORDER CODE CHART (Cent'd)

AD AD AD AD

INSTRUCTION OPERATION NI | COUNT | COND. 1 2 3 4
SUBTRACT sue !'wp X * ADDRESS OF * ADDRESS OF * ADDRESS OF
WORD DECIMAL | MINUEND OR & | SUBTRAHEND OR| DIFFERENCE OR

| (MAY BE & (MAY BE & (MAY BE

| ABSOLUTE) ABSOLUTE) ABSOLUTE)
SUBTRACT sus | ws X * ADDRESS OF * ADDRESS OF * ADDRESS OF
WORD BINARY [MINUEND OR & | SUBTRAHEND OR| DIFFERENCE OR

[(MAY BE & (MAY BE & (MAY BE

| ABSOLUTE) ABSOLUTE) ABSOLUTE)
SUBTRACT sus | HD X 1 U OR *RHE OF *RHE OF * RHE OF
HALF—WORD I or BLANK | MINUEND OR & | SUBTRAHEND DIFFERENCE
DECIMAL | 2 OR & OR &
SUBTRACT SuB | HB X 1 U OR *RHE OF *RHE OF *RHE OF
HALF-WORD [or BLANK | MINUEND OR & | SUBTRAHEND DIFFERENCE
BINARY | 2 OR & OR &
SUBTRACT sup s X 1 s, US, |*RHE OF *RHE OF *RHE OF
SYMBOL/ : [to UU, or MINUEND SUBTRAHEND DIFFERENCE
FIELD | 64 sU
CONTROLLED |
SUBTRACT suB | ca X * ADDRESS OF *ACTUAL VALUE |* ADDRESS OF
CHARACTER ! MINUEND OF SUBTRAHEND| RESULT HALF—
ADDRESS ! HALF—WORD OR INDIRECT WORD

| ADDRESS

| THERE OF
SUBTRACT suB ! Ha X * ADDRESS OF * ACTUAL VALUE |* ADDRESS OF
HALF -WORD ' MINUEND OF SUBTRAHEND| RESULT HALF-
ADDRESS [HALF—WORD OR INDIRECT WORD

| ADDRESS

' THERE OF
SWAP HALF— | swap ! H X * ADDRESS OF * ADDRESS OF
WORDS ' HALF—WORD TO| OTHER HALF-

! BE SWAPPED WORD TO BE

|

]

I

|

SWAPPED

Ly

ORDER CODE CHART (Cont’d)

INSTRUCTION | OPERATION NI | COUNT | COND. AD, AD, AD; AD
SWAP WORDS swap | ow X * ADDRESS OF * ADDRESS OF
I WORD TO BE OTHER WORD
[SWAPPED TO BE SWAPPED
SWAP SWAP : AR X REGIS- |* ADDRESS OF
ADDRESS TER HALF-WORD
REGISTER ' LR, AAR,| TO BE SWAPPED
I BAR,
[CAR,
[Icc,
| ECC or
| TAR
SWAP DATA SWAP | DR X REGIS- |* ADDRESS OF
REGISTER | TER HALF—WORD
' MIR, PIR,| WHOSE CON-
I —— | IR, CR, | TENTS ARE TO
| SYR, BE INTER-
| MHA, CHANGED WITH
| LHA, TR | SPECIFIED
| REGISTER
TALLY TALLY! X * HALF—WORD
' ADDRESS OF
! TALLY
[QUANTITY
TEST BY TEST | cL X 1 *HE OF * LHE OF
CHARACTER I to MINUEND SUBTRAHEND
LEFT TO I 256
RIGHT [
TEST BY TEST ! CR X 1 *RHE OF * RHE OF
CHARACTER I to MINUEND SUBTRAHEND
RIGHT TO [256 '
LEFT |
TEST BY TEST | X 1 * | HE OF * LHE OF SUB-
HALF-WORD : or — | MINUEND OR & | TRAHEND OR &
|
[

8y

ORDER CODE CHART (Cont'd)

SETTINGS (MAY
BE GUARDED)

