
5F1E'_
RADIO CORPORATION OF AMERICA • ELECTRONIC DATA PROCESSING

@RADIO

SYSTEM

7015

TRAINING MANUAL

CORPORATION
70 - 15 - 801

o F AMERICA

The information contained herein
is subject to change without notice.
Revisions may be issued to advise
of such changes and/or additions.

First Printing: December, 1964
Second Printing: January, 1965

TABLE OF CONTENTS

PAGE

GENERAL DESCRIPTION • • • . • • • • . • . • • • • . . • . • . . • . . • • • • • . • • • . • • • • 1

HSM AND MEMORY ADDRESSING .•..••••.•••.•..•...••••••••••.•..•••..•.• 3
Introduction •.•..••.•...•........•••....•...••...•.•.•.....•...•• 3
HSM Addressing. . • . . • . • • • • . . . • • . • . . . • • • . • . • . . • . • • • . • • • • 3
Hexadecimal Numbering System. . . . • • • • • • • . . • • • . . • • . . . • • • • • 3

DATA AND INSTRUCTION FORMAT. • • . . • • • . • • . . • . . • • . • . . . • . • . . . • • • • • . . • 7
Unpacked. • • • • . • • . • • • . • . . • . • • . • • • • • 7
Packed. . • • • . . • . . • . • • • • • • • . • . • • . . . • • • . 7
Sign Recognition. . • . • • . • • • . • . . • • • • . • . • . • • . • • . • • • . • . • • 7
Edited Format. . . • . . . • • • • . • . . • . • • • . . • • . . • • . . • • • 8
Machine Instruction Format. . . . • • • • . . • . • • . . . • • • . • • • . • . . . • • 8

INTERRUPT . • • . . . • . • • • • • • . . . • • . • • • . • • . . . • . • • . • . • . • • • . • . • • 11
Introduction ..•......••..••..........•...•....••................• 11
Programming States. • • • • • . • . • . . • . . . • . • . • . • . • • • • • . • • • . • . . • • 11
Processing State . • . . • . . • • . • • • . • . . • • . • . . • . • • . • • . . • . • • • • • • . • • 11
Control State • • • . . • • • • • • • • • • • . • • • • • • • . • • • • • • • • • . • . • . • . . . • . . . • . • • • • 11
I/O Interrupt. . . . • . • • . . • . • . • • • • . • • • • • . • . • • • . . • • • • • . . . • • 11
Operation Code Trap ••.•••••.•.•••••••.••••..•••.•••.•.•...••....•• 12
Inhibiting I/o Interrupt. • . • • . • • • . • • • • • . • . • • • . • . • • • • . • . . • • • • • . . • . 12

ASSEMBLY LANGUAGE • • • . • • • • • • • • • • • • . • • • • . . • • • . . • • • . • . • . • 15
Format Requirements .•.••..•••••.•••.••••.••..•.......... _ . . • • 15
Addressing • • • . • • • • • . . • • • • • • • • • • • • . • • • • • . • • • • • . • • . . • • . • . • . • . 15
Assembler Instructions .••.•.••••••••.•••..••.••.•..••..•......•••.• 17

INSTRUCTIONS • • • • • • • • . • • • • • • . . . • • • • • • • • . . . • . . . • . . • • • . . . • • 21
Data Movement . • • . • • • • . • . . . • • • . • • . • • • . • • . . • . . • . . . • . . . 21
Pack, Unpack • • . • . . • • . . . • . . • . • . . • • • • • • . . 23
Decimal Arithmetic • . • . . • . • • . • • . . • • . • • • . • • 26
Data Editing • • • • • • . • . . . • 28
Comparison and Branching ...••..•..•..•....•...••.•...•.•.•....•.... 32
Binary Arithmetic . . . • . • • . • • • • . • • • . • 36
Logical •.••....••..•...••.....•....•.•......•.................. 38

INPUT/OUTPUT • . . . • . • • • . . • . • • • . • • . . . • . • • • . • • • . . • . • • • . . • . . • . • . 41
Introduction ...•••••••••.•••..••••...•.•.•••.••..•...•••..••••••. 41
Reading Data. • • • • • • • . • • • • • • • • • . • • • . • • • • • • • . . • • • • • • . • • • • • . • 41
Writing Data. • . • . • • • . • . • . • • • . 42
Controlling Peripheral Devices. • • • • • • • • . • • • • • • . • • • • • . • . . . • . • . . . • • 42
Error Recognition . • . . . • • . . • • • . . . • • • 43
Standard Device Dyte • • . . • . • • . • . • . • . • • • • 43
I/O Sense Information ..••••..••...•......•......................... 45

FOREWORD

This manual is designed for use in formal training
programs which vary in length from about 10 class­
room hours (with appropriate outside assignments
and work sessions) to 30 hours or more, depending
upon the experience ofthe student. People with good
and recent programming experience may find the text
helpful in self-study.

Principal references that should be used in either
formal or self-study situations are:

1. 70/15 Assembly Manual
2. 70/15 System Reference Manual

GENERAL

INTRODUCTION

The RCA 70/15 is the smallest member of the Spec­
tra 70 Data Processing Systems. It is designed for
small-scale data processing applications, and as a
low-cost satellite to the other machines in the Spec­
tra 70 System. Equipped with communications ca­
pabilities, the RCA 70/15 can be a remote computer
for printing, card reading and punching, and magne­
tic tape transfer to and from locations far removed
from the central processor.

