
SPE'_ I
RADIO CORPORATION OF AMERICA • ELECTRONIC DATA PROCESSING

BASIC TIME SHARING SYSTEM
REFERENCE MANUAL

RADIO CORPORATION OF AMERICA
70-45-601
July 1967

The information contained herein is subject to
change without notice. Revisions may be issued
to advise of such changes and/or additions.

First Printing: July, 1967

1. INTRODUCTION

2. GETTING ON THE
SYSTEM

3. COMMAND
LANGUAGE

4. EDIT LANGUAGE

CONTENTS

Getting On-Line with BTSS
Input Requirements.

Command Language Description
Commands

Entering the Edit Mode
Status of Editor .

Page

1-1

2-1
2-2

3-1
3-2

4-1
4-1

Status Delimiter. 4-1
Verification. • . 4-1
Status Line. 4-1

Input To Edit. 4-2
Commands and Statements. 4-2
Input Commands To Edit. 4-2
Input Statements To Edit. 4-4
Errors. • 4-6
Abnormal Conditions. • 4-7

Notes and Examples of Edit Statements 4-8
Notes. 4-8
Assumptions for Examples 4-8
Examples . 4-8

Command Verbs. 4-11
PRINT. • • . . 4-11
TEXT. 4-12
CHANGE---TO . 4-13
CHANGEALL---TO . 4-14
DELETE ...•................•............ 4-15
DELETEALL. 4-16
FIND---INSERT(P)(S) . 4-17
FINDALL---INSERT(P)(S) . 4-18
FIND---REPLACE(P)(S) 0 0 • • • • • • • 4-19
FIND---DROP(P)(S) , • . 4-20
PREFIX and SUFFIX 0 • • 4-21
SETPC 0 • • • 4-22
COpy " 4-23
WAS. 4-24
LOOP Operations. 4-25

iii

5. INTERACTIVE
FORTRAN
COMPILER

6. SWITCHING
MODULE

LIST OF APPENDICES

CONTENTS (Cont'd)

General
Using the Interactive Compiler
Compiler Commands
Debugging Aids .

Page

5-1
5-1
5-1
5-4

Program Preparation 5-5
Language Elements 5-6

Constants .. 5-6
Variables 0 • • • • • • • • • • • • • • •• 5-6

Arrays 0 • 5-6
Interactive FORTRAN Language. 5-7

Arithmetic Expressions 5-7
Arithmetic Assignment Statement. 5-7
Complex Variable Assignment. 5-8
Boolean Expressions 5-9
Boolean IF Express ions 5 -1 0
Control Statements 5 -1 0
Input/Output Statements 5-13
Specification Statements .. 5 -17
FOR TRAN Supplied Mathematical Functions • . 5 -18

Relative Characteristics of BTSS Interactive FORTRAN. 5-19
Differential Equations Subroutine . 5 -20
Sample Problems 5-24

Description
Initiation of Time Sharing
Switching Module Command File
Switching Module Commands

Input Command .
Data Command ~ .
Output Command .
End Command

A. Language Summary

6-1
6-1
6-1
6-2
6-2
6-3
6-4
6-4

A-I

B. Edit Error Messages B-1

1. INTRODUCTION • The RCA 70/45 Basic Time Sharing System (BTSS) is a programming
system that provides concurrent computer access to a maximum of 16
remotely located users. The programming language employed by the user
is interactive FORTRAN and is supplemented by a set of operating state­
ments. The user communicates with the system either in a conversational
manner in which his input is processed one statement at a time, or in a
batch manner in which a complete program is executed at a later time.
The typical equipment configuration is as follows:

Ty picaZ Configuration

1 70/45F Processor (131K) with Multiplexor
Channel Memory Protect Feature and
Elapsed Time Clock Feature

1 5016 Selector Channels (3 channels)

1 70/97 Console and Typewriter

1 70/234 Card Punch

1 70/237-10 Card Reader

1 70/242-10 Printer

3 70/432 Magnetic Tape Units

1 70/472-208 Magnetic Tape Controller

2 70/551 Random Access Controller

3 70/564 Disc Storage Units

6 70/563 Disc Packs

1 70/668-11 Communications Controller Multichannel

1-16 70/720 Communication Buffers

1-16 M33/M35 Teletype Terminal(s)

1-4 6050-12 Video Terminal(s)

1-16 103-A-2 Data Sets

If a remote user requires a batch type process, the information control
parameters and data for this process are stored temporarily on a disc.
This information is transcribed to a job stream tape for subsequent pro­
cessing when the computer is operating in a batch mode under control of
the Tape Operating System.

The Basic Time Sharing System fulfills the following user requirements:

1. The remote user is pl'ovided with a problem-oriented language for
control of the system. All displays of control information and debug­
ging data are consistent with the systems' programming language;
that is, the user has compatible languages for programming and
communicating with the system.

1-1

1. INTRODUCTION
(Cont'd)

Introduction

2. The user has the ability to stop his remote terminal at any time
without loss of data. Such simple tasks as paper and ribbon changing
or discontinuing a job dictate this requirement.

3. The remote user can modify data without complete retransmission,
and has the option to list and inspect data selectively, rather than
transmitting entire output files. The user has the ability to keep his
files in random storage from which they may be retrieved when the
need arises.

In all instances the user has the impression that he is the sole user of
the system and that all facilities are under his control. Specifically, the user
is secure from unwarranted action by other users. In conjunction with the
above, the user is able to start his jobs without having to wait and to con­
tinue using the system as long as the system is in a Time Sharing mode.

These user requirements have been solved in the following ways: The
source language, command language, and output data are designed in a
problem-oriented fashion for ease of learning and use. Output diagnostic
messages are explicit and allow debugging on the same level as program
construction. A facility to execute programs, modify or correct programs
and data, and to request data selectively is included within the system
complex.

1-2

2. GETTING ON
THE SYSTEM

GETTING ON-LINE
WITH BTSS

Notes

• The Model 35 Teletype Unit and Model 70/6050 Video Data Terminal
are the remote devices supported by BTSS. The following procedure allows
the user of a Model 35 Teletype to get on-line:

1. Press ORIG.

2. Listen for dial-tone (turn up speaker volume control).

3. Dial number.

4. When phone is answered by the system a high-pitched tone occurs
followed by the typeout BEGIN (you have only 50 seconds to log on
from this point).

5. Press keyboard (K) button in lower left of console.

6. Log on by typing:

/ON~(eight character user code assignment)

7. Press RETURN button.

8. The system responds with READY.

NOTE

If either log on takes more than 50
seconds or a wrong user code is
entered the terminal is disconnected
and all of the previous procedures
must be repeated with the addition of
pressing the CLR button before ORIG.

The following procedure allows the user of a 70/6050 Video Data
Terminal to get on-line:

1. Log on by typing ION usercode.

2. When the complete message is typed, press the SHIFT key and the
M key. This displays a closed bracket symbol that indicates the
end of message.

3. Press TALK button on the DATA-PHONE set.

4. Pick up receiver; when dial tone occurs, dial number.

5. Listen for high pitch tone.

6. When tone is heard, pres s DATA button and hang up.

7. Press the transmit key.

8. The system responds with BEGIN.

• 1. For a detailed description of the Model 35 Teletype unit refer to
Teletype Operating Manual.

2. For a detailed description of the Model 6050 Video Data Terminal
refer to RCA Video Data Terminal Operating Manual.

2-1

INPUT REQUIREMENTS

All Input

Paper Tape Input

DOCUMENTATION
CONVENTIONS

Getting on the System

• 1. Must be less than 256 characters long.

2. Must not begin before the system has responded to the previous
input. The minimum response is a line feed.

3. Must be followed by a carriage return (or] in the case of the 6050).

• 1. Must be followed by the three characters:

X-OFF

Line Feed (Or any character except RUB-OUT)

Carriage Return

2. When one tape input has been read and processed, the next one will
automatically be read unless an error or stop condition occurred
during processing.

• The illustrations in this manual of command and statement formats make
use of braces or brackets with information enclosed between them. Braces
{ } denote that a choice must be made from the two or more entries en­
closed. Brackets [J signify optional information that may be employed, or
omitted, as the user requires.

THE SYSTEM RESPONSES ILLUSTRATED IN THE EXAMPLES THROUGHOUT THE
MANUAL ARE DISPLA YEO IN AN ITALIC TYPEFACE.

2-2

3. COMMAND
LANGUAGE

COMMAND
LANGUAGE

DESCRIPTION

• The interactive user communicates with the Basic Time Sharing System
by entering a string of characters terminated by an end-of-message
character. The system always acknowledges receipt of these character
strings, called messages, by a visible response at the console. Most
responses are in the form of a typeout, however, some responses are a
line feed only. A message may be data or a command to the system, and
may contain control characters, if desired. A system command is dis­
tinguished by its format; that is, the message begins with one virgule
symbol (/), followed by the command name. Messages with any other
format are considered to be data. When the first two characters in any
message are virgule symbols (/ /), the first symbol is discarded and the
remaining characters are treated as data. This convention allows the
virgule symbol to be handled as a legitimate character in any character
set.

Also, because most system commands have associated with them an
optional sequence field or a filename the following definitions apply through­
out the system:

1. A sequence number (seq-#) must be between one and six characters
long and must be a number between 0 and 999999.

2. When a user creates a file he assigns it a name which is used there­
after to retrieve the file. The filename is limited in length to eight
characters. At least one of the filename characters must be non­
numeric and none may be blank. The following commands may be
employed by the user to create files:

/CODE

/EDIT

{
blank}

/OPTION ~

/RENAME

/LOCK

/UNLOCK

/ {
blankl

IN # f

The remote user must also be aware of the method employed to allocate
disc area for file storage. This allocation takes place when the user
initially subscribes to the system and requests disc storage area for his
files.

3-1

COMMAND
LANGUAGE

DESCRIPTION
(Cont'd)

COMMANDS

Command Language

This storage should be based upon the number of files the user wishes
to create and use as his data base. The actual disc storage area reserved
is available in "cabinets" that accommodate eight files. A user may request
from one to four cabinets. Each file within a cabinet can be defined as a
short or long file. A long file is usually reserved for data and may not be
used as ICODE, IDa, or FORTRAN T APEnn files. The user can only
access that part of a short file that is normally allocated to source coding
(four halfpages). The remaining part of a short file (usually containing the
generated object code, etc.) cannot be referenced by a user.

• The commands described below are the only valid system commands.
Any other message beginning with a single virgule causes the system to
rely 'BAD COMMAND, RETYPE' and expects a subsequent system
command. The syntax of each command is illustrated as well as the effect
it has on system operation.

ION~usercode [1 - 3 symbols] ~
OPTIONN)
OPTIONP{

~ N '

~~PTION ~
This command is given at any time - either upon calling the system, or

during a session. The usercode is a name assigned to the user when he
becomes a customer of the system. The name is exactly eight characters in
length.

The system checks the usercode when this command is received. If the
name is valid, the system becomes available to the user; if the name is
invalid or unacceptable for some reason, the system breaks the telephone
connection.

Following the eight character usercode a user may enter up to a three
digit 'initials' field (one to three symbols.) These user initials do not effect
the on-line operation of the system. They do, however, appear on the
accounting records which makes it possible to keep separate records for
several people sharing the same usercode.

If ~ ~PTIONP f is present the user is informed of the current status

of the system associated with a specific usercode. When a user first sub­
scribes to the system this status reflects the standards set by the system.
Otherwise, the status reflects the options set during a previous time sharing
session. If the user is satisfied with the current status he may continue his
session. Otherwise, if options are to be changed the user response with
5 P l after 'READY' is received to obtain additional information
t BLANK f
concerning the options. The optional word OPTION does not display the
current status but provides the additional option information. At this time
the user may set global options that are to be associated with all files
generated during this and all future time sharing sessions.

3-2

COMMANDS
(Cont'd)

Notes

Command Language

The information typed out appears as follows:

O-FILES, I-DEVICE SYMBOLS, 2-MONEY, 3-SECURITY

and the user may now request additional information by typing one of the
codes indicated.

This dialogue between the user and the system may be greatly shortened
if the user is aware of the status of the system and the procedure required
to change it. Entering the OPTIONN or N with the ION, or N after the
'READY' eliminates the printing associated with OPTION and causes the
system to respond with ENTER CHOICE. The user then enters the options
of his choice in a single message as the string of symbols he would have
sent separately in OPTION .

• 0 - FILES - options that may be set refer to the compiler, file size
(long or short), and the Editor (delimiter symbol and verification
mode.)

1 - DEVICE SYMBOLS - refers to changing the setting of the backspace
character, extension character, or tab stops.

2 - MONEY - allows the user to set the dollar amount (up to the amount
remaining in his account) he wishes to spend on this session. Once
set, however, it can not be increased for the current session unless
another ION is issued. When the set amount is reached, a IOFF is
issued automatically.

3 - SECURITY - allows the user to change the last one-to-three digits of
his user code. When a user became a customer, he was assigned an
eight character code consisting of five characters and three zeros o

These three zeros can be changed by the user.

The entire eight characters are verified for correctness before
accepting a usercode. Hence, a user has, in effect, a combination
lock to his files. Furthermore, the combination can be changed at
any time, but only by someone who knows the old combination. The
three-digit suffix does not print out on either the operator's console
or in the accounting records. A teletype user can prevent hard copy
of his security code at his console by choosing his three-character
suffix to contain any of the nonprintable teletype characters.

