
I
RADIO CORPORATION OF AMERICA· ELECTRONIC DATA PROCESSING

~ RADIO

SYSTEM

7015

PROGRAMMING SYSTEM
INFORMATION MANUAL

CORPORATION
ZU:15,,50l.. "

. November 1965 \.'

OF AMERICA

The information contained herein is subject
to change without notice. Revisions may be
issued to advise of such changes and/or
additions.

First Printing: November, 1965

INTRODUCTION

ASSEMBLY SYSTEM

INPUT /OUTPUT
CONTROL SYSTEM

(IOCS)

REPORT PROGRAM
GENERATOR

(RPG)

LOADERS

CARD TO TAPE

TAPE TO PUNCH

CONTENTS

Functional Description
Input/Output Description
Equipment Requirements
Memory Requirements
Related Programnling Components
Accuracy Control .. .
Timing ,

Functional Descri ption
Input/Output Description
Equipment Requirements
Memory Requirements
Related Programming Components
Accuracy COIl trol .. .
Timing , .. .

Functional Description
Input/Output Description
Equipment Requirements
Memory Requirements
Related Programming Components
Accuracy Control .. .
Timing "

Functional Description
Input/Output Description
Equipment Requirements
Memory Requirements
Related Programming Conlponents
Accuracy Control .. .
Timing ,

Functional Descl'i ption
Input/Output Description
Equipment Requirements
Memory Requirelnents
Related Programming Components
Accuracy Control .. .
Timing

Functional Description
Input/Output Description
Equipment Requirements
Memory Requirements
Related Programming Components
Accuracy Control .. .
Timing " ., " ... , ,

iii

Page

1

2
3
4
4
5
5
5

6
7
9
9
9
9
9

10
11
11
11
11
11
11

12
12
15
15
15
15
15

16
16
17
17
17
17
17

18
18
18
18
18
18
18

TAPE TO PRINTER

SINGLE-PHASE
MEMORY DUMP /

SNAPSHOT

DUAL-PHASE
MEMORY DUMP /

SNAPSHOT

TAPE EDIT

PROGRAM BINDER

PLT UPDATE

CONTENTS (Continued)
Page

Functional Description 19
Input/Output Description. .. 19
Equipment Requirements 19
Memory Requirements .. 19
Related Programming Components. .. 20
Accuracy Control .. 20
Timing '" , 20

Functional Description 21
Input/Output Description .. 21
Equipment Requirements. .. 22
Memory Requirements 22
Related Programming Components. .. 22
Accuracy Control .. 22
Timing. 22

Functional Description 23
Input/Output Description. .. 23
Equipment Requirements , 24
Memory Requirements .. 24
Related Programming Components .. 25
Accuracy Control 25
Timing... 25

Functional Description 26
Input/Output Description .. 26
Equipment Requirements 27
Memory Requirements .. 27
Related Programming Components .. 27
Accuracy Control .. 27
Timing , 27

Functional Description 28
Input/Output Description. .. 29
Equipment Requirements , 30
Memory Requirements .. 30
Related Programming Components. 30
Accuracy Control. .. 30
Timing , , " 30

Functional Description 31
Input/Output Description .. 31
Equipment Requirements 32
Memory Requirements .. 32
Related Programming Components. .. 32
Accuracy Control 32
Timing... 32

iv

SINGLE-CHANNEL
COMMUNICATIONS

CONTROL SYSTEM

SORT/MERGE
GENERATOR

APPENDIX A
70/15 PRO­
GRAMMING

SYSTEM
STANDARDS

CONTENTS (Continued)
Page

Functional Description 34
Input/Output Description .. 35
Equipment Requirements 36
Memory Requirements 37
Related Programming Components .. 37
Accuracy Control. .. 37

Functional Description 38
Input/Output Description .. 38
Equipment Requirements. .. 39
Memory Requirements 39
Accuracy Control. .. 39
Timing. 39

General ... 40
Library Standards 40
HSM Layout. .. 47
Programming Standards .. 50
Operator/Machine Communication. .. 53
Implementation Language Standards. .. 53

v

PROGRAMMING
SYSTEM

INTRODUCTION

UTILITY ROUTINE
CO-SHARING

• The RCA 70/15 Programming System contains a set of interrelated
programming components that enhances the inherent capabilities of the
Spectra 70/15 Processor and associated peripheral devices. The system
provides a programming foundation that not only accommodates a broad
range of applications but also affords the additional advantage of complete
device interchangeability. Except for the Sort/Merge Generator, all rou­
tines can be operated on a basic 70/15 configuration consisting of 4K-byte
processor, card reader, printer, and card punch. The Sort/Merge Generator
requires an 8K-byte processor, three magnetic tapes, card reader, printer,
and card punch.

A basic card-oriented library is provided. This library may be further
supplemented by the addition of magnetic tapes to provide greater oper­
ating versatility. Provision is also made for adapting the library to
programs stored in card image on Inagnetic tape.

The 70/15 Programming System converts symbolic language to machine
language, assists in running segmented programs, and provides standard
operational routines. Parameters initiate system calls and designate device
assignments. By stacking the parameter cards, a sequential set of
production programs may be executed.

This system anticipates automatic programming requirements from
the inception of processing to its termination, from program assembly to
report generation. An Input/Output Control System (lOCS), which may
be assembled with the program or linked to it by the loader portion of the
system, affords complete data exchange between the processor and on-line
peripheral devices. In addition, a system maintenance feature provides for
the updating of program or data files and the combining of subprograms
or independent programs into a common system.

To simplify the testing of production programs, a complete set of
diagnostic routines is available. These routines consist of a variety of
memory dumps that print the contents, or selected areas, of memory during
or after program testing. Several utility routines are also provided that
perform functions such as card-to-tape, card-to-punch, and tape-to-printer.
These utility routines are so designed, that any two may concurrently share
the processor and be accessed during the same object run .

• The 70/15 Card-to-Tape, Tape-to-Punch, and Tape-to-Printer routines
allow, after binding, concurrent processing of any two routines. This
feature also reduces program set-up and take-down time and eliminates
reloading of the routines. These routines are co-shared as follows:

When two routines are referred to in the same program, the operator
inserts a nonzero character into a standard memory location before the
production run. After the first utility routine has been initialized, this
character is interrogated. When a nonzero character is sensed, a halt occurs
followed by a branch to the Program Loader routine. This gives the operator
the opportunity to insert an End card which transfers control to the second
utility routine. When entering into the shared routine, linkage is estab­
lished between the two routines by moving the entry address of the first
routine to the exit address of the second routine, and the entry address of
the second routine to the exit address of the first. Co-sharing now exists
for the remainder of the operation.

1

ASSEMBLY SYSTEM

FUNCTIONAL
DESCRIPTION

• The RCA 70/15 Assembly System is a machine-oriented, autonlatic
Assembler that simplifies and expedites the writing of programs for the
RCA Spectra 70/15 System. The Assembler translates symbolic source­
language statements into computer-recognizable object coding.

The Assembler is a basic two-pass card system that permits device
interchangeability so that magnetic tape can be substituted at load time
for a card reader, card punch, or printer. Provision is also made to process
stacked programs sequentially when magnetic tapes are used. An assembly
can then be made on a minimum source configuration for a maximum
object configuration.

The Assembler consists of two main program segments; one to process
each of the two passes of the source program. A description of each pass
is as follows:

1 st Pass - A table of name-address assignments is created in memory
from the source card input.

2nd Pass - The original source card deck is also used as input to the
second pass. The operands and operations are defined in this pass and the
object machine-code program deck is generated on cards. An assembly
listing is also printed.

Figure 1 illustrates the basic operation of the Assembler.

Note: If a magnetic tape is available, it can be used as input to the
second pass in lieu of reloading the source deck. A second magnetic
tape may also be used as the object-program output medium.

MUST BE RELOADED
AT END OF THE
FIRST PASS

ASSEMBLY
LISTING

... / --',
r----...&....----...ttA- - ISOURCE,

SECOND PASS , PROG. ,

\ TAPE J
GENERATED ,~-

OBJECT _-

FIRST PASS

CREATES
NAME - ADDRESS

TABLE

PROGRAM (OPTIONAL)

OBJECT
PROGRAM DECK

,
"­,
~,.--,

I
OBJ. \

PROG. J
\ TAPE I
" ./ --(OPTIONAL)

Figure 1. Assembler Operation

Some features of the Assembler are summarized below.
1. Operation Code Mnemonics - Each machine instruction is assigned

a unique mnemonic operation code as specified in the assembly
language. The programmer uses these mnemonics to specify the
desired instructions.

2. Symbolic Addressing - Every memory location is available for
assignment as a symbolic name for program reference. This allows

2

FUNCTIONAL
DESCRIPTION

(Cont'd)

INPUT /OUTPUT
DESCRIPTION

Assembly System

reference to branch points, tables, constants, and storage areas with­
out requiring knowledge of absolute memory addresses. The absolute
memory addresses are assigned by the Assembler.

3. Expressions - Provide the ability to combine symbols and numeric
values to form desired addresses.

4. External References - Enable a program to refer to data or control
information outside its boundaries. This is provided by the use of a
unique program symbolic name that represents the desired reference.
Thus, separately assembled programs may be linked together at
execution time by using the Relocatable Loader routine. The Binder
routine can also be used to bind these separately assembled programs
into a single program which can be loaded by any Absolute Loader.

All input/output operations are controlled by the 70/15 Input/Output
Control System (lOCS). IOCS may be assembled with the program, linked
in the binding run, or linked with the program object time.

The 70/15 Assembler is described in detail in the 70/15 Assembly
System Manual, No. 70-15-602.

Input • The input to the Assembler consists of source program card decks.

Output

Each card is composed of the following fields:

Fields

Operation

Columns

1-4
Operand and Comments 12-16
Identification - Sequence 73-80

Name Field - The Name field identifies a particular statement. Any
other statement can refer to the statement by using that name. The Name
field is represented by a symbolic expression.

Operation Field - A machine or Assembler mnemonic instruction is
written in the Operation field. Whenever an invalid mnemonic is specified
the Assembler generates a halt and an unconditional branch to the next
instruction. This field may also be used to specify Assembler control instruc­
tions (e.g., START, END, ENTRY, and EXTRN) that supplement the
machine instructions.

Operand and Comments Field - The Operand field defines the locations,
data, or devices that are used by the Operation field. The field is divided
into operands and the number of operands depends on the instruction
format. Comnlas are used to separate a string of operands. Descriptive
information can also be written in this field. At least one column to the
right of the last operand must be skipped before writing any comments.
In addition, the entire statement line can be written as comments when an
asterisk (*) is written in column l.

Identification - Sequence Field - This field is used for both program
identification and statement sequencing.

• The output of the Assembler consists of:

3

Object-program Output
Assembly Listing

Object-Program Output

AsseJr/,bly Listings

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Optional Equipment

MEMORY
REQUIREMENTS

Assembly System

• The object-program output consists of five types of cards.
Progrwm Card - This card is the first card of every program and con­

tains the name of the first source statement. It also contains the address of
where the program is to be loaded. This card corresponds to the S TAR T
source statement.

Text Cards - These cards contain the generated object coding.
ENTRY Cards - These cards correspond to the source ENTRY state­

ments. They contain the name and address of the program entry points.
EXTRN Cards - These cards correspond to the source EXTRN state­

ments. They contain the name and address of the last program reference
to the external name.

END Card - This card corresponds to the source END card. It contains
an address of the first logical instruction in the program.

• The Assembly listings consist of the source program statements plus
the generated object coding. The fields are as follows:

Fields Columns

Program Name and Error Flags
Location Counter
Generated Object Coding
Source Statements
Object Deck Reference Number

1-4
7-10

13-17
33-112

117-120

• The Assembler requires the equipment listed below and also makes use
of additional magnetic tapes and an extra 4K bytes of memory if they are
available. Additional tapes can be used as substitutes for the Assembler
program, source input, object-program listing, and object-program deck in
the Tape Assembly System.