70/15 PROCESSOR

The RCA 70/15 Processor is a general-purpose,
stored program digital machine with a High-Speed
Memory, a Program Control, and an Input/Output
connection for the RCA Spectra 70 standard Interface
Unit.

HIGH-SPEED MEMORY

The High-Speed Memory (HSM) is a magnetic core
device which provides storage and work areas for
programs and data. The memory unit can store 4096
bytes; two such units, making a total of 8192 bytes,
can be associated with eachprocessor. A byte is the
smallest addressable unit in the HSM, and consists
of eight information bits and a parity bit. Each byte
is binarily addressable; thirteen binary bits are re­
quired to express the maximum memory address.
The memory cycle time is two microseconds, which
is the time it takes to transfer a byte from HSM to a
memory register, and to regenerate the byte in stor­
age.

PROGRAM CONTROL

The Program Control executes the instructions of the
program stored in the HSM. An instruction can be in­
terpreted and executed by the Program Control only
after it has been brought out of HSM. The process of
interpreting and placing the components of the in­
struction in the proper registers is called staticizing.
The instruction is executed after it is staticized.

AUTOMATIC INTERRUPT

The RCA 70/15 can staticize and execute all instruc­
tions in one of two programming states; the Process­
ing State is the normal mode of operation for the main

DESCRIPTION

program. A condition that causes interrupt transfers
the computer to the Interrupt State. Interrupt is
mechanized in the 70/15 hardware. It automatically
senses the presence of interrupt conditions, and
transfers control to the Interrupt State.

INSTRUCTION COMPLEMENT

The RCA 70/15 Order Code consists of twenty-five
instructions that are divided into four classes.

1. DATA HANDLING

The data handling instructions permit the movement
of data fields within HSM. Data may be moved with­
out changing format or it can be packed, unpacked,
or edited for printing during the movement.

2. ARITHMETIC INSTRUCTIONS

The arithmetic instructions call for the adding and
subtracting of fields in either decimal or binary for­
mat; in addition, logical instructions perform Boolean
operations on the bit structure.

3. DECISION AND CONTROL

The decision and control instructions compare deci­
mal or binary fields, and carry out branching oper­
ations to new locations in HSM according to a Condi­
tion Code Indicator. In addition, one instruction re­
turns the computer to the Processing State after an
interrupt.

4. INPUT/OUTPUT

The input/output instructions control the reading and
writing of data between the 70/15 processor and all
peripheral equipment on-line. There are also in­
structions that recognize and recover from error
conditions.

INPUT IOUTPUT

The RCA 70/15 communicates with all peripheral de­
vices through six I/o trunks. Each peripheral device
has its own control electronics in order to trans­
mit to the processor the status of the device, and any
error conditions generated by an I/o command.

The Card Punch and Printer are fully buffered so as
to allow the physical punching or printing operation
to over lap the execution of other instructions. Simi­
larly, a Read Auxiliary instruction overlaps the op­
eration of the Card Readers and Magnetic Tapes with
other instructions.

INSTRUCTION FORMAT

There are three basic instruction formats in the
70/15; six-byte, four-byte, and two-byte instruc­
tions. The first byte of every instruction is the

2

operation code. Depending on the instruction, the
remaining bytes refer to field lengths, storage ad­
dresses, or contain peripheral device identification.

DATA FORMAT

The basic unit of storage is the byte, which can rep­
resent, in the unpacked format, one alphabetic or
numeric character, or, in the packed format, two
numeric digits. Data is represented in HSM in the
Extended Binary-Coded-Decimal Interchange Code
(EBCDIC).

HIGH-SPEED MEMORY AND MEMORY ADDRESSING

INTRODUCTION

The 70/15 High-Speed Memory (HSM) unit can store
4096 bytes (or 8192 bytes for two units). A byte is
the smallest addressable unit ofHSM and is made up
of eight information bits and a parity bit.

BYTE

Bit Identification p 27 26 25 24 23

Bit (X = 0 or 1) X X X X X X

22 21 20

X X X

The 70/15 transfers a byte from HSM to a memory
register, and regenerates the byte into memory in
two microseconds. This interval is called Memory
Cycle Time.

HSM ADDRESSING

Each byte in HSM is addressable, and the address of
its location is expressed as a binary number. It re­
quires twelve bits to express the highest memory ad­
dress of the first block (4095), and thirteen bits to
define the maximum HSM address (8191).

Consistent with other machines in the Spectra 70 Sys­
tem, sixteen bits (two bytes) have been allocated
within the instruction to define an address. The 70/15
requires only thirteen bits to define the maximum ad­
dress so the three high-order bits (213-2 15) of the ad­
dress must be zero.

The following are examples of 70/15 addresses ex­
pressed in the binary system, and their decimal
equivalents.

The first example shows the binary representation of
HSM location 25. To convert to decimal the values of
the powers of 2 in the columns carrying a 1 are added
together.

Binary Decimal Equivalent

20 1
23 8
24 16

-
25

HEXADECIMAL NUMBERING SYSTEM

The binary system, although efficient for the 70/15,
is not a convenient notation for the programmer. The
hexadecimal numbering system, which operates on
the base sixteen, is a convenient method to express
the binary representation of HSM addresses.

The decimal system is a numbering system based
upon the number ten. It uses ten single symbols
(0-9) to represent the basic digits. By a system of
positional notation that indicates multiplication by
powers of the base, any value can be expressed. The
hexadecimal system requires sixteen symbols to ex­
press its basic digits. The alphabetic letters A
through F have been assigned to represent the deci­
mal values 10 through 15 in order to maintain single
symbols for the digital values of the hexadecimal
system.

