SPELCTRAY 70

OOO

Elv =Rl=

ASSEMBLY SYSTEM
REFERENCE MANUAL

RADIO CORPORATION OF AMERICA
. __,,7.0...:,_];5 s
(October, %%

The information contained herein is subject
to change without notice. Revisions may be
issued to advise of such changes and/or
additions.

First Printing: April, 1965
Revised: October, 1965

FOREWORD

¢ This manual provides the user with all the information necessary to
write symbolic programs in the 70/15 Assembly Language. The instruc-
tions for assembling these programs, in preparation for subsequent execu-
tion on the RCA 70/15 Processor, are included. In addition, a section on
the Input-Output Control System (IOCS) is provided. This I/O system re-
duces and simplifies the coding required for control of input/output opera-
tions. The I/0 section has been incorporated into this manual so that it
may serve as a single source for all symbolic programming references.

It is assumed that the reader is familiar with the RCA 70/15 Processor.
A complete description can be found in the RCA 70/15 Processor Refer-
ence Manual (No. 70-15-601).

INTRODUCTION

SYSTEM
REQUIREMENTS

ASSEMBLER
INSTRUCTIONS

INPUT/OUTPUT
CONTROL SYSTEM
(10Cs)

CONTENTS

.. 1
Features i i e e e e e e e e e 1
... 2
Equipment Requirements., 2
Related Programming Systems v o v i i i i i v 2
Assembly Statement Formats., 3
General Considerations 3
Rules for Characters and Symbols. 5
Name Field. e et s e e e e 6
Operation Field it e et e e 6
Operand Field i i e e e e 6
Comments Field 12
Identification Field. 12
List of Instructions. o oo 14
.. 16
Assembler Control Instructions 16
START (Start Program). v vt v vttt v ittt e e e e 16
ORG (Set Location Counter) v v v vt v v i vt e e 18
END (End of Program) 19
Definition Instructions. v v v v it it it b e 19
DS (Define Storage) ottt i i it e 19
DC (Define Constants)« . v i v i i i i i i i e et e e 20
Program Linking Instructions. 24
ENTRY (Identify Entry Point) 24
EXTRN (Identify External Symbol) 25
Extended Mnemonic Instruction 26
B (Unconrditional Branch). v v v v vt i vt v it vt e e e o 26
.. 27
Introduction i e e 27
IOCS Output o i i e e e e e e e e e e e 27
IOCS Versions . . . v v v v it it e e e e e e e e e e e e e 28
Equipment Control Capabilities. 28
Combining IOCS with User Program 29
Writing Calling Sequences and Device Parameter Area.. 32
IOCS Calling Sequences . . . v v v v v vt v o it e e e e e e e u s 33
Device Parameter Areat innn... 34
IN Calling Sequenceo i v i ennnnn 35

OUT Calling Sequencec e v vuneennnean 36

RWD Calling Sequenceo eena. 37
RWDA Calling Sequence, 37
TMRK Calling Sequence 38
CTRL Calling Sequence « v v v v v v v v v v vt v v v o v n 38

CHK Calling Sequence v v v i i vt v oo 41

INPUT/OUTPUT
CONTROL SYSTEM
(10CS) (Contd)

ASSEMBLER
PROGRAM

CONTENTS (Cont’d)

Functions of the IOCS i ittt i e e i
Exceptional Conditions i it vt v i,
Nonsimultaneous Mode IN Function
Nonsimultaneous Mode OUT Function
Simultaneous Mode IN Function
Simultaneous Mode OUT Functiont ...
CHK (Check Function) o v v i i i it it it e e et ee e
CTRL (Control Function) v i it i ..
RWDA (Rewind and Disconnect Function)
TMRK (Write a Tape Mark Function)
RWD (Rewind Function)
Programming Considerations

Device Assignment
Introduction. . . .

..............................

..............................

Device Correspondence Table eenn.

1/0 Define Cards

..............................

Designating I/O Devices . . v v v v v i v it vt et e
Trunk Status Table. i it i it et et e

Programming System Requirements

Compatibility . .
Maintenance ..
Accuracy Control

..............................

..............................

.............................

Problem Area Program Suggestions

Introduction . ..

..............................

Simultaneous Input Functions
Simultaneous Output Functions
Error Recovery on the 70/236 Card Punch

..............

..............................

Assembler Processing v v ittt ittt e e e e e e
Device Assignment/Interchangeability
Generated Object Program

Assembly Listing .
Restrictions
Compatibility

..............................

..............................

..............................

Operating Procedures,

Card Systems . .

..............................

Tape Library Systemso i it it ittt

Stacked Assemblies
Program Halts ...
Formats

1/0 Define Cards

..............................

..............................

..............................

..............................

Object Program Cards (Output)

Loader Call Card

.............................

66
66
66
67
67
69
69
70
70
71
72
72
73
73
74
76

CONTENTS (Cont'd)

LIST OF CHARTS 1. Example of Program Referencing Using Location Counter. .
2. Example of Relative Addressing Using Location Counter. . .
3. Example of Relative Addressing Using Symbols
4. Examples of Decimal Self-Defining Values
5. Examples of Hexadecimal Self-Defining Values
6. Example of Character Self-Defining Value
7. Example of START Instruction
8. Example of ORG Instruction
9. Example of DS Instruction

10. Examples of Character Constant - C
11. Example of Hexadecimal Constant - X
12. Example of Expression Constant - A
13. Example of Expression Constant - A
14. Example of ENTRY Instruction.
15. Example of Unconditional Branch Instruction
16. Device Parameter Area
17. IN Calling SeqUENCEe . . « v v v v v vt v v e e e e oo e e e o e a e
18, OUT Calling Sequence v v
19. RWD Calling Sequence v v v v v v v v vt v v v v oo o uuan
20. RWDA Calling Sequence.« . v v v vttt v vt v it e ee
21. TMRK Calling Sequence v v vt v unnnnnns
22, CTRL Calling SeqUeNCe . . .« v v v v v v v v e v o et v e aon o
23. CHK Calling Sequencet vviunennnnas
24, Simultaneous Input Functions
25. Simultaneous Output Functionsc......
LIST OF FIGURES
1. RCA Spectra 70 Assembly Program Form
2. Simultaneous Input Functions, Flow Chart
3. Simultaneous Output Functions, Flow Chart
4. 170/236 Card Punch Error Recovery Procedure, Flow Chart
5. Composed Deck for Card Systems
6. Composed Deck for Tape Library Systems
LIST OF TABLES
1. Assembly/Machine Code FormatsS.cuuue...
2. T0/15 InStructions v v v v v vt ettt e
3. Constant Formatsttt
4. Devices Controlled by IOCS i vt
5, Control Charactersot ueneeenen.
6. I/O SenSe BylesS . v v v v v v vttt e e e
7. Legitimate 7-Channel Control Byte Configuration
8. Control Bytes i i i i i i e e e e e e e e

INTRODUCTION

FEATURES

Operation Code
Mnemonics

Symbolic Addressing

Expressions

External References

¢ The 70/15 Assembly System translates a symbolic machine-oriented
source language program into a computer-recognizable object program.
The Assembler assists the programmer by reducing the amount of com-
plex details required to code in machine language and, as a result, in-
creases the efficiency of the programmer. Source language input and
object program output may be punched on cards or stored on magnetic tape.
The Assembler produces an output listing of both the source and object codes.

4 Several of the Assembler features are summarized below.

¢ Eachmachine instruction is assigned a unique mnemonic operation code
as specified in the assembly language. The programmer uses these
mnemonics instead of theless readable binary-bit configurations to specify
the desired instructions.

¢ Every memory location is available for assignment as a symbolic name
for program reference. This symbolic name allows reference to branch
points, tables, constants, and storage areas without requiring knowledge
of absolute memory addresses which will subsequently be assigned by the
Assembler.

¢ The Assembler provides the ability to combine symbols and numeric
values to form desired addresses. For example, relative addressing is a
feature of the assembler where items in the program are addressed rela-
tive to a defined symbol;i.e., an incremental or a decremental value rela-
tive to a symbolic name.

¢ The Assembler enables a program or a subprogram to reference data
and/or control information outside its boundaries. This feature is pro-
vided via a unique program symbolic name that represents the desired
reference. Thus, separately assembled subprograms may be linked to-
gether at execution time.

In addition to these features, the Assembler also has provisions for
permitting subsequent object program relocation and appropriate error
checking of source programs with associated warning flags.

SYSTEM
REQUIREMENTS

EQUIP MENT
REQUIREMENTS

RELATED
PROGRAMMING
SYSTEMS

& Minimum Equipment
Processor 1 70/15A%*, 70/15B**

Card Reader 1 70/237 or 70/251 with any punched card read
feature

Card Punch 1 70/234, 70/236
Printer 1 70/242, 70/243

Optional Equipment

Processor* 1 170/15B

Magnetic Tapes** 70/432, 70/442, 70/445
¢ The following loaders are provided for loading the 70/15 Assembly
System into memory:

Card System - 70/15 Loader AA (Absolute)

Tape Library System - 70/15 Loader AT (Absolute/PLT)
The 70/15 Tape Assembly System is designed around the utilization of

Jevice interchangeability. Even though the system is card oriented, mag-
netic tapes may be substituted for any of the following:

Assembler Program Object Program Listing
Source Input Object Program Deck

Second Pass Input

The I/O commands within the 70/15 Assembler reference the different
peripheral devices as logical devices. The logical devices are linked with
the actual devices at load time by the loaders. I1/0 Define cards (see page
53 for format description) must be included with the Loader and the Assem-
bler at load time in orderto accomplishthis linkage. The I/0 Define cards
specify, among other things, where a device is to be found (trunk and unit
number) and what type of device is to be found there (card reader, punch,
etc.). For each of the following logical device numbers, an I/O Define
card must be supplied at load time:

00 - Input Device for Pass 1 08 - Object Program Output Device
01 - Input Device for Pass 2 09 - Assembly Listing Device

Through this feature, it is readily seen that magnetic tape(s) may be
designated for any or all of the above functions.

* Card Assembly System
** Tape Assembly System

ASSEMBLY
STATEMENT
FORMATS

GENERAL
CONSIDERATIONS

¢ The 70/15 Assembly System translates symbolic machine-oriented
source language programs into machine language programs. The source
language program must conform to certain conventions, one of which is
the assembly statement format. The assembly statements are written on
RCA SPECTRA 70 coding forms (Figure 1) and occupy columns 1-71. Col-
umn 72 is unavailable tothe programmer and columns 73-80 are available
for both the program identification and statement sequencing.

A statement consists of from one to four fields. These are: the Name
field, the Operation field, the Operand field, and the Comments field.
(The Identification-Sequence field is explained on page 12.) The statement
fields are written onthe RCA SPECTRA 70 coding form left-justified within
the following columns:

Columns Field
1-4 Name field
5-9 Blank
10 - 14 Operation field
15 Blank
16 - 71 Operand and Comments fields
72 Blank
73 - 80 ID-Sequence field

¢ 1. Everystatement musthave a machine or Assembler instruction speci-

fied in the Operation field except when the entire statement line is
used for comments. The other fields may or may not be used, de-
pending on the particular instruction and the programmer's wishes.

2. Embedded blanks must not be used within the Name or Operation
fields. Blanks can only occur as a character constant or a self-
defining value within the Operand field.

3. Only one statement can be written on a coding line. A statement can
use a maximum of 71 columns and cannot be continued onto another
line of coding.

4. Column 72 cannot be used by the programmer and must be left blank.
5. When the word Blank is used in this manual in reference to the con-

tents of a column or field, it indicates that no punch is to be made in
that column or field.

DATE PAGE OF

CHARGE NO. SPECTRA 70
DATE REQ'D ASSEMBLY PROGRAM FORM PROGRAM
FLOW CHART REFERENCE PROGRAMMER
NAME OPERATION OPERAND COMMENTS IDENTIFICATION
4614748 | 49|50 51 [52[53]54]55] 56|57 58|59 |60 61 | 62| 6364|6566 |67{68]69|70 |71 |72| 73174 |75[76 | 77]78] 79|80

2(3|4{5|6]7 {8{9 10| [12[13|raf1sf16|17]18]19|20 | 21|22 |23[24]|25]26{27|28]29 (30|31 [32|33|34|35|36{37]38]39[40|41 |42|43][44} 45

58159160 |61 62|63]64]65 |66 (67 (68|69 |70|71|72] 73| 74]75]76] 77] 78] 79|80

1]2l3lals]le]7[8]9|refnr2fisfralisfis|17]18]19]20 |21 [22]23|24| 25|26 |27[28|29 |30|31 32|33 |34 35|36 37]38|39 [40 | 41] 42| 43| 44|45 |46 [47 |48 [49|50]|51 [52]53 |54} 55|56 |57

28-00-110

Figure 1. RCA Spectra 70 Assembly Program Form

wawanyy Alquassy

8IDUWLO]

RULES FOR
CHARACTERS
AND SYMBOLS

Character Set

Symbols

Examples

Defining Symbols

External Symbols

Assembly Statement
Formats

¢ The following rules govern the use of characters and symbols when
writing Assembler Statements:

¢ The character set for 70/15 Assembly Statements consists of the fol-
lowing graphics:

Alphabetic A through Z
Numeric 0 through 9
Special Characters $*+ -, ()' BLANK

¢ A symbol is a set of one to four characters used to name a statement
line. The set of characters that may be used is limited to any alphabetic
character (A through Z) or numeric character (0 through 9). In addition,
the first character of the symbol must be alphabetic. The $ precedes
special symbols that reference standard memory locations and may be
used only in the Operand field of an instruction. (See page 11.)

& Valid: MASK
A12
B
Invalid: INPUT (too many characters)
123 (first character not alphabetic)

A. 2 (decimal point is not a valid character for symbol)

¢ Symbols provide the means for referencing instructions, constants, or
storage areas and are initially defined in the Name field of a statement.
Normally, any symbol which is referenced is defined within the same pro-
gram. The 70/15 Assembly System, however, permits independently
assembled programs to reference symbols in other independently assem-
bled programs. This is accomplished via the EXTRN and ENTRY Assem-
bler Program Linking instructions.

¢ As was stated above, the 70/15 Assembly System allows a programmer
to refer to a symbol which is defined in another assembled program. This
type of symbol is called an external symbol. Any symbol that is referred
to by a statement in another assembled program is called an entry point.
An entry point can, of course, also be referenced by statements within its
own program. The programmer writes an ENTRY statement for every
entry point, and an EXTRN statement for every external symbol. The use
of this feature is meaningful only when the programs are to be loaded and
executed together. The ENTRY and EXTRN statements are described on
pages 24 and 25 respectively.

Additional Restrictions
on Symbols

NAME Field
(Columns 1-4)

OPERATION Field
(Columns 10-14)

OPERAND Field
(Columns 16-71)

Assembly Statements
Formats

¢ 1. A symbol can be defined only once per assembly. Duplicate names
are flagged and the first definition is used in all cases.

2. A symbol cannot be used as a name and an external in the same as-
sembled program.

3. The size of the processor's main storage (4K or 8K) determines the
maximum number of symbols that can be used in one program. In the
Card Assembly System, the maximum number of symbols for a 4K pro-
cessor is 90; maximum for an 8K processor is 700. The maximum
number of symbols for the Tape Assembly System is 550.

¢ In the Name field a symbol is used to identify a particular statement so
that it can be referred to by another statement. A name does not have to
be given to every statement. It should be used when the statement is to be
referred to by another statement.

Whenever a name is given, it must start in column 1 and extend no fur-
ther than column 4. If column 1 is a blank, the assembler assumes that
the statement has not been named. If column 1 contains an asterisk (*),
the entire line is considered a comment (See page 12 for the description of
the Comments field).

¢ A programming or Assembler mnemonic instruction is written in the
Operation field. This field starts in column 10. Valid mnemonics vary
from one to five characters in length. The valid programming and Assem-
bler instructions and their mnemonics are described under ""Programming
Instructions' (page 13) and "Assembler Instructions' (page 16). A blank
in column 10 will indicate an invalid instruction.

The Assembler generates a Halt and Branch instruction and four zero
bytes whenever an invalid mnemonic is specified. This allows the pro-
grammer to patch any size instruction in the area without resorting to a
separate patch area. The statement is also flagged as an error.

¢ The Operand field defines the locations, data, or device which are used
by the Operation field. The Operand field must begin in column 16. In
machine instructions, it is used to specify the second through sixth bytes
of the instruction. The format of the Operand field for an Assembler in-
struction varies according to the requirements of the machine instruction.

The Operand field is divided into subfields. Each subfield is itself called
an operand. The number of these operands depends on the instruction.

Commas are used to separate operands within a statement. It should
be remembered that blanks cannot be written within a particular operand
or between operands. When a blank is detected, it immediately terminates
the Operand field and the remaining information is treated as a comment.
If the Operand field is incomplete, the statement is flagged as an error on
the assembly listing.

Assembly Statement
Formats

OPERAND Field The most common Operand field format uses two operands. Each of

(Cont’d) | these operands represents the locations in memory that are to be used in
the execution of this instruction. For additional information concerning
the examples given in the following sections, refer to the programming
instruction formats (page 13).

Defining Operands ¢ The Operand field defines locations, data and lengths of data, or devices
which are used by the Operation field. The following sections describe the
methods by which operands may be definedin the assembly language. How-
ever, a description of the Location Counter and its function is useful at
this point.

The Location Counter ¢ The Assembler assigns locations to those statements which use or re-
serve memory areas. The Assembler keeps acounter, called the Location
Counter, to facilitate the handling of the location assignment. The Assem-
bler normally assigns consecutive locations to statements. (The START
and ORG Assembler instructions (See description under Programming
Instructions, page 16) allow the programmer to set and reset the location
counter respectively.) The Location Counter is incremented by the num-
ber of bytes required by a statement after the analysis of the statement.
The Location Counter is then pointed at the leftmost available memory
byte. Statements that are given symbolic names have their names associ-
ated with the Location Counter setting of the leftmost byte of the field re-
quired by the statement. This is then stored in a table and, when the
statement is subsequently referenced by its name in the Operand field of
another statement, the associated memory location is placed in the Operand
field of the generated-machine instruction.

Location Counter Overflow. The Assembler normally compiles programs
for a 4K or 8K memory. The Location Counter can maintain addresses up
to 65K. However, the Assembler flags any statement which sets the Loca-
tion Counter above the limit of the available memory of the processor.
The statement, nevertheless, will be processed with the excess location
Counter value.

Program References. The programmer can specify the current value of
the Location Counter as an address by writing an asterisk (*) at the ap-
propriate point in the Operand field. This is an alternative to naming the
statement and then using this name in the Operand field. The programmer
can specify relative addressing after the asterisk. The programmer should
note that the location referred to is the leftmost byte of the statement.

Chart 1. Example of Program Referencing Using the Location Counter

NAME OPERATION OPERAND COMMENTS

Viz|3fajsief7|s]e honifrzishwpsfhefrz)ia19(20 |21]22)23]24[25(26 [27|28]29]30]31 |32]33 34 [35[36 |37[38] 39|40 |4} [42[43 | 44| 45|46 |47]48 |49|50 |51 [52]53]|54]55] 56|57 [58]59)60[61 {62]63]|64]65 66|67 [68]69}70 |71
B *|+|6 JiuM|P T|O L|O|CIA|T| I|O|N A[F{T|E|R D|C
i | i
| D|C Aj((%)) G|E/NE|R|A|T|E| [A|N A [D|DIR|E|S|S C|OIN|S|T |A|N|T O|F D|C L [OCA (T I ON

Assembly Statement
Formats

Relative Addressing ¢ Using Location Counter. The programmer may assign an address value
to an operand that will be relative to the current value of the location
counter. This is done by writing an asterisk (*) at the appropriate point
in an Operand field. The programmer can then specify an address which
is equal to, greater, or less than the current Location Counter value. The
address assigned will be based on the leftmost byte location of the current
statement. The plus sign (+) is used for addition and the minus sign (-) is
used for subtraction. (See Chart 2.)

Using Symbols. Any symbol (statement name) can have an amount added
or subtracted from it. As in relative addressing usingthe current Loca-
tion Counter value, the plus sign (+) is used for addition and the minus
sign (-) for subtraction. The amount of relative addressing is expressed
by a self-defined value. The value of the relative address always repre-
sents the number of bytes. (See Chart 3.)