• Processor:
Card Reader:
Card Punch:
Printer:

(70/15 A * or B**)
(70/237 or 70/251 with Card Read Feature)
(70/234 or 70/236)
(70/242, 70/243, or 70/248)

• Magnetic Tape Device: (70/432, 70/442, or 70/445) **

• The Assembler requires 4K bytes of memory. Depending on whether
4K or 8K bytes of memory are available, the number of names in a program
can vary from 90 names for 4K to 700 names for 8K in the Card Assembler.
The Tape Assembler permits a maximum of 550 names. The memory map
of the Card Assembler is as follows:

Bytes Content

0-899 Standard Memory, Loader, and lOCS areas

900-3499 Assembler coding, constants, and working storage

3500-Top of Name table
Memory

* Card Assembly System.
** Tape Assembly System.

4

MEMORY
REQUIREMENTS

(Cont'd)

RELATED
PROGRAMMING

COMPONENTS

ACCURACY CONTROL

TIMING

Assembly System

The memory map of the Tape Assembler is as follows:

Bytes Content

0-1499 Standard Memory, Loader, and lOC area

1500-4699 Assembler coding, constants, and working storage

4700-8192 Name table

Loader Routines - It is necessary for the Assembler to be loaded into
memory by way of one of the following standard 70/15 Loaders:

Absolute Card Loader
Absolute PL T Loader

IOCS - The Assembler program uses the Input/Output Control System
incorporated within the Assembler .

• The Asssembler observes the standard set of 70/15 program halts and
accuracy controls. In addition, the Assembler performs appropriate error
checking of source programs with associated warning flags.

• The time to assemble an average size program of 500 statements is
approximately 3.5 to 4 minutes. This timing estimate is based on a 70/15
system consisting of the following equipment:

70/15 Processor
70/237 Card Reader - (source-program input)
70/234 Card Punch - (object-program output)
70/242 Printer
70/432 Tape Units

5

INPUT / OUTPUT
CONTROL SYSTEM

(IOCS)

FUNCTIONAL
DESCRIPTION

• The RCA 70/15 Input/Output Control System (lOCS) consists of a
set of routines that facilitates the use of peripheral devices within the
Spectra 70/15 System. The IOCS represents an integrated network of
read, write, and control functions that relieve the programmer of sub­
stantial input/output programming. The system is also capable of error
detection and recovery when such actions are appropriate and possible.
Simultaneous processing capabilities are an additional aspect of the IOCS.
When specified by the programmer, full advantage is taken of the Read
Auxiliary instruction and the buffered output devices to provide this
facility. For example, the functions of card reading, card punching, and
printing may be executed concurrently with computing.

In order to effectively use the memory of the 70/15 Processor, the IOCS
is provided in two versions. The only difference between the two versions
is that one can control magnetic tape equipment while the second cannot.
Both versions control other 70/15 peripheral devices. The nontape version
requires less memory than the tape version. In addition, two more versions
(tape and nontape) are provided for object program compatibility with
the 70/25. These versions require slightly more memory than the
standard versions.

IOCS may be assembled with the object program, assembled separately
and linked in a binding pass, or loaded with the program into memory at
"run" time. The system has seven entry points (four for the nontape
version), each of which is accessed from a calling sequence in the program.
Based on the entry point, calling sequence, and device parameters supplied
by the programmer, the IOCS executes the desired function and returns
control to the program at a return address specified in the calling sequence.
A detailed description of the device parameters, calling sequences, and
routine entry points is provided in the 70/15 Assembly System manual,
No. 70-15-602. The entry points are defined as follows:

1. IN - The IN calling sequence transfers data from input devices
(such as magnetic tape, card reader, or paper tape) into memory.

2. OUT - The OUT calling sequence transfers data from memory to
output devices (such as magnetic tape, card punch, printer, or the
paper tape punch).

3. CHK - The CHK calling sequence senses and stores status informa­
tion relative to a particular device. The standard device byte and the
sense byte are received, stored, and analyzed.

4. RWD - The RWD calling sequence rewinds magnetic tapes to BT.
5. RWDA - The RWDA calling sequence rewinds and disconnects

magnetic tapes.
6. TMRK - The TMRK calling sequence writes a tape mark on 7- or

9-channel magnetic tape.

7. CTRL - The CTRL calling sequence performs control functions such
as stacker selection and printer paper advance.

The programmer refers to the peripheral device in his program on a
symbolic basis by means of logical device numbers. These are replaced by
actual device numbers at object time by the Loader routine.

6

INPUT /OUTPUT
DESCRIPTION

Input

Device Parameter Area

IOCS

• To use the IOCS the programmer is required to:
1. Define a parameter area for each device used by the program.
2. Code the appropriate calling sequence for the I/O function (IN,

OUT, etc.) to be executed.
3. Assemble the program and the IOCS.
4. Incorporate I/O Define cards with the assembled program at object

time so that the Loader routine can set up a Device Correspondence
Table for conversion of logical to actual device numbers.

• This storage area contains information required by the IOCS to control
the peripheral device. At assembly time one area must be supplied for
each device used by the program. This area is shown below and defined
in table 1.

Logical
Simo Starting Ending

Abnormal Alarm
Device Return Return

No. Indicator Address Address Address Address

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11

Rollback and Error Recovery Area

A-final
Standard I/O Cyclic Write

Device Sense Parity OP Trunk D1 +D2 Control
Address Byte Byte Char. Code Device Address Address Char.

+12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23

Table 1. Device Parameter Area

Bytes Description

0-1 A constant (00-09) defining the logical device number. An actual
device number is assigned at load time by means of an I/O
Define card.

2-3 A constant specifying simultaneous or nonsimultaneous processing
for the device. The leftmost byte is used as a device pending indicator.

4-5 An initial address of the I/O storage area.

6-7 A terminal address of the I/O storage area.

8-9 An address of the subroutine in the program to which control is to be
transferred when certain abnormal conditions are encountered.

10-11 An initial address of the subroutine in the program to which control
is to be transferred when an alarm condition is encountered.

12-15 Area where A-final address, standard device byte, and 110 sense byte
are to be stored upon device termination.

16-23 Area where a previously issued I/O instruction for magnetic-tape
rollback and error recovery is to be stored. The programmer is not
required to provide this area when using the nontape version of the
IOCS. This area is also used to store a cyclic parity character and a
control byte for Write Control instructions.

7

Calling Sequences

Device Correspondence
Table (DCT)

Output

loes

• To execute an IN, OUT, R\VD, RWDA, TMRK, or CHK function the
programmer must move the appropriate address of the device parameter
area and his return address to the standard area $P, which is used for
communication between a program and subroutine. Subsequent to this,
an unconditional branch to the appropriate IOCS entry point must
be performed.

To execute a CTRL function the programmer must also include in
the calling sequence the hexadecimal representation for the desired
control function.

• The purpose of this table is to store logical device numbers with their
actual device numbers. The DCT is created by the loader according to the
information on the I/O Define cards. The loader has a limit of 10 entries
(00-09). The DCT contains three bytes containing the following infor­
mation for each device:

Table 2. Device Correspondence Table (OCT)

Byte 1 Byte 2 Byte 3

4 Bits 4 Bits 4 Bits 4 Bits 8 Bits.

Trunk No. Device No.
Alternate Device

Control Information Trunk No. Type

where: Trunk No. is the number of the desired trunk (0-5).
Device No. is the number of the device desired (O-F).
Device Type may be any of the following:

1 = Magnetic Tape
2 = Card Reader or Videoscan Document Reader
3 = Card Punch
4 = Paper Tape Reader
5 = Paper Tape Punch
6 = Printer or Bill Feed Printer
7 = Input/Output Typewriter
8 = Card Punch with Reader Feature

• When the IOCS is entered, the following occurs:
1. The entry corresponding to the logical device number is retrieved

from the DCT.
2. The trunk corresponding to this device is checked and, if necessary,

serviced and stored. This includes posting of the A-final address,
standard device byte, and sense byte to the device parameter area.

3. The device pending indicator in the parameter area is checked to
see if the last reference to this device was serviced. If necessary,
the standard device byte and sense byte are c'hecked. When other
than a normal condition is detected, an attempt is made to re-execute
the instruction or a return is made to the alarm or abnormal return
address, whichever is appropriate.

* Control information of byte 3 refers to packing density and is only applicable to
7 -channel magnetic tape.

8

Output
(Cont'd)

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Optional Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY CONTROL

TIMING

IOCS

4. If neither the device pending indicator nor an abnormal or alarm
condition is detected, the IOCS determines if a CHK is requested.
If it is a CHK, control is transferred to the normal return address
of the program. If it is not a CHK entry, control is given to the issue
portion of the IOCS for further processing.

5. The requested I/O operation is performed.
6. If nonsimultaneous processing was specified, a CHK is performed.
7. Control is then returned to the program.

• Processor: (70/15 A or B)

• Magnetic Tape Device: (70/432, 70/442, or 70/445)
Card Reader: (70/237)
Document Reader: (70/251- Demand Feed Only)
Card Punch: (70/234 or 70/236)
Printer: (70/242 or 70/243)
Bill Feed Printer: (70/248 - Continuous Forms Only)
Input/Output Typewriter: (70/216)
Paper Tape Reader/Punch: (70/221)

• The tape IOCS requires approximately 950 bytes of memory. The non­
tape version requires approximately 450 bytes. This does not include the
parameter areas defined by the program. The 70/25 compatibility versions
require an additional 32 or 82 bytes for the nontape and tape
versions, respectively.

• The 70/15 Assembler is used to assemble the IOCS. In order to load
the assembled IOCS and establish a Device Correspondence Table, any of
the 70/15 tape or card loaders may be utilized. The 70/15 Binder routine
may be used to bind the assembled IOCS with assembled decks.

• When an inoperable-condition code setting is detected following the
attempted execution of an I/O instruction, the IOCS stores the trunk and
device numbers in standard location, $P + 5, displays an (8F) 16 in the M
register, and halts. When the IOCS detects an alarm or abnormal condition,
it transfers control to either the alarm or abnormal address.

If a parity error is encountered when reading or writing magnetic
tape, the IOCS re-reads or re-writes that portion of the tape 10 times.
If after 10 times the error is not corrected, a branch to the alarm address
takes place.

Any time the IOCS transfers control to either the alarm or abnormal
address, the address of the parameter area of the device causing the return
and the normal return address are retained in standard location $P.

• The approximate time required to initiate an I/O function by way of
the IOCS is 0.3 millisecond.

9

REPORT PROGRAM
GENERATOR (RPG)

FUNCTIONAL
DESCRIPTION

• The Report Program Generator (RPG) produces an object report pro­
gram from a procedure-oriented source language. Common report features
such as input-data selection, editing, calculating, summarizing, and control
breaks are provided by the generator.

The source program is the input to the Report Program Generator.
This input describes information concerning the input-data format, opera­
tions to be performed on the data, and the output format of the report.
The generator interprets this information and generates the machine
coding required to perform the requested functions.

Some of the features of the report program produced by the generator
are as follows:

1. A procedure-oriented language with columnar format for ease
of use.

2. Output listing showing source, object coding generated, and errors.
3. A data description section for describing input fields.
4. Reports that ,viII process fixed-size records in variable or fixed-size

batches or unbatched variable-size records.
5. Up to nine control breaks.
6. Variable heading information.
7. Variable spacing between lines of print.
8. Data selection and arithmetic calculations.
9. Truncation and rounding of data.

10. Any number of records may be combined to form one print line
and vice versa.

11. Actual machine code (own code) may be interspersed in the source
program.

12. Input data fields may be split.
13. Editing by a mask.
14. Totals printed at any given line.
15. Headings printed at top of page.
16. Multireel magnetic tape file.
The RPG is organized into two passes. The source program is passed

once and is interpreted and processed in the first pass. The first pass
consists of six phases, each of which deal with a different section of the
source program. The functions are as follows:

Phase Function

1 Interprets Environment Division information.

2 Generates input/output calls for routines required to process all files
needed by the report program.

3 Interprets data descriptions described in the Data Division.

4 Interprets format descriptions described in the Data Division.

5 Interprets all statements written in the Procedure Division.

6 Generates object code.

The second pass of the RPG binds together the generated object code
and other components of the 70/15 Programming System such as IOCS
into a standard 70/15 object program.