Each symbol in the hexadecimal system can be ex­
pressed by four bits in the binary system. There­
fore, two hexadecimal marks are required to rep­
resent a byte, and four hexadecimal marks can ex­
press an HSM address.

Binary Address

1

2

3

4

215

0

0

0

0

214 213

0 0

0 0

0 0

0 0

212 211

0 0

0 0

0 0

0 1

2 10 29 28 27

0 0 0 0

0 0 0 0

0 1 1 0

1 1 1 1

26 25 24 23

0 0 1 1

1 1 0 1

1 1 0 1

1 1 1 1

3

22 21

0 0

1 0

1 1

1 1

20

1

1

1

0

Decimal Equivalent

25

109

879

4094

Decimal 0 1 2 3 4 5 6 7 8

Hexadecimal 0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

9 A B C D E F

_I~: I ~: I ~: I- I -I I I

Hexadecimal Binary Decimal

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

Conversion of hexadecimal to decimal

The decimal number 472 represents:

4x102 + 7x10 1 + 2x100

4x100 + 7x10 + 2x1 = (472) 10

The binary number (101101)2 can be converted to
its decimal equivalence by:

32 + 0 + 8 + 4 + 0 + 1 = (45) 10

A hexadecimal number is converted to a decimal
value by multiplying the hexadecimal characters
by the appropriate value of 16n •

Examples

1. Convert (1024) 16 to decimal

lx163 + Ox162 + 2x161 + 4x160

4096 + 0 + 32 + 4 =(4132)10

4

2. Convert (3AF) 16 to decimal

3x162 + 10x161 + 15x160

3x256 + 10x16 + 15x1

768 + 160 + 15 = (943) 10

The first example shows the hexadecimal address
(1024)10 which has a decimal value of (4132>10. The
machine (binary) address is:

0001, 0000, 0010, 0100

Each hexadecimal character can be represented by
four bits. Therefore, hexadecimal is converted to
binary by replacing each hexadecimal character with
its binary value.

I I I I I I I I
(I 1 I 0 I 2 I 4 I) 16 = (II 0001 I 0000 r

I I I I I r I

I . I
0010 I 0100 r)2

I I

(0001000000100100)2 = 4096 + 32 + 4 (4132) 10

The second example shows that the hexadecimal ad­
dress 3AF has a decimal value of 943.

I I I I I I I
(r 3 I A I F I) 16 = (I 0011 I 1010 I 1111)2 =

I I I I I I I

(943) 10

Exercises

1. A byte consists of information bits and

a bit, and is the addressable
unit in the 70/15 HSM.

2. A HSM address consists of ___ bits of which

the ___ _ _ ___ must be

zero.

3. Convert following hexadecimal numbers to bi­
nary:

a. A4E8(16)

b. E82C(16)

c. 3D71(16)

4. Convert following hexadecimal numbers to dec­
imal:

a. B5F9(16)

b. F93D(16)

5. Convertfollowing binary numbers to hexadeci­
mal:

a. 1100011000001010(2)

b. 0000101001001110(2)

c. 0010110001100000(2)

5

6. Convert following decimal numbers to hexadec­
imal:

a. 55067(10)

b. 7007(10)

DATA AND INSTRUCTION FORMAT

DA T A FORMATS Special Characters

When representing data, a byte may store a single
character (unpacked format), or two numeric digits
(packed format).

UNPACKED FORMAT

A byte in the unpacked format uses all eight bits to
represent one alphabetic or numeric character. This
format, for example is required for the storage of
any characters that are to appear on any type of dis­
play output such as the Printer or Typewriter.

Some of the more commonly used characters, and
the hexadecimal representation of their bytes are as
indicated in the tables below.

Alphabetic

Char. Hex. Char. Hex. Char. Hex.

A C1 J D1
B C2 K D2 S E2
C C3 L D3 T E3
D C4 M D4 U E4
E C5 N D5 V E5
F C6 0 D6 W E6
G C7 P D7 X E7
H C8 Q D8 y E8
I C9 R D9 Z E9

Numeric

Char. Hex.

0 FO
1 F1
2 F2
3 F3
4 F4
5 F5
6 F6
7 F7
8 F8
9 F9

A decimal numeric field in unpacked format is as­
sumed to contain a sign in the high-order four bits of
the rightmost byte. All other bytes, in the zone por­
tion, will have the four high-order bits a value of all
ones (11112).

7

Char. Hex. Char. Hex.

BLANK EO _(Minus) 60
Hyphen

(Period) 4B / 61
< 4C , (Comma) 6B
(4D % 6C
+ 4E 41= 7B
& 50 @ 7C
$ 5B ' (Quote) 7D

* 5C = 7E
) 5D Space 40

However, the decimal numeric field mus t be "packed"
before it may be used as an operand in a decimal
arithmetic operation.

PACKED DATA FORMAT

In packed data format, one byte stores two decimal
digits except for the rightmost byte which contains
the sign in the four low-order bits.

Example

The following example shows the same field in un­
packed and packed format. Each location repre­
sents a byte shown in hexadecimal format.

Unpacked I FO I F3 I F1 I F6 I F2 I F1 I SO

Packed 1 03 116 1 21 I OS I
S = Sign

It should be noted (as in the example above) that when
either packing or unpacking a field the rightmost byte
has its zone and numeric portions reversed.