Once the user has logged on the system, I system commands may be
issued at any time.

3-3

COMMANDS
(Cont'd)

Command Language

IOPTION ~~~ [t.filename]

This command provides choices which are to be associated with the
current file, and does not affect the global choices previously set. The N
suffix is for those who know what to enter, and wish the printing of choices
to be suppressed. The P suffix types options currently in effect. At the end
of each measage printed, including READY, a blank, N, or P may be entered
to begin the process again. Note: refer to the FILES note of the ION
descriotion for additional detail.

lIN [#] [~filenameJ
This command allows the user to enter data into the current file. The

system provides a sequence number for each record entered. A linefeed is
returned when the system is ready for each new record. If the # symbol
appears in the command, the system also displays the number to be supplied
for each incoming record.

ICODE [~fi1enameJ
This command allows the user access to the FORTRAN compiler for the

curr t file. Once this command has been given input must be wither
FORTRAN statements or compiler commands. However, another I -
command may be issued at any time to leave the CODE mode.

IEDIT [~fi1enameJ
This command allows the user access to the EDIT mode for the current

file. Once the command is issued, the system is ready to accept input in the
EDIT language. However, at any time, the user may issue another I -
command to perform another system function.

IPRINT [#] [t.filename] [t.seq-# [[t.TO] t. seq#~
This command allows the user to print records from the current file.

The current file is printed if the user only issued a IPRINT #. If the
seq-# option is used the print may range from one record to all of the
records specified, starting with the first sequence number and ending with
the last. Also, the printed records will have sequence numbers displayed if
the # symbol is used with the command.

IRESEQ [~fi1enameJ [~seq-#J
This command works the same as IPRINT#, but, in additon, it renumbers

starting from the beginning or from the seq-#, if given.

IDa filename [t.seq# [t.yyyy]]

This command can only be used in conjunction with a file that has pre­
viously been created. It causes records to be transmitted automatically
from the specified file just as though they were being entered from a
remote terminal. The DO mode is terminated when a IENDO is encountered,
the DO file exhausts, an error occurs, or the escape key is hit.

3-4

COMMANDS
(Cont'd)

Command Language

An additional feature of this command allows the user to change the
first four characters of incoming DO file records. The records to be
changed must begin with 'XXXX' and these are replaced by any four
characters (yyyy) specified in the command. The records in the original
file remain unaltered.

/ENDO

This command is used to terminate a DO mode operation.

/LOCK [~filenameJ ~AS~filename
This command protects a file from change. A copy of the current or

first named file is made , given the second name and then locked as the
current file. The two filenames may be the same.

/UNLOCK~filename~AS~filename

This command makes a copy of the first named file, names the copy
with the second name, and unlocks the copy. The copy is established as the
current file. The original file is still locked if it had been (unless both file
names are identical.)

/DROP filename

This command results in the elimination of the named file from the
system, and frees the storage space it had occupied. If the file is locked,
it must be unlocked before it can be dropped. After a /DROP command, the
last file mentioned is no longer present, so there is no current file.

/CATALOG

This command causes the list of the names of all the files in use by the
requesting user to be printed at his console. Those files which have been
produced by issuing the command /LOCK are prefixed by the * symbol.

/RENAME [~filenameJ AS filename

This command changes the name of the current file or the first file named
to the second name given.

/SA y [~message]
This command merely types back the message given. It is primarily

intended to be used within DO files to indicate progress.

/HELP

This command enables the user to obtain a description of the time
sharing system. When this command is issued the system responds by
printing general information along with a list of valid system commands
and their formats. If additional information is required for any of the listed
commands, it may be obtained by responding with the two-digit help
number printed with the specific command. If the user wishes to terminate
the HELP printout he may press the ESC key after the first line as well as
during the pause that occurs after every five lines.

3-5

COMMANDS
(Cont'd)

Command Language

/eOST

This command provides the user with a time and charges report.

/OFF

This command is given when the user wishes to terminate his current
session on the system. A time and charges report is produced for the user
and the system goes into a wait cycle. This wait cycle lasts approximately
50 seconds before breaking the telephone connection for that console to
allow another user to issue a /ONwithout having to dial for the connection.

Notes:

1. The back arrow (~) key may be used to erase erroneously typed
characters. Each time the back arrow key is pressed, one character
immediately to the left is erased.

a. Example:

10 123456~ ~ INITIAL

10 1234 RESULT

2. The ESe key or a single virgule (/) message may be used:

a. To stop output after every 5 lines (must be pressed during pause)

b. To stop a process which is strictly internal and is apparently
devoid of output.

c. To delete an erroneous line.

3-6

4. EDIT
LANGUAGE

ENTERING THE
EDIT MODE

STATUS OF EDITOR

Status Delimiter

Verification

Status Line

• The EDIT processing mode is called into use by the user system
command /EDIT [!1 filename] . The system is now ready to accept a
separate set of input known as the Edit language. These Edit inputs are
only recognizable in the Edit mode and are ignored if the user has not
previously initiated the Edit processor.

If the file to be edited is current, the user enters the Edit mode by
typing /EDIT, otherwise, the user must type /EDIT filename. In either
case, the system responds with a line feed and is then ready to accept
Edit statements and commands.

• The Edit processor has at all times a single character marked as the
Delimiter symbol. This symbol is used to mark the beginning and end of
strings of characters (words, etc) which are to be changed, inserted,found,
etc., in the user's records. It is needed in many of the input statements to
the Edit system.

Unless changed by the user, the Delimiter will be a colon (:). However,
the user may set it - either temporarily during Edit processing or per­
manently using /OPTION - to any character except a blank. Each time
/EDIT is called the Delimiter is set to its permanent value.

• The Edit processor has two verification states - check and nocheck.
One verification state is set at all times. When check is set, all changes
made to the user's file are printed back to the user. When nocheck is set,
the Edit system does the requested processing but does not print the
changes back to the user.

During editing, the user has complete control of which Edit operations are
to be verified and which are not.

The permanent verification status can be set using /OPTION. Each time
/EDIT is called the verification state is set to its permanent value.

• The Edit system prints out the current delimiter symbol and current
verification state whenever desired. Typing in a blank line (1 to 255 blanks)
causes the following line to be printed showing the proper symbol and
gi ving a C or N for the verification state 0

SYM =: VERIFY = C

4-1

INPUT TO EDIT

Commands and
Statements

Input Commands
to Edit

HELP

Edit Language

• The Edit system has two types of input -- commands and statements.

Commands are:

HELP

SYMBOL

CHECK,NOCHECK

RESUME,RESUMEC,RESUMEN

LOOP,ENDLOOP

(A Null Record is a special command.)

(A Blank Line is considered a special command.)

The commands exercise general control of the Edit processor. They
are not concerned with the details of changes to the user's file.

Statements specify what editing changes are to be made and what
records are to be affected. Statements always begin with a list of record
numbers. Depending on the type of process being specified, statements may
have verbs defining the process, strings of characters, or another list of
record numbers.

• 1. HELP supplies examples and write ups of system usage.

2. Keywords typed after HELP define the writeups desired.

3. The prefix X before keywords marked * supplies examples.

4. Keywords may be strung together with commas.

5. The following keywords are a vail able (need only first 3 letters)

ABNORMAL* FIND* SEQ-LIST

ALL GENERAL SETPC*

BLANK-LINE HELP STATEMENT

CHANGE* KEYWORD STRING

CHECK LOOP* SUFFIX*

COMMANDS NOCHECK SYMBOL

COPy* NULL RECORD TEXT

DELETE* PREFIX* VERB

ERROR* PRINT* WAS*

EXAMPLES RESUME

4-2

HELP
(Conf'd)

SYMBOL

CHECK, NOCHECK

RESUME,
RESUMEC,
RESUMEN

LOOP,ENDLOOP

Edit Language

6. Examples: (Each will supply a writeup of check and examples of
delete.)

HELP CHECK,XDELETE

HELP CHE,XDEL

7. Typing only HELP after an error or stop has the same effect as typing
a null record; both supply analysis.

• 1. Must be followed immediately by any character except a blank.

2. This character then becomes the current Delimiter symbol.

3. The Delimiter is always reset to its standard value each time /EDIT
is entered.

4. Examples:

SYMBOL: (Sets the Delimiter symbol to :)

SYMBOL' (Sets Delim to ')

• 1. These set the current verify status.

2. The verify status is always reset to its standard value each time
/EDIT is entered.

• 1. May be used after the user has stopped the processing.

2. Some error stops also allow resuming.

3. Processing continues where left off.

4. RESUMEC (Resume Check) causes all resumed processing to be
verified.

5. RESUMEN (resume nocheck) inhibits all verification.

6. Repeated stops and resumes are allowed.

7. When resume is allowed and some other input is supplied instead,
the opportunity to resume is ended. However, a null record may be
input at all time s.

• 1. LOOP precedes and ENDLOOP follows statements which are to be
executed repetitively.

2. LOOP must be followed by a SEQ-RANGE and perhaps a SEQ­
NUMBER.

3. For more detail see writeup on LOOP operation.

4-3

(NULL RECORD)

(BLANI(LINE)

Input Statements
to Edit

Statements

Sequence List and
Components -

Sequence Number
and Range

Edit Language

• 1. Typing a null record is considered by the Edit system to be a
command.

2. It normally prints the status line.

3. It prints an analysis of the condition of input after errors or stops.

4. If in doubt, type in a null record.

5. Use of a null record input after stops does not affect the opportunity
to use resume.

• 1. A line of from 1 to 255 blanks always prints the status line.

• 1. Always begin with a list (called a seq-list) of one or more sequence
numbers or ranges.

2. The general form of the input statements is either:

seq-list verb

seq-list verb

string-l
or

seq-list

auxiliary verb string-2

3. Each statement is executed independently of those preceding or
following it.

4. Except during LOOP operation, each statement entered is processed
to completion immediately after being entered.

5. Example: (Will change the word LOG in records 10 and 60 to EXP.)

10,60 CHANGE :LOG: TO :EXP:

• Seq-Number

1. All records in the file are identified by their sequence number.

2. Number must be between 0 and 999999.

3. Examples:

94
09381

Seq-Range

1. Formed by joining two numbers with a dash.

2. Right number must be larger than left.

3. Range is inclusive.

4. Examples:

007-9
0-999999

4-4

Sequence List and
Components -

Sequence Number
and Range

(Cont'd)

Edit Language

Seq-List

1. List is made up of from one to eight sequence numbers and/or ranges
joined with commas. No blanks are allowed in a seq-list.

2. Every statement begins with a seq-list.

3. Each element of the beginning seq-list may have a prefix C or N.

4. Such a prefix resets the verify status for the rest (left to right) of
that statement only.

5. Examples:

5,6,7,2
5
C 1,N2- 50,160,C200

String

(List of only one number.)

1. A string is a sequence of characters to be found, changed, etc.

2. Strings are specified by putting the Delimiter symbol before and after.

3. If the closing string Delimiter is missing, the string is assumed to
end at the end of the record.

4. The Delimiter symbol may occur as a character within a string by
showing two symbols for everyone desired.

5. Maximum string length is limited only by maximum input length (255).

6. Null strings (those with no characters) are not allowed.

7. Examples: (Delimiter is :)

:Z:
:TEN CHARS:
:SINF
:ABC::DEF::::GH:

Verb

(Record ends at F)
(String is ABC:DEF::GH)

1. The verb describes the type of editing operation desired.

2. One or more blanks must separate the seq-list which begins the
statement and the verb.

3. Some verbs have an auxiliary word which follows a string and further
defines the processing.

4-5

Sequence List and
Components -

Sequence Number
and Range

(Cont'd)

Errors

Errors in Input

Edit Language

4. The verbs are:

Verb Aux Must be followed by

PRINT (nothing or 1
string)

TEXT (1 string)

CHANGE TO (2 strings)

CHANGEALL TO (2 strings)

FIND INSERTP or INSERTS (2 strings)

FINDALL INSERTP or INSERTS (2 strings)

FIND REPLACEP or REPLACES (2 strings)

FIND DROPP or DROPS (1 string)

DELETE (nothing or 1
string)

DELETEALL (1 string)

SUFFIX (1 string)

PREFIX (1 string)

SETPC (1 string must be
1 char only)

COpy (a seq-list)

WAS (a seq-list)

5. If a seq-list is followed by only blanks, the verb PRINT is assumed.

6. If a seq-list is followed only by a string, the verb TEXT is assumed.

• 1. Errors in input commands or statements cause the system to print
back the line below with XX set to the error number.

BAD INPUT (#XX)

2. Typing a null record after receiving the above line, prints back an
explanation of the cause of the error.

3. Typing a null record after receiving the explanation prints back the
input statement or command and a question mark at or before the
error location.

4-6

Errors During
Processing

Abnormal Conditions

Edit Language

• 1. Execution errors are of three types:

a. Modified record count exceeds 256 characters.

b. Record generated by COpy or WAS statements exceeds 256
characters.

c. A seq-number or range in the right hand seq-list of a COpy or
WAS statement is undefined.

2. In type 1 errors, the record in question is left unmodified. Processing
stops but can be resumed if there are more records in the list to be
processed.

3. Type 2 errors leave all the records involved unchanged. Processing
stops and cannot be resumed.

4. Type 3 errors also leave the records unchanged. However, the
processing can be resumed if it is desired to skip the particular
undefined number or range. During loop operation, type 3 errors are
automatically ignored.