10

INPUT /OUTPUT
DESCRIPTION

Input

Environment Division

Data Division

Procedure Division

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Optional Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY CONTROL

TIMING

Report Program Generator

• Input to the RPG consists of source language cards. The source language
is composed of three divisions described below.

• The Environment Division contains information such as program name,
label procedures and identification, input and output media of the generator,
and records and batching configurations. Also included is the report pro­
gram output information such as size of report and number of lines per
page spacing.

• The Data Division contains a description of the input data to the report
program, and the working storages and constants that the report program
will use.

• The Procedure Division contains statements of the operations to be
performed on the input data and the output commands to be executed.

• The output of the RPG consists of an object program of standard 70/15
load cards and a listing of source-language statements and generated coding.

• Processor:
Card Reader*:
Card Punch * :
Printer* :

• Processor:

(70/15 A)
(70/237 or 70/251 with Card Read Feature)
(70/234 or 70/236)
(70/242, 70/243, or 248)

(70/15 B)
Magnetic Tape Device: (70/432, 70/442, or 70/445)

(70/221 or 70/222) Paper Tape Reader:

• The RPG can use all of the memory that is available, whether it be
4K or 8K. The RPG provides for a maximum of 80 tags for a 4K processor
and 400 tags for an 8K processor.

• The RPG and any generated object program may be loaded into memory
by way of any of the standard 70/15 loaders except the 4K RPG card
version which includes a special loader.

• The RPG observes the standard set of 70/15 program halts and accuracy
controls. In addition, all erroneous source-language statements are flagged
on the program listing.

• The appropriate compiling time for a card system will be 1 minute for
each 100 statements. This timing estimate is based on the following
equipment complement:

Model 70/15 A Processor
Model 70/237 Card Reader

Model 70/236 Card Punch
Model 70/243-1 Printer

* Magnetic Tape is an acceptable substitute for the Card Reader, Card Punch or Printer
when the total system complex includes a Magnetic Tape device.

11

LOADERS

FUNCTIONAL
DESCRIPTION

Relocatable Card Loader

Absolute/Patch
Card Loader

Absolute Card Loader

Absolute PLT Loader

Batched Absolute
PLT Loader

INPUT /OUTPUT
DESCRIPTION

• The 70/15 Programming System Loader routines accept object pro­
grams from cards or magnetic tape and load them into memory. In addition
these routines also provide for:

1. Linking common references within subprograms during the loading
of programs for execution.

2. Calling in program overlay segments.
3. Transferring to the starting location of the program after it has

been loaded.
4. Assigning actual devices to the logical devices specified by the

programmer.

5. Executing instructions outside the program area during the loading
process.

The 70/15 system 'has five loading routines that provide the programmer
with complete flexibility of operation. These routines are described below.

• Loads any program card deck into a predesignated location of memory.
This loader is the standard loader for card program processing. It occupies
the least amount of memory and performs all of the load functions normally
required for tested and bound program decks.

• In addition to loading program card decks into memory, the Absolute/
Patch Loader provides the programmer with the facility to apply program
modifications (by way of patch cards) during the loading process.

• Loads into memory any set of programs from a card reader. The
address references can be relocated relative from their originally assembled
assignments. Also, inter-program references (ENTRY's and EXTRN's)
undefined before loading are satisfied through the use of this loader. This
loader is used during the loading of relocatable card programs and there­
fore has patch facilities.

• Loads into memory any absolute program from the Program Library
Tape (PLT). This loader is the standard loader for programs on a PLT
and loads 80-character card images from tape. The library search for called
programs is facilitated through an SLC/CALL card (see table 3) which
calls upon the loader to scan, locate, and load a program from the PLT.

• Loads into memory from the Program Library Tape (PLT) programs
formatted in batched (five-per-block) card images. The reduction of the
number of inter-record gaps in a batched program results in programs
being loaded in about one-third of the time it takes to load an unbatched
program.

Input • Input to the loader routines consists of load cards read directly from a
card reader or, indirectly, in the form of card images on a Program
Library Tape.

12

Input
(Cont'd)

Loaders

Table 3 indicates the 10 load card types and the specific loaders that
use them.

Table 3. Load Card Types

Absolute Absolute

Absolute Patch Absolute Batched Relocatable
Load Card Types

Card Card PLT PLT Card

Loader Loader Loader Loader Loader

I/O DEFINE - Defines execution X X X X X
time for peripheral device linkage.

SLC/CALL - Identifies programs X X X
to be loaded and sets location coun-
ter to address of where program is
to be loaded.

EXECUTE - Set of instructions to X X X X X
be performed in card image area
(punched in EBCDIC).

PROGRAM - First card of an ob- X X X
ject program.

ENTRY - Used for external refer- X
ence linkage.

TEXT - Contains the generated ob- X X X X X
ject program.

PATCH - Used for patching pro- X X
grams with certain loaders.

EXTERN AL - Used for external X
reference linkage.

HEXADECIMAL EXECUTE - Set X X
of instructions to be performed in
card image area (punched in hexa-
decimal).

END - The last card of a program. X X X X X

Figures 2 through 4 show examples of card and tape program com­
position.

I/O DEFI NE
CARDS

END CARD

PERMITTED ONLY WITH
• ABSOLUTE/PATCH LOADER.

---------t.~ REQUIRED ONLY IF DEVICE
ASSIGNMENT MUST BE ALTERED.

Figure 2. Obiect Card Program for Standard Machine Loading

13

Input
(Cont'd)

Loaders

END CARD

--------1.,. ONE CARD FOR EACH
EXTRN STATEMENT.

PROGRAM CARD

SLC/CALL CARD

_________ ~~~ ONE CARD FOR EVERY
E N TRY S TAT E MEN T.

}
_____ -I~. REQUIRED ONLY FOR FIRST

I/O DEFINE
CARDS

PROGRAM IF MULTIPLE LOAD.

REQUIRED ONLY IF DEVICE
------~~. ASSIGNMENT MUST BE ALTERED.

Figure 3. Obiect Card Program for Relocatable Machine Loading

BOT ~ VOLUME LABEL
(BOOTSTRAP)

PROGRAM HEADER LABEL
(LOADER)

TAPE MARK

LOADER PROGRAM CARD

TEXT

TEXT

TEXT

END

TAPE MARK

END OF PROGRAM LABEL

TAPE MARK

PROGRAM HEADER LABEL

TAPE MARK

PROGRAM "A" PROGRAM CARD

TEXT

END

TAPE MARK

E NO OF PROGRAM LABEL

TAPE MARK

EITHER ABSOLUTE PLT
LOADER OR ABSOLUTE
BATCHED PLT LOADER.

PROGRAM "A" RECORDS
IN E I TH ER BATCHED OR
UNBATCHED FORMAT.

Figure 4. PLT Used by Absolute and Batched Absolute PLT Loaders

14

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Optional Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY CONTROL

TIMING

Loaders

• The output of all loaders consists of a program loaded into memory

• Processor: (70/15 A or B)
Card Reader: (70/237 or 70/251 with Card Read Feature)

• Magnetic Tapes: (70/432, 70/442, or 70/445)

• The approximate memory requirement of each loader is as follows:
Absolute Card - 200 bytes
Absolute/Patch Card - 400 bytes
Relocatable Card -1300 bytes
Absolute PLT - 600 bytes
Batched Absolute PLT - 700 bytes

The memory map for the loaders is as follows:

Byte 0-199 Reserved

Byte 200-417 (Absolute)

-613 (Absolute/Patch)

-787 Absolute/PLT)

-851 (Batched Absolute PLT)

-1543 (Relocatable)

ENTRY-EXTRN table (only with Relocatable Loader)

PLT Batch Read Area (only with Batched Absolute PLT Loader)

(Top of Memory)

• The loaders operate independently. However, input/output commands
within the Assembler are coded with logical device numbers and linked to
actual devices only at execution tinle.

• The Loaders observe the standard 70/15 aGcuracy control procedures.

• The time to load a program is dependent upon the loading device; how­
ever, the loaders operate all devices at their rated speeds.

15

CARD TO TAPE*

FUNCTIONAL
DESCRIPTION

INPUT /OUTPUT
DESCRIPTION

• The Card-to-Tape routine transcribes information from standard 80-
column punched cards to magnetic tape. The output tape file is in standard
70/15 magnetic tape format, batched 01' unbatched, labeled 01' unlabeled.
This routine also checks standard tape labels before writing information.
Multifile and multivolume files can be produced. Two output tapes may be
assigned to this routine to facilitate tape s\\rapping of the output.

Optional input may consist of variable-length paper tape records of
80 characters or less. This routine expands with spaces any paper tape
record less than 80 characters to a full 80-character record before
transcription to magnetic tape.

Five general parameters, described below, are recognized by this rou­
tine. These parameters determine the tape label form and content, and
the output-batching factor for the output data blocks.

Own-coding written by the programmer can be conveniently incorpo­
rated into the routine through the use of the Bindel' routine. Certain
symbolic entry points in the routine are available to the programmer. These
entry points are as follows:

CTCD - most significant character of card image area.
CTRT - most significant character of instruction following branch

to the program.

CTUT - most significant character of stored trailer label of the
program.

CTFL - most significant character of stored file label.

The above entry points provide access to the card image and label
areas to facilitate nonstandard label processing and input data editing.
When own-code is bound with the Card-to-Tape routine, control is given
to the programmer immediately following each physical read.

Input • Input to the Card-to-Tape routine consists of the following five param­
eter cards and the programmer's data cards:

Volume Pararneter - Directs the routine to either generate the volume
label, or not to generate the volume label, or to retain present volume label.
This parameter must be the first record.

File Param,eter - Directs the routine to generate standard 70/15
Header and End-of-File labels or to generate non labeled files. This param­
eter defines the start of a file and also contains the data batching factor.

Header Parameter (Optional) - Specifies the Header label for the
program.

Trailer Paranwter (Optional) - Specifies the Trailer label for the
program.

End of Data Parameter - Defines the end of the file and the end of
data. This parameter is the last record of the transcription deck. Figure
5 shows the composition of an input deck.

* For co-sharing operation, see Utility Routine Co-Sharing Description, page 1.

16

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Optional Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY CONTROL

TIMING

Card To Tape

• The output of this routine consists of data blocked on tape according
to the input parameters.

• Processor:
Card Reader:

Magnetic Tape Device:

(70/15 A or B)
(70/237 or 70/251 with Punch Card Read
Feature)
(70/432, 70/442, or 70/445)

• Paper Tape Reader/Punch: (70/221)

• This routine requires approximately 2,400 bytes of memory, excluding
the input area.

• The Card-to-Tape routine must be loaded into memory by way of one
of the following 70/15 loaders:

Absolute Loader
Absolute PL T Loader

• This routine performs error checking of input parameter records and
observes the standard 70/15 program halts and accuracy controls.

• Approximately 4.5 to 5 minutes are required to process an input of
2,000 cards from a 70/237 Card Reader, using a 70/432 Tape Unit as the
output device.

DATA

TRAILER

HEADER

PARAMETER

VOLUME
PARAMETER

END OF DATA

DATA

PARAMETER

------- OPTIONAL

Figure 5. Composition of an Input Deck for Card-To-Tape Routine

17

TAPE TO PUNCH*

FUNCTIONAL
DESCRIPTION

INPUT /OUTPUT
DESCRIPTION

Input

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY CONTROL

TIMING

• This routine transcribes information from a standard 70/15 labeled
magnetic tape file to standard 80-column punched cards. The input tape
file contains fixed-length 80-character records which may be batched.
Optionally, the routine can accept the following input media when magnetic
tapes are not used:

1. Standard 80-column punched cards.
2. Fixed-length, 80-character paper tape records.
3. The magnetic tape file may be multifile or multivolume. Standard

70/15 tape labels can be optionally chosen to be punched. Also, own­
coding can be conveniently incorporated into the routine through the
use of the Binder routine.