SIGN RECOGNITION

In decimal arithmetic operations the sign of a field
will be recognized as positive if the sign position
contains:

(1) All one bits (1111)2

(2) Or if the rightmost bit is a (0) 2 i. e., (1010) 2'
(1110) 2.

If the sign has a low order bit of (1)2' and at least
one of the remaining bits is (0)2' it will be consid­
ered negative.

Mter a decimal arithmetic operation the sign of the
result will be one of the following:

(1100)2 for positive

(1101)2 for negative

Thus, in preparing source card input for numeric
data fields, the user may follow existing procedures,
i. e., for a negative field an overpunch of the minus
(11 punch) in the least significant position will gen­
erate a zone portion of (11012).

EDITED FORM AT

Data that is packed may be unpacked and placed in
edited format with one instruction.

Edited format means the inclusion of bytes for char­
acters other than the decimal numeric.

As anexample, apacked field, such as the following:

I 01 I 01 I 23 I 48 I
may be converted to a field, such as the following:

I - I - I 1 I ' I 0 I 1 I 2 I . I 3 141 - I

8

by a single EDIT instruction that both unpacks the
field and inserts editing symbols.

MACHINE INSTRUCTION FORMAT

There are three basic instruction formats in the
70/15; a six-byte, a four-byte, and a two-byte in­
struction.

The first byte of every instruction is the operation
code.

The format of the second byte varies with different
types of instructions. In some instructions it is used
as a binary length (L) counter of eight bits. In some
other instructions, the byte is used to form two length
counters (L1 L2) offour bits each. And in still some
other instructions, it is used to specify a mask (M),
or for I/o instructions a Trunk (T) and Unit (U) des­
ignation. For some instructions, all or a portion of
the second byte is ignored (IGN).

The third and fourth bytes are used for a storage ad­
dress (81) in the four-byte and six-byte instructions.

The fifth and sixth bytes are used for a storage ad­
dress (82) in the six-byte instructions.

The machine formats and the types of instructions
using each format are as shown on the following
page.

SIX·BYTE INSTRUCTIONS

OP 81 L1 41 L2 41 Sl
16

1 S2
16

1
Binary A ri thmetic
Decimal Arithmetic
Decimal Comparison
Packing and Unpacking

16

1 81 81 Sl
16

S2 OP L

Data Movement
Logical Operations (And, Or, Excl. Or)
Logical Comparison
Data Editing

81 41 U 41 16 16

1 OP T Sl S2

Input/Output

FOUR·BYTE INSTRUCTIONS

81 M 41IGN 41 16
OP Sl

Conditional and Unconditional Branch

8 8
Sl

16
OP M

Test Under Mask

OP 81 IGN 81 Sl
16

Set P2 Register

IGN: These bits are not used (ignored) by the instruction.

TWO·BYTE INSTRUC TIONS

OP 81 M 81

Halt

OP 81 T 41 D 41

Input/Output (Post Status)

9

INTERRUPT

INTRODUCTION

An interrupt facility provides an automatic means
for the detection of exceptional conditions, and a
method for an immediate program response. The
function of sensing for exceptional conditions and the
automatic transfer of control to software has been
mechanized in the RCA 70/15 hardware. Combining
software with hardware interrupt makes it unneces­
sary to halt the computer when an error develops, and
eliminates program sensing of external demands.
This type of system allows the user to program a
response completely independent of his production
processing.

PROGRAMMING STATES

All instructions are executed in one of two states:
the Processing State (P 1), or the Interrupt State (P2) .
The Processing State is the normal mode of opera­
tion. An interrupt causes the computer to transfer
from the Processing State to the Interrupt State,
where it remains until instructed to return to the
original Processing State.

PROCESSING STATE

During the execution of instructions in the PI state
the address of the next instruction to be executed is
stored in the PI counter (reserved HSM forty (28) 16
and forty-one (2916).

Byte (40)10

Byte (41)10

PI Counter

Each time an instruction is staticized in the PI state
the contents of the PI counter is updated to contain
the address of the next instruction. All twenty-five
instructions may be executed in the PI state. The
computer remains in this state until an interrupt oc­
curs.

11

CONTROL STATE

A condition that causes the PI state to be interrupted
causes the computer to execute the instruction whose
address is stored in the P2 counter (reserved HSM
forty-four (2C) 16 and forty-five (2D) 16).

Byte (44)10

Byte (45)10

P2 Counter

The interrupt places the computer in the P2 state,
and each time an instruction is staticized the con­
tents of the P2 counter is updated to contain the ad­
dress of the next instruction to be executed in this
state. All twenty-five instructions may be executed
in the P2 state, and the computer remains in this
state until a STP2 instruction (see page 34) is exe­
cuted. The STP2 instruction resets the P2 counter
to its original value, and returns control to the PI
state. The Interrupt State is not interruptible. Any
interrupt attempted will be "pending" until the com­
puter returns to the Processing State, except for the
operation code trap which stops all processing.

On returning to the PI state the computer executes
the instruction whose address is stored in the PI
counter. Notice that the first instruction staticized
upon returning to the PI state is that instruction that
would have been static ized had interrupt not occurred.

INTERRUPT CONDITIONS

There are two conditions that can interrupt the Proc­
essing State.

1. 110 Device

2. Operation Code Trap

I/O INTERRUPT

The computer enters the Interrupt State automatically
when it receives a byte of data from a communica­
tion line, or when someone has pressed the inter­
rupt button on the Interrogating Typewriter.