5. Typing a null record after all error stops provides more information
about the stop condition.

• 1. During the execution of Edit statements (except TEXT, COPY, and
WAS statements) two types of things may happen which are con­
sidered abnormal:

a. A seq-number specified is not defined, or a seq-range has no
defined records within its range.

b. A string match is not found in a specified seq-number or at
least one match is not found within a seq-range.

2. Processing of the statement is not affected by the abnormal con­
ditions. But, since it may indicate an error in the user's statement,
a writeout is made noting the conditions. The write out is made in­
dependent of the verify status.

3. Abnormal conditions are not noted during loop operation.

4-7

NOTES AND EXAMPLES
OF EDIT STATEMENTS

Notes

Assumptions for
Examples

Examples

Edit Language

• 1. The records specified by the seq-list beginning each statement are
processed in the same order as they occur in the list. Each record
is completely processed before the list is examined for the next one.

2. All operations which scan a record for a matching string do so from
left to right.

• At the beginning of each set of examples:

1. The user's file contains only three records:

a. sequence number 1 contains ONE.

b. sequence number 2 contains TWO.

c. sequence number 3 contains THREE.

2. The current Delimiter symbol is :.

3. The current verify status is check.

For each example:

1. The user's input is shown beginning at the left margin.

2. THE SYSTEM RESPONSE IS SHOWN UNDER THE INPUT IN AN ITALIC TYPEFACE.

3. Notes are given in parenthesis.

• 0 - 999999
1 ONE

2 TWO

3 THREE

(User asks to print all of file.)

(System prints the only three records currently in
file.)

(User types in one or more blanks to see what the
status is.)

SYM =: VERIFY = C (System replies with line showing current Delimi­
ter symbol and verification state.)

o -10 PRINT~:E: (User wishes to print only records with E.)
1 ONE

3 THREE

4-8

Examples
(Cont'd)

8 :ZZ:
8 ZZ

(User creates record 8 as ZZ.)

Edit Language

3,5 :ABC:
3 ABC

(Records 3 and 5 are defined as ABC.)

5 ABC

2 DELETE (Remove entire record 2.)
SEQ NUM 2 DELETED.

0-10 (Print records 0 through 10.)
lONE

3 ABC

5 ABC

8 ZZ

2 :TEXT FOR TWO:
2 TEXT FOR TWO

4 COpy 2,1
4 TEXT FOR TWOONE

NOCHECK (Set verification to NOCHECK.)
SYM =: VERIFY = N (System confirms change)

4 - 5 (Print statements are not affected by verify status.)
4 TEXT FOR TWOONE

5 ABC

20,21,22,23 :ABC: (Records are formed but not printed back.)

(System responds only with a line feed.)

CHECK
SYM =: VERIFY = C (System confirms check status.)

0-10 DELETE :E: (Delete the leftmost E in each record.)
1 ON
4 TXT FOR TWOONE

4 DELETEALL :0: (Delete all O's in record 4.)
4 TXT FR TWNE

4 CHANGE :FR: TO :***:
4 TXT *** TWNE

4-9

Examples
(Cont'd) 1,3, 5SUFFIX:.:

BAD INPUT(#09)

Edit Language

(User error - a blank must separate seq-num and
verb.)

(System responds.)

(User types in null record to request analysis.)

BLANK,COMMA, OR DASH EXPECTED (System gives analysis.)

(User again types in a null record to see input record.)

1,3,5?SUFFIX:.: (System marks error at or following? .)

1,3,5 SUFFIX:.: (User types corrected statement.)
1 ONE.

3 ABC.

5 ABC.

4-10

COMMAND VERBS

PRINT

Format

Description

Examples

PRINT

• seq-list PRINT

seq-list

seq-list PRINT string

• 1. Normally all records in the seq-list are printed.

2. If the statement contains a string, only records with a matching
string are printed.

3. If only a seq-list is typed in, the print operation is assumed.

4. Print doe s not change the records in the file.

5. Verify status does not affect print statements.

6. Paper tape can be punched which later can be entered using /CODE
or /IN.

• 0 - 999999 Print (Print all of file.)
1 ONE

2 TWO

3 THREE

1,3- 5 (Assumed print operation.)
1 ONE

3 THREE

N1 (Verify status does not affect print.)
1 ONE

0- 10 PRINT :T: (Print records with T in them.)
2 TWO

3 THREE

4-11

TEXT

Format

Description

Examples

TEXT

• seq-list TEXT string

seq-list string (Text operation is assumed.)

• 1. Statements consisting of only a seq-list and a string are assumed to
be text.

2. The string in a TEXT statement defines a new record.

3. All sequence-numbers given in the seq-list are defined to be the new
record.

4. Sequence-ranges in the list have only the new record.

• 1
TEXT:ABC:

1 ABC

1,6,3 :ZY:
1 ZY

6 ZY

3 Zy

0-999999 :XXX: (Seq-range causes replacement only.)
1 XXX

2 XXX

3 XXX

6 XXX

4 :WOW (End of record marks end of string.)
4 WOW

6,N7,8,C9 :SAMP (Generate but don 't check records 7 and 8)
6 SAMP

9 SAMP

4-12

CHANGE---TO

CHANGE---TO

Format • seq-list CHANGE string-1 TO string-2

Description • Each record specified in the list is scanned for the leftmost occurrence
of string-I. If found, it is replaced by string-2.

Examples • 1 CHANGE:E: TO :CE:
1 ONCE

0-10 CHANGE :E: TO :XX:
1 ONCXX

3 THRXXE

3 CHANGE:X:TO:-:
3 THR-X

3,2 CHANGE :-: TO :*:
SEQNUM

3 THR*X

2 UNCHANGED

4-13

CHANGEALL---TO

Format

Description

Examples

CHANGEALL---TO

• seq-list CHANGEALL string-1 TO string-2

• All non-overlapping occurrences of string 1 in the records specified by
the seq-list are replaced by string- 2. Processing is left to right.

• 3 CHANGEALL :E: TO :*R:
3 THR*R*R

3 CHANGEALL :R*R: TO :-:
3 TH-*R

4-14

DELETE

Format

Description

Examples

DELETE

• seq-list DELETE

seq-list DELETE string

• 1. If a string does not follow the verb, all records specified by the seq­
list are completely deleted from the file.

2. When a string is given, each record in the list is scanned for the
leftmost occurrence of a matching string. If found, the string is
deleted from the record. If the record consists only of the string,
then the entire record is deleted, and the seq-number becomes
undefined"

• 1 DELETE
SEQ NUM 1 DELETED

2- 10 DELETE :R:
3 THEE

3 DELETE :THEE: (String given here is entire record)
SEQ NUM 3 DELETED

NO- 999999 DELETE (Delete entire file contents -- don 't check)

4-15

DELETEALL

Format

Descri ption

Examples

DELE TEA LL

• seq-list DELETEALL string

• All non-overlapping occurrences of the string in each record specified
by the list are deleted from the record. Processing is from left to right.

• 3 DELETEALL:E:
3 THR

5 :ABABABA (Form record to show example below)
5 ABABABA

5 DELETEALL :ABA:
5B (Non-overlapping strings were deleted)

4-16

FIND---INSERT(P)(S)

Format

De scription

Examples

FIND---INSERT(P)(S)

• seq-list FIND string-1 INSERTP string-2

seq-list FIND string-1 INSERTS string-2

• 1. The leftmost occurrence of String-1 is found in each record
specified by the list.

2. INSERTP (Insert prefix) places String-2 directly in front of the
matching string.

3. INSERTS (Insert suffix) places String-2 directly after the matching
string.

4. All characters previously in the record remain.

• 1- 3 FIND :0: INSERTP :*:
1 *ONE
2 TW*O

1,3 FIND:E:INSERTS:-:
1 *ONE-

3 THRE-E

4-17

FINDALL---INSERT(P)(S)

Format

Description

Examples

FINDALL---INSERT(P)(S)

• seq-list FINDALL string-1 INSERTP string-2

seq-list FINDALL string-1 INSERTS string-2

• Works exactly as FIND---INSERT (P) (S) except that all non-over­
lapping occurrences of string-1 are treated rather than just the leftmost
one.

• 3 FINDALL :E: INSERTP :*:
3 THR*£*£

4 :ABABABA: (Formed to show example below.)
4 ABABABA

4 FINDALL :ABA: INSERTS :*:
4 ABA *BABA *

4-18

FIN D---REPLACE(P)(S)

Format

Description

Examples

FIND---REPLACE(P)(S)

• seq-list FIND string-1 RE PLAC E P string- 2

seq-list FIND string-1 REPLACES string-2

• 1. As each record is processed, the left most occurrence of string-1 is
found.

2. Everything before string-1 is the prefix (may be null.) Everything
after string-1 is the suffix (may be null.)

3. REPLACP (replace prefix) replaces the prefix with string-2o

4. REPLACES (replace suffix) replaces the suffix with string-2.

• 1 FIND :N: REPLACES '.'
1 ON.

3 FIND :E: REPLACEP
3 -EE

4-19

FIND---DROP(P)(S)

Format

Description

Examples

FIND - - -DR 0 P(P) (5)

• seq-list FIND string-l DROPP

seq-list FIND string-l DROPS

• 1. As each record is processed, the leftmost occurrence of string-l is
found.

2. Everything before string-l is the prefix (may be null.) Everything
after string-l is the suffix (may be null.)

3. DROPP (drop prefix) deletes the prefix. The changed record begins
with the matching string.

4. DROPS (drop suffix) deletes the suffix. The changed record ends
with matching string.

• 1 FIND :E: DROPP
1 E

3 FIND :R: DROPS
3 THR

4-20

PREFIX and SUFFIX

Format

Description

Examples

PREFIX and SUFFIX

• seq-list PREFIX string

seq-list SUFFIX string

• The string given is placed at the beginning (prefix) or end (suffix) of the
specified records.

• 1,3 SUFFIX ...
1 ONE.

3 THREE.

1 PREFIX :REC-:
1 REC-ONE.

4-21

SETPe

Format

Description

Examples

SETPC

• seq-list SETPC string

• 1. The string must be exactly one character.

2. Each record in the file has associated with it a character called the
print control. It determines the line advances made before printing
the record.

3. All print control characters are normally set to give one line advance
before printing.

4. If the string in a SETPC statement is a one-digit number, the number
of lines advanced before printing are set to 0 through 9 as specified.

5. Other characters give from 0 to 14 line advances or a page skip.
In particular, the character P causes the changed records to do a
page skip.

6. Edit operations (except SETPC) do not change the print control
character. However, new or replacement records generated by
TEXT, COPY, and WAS operations have a single line advance
character.

• 1 SETPC :2: (Skip two lines before printing.)

1 ONE

1 SETPC :4: (Skip four lines.)

1 ONE

N2,3 SETPC :P: (Records 2 and 3 cause page skip when printed.)

4-22

COpy

Format

Description

Examples

COpy

• seq-list COpy seq-list

• 1. Records specified by the right-hand seq-list are concatenated in the
order listed (Le. ,strung together) to form one new record.

2. The new record is placed in each of the sequence-numbers given in
the left-hand seq-list.

3. Sequence-ranges in the left-hand list have aU previously defined
records replaced by the new record.

• 5,6 COpy 2,1
5 TWOONE

6 TWOONE

1 COPY 1- 3
1 ONETWOTHREE

4 - 999999 COpy 2 (Range causes replacement only.)
5 TWO

6 TWO

4-23

WAS

Format

Description

Examples

WAS

• seq-list. WAS seq-list

• 1. Records specified by the right-hand seq-list are concatenated in the
order listed (Le., strung together) to form one new record.

2. When the new record is formed, all records in the right-hand seq­
list are deleted.

3. All sequence-numbers given in the left-hand seq-list are defined to be
the new record.

4. Sequence ranges in the left hand list have all previously defined
records replaced by the new record. (But see last example.)

• 5 WAS 1 (Delete record 1.)
5 ONE

1 WAS 5,2 (Delete records 5 and 2.)
1 ONETWO

0- 10 WAS 2 - 99 (Delete 2 - 99 before replacing 0 - 10.)
1 THREE

4-24

LOOP OPERATIONS

Format

Desc ription

LOOP OPerations

• LOOP seq-range, seq-number

LOOP seq-range

• 1. A loop operation is similar to a DO loop in FORTRAN.

2. One begins a LOOP operation by typing the command LOOP followed
either by a sequence range or a seq-range and seq-number. For
example:

LOOP 0-10,1
LOOP 10 - 200,5
LOOP 0- 900

The range defines the limits of an index variable which is set and
incremented as the loop is executed.

3. Statements and commands are typed-in one-by-one after the LOOP
command. The system analyzes each for errors. If there are none,
the system responds with a line feed. The statements are not acted
upon but are stored in the system for later execution.

4. When all of the statements to be used have been entered the command
ENDLOOP is typed-in. It signals the system to beginprocessingofthe
loop statements.

5. The system sets the index variable to its initial value (described
later on) and begins executing the stored statements in the loop.

6. When all the statements have been executed, the index variable is
incremented and tested to see if it is outside the range that was
gi ven in the LOO P command.

7. If the index is within the range, the stored statements in the loop are
again executed and the incrementing process continues.

8. When the index exceeds the upper end of the range, the system will
have completed the LOOP operation and will expect more input
statements or commands from the user.