Two symbolic entry points in the routine are available for access to
the card punch area:

CPCD - most significant character of card punch area.
CPR T - most significant character of instruction following branch

to the program.
Transfer to own-code is performed after each card (including labels)

is ready to be punched. In order for own-coding to check labels, the param­
eter must request that labels be reproduced in the output card deck.

• Input consists of a program parameter card and card-image data from
either card decks or tape files.

• The output of this routine consists of card records punched in EBCDIC
card code. No tape block input smaller than 80 characters will be reproduced
on the output.

• Processor:
Card Reader:

(70/15 A or B)
(70/237 or 70/251 with Punch Card Read
Feature)

l\iagnetic Tape Device: (70/432, 70/442, or 70/445)

• This routine requires approximately 2,000 bytes of memory, excluding
the input area.

• The Tape-to-Punch routine must be loaded into memory by way of one
of the following 70/15 Loaders:

Absolute Loader
Absolute PLT Loader

• This routine performs error checking of input parameter records and
observes the standard 70/15 program halts and accuracy controls.

• Approximately 7 minutes are required to process an input of 2,000 cards
with a 70/232 Card Reader and a 70/236 Card Punch.

* For co-sharing operations, see Utility Routine Co-Sharing Description, page 1.

18

TAPE TO PRINTER*

FUNCTIONAL
DESCRIPTION

INPUT /OUTPUT
DESCRIPTION

Input

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

MEMORY
REQUIREMENTS

• This routine produces print listings of a standard, labeled file with
batched fixed-length records or unbatched variable-length records, on either
multifile volume or multivolume files.

Optionally, the routine can accept the following input media when
magnetic tapes are not used:

1. Standard 80-column cards.

2. Variable-length (12 to 161 bytes) paper tape records.

3. A record cannot be processed that is less than 12 bytes or greater than
161 bytes.

As an option, each data record can contain listing control information
governing page changing, line spacing, etc. A single parameter card informs
the routine as to which file is to be processed and how its records are
formatted. Standard 70/15 output tape labels can be optionally generated.

Own-coding can be conveniently incorporated into the routine through
the use of the Binder routine. Two symbolic entry points in the routine are
available for access to the print image area.

TPRD - most significant character of print record.

TPRT - most significant character of instruction following branch
to user.

Control is transferred to the own-code section before the printing of
each line.

• Input to this routine consists of a program parameter card and print
data derived from magnetic tape, paper tape, or card decks.

• The output of this routine consists of print lines equal to the size of the
printer buffer. If control information is supplied with each print record,
it will control the spacing and page changing. If no control information is
supplied, single spacing is provided and the program will head each page
as follows:

File Name Tape/Card to Printer Date Page No.

• Processor:
Card Reader:

Magnetic Tape Device:
Printer:

(70/15 A or B)
(70/237 or 70/251 with Punch Card Read
Feature)
(70/432, 70/442, or 70/445)
(70/242 or 70/243)

• This routine requires approximately 2,000 bytes of memory, excluding
the input area.

* For co-sharing operations, see Utility Routine Co-Sharing Description, page 1.

19

RELATED
PROGRAMMING

COMPONENTS

ACCURACY CONTROL

TIMING

Tape to Printer

• The Tape-to-Printer routine must be loaded into memory by way of
one of the following 70/15 Loaders:

Absolute Loader
Absolute PLT Loader

• This routine performs error checking of input parameter records and
observes the standard 70/15 program halts and accuracy controls.

• Approximately 3.5 to 4 minutes are required to process an input of
2,000 80-character records with a 70/432 Tape Unit and a 70/212
Printer.

20

SINGLE-PHASE
MEMORY DUMP /

SNAPSHOT

FUNCTIONAL
DESCRIPTION

INPUT / OUTPUT
DESCRIPTION

• The Single-Phase Memory Dump/Snapshot routine is a program testing
aid that prints the contents of specified memory areas at defined points in
a program cycle and upon termination of a program.

This routine is assembled with, or linked to, the program being tested.
The programmer determines the points within his program at which he
desires a printer listing of memory, and inserts a calling sequence at these
points. When program control transfers to a calling sequence, this routine
prints the contents of the memory area defined by the calling sequence and
returns control to the program.

If the program comes to a halt unexpectedly, the programmer can
activate the Memory Dump routine at the console.

Input • Input to this routine consists of:

Notes

Output

1. The contents of designated memory locations at specified times.

2. Parameters describing the boundaries of the memory areas to be
printed, and the address to which control is to be transferred after
the printing is completed. These parameters are stored in the stand­
ard $P area by the console operator or by way of the calling sequence
shown below.

The normal method of activating this routine is by a calling sequence
executed as part of the program. The programmer may insert as many
calling sequences as needed. The format for each sequence is as follows:

Name Operation Operand Comments

MVC $P(10) ,*+10 Move parameters to $P area
B SNAP Branch to dump routine
DC A(*+10) Return address
DC A(LLLL) Left-hand address
DC A(RRRR) Right-hand address
DC C'NAME' Dump identifier

If the prograll1 comes to an unexpected halt, the operator may activate
this routine at the console by inserting the parameter information into
the $P area.

• 1. The left- and right-hand addresses may be expressed either as sym­
bolic addresses or hexadecimal addresses.

2. If this routine is not assembled with the program, the symbol SNAP
must be defined as an external symbol (EXTRN).

• Output from this routine is a printer listing of specified memory areas,
delivered directly to the printer or to magnetic tape for subsequent printing.

Each 48-byte group of input data is listed on the printer as two print
lines. The first line shows the input as EBCDIC graphics, grouped into
twelve 4-byte sets. (An asterisk sYlnbol appears after the fourth and eighth

21

Output
(Cont'd)

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Optional Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY CONTROL

TIMING

Single-Phase Memory
Dump/Snapshot

set to make the displayed data convenient for reading.) The second print
line shows the hexadecimal equivalent of the 48 bytes of the first line.

Each pair of print lines is identified by showing the memory location
(in hexadecimal) of the leftmost byte.

SAMPLE OUTPUT
NAME RTN:XXXX RCA 70/15 MEMORY DUMP HSM LLLL/RRRR MM/DD/YY

0000 J 0 H N S MIT H 1 2 3 ANY S * T R E E T... * USA
D1D6C8D5 E2D4C9E3 C8F1F2F3 C1D5E8EZ E3D9C5C5 E3 E4EZC1

0030 B ILL JON E S 4 5 6 M A I N * A V E N U E.. * USA
C2C9D3D3 D1D6D5C5 E2F4F5F6 E4COC9D5 C1S5C5D5 E5C5 .. * F4E2C1

0060

OFFF

where: MM/DD/YY = date as it appears in the standard date area.
XXXX = Return address.
LLLL = THE of Memory Area that was dumped.
RRRR = RHE of Memory Area that was dumped.
NAME = Any four printable graphics desired by the

programmer.

Note: The location counter is incremented by (48) 10 for each line set of
EBCDIC graphics and hexadecimal equivalents.

• Processor: (70/15 A or B)
Printer: (70/242, 70/243, or 70/248)
Card Reader: (70/237)

• A Videoscan Document Reader (70/251) with the punch card read
feature may be substituted for the Card Reader.

A Magnetic Tape Device (70/432, 70/442, or 70/445) may be sub­
stituted for the printer.

• This routine requires approximately 900 bytes.

• This routine may be loaded into memory using any of the standard
70/15 loaders. The Program Binder routine must be used if this routine is
to be bound to the program.

• This routine observes the standard set of 70/15 accuracy controls. In
addition, a test is made of the memory limits to insure that the right-hand
end is equal to or larger than the left-hand end, and that both the left­
hand end and the right-hand end are within the size of memory.

• The speed of the output will be approximately the speed of the on-line
printer or magnetic tape station.

22

DUAL-PHASE
MEMORY DUMP /

SNAPSHOT

FUNCTIONAL
DESCRIPTION

INPUT/OUTPUT
DESCRIPTION

• The Dual-Phase Memory Dump/Snapshot routine is a program testing
aid that prints the contents of specified memory areas at defined points in
a program cycle and upon termination of a program. It is used whenever
the memory requirements of the program do not allow the Single-Phase
Memory Dump/Snapshot routine to reside in core concurrently with
the program.

This routine consists of two phases. Phase One is assembled with, or
linked to, the program being tested. The programmer determines the points
within his program at which he desires a printer listing of memory, and
inserts a calling sequence at these points. When program control transfers
to these points, this routine writes to an output device the contents of the
memory area defined by the calling sequence, and returns control to
the program.

If the program comes to a halt unexpectedly, the programmer can
activate Phase One at the console.

Phase Two, which is executed independently at a later time, edits the
output of Phase One and produces a printer listing of the contents of
memory as it existed when each calling sequence activated Phase One.

Input • Input to Phase One consists of:

Notes

1. The contents of designated memory locations at specified times.
2. Parameters describing the boundaries of the memory areas to be

printed and the address to which control is to be transferred after
the output operation is completed. These parameters are stored in
the standard $P area by the console operator or by way of the calling
sequence shown below.

The normal method of activating this routine is by a calling sequence
executed as part of the program. The programmer may insert as many
calling sequences as needed. The format for each sequence is as follows:

Name Operation Operand Comments

MVC $P(10) ,*+10 Move parameters to $P area

B SNAP Branch to dump routine

DC A(*+10) Return address

DC A(LLLL) Left-hand address

DC A(RRRR) Right-hand address

DC C'NAME' Dump identifier

If the program comes to an unexpected halt, the operator may activate
this routine at the console by inserting the parameter information into
the $P area.

• 1. The left- and right-hand addresses may be expressed either as sym­
bolic addresses or hexadecimal addresses.

2. If Phase One is not assembled with the program, the symbol SNAP
must be defined as an external symbol (EXTRN).

Input to Phase Two consists of the output produced by Phase One.
Parameters are not required for Phase Two.

23

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Optional Equipment

MEMORY
REQUIREMENTS

Dual-Phase Memory
DUlIIp/Snapshot

• Output from Phase One consists of a magnetic tape or a card file, on
which is recorded the calling sequence parameters and the unedited contents
of memory as it existed when this phase was activated.

Output from Phase Two is a printer listing of the specified memory
areas.

Each forty-eight (48) byte group of input data is listed on the printer
as two print lines. The first line shows the input as EBCDIC graphics,
grouped into twelve 4-byte sets. (An asterisk symbol appears after the
fourth and eighth set to make the displayed data convenient for reading.)
The second print line shows the hexadecimal equivalent of the 48 bytes of
the first line.

Each pair of print lines is identified by sho\ving the memory location
(in hexadecimal) of the leftmost byte.

SAMPLE OUTPUT

NAME RTN:XXXX RCA 70/15 MEMORY DUMP HSM LLLL/RRRR MM/DD/YY

0000 J 0 H N S MIT H 1 2 3 ANY S * T R E E T ... * USA
D1D6C8D5 E2D4C9E3 C8F1F2F3 C1D5E8EZ E3D9C5C5 E3 E4EZCl

0030 B ILL JON E S 4 5 6 M A I N * A V E N U E.. * USA

0060

C2C9D3D3 D1D6D5C5 E2F4F5F6 E4COC9D5 C1E5C5D5 E5C5 .. * E4E2Cl

where: MM/DD/YY = date as it appears in the standard date area.

xxx X = Return address.

LLLL

RRRR

NAME

= THE of Memory Area that was dumped.

= RHE of Memory Area that was dumped.

= Any four printable graphics desired by the
programmer.

Note: The location counter is incremented by (48) 10 for each line set of
EBCDIC graphics and hexadecimal equivalents.