Prior to entering the P2 state, the computer auto­
matically:

1. Stores the state of the Condition Code Indicator.
The present value of the Condition Code is
stored in the 20-21 bits of the reserved HSM
location forty-three (2B) 16

The Condition Code Indicator is then set to 00.

2. Stores the identification (Trunk and Device
Number) of the interrupting device in the re­
served HSM location forty-seven (2F) 16' The
Device Number is stored in the 20-23 bits, and
the Trunk Number is stored in the 24_27 bits.

Byte (47) 10

Trunk Number Device Number

3. Stores the Standard 'Device Byte for the inter­
rupting device in the reserved HSM location
forty-six (2E) 16. See page 43 for a descrip­
tion of the Standard Device Byte.

The P2 counter contains the address of the first in­
struction of a routine to be executed when interrupt
occurs. This routine would test the Condition Code
(with a Branch on Condition instruction). A setting
of (00) 2 would indicate that interrupt had been caused
by an I/O device. The Trunk and Device Numbers
have i?een stored in the reserved area of HSM, al­
lowing the routine to identify the device that caused
the interrupt. For example, if the Interrogating
Typewriter is Device one on Trunk three, and the In­
terrupt button had been depressed, then the contents
of HSM location forty-seven would contain:

10 0 1 1 0 0 0 11

Trunk
3

Device
1

OPERATION CODE TRAP

Staticizing an instruction in which the operation code
(the first byte of an instruction) is not one of the
twenty-five 70/15 operation codes causes the inter­
rupt called "Operation Code Trap".

12

Prior to entering the P2 state, the computer auto­
matically:

1. Stores the state of the Condition Code Indica­
tor in the 20-21 bits of location forty-three
(2B) 16'

2. Stores the illegal operation code that caused
the interrupt in the reserved HSM location
forty-two (2A) 16'

Byte (42)10

Instruction
Length

The two high-order bits of the operation code indi­
cate the length of the instruction.

00 = two byte instruction

01 or 10 = four byte instruction

11 = six byte instruction

3. Sets the Condition Code to (01)2'

The interrupt routine tests the Condition Code. A
setting of (01)2 indicates that the interrupt was caused
by an illegal operation code in the instruction pre­
viously staticized in the PI state. Depending on the
situation, the illegal operation could actually be an
error, or an intentional interrupt. In the latter case,
the interrupt could be used to simulate an instruc­
tion that is not part of the 70/15 order code. For
example, the 70/25 operation code (FC)16 for Mul­
tiply Decimal would cause an interrupt on the 70/15,
but the multiply could be simulated by instructions
in the P2 state.

INHIBITING I/O DEVICE INTERRUPT

An I/O interrupt from a particular Trunk can be in­
hibited, but an Operation Code Trap cannot be in­
hibited.

The reserved HSM location forty-nine (31)16 allows
the programmer to indicate whether to allow or in­
hibit the occurrence of an I/o interrupt. The pro­
grammer places a mask into location forty-nine of
which the rightmost six bits correspond to the six
input/ output Trunks.