A
INSTRUCTION OPERATION NI | COUNT | COND. AD, AD, AD, Dy
TEST WORD TEST ! w X * ADDRESS OF * ADDRESS OF
[MINUEND OR & | SUBTRAHEND
| OR &
WIND winD ! osF X 1 *HALF—WORD * PERIPHERAL
SENTINELS ! to ADDRESS OF DEVICE
FORWARD [256 — | LHE OF FINAL | HALF-WORD
| SETTINGS (MAY
| BE GUARDED)
WIND GAPS wino | GF X 1 * HALF—WORD * PERIPHERAL
FORWARD ' to ADDRESS OF DEVICE
! 256 _ LHE OF FINAL | HALF—WORD
[SETTINGS (MAY
[BE GUARDED)
WIND WwIND | SR X 1 *HALF-WORD * PERIPHERAL
SENTINELS ' to ADDRESS OF DEVICE
REVERSE I 256 —— | LHE OF FINAL | HALF-WORD
[SETTINGS (MAY
[BE GUARDED
WIND GAPS winD | GR X 1 *HALF—WORD * PERIPHERAL
REVERSE | to ADDRESS OF DEVICE
[256 —— | LHE OF FINAL | HALF-WORD
| SETTINGS (MAY
| BE GUARDED)
WRITE BLOCK | WRITE | B X |BLANK |E OR * ADDRESS OF * ADDRESS OF *HALF-WORD * PERIPHERAL
! OR BLANK | LHE OF AREA RHE OF AREA ADDRESS OF DEVICE
[1 to 64 TO BE WRITTEN| TO BE WRITTEN| LHE OF FINAL | HALF-WORD
(FOR SETTINGS (MAY
| PRINTER BE GAURDED)
|
WRITE BLOCK | WRITE | BL X 1 E OR * ADDRESS OF * HALF-WORD * PERIPHERAL
FROM LIST to BLANK | LHE OF LIST ADDRESS OF DEVICE
: 256 LHE OF FINAL | HALF-WORD
[
[
[
I

6y

ORDER CODE CHART (Cont'd)

INSTRUCTION OPERATION NI | COUNT | coOND. AD, AD, AD, AD,
WRITE WRITE : 3 X 1 E OR * ADDRESS OF * ADDRESS OF *HALF—WORD * PERIPHERAL
SYMBOLS to BLANK | LHE OF AREA RHE BEYOND ADDRESS OF DEVICE
! 256 TO BE WRITTEN| WHICH NO IN- LHE OF FINAL | HALF-WORD
| FORMATION SETTINGS (MAY
I MAY BE BE GUARDED)
| WRITTEN
WRITE wRITE | sL X 1 E OR * ADDRESS OF *HALF-WORD * PERIPHERAL
SYMBOLS to BLANK RHE BEYOND ADDRESS OF DEVICE
FROM LIST 256 WHICH NO IN- LHE OF FINAL | HALF-WORD
FORMATION SETTINGS (MAY
MAY BE BE GUARDED)
WRITTEN AND
LHE OF LIST

|
|
|
\
]
I
i
I
I
I
|
f
I
I
I
|
I
I
|
]
|
|
|
|
|
|
\
|
\
|

MINUS 1 HALF-
WORD

STANDARD LOCATIONS

APPENDIX |

The following symbolics are provided for the addressing of standard locations:

*$M10
*$M11
*$M20
*$M21
*$M30
*$M31
*$M40
*$M41
*$MSO
*$MS1
*$MGO
*$MG1
*$M70
*$M71
*$VF1
*$VF2
*$UF1
*$UF2
*$ZDI
*$TE
*$TU
*$TD
*$LLA
*$ULA
*$PRN
*$PRZ
*$PRP
*$NFI
*$TCC
*$IW1
*$PI1
*$P12
*$P13

50

Address Modifier 10

The Increment to AM10

Address Modifier 20

The Increment to AM20

Address Modifier 30

The Increment to AM30

Address Modifier 40

The Increment to AM40

Address Modifier 50

The Increment to AMS0

Address Modifier 60

The Increment to AMGO

Address Modifier 70

The Increment to AM70

Overflow Jump address

Subsidiary Overflow Jump address
Underflow Jump address

Subsidiary Underflow Jump address
Zero Divisor Jump address

Tag Equal in Origin Jump address
Tag Unequal in Origin Jump Address
Tag Unequal in Origin or Destination Jump address
Lower Limit Alarm Jump address
Upper Limit Alarm Jump address
PRN Jump address