• Processor:
Magnetic Tape Device:
Card Reader:
Printer:

(70/15 A or B)
(70/432, 70/442, or 70/445)
(70/237)
(70/242, 70/243, or 70/248)

• A Videoscan Document Reader (70/251) with the punch card read
feature may be substituted for the Card Reader.

A Card Punch (70/234 or 70/236) may be substituted for the printer.

• This routine uses approximately 300 bytes for phase one and 1,300 bytes
for phase two.

24

RELATED
PROGRAMMING

COMPONENTS

ACCURACY CONTROL

TIMING

Dual-Phase Memory
Dump/Snapshot

• This routine may be loaded into memory using any of the standard
70/15 loaders. The Program Binder routine n1ust be used if phase one is
to be bound to the program.

• This routine observes the standard set of accuracy controls. In addition,
a test is made of the memory limits to ensure that the right-hand end is
equal to or larger than the left-hand end, and that both the left-hand end
and the right-hand end are within the size of memory.

• The speed of the output will be approximately the speed of the on-line
printer or card punch unit.

25

TAPE EDIT

FUNCTIONAL
DESCRIPTION

INPUT /OUTPUT
DESCRIPTION

• The Tape Edit routine provides printer output of selected portions of
magnetic tape containing EBCDIC coded information. It will handle multi­
files or multivolume files. The routine has been designed as an object­
program deck to be run independent of a program. Through the use of preset
and selectable options, designated blocks, files, or programs on tape may
be printed. The parameters for the Tape Edit are entered by way of the
70/216 Input/Output Typewriter or by a parameter card.

The routine is preset to rewind to BTC and print to end of data (double
file mark); hO\,lever, the programmer has other options that can be
exercised at run time.

Input • The input to the Tape Edit routine takes two forms:

Output

Printout Example

1. The contents of a magnetic tape written in EBCDIC characters.
2. Parameters supplied by the programmer to specify the desired tape

print options.
The Tape Edit parameter area contains the following:
1. Return - The return address to end-of-job halt.
2. Option Number - Option to be executed.

3. NNN Value - Number of blocks or files to be printed.
The options that can be executed at run time are as follows:

(Preset) 1 = Rewind to BTC and print to double file mark.
2 = Rewind to BTC and print NNN blocks.
3 = Rewind to BTC and print NNN files.
4 = Back space NNN blocks and print to position.
5 = Print next N NN blocks and reposition.
6 = Unwind NNN blocks and print.
7 = Unwind NNN files and print.

The maximum input-data block size is 800 bytes for a 4K memory and
4,800 bytes for an 8K memory. Blocks exceeding the allowable sizes are
truncated.

• The output of the Tape Edit routine is the printed copy of the informa­
tion contained on a magnetic tape. All tape information is printed in block
format. The block number is printed in the left margin beside the first line
of each block. The title of the routine, the date, page number, and option
are printed at the top of the first page.

RCA 70/15 TAPE EDIT
OPTION NO.---

DATE
PAGE NO.

BBBB ecce G G G G G G G G G G G G G G G G ** ••• G G G G

HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH

BBBB - Block number.
CCCC - Character count within block.

GG - EBCDIC graphics.
HHHH - Hexadecimal equivalents.

26

EQUIPMENT
REQUIREMENTS

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY CONTROL

TIMING

• Processor:
Printer:

Magnetic Tapes:
Card Reader:

(70/15 A or B)

(70/242, 70/243, or 70/248)
(70/432, 70/442, or 70/445)

Tape Edit

(70/237 or 70/251 with Card Read Feature)

• The Tape Edit routine requires approximately 2,770 bytes of memory,
excluding the input area.

• The Tape Edit routine can be loaded into memory using any of the
standard 70/15 loaders.

• The Tape Edit observes the standard set of 70/15 accuracy controls.
Also, the routine checks to see if the block is greater than the allowable
block size, and if so, a flag is set in the print area to indicate truncation.

• The speed of output will be approximately the speed of the on-line
printer.

27

PROGRAM BINDER

FUNCTIONAL
DESCRIPTION

• The Program Binder routine binds into a single 70/15 progranl any
set of 70/15 programs derived either from card decks or 70/15 program
library tapes. The output can also be either card decks or program library
tapes. The address references can be relocated relative to their originally
assembled locations. This routine also performs a check for inter-program
reference ENTRYs and EXTRNs undefined at assembly time.

The Program Binder routine consolidates a group of programs that
would not otherwise fit into memory due to the size of the relocatable
loader and the reserved memory of the ENTRY-EXTRN table.

The Binder has three table areas in memory defined as follows:

1. ENTRY Table - This table contains the name of the entrance point
and its relocated address in the program. The nlaximum number of
ENTRY statements that the table can contain is 40.

2. EXTRN Table - This table contains the names of the external pro­
gram tags and the relocated address of the last reference to them
in the program. The maximum number of EXTRN statements that
the table can accommodate is 50.

3. LINK Table - This table supplies the Binder with information as to
where, in the program to be relocated and bound, undefined external
references exist. The maximum number of external references that
the table can contain is 59.

The following card descriptions indicate how the Binder interprets
the various loader card types.

1. SLC /CALL Card - If an address is given on the card, it is used as
the origin of the next program. If blank, the incoming subprogram
is relocated to the base of the previous subprogram.
If a name is given on the card, the routine looks on the program
tape to find a like-named program as the next subprogram to
be bound.
If the card is blank, the next subprogram is found in the card
reader. Also, the routine will either retain the present table of
ENTRY-EXTRN definitions or erase the table, depending on
parameter card information.

2. Program Card - On detection of this card, the Binder calculates
the float factor of the program by taking the difference between the
location counter and the address at which the program originally
was assembled. Only the first program card following the bind
parameter actuates the generation of a program card in the output.

3. ENTRY Card - This card directs the Binder to float the address
on the card and to transfer the ENTRY card name and address to
the ENTRY table.

4. Text Ca'rd - The Binder applies the float factor to all the relocatable
addresses on this card and then writes it out. External references
are also placed in the LINK table.

5. EXTRN Card - This card directs the Binder to float the address
on the card and add it along \vith the EXTRN card name to the
EXTRN table.

28

FUNCTIONAL
DESCRIPTION

(Cont'd)

INPUT /OUTPUT
DESCRIPTION

ProgramL Binder

6. End Card - This is the last card of an individual program and its
detection directs the Binder to process the ENTRY -EXTRN -LINK
tables if this is the last program loaded. If not, the next program
is processed.

7. Execute Card - This card causes the Binder to float all relocatable
addresses on the card.

Certain load cards are considered illegal by the Binder. These are the
I/O Define, the Hexadecimal Execute, and the Patch load cards. If one
appears in the input, the invalid card is displayed on the printer and an
error halt occurs.

Input • The input to the Binder consists of the Binder parameters and programs
on either cards or a program library tape.

Input Deck Composition

Output

BIND
PARAMETER

The Binder parameters are as follows:
1. Bind Parameter - Contains the parameter name identifier, the new

name for the bound program, sequence number, increment, and date.
2. End of Job Pararneter - Signifies end of job.

• A set of card programs to be bound are composed according to the
diagram shown in figure 6.

• The output of the Binder consists of a program in load format either
on cards or a program library tape.

END OF JOB

SLC/CALL

"A"

Figure 6. Composition of an Input Deck for Program Binder Routine

29

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Optional Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY CONTROL

TIMING

Program Binder

• Processor: (70/15 A or B)
Card Reader: (70/237 or 70/251 with Carct React Feature)
Card Punch: (70/234 or 701236)
Printer: (70/242 or 70/243)

• Magnetic Tapes: (70/432, 70/442, or 70/445).

• The memory requirement for this program is 3,646 bytes.

• Object programs produced by the Binder routine are nonrelocatable
and must be read into memory by means of the Absolute Loader or
Absolute/Patch Loader.

• This program observes the standard set of 70/15 program halts and
accuracy controls. In addition, the Binder flags any errors detected during
the program binding process.

• The time to bind a program consisting of 1,000 cards is approximately
5 minutes. This timing estimate is based on the following peripheral
equipment:

70/237 Card Reader (input)
70/236 Card Punch (output)

30

PLT UPDATE

FUNCTIONAL
DESCRIPTION

INPUT /OUTPUT
DESCRIPTION

• The PLT Update is a program tape maintenance routine that has the
facility to "perform insert, replace, delete, and extract operations on a
standard 70/15 unlabeled, single-volume, single-file tape. The records on
the file must be fixed 80-characters and may be batched. The update options
that can be performed are as follows:

1. Extract programs from a PLT to an output tape.
2. Insert programs from card decks or magnetic tape onto an existing

PLT.
3. Replace programs on a PLT with programs from card decks or tape.
4. Delete programs from a PLT in the process of generating a new PLT.
5. Modify individual programs through the insertion of text cards which

have the effect of patches.
An input deck of parameter cards and text cards directs the routine

to perform these update options. Each program to be affected can have
only one parameter option executed in any single run. However, many text
card inserts can be performed on an individual program within a run.

Input • The input to this routine consists of:

Output

1. A standard unlabeled, single-file, single-volunle program tape.
2. An optional merge source tape in above format.
3. Update parameter cards.
4. Optional modification text cards.
A description of each update parameter card is as follows:
Extract Program Parameter - Directs the routine to extract programs

from the input volume and to copy them to an output volume.
Insert Program Parameter - Directs the routine to copy the named

program from the merge source or cards onto the output volume and to copy
all other files or programs from the master input source to the output volume.

Replace Program PaTarrwteT - Directs the routine to follow the same
steps as for the Insert Program Parameter except that a program with the
same name is on the input volume and is replaced by the new program.

Delete Program, Parameter - Directs the routine to delete the named
program in this generation of a new volume.

Modify Program Parameter - Directs the routine to copy all other
programs and to process the one named in the parameter. The cards fol­
lowing this card must be text cards, that allow the programmer to replace,
insert, delete, or alter records within that program.

End of Job Parameter - Denotes the end of the parameter input.

• The output of the PLT Update routine consists of a new master PL T
tape. The output master tape is in the same format as the input.

31

EQUIPMENT
REQUIREMENTS

Minimum Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY CONTROL

TIMING

• Processor:
Card Reader:
Magnetic Tapes:

PLT Update

(70/15 A or B)
(70/237 or 70/251 with Card Read Feature)

(70/432, 70/442, or 70/445)

• The size of the update is approximately 3,200 bytes. This is excluding
input/output areas.

• This routine is loaded into memory by way of one of the following
standard 70/15 loaders:

Absolute Loader
Absolute PLT Loader

• The PLT Update observes the standard set of 70/15 accuracy controls.
In addition, the routine flags any errors that are a result of incorrect
parameter records.

• The time is approximately 1 minute for updating a master program
library tape, containing 20 programs, by inserting five new programs from
a merge tape. This timing is based on the following peripheral equipment:

70/432 Tape Unit
70/237 Card Reader

70/242 Printer
A sample program update is shown in figure 7.

32

"A" TO BE
INSERTED

INSERT
PROGRAM "A"

END OF JOB

TEXT CARDS

MOD I FY
PROGRAM "H"

ON PLT

REPLACE PROG.

UPDATE PROGRAM
LIBRARY TAPE

Figure 7. Sample Program Update

33

LI STI NG OF
PROGRAMS ON
NEW PL T AND

UPDATE
PARAMETERS

SINGLE-CHANNEL
COMMUNICATIONS

CONTROL SYSTEM

FUNCTIONAL
DESCRIPTION

• The 70/15 Single-Channel Communications Control System is a set of
routines that facilitate the reception and transmission of data between a
Spectra 70/15 Processor, equipped with a 70/652 Communication Control,
and another RCA processor, also equipped with the appropriate communica­
tion control or buffer.