.-----------------Trunk 5
.---------------Trunk 4

r-----------Trunk 3
.....---------Trunk 2

.--------'Trunk 1
~--Trunk 0

~~~L-~-L~-~~-L~-L-.--L~ 

Location 49 (31) 16 

The 20 bit corresponds to Trunk Zero, the 21 bit 
corresponds to Trunk one, etc. A bit set to one (1) 
allows a device on the corresponding Trunk to in­
terrupt, and a zero (0) inhibits interrupt from that 
Trunk. 

A mask of 100010110 I allows Trunks one, two, and 
four to interrupt, and inhibits interrupt from Trunks 
zero, three and five. If interrupt on an I/O channel 
is inhibited, that channel will remain "busy" until a 
Post Status instruction, addressed to the Trunk, is 
executed (see page 43). 

The Flow Chart, p. 14, summarizes the 70/15 in­
terrupt logic. 

Exercises 

T F 1. The Interrupt State can execute only 
fifteen of the twenty-five instructions 
in the 70/15. 

T F 2. The main program is executed in the 
processing State. 

T F 3. The Processing State is not interrupt-
1ble. 

13 

T F 4. The Interrupt State is not interruptible. 

T F 5. The Condition Code is stored prior to 
changing states . 

T F 6. The Condition Code is always set to 00 
prior to going into the P2 state. 

T F 7. The two program counters are stored 
in the reserved area of memory. 

T F 8. The Processing State uses only one 
counter to indicate the address of the 
next instruction. 

T F 9. The PI counter is destroyed by the in-
terrupt. 

T FlO. The computer remains in the P2 state 
until another interrupt occurs. 

T F 11. The operation code is stored on an op­
eration code trap. 

T F 12. The Standard Device Byte is stored on 
an operation Code Trap. 

T F 13. Interrupt from any I/O device can be 
inhibited. 

14. Describe the use of HSM location 49. 

15. Describe two uses of the Operation Code 
Trap. 

16. List and define all the reserved HSM 
locations that are used by the interrupt 
logic. 



The Flow Chart below summarizes the 70/15 interrupt logic. 

Interrupt 
No 

Instruction -- Indicator .. -
Set? 

Yes 

Op Code Trap I/O 
or 

Op Code Trap 

yo Device 

, 
Store: 

1. Condition Code 
in HSM 43 

2. Operation Code 
in HSM 42 

Set Condition Code to 01 

.. 
Transfer to Control State 

Identify Interrupt 
and Process 
Accordingly 

Set P2 Register 

Return to Processing State 

14 

Store: 

Interrupt 
Inhibited 
By Mask? 

No 

1. Condition Code 
in HSM 43 

2. Trunk and Device 
in HSM 47 

3. Standard Device 
Byte in HSM 46 

Set Condition Code to 00 

Instruction 

~~ 

Yes 

• 

Hardware 

Programming 



ASSEMBL Y 

FORMAT REQUIREMENTS 

The RCA 70/15 Assembly is an automatic program­
ming system designed to translate a symbolic 
machine-oriented program into a machine coded 
program for subsequent execution on the RCA 70/15 
system. The source language consists of one-line 
statements written on the RCA Spectra 70 Assembly 
Program Form. Each single-line statement per­
forms one of the following functions: 

1. Generates an object program instruction. 

2. Allocates data areas or constants. 

3. Notifies the assembler to perform a specific 
function. 

OPERATION FIELD 

Every statement, except a line used solely for an 
output listing comment, must have an entry in the 
OPERATION field (Cols. 10-14) specifying one of 
the above three functions. 

NAME FIELD 

The NAME field (Cols. 1-4 only) may be used when 
it is desired to symbolically identify the leftmost lo­
cation of the field generated by the statement. The 
NAME entry symbol must consist of at least one al­
phabetic (A-Z) character followed by any combina­
tion of alphabetic and/or numeric (0-9) characters 
that do not exceed a total of four characters. The 
only exception to the symbol entry above is that an 
asterisk may appear in Col. 1 if the statement line 
is to be used for an output listing comment. 

OPERAND FIELD 

The OPERAND field has entries as required by the 
OPERA TION field. Thus, if the OPERATION field 
specifies that a constant is being defined, the OP­
ERAND field entry is the value of the constant. If an 
instruction Operation Code appears, the OPERAND 
field must follow a prescribed format for that par­
ticular instruction. 

LANGUAGE 

15 

COMMENTS FIELD 

A comment may appear in any statement line follow­
ing the OPERAND entry. It must be separated from 
the required OPERAND entry by at least one blank 
column. The entire statement line (to Col. 71) may 
be used for a comment if an asterisk appears in 
Column 1. 

IDENTIFICATION FIELD 

The programmer may use the IDENTIFICA TION 
Field (Cols. 73 to 80) for an entry that identifies the 
program or furnishes a sequence number to each 
line. The first four characters (columns 73-76) are 
used by the assembler. When written into the 
"START" card they are used as the name assigned 
to the Identification field produced for the object pro­
gram. The last four characters (columns 77-80) are 
used as the start of the sequence counter. If they 
are not numeric, the assembler ignores them and 
sets its sequence counter to all zeros. Every as­
sembled instruction card has its sequence number 
derived from the sequence counter set by the START 
card. 

ADDRESSING 

SYMBOLIC 

Perhaps the most frequently used addressing method 
is by symbolic names. When a symbol has been used 
in the NAME field to define a field it may be refer­
enced as frequently as desired in the OPERAND field. 
The value assigned is the address of the left end of 
the data field or instruction on the 'NAMEd' line of 
assembly coding. 

As stated previously the symbol may be any combina­
tion of alphabetic (A-Z) or numeric (0-9) characters 
with the restrictions of (1) a maximum of four char­
acters and (2) the first character must be alphabetic. 

The following are examples of valid and invalid sym­
boIs as written in the NAME field: 

VALID 

Al 
STKN 
C 
INI 



INVALID 

OPN - (Space invalid character) 
START - (Too many characters) 
1A - (First character not alphabetic) 
IN .1 - (Period invalid character) 

As an aid to understanding how addresses are as­
signed to symbolic names, the user should be aware 
that the Assembler uses a Location Counter to gen­
erate an object (or machine language) program from 
a source (or assembly language) program. 

The Location Counter can be considered the same as 
any other type of internal counter. It may be given 
an initial value either by the programmer (see ORG 