Chart 2. Example of Relative Addressing Using Location Counter

NAME OPERATION OPERAND COMMENTS

V1123456 |7 {89 profrifiz2ft3|rafvs|6|i7|18]19(20 [21]22]23])24|25| 26 [27]28]29|30{31 [32{33[34]35[36[37[38] 39| 40[41 |42[43|44]45|46|47{48{49[50|51|52|53|54]55]56(57[58]59|60]61 [62!63|64[65[66 67]68[69)70 |71

B(C X|'"|F|'|, *|+|4| [B{R|ANICH T|O| |N|E|X|[T| [I|N|S|T|R|U|C|T|I|OfN

Chart 3. Example of Relative Addressing Using Symbols

NAME OPERATION OPERAND COMMENTS
123115678910 nznsfiais|ie 171!1920]2121132‘2526272829303! 3203334 (35(36|37|38| 39{40|41 {42143 | 44| 45}46|47}48 |49(50}51(52|53]54|55| 56157 |58]59]60]61 [62|63|64[65]66 167[68[69{70 |71
i T
‘ MV[C AlBILUECxl gl laliLiel+ /x| 1[g[r| Molv|e| |al i1lal-lg|v|Tle| |Fl1le|ilp| [FiRloiM| TiH|E| |alR|E/A] |
* | a|D[J|alc|E[nT| |T|o| |a|B|L{E| |T|0| |a|B|L|E
MiV|C ABLE([IA),ABLEJrlA slaMle! lais! |alBlo|v Blult| |w|1|T H |plElc 1|mMa|L] [SIE|LIF
* -|D|E|F|I|N[I|N V|AL|UJE|S

Self-Defining Values

Hexadecimal

Assembly Statement
Formats

¢ Self-defining values define: relative addresses, operand length, I/0
information, and masks to the Assembler. They also provide an alterna-
tive method of defining storage addresses. They are converted by the
Assembler to their binary equivalents.

The Assembler accepts three types of self-defining values: decimal,
hexadecimal, and character. The programmer may choose any type he
desires.

¢ An unsigned decimal number can be used to further define an operand.
The value is one to four decimal-digits. The Assembler converts this
value to its binary equivalent. The length of this binary value depends on
the format of the generated-machine instructions. The number must be
represented by the set of digits zero (0) through nine (9). A value of more
than four digits will be truncated and flagged in the Assembler listing.
The excess high-order or leftmost characters will be dropped. (See
Chart 4.)

Parentheses used in Chart 4 are required by the instruction format. See
description under ""Programming Instructions' (page 13).

¢ A hexadecimal value is defined by writing the letter X followed by the
hexadecimal digits enclosed in single quotation marks. The value can
consist of from one to four hexadecimal digits. A self-defined hexadeci-
mal value of more than four digits is truncated at four digits and flagged
in the Assembler listing. The low-order or rightmost characters are
dropped. The decimal digits zero (0) through nine (9) and the alphabetic
characters A through F are the valid hexadecimal digits. Any invalid
character results in an error flag. The equivalent four-bit binary value
for each of the valid hexadecimal digits is shown on page 10.

Chart 4. Examples of Decimal Self-Defining Values

OPERAND COMMENTS
20 [21122|23{2425126 | 27/28)29|30{31 (3273334 (35|36 [37]38) 39| 40|41 |42 (43| 44|45 (46|47 48;50 51(52}53|54(55]56|57|58|59|60[81 |62|63|64|65|66 |67]68|69 707
JFIR|s|Tl, (L]|als|T| |Rr|E|alD| |A| [RiE|c|oir|D| |F|RI0IM| Ip|E|V|1 clEl |2|,| |T|RlUNIK| 1| [1]§|T|O
| ||| |T|ue| |a|r|E|A] |DIEIF|1I|5|E|D Y rR|s|T| |AlnjD! [Llals]T

2!5)1,/F|rRlOM Mlov|E| 12]2]5| |B|Y|T|E|s

]lizi),ADD(g) ADDMI#REE BlYT{Els! |olF| |PlAlCKIE D| |DIEICIT MAILL ITi0l |a} l1 2]
| -|ely|TlE| IFl1|E|L|D | B ||
(i%L,eo Mlolvie| lon|e| |B|y|T/E| [F/RloM| |Llo|clalTl1 (slal)1le] 10 ||
J‘llx l L OclAITIION (A[BLIE] | i i | il ;L_J¥

Hexadecimal
(Cont’d)

Character

Hexadecimal Digit

Assembly Statenent
Formats

Four-Bit Binary Value

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Chart 5 shows examples of hexadecimal self-defining values.

Note that the maximum of four digits refers to self-defined values and not
to a constant defined by a DC (Define Constant) See page 20.

& A character value is defined by writing the character C followed by a

single character enclosed in single quotation marks.

(See Chart 6.) The

character canbe any of the 256 combinations available in an eight-bit format.
The Assembler assumes that the character is punched in the Extended Binary-

Coded Decimal Interchange Code (EBCDIC).

The self-defined character

value ' (single quotation mark) is written as two consecutive quotation
marks within the beginning and ending single quotation marks(e.g., C''"").

Chart 5. Examples of Hexadecimal Self-Defining Values

NAME OPERATION OPERAND COMMENTS
3 (445 9 o I|2|13 141516 20|Z\ 22123]24|25 27{28[29|30(3132]33|34|35(36|3738] 39| 47|48 |49 |50 57 | 58| 59|60 |61 62]63 64 65[66 67|68|69(70 |71
T 1] T
! yc" X , A'B|LIE RIAIN|C|H| |T]O B|L|E DITIT|I E| |I MlOO[(lclon!-
i | 1Tit|o|n| {clo|plE] [1]) i
! .| |
i T M M X 1F1.0 I)T| [C|O,NJF |IG U/RA[T 1000 [UISIE{D| (AS A MA|S|K
! } 1 ! | i IR
i . i | [
— f i i —
] L] : | L
P I | : i ' [
[L | | 1 i R

Chart 6. Example of

Character Self-Defining Value

NAME OPERATION OPERAND COMMENTS
1 lz IJ Il 5 9 |0|H Ilenlu 15 wln]\a}rwlzoIzllzz|23l24|25!2¢Inlzslzolaolﬂ 122'33]34l!sl!élﬂllsl}v]lﬂ 41 Iﬂ‘ulu‘lS‘Aélnllslﬂlwlsl 52[53[54'55]“[57'58 59 |
‘ M, MIE| E{ (C/HA RiACTER 1 00,011, s ED| A Mja|S K

I
i
N
i

ictli TH

S B

I

‘
TTTTTE

1

1

| L

10

Relocatable Operands

Standard Memory
Locations

Assembly Statement
Formats

¢ The 70/15 Assembly System, along with its normal function of generating
machine code from source code, provides all the necessary control informa-
tion which would permit a program to be relocated. Provided that a relo-
catableloader is used, all operands may be relocated with the exception of
the following:

1. Self-defining values used to define absolute machine addresses.
2. Hexadecimal or character constants (see page 20, Defining Constants).
3. $P, $L, $LS

4 The following special symbols may be used to reference certain stand-

ard memory locations. They must be used in the operand field of an in-
struction and must be immediately preceded by a dollar sign ($).

Special o

Symbol Location Significance
$P 130 MSB* of subroutine parameter
$L 200 MSB of Branch to Loader
$LS 196 MSB of Branch to instruction fol-

lowing the loader read logic.
*MSB - Most Significant Byte

1. $P is the MSB of the standard memory locations which are utilized
for communication between a program and a subroutine. The
length of this area is 16 bytes and may be used by any program
which desires to pass on parameter information to a subroutine.
See '"Input/Output Control System,' for an example of its use.

2. $L is the MSB of an instruction which branches tothe Loader. Pro-
duction runs may be stacked and executed one at a time. This
may be accomplished by requiring that each program execute a
Halt and Branch to $L as its last instruction. The halt gives the
operator time to perform such functions as dismounting and
mounting tapes, etc. To execute the next program, all that the
operator need do is depress the START button.

3. $LS is the MSB of an instruction which branches to the instruction
following the loader read logic. This feature permits a program
to call in another program without having the Loader read from
the input parameter device. The initiating program accomplishes
this by moving a cardimage of a Loader call card into the Loader's
input read area and then branching to $L.S. Therefore, a program
may, based on some condition, decide to call in one program in-
stead of another. The programs to be called, are, of course,
assumed to be on a program library tape.

11

COMMENTS Field

IDENTIFICATION -
Sequence Field
(Column 73-80)

Assembly Statement
Formats

¢ The programmer can write descriptive comments within the program
statement. They are allowed strictly for documentation purposes and
they do not have any effect on the object program.

A Comments field can be specified in one of two ways. The primary pro-
cedure is to write a comment to the right of the operand field. At least
one column to the right of the last operand must be blank. In addition, the
entire statement line canbe used for comments if an asterisk (*) is written
in the first column (Column 1).

Comments must end in column 71. A second card with an asterisk in
column 1 may be used to continue the comments.

¢ The Identification - Sequence field is available for both program identi-
fication and statement sequencing. Columns 73-80 are reserved for these
functions. The Assembler does not perform a sequence check on these
columns. The first four characters (columns 73-76) areused by the As-
sembler. When written into the Start card, they are used as the name
assigned to the Identification field produced for the object program. The
last four characters (columns 77-80) are used as the start of the sequence
counter. If they are not numeric, the Assembler ignores them and sets
its sequence counter to all zeros. Every assembled instruction card will
have its sequence number derived from the sequence counter set by the
START card.

12

PROGRAMMING ¢ The 70/15 Assembly Language provides the means for symbolically
INSTRUCTIONS | representing all machine instructions. The symbolic format of these in-
structions varies according to their machine formats.

Machine instructions are aligned by the Assembler on even-byte bound-
aries. Any byte that is skipped will be set to zero.

A name or symbol can be given to any programming instruction and any
other statement may reference this symbol. The address value given to
the symbol is the address of the leftmost byte of the assembled machine
code. The length or number of bytes of each instruction can be determined
from the machine format.

The length subfields (L, Lp, Lg), expressed within the symbolic in-
structions, are always one more than the count subfield of the machine
instruction, as defined in the 70/15 Processor Reference Manual. The
symbolic representation will be the conventional decimal count. For ex-
ample, a three-character Move will have a symbolic count of three.

ASSEMBLY/ ¢ Table 1 illustrates the basic machine formats, the instructions associ-
MACHINE ated with these formats, and the format of the applicable Operand field.
CODE FORMATS

Table 1. Assembly/Machine Code Formats

Assembler Operand . . Applicable
Field Format Basic Machine Format Instructions

8 4 4 s 16 s 16 AB, AP, CP, PACK,

§1(Ly)s Sa(Lg) oP |11y 4 : SB. §p. UNPK
o 8 8 s 16 s 16 CLC, ED, XC, MVC,

5,(1), 8, o L 3 3 NC. 00

o 4 4; 16
M, s op | m IZ/ s BC

g 3 16
s, M op M s TM, HB

16

s oP ///Z S STP2

8l 4 4 16 16 RDA, RDF, RDR,
T(D), Sy, S opP T| D Sy Sy WR, WRA, WRC,
WRE, I0S
8l 4| 4 16
T(D), S oP T| D S Ps

13

LIST OF
INSTRUCTIONS

70/15 Programming
Instructions

¢ Table 2 is a listing of the instructions in order by instruction name.
The column headings of the table and their definition are described below.

Instruction Name:

Mnemonic Op:

Machine Code:

Length in Bytes:

Operand Field Format:

Example:

14

This column gives the name of the instruction.

This column gives the mnemonic operation code
for this instruction.

This column gives the hexadecimal representa-
tion of the actual machine operation code.

This column gives the actual length in bytes of
this instruction.

This column gives the symbolic format of the
operand field for this instruction.

This column gives an example of the operand
field format in Assembler language.

70/15 Programming

Instructions
Table 2. 70/15 Instructions
Length
Ins;r;.ln(i’;mn Mneg;omc MZ(;}:;:e ByItr;S Ope;zx;i itleld Example
Add Binary AB F6 6 S1(L1), So(Lg) SUM(2), ADD(2)
Add Decimal AP FA 6 S1(L31), S2(La) SUM(2), ADD(1)
Logical And NC D4 6 S1(L), Sy BCIN+1(1), NOPC
Branch on BC a7 4 M, S X'F',GOTO
Condition
C‘I’)’;‘é’iﬁ; cP F9 6 S1(Lq), So(Ls) | ABLE(3), BAKE(3)
Compare Logical CcLC D5 6 S1(L), S, ABLE(1), BAKE
Edit ED DE 6 S1(L), Sy MASK(2), DATA
Exclusive Or XC D7 6 S1(L), 8y NUM(2), ONES
Halt and Branch HB 81 4 S, M $L,X'01'
1/0 Sense 108 El 6 T(D), Sy,S, 1(1), FRST, LAST
Move MVC D2 6 5,(L), 8, TO(3), FROM
Logical Or ocC D6 6 Sl(L), Sy INTO(2), MASK
Pack PACK F2 6 S1(Ly)» Sg(Liy) FOUR(2), EGHT(4)
Post Status PS 66 4 T(D), S 1(1),*
Read Auxiliary RDA cs5 6 T(D), S;,8, 1(1), FRST,LAST
Read Forward RDF E5 6 T(D), S1 , 82 1(1), FRST,LAST
Read Reverse RDR E2 6 T(D), S;,85 1(1), FRST, LAST
Set P2 STP2 82 4 S RTRN
Subtract Binary SB F7 6 81(Ly), So(Lg) DIFF(2),SUB(1)
Subtract Decimal SP FB 6 S1(Ly), Sy(Ly) DIFF(1),SUB(1)
Test Under Mask ™ 91 4 S, M MEM,X'F1'
Unpack UNPK F3 6 81(Ly), Sy(Ly) EGHT(3), FOUR(1)
Write WR E3 6 T(D), Sq,5y 2(2), FRST, LAST
Write Auxiliary WRA C3 6 T(D), 81,89 2(2),FRST,LAST
Write Control WRC E7 6 T(D), 8,59 2(2), FRST,LAST
Write Erase WRE E4 6 T(D), Sl,S2 2(2), FRST,LAST
LEGEND
L = Length (1-256) in bytes Sy = Storage Address of Second Field
L; = Length of First Field (1-16) in bytes M - Mask (Self-defining value)
L, = Length of Second Field (1-16) in bytes
S - Storage Address T = Trunk (Self-defining value)
S, = Storage Address of First Field D = Device (Self-defining value)

15

ASSEMBLER
INSTRUCTIONS

ASSEMBLER
CONTROL
INSTRUCTIONS

START -

Start Program

¢ The Assembler instructions are used to supplement the machine in-
structions. They instructthe Assembler in the same sensethat the mach-
ine instructions instruct the machine. The Assembler instructions are
listed below and then described in detail.

Assembler Control Instructions

START - Start Program
ORG - Set Location Counter
END - End Program

Definition Instructions

DS - Define Storage
DC - Define Constant

Program Linking Instructions

ENTRY - Identify Entry Point
EXTRN - Identify External Symbol

Extended Mnemonic Instruction
B - Branch Unconditional

The Branch Unconditional is the only Assembler instruction to generate
an actual machine instruction. The Start Program, Set Location Counter,
Define Storage, and Define Constant are the only other Assembler instruc-
tions to affect the Location Counter.

¢ The START statement must be written as the first statement in a pro-
gram and it must always be present. The Name field is used to name the
program and the Operand field is used to set the Location Counter to its
initial value.

The format is as follows:

NAME OPERATION OPERAND
Symbol START A self-defining value

16

Assembler
Instructions

START - ¢ The symbol written in the Name field is considered to be an entry point.
Start Program | The name on the START card is entered in the Entry-Extrn table, thus

(Cont'd) allowing another program to refer to this program via an EXTRN state-
ment. A name consisting of four blanks is generated if a symbol is not
defined in the Name field.

A character, hexadecimal, or decimal self-defining value can be written
in the Operand field. This value is used to set the Location Counter to its
initial value. (See Chart 7.) Thusthe START Assembler instruction serves
as an ENTRY and ORG verb as well as signalling the first line of an assembly.
The value assigned must be an even-numbered byte. If it is not, the
Assemblerwill assign an even-numbered address one byte higher than the
address designated by the START instruction.

If aSTART directive is not written as the first statement or the Operand
field is blank, the Location Counter is set to zero, and the first statement
is flagged. A START Assembler instructionat any other point in the pro-
gram is disregarded from a generation viewpoint butis flagged as an error.

Chart 7. Example of START Instruction

NAME OPERATION OPERAND COMMENTS

IOIH 12113|14 35 J16 [17]18 |19 |20 [21 22 [23] 24| 25] 26 | 27| 28(29| 30|31 | 32|33 [34[35 {36 (37|38 39| 40141 [42|43]44]|45]46(47[48 |49]50|51|52]|53|54|55056|57]58|59]60])61 |862]63|64]65]66 |67 |68[69[70 (71

N S| TIA[R|T Xjr|1j0/ol" SITIA[R|T| |A|T| |LIOICJA/TII|O|N 2|5/6|)/110

~
P
B P e
-
o
<
®
<

17

Assembler
Instructions

ORG - Set Location ¢ The ORG Assembler instruction allows the programmer to change the
Counter Location Counter. It can be written at any point in the program and as
many times as desired.

The format is as follows:

NAME OPERATION OPERAND
Not Used ORG S

The new Location Counter value, S, is the same as in the machine instruc-
tions. It canbeasymbol, an asterisk (see Chart 8), or aself-defining value.
When S is a symbol, it must have been previously defined. The Location
Counter is set to the value ofthe operand. Any value less than the original
value of the Location Counter (fromthe START instruction) is consideredan
error. It is used but it is flagged in the listing. A blank or invalid operand
is disregarded and flagged in the listing. The program continues to com-
pile using the previous Location Counter setting if the operand field is in-
valid. The Name field is not used by the Assembler.

Chart 8. Example of ORG Instruction

NAME OPERATION OPERAND COMMENTS
V1213 aisfe|7 |89 [iofnjizfia|rafisfie|17fisfiof20 | 21|22 |23} 24|25 | 26 | 27} 2829 30{31 | 32|33 |34 35]36 |37| 38| 39| 40)41 [42]43|44] 45|46 |47}48 49|50 5152 [53[54|55| 56 57| 58|59 160 |61 |62|63)64 [65]6c [67]68[e9i70 |71
OIR|G *{+/1/0 0 |I|N[CIRIEA|S|E| [THIE| |L|O|C|AIT|I|O{N |C|OJUIN|T|E[R [BlY] {(J1]0[0{)|1]|0{. |T/HE| |NEX|T
* 1/0{0] |L|O|C|A|T I|ON|S| |A|R[E| |E|N:T/I/RIE|L|Y |D|I|S RE[GA/R|D E|D|

18

END - End of Program

DEFINITION
INSTRUCTIONS

DS - Define Storage

Assembler
Instructions

¢ The END assembly directive is used to indicate that all the statements
have been processed. It therefore must be the last statement in the user's
program. The END instruction is also used to indicate to the Loader the
starting location after the program has been loaded. The format of an
END instruction is as follows:

NAME OPERATION OPERAND

Not Used END S

The program starting location, S, isthe same as in the machine instruc-
tions. It can be a symbol, an asterisk, a self-defining value, or a blank.

An invalid operand is treated as a blank operand; both conditions result
in the generation of a blank address field on the load End card. The listing
contains a flag if the operand is invalid.

The Assembler generates a special output card also known as an END
card for use by the Loader.

¢ The Define Storage Assembler instruction is used to identify and re-
serve storage locations. It is the normal means of giving a name to work
and input/output areas. The format is as follows:

NAME OPERATION OPERAND

Symbol DS A decimal count of
the number of bytes
to be reserved followed
by the Symbol C.

The length of a DS operand field is only limited by the difference between
the core size and the present value of the Assembler's Location Counter.
A DS statement does not clear the storage it reserves. The Assembler
does not generate any output cards for these areas. Therefore, the user
should not expect the areatobe cleared to zeros orblanks. The Assembler
terminates the object program text card it is currently generating and
starts a new one for the first statement following the Define Storage state-
ment. The programmer reduces the size of the output deck by defining his
DS statement with as few broken sequences as possible.