The basic system consists of a combined Receive/Transmit routine.
Optional routines are available and are selectable by the programmer to
suit his operational needs. The optional routines are:

1. Automatic Dialing routine

2. Code Translation routine

3. Input/Output Typewriter/DXC routine

The Receive/Transmit routine provides the basic logic for controlling
the reception and transmission of data. The receive section of this routine
is responsible for:

1. Accepting and recognizing control characters used for coordination
and synchronization of the communication control, line, and data sets.

2. Receiving and assembling data messages.

3. Recognizing and indicating error conditions and equipment mal­
functions.

4. Acknowledging the receipt of error free messages.
5. Sending an invitation to transmit data to a location that has requested

permission to transmit.
6. Sending of the terminate sequence to the transmitter when the pro­

grammer desires to end communications and disconnect the line.
7. Transferring control to the appropriate routines at points that

require intervention, such as when a complete error free message
has been received and assembled.

The transmit section of this routine is responsible for:
1. Transmitting control character sequences for coordination and

synchroniza tion.
2. Initiating and transmitting data n1essages.
3. Recognizing control characters sent by the receiVing location in

acknowledgement of a valid transmission, invitations to transmit,
terminate sequence, etc.

4. Recognizing and indicating error conditions and equipment mal-
functions peculiar to the transmit mode.

5. Retransmitting of errored messages.
6. Transferring control to routines at points which require intervention.
7. Transmitting an invitation to transmit to the receiving location when

all the messages have been sent.
8. Transmitting the terminate sequence when the transmitter desires

to end communication and disconnect the line.
The Automatic Dialing routine is required for systems using the

70/652-26 Communication Control and the Bell Automatic Calling Unit.
This routine is responsible for the transmission of the telephone number

34

FUNCTIONAL
DESCRIPTION

(Cont'd)

INPUT /OUTPUT
DESCRIPTION

Single-Channel
Communications
C ontTol System

to the Automatic Calling Unit. When the line connection is established, this
routine transfers control to the transmit routine. If a line connection
cannot be established on the first attempt, this routine will retry to call
the remote location a specified number of times until either the connection
is established or it is determined to abandon the call based on a programmer
decision.

The Code Translation routine is optional and provides the capability of
translating messages to and from the following codes:

1. RCA 301/3301 code to EBCDIC.
2. EBCDIC to RCA 301/3301 code.
3. ASCII code (7-level) to EBCDIC.
4. EBCDIC to ASCII code (7-level).

Messages are translated to the RCA 301/3301 code and ASCII code
prior to transmission. The above codes are translated to EBCDIC as they
are received and assembled in the program input area. The translation
requirements are specified at assembly time and included in the object pro­
gram. This routine relieves the programmer of the responsibility of trans­
lating messages to and from the transmission line code of the remote
location.

The Input/Output Typewriter /DXC routine is optional but is required
if either or both of these devices are included in the equipment configura­
tion. This routine must be assembled with the Receive/Transmit routine
and provides the necessary logic to determine whether an interrupt was
caused by the Input/Output Typewriter, DXC, or the Communications
Control. When an interrupt occurs due to a service request from either the
Input/Output Typewriter or the DXC, control will be transferred to the
programmer's routine responsible for servicing these devices.

Input • The input to the Single-Channel Communications Control System has
two separate phases. The first phase consists of parameter cards that
define entry points to the programmer's routines and control information.
This data is supplied once, prior to assembly, and is assembled and included
in the object communication control routine. The following data is to be
supplied in symbolic form by the parameter cards:

1. Trunk address assigned to the 70/652.
2. Byte configuration assigned to each of the selectable control

characters:
DD1
DD2
TERlVI
ACK

3. Maximum size of the input area required (number of characters).
4. Symbolic starting location of the input area.
5. Maximum size of the output area required (number of characters).
6. Symbolic starting location of the output area. The input area can

be used if desired.

35

Input

(Cont'd)

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Optional Equipment

Single-Channel
Communications
Control System

7. Symbolic address of the programmer's routine to receive control
when a Request to Transmit has been received.

8. Symbolic address of the programmer's routine to receive control
when a complete, error-free message has been received and placed
in the program input area.

9. Symbolic address of the programmer's routine to receive control
when the transmitting location invites the receiver to transmit.

10. Symbolic address of the programmer's routine to receive control
when a Go Ahead signal (DD1) is received.

11. Retry count - the number of times to retransmit a Request to
Transmit that has not been acknowledged.

12. Count - the number of times to retransmit a message that is not
acknowledged.

13. Symbolic address of the error identifier byte.

14. Symbolic address of the programmer's routine to receive control
when an error condition is recognized and the errol' identifier byte
is stored in the designated memory area.

15. Area codes, telephone numbers, and the number of dialing digits
for systems with the Auto Call feature.

16. Dummy character to be substituted for untranslatable characters
in systems using the code translation option.

17. Trunk address assigned to the DXC if included in the system con­
figuration.

18. Trunk address assigned to the Input/Output Typewriter if included
in the system configuration.

19. Symbolic address of the programmer's routine to receive control
when a DXC causes an interrupt.

20. Symbolic address of the programmer's routine to receive control
when an Input/Output Typewriter causes an interrupt .

•
Input to the second phase, which is the operating communication routine

(object program), is in the form of data messages the programmer desires
to transmit. Message length and control characters are defined by the
parameters supplied by the programmer at assembly time.

• Output from the Single-Channel Communication Control System are
the data messages received from a remote processor. The data messages are
assembled in the area designated by the programmer.

• Processor: (70/15 A or B)

Communications Control: (70/652-25)
Card Reader: (70/237 or 70/251 with Card Read Feature)

• Communications Control: (70/652-26)
Data Exchange Control: (70/627)

Input/Output Typewriter: (70/216)

36

Optional Equipment
(Cont'd)

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY CONTROL

Single-Channel
Communications
Control Systen~

Other RCA standard peripheral devices may be selected to fit process­
ing requirements. The control and operation of these devices are the
responsibility of the program or other RCA control systems which may
be selected.

• The Single-Channel Communication Control System requires approxi­
mately 2,500 bytes of memory. This does not include the programmer's
related routines or input/output areas.

• In order to load the Single-Channel Communication System, any of the
standard RCA 70/15 loaders may be used.

• The Single-Channel Communication Control System indicates the error
conditions which are detected by the Communication Control. Error detec­
tion is performed by the Communication Control equipment and an indica­
tion of an error is given to the control system by way of the sense byte.
Interpretation of the sense byte and the coding of the error identifier byte
is a function of the control system. The programmer will be given the error
identifier byte in a designated memory area. The programmer's routine,
at this point, can determine what effect the error has on his particular
system and what action is to be taken as a result of the type of error.

37

SORT/MERGE
GENERATOR

FUNCTIONAL
DESCRIPTION

INPUT /OUTPUT
DESCRIPTION

• The Sort/Merge Generator produces sort or merge programs based on
control statements supplied by the programmer. The generated object sort
and merge programs are punched on cards or written on tape in standard
load card format.

Object sort programs produced by the Generator enable the programmer
to sort files of random records into one sequential file; object merge pro­
grams enable the programmer to merge multiple files of sequenced records
into one sequential file. Sequencing is performed on as many as twelve keys
in an input record. Records can be sorted or merged into ascending or
descending sequence, and the programmer can specify an individual order­
ing sequence for each key.

Own-code facilities allow the programmer to insert, replace, and delete
records during sort first pass, sort last pass, and merge processing.

A summary of the features which characterize the object sort and
merge programs is listed below:

1. Up to a 7 -way sort or merge is provided.
2. Standard Spectra 70 label processing is provided.
3. Input files may be labeled or unlabeled; input records may be fixed

or variable in length, blocked or unblocked.
4. Checkpoints are taken at the end of each pass to allow for restarts.
5. Tape alternation may be specified for sort input files, merge input

files, and merge output files.
6. Certain input/output work tape duplication is permitted.
7. Own-code exits are provided to allow for additional input and output

label processing, as well as sort first pass, sort last pass, and merge
record processing.

Input • Input to the Sort/Merge Generator consists of control statements which
may be followed (optional) by an object deck of own-coding.

Input to a generated sort program consists of one or more reels con­
taining homogeneous records in random sequence. Maximum input block size
is 2,048 bytes; maximum input record size is 1,024 bytes. The number of
records that can be sorted is determined by the number of records that can
be written onto one work tape during string generation, based on the
internal sort blocking factor.

Input to a generated merge program consists of two or more files
(single-reel or multireel) containing homogeneous records ordered in the
same sequence as the desired output sequence. There is no limit on the
number of records that can be merged. Maximum input block size is:

3072 - 2S
W

where: S is the output block size,
W is the way of the merge.

The maximum input record size is 1,024 bytes.

88

! " "

; t

Output

EQUIPMENT
REQUIREMENTS·

Sort/Merge Generator

Object Sorts

Object Merges

MEMORY
REQUIREMENTS

ACCURACY CONTROL

TIMING

J

, ,."r / }If'(

Sort/Merge

• Output from the Sort/Merge Generator is an object sort or merge
program in standard ~load card format. If own-code is specified, the own­
coding is bound to the output object program by the Generator.

Output from an object sort or merge program consists of a single,
sequenced file containing the sorted or merged records. The maximum
output block size for an object sort or merge is:

3072 - (TR)
2

where: T is the number of work tapes,
R is the record size.

Note: 'Tape alternation on output is allowed for object merges.

• Processor:
Card Reader:

(70/15 B)
(70/237 or 70/251 with Punch Card Read
Feature)

/3 Magnetic Tape Devices: (70/432, 70/442, or 70/445)
Card Punch:

• Processor:
Card Reader:

Printer:

(70/234 or 70/236) A magnetic tape device
may be substituted if the object sort or
merge is to be written to tape.

(70/15 B)
(70/237 or 70/251 with Punch Card Read
Feature)

13 Magnetic Tape Devices:
(70/242, 70/243, or 70/248)
(70/432, 70/442, or 70/445) Five addi­

tional magnetic tape devices may be uti­
lized to increase the efficiency of the sort.

• Processor:
Card Reader:

Printer:

(70/15 B)
(70/237 or 70/251 with Punch Card Read
Feature)

IMagnetic Tape Devices:
(70/242, 70/243, or 70/248)
As required (For an n-\vay merge, a mini­
mum of n + 1 magnetic tape devices are
required.)

• The Sort/Merge Generator makes use of the full 8K memory capacity.
The following are estimates of the memory requirements of generated sort
and merge programs. These estimates include reserved memory, but do not
provide for own-code or input/output areas:

Sort first pass - 4,500 bytes
Sort last pass - 4,200 bytes
Merge - 4,700 bytes

• Parameter cards, supplied at generation time or at object execution
time, are validated for proper format.

• The Sort/Merge Generator requires approximately 3 to 5 minutes to
generate an object sort or merge. Preliminary timing formulas for object
sorts may be found in the Spectra 70 Marketing Guide; object merges
operate at the rated speed of the magnetic tape devices.

* 0 1 11., P iii;' q J "tl tJ 1)1 IJ I Ih ill t 1

'i / J / ! I , (J' 1 ~ of . \ .~

/;"1 '!kr ';~t,~ /1 .'-1'."//' .',t l ','.; '/!)foe'C-' r.39.;...Eif."·': ..., "lt~ . 'rr" ;.,.,_ .'·;'nf:-': I'"~ I.~,,· :;';f'';: ...

t,l:., (\;71";"'1' "':',.r. rf,()(l(::,:.:;r.-:,- Lc .. · f..I) c,t."'''·(~' f~t:'I'(:E- /,i,.,'/ t.,·" 1'-'(~'\lf'L Of ~/.(t'),~'(-;.f,:: ,'/-! -. ,. __

APPENDIX A
70/15

PROGRAMMING
SYSTEM

STANDARDS

GENERAL

LIBRARY STANDARDS

Loaders

Load Card Formats

I/O Define

• System Standards for the 70/15 adhere to the Spectra 70 System Stand­
ards in that data standards, with respect to data formats and conventions,
are the same.