PRZ Jump address

PRP Jump address

Not Found Indicator Jump address
Transfer Control Condition Jump address
Instruction Waiting Indicator Jump address
Program Indicator 1 Jump address
Program Indicator 2 Jump address

Program Indicator 3 Jump address

*$MPE
*$BTE
*$MON
*$ELX
*$ELY
*$PDT
*$STICC

Memory Parity Error Jump address

Bus Transfer Error Jump address

Monitor Standard Locations

Edit Location X -

Edit Location Y

Peripheral Device Table (LHE unless otherwise specified)

Relative ICC storage location

Note that standard location addresses may be suffixed by the relative notations (:nnnn) and
(L/R + nonn). The (+nnnn) notation will always be considered to be increments of half-words. The
(L/R + nnnn) notation will always yield increments in terms of 3-bit characters. In addition address modi-
fier notations and indirect addressing notations may be applied to these locations.

51

52

MASK HALF-WORD SYMBOLS

APPENDIX Il

The following symbolics may be used in the Mask Half-Word:

VF1
VF2
UF1
UF2
ZDI1
TE
TU
TD
LLA
ULA
PRN
PRZ
PRP
NFI
TCC
IWI
PI1
PI2
PI3
ETI
El

SIT
DO

Overflow indicator bit

Subsidiary overflow indicator bit
Underflow indicator bit

Subsidiary underflow indicator bit

Zero divisor indicator bit

Tag equal in origin indicator bit

Tag unequal in origin indicator bit

Tag unequal in origin or destination indicator bit
Lower Limit Alarm indicator bit

Upper Limit Alarm indicator bit

PRN bit

PRZ bit

PRP bit

Not found indicator bit

Transfer Control Condition indicator bit
Instruction Waiting indicator bit
Program Indicator 1 bit

Program Indicator 2 bit

Program Indicator 3 bit

Elapsed time indicator bit

External Indicator bit

Simultaneous Instruction Termination bit

Do indicator bit

APPENDIX Ili

SPECIAL HALF-WORD SYMBOLS

Option 1
*/ Rxx, Cn, Tnn, Sx
where:

/ - is the introductory symbol of a Special Half-Word

Rxx - refers to the round indicators. The *'R’’ is the signal for the round indicator. The xx may be
either H, W, HW or blank. If H, the generated half-word may be used to set the Half-Word Round
Indicator and reset the Word Round Indicator. If W, the generated half-word may be used to set
the Word Round Indicator and reset Half-Word Round Indicator. If HW, the generated half-word
may be used to set both Round Indicaturs, and if blank, both Round Indicators may be reset.

Cn - refers to the Character Length Register where n may equal 3, 4, 6 or 8, representing the bit size
to which the register is to be set.

Tnn - refers to the tag register, where nn may be one or two digits. If one digit, it is a number from 0
through 7, representing the tag to be placed in the register. If two digits, the first is as described
above and the second is a one, indication that the tag transfer option is desired.

Sx - refers to the Symbol Register, where x is the symbol to be placed into the register. It may be any
punchable 4 or 6 bit character with the exception of space, *, >, <, ;, quotes, colon and comma,
or may be three octal digits surrounded by quotes. The second form must be used for all 3 or 8
bit characters and for the exceptions noted above.

Option 2
* /LR LLR, ULR
where:
/ - is the introductory symbol of a Special Half-Word
LR - specifies that the Limit Register option of the Special Half-Word is desired.

LLR - specifies the Lower Limit Register setting desired. It may be LLR, in which case the lower
limit register setting of the program being assembled is automatically supplied by the assembly
system, or it may be specified as a number sign (#) followed by 4 octal digits.

ULR - specifies the Upper Limit Register setting desired. It may be ULR, in which case the upper limit
register setting of the program being assembled is automatically supplied by the assembly sys-
tem, or it may be specified by a number sign (#) followed by 4 octal digits.

If the number sign followed by four octal digits is used, the four octal digits represent the first 4 digits
of the address to which the limit is to be set, where the first digit may be one or zero and the last digit
must be zero or four. The least significant three digits of the address (not specified with this option) are
assumed to be zeros.

53

54

Examples:

* /LR LLR, ULR

* / LR LLR, #1750
* / LR #0454, #1750
* / LR #0454, ULR

The symbolics of option 2 of the Special Half-Word must be written in order shown above.