9. Before any more detail, consider the following example:

LOOP 1-4,1
1 PREFIX :*:
ENDLOOP

4-25

Description
(Cont'd)

LOOP Operations

The user typed in the above three input lines. After lines one and
two the system responded with a line feed to show that the lines had
been accepted correctly. When line three was put in, the system
began to execute the loop. The loop (in this case only 1 statement)
was executed four times. If we assume that sequence number 1
contained the three letters, ONE, before the processing, the system
output from the LOOP operation would have been--

*ONE

**ONE

***ONE

****ONE

10. Consider the following two methods in which the index variable is
set initially and then incremented.

a. When the LOOP command is followed by both a seq-range and a
seq-number, as for example-

LOOP 1-10,3

The index value is initially set to the low end of the range.(In
the example above, it would be set to 1.) At the end of each pass
through the loop, the index is incremented by the number given.
(In the example, the increment would be 3.) The incremented
value of the index is compared to the high end of the range (10 in
the example), and processing stops if the index exceeds the limit.
Thus in the example, the index would take on the values 1,4,7 and
10. Four passes would be made through the loop.

b. If the LOOP command is followed by only a seq-range, as, for
example:

LOOP 10- 900

The index variable takes on values which depend on the sequence
numbers which are defined in the user's file at the time.

In particular, the user's file is examined to find the lowest
defined seq-number which is within the given range. The index is
initially set to this value. At the end of each pass through the loop,
the index value is advanced to the next larger seq-number defined
at that time. If this value is still within the range given by the
LOOP command, another pass is made through the statements of
the loop.

4-26

Index Use in Sequence
Numbers

Special Rules for
Processing Statements in

Loop Operation

LOOP OPerations

• 1. Statements within a loop (that is between the commands LOOP and
ENDLOOP) may use the index variable to form seq-numbers which
change in value at each loop pass.

2. The index variable is represented by the character @.

3. A constant (one to six digits between 0 and 999998)
may be added to the index to form a floating seq-number. For
example:

@+16
@

@+995380

4. The sum of the constant added to the index and the maximum range of
the index are checked to see that it cannot exceed 999999.

5. Floating seq-numbers may be used in a seq-range, but both ends
must be floating. For example:

@-@+15
@+5-@+7

6. Floating numbers and ranges may be used just as any others in
forming seq-lists for statements within the loop. In particular they
may be prefixed with C or N just as regular numbers and ranges.

7. Example using index variable:

LOOP 0 - 200,2
N@ :ABC:
N@+ :DEF:
ENDLOOP

Records 0,2,4,6, ,200 are formed, each consisting of three letters
ABC. Records 1,3,5, ,201 are formed consisting of the three
letters DEF. None of the records are written back to the user.

• 1. All abnormal conditions are ignored during Loop operations.

2. Undefined seq-numbers and ranges in the right-hand seq-list of
statements (COpy and WAS statements) are simply ignored unless
the entire right-hand list is undefined. If all elements of the list are
undefined, the COPY or WAS process are performed by deleting
(that is, making undefined) all elements of the left-hand seq-list.

3. Rules 10 a and 10 b allow the user to write complex search loops
without having error stops and undesired writeouts.

4-27

Examples

L 00 P OPerations

• 1. Object is to put 200 records into a file. Each record is ABCDE and
the record numbers are to be 10,20,30, .•.. ,2000. The records are not
to be printed back to the user as they are formed.

LOOP 10 - 2000,10
NOCHECK
SYM ==: VERIFY == N

@ :ABCDE:
ENDLOOP

(System response to NOCHECK command.)

2. Object is to go through all the records of a file (file may have many
defined records) and to delete the leftmost two asterisks (*) from
each record. If only one asterisk is found, delete it. Verification of
the changes is not desired.

LOOP 0 - 999999
N@,@ DELETE :*:
ENDLOOP

3. Assume that a file contains records with seq-numbers from 10 to 850.
One wishes to rearrange the records in the file so that those
originally numbered 150 through 320 are placed at the end of the
changed file. The changes, are not to be verified.

LOOP 150 - 320
N@+1000 WAS @
ENDLOOP

4. Object is to go through a file of may records and print only those
records ending with a question mark (?). Assume that some
character can be found (say #) that is known not to occur in the
records.

LOOP 0 - 999999
N@ SUFFIX :#:
@ PRINT :?#:
N@ DELETE :#:
ENDLOOP

The records ending with ? are printed out. In the print-out, each
record ends with ? #. If instead of #, a non- printable character had
been used, this problem would not occur.

5. Object is to delete the second asterisk (*) from the left in all records
numbered 0 through 1000. The results are not to be verified. Assume
that some character can be found (say #) that is known not to occur in
the records.

LOOP 0-1000
N@ CHANGE :*: TO : #:
N@ DELETE :*:
N@ CHANGE :#: TO :*:
ENDLOOP

4-28

5. INTERACTIVE
FORTRAN
COMPILER

GENERAL

USING THE
INTERACTIVE

COMPILER

COMPILER
COMMANDS

• The Basic Time Sharing System Interactive FORTRAN compiler provides
a means for expressing and executing computational precedures on a
computer-controlled remote terminal.

It contains the algorithmic portion of the language plus additional
features oriented towards more efficient systems utilization in a time­
sharing environment.

The Interactive FORTRAN language is conversationally oriented; e.g.,
line-for-line diagnostics are produced and the option of immediate
execution of a statement is available. In addition, special debugging
commands are available to assist the user in implementing his program.

• In order to call the interactive FORTRAN compiler, the following
statement is typed anytime the system is in the ready-to-receive state:

/ CODE ~ [filename]

The system responds with the next available sequence number (number
10 when the file is new).

When using either FORTRAN code or the special features which are
accessed through the use of compiler commands, column 1 starts immedi­
ately following the sequence number. Columns 1 through 5 are used for
FORTRAN line numbers; column 6 must contain either a space or an *;
columns 7 through 255 are used for both FORTRAN Code and Compiler
Commands; all spaces are ignored. In order to continue on subsequent
lines, LINE FEED and RETURN are typed in that order. A statement is
terminated when RETURN is typed.

• The source text is edited and compiled on a line-for-line basis in every
case, but may be saved and/or executed depending on the compiler
command(s) in effect.

5-1

COMPILER COMMANDS
(Cont'd)

Interactive FORTRAN
Compiler

When the execute switch is set 'ON' each statement is executed after
it is compiled. The result of the execution is displayed to the user in the
form of trace and flow statements (see TRACE and FLOW debugging aids.)
Setting this switch 'ON' is useful in testing the initial values through
program loops and in program debugging.

Notes:

1. The normal state of the Execute switch is 'OFF'.

2. During compilation and execution of a subroutine only the following
FORTRAN statements are permitted if the Execute switch is 'ON':

DUMP (no list)

PDUMP (no list)

RETURN

TRACE ON/OFF (no list)

FLOW ON/OFF

When the Save switch is set 'OFF' all follOWing statements are compiled
(and executed if the Execute switch is 'ON') but the source statement and
the compiled code are not saved in the user's file.

Notes:

1. The normal state of the save switch is 'ON'.

2. Variables defined in statements processed with the save switch
'OFF' retain their computed values and may be referenced by later
statements.

3. If the Save switch is 'OFF'nostatementwith a FORTRAN line number
can be processed.

4. If the input to the compiler comes from a user's file, then the Save
switch has no effect on the source statement and the compiled code
is not saved.

5-2

COMPILER COMMANDS
(Cont'd)

CALCULATOR

Interactive FORTRAN
Compiler

This command has the combined effect of both an EXECUTE ON and a
SAVE OFF command. In order to reset these switches, the appropriate
EXECUTE and SAVE commands must be given.

[]
An asterisk preceding any statement causes the Execute switch to be

set 'ON' and the Save switch 'OFF' for the processing of only that state­
ment. After this statement has been processed these switches are returned
to their appropriate values.

Notes:

1. The technique of preceding statements with an * should be used to
keep unwanted compiler commands and debugging statements out
of the user's file.

2. In Boolean statements the * should appear in column 6.

The compiler commands affecting control of program execution are
START, HALT, and RESET.

START /).line number
[

blank J
/). *sequence number

Execution of the current program is either started or continued at the
specified line or sequence number. If no control number is given; that is,
(blank), the program starts or resumes execution after the last executed
statement. When running under the inplied mode; that is, EXECUTE OFF,
SAVE ON, file execution can be started by pressing the RETURN key.
This is the same as if *START had been typed by the user.

HALT /)'1ine number
[

blank J
/). *sequence number

This command sets a program stop at the specified line or sequence
number, or resets all previous HALT commands if no control number is
given.

5-3

COMPILER COMMANDS
(Cont'd)

DEBUGGING AIDS

Interactive FORTRAN
Compiler

RESET [~ ~::;~umber l
~ *sequence numbe~

This command resets the compiler to accept input for the specified line
or sequence number. When this command is given the compiler accepts a
statement which replaces the statement specified by the line or sequence
number. Mter accepting the new statement, the current file is recompiled.
A RESET command with no parameter (blank) causes recompilation. It
should be noted that this command inserts a line as well as replaces exist­
ing lines. Insertion of a line occurs if the "*sequence number" does not
currently exist in the file.

Note:

The user is cautioned that the compiler commands used are part of the
current interactive file, if they are not preceded by an '*'0

Examples:

Column 7

*START*90; start execution at sequence number 90.

*START 100; start execution at line number 100.

*START; start execution at last non-executed line.

*HALT*115; program to stop at sequence number 115.

*RESET; recompile program.

*RESET*lOO; reset line at sequence number 100.

*RESET*25; insert line between 20 and 30 .

• Three commands are available to assist the user in debugging his
Interactive FORTRAN program. These are DUMP and PDUMP, TRACE,
and FLOW.

PDUMP~list

DUMP~list

Both these commands cause a printout of all the listed variables occur­
ring in that program (or subroutine.) Only those variables on list are
printed. PDUMP continues execution of the program while DUMP termin­
ates program execution allowing user action.If there is no list then all vari­
abIes are printed.

This command causes any variable in the list to be printed out when
ever it is altered during execution. If there is no list, all variables are
traced.

5-4

DEBUGGING AIDS
(Cont'd)

PROGRAM
PREPARATION

Interactive FORTRAN
Compiler

The FLOW command traces all transfers of control and causes
printouts indicating the sequence numbers involved in the programs'
branching logic.

• The source program is entered into the system from a remote terminal
on a line for line basis. Continuation lines are not permitted. A source
statement consists of the normal FORTRAN form; positions 1-5 for line
line-number, position 6 must be blank or an *, positions 7-255 for state­
ment syntax. A letter C in column 1 deSignates a comment line. An
extended feature of the Interactive Compiler permits an Insertion of a
semicolon (;) after any FORTRAN statement and means the text following in
the line is comment.

For example:

X=y ** 2-1;EQUATE X TO RADICAL

PRINT 10,I,Y; PRINT PARAMETERS

The Interactive FORTRAN character set consists of numerics 0-9,
alphabetics A- Z and the following special characters:

Character Name

= equal

+ plus

- minus

* asterisk

/ slash

decimal point

, comma

(left parenthesis

) right parenthesis

$ dollar sign
, apostrophe

Any other character(s) of the complete 256 character EBCDIC set may
be used only within a literal constant.

5-5

LANGUAGE ELEMENTS

Constants

Variables

ARRAYS

Interactive FORTRAN
Compiler

• The elements of the Interactive FORTRAN language statements are
constants, variables, and arrays of variables.

• Constants may be numeric or literal by class, and integer or real by
type. An integer or real constant may be negative, zero, or positive, and
must be of the allowable range.

Integer Constant Range

o to 536870911: Le., (229 - 1)

Real Constant Range

16-65 to 1663 (Le., approximately 1075)

• A variable is a symbolic representation of a quantity that may assume
different values. A variable may be real, integer, or complex. A variable
name consists of from one-to-six alphanumeric characters (0-9, A-Z),
the first of which must be alphabetic. Additional characters used in a
name will be ignored.

An integer variable has a standard length of four bytes, which is suf­
ficient to contain the maximum integer value. The internal value of an
Interactive FORTRAN integer is four times that of an equivalent machine
integer; hence, the maximum value of 229_1.* A real variable has a
standard length of four bytes assigned to its value and an optional double
precision length of eight bytes.

A complex variable consists of two 8-byte double preCision parts. No
optional single precision is available.

The predefined specification of FORTRAN applies; that is, if the first
character of the variable name is I,J,K,L,M, or N, the variable is an
integer. The explicit specification statements of REAL and INTEGER can
be used to designate the type of speCific variable names as other than the
implicit standard. The speCification statement, DOUBLE PRECISION,
is used to assign the optional maximum real variable length of 8. D.P.
is an acceptable abbreviation for DOUBLE PRECISION.

• Arrays of variables may be defined through the use of the COMMON
statement or an explicit Type statement only (no other speCification
statement such as DIMENSION or EQUIVALENCE is permitted.) The
number of dimensions is unlimited for any array.

An array subscript may be any constant, simple variable, variable,
or integer expression. In the case of a multi-dimensioned array, no
limit is placed on anyone of the subscripts with regard to their format.
Whatever subscript form is used, however, its evaluated result should
be greater than zero and less than or equal to the limit specified for it.

*The two low-order bits are not part of the Interactive FORTRAN integer
representations. They are, however, significant in Boolean expressions.

5-6

INTERAOIVE
FORTRAN

LANGUAGE

Arithmetic Expressions

Arithmetic Assignment
Statement

Interactive FORTRAN
Compiler

• The following sections present the syntax of each of the permissible
FORTRAN statements.