Chart 9. Example of DS Instruction

OPERAND COMMENTS
1920 | 21122 (23| 24)25)|26 | 27| 28|29 (30|31 |32)33 {34 (3536|3738 39{ 40|41 142|43|44]| 45|46)47|48 |49{50[51(52|53[54|55| 5657 |58|59|60 |61 |62|63|64{s5|66]67|68)69|70 |71

C D|E|F|I NE|S| |A|N 8/0|-|B|Y|T|E S|T|O|R|A|G|E AIR[EIA C|A|[L|L|E|D "|CIA|R|D|"
T i [(
T T e

+ | | 1 § H |] I

\ P] l [T [l

1 - — + e 4 = .
| L L Ll P L Ll il

19

DC - Define Constant

Assembler
Instructions

4 This instruction is used for generating data constants within a program.
The constants specified may consist of any valid EBCDIC character, hexa-
decimal digit, or memory address. The DC instruction's statement for-
mat is as follows:

NAME OPERATION OPERAND
Symbol DC A single descriptor

or specifying the constant
Blank in one of the formats

defined below.

There are three types of descriptors for constants. Each descriptor
specifies both the type of constant, and the constant itself. The formats
of the constant descriptors are as follows:

Crz’
X'z!
A(z)
Table 3 defines the format of the three types of constants.

Table 3. Constant Formats

Description Constant Machine Format lmp!ied Length
Type in Bytes
C Character Eight-bit EBCDIC | Number of characters
within 'z' not including
quotes.
X Hexadecimal | Fixed-Point Half the number of
Binary characters within 'z'
not including quotes.
A A symbol, Fixed-Point 2
asterisk or Binary
self-defining
value

7 represents the constant, itself, and appears within quotes or parenthesis.

As shown in Table 3, the length of a constant is implied by the type of
descriptor used. The maximum length of any C or X type constant is 16
bytes. The A type constant is always assigned two bytes. If constants of
greater length are desired, they may be specified by the use of successive
DC statements.

20

Assembler

Instructions
DC - Define Constant Constants and self-defining values use the same format C'z' and X'z’
(Cont'd) (character and hexadecimal values). When these values are used as oper-

ands associated with a DC operation code, their maximum number, as
stated above, may be 16 EBCDIC characters or 32 hexadecimal numbers.
When they are self-defined values used to define relative addresses, masks,
operand lengths, etc., their maximum is four decimal characters or four
hexadecimal characters.

Character ¢ A character constant may consist of a maximum of 16 valid characters.
Constants - C Valid characters consist of punch combinations which translate into an
eight-bit EBCDIC code character. The 70/15 Processor Reference Manual
contains a list of the 256 punch combinations along with their internal
eight-bit codes and their associated printer symbols.

Each character of the constant is converted into a single eight-bit byte.
In the example below, (Chart 10, Statement 1) the constant name HER has
a length of six bytes.

Quotation marks are the legal characters inthe C-Type constant. A single
quotation mark is specified by two successive single quotation marks. (See
Chart 10, Statement 2. This constant will be assigned five bytes of memory.)

Chart 10. Examples of Character Constant - C

NAME OPERATION OPERAND COMMENTS
1 2314567!9]011 12131415161718192021222324152627282910313233303536373339404]4243«4516474849_50515251545556575059&06!626"““[“6768697071
[
HIE|R, D|C C|'|FIE[MA|LE" S|TA|T EME|NT 1
D|C C |["|I|SIN["T [t T ¢ S,TA|TEMEINT |2

21

Assembler
Instructions

Hexadecimal ¢ Hexadecimal constants may consist of, and only of, the 16 hexadecimal
Constants - X digits:

0123456789 ABCDETF

The number of digits specified in the constant should be an even number,
up to and including amaximum of 32 hexadecimal digits. Each hexadecimal
digit requires four binary bits to represent it within memory. For this
reason, hexadecimal digits are packed two per eight-bit byte in internal
storage. An example of a hexadecimal constant definition is shown in
Chart 11.

If the hexadecimal description specifies an odd number of digits, a zero
digit is appended to the leftmost end of the constant, and aflag is placed on
the statement in the listing.

If the hexadecimal descriptor specifies more than 32 digits, the left-
most 32 digits are retained and the remaining rightmost characters are
ignored. This condition causes the statement to be flagged in the listing.

Expression ¢ An expression constant is normally used to define an address. The pro-
Constants - A grammer can also use it when it is desired to define a binary constant in a
decimal format. Two bytes are always generated regardless of the value
specified. The constant is right-justified, and the leftmost byte is located
in the next available even position. A zero byte is inserted if a byte must
be skipped. The constant is defined within parenthesis. Since an expres-
sion constant is frequently used to represent an address, it is often called
an address constant. The format is as follows:

NAME OPERATION OPERAND
ADDR DC A(S)

S can be a symbol, an asterisk, or a self-defining value (see Chart 12).

Chart 11. Example of Hexadecimal Constant - X

I NAME OPERATION OPERAND COMMENTS

2|314 5|67 |89 ro|nrzfi3lrars 16171819120 {2122 | 231242526 |27 28(29)30|31 |32|33 (34 (35 (36|37 |38] 39} 40{41 4243“4546l‘74049505l52 53[54155[56(57|58|59|6061 [62[63]64[65]|66 |67 |68|69]70 |71

! b|c x|t]ol1]r i

22

Assembler
Instructions

Expression The expression constant allows a self-defining value to have one addi-
Constants - A tional feature. A minus sign (-) can precede the value. The Assembler
(Cont’d) generates the two's complement of the value within the 16 bits. Any self-
defining value that exceeds 16 bits is truncated at the high-order end and

causes a flag indication on the listing (see Chart 13).

Chart 12. Example of Expression Constant - A

NAME OPERATION OPERAND COMMENTS
1]2 3I4|s 6|7 |89 hofnziafiahis|is[i7fisfiof2o 2!22232425|26271829!303l 32|33(34(35 (36 [37]38) 39| 40{41 [42[43 [44] 45|46 47|48 |49 |50 [51 |52{53(54] 55| 56 571 58]59 |60 {61 {62[63|64[65 |66 |67 68[69[70 |71
+ 1 1
! i ! !
A|C|O: N| DC AI(|CIA R/ D|+[8:0]|) .
i

-

-
—
|

T ml l

Chart 13. Example of Expression Constant - A

NAME OPERATION OPERAND COMMENTS
V123]a(5]6[7 |89 10|11 z2|13fis|isfie (171819 |20 [21]|22]23]24)25]26 [27|28{29|30|31 [32]|33[34{35[36{37(38[39[40[41 [42[43]44|45|46[47]48 49|50 |51 [52]53]|54|55]56(57(58(59|60|61 |62|63[64)65(66]67]68|69][70 |71
TIB{L'E p|c Al(-1)! lrwrls Wit le|e/ne|rja|T/E| |a| [Biz|nla|R| Y| |clon|s|T[aln]T| |ElqlujalLl |Tlo] |1l
x|] ‘[1411111,14111111) J; | s || | L
| I I
| L _l
7 ! ‘ 1
| | | | |
‘
[T ; HEREE ‘ |

23

PROGRAM LINKING
INSTRUCTIONS

ENTRY - Identify
Entry Point

Assembler
[nstructions

¢ The ENTRY and EXTRN Assembler verbs provide the facility to load
and execute, as a unit, programs which are independently assembled. The
linkage between the program is provided by defining a symbol in one pro-
gram and referring to the symbol as an operand in the second program.
The location associated with the symbol in the defining program is called
an entry point. The references to the entry point in the other assembled
programs are called external references. Entry points are specified by
ENTRY or START instructions. External references are defined by
EXTRN instructions.

¢ An entry point is defined by an ENTRY instruction. Entry points cannot
be specified by relative addressing, therefore, each entry point must be
defined by a separate ENTRY verb. The one exception is the START in-
struction which also defines an entry point. The format is as follows:

NAME OPERATION OPERAND

Not Used ENTRY Symbol

The symbol in the Operand field must be defined in a name field some-
where within this assembly program deck. The symbol can be referred to
by other operands within this program. All ENTRY statements must fol-
low the START instruction. An invalid ENTRY statement is flagged in the
listing. An invalid statement could be caused by an undefined symbol, or
invalid operand, or anincorrectly placed ENTRY statement. (See Chart 14.)

Chart 14. Example of ENTRY Instruction

OPERAND COMMENTS

19120 | 21|22 | 23] 24]25{26 [27(28(29[30]31 (32|33 34|35 |36 137]38] 39| 40]41 [42]43 | 44| 45146 (47|48 |49|50]51[52|53[54]55| 56|57 |58]59(60 61 |62|63[64 (65|66 |67 |68]69]70 |71

El

]

24

EXTRN - Identify
External Symbol

Order of Statements

Assembler
Instructions

¢ A reference to an external symbol is defined by an EXTRN instruction.
A separate EXTRN statement must be written for every external location
referred to by a program. The format of an EXTRN statement is as
follows:

NAME OPERATION OPERAND
Not Used EXTRN Symbol

All EXTRN statements must follow ENTRY statements. If no ENTRY
statements appear, the EXTRNs must follow the START instruction. The
Name field is disregarded. An invalid EXTRN instruction is flagged in
the assembly listing. An invalid EXTRN could be caused by an invalid
operand or the improper placement of the EXTRN statement.

4 The order of statements for an assembly source program that will be
linked to other programs at object program running time must be:

START

ENTRY 1
ENTRY 2

o
ENTRY n

EXTRN 1
EXTRN 2
EXTRN o
o
o
EXTRN n

OPERATION STATEMENTS (Including DS, DC, ORG Instructions).

© O O ©O

END

25

EXTENDED
MNEMONIC
INSTRUCTION

B - Unconditional
Branch

Assembler
Instructions

¢ The Assembler recognizes a B instruction as an unconditional transfer
of control to the location specified by the Operand field. Its purpose is to
simplify the writing of Unconditional Branch instructions. The format of
an Unconditional Branch instruction is as follows:

NAME OPERATION OPERAND
Symbol B S

where: S can be a symbol, asterisk, or a self-defining value. The above

statement could also be expressed as shown in Chart 15.

Chart 15. Example of Unconditional Branch Instruction

NAME OPERATION

OPERAND COMMENTS

<

1[2!3‘4 sls 718 n)lnlulululs 16|17
T 11

19[20121 lZZ!?BlZAIZSlZﬂ 27|28 29130[3! 32|33]3‘|JS|36[37T38 39(40f41 [42 13114!15 46[471‘8[49 SOlSI 5215354 55|56 57!58 59 bﬂ]é!lél[b:& 64 65[66 67]68169!70 l7|
A ‘L T o

N AM E B:C X "iE

IR T 0 =11 T T T
S

2

]

— ; ; A D S I [

26

INPUT/OUTPUT
CONTROL SYSTEM
(10Cs)

INTRODUCTION

I0CS Output

¢ The RCA 70/15 Input/Output Control System (IOCS) is a set of related
routines that aids the programmer in programming input/output operations
for the input/output devices listed in Table 4. By including a set of coded
parameter requests (in 70/15 Assembly language) in his program, the
programmer can reduce and simplify the amount of coding necessary for
input/output operations.

The programmer supplies only the parameters in his program. The
IOCS, which at execution time is a subroutine of the user program, uses
the parameters to perform the desired input/output operations. Then
IOCS returns control to the user program.

IOCS performs error detection, but does not, however, provide the
programmer with device interchangeability. Devices must be selected by
the programmer in his program. In order that a program may operate
with a variety of input/output devices, the programmer must make pro-
visions for modifying or bypassing control functions, recognizing flag
records or processor functions, and interpreting abnormal and alarm
returns from the IOCS.

Input/output operations can be executed in a Simultaneous or a Non-
simultaneous mode. Operating in the Simultaneous mode means that pro-
cessing can occur at the same time that one or more input/output operations
are occurring. IOCS does this by using the Read Auxiliary instruction
and buffered devices. The programmer specifies to the IOCS whether or
not simultaneous or nonsimultaneous processing is to take place. (See
device parameter area page 32.)

¢ Output of the TOCS is the initiation or completion of the I/O function re-
quested. There are three results of an I/O request which are as follows:

1. Control can return to the user program's normal return address
under the following conditions:

(a) If nonsimultaneous processing is specified, control is re-
turned upon completion of the input/output operation.

(b) If simultaneous processing is specified, control is returned
upon initiation of the input/output operation. The operation
is not initiated if an error is detected from the previous
input/output operation.

2. Control is given to the user's alarm or abnormal return address
when an alarm or abnormal condition is detected.

27

1008

10CS Output (Cont'd) 3. An error halt occurs in the IOCS if aninoperable condition code is
detected upon designating the I/O device. When the error occurs,
8F is displayed in the M register on the Console. The trunk and
unit of the device designated when the error occurred is stored in
standard location $P+5.

IOCS Versions ¢ Two versions of IOCS are provided: one for systems that have magnetic
tape units, the other for systems that do not. These versions are called
the magnetic tape version, which requires approximately 950 bytes, and
the nonmagnetic tape version, which requires approximately 450 bytes.
Both versions are supplied as a deck of source language cards.

EQUIPMENT | ¢ The IOCS is capable of controlling the operation of the peripheral de-
CONTROL vices given in Table 4.

CAPABILITIES
Table 4. Devices Controlled by 10CS
Device Model

Magnetic Tape Unit 70/432-1,-2
70/442-1,-2

Magnetic Tape Station (7- or 9- channel) 70/445-1,-2

Card Reader 70/237-10,-20,-30

Videoscan Document Reader 70/251-10,-21,-22,-30

(Demand feed only.)

Paper Tape Reader/Punch 70/221-10,-11,-20,-21
Input/Output Typewriter 70/216
Card Punch 70/234-10,-11

70/236-10,-11

Bill Feed Printer 70/248-10,-11
(continuous forms only)

Printer 70/242-10,-20
70/243-10,-20

Devices not controlled by IOCS are:

1. Videoscan Document Reader, when used in any way other than
Demand Feed.

2. Bill Feed Printer, when used for card reading and card printing.

3. Reader-Punch. This is the Model 70/236 Card Punch with the
Reader-Punch option.

28

EQUIPMENT
CONTROL
CAPABILITIES
(Cont'd)

COMBINING 10CS
WITH THE USER
PROGRAM

10CS8

4. Data Exchange Control, Model 70/627.

5. Communication Control, Model 70/652.

1. The Reader-Punch can have its operations controlled by IOCS, be-
cause it is controlled by ordinary Read, Write, and Write Control
instructions. However, the timing of this device may cause it to
be controlled improperly by the I0CS.

2. The Bill Feed Printer requires special purpose routines for its
input/output.

3. The Data Exchange Control and the Communication Control both use
the interrupt feature, and the IOCS does not provide for interrupts.
(The Input/Output Typewriter, which uses the interrupt feature,
can be controlled by IOCS. However, the programmer must pro-
vice his own code for all interrupt analysis and processing.)

4. TFor the IOCS to control the Videoscan Document Reader, the fol-
lowing conditions must prevail:

(a) Only demand feed operations can be attempted.

(b) The WCM (Write Control Mandatory) key on the document
reader must be depressed for documents to be selected into
the same stacker. This causes a manual override of the
hardware stacker selection. All documents are routed to
the reject stacker.

¢ Touse the 70/15 Input/Output Control System, the programmer must
include certain coding in his program. This coding consists of two classes:
(1) the instructions needed to define the device parameter area, and (2) the
IOCS calling sequences.

A Device Parameter areais aportion of memory that must be set aside
for storing information that concerns an input/output device. One para-
meter area must be reserved for each device used by the program. The
area is reserved by including a setof Define Constant instructions, in a
specified order in the user program, which supplies information needed
by the IOCS.

An IOCS calling sequence is a set of instructions that serves the two-
fold purpose of supplying information to the IOCS and establishing a re-
entry address that enables the TIOCS to return to the user program.

The IOCS is a closed subroutine with seven ENTRY points. These
points are IN, OUT, CHK, CTRL, RWD, RWDA, and TMRK. Each entry
is made from a programmer-specified calling sequence. Based on the
entry point, the calling sequence, and the programmer-supplied device
parameters, the IOCS executes the function desired by the programmer
and returns control to a return address specified by the programmer.

29

COMBINING IOCS
WITH THE USER
PROGRAM (Cont’'d)

Linking Source 10OCS
and Source User
Program at
Assembly Time

Linking 10CS and
User Program
In Binding Run

10CS

There are three return addresses associated with each calling sequence.
These are the normal return address specified in the calling sequence, and
the alarm address, and the abnormal return address specified in the De-
vice Parameter Area.

The IOCS is incorporated into a program by any of the three following
methods:

1. Assembling the IOCS with the user program.
2. Linking the user program withthe IOCS by means of a binding run.

3. Loading the IOCS with a user program that has designated the en-
trances to the IOCS within the user's program as EXTRN's.

¢ To include the source IOCS routine in the user source program at as-
sembly time, the IOCS in source (assembly language) form can be placed
with the user's source program as one program deck (or one source pro-
gram on magnetic tape or paper tape) and assembled. It mustbe remem-
bered that this is now one source program and must contain only one START
card and one END card. Also, all ENTRY and EXTRN cards that refer to
points in the IOCS must be removed before assembly. This composite deck
is theinput to the Assembler. The output is an executable, object program
including IOCS. The output can be on cards or 80-character card images
on magnetic tape or paper tape.

¢ To link the object IOCS and object user program in a binding run the
I0CS source deck is supplied with the following ENTRY statements:

NAME OPERATION OPERAND (1)

ENTRY IN

ENTRY ouT
ENTRY RWD
ENTRY RWDA
ENTRY CTRL
ENTRY TMRK
ENTRY CHK

where IN, OUT, etc., are tags in the NAME column of the IOCS source
program entry points.

(1) All references to RWD, RWDA, and TMRK apply only to the mag-
netic tape version of the I0CS.

30

Linking 10CS and
User Program In
Binding Run (Cont'd)

Linking 10CS and
User Program at
Load Time

combines IOCS and the user object program.

10CS8

The user program must contain the following EXTRN statements:

NAME OPERATION

EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN

OPERAND

(1)
IN

ouT
RWD
RWDA
CTRL
TMRK
CHK

The I0CS (withthe ENTRY's) mustbe assembled, and the user program
(with the EXTRN's) must be assembled. Thesetwo object programs, with
appropriate parameter cards (made up by the programmer), are input to
the Binder routine supplied by RCA. Output is one object program that

¢ To link the object IOCS and object user program at load time, the I0CS
source deck is supplied with the following ENTRY statements:

NAME OPERATOR

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

OPERAND

(1)
IN

OouUT
RWD
RWDA
CTRL
TMRK
CHK

where IN, OUT, etc., are tags in the NAME column somewhere in the
IOCS source program.

(1)

All references to RWD, RWDA, and TMRK apply only to the mag-

netic tape version of the IOCS.

31

Linking 10CS and
User Program at
Load Time (Cont'd)

WRITING CALLING
SEQUENCES AND
DEVICE PARAMETER
AREA

Device Parameter Area

Simultaneity
Indicator

1008

The user program must contain the following EXTRN statements:

NAME OPERATOR OPERAND(D

EXTRN IN

EXTRN ouT
EXTRN RWD
EXTRN RWDA
EXTRN CTRL
EXTRN TMRK
EXTRN CHK

The 10CS (withthe ENTRY's) mustbe assembled, and the user program
(with the EXTRN's) must be assembled. These two object programs, with
appropriate parameter cards (made up by the user), are input to the Relo-
catable Loader (a routine supplied by RCA). Output is one object program
in memory that is ready for execution. There isno physical output, i.e.,
punched cards, magnetic tape, etc.

4 The Device Parameter area required by the Input/Output System con-
tains information pertinent to the device. A Device Parameter area must
be defined for each device throughthe use of seven Assembler statements.
(See Chart 16.) If simultaneous processing is specified, only one Device
Parameter area per device can be defined. If nonsimultaneous proces-

sing is specified, more than one Device Parameter area per device can
be defined.

¢ The entry DC A(S) , (second line of coding, Chart 16.), in the Device
Parameter area where

1l

S 0 or 00 means nonsimultaneous and

S 1 or 01 means simultaneous,

causes 2 bytes to be reserved. Only one byte (the right-most) is used for
the simultaneity indicator. The left-mostbyte is used by IOCS as a device
servicing indicator (additional to the Trunk. Status table). This device
pending indicator may have one of the following two values:

Ol16

post status and/or error checking to be accomplished.

00 16 - device has been serviced and nothing is pending.

(1) All references to RWD, RWDA, and TMRK apply only to the mag-
netic tape version of the IOCS.

32

1008

Simultaneity Normally the device pending indicator is setby the IOCS. This is done
Indicator (Cont’d) so that a check (CHK), issued before the first input/output operation
to a device, is effectively treated as a no-op. If the programmer desires
to execute a CHK function on a device before any input/output operation on
that device has beenperformed, he can set the device pending indicator on
by defining S = 11 or S = 10. Then, aninitial CHK function is executed,
rather than ignored.