Label formats are also the same but label processing in the 70/15 is a
subset of the Spectra 7() label processing functions.

This section deals with the standards that are applicable to 70/15
Programming Standards. Compliance with the standards described herein
is a necessary requirement for the proper operation of the 70/15 Pro­
gramming System.

The standard elelnents are listed as follows:
1. Library Standards
2. Standard HSM Layout
3. Programming Standards
4. Operator/Machine Communication

Library standards have been established with respect to loading pro­
grams into memory and program organization. Program organization is
oriented basically towards a card library system but program library tape
organization is also provided.

Elements of the 70/15 Programming System are designed to use stand­
ard HSM locations in order to achieve efficient utilization of memory.

Programming standards for parameters and program tag assignments
have been established in order to simplify programming. In the area of
operator/machine communication, certain standard halts and error recovery
procedures have also been established for ease of operation.

• The organization of programs in the 70/15 is oriented basically towards
a card library system. The unit of program loading is the load card, read
directly from a card reader or indirectly in the form of card images on
magnetic tape.

• The following Loader routines are available for 70/15 program loading:
Absolute Loader
Absolute/Patch Loader
Relocatable Loader
Absolute PLT Loader
Batched Absolute PLT Loader

• In the format legends, a "V" in column 1 denotes a loader card while the
numeric (0-9) in column 2 denotes the particular type. The use of lower­
case type denotes variable-character content and upper-case letters and
numerics denote the use of that particular character constant. The load
cards and their formats are described below.

• This card defines execution-time, peripheral-device linkage and is used
with every loader routine when loading a program.

40

I/O Define
(Cont'd)

Programming Standards

Card Column 1 2 3 4 5 6 7 8 9 10 11 12 13 80

Legend V 0 L X X A t u a d h h gnored

where: xx - the logical device number to which the actual device is
assigned. The range of xx is 00 to 09.

tu - the actual device. The range for the actual device trunk,
t, is 0 to 5 and its unit, u, from 0 to F.

L,A - mnemonics denoting logical and actual device, respec­
tively.

a - the alternate trunk (0-5) from which the device may
also be accessed.

d - the device type being defined. The permitted content and
meaning are as follows:
0= DXC
1 = Magnetic Tape
2 = Card Reader or Videoscan Document Reader
3 = Card Punch
4 = Paper Tape Reader
5 = Paper Tape Punch
6 = On-Line Printer
7 = Input/Output Typewriter
8 = Card Reader JPunch
9 = Single Channel Communications

hh - the hexadecimal representation of the control byte to be
issued to a 7 -channel magnetic tape station to set its
mode of processing.

The various bit configurations, their meanings, and their hexadecimal
representations are shown in table 4.

Table 4. Hexadecimal Representation of Control Byte

Binary Meaning Hexadecimal

1111 0000 800, odd, pack/unpack on, translator off FO
1011 0000 556, odd, pack/unpack on, translator off BO
0111 0000 200, odd, pack/unpack on, translator off 70
1110 1000 800, odd, pack/unpack off, translator on E8
1010 1000 556, odd, pack/unpack off, translator on A8
0110 1000 200, odd, pack/unpack off, translator on 68
1110 0000 800, odd, pack/unpack off, translator off EO
1010 0000 556, odd, pack/unpack off, translator off AO
0110 0000 200, odd, pack/unpack off, translator off 60
1100 1000 800, even, pack/unpack off, translator on C8
1000 1000 556, even, pack/unpack off, translator on 88
0100 1000 200, even, pack/unpack off, translator on 48
1100 0000 800, even, pack/unpack off, translator off CO
1000 0000 556, even, pack/unpack off, translator off 80
0100 0000 200, even, pack/unpack off, translator off 40

These are the only logical bit configurations for this control byte. A
logical combination is defined as one that would not cause an error. Trying
to set both odd and even parity would be considered an error and not logical.

If 00 (or blanks) are specified, a 9-1evel tape station is assumed.

41

SLCjCALL

EXECUTE

Program

ENTRY

Programrning Standards

• This card defines the origin of the program load and identifies the pro­
gram to be loaded from tape. It is used with the Relocatable Loader, PLT
Loader, or the Batched Absolute PLT Loader.

Card Column 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 80

Legend V 1 n a m e h h h h R Ignored

where: name - the program name to be loaded next from the program
source.

hhhh - the hexadecimal address to where the program is to
be loaded.

R - A blank implies erasure and generation of a new
ENTRY -EXTRN Table. When nonblank signifies that
the loader should not erase the ENTRY -EXTRN Table
but continue to make use of it.

• This card provides for a set of instructions to be performed in the card
image area. It can be used with any of the Loader routines.

Card Column 1 2 3 4 5 6 7 10 11 71 77. 80

Legend V 2 f f f f instructions and constants Ignored

where: ffff - four EBCDIC characters representing 32 float factors
to be applied to the instructions and constants. Each
two bytes of text correspond to a float bit. If the bit is
1 the float factor will be added to the two bytes before
execution. The most-significant bit corresponds to the
most-significant pair of bytes.

• This card is the first card of an object program. Although it appears in
every program, it is only used by the PLT Loaders and the Relocatable
Loader.

Card Column 1 2 3 4 5 6 7 8 9 10 11 21 22 80

Legend V 3 n a m e a a b b date Ignored

where: name - the program name.
aa - the EBCDIC address to where the program is assem­

bled.
bb - the EBCDIC address of the highest byte + 1 of this

program.
date - the contents of the date area of memory at assembly

time.

• This card is used for external reference linkage. It corresponds to the
ENTRY source statement and is used only by the Relocatable Loader.

Card Column 1 2 3 4 5 6 7 8 9 80

Legend V 4 n a m e a a Ignored

where: name - the name of the ENTRY point being defined.
aa - the EBCDIC address where it is assembled in the

program.

42

Programming Standards

Text • This card contains the generated object program and is processed by
all loaders.

PATCH

EXTRN

Hexadecimal Execute

Card Column 1 2 3 4 5 6 7 8 9 10 11 72 73 80

Legend V 5 f f f f n a a text Ignored

where: ffff -four EBCDIC characters corresponding to 32 float bit
factors to be applied to the text. Each two bytes of text
correspond to a float bit. If the bit is 1, the float factor
is added to the two bytes before transferring them to
memory. The most-significant bit corresponds to the
most-significant pair of bytes to be assembled to an
even memory location. If the first byte of text is assem­
bled to an odd location, it is not floated.

n - is the EBCDIC number (1-62) of bytes of text to be
transferred.

aa - the address to where the first byte of text is assembled.

• This card is used basically for patching programs and is used with the
Absolute/Patch Loader and the Relocatable Loader.

Card Column 1 2 3 4 5 6 7 70 71 72 73 80

Legend V 6 h h h h patch N Ignored

where: hhhh - the hexadecimal address to where the patch area was
originally assembled.

patch - a hexadecimal representation of program text. An
EBCDIC "R" punched in the patch text will mean that
the float factor is to be added after conversion to the
four hexadecimal characters preceding it. The patch is
terminated with the first blank.

N - when present, the address in columns 3-6 is not floated.

• This card is used for external reference linkage. It corresponds to the
EXTRN source statement and is processed by the Relocatable Loader.

Card Column 1 2 3 4 5 6 7 8 9 80

Legend V 7 n a m e a a Ignored

where: name - the name of the external reference.
aa - the EBCDIC address of the assembled location of the

last reference to external name in the program.

• This card performs the same function as the Execute Card but is
normally used for executes with Patch or Relocatable Loaders.

Card Column 1 2 3 6 7 70 71 80

Legend V 8 hex execute Ignored

where: hex execute - the hexadecimal representation of the execute.
An EBCDIC "R" punched in the hexadecimal

43

Hexadecimal Execute
(Cont'd)

END

Program Organization

Cards

START

Programming Standa.rds

execute field will mean that the float factor is
to be added after conversion to the four hexa­
decimal characters preceding it. The execute is
terminated with the first blank.

• This card is the last card of an object program and is processed by
all loaders.

Card Column 1 2 3 4 5 6 7 8 9 80

Legend V 9 n a m e a a Ignored

where: name - the name of the entry point to which the Relocatable
Loader is to branch.

aa - the EBCDIC address of the assembled location to
which the loader is to branch. Blanks in this field
direct the Absolute and Absolute/Patch Loaders to
issue a read of the parameter source.

• Card program decks ready for machine loading can be either an absolute
card-deck load or a relocatable card-deck load. (See figures 8 and 9.)

END CARD

PATCH CARDS

TEXT a EXECUTE
CARDS

I/O DEF I NE
CARDS

PERMITTED ONLY WITH
ABSOLUTE / PATCH
LOADER.

REQUIRED ONLY IF DEVICE
ASS I GN MENTS MUST BE ALTERED.

Figure 8. Absolute Card-Deck Load

44

START

Programming Standards

r END CARD

PROGRAM CARD

TEXT, PATCH a
EXECUTE CARDS

EXTRN CARDS
ONE CARD FOR
EACH EXTRN SOURCE
STATEMENT.

ONE CARD FOR
ENTRY CARDS EACH ENTRY SOURCE

STATEMENT.

PROGRAM CARD

SLC/CALL
CARD

I/O DEFINE
CARD

REQUI RED ONLY FOR FIRST
PROGRAM. FOLLOWING PRO­
GRAMS WI LL LOAD AT BASE
OF PREVIOUS PROGRAM.

REQUIRED ONLY IF DEVICE
ASS I GNMENTS MU ST BE ALTERED.

Figure 9. Relocatable Card-Deck Load

45

Program Library Tape

BOT •

Programming Standards

• Programs on a Program Library Tape (PLT) are in the form of 80-
column card images on tape. These card images can be batched (five per
batch) or nonbatched.

The PLT is designed basically the same as any standard 70/15 single
volume, unlabeled file and all programs must be in ascending alpha­
numeric sequence.

For loading of programs from the PLT, the Absolute PLT Loader or
Batched Absolute PL T Loader must appear as the first program on the tape.

Figure 10 shows the Program Library Tape Load Format.

BOOTSTRAP

LOADER PROGRAM

LOADER PROGRAM

LOADER PROGRAM

LOADER PROGRAM

LOADER PROGRAM

PROGRAM "A" PROGRAM

TEXT

TEXT

+
END CARD

PROGRAM "BII PROGRAM

TEXT

TEXT

~
END CARD

TAPE MARK

TAPE MARK

CARD

CARD

EITHER ABSOLUTE PLT
LOADER OR BATCHED
ABSOLUTE PLT LOADER.

PROGRAM IIA" RECORDS
EITHER BATCHED OR
UNBATCHED.

PROGRAM "B" RECORDS.

Figure 10. Program Library Tape Load Format

46

HSM LAYOUT

Card Image Area
Locations 50-129

$P (Parameter Storage)
Locations 130-145

Parameter Constants
Locations 146-151

Programlning Standards

• Standard elements of the 70/15 Programming System are mapped into
high-speed memory according to the following standard memory locations:

-

Reserved Memory
(Locations 00-49)

Card Image Area
(Locations 50-129)

$P Parameter Storage Parameter Constants
(Locations 130-145) (Locations 146-151)

Device Correspondence Table
(Locations 152-184)

Print Date Cycle Date
(Locations 185-192) (Locations 190-195)

$LS Branch to Load Section Routine
(Locations 196-199)

$L Loader Program
(Locations 200-417 (Absolute)

613 (Absolute/Patch)
787 (Absolute PLT)
851 (Batched Absolute PLT)

1543 (Relocatable)

Processing Program

-...----- -

ENTRY-EXTRN Table (only with Relocatable Loader)
PLT Batch Read Area (only with Batched Absolute PLT Loader)

(Top of Memory)

A description of these standard memory areas follows.

• The card image area is the read-in area used by the loader when load­
ing a program from cards or magnetic tape. The loader processes the
card image in this read-in area.

• The $P area is used for temporary storage of input parameters for
program subroutines. Each subroutine utilizes this area differently but
it is conventional to place the return address in the first two bytes of
the $P area.