• Arithmetic expressions range in complexity from single constants or
variables to expressions containing two or more constants and/or vari­
ables connected through arithmetic operators. The arithmetic operators
are:

Arithmetic Operator Definition

** Exponentiation
* Multiplication
/ Division
+ Addition
- Subtraction

Standard FORTRAN rules for constructing arithmetic expressions
apply.

Arithmetic expressions may be mixed in mode; that is, they may con­
tain integer, real, and complex constants and/or variables.

• The standard form for assignment is V = e where V is any variable and
e is any arithmetic expression. The equal sign specifies replacement rather
than equivalence.

The valid assignment statements are as follows:

Assignment Type*
Mode of Assignment

Computation* Manipulation

Integer = Integer Integer None

Integer = Real Real Truncated to Integer

Integer = D. P. D.P. Truncated to Integer

Integer = Complex Complex Truncate and Assign
Real Part only

Real = Integer Integer Converted to Real

Real = Real Real None

Real = D. P. D.P. Truncated to Real

Real = Complex (N ot allowed) -
D. P. = Integer Integer Converted to D. P.

D.P. = Real D.P. Converted to D. P.

D.P. = D.P. D.P. None

D.P. = Complex Complex Only Real part assigned

Complex = Integer/ Complex None
Real/D.P./Complex

In any case of mixed mode, the highest mode dictates the mode of
computation.

*When Real is used, it represents standard length (full word) real numbers;
D.P. represents double precision (double word) real numbers.

5-7

?

COMPLEX
VARIABLE

ASSIGNMENT

Interactive FORTRAN
Compiler

Assignment of constants to complex variables deviates somewhat from
current standards. The following examples illustrate how values are
assigned:

(Given the general complex form (a + bi))

COMPLEX C

C = 1,1

C = (1,1)

C = -1,1

C = -(1,1)

;a = 1, b = 1

;a = 1, b = 1

;a=-I,b=-1

;a = -1, b = -1

C = (1,0) + (O,I);a = 1, b = 1

C = -(I,O)+(O,I);a=-I,b=1

C = (1,0) - (0, 1);a = 1, b = -1

C=I, -1

C=(I, -1)

;INVALID

;INVALID

The printing of both the real and imaginary parts of a complex number
cannot be accomplished by using the PRINT statement. The following
examples illustrate how the ,*, and the PDUMP statement can be used
to print complex numbers:

C N-O -T--r --: ---- ----------- -------

C THE FOLLOWING EXAMPLES DO NOT DIFFERENTIATE
-e ------~EiYtEn S Y S T E 1'1 ft1iD-ttS1:ft~-rsr>nwSc --STNC£TIfEY - ---- - -~
C ARE A REPRODUCTION OF AN ACTUAL TERMINAL SESSION

/CODE CMPLX
-------71t-- COMPLEX--X,-Y,-r-- -- ---------

60 *X=l,l
- X - (.10000000000000000E 01, .10000000000000000E 01)

60 *X=(l,l)
----X--=---(--;l0-0~~"00000000-0~ -01-, .1~0-{7J-0-00Z-0~0000~n 01j---u---

60 *X=(1,0)+(01~,1)
---X-----=---r-----.l '?H' ~"" 0 0 (,H~ 0 00~-m01, • t-000-0 00000-000-000ZE--01j

60 *X=-l,l
- X - (-.10000000000000000E 01,-.10000000000000000E 01)

60 *X=-(l,l)
-----x-=---t-. 100~00'0'~H~J0'0'0'00'0-0Z~>m,-- ~-t0000000000000000E--~t}-

60 *X=8~(-1,1)
----X---=---{-- ~-to-0~0 0' 0' 000000 0 E-~t-,----;-10000Z00 0 0 0' 0' 0~0E-Z-t-}--- -

60 *X=-(1,0)+(0,1)
x - (-.10000000000000000E 01, .l0'00'0000000000000E 01)

60 *X=8~(-1,0)+(0,1)

5-8

COMPLEX
VARIABLE

ASSIGNMENT
(Cont'd)

Boolean Expressions

Interactive FORTRAN
Compiler

-~--x--=----t--. 10"0~H!Hffl0i~~-0-00E- 01, • 100000-00000-0000-0"0E itt T
60 *X=I,-1

--~------6-0-EftRt}R ~X= l,-f- 1
60 *X=(l,-I)
($0 ERROR X- (1 ,-+- 1)--------.--.-.------.--~-.. -~---~-- .. -.-------.~.~.-
60 *X=l,-(+l)

·~----~~-~~--_G_0ERR_eR-· '--~1\=-t~,"'F (+1)-

60 *X=(1,0)-(0,1)
·--x--=--~-t-~.i0-0-000000000%000E 01, 10000000000000000E 01)

60 *X=1,0-0,1
--x- - (• 100121012100000000000E ·1T1.,.....-;l~~OOkffi0000-r---e-l~)--~~--

60 10 FORMAT(lX2E16.8)
-~--~ ------~·Hr- -'~~---I\-=-< t, 0)~---t0, 1)

80 PRINT 10,X
~'~-S1r--~ ~~~- ~~~Tt\Ri"* 1~'-

.10000000000000000E 01
5TO~ ~x~eUT~D ArT~R *B0

90 *P
~ --.~-----~-----~-- ?fJU1'W-x-'--~'-

100 *START*70
---~1~~0 121 0 000000E '-0t

X = (.10000000000000000E 01,-.10000000300000000E 01)
STOP EXECUTED APTER *90

100 *X+-Y=MAG(X)
~--y--=--\-;-ttrtir21-s5"6~-1;)09"tftE- 01 ,;0~000000000000000E 0-0}

100 *PDUMP X,Y
--X~-~t--~~-10OO00~000~000E 0t,"'. t 000000000000000"0E 0 t ,-

Y = (.14142135623730941E 01, .00000000000000000E 00)
100 .--------~------------.--.- .. --.--~-. .----

STOP EXECUTED AFTER *90
-.---~--------- - --~-----------.-----

• An extended language feature of the Interactive FORTRAN is the ability
to link arithmetic constants and variables with boolean operators. This
feature is invoked by inserting the letter B in position 1 of the FORTRAN
statement. The boolean operators are:

Boolean Operator Definition

* AND
+ OR
- NOT

5-9

Boolean Expressions
(Cont'd)

Boolean IF Statement

Control Statements

GO TO STATEMENT

ARITHMETIC
IF STATEMENT

Interactive FORTRAN
Compiler

Any other normal arithmetic operator when using the B option pro­
duces error printouts.

Only integer and real variables of standard length are permitted in a
boolean expression. Constants permitted are 1 or . TRUE. for true, and 0
(zero) or .F ALSE. for false. The machine -representation for true is a
word of binary l' s and for false, a word of binary 0 'so

Note:

The constants and variables in a boolean expression are considered as
TRUE if other than zero.

• The form for the Boolean IF statement is:

Column 1
t
B

Column 7
t
IF (e) n

1
, n

2
, n3

where:e is a boolean expression, nl' n2' n3 are statement numbers. Control
goes to statement n1 if the value of e is negative (TRUE), n2 if it is zero
(F ALSE), and n3 if it is positive (TRUE).

• Normally, statements are executed sequentially. This section discusses
the statements that may be used to alter and control the normal sequence of
execution of statements in the program.

• The unconditional GO TO n statement transfers control to statement n
which is the next statement executed. Statements are executed consecutively
from statement n until another control statement changes the sequence.

• The IF statement form is:

where e is an integer, real, or double preCision arithmetic expression; nl'
n2' n3, are statement numbers of executable statements. Control goes to
statement nl if the value of e is negative, n2 if it is zero, and n3 if it is
positive.

5-10

LOGICAL IF
STATEMENT

DO STATEMENT

CONTINUE
STATEMENT

• The form of the LOGICAL IF statement is:

IF (e ·RR· e) S

Interactive FORTRAN
Compiler

where e is an integer, real, or double precision arithmetic expression;
S is a FORTRAN statement; and .RR. is one of the relational operators
in the following list:

·RR· Definition

.LT. Less than

.LE. Less than or equal to

.EQ. Equal

.GE. Greater than or equal to

.GT. Greater than

.NE. Not equal

The following are valid logical IF statement:

IF (X. GE. Y) GO TO 99

IF (Z*Z. LE. ENDPT) CALL NODE (DERX, Z, ETC)

• The form of the DO statement is:

where n is the statement number of subsequent executable statement, i is
a non-subscribed integer variable called the index, and m1' m2' m3 are
integer constants, integer variables, or integer expressions. If m3 is not
present, it is assumed to be 1.

Nested DO statements are permitted to any depth. Transfer out of any
DO loop is permissible. Transfer into a DO loop is permitted only if it is
the innermost nest, and a previous transfer was made out of the same
innermost range; it is assumed that none of the indexing parameters are
changed in the interim outside the range of the DO.

A DO loop may not end with a GO TO statement, an Arithmetic IF, or
another DO statement.

• The CONTINUE statement may be placed anywhere in the source pro­
gram without affecting the sequence of execution. It is normally used as
the last statement in the range of a DO to a void ending the DO loop with
a GO TO, Arithmetic IF, or another DO statement.

5-11

RETURN
STATEMENT

END STATEMENT

STOP STATEMENT

CALL
STATEMENT

SUBROUTINE
STATEMENT

Interactive FORTRAN
Compiler

• The RETURN statement must be used one or more times in a SUB­
ROUTINE and returns control to the next statement following the CALL
in the calling program. The use of the RETURN statement in the main
program is an error which is detected during execution.

• The END statement may be used to define the end of a source program
and must be used to define the end of a subroutine. The END statement may
not be used until all DO loops have been terminated.

• The STOP statement terminates the execution of the object program
and returns control to the terminal with the printout:

STOP EXECUTED AT ________ _

The user can continue execution at the next executable statement by
issuing an *START (see page 5-3).

• The CALL statement is of the form:

where name is the name of a SUBROUTINE subprogram and PI' P 2,··· 'Pn
are the parameters that are being supplied to the SUBROUTINE subprogram.

The parameters in a CALL statement may be subscripted or non­
subscripted variables, subroutine names, or array names. The parameters
in a CALL statement must agree in number, order, and type with the
corresponding parameters in the SUBROUTINE subprogram.

Note:

Constants or evaluated expressions cannot be passed as parameters
in a CALL statement.

• The form of the SUBROUTINE statement is:

[
SUBROUTINE]

SUBR. ~ (P I'P 2' ... ,P n)

where ~ is the subroutine name and (P1,P2, .•. ,Pn) are parameters
as described in the discussion of the CALL statement. The parameters
may be considered as dummy variable names that are replaced at the
time of execution by the actual arguments supplied in the CALL statement.

Since the SUBROUTINE is a separate subprogram, the variable names
and statement numbers within it do not relate to any other program, with
the obvious exception of COMMON variables positionally renamed in a sub­
program COMMON statement. The subroutine name is not a variable of the
subprogram.

5-12

Input /Output Statements

READ
STATEMENT

PRINT
STATEMENT

Interactive FORTRAN
Compiler

• The input/output statements enable a user to enter data as specified
by a list from the remote terminal, to transfer computed results from the
current file to the remote terminals, or to read (or write) data to on-line
data files associated with the current interactive file.

Data is transferred under the control of a FORMAT statement referred
to in an I/O statement. The FORMAT statement provides the capabilities
of subdividing data into records and declaring the form in which the data
is to be transmitted .

• The form of the READ statement is:

READ 1, list

or

READ (Tapeno,f) list

where 1. is the statement number of the FORMAT statement describing
the data being read; list is a series of variable names, separated by
commas, which may be subscripted and specifies the number of items to
be read and the symbolic locations in storage into which the data is placed
(implied DO's are not allowed); Tapeno is an integer expression whose
value (1-99) denotes one of the user on-line files containing the prestored
data required. by the current interactive file. If the files are created in
/EDIT mode they must be named TAPEnn, where nn is between 1 and 99
inclusive. READs and WRITEs to Tape 00 are diverted to the teletype.

The (READ f, list) form of the READ statement does not imply card
reader input as does traditional Basic FORTRAN. The user has the capa­
bili ty of inputting data from the remote terminal during the execution phases
of his current interactive file through the use of the list items. When a
(READ f, list) statement is executed the first variable name of the list
is typed back to the remote terminal requesting an assignment for each
variable in the list.

For example:

Source - 10 4 FORMAT (2F 5:2)
20 READ 4,X,Y

At Execution Time:

x 42.31
Y 8.20

or
X 42.31,8.20

• The form of the PRINT statement is:

PRINT f, list

where f is the statement number of a FORMAT statement, and list is a
series of variable or array names, separated by commas.

5-13

PRINT STATEMENT
(Cont'd)

WRITE
STATEMENT

REWIND
STATEMENT

BACKSPACE
STATEMENT

Interactive FORTRAN
Compiler

The PRINT statement transfers results from current file execution to
the remote termip.al under control of the specified format. The PRINT
statement does not reference any other printing device, only the remote
terminal.

• The form of the WRITE statement is:

WRITE (Tapeno,i) list

where l.is the statement number of the FORMAT statement describing the
data being written: list is a series of variable names, separated by commas;
Tapeno is an integer expression whose value (01-99) denotes one of the
user online files that is to accept data written from a FORTRAN file (see
discussion of REWIND for creating data files). A Tapeno value of 00 will
result in the selection of the terminal unit as the output unit.