I0CS Calling ¢ To execute an I/O function, the IOCS is entered by one of the following

Sequences function names from a calling sequence coded by the programmer:
IN - The IN function transfers data from input devices such as mag-
netic tape, card reader, etc., into memory.
OUT - The OUT functiontransfers datafrom memoryto output devices.
CHK - The CHK function is used to sense and to store status informa-

tion pertaining to a particular device.
CTRL

CTRL is used to perform such control functions as selecting
punch stackers, printer carriage control functions, magnetic
tape movement, etc.

RWD - The RWD function is used only to rewind magnetic tapes to BT

marker.

RWDA - The RWDA function is used only to rewind and disconnect mag-
netic tape.

TMRK - The TMRK function is used to write a tape mark for either 7-

channel or 9-channel magnetic tape.

To execute an IN, an OUT, RWD, RWDA, TMRK, or a CHK function,
the user program must move the appropriate address of the Device Para-
meter area and the normal return address to the standard area $P. It must
then execute an Unconditional Branch to the appropriate entry point in the
I/0O Control System.

To execute a CTRL function, the user program must move the address
of the Device Parameter area and normal return address to $P as above.
However, the program must also include the hexadecimal representation
for the desired control function in the calling sequence, and then execute
an Unconditional Branch to the entry point. The calling sequences are a
standard means of performing these operations.

Chart 16. Device Parameter Area

NAME OPERATION OPERAND COMMENTS
12 !]4 5|67 489 o|n2)i3]vaisrer17)18 [19(20 [21]22 23| 24[25] 26 | 27| 28129 |30{31 [32|33|34{35[36|37|38] 39] 40 |41 |42 |43 [44|45|46|47]48 49|50 [51|52[53|54|55| 56157 | 585916061 |62|63|64|65]66|67[68|69}70 |71
NAM{E DlC Al(|L|D]) Lio[GlI|c|A|L| |D|E|VII|C|E| [N|O (|oj-19 S|TIA|T EMIEINITI1
1 DI C Al(]s]) L o|-|njoIN|-|s|IIM{U|L|T|A|[N|E|OlUS| [1]|-|S|IM|UJL|T|A| N[E|O|U|S STATEVEENTZ
plc Al(ID/1]) 1l/i0] IAIRIE[A} |SIT!A|RITIIIN|G| |AID|D|R|E|S|S SITIA|T[E|MIEN|T|3
DlC A (JDI2) 1//i0) alRIE/Al {EIN/D| |A/DIDIRE|SIS jitIATELENT4
D C A|(JABINIL)) ABINOIRM|AIL| [RIE/T|U|RIN| |A/D|DRIES|S S}TATEWMENTS
DC | A (JALIRM|) AL A{R|M| |R|ET/UR[N |A|DDRESS | S|TA|TEMENT6
| Dis; 1l21c slrloirlalclE, (rlolr| Is|TlajT|uls| j1in]Flo (146-CA1RD)l sitlalTEmM[E|N|T]7

33

Device Parameter
Area (See Chart 16)

¢ Statement 1

Statement 2

Statement 3

Statement 4

Statement 5

Statement 6

10Cs

This statement contains the name that is to be used in the
calling sequences that refer to this device. The constant,
defined within the parentheses, specifies the logical device
number. The allowable values are 00-09. An actual device
is assigned to the logical device by the 1/0O Define card at
load time.

Note: The allowable values of 00-09 are imposed by the
Loader. Iftheentryis insertedby the user by some
means other than by an I/O Define card, the allow-
able values are 00-FF.

This statement contains the constant, defined within the
parentheses, that specifies whether simultaneous or non-
simultaneous processing is desired for this device. Zero (0)
indicates nonsimultaneous processing; one (1) indicates
simultaneous processing.

Note: The first byte of this two~byte constant is used as a
service-pending indicator by the IOCS. The pro-
grammer is not to refer to this byte because its con-
tents are variable.

This statement contains the value, defined within the paren-
theses, which must be the symbolic name assigned to the
starting address of the I/O area. This may be the LHE
(left-hand end) for forward operations or the RHE (right-
hand end) for reverse operations. The user program can
modify this value during program execution if desired.

This statement contains the value, defined within the paren-
theses, which must be the symbolic name assigned to the
ending address of the I/O area. This may be the RHE for
forward operations or the LHE for reverse operations. The
user program can modify this value during program exe-
cution if desired.

This statement contains the value, defined within the paren-
theses, which must be the name assigned to the first in-
struction intheuser program's abnormal return subroutine.
Control is transferred to this address under certain con-
ditions, called abnormal conditions.

This statement contains the value, defined within the paren-
theses, which must be the symbolic name assigned to the
first instruction of the user program's alarm return sub-
routine. Control is transferred to this address under cer-
tain conditions, called alarm conditions.

Note: If the programmer desires to change the alarm or
abnormal addresses in statements 5 and 6, he should
ensure that no instruction is pending before making
the change. When changing the addresses in state-

34

Device Parameter
Area (Cont'd)

The IN Calling
Sequence

Statement 7

Note:
(Cont'd)

10C8

ments 5 and 6, it must be remembered that it is
possible for the IOCS to return to either of these
returns at two different times.

This statement allocates a 12-byte working storage area in

which status information, the final A-address, and other

data are stored during program execution.

If the nontape

version of the I/O Control System is used, only four bytes
of working storage must be provided. If the magnetic tape
versionis used, statement 7 of all Device Parameter areas,
regardless of device type, must allow for a 12-byte area.

The device parameters will subsequently appear in memory as follows:

Logical |Device Simultan-| Starting | Ending | Abnormal | Alarm
Device #| Pending | eity Address| Address | Return Return
Indicator | Indicator Address |Address
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11
A-Final | Standard | I/O Working Storage for 1/0 Control
Address | Device Sense |Cyclic op Trunk | DI
Byte Byte |Parity Code |and Address
Character Device
(9 Level Tape)
+12 +13 +14 +15 +16 +17 +18 +19 +20
(Cont.)
D2 Write
Address | Control
Character
+21 +22 +23

The first 12 bytes are the parameters defined by the programmer.

The

second 12 bytes are reservedbythe programmer and filled in by the IOCS.
If the nontape version is being used, only four bytes are reserved by the
program and used by the IOCS.

After termination of every operation, or when control is returned to either
the abnormal or alarm addresses, the A-final address, the standard de-
vice byte, and the I/0 sense byte areposted in the Device Parameter area
for that device. In magnetic tape operations, the entire I/O instruction is
stored in bytes +17 -- +22 for error recovery (rollback) procedures.

¢ The IN calling sequence, requiredto execute aninput function, is shown
in Chart 17.

This statement contains a Move instruction that transfers
the return address (specified by Statement 3) and the ad-
dress of the Device Parameter area (specified by State-
ment 4) to the standard area $P.

Statement 1

35

10CS

The IN Calling Statement 2 This statement contains an Unconditional Branch to the IN
Sequence entry point of the IOCS.
(Cont’d)

Statement 3 This statement contains the address to which control is re-
turned under normal circumstances.

Statement 4 This statement contains the name assigned to the Device
Parameter area describing the device to which this com-
mand is issued.

The OUT Calling ¢ The OUT calling sequence, required to execute an Output function, is
Sequence shown in Chart 18.

Statement 1 This statement contains a Move instruction that transfers
the return address (specified by Statement 3) and the ad-
dress of the Device Parameter area (specified by Statement
4) to the standard area $P.

Statement 2 This statement contains an Unconditional Branch to the OUT
entry point of the IOCS,

Statement 3 This statement contains the address to which control is re-
turned under normal circumstances.

Statement 4 This statement contains the name assigned to the Device
Parameter area describing the device to which this com-
mand is issued.

Chart 17. IN Calling Sequence

NAME OPERATION OPERAND COMMENTS
V23|45 (6|7 (8|9 hofufizizfre|1s[16(17]18 |19 (20 | 2122 |23f24|25(26[27(28]2930{31|32(33 (34|35 (36 [37]38(39|40 (43 |42[43[44[45|46 |47 48 |49[50 {51 (52|53 5455|5657 }58|59|60 {61 |62{63|64[s5]66 |67 68|69}70 |71
I MViC (Japi, Ixl+nlol iMolvie! ‘4l IBYITEIS TiOL S T AT EMIE{NIT
| |
: B I|N RAINICH|l ITIO} TIN ST AT EMIEINIT 2
J I DiC (R4 RiN Ll RIE/TUR N| [AIDDRIEIS|S STAITEMIENIT|3
| | ! i i i
SN T I DiC| (INIAMIED)| pIDIRIE|S|s| lolF| DIE|viIICIE! [PIA'RIAMIEIT[EIR| AREA IswlalrEMiE IN|T j4
EERERRREEE BEEEERRE [R I 1 | ‘ [
Eniamin O]
B | L Ll L . O A O
EEIENEREEE BEREER | NERRRERNRNEEED
L | | L1 L | | L
Chart 18. OUT Calling Sequence
NAME OPERATION OPERAND COMMENTS
V023 (a5 |e]7 |8}9 pofnpzpiajicfis|ie I7\0\920I2122]132125 26(27|28{29]30{31 3233343513431!35]9404![4141[“[45 4614748 4950|S! 521535‘ 55156]571585960—13 62]63'6165[66 67]6869170 {71
i Pt T R T A NEREE
MVIC ${PLC4) I * H 10| IMOIVIE| 4} [BY TIES| (TlO| |$iP| S TIAIT/EIMIENITI]
B ojul T, B[RIAIN|CH| |T{0] |OJU|T | | |siT/A|T/E|M|EIN|T|2
D A (JRITIRN|) NjcRMIAIL| |RIE|T|UR|N| |A|DIDIRIE|S|S || SFTATEMENTB
D Al(INJAIME alpiplrielsls! lo|r| {pie|v|riclel 'plalriamMElT|EIR] [ARIElA i‘SjTAT’E*MENTz.
i 1 !
i
| | 4 |
! ! T 1
! ! ! |
| | |
11 | I | I

36

10cs

The RWD Calling ¢ The RWD calling sequence, requiredto execute a magnetic tape rewind
Sequence to BT markers is shown in Chart 19.

Statement 1 This statement contains a Move instruction that moves the
normal return address (specified by Statement 3), and the
address of the Device Parameter area (specified by State-
ment 4), tothe standardlocationin lower memory called $P.

Statement 2 This statement contains an Unconditional Branch to the RWD
entry point of the IOCS.

Statement 3 This statement contains the address to which control is re-
turned after the RWD operation is completed.

Statement 4 This statement contains the name assigned to the Device
Parameter area that defines the device to which this com-
mand is issued.

RWDA Calling ¢ The RWDA calling sequence, required to execute a magnetic tape rewind
Sequence and disconnect, is shown in Chart 20.

Statement 1 This statement contains a Move instruction which moves
the normal return address (specified by Statement 3) and
the address of the Device Parameter area (specified by
Statement 4) to a standard location in lower memory called
$P.

Statement 2 This statement contains an Unconditional Branch to the
RWDA entry point of the IOCS.

Chart 19. RWD Calling Sequence

NAME OPERATION OPERAND COMMENTS
12 3[‘ s|(6({7 |89 hofn|2f13[rafis|re]17]r8]i9{20 |21 21[2]124 25| 26127]28|29| 30|31 (32|33 |34 |35 36]|37]38]| 39| 40|41 [42|43 | 44| 45| 46]47|4a8|49]50]51 (525354]|55] 5657 |58]59|60|61 }62]|63|64|65|66]167]68]69]70 |71
! Mlv|c sIPl (4|), [* +1]0 Mlolv|E| [4| [B|Y|TIE[S| {Ti0]| l$|P s|TlalT/E|ME/N|T1
L] B R|W|D B Nlcln Q D siTlalT ElM{EN|T]2
D al (IR TIR N) Nlolr mlalL E|T|U DR E[s|S S|T|A T|E|M|E|N|T|3
DiC al(n|alME]) a|p|plrEls|s| |o|r| |piE|vi1|clE| |Pla[R|alME|T|E[R] |A|R|EA stlalT|E/MEINT|4

Chart 20. RWDA Calling Sequence

NAME OPERATION OPERAND COMMENTS

1V 2 afais|s|7|8]9ojnzp3friafis|is|17]18]19|20 |21]22(23[24]25)| 26 |27]28[29|30(31 [32[33134]35|36[37[38] 39| 40141 [42]43]44| 45|46 |47]48 [49]50(51]52|53]54 55| 56|57 |58/59]|6061 [62|63|64|65(6667|68]69]70 71
M|V C $iPi(al)), | * +1/0 IMlO|VIEl |4 |B/YTIBS |T|0] [$[P STATEMENT%
- B R{ W] Di A| B/ RIAIN T/ O |R{W DA SIT/A|T E[ME[N/T|2
} DiC Al (IR|T|RIN|) N{O|R{M/A|L| |RIEIT/U RN |AIDD|IRE|S]|S SITIA|T, E{ M| L T] 3]
D C Al (INJAIME!) AID DIRES S [0F|. E|VII|CIE] (PiA AlMETER |a|rlEA sitlalt El M El n| T/ 4]
! L ! L

T ;

u

T

[

L

37

10cs

RWDA Calling Statement 3 This statement contains the address to which control is re-
Sequence turned after the RWDA operation is completed.
(Cont’d)
Statement 4 This statement contains the name assigned to the Device
Parameter area that defines the device to which this com-
mand is issued.

The TMRK Calling ¢ The TMRK calling sequence, required to write a tape mark (either 7-
Sequence or 9-channel) on magnetic tape, is shown in Chart 21.

Statement 1 This statement contains a Move instruction that moves the
normal return address (specified by Statement 3) and the
address of the Device Parameter area (specified by State-
ment 4) to a standard location in lower memory called $P.

Statement 2 This statement contains an Unconditional Branch to the
TMRK entry point of the IOCS.

Statement 3 This statement contains the address to which control is re~
turned after the TMRK operation is completed.

Statement 4 This statement contains the name assigned to the Device
Parameter area that defines the device to which this com-
mand is issued.

The CTRL Calling ¢ The CTRL calling sequence, requiredto execute awrite control function,
Sequence is shown in Chart 22.

Statement 1 ~ This statement contains a Move instruction that moves the
normal return address (specified by Statement 3), the ad-
dress of the Device Parameter area (specified by Statement

Chart 21. TMRK Calling Sequence

NAME OPERATION OPERAND COMMENTS
1 2[3 4 (5167 (89 [10frif12p3f1afisfiefi7[18 I92OIZI 22)23}24(25(26 272812913031 |32|33 3435363738 39(40 |41 |42|43 44| 45|46 47148 [49(50 |51 (52§53]|54|55|56[57[58[59|60 |61 [62[63[64|65[66|67|68]69]70 |71
— ! t
| H i
Mvlc stel(lal), [*i+110; Mlo[v'E| |4! IB\YITIE[S| |TIO P S.T|A|T E M E/ N T|L]
; : !
i i Pt L.
B \ TMR}K ‘ | .—BIR A;N,c,ﬁ‘fgr,rj‘m;gl(L -t P T‘*A"'ﬁ#i LS TIATEMENT2
| Lol ol [| | [- ; Pl I -
; D C | AMFQJ‘R;'T:RI\) L INJORIM A L éE\T:U\R‘I\ A D D/RIE:S|S| | | i i i i S TAT EMENT 3
- D.C, | [AJUNAME) | | /A1D|DIREISIS| O Fl |D g‘y I,CiE| \PwA<R\ATM}ETE&‘, |A[R|E Af i L ISITIAT EMENT 4
P i ! i ! ol [i i |- ! | i ! | [|
- ‘ . T i ‘ ‘ T ‘ SO I RS S
‘ ; T N | | | Tl | 1 \ P
1 + T 4 + %H—Fﬂ'ﬁ T . o ‘
H ' P |- B I [. |- 1 P
| L Ll il R L] LLf] [L i]
Chart 22. CTRL Calling Sequence
NAME OPERATION OPERAND COMMENTS
1 2[3 415 |67 (8]9 [roinfi213fredis e 1701819120 {21122 23] 24[25126 127|2829]30|31 [32]33]34{35[36|37]38] 39{ 40|41 |42[43 [44[45]46[47]48|49[50{51[52]153]|54[55] 56|57 585960-[61 62|63|64|65(66 167 |68|69|70 |71
7
L1 Mivic siPl(is L *l+i1lo Imclvle |s! BlyiTlE[s| [T]0] |s|P TATEMIEIN|T
C|T|R|L| | B/RIA|N|C[H 'rO_QJ_L;,1 ,4 ST AITIEMIEINIT2
| I :
L DC AR TR N) INJCR'M.AJL, RIEITUIR|IN|] (A DDRESS STA|TEMEN|T
! ! f T IR ! T o ! .
DC ALUN M.E{) ADIDIREISIS| |O/Fl ID|EIVIT.CIE P“ARfAMETER? AR EA . ISTAITEMENITI4
i i i : ! 7 ‘ P ‘ i
; | D.C xoleafel C’ONIT o oplelRal 10y ‘ ’ sTAlTEMENTS
| i . N i 3 | | : | |
i | | | H | i | Pt H
L e I 1 i R . ,i‘ i] |L
| Ll 1 | IS S B | Ll | il

38

The CTRL Calling

Sequence (Cont’d)

Statement 2

Statement 3

Statement 4

Statement 5

10C8

4), and the control information (specified by Statement 5)
to a standard location in lower memory called $P.

This statement contains an Unconditional Branch to the
CTRL entry point of the IOCS.

This statement contains the address to which control is re-
turned after the CTRL operation has been completed.

This statement contains the name assigned to the Device
Parameter area that defines the device to which this com-
mand is to be issued.

This statement contains the control information that is sent
to the device. This dataiswritten in the form of two hexa-
decimal characters that generate the proper binary con-
figuration required by the device. The formats of the various
control bytes, by device, are defined on page . The
control byte is sent to the device by means of a Write Con-
trol instruction by the IOCS.

Table 5 contains the two control characters that are issued to various

devices.

It should be noted that any control to the printer that specifies

paper advance following the next write is voided by the next OUT issued

to the printer.

Table 5. Control Characters

Model, Hexadecimal
Device Control Meaning
Characters
70/216 Write control is not possible on
I/0 Typewriter the 70/216 1I/O Typewriter
70/221 Write control is not possible on
Paper Tape 70/221 Paper Tape Reader/Punch|
Reader/Punch
70/234 01 Set translate mode.
Card Punch 02 Set column binary mode.
70/236 01 Set translate mode.
Card Punch 02 Set column binary mode.
Additional Control 04 Override hardware stacker selec-|
Bytes for 70/236 tion made at wait station No. 2
Card P&t}ch (Reader/ (after card has been read).
Punch) 08 Override hardware stacker se-
lection at postpunch station (after
card has been punched).

(2) The Videoscan Document Reader, the Bill Feed Printer, and the Reader/

Punch require special consideration.

See the section on equipment

control capabilities.

39

The CTRL Calling
Sequence (Cont’d)

10cs

Table 5. Control Characters (Cont'd)

Model, Hexadecimal
Device Control Meaning
Characters
70/236 (cont'd) 10 Override stacker selection at post-
punch read (after hole count check
has been made). (Thereis atiming
consideration in the use of this con-
trol byte. The instruction mustbe
executed within 3.5 milliseconds
after punching has been completed.)
20 Move the transport one station.
(This does not read a card.)
70/237 01 Select accept stacker.
Card Reader 02 Select reject stacker.
04 Set translate mode
08 Set column binary mode.
70/432, 70/442, 01 | Unwind to tape mark.
70/445 Magnetic
Tapes 02 Rewind to tape mark.
08 Unwind one gap.
10 Rewind one gap.
20 Rewind to load point and disconnect.
80 Rewind to BT marker.
70/242, 70/243 4X | Paper advance immediately per
Printer or 70/249 line count specified by X.
Bill Feed Printer 0X | Paper advance following next
(used toprint con- @) write, per line count specified by X.
tinuous forms only). CX | Paperadvance immediatelyto
channel selected by X.
8X | Paper advance following next write
to channel specified by X.
70/251 01 Select accept stacker.
Document 02 Select reject stacker.
Reader (Demand 04 Set translate mode.
Feed only) 08 Set column binary mode.
10 Demand feed.