code page 17) or by the Assembler. 

Then, based on the user's input, a part of the as­
sembly operation is to assign values to each of the 
user's tags (symbols). 

The Location Counter may be advanced at the option 
of the user or by the Assembler. As an example the 
Assembler, upon recognizing an instruction code in 
the OPERATION field, advances the location counter 
to the next even address. 

The example below illustrates the assignment of ad­
dresses for symbolic names using the Location 
Counter (Assume Location Counter set initially to 
2000) . 

Assembly Contents 
Line Of Line 

First A 5-byte field 
Second A 2-byte field 
Third A 10-byte Constant 
Fourth A 6-byte Instruction 
Fifth A 4-byte Instruction 

The programmer may reference any location to the 
right or left of this address by indicating a plus (+) 
or minus (-) value. 

As an example, assume a field (WARE) has been as­
signed as follows: 

WARE 

00 01 02 03 

30 

The programmer in the OPERAND field might refer 
to the right-end (3003) of this field as: 

WARE+3 

The asterisk, as the first character of an operand, 
specifies, the current value of the location counter as 
the address. The address is always the leftmost 
byte generated by the statement line. Thus, the as­
terisk, with a plus or minus value, can address a 
position to the right or left respectively of the first 
byte generated by the statement line. 

Assuming the location counter value is 2000 for a 
given statement line, *+6 would generate an address 
of 2006 and *-3 would furnish an address of 1997. 
An asterisked address is relocatable. 

For This 
Line 

Symbol Advance 
(Tag) Address Location 

Assigned Assigned Counter To: 

Work 2000 2000 
ADDR 2005 2005 
WCON 2007 2007 
STRT 2018 2018* 

2024** 

* Note that the Location Counter is advanced one byte location by the Assembler to orient the 
instruction to an even address. 

** NO SYMBOL (TAG) ASSIGNED. 

RELATIVE ADDR ESSING 

As mentioned above, a symbol appearing in the 
NAME field has an address assigned by the Location 
Counter. The assignment will be the address of the 
leftmost byte of the field defined by the assembly 
statement. 

16 

SELF·DEFINING VALUES 

In the previous example, a self-defining value of 3 
incremented a symbol address. 

Self-defining values may be in three forms; decimal, 
hexadecimal, and character. They may modify ad­
dresses, express masks and len~hs, and represent 



I/O trunk and device numbers. Self-defining values 
may also be used for location addressing but should 
be used with caution as such addresses are not re­
locatable. 

Decimal 

A one to four decimal digit number may be used and 
the Assembler converts it to the binary equivalent. 

Examples; 

OPERAND 

ABLE (4), 

I OPERAND 

Hexadecimal 

Four (4) used to define 
length of ABLE 

Forty-nine to address 
location 4910 (Inter­
rupt mask) 

Up to four hexadecimal digits may be written as a 
self-defining value by enclosing the digits in single 
quote marks preceded by an X. This option is use­
ful for representing binary configurations such as 
masks. 

Example: 

I 
Operand I t-----------~ Represents the binary 

,--X_'_3F_' --____ .........J. configuration 0011 1111 

Character 

A character maybe specified by enclosing it in single 
quote marks preceded by a C. 

Example: 

I 
The character A (or in 

r-C-'A-'-, --------1 binary 11000001) is 
~ _________ ~ desired. 

Operand 

Example: Three methods generate the same value. 

CIA' , 
X'C1' 
193, 

'Operand 

Character All will 
Hexadecimal generate 
Decimal 1100 00012 

17 

ASSEMBLER INST RUCTIONS 

The DS (Define Storage) code allocates and reserves 
data working storage and input/output areas. 

In the OPERAND field appears the number of bytes 
to be reserved followed by the letter C. A symbol 
appearing in the NAME field is assigned the address 
of the leftmost byte reserved. 

The programmer may also set the Location Counter 
to any desired value by using the ORG code. This 
code appearing in the OPERA TION field sets the lo­
cation counter to the value appearing in the OPERAND 
field. The operand may be a symbol or an asterisk 
(incremented or decremented) or a self-defining 
value. If a symbol is used, it must have been pre­
viously defined in the NAME field. 

Example 

In this example assume that an input transaction tape 
contains records with various formats. The max­
imum size transaction is 80 characters. An input 
area could be reserved as follows: 

Name Operation Operand 

INAR DS 80C 

The location counter could be reset and areas for 
transaction formats would be reserved as follows: 

Name Operation Operand 

ORG INAR 
NACN DS 10C 
NCOD DS 2C 
NDAT DS 4C New Account 
NCUS DS 25C Transaction 
NADR DS 30C 
NTYP DS 2C 
NAMT DS 7C 

ORG INAR 
RACN DS 10C Receipt 
RCOD DS 2C 
RDAT DS 4C 

Transaction 

RAMT DS 7C 
ORG INAR 

PACN DS 10C 
PCOD DS 2C Payment 
PDAT DS 4C Transaction 
PAMT DS 7C 
PTYP DS 2C 

ORG INAR+80 Reset Location 
Counter to 
value after 
INAR above 



Areas allocated by the DS code are not cleared. The 
NAME field may be left blank for areas that must be 

Operation Operand 

allocated but are not referenced in the program. 1. DC A(*-6) 

CONSTANTS 

The DC (Define Constant) code both allocates memory 
for and stores the value of a constant. The value of 
the constant is written in the OPERAND field. The 
value is expressed in one ofthree forms but they may 
not be intermixed on anyone statement line. The 
length of each constant is implied by the value ap­
pearing in the OPERAND field. 

CHARACTER CONSTANTS 

A constantnotexceeding 16 characters may be writ­
ten on one statement line. Each character is con­
verted to a byte. The value, enclosed in single quote 
marks, is preceded by a C. 

Example 

Name Operation Operand 

EOF DC C 'END OF RUN' 
CODS DC C '012AB' 

HEXADECIMAL CONSTANTS 

A hexadecimal constant must be used in lieu of a 
character constant when one or more of the bytes 
cannot be expressed by a character value. The value 
is written in an even number of hexadecimal digits 
not exceeding thirty-two. Each pair of hexadecimal 
digits (starting from the left end of the expressed 
value) is used to generate a byte. 

Example 

Operation Operand 

DC X' E020206B20204B202060' 

An explanation of the above example of an editing 
mask is given in DATA EDITING (page 28). 

ADDRESS (EXPRESSION) CONSTANT 