• The form of the REWIND statement is:

REWIND tapeno

where Tapeno is an integer expression whose value (01-99) denotes a cur­
rent data file or one that is being created.

The REWIND statement positions a file to sequence number 0 (zero).
If the Tapeno specified is a new file number, a new file is created with a
record of sequence number zero containing CT SENTINEL. If the Tapeno
specified is an established file number but has no record zero, a sequence
zero is created containing C T SENTINEL. Thereafter, the next WRITE will
start with sequence number 10; the next READ will start at the next
sequence number whatever it is.

• The form of the BACKSPACE statement is:

BACKSPACE Tapeno

where Tapeno is an integer expression whose value (01-99) denotes a cur­
rent data file.

This statement positions the file to the previous record. A Tapeno of
o (zero) is illegal since it references the terminal device.

5-14

FORMAT
STATEMENT

Interactive FORTRAN
Compiler

• The FORMAT statement is used in conjunction with the READ, WRITE,
and PRINT statements to specify the desired form of the data to be trans­
ferred. The form of the data is varied by the different format codes.
FORMAT statements are nonexecutable and may be inserted anywhere in
the current interactive file. A FORMAT statement may be used to define
a FORTRAN record through the use of slashes and parenthesis. * In BTSS
FORTRAN a FORMAT statement must precede its use in an I/O statement.

The format codes available in interactive FORTRAN are:

Numeric (Real)

aEw'd
aFw'd

where a is optional and is an unsigned integer constant used to denote the
number of times the same format code is repetitively referenced; w is an
unsigned integer constant specifying the total field length of the data; and
d is an unsigned integer constant specifying the number of decimal places.

Notes:

1. Q.. is always assumed zero; the decimal point or E notation denotes
the actual decimal speCification.,

2. The F format is interpreted as E format.

Numeric (Integer)

where ~ is an optional repeat specification and w is an unsigned in­
teger constant specifying the total field length of the data.

An extended feature of the I format is the speCification ~IO; that is, a
field length specification of zero. This definition means that at run time
the data itself will specify the characters reqUired.

For Example:

If the machine representation of I,J,K were 30, 3000, and 300000 res­
pectively, the following would occur:

30 10 FORMAT (lH_, 5X,IO/5X,IO/5X,IO)
40

30
300
30000

*PRINT 10,I,J ,K

* For a more detailed discussion, see pages 8-21 through 8-23 of the TOS
FORTRAN IV Reference Manual, No. 70-00-604.

5-15

FORMAT
STATEMENT

(Cont'd)

Alphanumeric and Hexadecima I

Interactive FORTRAN
Compiler

where ~ is as above, and w specifies the number of characters of data; A
being alphanumeric; 0 (letter) being hexadecimal.

Spacing

wX

where w speCifies the number of spaces to be inserted on output or the
number of characters to be skipped on input.

Literal

either ~ H or quotes

where w specifies the number of characters following H.

The following features of the Interactive FORTRAN formatter should
be noted:

Input - 1) When using E, F, or 0 format, the presence of a comma
within the field overrides the specified length. The next field is assumed
to start after the comma. 2) Null fields (,,) are not allowed. 3) the.Q. portion
for real numbers is ignored. Spaces are ignored except for "counting" and
are not assumed to be zero. 4) E and F are both interpreted as E and allow
anything that can be compiled within the length constraint. 5) I format, other
than IO assumes an exact count if not controlled correctly by a comma.
The following case should be noted:

10 FORMAT (lH_5X, 314)

READ 10, I, J, K

*START

1= 403, 3636, 27

The first group of four ends with a comma (403,). The next group of
four (3636) is accepted but the last group (,27) is unacceptable. To ensure
no problems, the user should make the I specification either zero or 1
larger than the largest integer.

E and F formats have the following standards regardless of FORMAT
specification:

Output - 1) single precision = E14.7

2) double precision = E23.17

(This also applies to complex.)

5-16

Specification
Statements

COMMON
STATEMENTS

TYPE
STATEMENTS

Interactive FORTRAN
Compiler

• The specification statements provide the compiler with information
about the nature of the variable names in the source program. Specifica­
tion statements may appear anywhere in the program but must precede
the usage of the speCified variables.

• The form of the COMMON statement is:

COMMON ~
REAL J INTEGER

DOUBLE PRECISION
COMPLEX

where a,b, ... are variable or array names and k 1,k2, •••• are optional
maximum subscript specifications not limited to any specific number
of dimensions. The COMMON statement has the normal FORTRAN con­
notation; that is, variables that appear in COMMON in related programs
and subprograms share the same positionally-oriented storage locations.

The following COMMON statements are valid for Interactive FORTRAN:

COMMON A,B,C (10),I,J

COMMON A(5,10),B(10),C (3,3),1

COMMON REAL 1(3,3)

COMMON INTEGER A(5,5),B(100)

COMMON INTEGER AA(3,2,2,2,2,2,2,2)

COMMON DOUBLE PRECISION A(100),B(5,5)

COMMON COMPLEX I (30), Z

• The forms of the Type statements are:

REAL

INTEGER

DOUBLE PRECISION

COMPLEX

a(k
1

),b(k2)' •••.

a(k1)' b(k2)' •.•.

a(k1),b(k2)' .•..

a(k1),b(k2)'

where a,b, ... are variable or array names and k1,k2, ••.. are optional
maximum subscript specifications and are not limited to any specific
number of dimensions.

If a subroutine name is used as an argument in a CALL statement it
must be defined in the following way:

1. an F in column 1.

2. the names of the subroutines to be used as arguments from column
7 on.

5-17

TYPE
STATEMENTS

(Cont'd)

FORTRAN Supplied
Mathematical Functions

For Example:
Column 1

F

F

Column 7

t
REAL X (10),Y(10)
ZIP,JUST

Interactive FORTRAN
Compiler

CALL SUB2 (X(l),Y,ZIP,JUST)

END
SUBROUTINE ZIP (I)
I
CALL I

END
SUBROUTINE JUST (J)

END
• The following table shows the available library function routines with
definitions:

Function May be
Definition

Written as

Exponential EXP (Arg) eArg
EXPF (Arg)

Natural Logarithm ALOG Arg In (Arg)
LOGF
ALOGF
LOG

Sine SIN sin (Arg)
SINF

Cosine COS cos (Arg)
COSF

Hyperbolic Tangent TANH
TANHF tanh (Arg)

Square Root SQRT
SQRTF (Arg)1/2

Absolute Value ABS
ABSF Arg

Arctangent ATAN (Arg) arctan (Arg)
ATANF (Arg)

Argument or Amplitude ARG (Arg) arctan (~)
of a complex number ARGF (Arg)

Absolute value or modu- MAG (Arg) a + bi = (a2 + b2)1/2
Ius of a complex number MAGF (Arg)

In all cases the argument specification determines the precision of the
function.

5-18

Relative Ch aracteristics
of BTSS Interactive

FORTRAN

Interactive FORTRAN
Compiler

Features ASA BTSS TOS/TOOS

Max. Statement Number 99999 99999 99999

Max. Continuation Cards 19 None - each statement 19
must be < 255 char-
acters.

Specification statements YES NO NO
must precede executable
statements.

Variable name - max. 6 6 6

characters.

Assigned GO TO YES NO YES

Logical IF YES YES YES

Double Precision YES YES YES

Complex Operations YES YES YES

Max. - Array 3 No Limit 7

Dimensions Common - cannot
exceed product of
393 words.
Type - cannot exceed
product of 504 words.

Subscripts may be any NO YES NO
unsigned integer con-
stant, variable or
expression.

The following FORTRAN statements are not in BTSS Interactive
FORTRAN:

ASSIGN

BLOCK DATA

Labeled COMMON

DATA

Ass igned GO TO

LOGICAL

EQUIVALENCE

DIMENSION

FUNCTION

Statement Function

The following features are extensions available in BTSS Interactive
FORTRAN:

- Basic functions may not be prefixed by D or C but may be suffixed
with an F and will be accepted. The argument determines mode of
computation.

- Debug features FLOW, TRACE, DUMP and PDUMP.

- Subroutines may contain recursive calls.

- Integer expressions with no limitations may be used whenever
FORTRAN permits an integer variable.

- Abbreviations of D. P. for DOUBLE PRECISION and SUBR for SUB­
ROUTINE are permitted.

5-19

DIFFERENTIAL
EQUATIONS

SUBROUTINE

SNODE (Spectra 70
Numerical Ordinary

Differential Equations
Subroutine)

Calling Sequence

DERIV Subroutine

OUT Subroutines

HALF and DUB
Subroutines

Storage Arrays

Interactive FORTRAN
Compiler

• A general purpose subroutine for the numerical solution of a system of
n simultaneous ordinary differential equations.

• CALL SNODE (X,Y,YP,P,DERIV,OUT,HALF,DUB)

The first parameter, X, is a double-precision variable containing the
current value of the independent variable.

The next three parameters are double-precision storage arrays.

The last four parameters are names of user provided subroutines.

• The calling sequence of the subroutine is:

CALL DERIV (X,Y,YP).

It is written and provided by the user to calculate the values of the
derivatives using the current values of the independent and dependent
variables.

• The calling sequence of the subroutine is:

CALL OUT (X,Y,YP,P).

It is written and provided by the user to be called each time a new point
of the solution has been computed (see description of the parameter "all
point switch").

• The calling sequences are:

CALL HALF (X, Y, YP, P)
CALL DUB (X,Y,YP,P).

These are user provided subroutines which are called whenever a halving
or doubling, respectively, of the step size is about to take place.

• The .y. array is a block of n double precision words provided by the
user for the storage of the current values of the dependent variables. These
are set to the initial values before the calling SNODE.

The YP array is a block of n double preCision words provided by the
user for the storage of the current values of the deri vati ves of the dependent
variables.

The E array is a block of (14 + 7n) double precision words provided by
the user to accommodate the parameters and working storage.

5-20

storage Arrays
(Cont'd)

STOP Subroutine

Interactive FORTRAN
Compiler

The parameters occupy the first 14 words of the P array. The first nine
must be initialized by the user before the call.

They are:

P(I) Number of equations.

P(2) Step or interval size.

P(3) Number of figures of accuracy desired (may be any number).

P(4) Type of accuracy switch (zero--significant figure or relative
accuracy, nonzero--decimal or absolute accuracy).

P(5) Endpoint switch (zero--continue to run, nonzero--hit endpoint)o

P(6) Endpoint value (relevant only if P(5) is nonzero).

P(7) All point switch (zero--OUT called only for good points, non­
zero--OUT called for all points).

P(8) Halving switch (zero--allow halving of the step size, nonzero-­
suppress halving).

P(9) Doubling switch (zero--allow doubling of the step size, nonzero-­
suppress doubling).

P(10) Maximum local error estimate (available to user after each step).

The remaining parameters P(II) - P(14), are not used in the simplified
calling sequence.

The (7n) double precision words of working storage (beginning with the
15th word of P contain, for each step, the following:

Location in Working Storage

7i - 6

7i - 5

7i - 4

7i - 3

7i - 2

7i - 1

7i

Contents at moth Step

p -c
m m

y.
1m

1
Y . (m-l)

1

1
Y . (m-2)

1

1
Y . (m-3)

1

Y.
10

(predicted value minus
corrected value)

(back derivatives)

(initial conditions)

• A STOP subroutine is provided with SNODE which prints out, upon the
occurrence of an error, a message describing the type of error.

5-21

Sample Problem C F.W. SCHNEIDER
C EXAMPLE 1

Interactive FORTRAN
Compiler

C TWO SIMULTANEOUS EQUATIONS USING SNODE
DOUBLE PRECISION X,Y(2),YP(2),P(28)

C P ARRAY CONTAINS (14+2*7) DOUBLE WORDS
F DER, OUT ,HALF ,DUB
C SET UP FOR TWO EQUATIONS WITH 5 FIGURES OF DECIMAL ACCURACY

P(1)=2
p(3)=5
P(4)=1

C START AT 0 WITH STEP SIZE 0.05
x=o
p(2)=.05

C HIT ENDPOINT PI
P(5)=1
p(6)=3.1415926535897932

C PRINT GOOD POINTS ONLY, ALLOW HALVING AND DOUBLING
p(7)=0
P(8)=0
p(9)=0
P(10)=0

C INITIALIZE DEPENDENT VARIABLES (Y(l) IS COS, Y(2) IS SIN)
Y(l)=l

C

C

C

C

Y(2)=0
50 FORMAT (r 1 EXAMPLE 1 r / r OX, Y1, Y2 r / r YP1, YP2 ,MAXER r)

PRINT 50
CALL SNODE (x, Y,YP ,P,DER,OUT ,HALF ,DUB)
STOP

SUBROUTINE DER (X, Y , yp)
DOUBLE PRECISION X,Y(2),YP(2)
YP(1)=-Y(2)
YP(2)=Y(1)
RETURN
END

SUBROUTINE OUT (X, Y, YP p)
DOUBLE PRECISION X~Y(2~,YP(2),P(28)

50 FORMAT (lX,3E24.17)
PRINT 50,X,Y(1),Y(2),YP(1),YP(2),P(10)
RETURN
END

SUBROUTINE HALF (X, Y , YP ,P)
DOUBLE PRECISION X,Y(2),YP(2),P(28)

51 FORMAT(r INTERVAL HALVED r)
PRINT 51
RETURN
END

SUBROUTINE DUB (X, Y , YP , p)
DOUBLE PRECISION X,Y(2),YF(2),P(28)