(2) The Videoscan Document Reader, the Bill Feed Printer, and the Reader/
Punch require special consideration. See the section on equipment

control capabilities.

40

10C8

The CHK Calling ¢ The CHK calling sequence, required to execute a check function, is
Sequence shown in Chart 23.

Statement 1 This statement contains a Move instruction which transfers
the return address (specified by Statement 3) and the ad-
dress of the Device Parameter area (specified by Statement
4) to the standard area $P.

Statement 2 This statement contains an Unconditional Branch to the CHK
entry point of the IOCS.

Statement 3 This statement contains the address to which control is re-
turned under normal circumstances.

Statement 4 This statement contains the name assigned to the Device
Parameter area describing the device to which this com-
mand is to be issued.

Chart 23. CHK Calling Sequence

NAME OPERATION OPERAND COMMENTS
V{2{3jafsie[2 8|9 tofjnp2apatiahs|re]|17fi8[19[20 |21 (22 [23[24[25}26 {27} 28[29(30(31 [32]33(34{35(36 (3738 39[40 [41 (4243 (44|45 |46 (4748 [49(50{51[52(53(5455(56(57[58(59(60(61 {62{63164165166{67|68]69170 71
MV.C $iPI(lal)i, [*|+1]0] Mlo/V|E |4| |BY/TES |T|o] [$[P | | 1 S|T|A|T/EIM|E[N|T|1
B c|H|K BIR|A|N C[H| |T|O] |CHK | | S|T|A|T|EM|E|N|T|2
D/ C AL(IRITIRIN) N|olR|M[AIL| |RIE/TU/R|N| |A|D[D|R|EIS|S S|T|A|T| E|M|E[N|T|3
D/ C A|(IN|A|M{E]) AlD|D|RIE|S|S| |0 F| |D|E|V|I|C|E] |PIAIR|A|M|E[T|E{R| |A|R|E]A sit|alT Bl ME|NT|4

41

FUNCTIONS
OF THE 10CS

Exceptional Conditions

10ocs

¢ The following functions are performedby the IOCS each time the routine
is entered at any of its seven entry points.

1.

The Logical Device number, specified in the Device Parameter
area, is translated into the actual device number assigned by the
I/0O Define Card at load time.

When simultaneous processing is specified, a check (CHK) is per-
formed before each I/0O operation (except the first) to test the ter-
mination of the previous operation. When nonsimultaneous proces-
sing is specified, a check is performed after the I/O operation.

The A-final address, the standard device byte, and the I/O sense
byte are posted in the Device Parameter area as part of the activity
of the check (CHK) function.

The device pending indicator in the Device Parameter area is then
checked to see if the last reference to this device was serviced.
If necessary, the standard device byte and the I/O sense byte are
checked. If other than a normal condition is detected, steps are
taken to perform Rollback or return to the alarm or abnormal
return addresses.

If neither the device pending indicator nor an exceptional condition
is detected, the IOCS checks to see if this was a CHK ENTRY. If
it was a CHK, control is returned to the user's normal address.
If it was not a CHK ENTRY, control is turned over to the I/0 issue
portion of the IOCS.

The 1/0 issue portion of the IOCS acts depending upon the ENTRY
point, the simultaneity indicator in the device parameters, the
device type in the Device Correspondence table, and the relation
of the starting and ending addresses in the Device Parameter area.

¢ Exceptional conditions are classified into the following two groups:

1. Abnormal

2. Alarm

When an exceptional condition arises during the execution of an input/output
operation, it results in a transfer of control. This transfer of control is
to the address specified by the programmer in the Device Parameter area
for processing that type of condition rather than to the normal return ad-
dress as specified in the calling sequence of the I/0 request.

The IOCS usually returns control to the user's normal return address.
When an abnormal or alarm condition occurs, IOCS returns control to the
programmer-specified Alarm routine address or to the programmer-
specified Abnormal routine address. Theprogrammer specifies these re-
turn addresses in the Device Parameter area.

42

Exceptional
Conditions (Cont'd)

Nonsimultaneous
Mode IN Function

Card Readers

Magnetic Tape

10C8

There are five abnormal conditions, all concerned with end-of-file or
end-of-forms. The many alarm conditions are usually concerned with
equipment malfunctions, invalid characters, and illegal operations.

Read parity error rollback and read-after-write rollback are automa-
tically performed by the IOCS for magnetic tapes.

Table 6 specifies the I/O sense bytes of the various device types, show-
ing the bit that is set as a result of the described exceptional condition,
and the return address to which the IOCS will transfer control.

IOCS determines the type of error and performs error recovery if ap-
propriate. Should the IOCS return to the alarm address after an I/O
attempt to read or write a magnetic tape, the tapeis positioned before
thebad recordon a read reverse, after the bad record on a read forward,
or before the next available segment of tape on a write.

¢ 1. A Read Forward instruction is issued.

2. Data is transferred from the card reader to memory beginning
with the Dy address, which is specified in the Device Parameter
area, and terminating when the lesser of (D2-D1+1) or 80 bytes
have been transferred.

3. A CHK is performed, and the appropriate routine (abnormal or
alarm) in the user program is entered if an error exists.

4, The A-final address, standard device byte, and I/O sense byte
are stored in the Device Parameter area.

5. Control is returned to the normal return.addressif no errors occur.

¢ 1. The packing density, etc., is set if necessary.

2. If Dy < D2, A Read Forward instruction is issued. If D1 > Dg,a
Read Reverse instruction is issued.

3. Data is transferred to memory beginning with the Dy address,
which is specified in the Device Parameter area, and terminating

when (D2-D1+1) bytes are transferred.

4. A check (CHK) is performedandthe appropriate routine (abnormal
or alarm) in the user program is entered if an error exists.

5. The A-final address, the standard device byte, and the I/O sense
byte are stored in the Device Parameter area.

43

144

Table 6.

1/0 Sense Bytes

Return
Address Alarm Alarm Alarm Alarm Alarm Alarm Abnormal Alarm
Device Bit
\ Positive Set 2’ 2¢ 25 24 2 22 2! 20
70/236 Card Punch Punch Punch Not Transmission | Intervention Hold Not Illegal
70/234 Comparison Memory Used Parity Error | Required Used Operation
Error (PCE) Parity Stacker full
Error Hopper empty
Chip box full
70/2837 Read Error Service Stacker Invalid Punch [Not Used Hold Not Illegal
Card Reader . ;
70/232 Request Selection Code Used Operation
Not Too
Honored Late
70/251 Document Reader | Read Error Service Stacker Unreadable Feed Error Not Read Illegal
Request Selection Data Used Late Operation
Not Too
Honored Late
70/221 Paper Tape Parity Error Service Not Not Used Intervention Hold Not Tllegal
Reader Request Used Required Used Operation
Not
Honored
Punch Parity Error Not Used Not Not Used Intervention Hold Low Illegal
Used Required Tape Operation
70/242 Printer Print Error Not Used Not Channel Invalid Code Hold Low Tllegal
70/243 Used Parity Error Paper Operation
70/214 Input/Output Write Error Time Not Transmission | Data Error Not Not Tllegal
Typewriter Lapse Used Parity Error Used Used Operation
70/432 Magnetic Tape Unit | *Read Error or Service Datablock Transmission | Magnetic BT/ET Tape Mark Illegal
70/442 Magnetic Tape Unit Read After Request Greater Error Tape Alarm Operation
70/445 Magnetic Tape Write Error Not Than
Station Honored Count
70/249 Bill Feed Channel 12 Channel 9 Print Transmission | Code Error Manual End-of- Illegal
Printer Sensed Sensed Check Parity Error Service in | Forms Operation
Progress
(Hold)

*The return to the user program at the alarm address occurs only after rollback procedures in the IOCS have failed.

SO0l

Magnetic Tape
(Cont’d)

Paper Tape
Reader

Input,/Output
Typewriter

Nonsimultaneous
Mode OUT Function

Card Punches

5.

10C8

Control is returned to the normal return address if no errors occur.

Note 1: Thenontape version of IOCS should not be used for config-
urations that include magnetic tapes.

Note 2: If data termination is caused by a (D2-D+1) byte transfer
and a gap is not encountered, a data-greater-than-count
condition exists. This error condition effects a return
to the alarm return address in the user program.

If D; < Dy, a Read Forward instruction is issued. If Dj > Do,
a Read Reverse instruction is issued.

Data is transferred to memory beginning with the D; address,
which is specified in the Device Parameter area, and terminating

when (D2-D1+1) bytes are read.

A check (CHK) is performed and the appropriate routine (abnormal
or alarm) in the user program is entered if an error exists.

The A-final address, the standard device byte, and the I/O sense
byte are stored in the Device Parameter area.

Control is returned to the normal return address if no errors occur.

¢ An I/0 Device Request Interrupt occurs in the processor when an oper-~
ator writes a message into memory by means of the Input/Output Type-

writer.

When the processor is interrupted, the cause of this interrupt is

not immediately evident and must be determined by a user-programmed
routine. After it is determined that the interrupt is a request to transmit
from the Input/Output Typewriter, the user program then enters the IOCS
through the IN entry point in the normal way, that is, by use of an IN
calling sequence.

1.

A Read Forward instruction is issued to the typewriter.

Data is transferred to memory beginning with the D, address,
which is specified in the Device Parameter area, and terminating
when (D2-D1+1) bytes are transferred, or the END key is pressed,
or the ERROR key is pressed, or a 15-second time-out occurs.

A check (CHK) is performed and the appropriate routine in the user
program is entered if an error exists.

The A-final address, the standard device byte, and the I/O sense
byte are stored in the Device Parameter area.

Control is returned to the normal return address ifno errors occur.

A Write instruction is issued.

45

Card Punches
(Cont’d)

Magnetic Tape

Paper Tape
Punch

1ocs

Data is transferred from memory beginning with the D; address,
which is specified in the Device Parameter area, and terminating
when (D2-D1+1) or 80 bytes are transferred.

A check (CHK) is performed and the appropriate routine in the user
program is entered if an error exists.

The A-final address, the standard device byte, and the I/O sense
byte are stored in the Device Parameter area.

Control is returned to the user's normal return address if no
errors occur.

A Write Control instruction is issued to set the packing density,
if necessary.

Note: If data termination is caused by a (D2-D1+1) byte transfer
and a gap is not encountered, a data-greater-than-count
exists. This error condition effects a return to the alarm
return address in the user program.

A Write instruction is issued.

Data is transferred from memory beginning with the D; address,

which is specified in the Device Parameter area, and terminating

when (D2-D1+1) bytes are written.

A check (CHK) is performed and the appropriate routine in the
user program is entered if an error exists.

The A-final address, the standard device byte, and the I/O sense
byte are stored in the Device Parameter area.

Control is returned to the normal return address if no errors occur.

A Write instruction is issued.
Data is transferred from memory beginning at the D; address,
which is specified in the Device Parameter area, and terminating

when (D2-D1+1) bytes are written.

A check (CHK) is performed and the appropriate routine in the
user program is entered if an error exists.

The A-final address, the standard device byte, and the I/O sense
byte are stored in the Device Parameter area.

Control is returned to the normal return address if no errors occur.

46

Input /Output
Typewriter

Printer

Iocs

A Write instruction is issued.

Data is transferred from memory beginning with the D; address,
which is specified in the Device Parameter area, and terminating
when (D2-D1+1) bytes are written.

A check (CHK) is performed andthe appropriate routine in the user
program is entered if an error exists.

The A-final address, the standard device byte, and the I/O sense
byte are stored in the Device Parameter area.

Control is returned to the normal return address if no errors occur.

Note: Error checking occurs after the execution of the Write in-
struction. However, error checking does not occur fol-
lowing the execution of a Write instruction that effects
form control.

A Write Control instruction is issued to the printer to effect form
control. The form control is specified by the programmer. The
first byte of the line that is tobe printed is interpreted as the control
byte. This character is not printed. This control character has
the following format:

20, 21, 22, 23 = abinary count of the number of lines to advance

(0-15) or a binary number that selects one of 11 loop channels
(1-11), depending on the setting of bit 2.

4
27, 25 = ignored.
6 .
2 = 0 - paper advance after print.
6
2 =1 - paper advance before print.
7 .0 3
2 =0 - paper advance per count in 2= - 2.

7
2 =1 - paper advance under control of paper tapeloop channel
selected by bits 20 - 23,

A Write instruction is issued.
Data is transferredfrom memory beginning at the D address plus
one byte and is terminated when (D2-D1+1) bytes are transferred,

or the printer's buffer is full (132 or 160 bytes).

A check (CHK) is performed and the appropriate routine in the user
program is entered if an error exists.

The A-final address, the standard device byte, and the I/O sense
byte are stored in the Device Parameter area.

47

Printer (Cont’d)

Simultaneous Mode
IN Function

Card Readers

Magnetic Tape

10CS

Control is returned to the normal return address if no errors occur.

When specifying forms control and no printing is desired, at least
part of a blank line should be generated after the forms control
character. The starting and ending addresses of the message given
in the Device Parameter area should not specify only a single char-
acter. This causes the IOCS to print a full line.

Note: Error checking occurs after the execution of the Write in-
struction. However, error checking does not occur follow-
ing the execution of a Write instruction that effects form
control.

A Read Auxiliary instruction is issued.

After the instruction is successfully initiated, control is trans-
ferred to the normal return address in the user program.

A check (CHK) is performed and the appropriate routine in the user
program is entered if an error exists. This is a check for the
previous I/O operation. On the first input/output operation to a
device, a check is not performed.

Datais transferred into memory beginning at the Dy address, which
is specified in the Device Parameter area, and terminating when
80 bytes are transferred or the end of memory is reached. (Transfer
of (D2-D1+1) bytes does not terminate the instruction.)

No check (CHK) is made until the user program refers to this
device again.

The packing density, etc. is set, if necessary.

A Read Auxiliary instruction is issued if Dy < Dg. If D1 > Dg, a
Read Reverse instruction is issued.

A check (CHK) is performed and the appropriate routine in the user
program is enteredif an error exists. This is a CHK for the pre-
vious I/O operation. On the first input/output operationto adevice,
a CHK is not performed.

After the instruction is successfully initiated, control is transfer-
red to the normal return address in the user program.

Data is transferred into memory beginning at the D; address, which

is specified in the Device Parameter area, and terminating when a
gap is encountered or when the end of memory is reached.

48

Magnetic Tape
(Cont’d)

Paper Tape
Reader

Input/Output
Typewriter

Simultaneous Mode
OUT Function

Check Function (CHK)

1008

6. No check (CHK) is made until the user program refers to this de-
vice again.

Note: The nontape version of IOCS should not be used for config-
urations that include magnetic tape.

¢ 1. A Read Auxiliary instruction is issued if D; < Dg. If Dy > Doy, a
Read Reverse instruction is issued.

2. Afterthe instruction is successfully initiated, control is transferred
to the normal return address in the user program.

3. A check (CHK) is performed and the appropriate routine in the user
program is enteredif an error exists. This is a CHK for the pre-
vious I/O operation. On the first I/O operation to a device a CHK
is not performed.

4. Dataistransferredinto memorybeginning at the D7 address, which
is specified in the Device Parameter area, and terminating when a
gap on tape is encountered or the end of memory is reached.

5. No check (CHK) is performed until the user program refers to this
device again.

¢ An IN function in the Simultaneous mode should not be issued to the
Input/Output Typewriter.

¢ The OUT functions, when performed in the Simultaneous mode, are
identical to those in the Nonsimultaneous mode with the following ex-
ception: Controlistransferred to the normal return address immediately
after the Write Auxiliary instruction is issued. The CHK for an I/O oper-
ationis notgiven until the next calling sequence that refers to this device.
The primary use of the OUT function in the Simultaneous mode is to use
the buffered output devices.

& Entering the IOCS by means of the CHK entry causes a check to be
made of the previous termination for the device referred to. The IOCS
executes Rollback, if necessary, posts status conditions to the Device
Parameter area, and, if no errors have occurred, transfers control to
the normal return address. If a condition exists that is not normal, con-
trol is passed to the appropriate address (either alarm or abnormal) in
the user program for processing.

The CHK function executes a Post Status instruction and an I/0 Sense
instruction. Ifthe secondaryindicator is set (bit 22 of the standard device
byte), or if the device inoperable bit is set (bit 21 of the standard device
byte), the IOCS branches to the user's abnormal or alarm address accord-
ing to the conditions listed by device in Table 6 on page 44.

49

(CHK) (Cont'd)

Control Function
(CTRL)

Rewind and
Disconnect Function

(RWDA)

Write a Tape Mark
Function (TMRK)

Rewind Function
(RWD)

Programming
Considerations

1008

The standard device byte is stored in the reserved memory location
for that trunk and unit. The sense bhyte is stored internally in the IOCS
program. Both are stored in the Device Parameter area.

¢ There are three device control functions that are not automatically
performed by the IOCS. These are:

1. Setting the Binary mode on card equipment.
2. Selection of output stackers on card equipment.
3. Control functions for the Videoscan Document Reader.

The control (CTRL) function permits the programmer to perform these
functions. If the programmer esires his program to work with a variety
of devices (device interchangeability), he should modify or bypass these
CTRL functions accordingly.

Control operations that are not covered by the RWD, RWDA, or TMRK
calling sequences must be done by using the CTRL calling sequence. Upon
completion of the operation, a check (CHK) is performed.

¢ The function of the RWDA calling sequence is to rewind and disconnect
magnetic tapes only, When the operation is completed, control is trans-
ferred to the normal return address. If a RWDA is issued to a device
other than to a magnetic tape, no 1/0 instruction is issued and control is
immediately transferred to the normal return address.

¢ The function of the TMRK calling sequence is to write a tape mark on
either 7- or 9-channel magnetic tape. When the operation is complete,
controlis transferred to the normal return address. If a TMRK is issued
to a device other than to a magnetic tape, no I/0 instruction is issued and
control is immediately transferred to the normal return address.

¢ The function of the RWD is to rewind magnetic tape to the BT marker
only. When the rewind has heen initiated, control is transferred to the
normal return address. If a RWD is issued to a device other than to a
magnetic tape, no I/O instruction is issued and control is immediately
transferred to the normal return address.

¢ 1. If simultaneous processing is specified, users of the JOCS must
define only one Device Parameter area for each device. If the user
wishes to execute an IN or OUT function in an area other than the
area specified in the Device Parameter area, he must modify the
starting and ending addresses indicated in the parameters.

2. Ifnonsimultaneous processing is specified or a check (CHK) function

is executed before issuing the next I/O function, more than one
Device Parameter area can be specified.

50

Programming
Considerations (Cont'd)

DEVICE
ASSIGNMENT

Introduction

Device
Correspondence
Table

10C8s

3. The Read Reverse I/O command is available for use only by the
magnetic tape version of the IOCS.

4, If simultaneous processing is specified, users of the IOCS must
perform a check (CHK) on the final read (end-of-run) to determine
the validity of the information.

5. The 70/15I0CS performs physical input/output operations, but does
not perform logical input/output operations. If a tape file contains
batched records, it is the programmer's responsibility to process
the individual records within the block. IOCS treats the block of
records as a single input-output record.

Note: The 70/221 Paper Tape Punch does not generate a gap auto-
matically at the termination of a Write instruction. The
programmer is responsible for generating gaps if they are
desired. This is done by including one or more bytes con-
taining all zeros (0000 0000) atthe end of each block written.

¢ The logical device code, which appears on the first line of coding of the
Device Parameter-area, must be the same code for a given device as the
code on the I/O Define card for that device. For example, if the Card
Reader is called logical device number 6 on the I/O Define cards to be
introduced with this program to the Loader, then the Card Reader must
have logical device code 6 on the first line of coding of the Device Para-
meter area as follows: NAME DC A(6).

¢ At load time, the Device Correspondence table (DCT) is created by the
Loader using information contained in the I/O Define cards. The DCT is
the table in which actual devices are related to their device numbers. The
DCT contains three bytes of information for each device. The Loader sets
up places for 10 entries and fills them in as it reads I/O Define cards.
The user may store additional entries provided that they are in the correct
format. The starting address of the DCT is 1524

The magnetic tape version of the IOCS can handle as many devices as
there are entries in the DCT. The nontape IOCS assumes that there is
only one device per trunk (hence, six devices). Multiple device trunks
can be used if the programmer specifies nonsimultaneous processing, or
does not refer to a second device until the previous device is terminated.
When the programmer ensures device servicing on multiple device trunks,
the nontape IOCS can handle as many devices as there are designated in
the DCT.