• 'These special constants are used by the media-to-media utility routines
and the loader. The constants are as follows:

where: L - indicates to the media-to-media routines whether a second
job is ready for concurrent 'Processing.
L -:::/= 0 - indicates no other job is ready.
L = 0 - indicates another job is ready.

47

Parameter Constants
Locations 146-151

(Cont'd)

Device
Correspondence Table

Locations 152-184

Prograrnming Standards

It is the responsibility of the operator to set L to a nonzero character.
The loader and the media-to-media routines will reset it to zero whenever
a not-ready condition exists.

S - informs the media-to-media routines about the status of
concurrent job processing.

S = 0 - means no jobs are being processed.
S = 1 - means one job is being processed.
S = 2 - means two jobs are concurrently being processed.

UM - a two-byte address that tells the loader the highest legal
address in memory, 4095 or 8191.
"UM" is interrogated by programs which adjust their
memory requirements. The contents of UM are loaded in
the process of bootstrapping the loader. An EXECUTE
card containing all the parameter constants is the means
of this loading.

00 - two binary zero bytes reserved for future use .

• The loader places an entry in the Device Correspondence Table (DCT)
by use of an I/O Define card. The DCT is a table from which an actual
peripheral device is related to a logical device number. When a logical
device is indicated in the device parameters, the 70/15 I/O Control System
uses the logical device number to locate and access the correct actual device.

The DCT allows a maximum of 10 devices (0-9) to be tabled at any
one time. There are three bytes per device. The table and the meaning of
the bytes are shown below.

Logical Device 0 1 2 9

Actual Device A B C A B C A B C A B C

Bytes ABC are broken down as follows:

A B C

4 bits 4 bits 4 bits 4 bits 8 bits

TK# U# ATK# Dev. Type Control Info.

where: TK# - the number of the device trunk (0-5).

U# - the number of the device unit O-F).

ATK# - the number of the alternate trunk by which the
device can be accessed (0-5) .

Dev. Type - is the device type as follows:
0= DXC
1 = Magnetic Tape
2 = Card Reader or Videoscan Document Reader
3 = Card Punch
4 = Paper Tape Reader
5 = Paper Tape Punch
6 = On-Line Printer
7 = Input/Output Typewriter
8 = Card Reader/Punch
9 = Single-Channel Communications

48

Device
Correspondence Table

Locations 152-184
(Cont'd)

Print Date
Locations 185-192

Cycle Date
Locations 191-195

$LS Branch
Locations 196-199

ENTRY -EXTRN Table

Programming Standards

Control Info. - is the control byte required to prime a 7 -level tape
station. It is described under the I/O Define card
format in the program library organization section.

• The Print Date area is used to store any date described by the pro­
grammer in the following format.

MM/DD/YY

where MM - two-byte month (01-12)
DD - two-byte day (01-31)
YY - two-byte year (00-99)

The date may be set up by an EXECUTE card, console operation, or pro­
gram instruction. Normally the current date is placed in the date area at
the beginning of the work day and extracted from there for individual
program needs.

• The Cycle Date is used by tape-label processing programs to determine
the security state of an interrogated tape. If the expiration date (see Tape
Label Formats) of the tape file is less than that of the contents of the
Cycle Date area, the tape may be utilized as an output tape for the program.
The Cycle Date is stored in the form:

YYDDD
where: YY - the year of the century

DDD - the date of the year

• This four-byte area contains an unconditional branch to the first instruc­
tion immediately following the loader read. This permits the program to
generate a control parameter in the card image area and then to branch
to below the read as though a parameter read had occurred.

• This table is of variable size. It is constructed from the top of memory
down. Each element corresponds to a unique ENTRY or EXTRN reference
in the program and is six bytes long. A diagram of an element follows:

4 bytes 2 bytes

name aa

where: name - a four-byte name of the ENTRY or EXTRN card
reference.

aa - the two-byte address derived from the same cards.

If the most-significant bit of aa is 1, the element corresponds to an
EXTRN element; if a zero, it corresponds to that of an ENTRY.

The address of an EXTRN elen1ent is the location of the last program
reference to the named external.

The address of the ENTRY element is the address where that refer­
enced entity is located in the program and where external reference to it
are linked.

49

PROGRAMMING
STANDARDS

Program Tag
Assignments

Parameters

Label Processing
Introduction

Label Functions

Progran~rning Standards

• Programming standards followed in the 70/15 Programming System
are described below.

• To avoid possible multiplicity of symbolic-name usage when components
of the 70/15 Programming System are assembled with the production
programs, the format of the names or tags has been restricted in each
70/15 System component. Names of entry points within the program may
have a different mnemonic value.

The programming tag or name assignments and the components to
which they apply are as follows. The "xx" may be any alphanumeric pair
of characters.

Program Tag Assignments

70/15 Programming System Name Format

Loaders LDxx
Assembler ASxx
Input-Output Control IOxx
Card-to-Tape CTxx
Tape-to-Punch CPxx
Ta pe-to-Prin ter TPxx
Memory Dumps/Snapshots MDxx
Tape Edit TPxx
Program Binder PBxx
PLT Update FUxx
Sort/Merge SMxx
Report Program Generator RPxx
Communication Control CCxx

• All input parameters to the 70/15 Programming System contain a "$"
in the first location of the record. vVhenever an end of file or end of job
parameter is required, the record must contain $EOF in its first four
locations.

Each 70/15 component compares the first four characters of every
record with the first four characters of its own parameter name set. If there
is no match, the record is assumed not to be a parameter, but a data card.

• The 70/15 Programming System permits processing the following
classification of files:

1. Standard labeled files
2. Combined labeled files
3. Nonstandard labeled files
4. Unlabeled files

Label processing of standard label files only will be provided in the
system. It is, therefore, the responsibility of each programmer to provide
label own-coding to process combined labeled files, nonstandard labeled files,
and unlabeled files .

• 1. Data Protection - The 70/15 tape label processing is designed to
perform data protection for all tapes that are to be written to. This
consists of checking the expiration date in the label against the
Cycle Date to see if the tape may be reused. The programmer has
the option to bypass this check if he so desires.

50

Label Functions
(Cont'd)

Input/Output

Peripheral Device
Definitions

Programming Standards

2. Certification - Verification that the correct input data is mounted
is also provided for. This verification is based on checking certain
items in labels such as file identification, and volume sequence number.

3. Audit Control- Audit Control is provided to verify that the correct
number of data blocks has been read by checking the block count.

Label functions are performed as follows in regards to the 70/15 Pro­
gramming System components:

Assembly,
RPG, Sort/Merge

10CS

Utility routines

Test routines

- Perform data protection for all tapes to be
written to

- Responsibility of the programmer to provide
label processing coding in his program

- Perform data protection for all tapes to be
written to. A label own-code entrance is pro­
vided for other than standard label processing.

- Labels accepted but no label functions per­
formed by these routines

System Maintenance - Perfornl data protection for all tapes to be
routines written to

Information concerning label formats will be in a Spectra 70 Systems
Standards publication.

• Except for the loaders, the input/output command within each 70/15
System component do not assume the use of actual peripheral device trunk
and unit numbers. Instead, they are coded with logical device numbers and
are linked to actual devices only at execution time. A standard function of
the loader performs these linkage assignments.

A set of I/O Define cards (one for each logical device required), when
passed throug'h the loader, sets up a Device Correspondence Table (memory
locations 152-184), that serves the I/O needs of the routine. These device
assignments must be made before the loader transfers control to the routine.

Each component in the 70/15 Programming System observes the follow­
ing standard logical device assignments:

Logical Device No.

00

01

02

03

04

05

06

07

08

09

51

Actual Device

Card Reader (or substitute)

1st (7th) Magnetic Tape input (output)

2nd (6th) Magnetic Tape input (output)

3rd (5th) Magnetic Tape input (output)

4th (4th) Magnetic Tape input (output)

5th (3rd) Magnetic Tape input (output)

6th (2nd) Magnetic Tape input (output)

7th (1st) Magnetic Tape input (output)
(or substitutes)

Card Punch (or substitute)

Printer (or substitute)

Own-Code

Compatibility From
70/15 to 70/25

70/15 Programming
Systems

Programs

Programming Standards

• Every 70/15 System component that contains an own-code option will
transfer to the own code through the use of an external reference (see
Assembler) to an instruction named "USER". If own code, containing an
instruction and entry point named "USER", is bound to the system com­
ponent, a transfer will be effected to it whenever appropriate for the
given program.

If a parameter requesting transfer to own code appears when no external
linkage has been set up, the program will come to an F2 error halt.

• Without modification, every component in the 70/15 Programming Sys­
tem can be executed on a 70/25 Processor whose peripheral devices are
connected to selector channels. Any standard 70/15 loader, with a com­
patibility card added, is used to load the 70/15 program into the 70/25.

The 70/15 Program Loader includes a provision by which certain
instructions can be added to the loader and executed at load time to con­
ditions, masks, etc., on the 70/25 for the 70/15 program.

The load procedure loads appropriate mUltiples of 4,096 into the 70/25
Base Address registers for proper program relocation.

The load procedure inhibits all interrupts before control is given to the
70/15 program or 70/15 component. The 70/15 coding must explicitly
allow only those interrupts that are legal in the 70/15 and for which the
programmer or programming system has provided interrupt-handling code.

All 70/15 programming components required by a program must adhere
to the rules for compatibility as defined for programs below.

• The programmer must explicitly allow those interrupts that are ex­
pected on the 70/15. Any other interrupt condition must be left inhibited
in the Interrupt ~ask.

The 70/15 Program logic cannot be "time dependent".
The first 50 bytes of memory must be reserved for hardware use and

cannot be used for temporary storage, etc.
The 70/15 Program cannot include core wrap-around techniques.
The 70/15 Program must not assume an I/O operation to be, complete

until it has executed either a Post Status or Sense instruction to the device.
Unused fields of 70/15 construction must contain only binary zeros.
Intentional OP Code Traps must be used carefully so that illegal 70/15

op codes which correspond to legal 70/25 op codes are not used unless
they are specifically intended.

The 70/15 Programs must appear in the standard 70/15 program
loader format.

The 70/15 Read Auxiliary and 'Vrite Auxiliary instructions must have
a correct D2 address specified.

Any 70/15 Program that can legally get I/O Request Interrupts (Input/
Output Typewriter) must allow all interrupts for the associated channel.
In order for such a program to run on the 70/25, it must include interrupt
code which explicitly verifies that an I/O interrupt is an I/O Request and
not an I/O termination. If an I/O termination interrupt is encountered,
the 70/15 interrupt code must return to the interrupted program and
effectively ignore the interrupt.

52

OPERA TORI MACH IN E
COMMUNICATION

Standard Halts

Error Recovery

Programming System

IMPLEMENT ATION
(LANGUAGE)
STANDARDS

Programming Standards

• The 70/15 Programming System permits continuous operation of the
system with minimal dependence on the operator. For those instances where
the programming system must return control to the program, a series of
standard error halts and message indicators has been designed.

• Each display byte appearing in the "M" register or from the staticizing
of a Halt and Branch instruction has a unique meaning in the 70/15 Pro­
gramming System. By observing the display character, the operator can
differentiate between the various meanings and take interpretive action.

• Standard error recovery is provided for the programmer by the 70/15
Programming System only in the case of magnetic tape operations. The
Input/Output Control System will automatically perform rereading or
erasing in the event of magnetic tape reads and/or write errors for the
specified number of times. In the event that recovery is not possible, control
will be released to the programmer for appropriate action.

In the case of all other peripherals, standard error correction or recovery
is not performed and control is immediately given to the programmer who
will supply own coding routines to effect recovery.

• Standard error recovery procedures are provided in each system com­
ponent for the applicable devices.

• With the exception of the bootstrap portion (first two cards) of the
loaders, all programs in the 70/15 System are written in the RCA 70/15
Assembly language.

53

	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53