51 FORMAT(r INTERVAL DOUBLED r)
PRINT 51
RETURN
END

5-22

Sample Problem
(Cont'd)

C

F

C

SUBROUTINE SNODE (x,Y,YP,P,D,O,H,B)
D,O,H,B,STOP
DOUBLE PRECISION X,Y(2),YP(2),P(28)
P(ll)=O.O
P(12)=1.0
p(13)=O.O

Interactive FORTRAN
Compiler

p(14)=o.o
CALLODESTA(X,Y,YP,P,D,D,O,H,B,STOP,ODENPT,ODENDR,ODEERR,ODERUN)
P(12)=O.O
CALLODERUN(X,Y,YP,P,D,D,O,H,B,STOP,ODENPT,ODENDR,ODEERR,ODESTA)
RETURN
END

SUBROUTINE STOP (x, Y, YP,p)
DOUBLE PRECISION X,Y(2),YP(2),P(28)

51 FORMAT (, ODE PENDENT VARIABLE ZERO, RELATIVE ACCURACY')
52 FORMAT ('OINTERVAL TOO SMALL--X+H=X')
53 FORMAT (, OTHIRTY CONSECUTIVE INTERVAL REDUCTIONS')
54 FORMAT (, ONUMBER OF EQUATIONS ZERO OR NEGATIVE')
55 FORMAT (, JOB TERMINATED')

N=P(ll)
IF(N.EQ.1) PRINT 51
IF(N.EQ.2) PRINT 52
IF(N.EQ.3) PRINT 53
IF(N.EQ.4) PRINT 54
PRINT 55
STOP
END

5-23

Sample Problems

C NOT E :

Interactive FORTRAN
Compiler

-c-- THE FOLLOWI NG EXA[v}PLES DO NOT D1 FrERENT1Arr--~-~----~--------~---~----------
C BETWEEN SYSTEM AND USER RESPONSE SINCE THEY
C ARE A REPRODOCIION OF AN ACIOAL IERMINAL SESSION

ICATALOG
GRACE lIC DAlE

*TAPE25 TAPE08 TAPE01
~ -~----s!GmF1 ES-~tOC1(EIJ~-rltt:~

READY
tDRtJP-~iffiA----~-~--~ -- -----~------ -- --- - -

DELETED
IPRINT# GRACE

IAPE02
TAPE02

10 D.P. C0,Cl,T0,Tl,SLOPE,PRES,CAP,CK,BP,WVT
---~~- --Z0---t0-~-----rORM1rT-(~Et5-~')-

25 15 CONTINUE
-~- -----1tEA1J-l~, C0-;Ct,10 ,i1--, PR [-S,CA? ,-C K ,BP
40 SLOPE=(C0-Cl)/(T0-Tl)
50 WVT-CSLOPE*PRES*CAP*CKJ/BP
60 20 FORMAT(8H SLOPE =EI5.5,5X 5HWVT =EI5.5)

-~-~-lrn-----ffi1--Ni -2~,$LiJPE,\ttVT - -- --~~ ~~ ~------ --- ---~---~-----~-~-------

75 30 FORMAT(IIIIIII)
-------Tfs ----~-- -ff! Nl3_0 -

80 GOT015
-----19~0r START10

~--tee l}E --- -- ---- -­

C0 = 1.44
C 1 - 23
Tel = 44,

-~~~1'-t---=- - 5-5-. -1 -
PRES = 122.5

~---etrP--=-~ 12. 1-~-
CK = 44.2
BP -~ ---------------- ---
SLOPE = .18427350427350418E 01 WVT = .63357054444444432E 05

--- e0---=-1--;~4tr,--2-s-,--trtl ~,--?-5;-T, 122.-5,-t 2. -T-,4 4102 ,2-- - --- -~----------~------------ -------------
SLOPE = .18427350427350418E 01 WVT = .63357054444444432E 05

5-24

Interactive FORTRAN
Compiler

5 C THIS PROGRAM CALCULATES THE DAY OF THE WEEK
6 C FOR ALL DATES FROM 1801-2099

10 10 FORMAT(lX2I5)
---------Z~-----1rDrDT~,TTAPE ...

30 12 FOR MA T (1 XA 8)
------~·-----IJ.r.-lJUV1T7)-----· .

45 REWIND lTAPE
50 DO 13 1=1,7
60 READ (ITAPE,12) DOW(l)

---·--nr-r~ CO N T I NUE---·--·· .. -.. . - .. --- -- .. --.--.----.. -----.------.---------

80 INTEGER DAY,YEAR,MO(12),MAXDAY(12)
·--·---~----------·1TO--rrT=-I-~T2-·-·-·----·--··- -- .--- .. - .--.---.

100 READ(ITAPE,10) MO(I),MAXDAY(I)
110 II CONTINUE
120 30 FORMAT(5X,12HENTER A DATE) ---T311-------n-I N T 3 0 ... ------------.- .. - - --. _____ u -.---

140 45 READ 10 ,MONTH
----,?W---1TfMUNTJ1.;;-T2T-'~ ;,W ,oW----·- ----.--- .. -.---.--------

160 50 IF(MONTH-l) 60,70,70
110 20 FORMAI(5X,13HINVALID MONIH)
180 60 PRINT 20

----··-rs-0-·-·-----uo--ro-·1f5------- --. .. -.-- -.--...... - ... ----.---- -- ... - ----.. --------------------

200 7e READ 10, DAY
. ---- -2n~·--- -----TF~-l)-~;s-0 ,~- -

220 75 FORMAT(5XI1HINVALID DAY)
230 80 PR I N I 75
240 GO TO 70

---- 250 91T--TF1 DA Y - MA X DAT(1'laNT1ij·r--ln,-rOO;~·-----------·---------·-----
2 60 1 00 R EA D 1 0 Y EA R

-----27~·-- ··----TFtYEA11-;o.T01n-t;5;TT0,lT0-- ... --. --.--- --.-.-.--.
280 110 IF(YEAR-1800)130,130,140

--. 290 115 ·FORMAT(5X27HYEAR NOT IN RANGE 1801-2099)
300 130 PRINT 115

··-·-510 --uo--nr -In-----··----·---------·-----·-··-----· ------. ---.-.----------.-----.---

320 140 IF(YEAR-2099)150,150,130
SS0 nl·;~---TF\YEAtr- 1900)T5T,-r5Z;T5Z------------ . -------------------.. --
340 151 IYR=18

---~~ ·~Y~E~A~Rr~=~Y~E~AR~-~18~0~0--

360 GO TO 160
--- ·S70 -·152 ---rF\YEAR~-Zff0UTr~·;154;151r-·- ---- .. ---------------.-.. ----.------

380 153 IYR=19
·390 - ... YEAR-=YEAR;;';lS~0

400 GO TO 160
---zrr0 154 lyrr:--21'lt""0---~

420 YEAR=YEAR-2000
- ·----42S·-·---··-·· ·--GUTOT60·----

424 155 IYR=19
- -42, ·160 -- --·~YEAR=YEAR .

430 260 JYEAR=JYEAR-12
440 I F (JY EA R) I 61 ;Tb2~
450 161 JYEAR=JYEAR+12

-··4(;0 162---lY=YEA~712+JYEAR+JYEARI if
470 163 IY=IY-7

------~. I F(TYJTSlr, 165, rss--·------·--- -------------. -
490 164 IY=IY+7
500 165 IY=IY+MO(MONIH)+DAY
510 166 IY=IY-7

----·-s-2~----·---f1iTIYTn)r-;-rcg-;T6S- --- --... ---.... --.-- --.. --.--... -------.--.. ---.---------
530 167 IY=IY+7

-----;-35-·--· GOIO 169 .. ----- -- -.. __ u. __ -----

540 168 IY=7
5-25

545 169 IF(YEAR)178,17,178
546 178 IF(MONTH-2) 177,177,170

Interactive FORTRAN
Compiler

- --- -Siri-tii ----~-~-----1{F-JYEAR+1[-- ----------------------- --------~-~.-~------

550 269 KY=KY-4
----------,-60 ------------Tr<lCf)~T0,Tir,-ZS9-·-~- ---------------------------~---------~---~

570 171 IF(IY-l) 172,173,174
---S-80 172 CONIINUE

590 STOP
- - --000 -1 73--- -lY-=-i --

610 GO TO 170
- - -6 2~ -1 74 -.-- -i Y-=ty--t-----

630 175 FORMAT(11116H DAY OF WEEK FOR,I4,IH/,I2,IH/,I4,3H =
,A8,!!!)

640 1 70 GO TO 370 .
65 0 -399I~=-IYR'"FYEA R .
660 PRINT 175,MONTH ,DAY,IYR,DOW(IY)
i)1~ - -----GOlO tt
680 STOP

----~ 11 ~IF~(I~TY~R~-~1~9~)~1~/2~,~I~7~I--,~I~/~8---------------------------------

700 370 IF(IYR-19)91,99,92
---71091- -IY=IY+2-

720 GO TO 93
--/~0 92-- --iY=IT-1- --

740 93 IF(IY)94,95,96
75~ 94 IY-IY+7
760 GO T099
1-11J95-------1y~/------ -~----.~--

780 GO TO 99
-- ---790 - 96 -~lr(-fy_ ... -1)-~~,~-,9-1

800 97 IY=IY-7
810 99 IYR-IYR*100
820 GO TO 399

- ---.--.---- ------- _----_._-- ----------------

---8-3-0 -S~--!7\M{)tt1'it-2J170-,-3-H, t-12- .--,---- -- ------ ------------------------- ---~-----~~--

840 311 IF(DAY-28)170,170,313
--as 0-s-t2------TeRMA--T-t-t2-'1tt--2-t~ -I-NVA LI D-N-t}'ftEAP - YEA R}----------------- ----------

860 313 PRINT 312
870 GO TO 45

----I?RtNTI TAPE~--
o CT SENTINEL

1 Z -S--U N •
20 M 0 N •

-30 TtfE-g--
40 WED S

- - 50 T ft- ttit---
60 F R I •

-~'---~-T!--.~-----------------

80 1,3 1
-9-e- 4 ,-2~ -- - -- --

100 4,31
1 1 ~ 0,30
120 2,31
130 5, -S~----~----- -----------~---

140 0,31
---rs~ 3,~ r-

160 6,30
--110 r;3 r---- --

180 4,30
190 6,31
200

5-26

I

Interactive FORTRAN
Compiler

--:-t}Et-n-E1J----------- ----------------- --------- --- -------- -----

leODE DATE
--------~------~R T* 1 0

ITAPE = 25
ENTER A DA IE

MONTH = 12
DA y --~5-------------------- ------------

YEAR = 66

DAY OF WEEK FOR 12/25/1966 = SUN.

-------ENT-ER--1r-1}tr'N>--- -------­
MONTH = 2

-- Ut(y------=-- 29---- ----- ----------------------- ---- ------

YEAR = 67

2/29 INVALID-NOT LEAP YEAR
------MON'fH-=-2- --------------------------

DAY = 29
·---yEAR---=-~-------------------·--·---------·------

----- ----- ------------------_._----------------- -------- -----_ .. _-_ ... _------ -

ENTER A DATE
-----l'IUNnr-: -z----------.---.--

DAY = 29
YEAR = 181 7

----ZTZ9 I N VA-Lrn--N aT LEA P -~-----.----- --.. --------.---------------- ----------------­

MONTH = 2
---UAI-=--'~

YEAR = 1816

DAY OF WEEK FOR 2/29/1816 = T H U R

5-27

ENTER A DATE
MONTH =
RE-ENTER
9

---DAY---=-~ 2-"---------------- -------.---------------

YEAR = 77

Interactive FORTRAN
Compiler

-- --- -------------------_._--------- -------~--------

DAY OF WEEK FOR 9/23/1977 = F R I •

--------ENTER--1f-UATE----- ---------. --- ---­

MONTH =

- ----- ------ --- -

5-28

6. SWITCHING
MODULE

DESCRIPTION

INITIATION OF
TIME SHARING

SWITCHING MODULE
COMMAND FILE

• The Switching Module is a component of the Basic Time Sharing System
that enables a customer of BTSS to avail himself of the batched processing
facilities in the Tape Operating System. The Switching Module performs
two distinct functions:

1. it directs the transition from the time sharing mode to a batch
processing mode

2. it directs the transfer of data from tape to disc when the time shar­
ing system is initiated after the completion of batch processing under
TOS.

Prior to the initiation of the Switching Module and the subsequent trans­
fer to TOS the time sharing customer stores the data in his own disc files
to be processed under Monitor control. In addition, he is required to specify
certain Switching Module commands that indicate the disposition of the
data before and after the Monitor session. These commands must be
inserted into a file that the customer creates and that has the name
JBSTREAM. When the time sharing session terminates the Switching
Module, operating in accordance with these stored commands, prepares a
Monitor job stream tape (SYSIPT) for the customer, transfers any data
associated with the job stream to an available work tape, and makes
provision for the future conversion of data from tape to the customer's
disc file at the next initiation of a time sharing operation. Upon completion
of all Switching Module functions, the processor is released for a Monitor
session.

• After the BTSS is loaded and initiated, control is given to the Switching
Module which then determines if a Monitor operation has preceded it and
if monitor output is to be used during the impending time sharing session.
When required, data is transferred from tape to the time sharing customer's
disc files. The Switching Module then passes control to the BTSS Executive
and Time Sharing commences.