The format of the DCT is as follows:

Logical Device 00 01 09

Memory Locations 152 | 153 | 154 | 155 | 156 | 1574 (179 | 180 | 181

Contents A B C A B C A B C

51

Device
Correspondence
Table (Cont'd)

1008

A, B, and C are bytes defined as follows:

Byte A Byte B Byte C

4 bits 4 bits 4 bits 4 bits 8 bits

TK. No. | DEV. No. | ALT. TK. No.| DEV. TYPE | CONTROL BYTE

Where: TK. No. is trunk number (range 0-5)
DEV. No. is logical device number (range 0-9). (This can have
the range 0-F if the programmer inserts additional entries in the

DCT).

ALT. TK. No. is the number of the alternate trunk by which the
device can be accessed. This is not used by IOCS.

DEV. TYPE code has the following values and meanings:
0 - DXC Data exchange control (not supported by I0CS).
1 - Magnetic Tape.

2 - CardReader or Videoscan Document Reader (Card Reader
only).

3 - Card Punch.
4 - Paper Tape Reader.
5 - Paper Tape Punch.

6 - On-line Printer or Bill Feed Printer (continuous forms
only).

7 - Input/Output Typewriter.
8 - Card Reader/Punch.

9 - Single channel communications device (not supported by
10CS).

Note: This device group will be expanded later to include the
Videoscan Document Reader and the Bill Feed Printer.

CONTROL BYTE, byte C (see Table 7), is the information needed to
prime a 7-channel magnetic tape device for the correct packing density
and level. The hexadecimal codes for the control are defined in the section
on I/0 Define cards. Byte C is set to zeros by the IOCS for all devices
other than 7-channel magnetic tapes.

52

Device

Correspondence
Table (Cont'd)

Table 7. Legitimate 7-Channel Control Byte Configuration*

1008

Hexa- Pack/

Bits decimal Density Parity Unpack Translator
11110000 Fo 800 odd on off
10110000 BO 556 odd on off
01110000 70 200 odd on off
11101000 ES8 800 odd off on
10101000 A8 556 odd off on
01101000 68 200 odd off on
11100000 EO 800 odd off off
10100000 A0 556 odd off off
01100000 60 200 odd off off
11001000 C8 800 even off on
10001000 88 556 even off on
01001000 48 200 even off on
11000000 Co 800 even off off
10000000 80 556 even off off
01000000 40 200 even off off

* This byte is not checked by the IOCS.

It is the responsibility of the

programmer to ensure that the setting of this byte is correct.
1/O Define Cards | ¢ Atprogramloadtime, asetofload cards must be supplied to the Loader
program. One type of load card is the I/O Define card, which supplies
DCT information to the loader. Each I/0 Define card causes the Loader
to set up one three-byte entry in the DCT. The information contained in
the I/O Definé cards is given in the following format:

Columnj 1 (2} 3|4 5|67 8|9 (10| 11 12 | 13-80

Contentff V| 0| L |x x| A|t u|a]|d h h Ignored

Column Content

1 - Must contain V. Identifies this card as a load card.

2 - Must contain 0. This identifies the load card as an I/O Define

card.
3 - Must contain L, for logical device xx.

4-5 - The designation xx is the logical device numberto which the actual
device tu is assigned. The range of xx is 00 to 09.

6 - Must contain A, for actual device tu.

7-8 - The designation tu is actual device number. The range of trunk
number, t, is 0 to 6, and its unit, u, is from 0 to F.

53

1/0 Define
Cards (Cont'd)

Designating
1/0O Devices

10CS8

Column (Cont'd) Content (Cont'd)

9 - Thedesignation a is the alternate trunk (0-6) from which the device
may also be accessed.

10 - The designation d is the device type being defined. Its range and
meaning are as follows:

0 DXC (not supported by IOCS).

1 Magnetic Tape

2 Card Reader

3 Card Punch

4 Paper Tape Reader

5 Paper Tape Punch

6 Printer

7 Input/Output Typewriter

8 Card Reader/Punch

9 Single channel communications (not supported by IOCS).

11-12- The designation hh is the hexadecimal representation of the con-
trol byte to be issued to a 7-channel Magnetic Tape Station to set
its mode of processing. If 00 (or blanks) is specified, a 9-channel
tape is assumed.

¢ Note that there are three numeric codes associated with each device.
These are: xx, logical device number,
d, device type, and
tu, trunk and unit of referenced device, sometimes called
actual device numbers.

The device type, d, is a code which stands for the description in words of
the device. For example, 2 means Card Reader.

In the I/O Define card format, the logical device number, xx, is a pro-
grammer-supplied code name for the device referred to. In effect, it is
the name of the device for the programs in which it is used.

The trunk and unit, tu, is the specific hardware designation of the device.
In effect, it is a hardware address of the device. For an installation, the
devicetype (d) connectedtoa particular trunk and unit (tu) is the same for
all programs using that configuration. Only the logical device type (xx)
may change, or, in other words, the programmer can call a device type
on a trunk and unit by different names in different programs.

54

Designating
1/O Devices (Cont'd)

[10CS

Example 1: Same devices, different names. The programmer supplies
a set of I/0 Define cards to specify:
Logical Device Trunk, Unit Device Type
00 0,0 1 (Magnetic Tape)
01 0,1 1 (Magnetic Tape)
02 1,0 2 (Card Reader)
03 2,0 3 (Card Punch)
04 3,0 6 (Printer)
Then the programmer uses 02 to refer to the Card Reader
in his program, 04 to refer to the Printer, etc.
If the I/O Define cards specified:
Logical Device Trunk, Unit Device Type
01 0,0 1 (Magnetic Tape)
00 0,1 1 (Magnetic Tape)
09 1,0 2 (Card Reader)
07 2,0 3 (Card Punch)
08 3,0 6 (Printer)
Then the programmer must use 09 to refer to the Card
Reader, 08 to refer to the Printer, etc.

Example 2: Interchanging devices. If a program specifies the Card
Punch as the output device and calls it logical device 05,
then an I/0 Define card must specify:

Logical Device Trunk, Unit Device Type
05 2,0 3 (Card Punch)
where the trunk and unit are taken to be as before. Then,
if it is desired to have the output on magnetic tape instead
of on cards, the program refers only to device number 05.
All that is required to make this change is to replace the
above described 1/0 Define card with an I/0 Define card
specifying the following:
Logical Device Trunk, Unit Device Type
05 0,1 1 (Magnetic Tape)

where one of the Magnetic Tape Units described is now
used as the output device.

The IOCS, acting only on the reference in the program to
logical device number 05, goes to the Device Correspond-
ence table (DCT) for the fifth entry, and using the inform-
ation stored in the three-byte area for that device, per-
forms the required 1I/0O function.

55

Trunk Status Table

GENERAL
CONSIDERATIONS

Programming System
Requirements

Compatibility

Maintenance

Accuracy Control

10CS

¢ A Trunk Status table is used to monitor all I/O functions that require
servicing. The Trunk Status table is located within the boundaries of the
IOCS and consists of one two-byte entry for each trunk. The format of
this table is as follows:

2 Bytes

Address of pending
device parameters.

This table is created and used by the IOCS along with the left-most byte
of the simultaneity indicator inthe Device Parameter area. The program-
mer need not be concerned with it.

¢ Any of the standard 70/15 tape or card loaders can be used to load the
IOCS and establish the Device Correspondence table. The RCA 70/15
Binder routine can be used to consolidate (bind) the IOCS with the user
program. The RCA 70/15 Assembler assembles the user program. The
I0CS can be included with the programmer's source program at assembly
time, or it can be assembled separately.

¢ Programs that use the 70/15 IOCS can be run on a 70/25 Processor
provided that the operating configurations are the same. However, the in-
structions in the 70/15 IOCS required for 70/25 compatibility use approx-
imately 65 bytes of memory. If the programmer wants to save this area,
he removes the set of cards containing these instructions from the supplied
IOCS source deck. These cards are clearly identified for easy removal.
All 70/15 I0CS comments start in the same column of the cards. The
compatibility cards are identified in this comments field.

4 The IOCS istobe maintained by the programmer in his program library
using to 70/15 File Update routine. For updating purposes, the name of
the IOCS is "IOCS".

All tags in the IOCS are four-character symbols beginning with the
letters 10 except for the five entry (ENTRY) points. The programmer
should avoid using such tags to prevent duplicate tags at assemblytime
if he includes the source IOCS in his source deck.

¢ Whenever an inoperable condition code setting is detected following the
attempted execution of any I/0 instruction (Read Forward, Read Reverse,
Read Auxiliary, Write, Write Control, Write Auxiliary) the IOCS:

1. Moves the actual trunk and unit number to the fixed location $P+5 =
0087, where it can be displayed by the operator.

56

Accuracy Control
(Cont'd)

PROBLEM AREA
PROGRAM
SUGGESTIONS

Introduction

10cs

2. Halts. When displayed, Halt 8F ;g is indicated.

3. Re-executes the operation when the operator presses the START
button.

An invalid I/0 operation can be generated if the programmer specifies
a D address greater than the Dy address. In this event, theIOCS issues
a Read Reverse instruction.

Detection of parity errors in the reading of magnetic tape causes the
I0CS to re-read the block. If these re-reads are unsuccessful 10 times,
the condition is considered to be a nonrecoverable read parity error and
control is transferred to the alarm address.

When a read-after-write error is detected, the IOCS backspaces the
tape one block, erases 2400 bytes (three inches of tape) and then rewrites
the message. The procedure is repeated and if the error persists after
10 attempts, the error is considered to be a nonrecoverable read-after-
write error, and control is transferred to the user's alarm address.

When the IOCS transfers control to the user's alarm address after 10
consecutive read or write attempts on magnetic tape, the programmer is
given the option of attempting the read or write again.

Any time the IOCS transfers control to either the alarm address or the
abnormal address, the user's normal return address and the address of
the device parameters causing the transfer are undisturbed in $P.

To aid the user programmer in the use of IOCS in the Simultaneous
mode, three examples of suggested solutions to input/output problems are
given. These are:

1. Simultaneous Input Functions. An explanation of an efficient
method of performing the IN (input) function in the Simultaneous
mode.

2. Simultaneous Output Functions. An explanation of an efficient
method of performing the OUT (output) function in the Simultaneous
mode.

3. Error Recoveryon the 70/236 Card Punch. An explanation of the
required method for error recovery on this device to maintain a
continuous flow of processing.

57

Introduction (Cont'd)

Simvultaneous
Input Functions

Narrative Description
(See Figure 2
and Chart 2,)

10cs

The first two examples include a flow chart, a narrative, and the coding
of the problem in 70/15 Assembly language.

Note:

The coding is not part of the IOCS, butis tobe a part of the user
program. Onlythe coding necessary to solve the general prob-
lem is presented. Places are indicated where programmer's
coding to solve the programmer's specific problem can be in-
serted.

In the examples that follow, the identifying letters and numbers in the
narratives refer to corresponding notation on the flow charts.

¢ Thefollowing is a recommended method and not a mandatory procedure.
Becausethe 70/15 does not have base address registers or index registers,
it is much easier to read data into one input area and move the data to a
record area for processing rather than to use alternating input areas.
However, specialized routines can make alternate areas more feasible.

Block A

Block 10

Block 20

Block 30

Block 40

Rlock 50

Block 60

Represents the entrance from regular program housekeeping
to the steps necessary to initialize the input.

This function initiates the first read and any re-reads caused
by errors. Use of this method eliminates changing the simul-
taneity indicator for first reads and re-reads.

- This check (CHK) function terminates the first read and suc-

ceeding reads. This is the only point to which the IOCS returns
other than the normal return.

—- This end-of-input test is necessary at this point to prevent in-

itiating another readto a device that may be inoperable because
of an empty hopper, etc. This function can be bypassed on
magnetic tape by use of the tape mark which would be an ab-
normal return from the check function.

- This move to a work area frees the input area to be used to

read the next record.

- This IOCS function initiates the next read into the input area.

This reading is overlapped by the processing below.

- This represents the programmer's coding required to process

the data in the work area. This can include computing, output
functions, or another nonsimultaneous input function. The
70/15 Processor will not accept another simultaneous input
function until the current one is processed.

When the processing is finished, the programs should return
to the CHK function at B.

58

TO 10CS
(IN)
WITH LINKAGE

NOTE | |

THIS TEST MAY BE BYPASSED |
ON DEVICES WHICH GIVE
AN ABNORMAL RETURN
SUCH AS TAPE MARKS. l

TO ICCS
(CHK)
WITH LINKAGE

'NnoTE

ITHIS FUNCTION INITIATES

| FIRST AND ANY ERROR

| READ ON THE INPUT
DEVICE

10
/

NOTEI

| THIS FUNCTION ERROR
CHECKS AND TERMINATES
| FIRST AND SUCCEEDING
IN FUNCTIONS. IN EFFECT,
FIRST AND ERROR READS
/| ARE_NON-SIMO.

20/

7/ ALARM HALT,
OPERATOR TO

INTERVENTION

70

80
TERMINATE
ROUTINE

40
MOVE INPUT
TO WORK
AREA I NoTE I
| THIS INITIATES A READ
| INTO AN INPUT AREA
50 WHICH 1S OVERLAPPED
| WITH THE PROCESSING
TO l0CS - { BELOW.
(IN)

WITH LINKAGE

PROCESS
DATA IN
WORK AREA

Figure 2. Simultaneous Input Functions, Flow Chart

59

1008

10C8

Chart 24. Simultaneous Input Functions, Sheet 1 of 2

IDENTIFICATION

7

COMMENTS

OPERAND

66 |67 |s8ls9 | 70 71 }72f 73] 7475 |26 7

Tl ol e[l

=

!
|
i

A

RIE|A

M E[TIER| [A{RIE|A

E

RIO|U/T|I|N|E

T

PIAIRAMIET E|R| |A[R

AR

PJA[R

PIARIAIMIEITEIR

[l T[]

I/N/PU|T

W.0 RIK,

O|F

UJE[N CE]|

RIO/U|T[I;NE

DIEIVIIICIE

s|elolulE|n|clE

DIEIV |I|C|E

DIE|V|II|ICIE

!

ATiQ

2| 43]44}45 (48 Ja7 |48 |49 | s0] 51 |52] 53] 54] 55} 56 [57|

S|E.QUI|EIN| C/E|

N| D

S|E

}H

O|F

E

PIRIQICEISISITINIG

o|F

OiF

F|

Rlo|u|T|I|N|E

AD|D{RIE|S|S

LIIIN|G

Al[D|D|RE|S S

I

T |0

RIE|R|E|A|D

ClA]

RIE[ClO(RID

36| 37|3839 Jao | 1

ClAIL|LIIN|G

CA|LILIIIN|G

T|R{M

N

MOV |E

IIN

RIEIT [UIR|N

L|O|C|A|T I |O|N

I

R|E|T|U[R|N

L|O|CIAIT,I{O/N

|RIE]T|U|R|N

L|O|C|A[T{I|O|N

TESTIFOR EINID| |OIF I NP UIT

T

E|[R|{R{O|R

E

AN |D

IIN/PIT

FIU/N|C[T|I|O/N|IS

IN[T TII]AILIT|Z|AITIIION

JJKIEIOF

*IH1|0

*1+]1 |0

i

ROUITIN

S

IIN|P U|T

|
+

RIOU|T|I NE

Pl(ja])

Pl(la])

PIRIOIGIRIA

N

$IPIC41) >+ 110

Al (| *|+4])

Al ((NjA[MIE])

ClHIK

Al(*j+4))

A[(IN|AIMIE|)

1|n|pjT| (|4

81, |T|RIM

WIOIRIK{([2]4]0])

1

al(p[rlolc])
Al ([NJAM|E]D

R|OJUIT|I|N|E

N|EIX|T{ |[RIE/A[D

OPERATION

R|AIMIMIE |R|"

G

C

C

C|

vic

P(R|O

(TINjIjrfI]alLiTiz{A T|1 0N

v

C

D

D

MV

D|C
D|C

CiL

B

Mlv|c

D

DiC

UIS|E(R|'|S

FIUIN[C|T[I|O|N

ClE|S|S|I

NAME

K

H

P|R|

SII{M/UJLIT/AIN|E/O|U]S

IINIT T|{I{A L I.Z A[T|I|O|N

I|N|P U|T

C

I|NJI|T|IJA|T[E

ST [Tl Lo o Tl oo o o e o oo s o

'
*

*

H! S K| P|

AlAlATA

B|B|B|B

T |S[T|A

*

P |Ri0|Cl}

viz|sfe]s]e] 7 |s o [rofr [rzfrs]ia]rs|re |17]ra]as fao f21 [22] 232425 26 f22]28 25 fa0 1

Ze0011s)

Chart 24. Simultaneous Input Functions, Sheet 2 of 2

I] TT £
- e B B R B] ;
5 [1] Lo A - 5
hi ' £
) T G R [13
E L2 - I — i ﬁ‘ - - . - =
T o 3
g 21 -4 - 1 +
"B = [s :

g i 1 I £
3 ! L= |
B T T717 1T T =]
o e 1T - o s
2 N S & } - e - SEs
5 A O T T T NER RN S
| B 1 4 1 R 10] BERE
I S - 8 [1 |
9 S ——
(. B O A R - 8 ES = R I B (2]
L] - _] E .
i eEmeaNEESRE - =
3 < 2
T SR 5 s T
< = o A T %
5 N 10 N~ O~ = N O U S = B } 5
i R ‘\m‘ < S Ol = | = <) 32
] = I] = A (A O O D~]
2 | Z ‘r\r\T [y =1 .v,wyi A x| Aa il 3
TS N~ O S O O~ I . o i J S O B
3 (Sl wS Lol E SN B El
oial al Tl e e) T) s = a] =]
Bl [[el o= o 5 al & B =) . B =
FR A | = = of A 1 = Z o M| W e]
 PEIREEEN E E I I 2
E ! o v =l O | = « G E
EI z{ = o I o = S = B R R L)
IR S e B
|.1A ol Wz ﬁ\T < = O ol H . Rale w1 ,PLIM
3 Of e el Al L. = e B oy - L2
g [l B T T S B L R A . B . R B
s >l o @ © A | o T I O . O il
< W o [- L EIEY o
3 T A = »| o o g T ol W o | 1A ¥ 5
2| | [w[o T77T 3= o = = N«ﬂrAA_u ™]
5 [PLETol = w o o | e I T 3
3 <[= =] 1w el 2 EI R =W e
(ol 17179 w o &8 w ol © S| m! x| | O]
3 [] B I I [T ==
I of i[wl o A A o = = IR o >
] of = wl =["a"al o] 3 < "o ol ol w o "] wl a
= < Al ol o] @ o < = EY RERRE Nﬁ =
8 E! o ﬁ gl B ,‘\‘ﬁ\)
3 A are A
B e T) ; - T
& B [=]
3 I I R T R R i .u#ii RS
< “ >)
& B[@ | I %) = < T 11 =]
& [\ E] [A+AT 02 B R O I]
=T =T ECeERA DO N o . e O O O O = A &
B & A A el sl] S pa B e O ol G S =~ A © 8
e m « | - = z[A =& 3 ~ ﬁ I HTa <] a AT o & >
2] w o] o A Al m ol T < W T e e E <] Ao ol= o ~ =
Elm i B I I T O O =1 PR < [T 13 a) 2 =
o D T A] I T I a w a S o X[o E3 =
o o B < ™ » =
z 5~ r R 1] 2l =
[T [A<l J e IR @ & =
FRE @ || B W = Ol | o P] I w| =
I 21 B O YY) O = O = 0))) =
° ol = a o 7d al a al A A [o ol w = <] a al = =) =
o L & 1 X o] w = — -
© =) N w| @] =] | o = -
~ ol] [[IS 1 = EE. ~
> z -) 1 N -) S S A S SN S . 3
w 7 — ol =] 5 = -
E N S Y~ A (™ A =
Y I . [= ﬁ L T A N T - A -
= Ll 1o =L wl > o ~
=1 I'= ¥l v x] xxi < = e o W T =

60

Simultaneous
Output Functions

Narrative Description
(See Figure 3
and Chart 25)

10C8

¢ The following is the recommended method of using the IOCS to control
output to a buffered device. The use of simultaneity to other than a buf-
fered device does not have any advantages, because the IOCS does not use
the Write Auxiliary instructions.

Block 10 - Represents processing. This includes receiving input data and

Block 20 -

Block 30

Block 40

Block 50

Block 60

Block 70

Block 80

Block 90

processing it before preparing it inaproper format for output.