REGISTER ADDRESSING

APPENDIX IV

As shown on the Order Code charts, various instructions may address several registers. The symbolic
indicating which register the instruction is to address is given as a condition. The symbolic register desig-

nations are as follows:

CR
SYR
TR
CLR
RI
PIR
MIR
ETC
IR
PIB
MHA
LHA
MWA
LWA
LR
AAR
BAR
CAR
ICC
ECC
TAR
SIC

Control Register

Symbol Register

Tag Register

Character Length Register

Round Indicators

Program Indicator Register

Mask Indicator Register

Elapsed Time Clock

Instruction Register

Program Indicator Bits

Most Significant Half-Word Accumulator
Least Significant Half-Word Accumulator
Most Significant Full Word Accumulator
Least Significant Full Word Accumulator
Limit Register

A Address Register

B Address Register

C Address Register

Instruction Control Counter

Elementary Control Counter

Temporary Address Register

Simultaneous Instruction Counter

55

APPENDIX V

SAMPLE PROBLEM

56

The sample problem shown on the following pages, illustrating the use of the RCA 601 Assembly System,
is a high-speed indirect internal sort. It is assumed that there are N consecutive one-word entries in a list.
These entries address one-word keys which serve as the criteria. The keys may be randomly scattered in
memory. The sort will order the entries in the list area according to the relative magnitudes of keys, such
that, the entries in the list, reading from left to right, will address the keys in ascending sequence.

The problem assumes N (the number of entries in the list and the number of items to be sorted) to be 100.
The list of addresses are in symbolic location TAU.

A. FLOW CHART

HIGH-SPEED SORT (SHELL)

START
l _
N—M
]
YES .
DONE M=17

T|<——>TIJr =M —

8¢

B. DATA SHEET

DATA SHEET
NAME 601 ASSEMBLY SYSTEM PAGE _ 1 _
HIGH SPEED SORT oF 1
SIZE LEFT ADDR.
SEQ. DATA NAME FUNCT. [o U | REP. CZ'JE HALE W | A DESCRIPTION
) CON-SEG 1 ALQC H
2 N 1 H 3 144
3 ZERO) H 3]
4 ONE 1 H 3 20
5 ALOC H
6 M 1 H
7 J 1 H
8 K 1 H
9 TAU 120 W
10 KEYS 109 W

6$

C. CODING

PROGRAM SHEET
601 ASSEMBLY SHEET

NAME PAGE _1
OF _1
HIGH SPEED COST
SEQ. NAME OPERATION T NI COUNT ADDRESS or CONDITION
1 START MQVE ' FHL 1 *N*M: HIGH SPEED SORT
SHIFT |, HBL 4 ALL *M
2 OUTERLQOP TEST ' H 1 *M *ONE
JUMP Foos “DONE
SHIFT ! HBR 4 “M
SHIFT | HBL 3 “M
ADD i\ HA “MQOD *M *$M28
suUB . HA *ZERO *M *$M11
SUB | HB 1 *N M K
MOVE | FHL 1 *ZERO *J
3 INNERLOOP MOVE ' FHL 1 *J *$M1Q
TEST bW *TAU, M1g, I* TAU, M29, |
SENSE | PRI ZN
Jump boos *QVER
SWAP VoW *TAU, M20 *TAU, M11
TEST i H 1 *SM1Q * $M11
SENSE ' PRI ‘N
JUMP R *INNERLQQP + 1
4 OVER ADD , HB 1 *) * ONE * J
TEST ' H 1 *JrK
SENSE , PRI *ZP
JUMP s *OUTERLOQP
JUMP } *INNERLQOP
5 MOD LIST : g, M1g
]
i
X
E
1
]

09

D. ASSEMBLY SYSTEM PRODUCED LISTINGS

SEQ.