• All commands to the Switching Module must be stored by the time shar­
ing customer in a special file named JBSTREAM. This file may also be
used for the storage of data that is to be transferred to tape for Monitor
processing. If the file contains both commands and data the commands
must appear before the data in the file. Each Switching Module com­
mand must be inserted in the file as a separate record. The file name
(JBSTREAM) is the same for all customers and there may be as many
JBSTREAM files as customers.

6-1

SWITCHING MODULE
COMMANDS

Input Command

Switching Module

• The format of the Input Command is as follows:

**INPUTL\filename [,filename] [,filename] [,filename]

The Input Command informs the Switching Module that the data con­
tained in the specified disc file(s) is to be transferred to the Monitor
input tape (SYSIPT) for processing in a subsequent TOS operation. A maxi­
mum of 26 files can be transferred. Data i,s transferred to tape as 80-byte
card images batched four to a block. Records that are not 80 bytes long,
are expanded to the proper size. Those exceeding 80 bytes are truncated.
Transfer of data terminates when an end-of-file condition is detected on
the disc. All Monitor control statements such as / /L\ASSGN and / /L\EXEC
must be included in the customer's data file with the exception of
/ /L\STARTM and / /L\ENDMON. The latter are supplied by the Switching
Module.

In the event that multiple customer files are specified in this command,
data is transcribed to tape in the same sequence in which the files are
named.

Example:

**INPUTL\ JBSTREAM ,ASYSINPT

Note:

In the case of JBSTREAM, the transfer of data begins with the first
record following the last Switching Module command.

6-2

Data Command

Switching Module

• The format of the Data command is as follows:

**DATA~filelabel,filename [,filename] [,filename] [,filename]

The Data command informs the Switching Module that the data contained
in the specified disc file (s) is not part of the Monitor job stream and
that it is to be transferred to an available work tape rather than the Monitor
input tape (SYSIPT). A maximum of 26 files can be transferred. The tape is
created as a standard-labeled, single-file, single-reel volume. The eight
byte filelabel field of the command is used as the first eight bytes of the
label identification field in all labels written to the tape. It is recommended
that the first five bytes of the usercode be used as the first five bytes of
the filelabel to facilitate the identification of tapes.

Data is transferred from the disc to tape without modification. Each
record in the disc file becomes a block of data on the tape.

If multiple customer files are specified in this command, the files are
transcribed to tape in the same sequence in which they are named.

Example:

**DATA~RCAOOFLl, TAPE FILE

Note:

The data contained in TAPE FILE is transferred to tape without modifica­
tion. The tape will have standard Spectra 70 labels and the first eight
characters of the label identification field are RCAOOFLl.

6-3

Output Command

End Command

Switching Module

• The output command has the following format:

**OUTPUTAf'ilelabel,filename GfilenameJ CfilenameJ GfilenameJ

The Output command informs the Switching Module that the named disc
files are available to receive data that is to be transcribed from tape when
the next time sharing session is initiated. The eight character filelabel
field specifies the first eight bytes of the label identification field of the
tape file. A maximum of 26 files can be transferred.

All tape files to be transferred to disc must be single-file, single-reel
volumes with standard Spectra 70 labels.

The specified disc files to which the data is to be transferred must be
created in a time sharing session prior to the one in which the transfer
will be executed.

Data is transcribed to the disc in single record format with sequence
numbers that are increments of ten. Each record on the disc corresponds
to a block of data on tape.

The maximum tape block size that can be transferred to the disc
without modification is 255 bytes. Tpe remainder is truncated.

Example:

**OUTPUT ~RCAOOFL2,DISC FILE

Note:

The tape file that has RCAOOFL2 in the first eight position of its label
identification field, will be transferred to DISC FILE when the next time
sharing session is initiated .

• The End command has the following format:

**END

This command informs the Switching Module that no more commands
follow it in the JBSTREAM file.

6-4

APPENDIX A

LANGUAGE SUMMARY

• The legal BTSS commands are:

/CODE [~filenameJ
/EDIT ~filename]

SYMBOL character

CHECK

NOCHECK

RESUME ~;D Processor Commands

LOOP

ENDLOOP

HELP

sequence-list~CHANGE~string-l~ TO~string-2

sequence-list~CHANGEALL~string-l~ TO~string-2

sequence-list~DELETE [~stringJ
sequence-list~DELETEALL~string

· . {DROPPt sequence-hst~FIND~strIng~ DROPS f

· . {REPLACEP} . sequence-hst~FIND~strlng-l~ REPLACES ~strIng-2

sequence-list~FIND~string-l~ {~~~~~~:} ~string-2

· . {INSERTPt
sequence-hst~FINDALL~strlng-l~ INSERTS f ~string-2

sequence-list~PREFIX~string

sequence-list~SUFFIX~string

sequence-list [~PRINT]

sequence-list [~PRINT~strin~
sequence-list~string

sequence-list~ TEXT ~string

sequence-list-I~COPY~sequence-list-2

sequence-list-I~ WAS~sequence-list-2

sequence-list~SETPC~string

A-I

Record Commands

LANGUAGE SUMMARY (Cont'd)

/IN [#] [~filename]

/CATALOG

/DROP~fi1ename

/DO~fi1ename [~sequence # [~ABCD]]

/PRINT [#] [~filename] [~sequence# [~TO~sequence#1]

/RESEQ ~fi1ename] [~sequence#]

/LOCK [~fi1ename] ~AS~filename

/UNLOCK~fi1ename~AS~filename

/OPTION [{~}J ~filenam~
/SA y C~message]

P ..

/ON.''.usercode [1-3 symbolS] 1\ ~ ~PTIONP {
(OPTIONN,
. OPTION

/OFF

/COST

/HELP

/ENDO

/RENAME G\filename] ~AS~filename

A-2

Appendix A

LANGUAGE SUMMARY (Cont'd)

**INPUT~filename

* *DA TA~filelabel , filename

**OUTPUT ~filelabel , filename

**END

/CODE [~filenameJ

EXECUTE~ ~;~

SAVE~ [~~FJ
CALCULATOR

*

START [!1~il:~umber]
~ *sequence number

HALT [!1~il::~umber]
~ *sequence number

RESET [~~ir:~umber]
~*sequence number

PDUMP~list

DUMP~list

TRACE~ rON J list
LOFF

Switching Module

A-3

Appendix A

APPENDIX B

EDIT ERROR MESSAGES

INPUT ERRORS

BAD INPUT (#01)
RESUME NOT VALID HERE

BAD INPUT (#02)
NON-BLANKS FOUND AFTER COMMAND

BAD INPUT (#03)
ONL Y ONE CHAR ALLOWED IN STRING FOLLOWING SETPC

BAD INPUT (#04)
STATEMENT TOO LARGE FOR LOOP STORAGE

BAD INPUT (#05)
NON-BLANK SYMBOL EXPECTED

BAD INPUT (#06)
IN LOOP MODE, BUT FLOATING SEQ NOT ALLOWED HERE

BAD INPUT (#07)
OFFSET TOO LARGE FLOATING NUMBER CAN BE 999999

BAD INPUT (#08)
NUMERIC CHAR EXPECTED

BAD INPUT (#09)
BLANK, COMMA, OR DASH EXPECTED

BAD INPUT (#10)
RANGE (AND SINGLE) SEQ NUM(S) MUST FOLLOW LOOP

BAD INPUT (#11)
MORE THAN 8 ELEMENTS IN LEFT SEQ LIST

BAD INPUT (#12)
MORE THAN 15 ELEMENTS IN RIGHT SEQ LIST

BAD INPUT (#13)
FLAT OR INVERTED RANGE GIVEN

BAD INPUT (#14)
SEQ NUMBER EXCEEDS 6 DIGITS

BAD INPUT (#15)

SEQ LIST EXPECTED

B-1

Appendix B

INPUT ERRORS (Cont'd)

BAD INPUT (#16)
INVALID COMMAND CODE (OR DELIMITER EXPECTED)

BAD INPUT (#1 7)
NON-BLANK FOLLOWS STRING 2 OR NULL STRING 1

BAD INPUT (#18)
THE VERB GIVEN EXPECTS A DIFFERENT # OF STRINGS

BAD INPUT (#19)
CHANGE VERB EXPECTS TO BETWEEN THE 2 STRINGS

BAD INPUT (#20)
INSERTP OR INSERTS EXPECTED

BAD INPUT (#21)
INSERTP, INSERTS, REPLACEP, OR REPLACES EXPECTED

BAD INPUT (#22)
DROPP OR DROPS EXPECTED

BAD INPUT (#23)
A SUFFIX P OR S IS EXPECTED

BAD INPUT (#24)
EXTRA NON-BLANKS FOUND

BAD INPUT (#25)
FLOATING SEQ-NUM EXPECTED

B-2

Appendix B

LIST OF EXECUTION ERROR MESSAGES

• Depending on the error case one of the following nine sets of messages is typed out:

1)
COpy PROCESS NOT PERFORMED-RECORD WOULD EXCEED 255 CHARS.

2)
WAS PROCESS NOT PERFORMED-RECORD WOULD EXCEED 255 CHARS.

3)
COpy PROCESS NOT EXECUTED-MISSING RECORDS ABOVE.
TO CONTINUE COpy PROCESS WITHOUT MISSING RECORD-TYPE RESUME.

4)
WAS PROCESS NOT EXECUTED-MISSING RECORDS ABOVE.
TO CONTINUE WAS PROCESS WITHOUT MISSING RECORD-TYPE RESUME.

5)
REVISED LENGTH FOR RECORD XXXXXX EXCEEDS 255 CHARS-RECORD UNCHANGED.

6)
REVISED LENGTH FOR RECORD XXXXXX EXCEEDS 255 CHARS-RECORD UNCHANGED.
TYPE RESUME TO SKIP RECORD AND CONTINUE.

7)
EXECUTING LOOP STATEMENT XX. INDEX IS XXXXXX.
COpy PROCESS NOT PERFORMED-RECORD WOULD EXCEED 255 CHARS.

8)

EXECUTING LOOP STATEMENT XX, INDEX IS XXXXXX.
REVISED LENGTH FOR RECORD XXXXXX EXCEEDS 255 CHARS-RECORD UNCHANGED.

9)
EXECUTING LOOP STATEMENT XX. INDEX IS XXXXXX.
REVISED LENGTH FOR RECORD XXXXXX EXCEEDS 255 CHARS-RECORD UNCHANGED.
TYPE RESUME TO SKIP RECORD AND CONTINUE.

Inputting a null message after any of the above messages sets will return the appropriate message
10.) or 11.). These will be followed by the record itself.

10)
PARTIALLY GENERATED RECORD IS -

11)
UNMODIFIED RECORD XXXXXX HAS LENGTH XXX.

B-3

Appendix B

LIST OF ABNORMAL MESSAGES

• The following messages are issued when appropriate, regardless of the current CHECK/NOCHECK
status. However, these messages are never issued during LOOP operation.

1)
SEQ NUMBER x:xxxxx UNDEFINED

2)
SEQ NUMBER x:xxxxx UNCHANGED

3)
SEQ RANGE x:xxxxx TO x:xxxxx UNDEFINED

4)
SEQ RANGE x:xxxxx TO x:xxxxx UNCHANGED

B-4

Appendix B

LIST OF MESSAGES SUPPLIED AFTER USER STOPS

• Stops during LOOP execution first supplies either 1.) or 2.). If message 2. is supplied, the process
has further incremented the LOOP index in preparation for another pass through the statement.

1)
STOPPED AT LOOP STATEMENT XX. INDEX IS XXXXXX.

2)
STOPPED AT LOOP, INDEX IS XXXXXX.

3)

STOPPED DURING GENERATION OF COpy RECORD USING SEQ =#= XXXXXX.

4)
STOPPED DURING DELETE PHASE OF WAS PROCESS
RECORD XXXXXX FROM RANGEXXXXXX TO XXXXXX LAST DELETED

5)
STOPPED DURING DELETE PHASE OF WAS PROCESS
LAST SEQ LIST· ELEMENT PROCESSED WAS XXXXXX TO XXXXXX

6)

STOPPED DURING DELETE PHASE OF WAS PROCESS
LAST SEQ LIST ELEMENT PROCESSED WAS XXXXXX

7)
SEQ =#= XXXXXX LAST PUT INTO FILE

8)
ABOVE RECORD WAS LAST ONE PROCESSED

9)
ABOVE SEQ LIST ELEMENT LAST ONE PROCESSED

10)
UNDEFINED SEQ RANGE XXXXXX TO XXXXXX LAST PROCESSED

11)
UNDEFINED RECORD XXXXXX LAST PROCESSED

12)
SEQ NUMBER XXXXXX LAST ONE DELETED

13)
LAST SEQ LIST ELEMENT PROCESSED WAS UNDEFINED XXXXXX TO XXXXXX

14)
LAST SEQ LIST ELEMENT PROCESSED WAS UNDEFINED XXXXXX

B-5

Appendix B

LIST OF MESSAGES SUPPLIED AFTER USER STOPS (Cont'd)

15)
RECORD =11= XXXXXX WAS LAST ONE PROCESSED

16)
PARTIALLY FORMED RECORD IS-

17)
GENERATED RECORD IS-

18)
GENERATED RECORD IS NULL

19)
NO MORE ANALYSIS AVAILABLE-RESUME CONTINUES

20)
TYPE RESUME TO CONTINUE THIS PROCESSING

B-6

	001
	002
	003
	004
	1-01
	1-02
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	6-01
	6-02
	6-03
	6-04
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06