Error checks and terminates the output function. On the first
entry, itis adummy, but it does not cause erroneous functions
to be performed. It is at this point that the IOCS advises the
using program of such items as low paper, errors, and other
processor signals.

This function can be bypassed if the programmer desires the
next output function to terminate the previous output function.
The programmer should be aware of several problems. One
is that on an alarm or abnormal return, the IOCS has not been
issued the output function and it is necessary to re-enter the
routine to do this. The secondproblem isthat if the program-
mer wishes to substitute a magnetic tape for a buffered device,
the IOCS performs Rollback on the new data while destroying
the old.

- Represents the making of a new output record.

Initiates all output functions to the device. If step 20 is elim-
inated, step 40 also error checks the previous function to this
device. This I/O function is overlapped by processing.

Represents abnormal returns from the IOCS for items such as
low paper or sensing of a 9- or 12-punch in the paper tape loop.

Represents alarm conditions such as PCE and may be an inter-
pretive routine which may, for example, permit the printing of

nonprintable characters and be a true error condition on others

Represents a step from normal processing to a terminate rou-
tine. This leads to the final output functions.

Represents the final output processing and any output functions.

Represents the final check to the IOCS as this was not done in
the above processing.

61

I NOTE !

THIS REPRESENTS A '
ROUTE FROM PROCESSING !
TO A TERMINATE |
ROUTINE |

1

PROCESSING

ABNORMAL
ROUTE, PAGE
CHANGE ETC.

50

TO 10CS
(CHK)

WITH LINKAGE

ARRANGE NEW
OUTPUT
RECORD

(H——

TO 10CS
(oum)
WITH LINKAGE

TERMINATION
ROUTINE
PROCESSING

TO 10CS
(CHK)
WITH LINKAGE

[0Cs

IINOTE

THIS FUNCTION ERROR

| cHECKS PREVIOUS OUTPUT
| FUNCTIONS TO THE DEVICE.
| FIRST TIME THROUGH 1S

/A DUMMY FUNCTION

10

/
/
20 ALARM ROUTE, |60
OPERATOR INTER-
VENTION OR PRO-
GRAM CORRECTABLE
30
-
I
o | THIS FUNCTION
4 | INITIATES A
WRITE TO THE
"I OUTPUT DEVICE

80

|

DESIRED
—|

NOTE

THIS REPRESENTS
A ROUTE TO RE-
ISSUE THE 1/0 IF

TNOTE

; THIS FUNCTION ERROR

|CHECKS THE LAST
JOUTPUT FUNCTION
|
-
-

Figure 3. Simultaneous Output Functions, Flow Chart

62

1008

Chart 25. Simultaneous Output Functions, Sheet1of 3

NAME OPERATION OPERAND COMMENTS IDENTIFICATION
1 2|J|l s|ef7 |8 |9 hiofnizpisfralis|re[17[18 19120 [21[22]23}24[25|26 | 27(2829 (30{31 [32)33{34)35 (36|37 |38| 39| 40 41 [42]43 | 44|45 |46 |47 |48 |49}50 5152|5354 |55 36 (57 |s8)59|60 (61 [62)63)64]6: 66 (67| 686970 [71 [7273[74[75]76 | 77|78]79 | BO|
SIT|A[RIT
*
* siijMufuTja|NE/Ojujs, jojulT PlUlT| |Flu|N|c|T |1 0|N]|S]
1
*
* infz)T|jajLiz|zafT[1 0o N |RiolUlT|I|N|E
INJI|T
u|s|ER| '|s PRocRAg
* P{R{O|CIE}S|S|I|N/ G} [R{OJU|T|I|N|E
PR|O|C
* uls|E|R '|s] iPlrlo|c|rRlaAM}|T|ui1ls] |P|RjolGIR|AIM| |N|O|R{M A|LiLlY| |E|X|Eic|u|TE|S| |T|H|E RIR[O
* cHIE|C/K|I|N|G| |RlojU|T|I|N N|E|X|T|,| |BlulT| |alT ¥p| lo|F| [FIIILIE [C O/Nl~
* DlTiTI{0|N 1/T| |B/RIAIN/CIHIE|S| |T/O| |TIH|E| |T/E|RM|TIINIAIT|T RIOIU|T!I
*
* E[R|RIOIR| |c|HiElc|K[I|N|G| |R|OJUiT|I|NIE
*
B|B BB vic sip|(Ja) [[*][+[1]0] jcluk| jc|alLiL|1|n|c| |s{E|QU|E|N|C|E
B C{H|[K
D|C Al([* +a]) RIEITIUIRIN! |A/DID/RIE|S[S
Dlc Al(N[AIM[E]) LioiclaiTii{oln, |ojr] |D|EIV|I/clE] |PIJARIAMIE|ITIER| AIRIE|A]
*
* o ripjulr, |ARIEJAl |S[E|T|-lulp QulTI TN F
*
% S|ElR "is} IPIRIOIGIR|AIM
I*
[+ ojutrielulr| &lofulrfr(n|gl |
1|2]a]e]s 709wTunnulsun\:Fy]zonn 272829 |30} {3233 |34 [35| 36| 37] 38|39 Inn- s |46 {47 |an 49|50 51 | s2] s3] 54| 58] 56| 57, 66 |67 {6a]s9 |70} 71 [ra] 73| 74{75 | 76| 77 76 79] 00)

Chart 25. Simultaneous Output Functions, Sheet, 2 of 3

NAME OPERATION OPERAND COMMENTS IDENTIFICATION
V)z|3|a|s[s]|7 |89 hofupafiapafishe]r7|ra]19f20 21|22 23| 24[25]| 26 | 27| 28|29 30]31 |32{33)34 }35 |36 37 (38] 39} 40|41 (42|43 (44| 45| 46]47[48 |49(50|51]52[53|54|55] 56|57 67 |68]69 |70 {71 |72[73]74 |75)76 | 77|78 79 | 80|
*
clcicle M|VicC slpl(lal) | [*{+1fo]| olujr| {clalriL|1|nic| |S|E[QjulElNICIE
B ojult
D|c Al(|p|Rjolc|) RIE|T|U|RIN| |A|D/D|RIE|S]S]
DiC AL(IN[AMI|E|) LiojcialTiilolN| [o|F| [DJEVITIC|E| |PIAIRIAIMIE|TIEIR] [A[R|EJA
*
* TIEJRIMIINIAIT I O/ IRjolU|T/I/N
*
TRM
uis|E|R|['|s] |P[r|0j G Rla
*
* Flivlalr) {E|R[R|OIR] |CIHIE|ciK|1IN|G] |RIO[UITII|NIE
*
M|V [C ${P{(|4))|,|*|+11]0] iciH|K| |C|AILIL|IIN|G| |S|E E[N/CIE
B ClH[K
D [c A [((*]+4]) RIE|T|U/RIN| |A[D/D/R E/ S| S,
D |C A |[CINJAIME|) LiojclalT{ijo[N| [O/F (DIEVIIICE PARAAETE A
H [B * |, X[[FIF|"
[plElvir|c|e| |PlaAlRIAIMIE|T EIR]|S
NiAIM[E DlC Al(lo]1]) .
DiC A (lof1j) of1{=| Is|1 0i0]= Nis/I{M[Q
DiC Al(OT|PiT) s{T|A[RIT| |O|F OUTPJ AR E
D|C ALCJOIT|PIT +.7]9]) N\D| |O/F j0/U|T{PUIT| JA REA
pic Al(AL|RMD ALIAIRIM AIDDRESS
plc Al(lA BINIM) ABINLORIMA L, & DIDIRIEIS.S| i
D|s 1/2]c
*
Vizisfalslef7 a9 drofii rz3fra)isfie 178 19|20 §23 {22]23124)2 6 |27]28f29 | 3031|3233 [34]35 |36 | 37| 38|39 [40 | 41] 42| 43]4a|a5]46 {4748 |49 | 5O) 51 | 52|53 |54]55]56 61(62]63 66|67 |sales | 70| 71 [72] 73t 74|75 | 76| 77 784 79| w0

63

10C8

Error Recovery on the Figure 4 reveals how error recovery must be attempted on the 70/236
70/236 Card Punch | Card Punch to maintain continuous flow processing. No sample coding or
narrative description matching the flow chart is given for this example.

Triple buffering allows error recovery from every type of punch error.
Error recovery from a punch card error requires repunching the card in
error plus the one just punched, because both are routed to the reject
stacker. This hardware scheme requires the retaining of the card image
after it has been punched. Recoveryfrom parity errors generated through
transmission, or in the punch buffer, are recovered from by repunching
the area just punched. If there are parity errors in the buffer, the card
in error is routed to the reject stacker. If there is a parity error in
transmission, the punch transport does not advance.

This routine provides for a recovery of almost any error without oper-
ator intervention.

Chart 25. Simultaneous Output Functions, Sheet 3of 3

t NAME OPERATION OPERAND COMMENTS IDENTIFICATION
-
1|2 I] afs|e]71aty hofrrfizizhralishs|17]18 19120 f21122123|24|25] 26 | 27| 28293031 32133 34 (35 [36 |37]38 39| 4041 14243 |[44]45|46]47 |48 [49|50]51|52|53]54)55)| 56|57 |58)59 |60 |61 [62]| 63|64 (6566 (67 |68]69(70 |71 [72]73]74 |75(76 [77 7!—;;‘!ﬂ
T T
* alLiar[M| IRlolujT|1|NE plrlolc|r|aMMI|ER|"|s| lolwin] |clojp|E|-| |Mja|y| [BlE[|rln|T|E/R|P|R ETII|VIE |alS
* vl |alultjolwlrix|e| |nlo|nip|Riz|n|T|a|B|L|E] |c|RlalP[uiT|c|s| |T|o] |B|E| |B|Y[-
* plalsislelp| |olr| imaly} |BlE| |clo/r|RE|c|T|1|v[E| |als| |1|N] |ajLT[E[R[T|N|G
I
* D|A|T|A| |FlO|R| [CIA|R|D] {PJUNIC/HII|NG | i
* ! ! !
[T T J ! f
* A[B|N|OJR[MIA L ROUT&;NE‘ PIRIOJGIRIAMMIER]|" oij \CLODE=| [FlOo HIA|N|D/LIIIN|G, |S|I|GN|A|LlS
* ! r rlolM RII|NTIE|R 0R P[A(;?E] clulalnle ElT|C i !
i T H
* | 1 | | N i i
, Al .
o dalilag]m Riolujtf1|nE i plRlojGiRAMMIE R IS {O|W|N ClOIDIE- MAY [BEL TINTER®PRETIVE Als
f #
> 1| |alL|Llolw|1|nic| |njo|n e |RiTiN|T|a|B|L|El |G|R|a|P|R|T|C|S| |Ti0| |B|E[!BlY-
i ; i :
*| plais|s/en| |ole| |Malv| IBjEl | olRRIEGIT{1|v|E| |as| |I|N| (aji]7|E[R|1/N]C
* plaltial |FlolR| .CARD! [P UNCH I NG
*i‘ 1 I | | } 1
i ' ! i H i
[! [| Ll i |
[| T | 1 DR BN | !
L uls|el® |s| el rofc|ram/}| | | Loddb b i
T ! ! i I 1 1 T [L e I f
T I A I R I
| B clelelel ¢ | 11 | FANSIS N D O N O I :
T T T T L T T Tttt t T t t
‘ : |
*| alBinjo|riMa|L] |Rlo|u|T|1|N[E| | | { |p|rlo|cir|alM|MER|"|s] [o]w|N]| ic|o|p|Ei-| |F o|r| |u|a|n|piL|1|n|c| |s|z|c|n|alLis| |
T T i T T T T
Ll | 1 FlR oM |PRITINITER Flolr! |plaiclEl |clualn|clE| |E|T|C
! 1
5] ! Ll l ‘
I i i
| | |
v!s E R IS| 'P.ROGRANM . N o ;
.] HEREERER [Pl TTTITT7 7777
1 T
B clclele
E|N|D 1N
Vv 2f3fafs]|e|7|a]®sro)n h213fva] 1536 |17)18]19 |20 |21 [22 23] 24|25{26 | 27|28 |29 |30)31 |32]33|34|35]36 373.37}40 A1) 42| 43| 44| 45|46 47|48 149 | 50)51 1 52|53 | 54| 55| 56 | 57|38)59 (80 |61 66167 [68169{70] 71]72] 73| 74|75]76]| 77] 78{ 791 80|

64

®___

PROCESS
DATA INTO
AREA 1

ISSUE A
‘CHK’" CALL

. NORMAL RTN

MOVE AREA 2
TO
AREA 3

MOVE AREA 1
TO AREA 2

ISSUE AN
“OUT" CALL
AREA 2
(SIMO)

ISSUE AN
“‘oUT’” CALL

ON AREA3
(NON-SIMO)

NORMAL

ISSUE AN
“OUT’ CALL

ON AREA2
(NON-SIMO)

NORMAL

WAS
THE ERROR
A PCE 27

ISSUE AN
“OUT" CALL
ON AREA 2
(NON-SIMO)

NORMAL

HALT FOR
OPER. INTER- |«
VENTION ~

~ INoOTE
~N

~ ~, HOPPER EMPTY
OR STACKER FULL
| CONDITION
| EXISTS

Figure 4. 70/236 Card Punch Error Recovery Procedure, Flow Chart

65

10CS

ASSEMBLER
PROGRAM

ASSEMBLER
PROCESSING

First Pass

Second Pass

DEVICE
ASSIGNMENT/
INTERCHANGEABILITY

¢ The 70/15 Assembly System is in the form of a classical two-pass As-
sembler, but there is no intermediate punched output. The Assembler
consists of two segments. Each segment processes one pass.

¢ In the first pass, a table of name-address assignments is created. If a
magnetic tape is selected as the input device for the second pass and the
card reader is used as the first pass input, the cards read will be written
to the magnetic tape, which will then be read in the second pass without
operation or intervention.

If a card reader is selected as the input device for the second-pass,
the operator must restack the reader hopper with the source program
deck. A Halt and Branch at the termination of pass one will give the oper-
ator time to compose the second-pass input.

¢ During the second pass the operands and operation codes are defined,
the object program deck is generated, and the assembly listing is printed.

¢ The input/output commands within the 70/15 Assembly System do not
assume the use of a standard set of peripheral device trunk and unit num-
bers. Instead, they are coded with logical device numbers and are linked
to actual devices only at execution time. A standard function of the Loader
performs these linkage assignments.

A set of I/O Define cards (see ''Formats'', page 53), one for each logi-
cal device required, when passed through the Loader sets up a Device
Correspondence table which serves the I/Oneeds of the Assembler. These
device assignments must be made before the Loader transfers control tothe
Assembler. Corresponding to these logical numbers the following devices
must be defined:

00 - Input Device for Pass 1

01 - Input Device for Pass 2

07 - Assembly System Device*

08 - Object Program Output Device

09 - Assembly Listing Device

Since the logical device numbers do not require that a particular actual
device (e.g., card reader) be specified, magnetic tape may be designated
as the actual device for any of the preceding I/O Define cards.

*Tape Assembly.

66

GENERATED OBJECT
PROGRAM

Program Card

Text Card

Entry Card

Extrn Card

End Card

ASSEMBLY LISTING

70/15 Assembler
Program

¢ The object program generated by the 70/15 Assembly System consists
of five types of cards. Their functional descriptions are listed below.
(See ""Formats'', page 53.)

¢ This card is the first card of every program. It contains the name of
the first source statement. Its format is similarto that of a file name and,
therefore, can serve the program as a file label on tape libraries. It also
contains the address to which the program is assembled. This card cor-
responds to the source START statement.

¢ This card contains the generated object code. The text card holds ap-
proximately 10 machine instructions along with other loader control in-
formation such as relocation factors, memory assignment, and text card
identification. The text card may contain partial instructions, and the
instructions will be continued from one text card to the next.

¢ This card corresponds to the source ENTRY statement. It contains the
name and address of a program entry point. One object program Entry
card is generated for each source ENTRY statement.

¢ This card corresponds to the source EXTRN statement. It contains the
symbolic name and address of the last program reference to the external
name. One objectprogram Extrn card is generated for each external name.

4 This card corresponds to the source END statement. It contains the
address of the first logical instruction inthe program thatis to be executed.

¢ The assembly listing contains on each line the image of the source
language statement, the machine code that resulted from it, and the loca-
tions assigned to each statement. In addition, the listing displays page
headers and any necessary error flags. The source language statement
composed almost exclusively of EBCDIC graphics is printed without edit-
ing. Any EBCDIC nongraphic in the statement card will be represented
as a blank. However, since each byte of machine code is probably not an
EBCDIC graphic, the resultant machine code related to each source state-
ment is represented on the listing in its hexadecimal form (two characters
0-F to a byte). The address assigned to each statement, for the same
reason, is also represented in hexadecimal form.

The Identification field (columns 73-80) of each object program card is
also displayed on the listing. Since one machine code Text card can be
generated from many sequential source statements, the Text Card Identi-
fication will be printed only with that statement that contributes the least
significant byte of text, and indeed this byte will correspond to the address
assigned to the statement. Because there is a one-to-one correspondence
in a source statement and the generated object program card for the Start
(Program), Entry (Entry), Extrn (Extrn) or End (End) card, they will al-
ways be printed with an object program card identification. DS's generate
no output, and, therefore, never display an Object Program Identification.

67

ASSEMBLY LISTING
(Cont’d)

70,15 Assembler

Program
A diagram of a page of assembly listing is shown below.
Program Name 70/15 Assembly Listing Date Page #
1-4 7-10 13-27 33-112 117-120
ef loc code statement id

Program Name:

Date:

Page #

ef:

loc:

code:

statement:

id:

The four-character name from the program's Start card.

The contents of the loader date area with slashes in-
serted; i.e., mm/dd/yy.

Page count.
Print area reserved for possible error flags.

Upto four simultaneous error indicators canbe displayed,
one character for each error condition in the statement.
The list of error flag characters and their meaning follows:

Error Flag Meaning

Invalid Name

Invalid Operation

Invalid mask, length, trunk or unit.
Invalid Operand

Punch Error During Assembly
Undefined Symbol

Multiple Defined Symbol
Location Counter Overflow
Statement Out of Order

Name Table Overflow

Invalid Decimal Field

Invalid Hexadecimal Constant
Read Error During Assembly

HXOHNmZ2dY~HOZ

Hexadecimal representation of the address assigned to
the first byte of the statement.

Hexadecimal representation of the coding generated by
the statement. If more than six bytes are generated by
a statement, a new print line is used for each additional
six bytes or remainder.

Image of the 80-column source statement.

Four-character Identification field on the object program
card associated with the statement.

68

RESTRICTIONS

COMPATIBILITY

70/15 Assembler
Program

¢ The 70/15 Assembly Program will not accept source language programs
on magnetic tape for processing that have been blocked. If the input source
language program is on magnetic tape, it must be in 80-byte record blocks.

¢ The 70/15 Assembly System can be executed on the 70/25 Processor
without any modification. A standard 70/15 loader with the compatibility
card added must be used to load the program into the 70/25.

69

OPERATING
PROCEDURES

CARD SYSTEMS

¢ In order to assemble a program using the 70/15 Assembly System, the
operating procedures listed below must be followed.

¢ 1. Compose the deck illustrated in Figure 5. If the proper loader is
already in memory, start the deck with the four I/O Define cards.

70/15 Assembly

System
Segment 2

Source Program

Deck

70/15 Assembly
System

Segment 1

4 1/0 Define

Cards
/

7

Loader

Figure 5. Composed Deck for Card Systems

2. Place the composed deck in the card reader.

3. If the loader is already in memory, this step is omitted. Insert the
trunk and unit number of the card reader into the M register and
depress the Load button to bring the loader into memory. The
processor will halt with an (FF)16 in the M register.

4., Depress the START button and the assembler will be loaded and the

first pass will be executed. When the first pass is completed, the
processor will halt with an (Fl)16 in the M register.

70

CARD SYSTEMS
(Cont'd)

TAPE LIBRARY
SYSTEMS

Operating
Procedures

The card reader input stacker now has segment 2 of the assembler
ready for loading. Replacethe source deck behind this segment and
depress the START button.

When pass two is completed, the processor will halt with an (FF)16
in the M register.

If the source program is on cards, compose the deck that is illus-
trated in Figure 6. If the source program is on magnetic tape, the
four I/0 Define cards and the assembler Call card are the only re-
quired cards.

Source Program

Deck

Assembler

Call Card

Date Card

51/0 Define
Card

Figure 6. Composed Deck for Tape Library Systems (Card Output).