00001

00002

DESC:

00003

DESC:

00004

DESC:

00005

00006

00007

00008

00009

00010

DATA NAME

CON-SEG 1

N
144

ZERO

ONE

20

AREA-RHE

TAU

KEYS

AREA-RHE

CONSTANTS AND WORKING STORAGE DESCRIPTIONS

FUNCT. SIZE u REP. B H. W,
ALOC H
1 H 3
1 H 3
1 H 3
ALOC H
1 H
1 H
1 H
100 w
100 w

LHE

0011670

0011670

0011700

0011710

0011720

0011720

0011730

0011740

0011760

0015060

PAGE 001

RHE

0011677

0011707

0011717

0011717

0011727

0011737

0011747

0015057

0020157

0020157

19

PROGRAM LISTING

0001

0002

START
0011000
0011010
0011020

START +1
0011030
0011040

OUTERLOOP
0011050
0011060
0011070

OUTERLOOP

0011100

OUTERLOOP
0011110
0011120

OUTERLOOP
0011130
0011140

OUTERLOOP
0011150
0011160
0011170
0011200

OUTERLOOP
0011210
0011220
0011230
0011240

+4

1 06000161
6 00011670
6 00011720

1 25000441
6 00011720

127007162
6 00011720
6 00011710

5 so000xd

1 24040441
6 00011720

125040341
6 00011720

1 62007071
6 00011660
600011720
6 00010040

1 63007071
6 00011700
6 00011720
6 00010030

HIGH SPEED SORT

MOVEFHL

SHIFTHBL

TESTH

JUMPS

SHIFTHBR

SHIFTHBL

ADDHA

SUBHA

T:
(A)
(B)

(A)

(A)

(A)
(B)
©

(A)
(B)
©)

NI:
*N
*M

NI:
*M

NI:
* M
*ONE

Nt:
* DONE

Ni:
*M

NI:
*M

NI:
* MOD
*M
*$M20

NI:
*ZERO
*M
*$M11

COUNT:

COUNT:

COUNT:

COUNT:

COUNT:

COUNT:

COUNT:

COUNT:

PAGE: 001

COND:

COND:

COND:

COND:

COND:

COND:

COND:

COND:

ALL

4%

PROGRAM LISTING (Cont'd)

0003

OUTERLOOP + 6
0011250
0011260
0011270
0011300

OUTERLOOP +7
0011310
0011320
0011330

INNERLOOP
0011340
0011350
0011360

INNERLOOP + 1
0011370
0011400
0011410

INNERLOOP + 2
0011420

INNERLOOP + 3

0011430

INNERLOOP + 4
0011440
0011450
0011460

INNERLCOP + 5
0011470
0011500
0011510

15700717
6 00011670
6 00011720
600011740

1 06000161
6 00011700
6 00011730

106000161
6 00011730
6 00010020

1 26007062
6 12011760
6 22011760

1 41000602

500011544

1 00000062
6 20011760
6 14011760

127007162
6 00010020
6 00010030

SUBHB

MOVEFHL

MOVEFHL

TESTW

SENSEPRI

JUMPS

SWAPW

TESTH

(A)
(B)
(O]

(A)
(B)

(A)
(B)

(A)
(B)

(A)
(B)

(A)
(B)

NI:
*N
*M
*K

NI:
*ZERO
*J

NI:
*J
*$M10

NI:
*TAU, M10, |
*TAU, M20, |

NI:

Ni:
*OVER

NI:
*TAU, M20
*TAU, M11

NI:
*$M10
*$M11

COUNT:

COUNT:

COUNT:

COUNT:

COUNT:

COUNT:

COUNT:

COUNT: 1

AGE: 002

COND:

COND:

COND:

COND:

COND:

COND:

COND:

COND:

ZN

€9

PROGRAM LISTING (Cont’d)

INNERLOOP + 6
0011520

INNERLOOP + 7

0011530
0004 OVER

0011540
0011550
0011560
0011570

OVER + 1
0011600
0011610
0011620

OVER + 2
0011630

OVER + 3
0011640
OVER + 4
0011650
0005 MOD

0011660

1 41000402

500011374

156007171
6 00011730
6 00011710
6 00011730

127007162

6 00011730

6 00011740

141000302

500011054

500011343

2 10000000

SENSEPRI

JUMPS

ADDHB

TESTH

SENSEPRI

JUMPS

JUMPS

LIST

NI:

NI:
*INNERLOOP +1

NI:
*J
*ONE
*J

NI :
*J
* K

NI:

NI:
*OUTERLOOP

NI:
*INNERLOOP

NI:
*O,M10

COUNT:

COUNT:

COUNT:

COUNT:

COUNT:

COUNT:

COUNT:

COUNT:

PAGE: 003

COND:

COND:

COND:

COND:

COND:

COND:

COND:

COND:

ZP

	000
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63