2.

3.

Place the composed deck in the card reader.

If the Loader is already in memory, step 4 is omitted.

If the Loader is not in memory, set the trunk and unit number of the
Program Library Tape (PLT) into the M register and depress the
Load button. When the Loader has been read in, the processor will
halt with an (FF) 16 in the M Register.

Depress the START button. The four 1/O define cards will be
loaded and the Assembler call card will cause the Loader to scan
the PLT for the Assembly Program and to subsequently load and
execute the first pass.

If the source program is on cards and the Card Reader has been
designated as the input device for the second pass, the Processor
will halt (F1)_ . at the completion of the first pass. Restack the
source program in the Card Reader and depress the START button
to execute the second pass.

71

TAPE LIBRARY
SYSTEMS (Cont’d)

STACKED
ASSEMBLIES

PROGRAM HALTS

Operating
Procedures

7. If the source program is on magnetic tape, or if magnetic tape has
been designated as the second pass input device, there is no halt
between the first and second pass.

8. If the object program is to be stored on tape in PLT format, the
PLT Absolute Loader shouldbe inserted between the Assembler call
card and the source program deck. The Assembler will write the
loader onto the front of the object program tape.

9. Final halt (FF)lﬁ’ when assembly has been completed.

¢ Assemblies may be stacked only if the source program is on magnetic
tape or the second pass input device is magnetic tape. In order to permit
stacked assemblies in the PLT system, the output tapes will not be re-
wound at the end of assembly. Rewinding can be effected by Execute cards
placed after the last source deck.

¢ A program halt takes place whenever a nonrecoverable error condition
occurs. A list of halt display characters (contents of M register on con-
sole), their meaning and suggested operator action will be provided at a
later date. It should be noted that source language errors will not cause
error halts. All assemblies must be rerunfrom start if anynonrecoverable
errors occur during assembly processing. Nonrecoverable I/O errors
will cause the processor to halt with an(8F);gdisplayed in the M register.
The trunk and device number which caused the error are stored in the
standard location $P (Byte 130).

72

FORMATS

|/O DEFINE CARD
(Input)

¢ I/0 Define cards must be passed through the Loader prior to execution
of the Assembler inorder to define the peripheral devices required by the
Assembler. Onecardis required for eachlogical device referenced by the
Assembler. The format of the I/O Define card is as follows:

Card |\ | 9 |3 |a|5 (6| 7|89 |10]11 |12 13-80
Column
Legend | V| 0 |L |x|x |A|t |[u]d d h h | Ignored
Note: All upper case letters must appear on the I/O Define card in
their respective columns.
where: VO = identification of I/O Define Card.
L = indicates that logical device number follows.
xx = the logical device number to which the actual device is
assigned. The range of xx is 00 to 09.
A = indicates that the actual trunk and device numbers follow.
t = actual devices' trunk and may range from 0 to 6.
u = actual device unit and may range from 0 to F.
dd = the device type being defined; i.e.,

01 = Magnetic Tape

02 = Card Reader

03 = Card Punch

04 = Paper Tape Reader

05 = Paper Tape Punch

06 = On-Line Printer

07 = Interrogating Typewriter

08 = Card Reader-Punch

09 = Single Channel Communications

hh =the hexadecimal representation of the control byte to be

issued to a 7-channel magnetic tape station to set its mode
of processing. Table 8 shows the possible hexadecimal
representations and meanings of the control bytes.

73

1/O DEFINE CARD
(Cont’'d)

OBJECT PROGRAM
CARDS (Output)

Table 8. Control Bytes

Formats

Binary Meaning Hexadecimal
11110000 800, odd, pack/unpack on, translator off Fd
10110000 | 556, odd, pack/unpack on, translator off B¢
01110000 | 200, odd, pack/unpack on, translator off 70
11101000 | 800, odd, pack/unpack off, translator on ES8
10101000 556, odd, pack/unpack off, translator on A8
01101000 | 200, odd, pack/unpack off, translator on 68
11100000 800, odd, pack/unpack off, translator off E¢
10100000 | 556, odd, pack/unpack off, translator off A
01100000 200, odd, pack/unpack off, translator off 60
11001000 800, even, pack/unpack off, translator on C8
10001000 556, even, pack/unpack off, translator on 88
01001000 200, even, pack/unpack off, translator on 48
11000000 | 800, even, pack/unpack off, translator off (o]/]
10000000 | 556, even, pack/unpack off, translator off 8f
01000000 200, even, pack/unpack off, translator off 440

6 .
If a control byte contains f's in bit positions 27 and 2, the density
setting will not be changed from its present setting.

If a control byte contains 1's in bit positions 24 and 23, the Tape
Controller will terminate the command. The 22 position of the
standard device byte will be set to 1, and the 20 position of the
first secondary status byte will be set to 1. This is an illegal op-
eration. The Translator and Pack/Unpack modes may never be on
at the same time.

If a control byte contains a 1 in position 24 and a § in position 25,
the Tape Controller will force odd parity. If a Read command is
attempted, and the tape was written in even parity, parity error
will be indicated. Odd parity must be observed for pack/unpack.

If 00 (or blanks) are specified, a 9-channel tape station is assumed.

¢ The object program is composed of machine language coding and Loader
parameter cards. Five different object program formats are processed
by the loader. Columns 1 and 2 of all five cards indicate card type. They
are described on the following page.

74

Formats

Program Card Card

1 213141 5 6|17 1819 |10 11-21 22-80
Column

Legend | V| 3|n|a|m|elalalb b date Ignored

where: nam e = the program name.

aa = the EBCDIC address to which the program is
assembled.
bb = the EBCDIC address of the highest byte +1 of this
program.
date = the contents of the date area at assembly time.
Entry Card
Card 1 2 | 3 | 4 5 6 | 7| s 9-80
Column
Legend v 4 n a m e a a Ignored

Il

where: name the name of the Entry point being defined.

aa = the EBCDIC address where it is assembled in the
program.
Text Card
Card 12l 3s]als|e6|l7|s]|9|10]11-72] 73-80
Column
Legend A% 5 f fl|f] fln]lala Text | Ignored

where: ffff = four EBCDIC characters corresponding to 32-float bit
factors to be applied to the text. Each two bytes of text
correspond to a float bit. If the bit is one, the float
factor is added to the two bytes before transferring
them to memory. The most significant bit corresponds
to the most significant pair of bytes to be assembled to
an even memory location. If the first byte of text is
assembled to an odd location, it is not floated.

n =the EBCDIC number of bytes of text to be transferred
(1-62).
aa = the addressto wherethe first byte of text is assembled.

Text = Generated EBCDIC Object code.

External Card Card

Column 1 2 3 4 5 6 7 8 9-80

Legend v 7 n a m e a a Ignored

where: n ame = the name of the external reference.
aa = the EBCDIC address of the assembledlocation of the
last reference to external name in the program.

75

End Card

LOADER CALL CARD

Formats

Card 1 3| 4|5 |6]| 7] s 9-80
Column

Legend v n a m e a a Ignored
where: name the name of entry point to which the Loader is to

aa

branch.
the EBCDIC address of the assembled location to
which the Loader is to branch. A blank in this field
directs the Loader to issue a read of the parameter
source.

The following cardis used to call an object program from a library tape:

Card | ;1,13 5|6[7|8|9|10]11]12|13] 14] 15-80
Column
Legend{ V |1 |n m|e hlh|h h i b | Ignored
where: name is the name of the program to be loaded.
The Assembler call name is AST1.

hhhh is the hexadecimal address to where the program is
to be loaded (031C).

i when nonblank signifies that the loader should not
erase the Entry-Extrn table but continue to make
use of it. A blank implies erasure and generation
of a new table.

b if nonblank it denotes PLT batched five cards/block.

76

System Date

70/15 Processor December 22, 1965 No. ;
70/15 ASSEMBLY REFERENCE MANUAL #70-15-602
First Printing April, 1965
Revised October, 1965

General This bulletin contains revised information to the
70/15 Assembly System Reference Manual, ' These
changes and additions advise the reader of the latest
information available concerning the 70/15 Assembly
System Reference Manual. This information will be
included in the next printing of the manual.
Specifically, the revised information is itemized

below.
Page Para. Line
28 Table 4. First line, Add "(7- or 9-channel)" after

the words '"Magnetic Tape Unit".

30 3 6, 7 Delete the sentence, "Also, all ENTRY and EXTRN...
before assembly,".

40 Table 5. Model number of Bill Feed Printer should
be 70/248.
44 Table 6.

Card Reader: delete model number 70/232.

Printer: change condition represented by bit position
27 from "Print Error" to "Channel 12 sensed."”

Change condition represented by bit position 26 from
"Not Used'" to "Channel 9 Sensed."

Conditions represented by bit positions 27 and 20 are
Abnormal conditions.

Input/Output Typewriter: Model number should be 70/216.
Magnetic Tape Devices:

Condition represented by bit position 22 should read
"BT/ET

37-12-011

Page Para. Line

44

45

47

48

48

48

49

49

49
50

52

56

56

56

10

(Abnormal if read operation)."
Bill Feed Printer:

Model number is 70/248.

Conditions represented by bit positions 27 and 26

are Abnormal conditions.

Change the word "END" to "EOT",

Change latter part of sentence to read, "... Oor a
binary number that selects one of 10 loop channels
(1-11, but not 9), depending on the setting of bit 27 n
Change the first part of the sentence to read, "When
specifying forms control through use of the OUT calling
sequence and no pointing is desired,..."

Change the first part of the sentence to read, "A check
(CHK) is performed before the read and the .

appropriate,..."

Change first part of sentence to read, "A check (CHK)
is performed before the read and the appropriate,..."

Change first part of sentence to read, "No check (CHK)
for this read is made,..."

Change first part of sentence to read, "No check (CHK)
for this read is performed,..."

Delete the word "Auxiliary'".
Correct the typographical error '"esires'"to read "desires".

Delete paragraph under "DEV. NO." Replace with "DEV.
No. is actual device number (range 0-F)".

Correct typographical error:
Change "... to 70/15..." to"... the 70/15...".

Change "... five entry (ENTRY) points..." to "... seven
seven entry (ENTRY) points...".

Eliminate ", Write Auxiliary" from the list of I/0
instructions.

Page Para., Line

59 Figure 2. Block 70. Change wording in block to read,
"Halt, operator intervention',

60 Chart 24. Ninth line from bottom of chart — label
field is "KEOF": insert a single quote (') in column

22, so that the operand field is "C'SEOF'".

61 10 1 Change explanation of Block 80 to read "Represents the
final output processing and any final output functions."

62 Figure 3, Block 50, Indicate that the exit from
block 50 is to entry point C by drawing a flow line
from block 50 to a circle containing "C'".

64 Chart 25. Delete top 7 comment lines,
72 The following description replaces the PROGRAM HALTS
description:

Listing of Program Halts ¢ A program halt takes place
whenever an error condition occurs. Following is a
list of halt display characters (contents of M register
on console), their meaning and suggested operator

action,
M Register Definition Operator Action
00 I1/0 error from logical Check device for
device 00. inoperable con-
dition; press
START to retry.
01 1/0 error from logical | Check device for
device 01, inoperable con-
dition; press
START to retry.
08 1/0 error from logical Check device for
device 08 inoperable con-
dition; press
START to retry.
09 1/0 error from logical | Check device for
device 09, inoperable con-
diticn; press
STAET to retry.
8F Nonrecoverable I/0 Restart assembly.
error. The device number
of the inoperable
unit is stored in
the standard loca-
tion S$P (Byte

System 70/15

General

10

16

17

21

37-12-011

Date March 25, 1966 No. 2
70-15-602

70/15 ASSEMBLY SYSTEM REFERENCE MANUAL
First Printing: April, 1965
Second Printing: ©October, 1965

This bulletin contains revised information to the 70/15
Assembly System Reference Manual. These changes and
additions advise the reader of the latest information
available concerning the 70/15 Assembly System Reference
Manual. This information will be included in the next
printing of the manual.

Under "Related Programming Systems” insert "07-Assembly
System Device" in fifth sentence, second paragraph.

Under "Additional Restrictions on Symbols" change paragraph
3, second sentence to read" ... for a 4K processor is 80."
Third sentence to read " ,.... for the Tape Assembly System
is 495,

Under "Character" change second sentence to read "The
character can be any of the printable characters",

Under "Assembler Instructions" insert after last paragraph:
"Service Routine Linkage Instructions!”,

MP - Multiply
DP - Divide

"The Assembler will generate an actual machine instruction
in the format of the Add Decimal (AP) instruction. The
operation codes will be the 70/25 operation codes for MP
and DP mnemonics., (See 70/15 Utility Routines Manual
70-15-301)",

Under "Start-Start Program (Cont'd)" second sentence of
last paragraph delete "but is flagged as an error",

Under "Character Constants -C" add sentence to first
paragraph. "A character constant must be a printable char-
acter",

26

66

Under "Hexadecimal Constants-X" change second paragraph
to read "If the hexadecimal description specifies an
odd number of digits, a zero digit is appended to the
rightmost end of the constant",

Insert after "Chart 15",

Service Routine Linkage
Instructions
MP-Multiply

DP-Divide

Name

Symbel
Symbol

The Assembler recognizes the MP
and DP mnemonics as valid 70/15
instructions and generates machine
coding in the Add Decimal (AP)
fcrmat., The computer will enter
the P2 state when the generated
machine codes for the MP or DP

are encountered. Servicing in

the P2 state will be performed

by the Multiply/Divide Service
Routine (see the 70/15 Utility
Routines Manual for a complete
description of the Multiply/Divide
Service Routine). The purpose of
the mnemonics is to simplify the
coding of the parameter lines

for the Multiply/Divide Service
Routine. The format is as follows:

Operation Operand
MP S, (L,), s, (L,)
l b
DP sy(Ly), S5(L2)

Chart 15A Example of Multiply/Divide Service Routine
Parameter Line

Name

Operation

Operand Operation

MP
DP

FOUR(2),FIVE(2) | Multiply FOUR by FIVE
SIX(5),TWO(2) Divide SIX by TWO

Under "First Pass!" delete all but first sentence cf first

paragraph.

Under "Device Assignment/Interchangeability'" add sentence
to third paragraph',
input /output control for magnetic tape'.

"The card assembler does not provide

71

72

Under "Card Systems" change procedure 1 to read ".....
with the five 1/0 Define cards. In Figure 5 change
"4 1/0 Define Cards" to read "5 I/0 Define Cards',

Under "Tape Library Systems'" change paragraph 1 to read
"---five 1/0 Define Cards =----". Change paragraph 5 to
read "The five I/0 Define Cards will be ----",

Under "Stacked Assemblies” delete paragraph and insert "In
the 70/15 Tape Assembly,provision is made to automatically
process sequentially stacked programs, The output tapes
will not be rewound until the assembly is terminated by
the appearance of a $EOF c:rd, an end file tape mark will
be written on each output tape before rewinding."

I'nder "Program Halts" delete paragraph and insert the
tollowing:

"A pregram halt takes place whenever a non-recoverable error
ccnditicn cccurs, A list of halt display characters
(Ccntents cf M register c¢n ccnscle;, their meaning,and
csuggested cperater action :re listed below. It should be
ncted that scurce language errors will not cause error

halts unless & non-printable character is encountered.
Non-recoverable 1/0 errors will cause the processor to

halt with an (8F);, displaved in the M register. The

trunk and device number which caused the error are stored

in the standard location SP (Byte 130)".

Card Assembly Program Halts

Display Meaning Branch Action
Chars.,
01 READ ERROR Continue Restack card reader with error card
followed by remainder of card
input and depress start.
02 PRINT ERROR Continue | Note and depress start.
03 PUNCH ERROR Continue Note and depress start.
8F I/0 INSTRUC- Continue Check inoperable condition of trunk
TION NOT and unit stored at $P+5. Depress
ACCEPTED. start to re-execute the operation.
F1 END OF PASS I | Continue Place Pass 11 and source program
in card reader and depress start,
FF END OF None None
ASSEMBLY.

Tape/Card Assembly Program Halts,

PASS 1
—-
Display Meaning Branch Action
Chars.

00 READ ERROR Continue If card reader, restack card
reader with error card followed
by remainder of card input, and
depress start. If tape,depress
start to retry.

0l WRITE ERROR Continue Depress start to retry write.

INTERMEDIATE TAPE

08 WRITE(PUNCH) Continue Depress start to retry write
ERROR OBJECT (PUNCH j.

PROGRAM

ug WRITE ERROR Continue If tape,depress start to retry
ASSEMBLY LISTING write, If printer, check for
DEVICE nonprintable character in

source program card or invalid
data in standard data area,
make correction,and restart
Assembly,

8F 1/0 INSTRUCTION | Continue | Check inoperable condition of
NOT ACCEPTED trunk and unit stored at $P+5.

Depress start to re-execute the
operation.

90 TAPE LABEL PURGE | Continue SP contains the device number,
DATA HAS NOT BEEN Depress start to override label
ACCEPTED. check.

BO SEOF STATEMENT IN|Continue Depress start to bypass S$EOF
MIDDLE OF SYM- statement.

BOLIC DECK.,

Fl END OF PASS 1 Continue Place Pass II and source pro-
gram in card reader and depress
start,

FE INPUT DEVICES ARE |Continue Correct I/0 define cards, reload

IMPROPERLY card reader, and depress start,
DEFINED

Tape/Card Assembly Program Halts (Cont'd)

PASS 11
Display Meaning Branch Action
Chars,
al READ ERROR Continue |If card reader, restack card reader
SOURCE INPUT with error card followed by remainder
DEVICE of card input and depress start, If
tape,depress start to retry.
08 WRITE(PUNCH) | Continue|Depress start to retry write (PUNCH)
ERROR OBJECT
PROGRAM
DEVICE
- 09 WRITE ERROR | Continue|If tapesdepress start to retry write.
ASSEMBLY If printer,check for nonprintable
LISTING character in source program card,
DEVICE make correction, and restart Assembly.
8F I/0 INSTRUC- | Continue |Check inoperable condition of trunk
TION NOT and unit stored at $P+5. Depress
ACCEPTED start to re-execute the operation.
Page :
72 Replace item 7 under "Tape Library Systems" with the
following paragraph.
7. 1f the source program is on magnetic tape, there
is no halt between the first and second pass. If
the source program is on cards and magnetic tape
has been designated as the second pass input device,
the cards read will be written to magnetic tape
eliminating a halt between the first and second pass.
76 Under "Loader Call Card" change "hhhh" definition to read

"... is program to be loaded (0328&)".

System 70/15 Date September 28, 1966 No. 3

ASSEMBLY SYSTEM REFERENCE MANUAL #70-15-602
(FIRST PRINTING: APRIL, 1965)
(REVISED: OCTOBER, 1965)

General: This bulletin contains revised information to the 70/15
Assembly System Reference Manual. These changes and additions
advise the reader of the latest information available on the
70/15 Assembly System Reference Manual. This information will
be included in the next printing of the manual. When required,
subsequent bulletins may be issued to maintain the accuracy of
the manual. The revised information is itemized below.

Page Under Additional Restrictions on Symbols, change the third
6 paragraph to read:

3. The size of the source processor's main storage (4K,
8K, or 16K) determines the maximum number of symbols
that can be used in one program. In the Card Assembly

(System, the maximum number of symbols for a 4K pro-
cessor is 80; maximum for an 8K processor is 700;
maximum for a 16K processor is 2,000. In the Tape
Assembly System, the maximum number of Symbols for an
8K processor is 495; the maximum for a 16K processor
is 1,860.

7 Change the second paragraph under The Location Counter to
read:

The Assembler normally compiles programs for a 4K, 8K,
or 16K memory. The location counter maintains addresses up
to 16K. However, the Assembler flags any statement which
sets the Location Counter above the limit stored at 148-149(10).
The statement, nevertheless, will be processed with the excess
Location Counter value.

17 Change the third paragraph to read:
If a START directive is not written as the first state-

ment of the card assembly, the Location Counter is set to zero
and the first statement is flagged.

37-12-011

Page

17 (Cont'd) If a start directive is not written as the first state-

ment of the Tape Assembly all cards will be transcribed to
logical 08 until a START directive is encountered. The Lo-

cation Counter is set to zero if the START directive operand
is blank.

	001
	002
	003
	005
	006
	007
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	upd1-01
	upd1-02
	upd1-03
	upd2-01
	upd2-02
	upd2-03
	upd2-04
	upd2-05
	upd3-01
	upd3-02