An address may be stored as a two-byte constam 
There must be a separate statement line for each 
constant of this type. The constant is enclosed in 
parentheSis and preceded by an A as in the follow­
ing examples. 

18 

2. 
3. 

DC 
DC 

Explanation 

A(STRT) 
A(256) 

1. Stores the current value of the Location Count­
er -6 as a constant (RELOCATABLE). 

2. Stores the value of STRT as a constant (RE­
LOCATABLE). 

3. Stores the binary equivalent of 256 as a con­
stant (NOT RELOCATABLE). 

PROGRAM LINKING CODES 

There are two codes, ENTRY and EXTRN , that pro­
vide communication between two programs each of 
which were assembled independently. The ENTRY 
code specifies the location(s) addressed by another 
program. The EXTRN code defines a symbol in an­
other program. 

ENTRY CODE 

A separate ENTRY verb must appear for each entry 
point in the program (see START code for exception). 
ENTRY appears in the OPERATION field and a sym­
bol must be used in the OPERAND field. The NAME 
field is not used on this line. 

EXTRN CODE 

Reference to a symbol in another program is defined 
by the EXTRN Code. A separate statement must ap­
pear for every symbol appearing in another program. 
EXTRN appears in the OPERATION field and a sym­
bol must be used in the OPERAND field. The NAME 
field is not used on this line. 

Example 

One use of the ENTRY and EXTRN codes is to link a 
program to a subroutine. Assume that a SINE­
COSINE subroutine has two ENTRY points; SINE and 
COS, and one EXTRN point; RTN. Programs using 
the SINE-COSINE routine can BRANCH to either 
SINE or COS depending on which function is to be 
computed. The SINE-COSINE routine BRANCHES to 
RTN after computing the function. 



Name 

SINE 

COS 

Name 

BGN 

RTN 

Sine-Cosine Routine 

Operation Operand 

START 
ENTRY COS 
EXTRN RTN 

- -
- -
- -

B RTN 
- -
- -
- -

B RTN 
END 

Main Program 

Operation Operand 

START 
ENTRY RTN 
EXTRN COS 

- -
- -

c~ - -
B 

- -
- -
- -

END 

COS is an 
ENTRY point 
in the SINE­
COSINE 
Routine 

The main program defines RTN as an ENTRY pomt 
which allows the SINE-COSINE routine to BRANCH 
to RTN. 

ASSEMBLER CONTROL CODES 

The first and last statements presented to the As­
sembler must be a START and END statement, re­
spectively. If a program contains sections which are 
to be loaded individually, the second and succeeding 
sections must begin with a CSECT control code. 

START CODE 

The START code notifies the Assembler to begin as­
semblyof a program. In addition it can set the loca­
tion counter to an initial value and identify an entry 
into the program. 

19 

START must appear in the OPERA TION field. A 
self-defining value is written in the OPERAND field 
which will be used to set the location counter. A 
symbol appearing in the NAME field will be con­
sidered an ENTRY point into the program (see EN­
TRY code). 

END CODE 

The END code informs the Assembler that all source 
input statements have been processed. The OPER­
AND field specifies the address of the beginning in­
struction to be executed after the object program has 
been loaded. A symbol, self-defining value, or as­
terisked address may appear in the OPERAND field. 

CSECT CODE 

The CSECT code identifies both the beginning of a 
new section (segment) and the termination of the pre­
vious section. The START code identifies the first 
section, therefore CSECT should be used for the 
second and succeeding sections only. The NAME 
field may contain a symbol or be left blank. A sym­
bol used in one segment can be referenced by any 
other segment in the program. 

Example 

If no ORG 
then a segm 
will be loa 
following t 
previous s 

~ ent 
ded 
he 
egment 

Name 

BGN 

SEG2 

~ 

Operation Operand 

START 1000 
- -
- -
- -

i" CSECT 
ORG BGN+100 

- -
- -
- -

CSECT 
ORG SEG2 

- -
- -
- -

END 

The above example illustrates a program consisting 
of three segments. The second segment will be 
loaded (when called) at HSM location 110010 . The 
third segment would overlay the first two segments 
at the instruction NAMEd SEG2. 





INSTRUCTIONS 

INTRODUCTION 

The RCA 70/15 Order Code consists of twenty-five 
instructions that are divided into four classes. 

1. DATA HANDLING 

The data handling instructions permit the 
movementof data fields withinHSM. Data may 
be moved without changing format or it can be 
packed, unpacked, or edited for printing dur­
ing the movement. 

2. ARITHMETIC INSTRUCTIONS 

The arithmetic instructions call for the adding 
and subtracting of fields in either decimal or 
binary format; in addition, logical instructions 
perform Boolean operations on the bit struc­
ture. 

3. DECISION AND CONTROL 

The decision and control instructions compare 
decimal or binary fields, and carry out branch­
ing operations to new locations in HSM accord­
ing to a Condition Code Indicator. In addition, 
one instruction returns the computer to the 
Processing State after an interrupt. 

4. INPUT/OUTPUT 

The input/output instructions control the read­
ing and writing of data between the 70/15 pro­
cessor and all peripheral equipment on-line. 
There are also instructions that recognize and 
recover from error conditions. 

DATA MOVEMENT INS TRUCTIONS 

Data may be moved from one point in memory to an­
other with or without change. The changes that can 
occur during a moving operation are to pack, un­
pack, or to unpack and edit. 

MOVE CHARACTER INSTRUCTIONS 

The Move Character instruction transfers one byte 
at a time from the sending to the receiving field 
without any change. The number of bytes trans­
ferred is controlled by the L Register. The L char­
acter (sent to the L Register in the staticizing pro­
cess) is one less than the number of characters to 

21 

be transferred (in machine format) because (1) the 
first character is transferred before the L Register 
is decremented and (2) the L Register is compared 
after decrementing to FF16 (1 less than 0016) to 
terminate the execution of the instruction. 

Example 

Construct an output record by transferring selected 
fields from the input area. 

Assume that an input record area (INP) is located in 
memory at 2000-2099 and an output record area 
(OUP) is in 2200-2299. An account number, 8 
characters, is the first field in each record area. 

The following instruction would move the account 
number to output record area. 

Operation Operand 

MVC OUP(8) ,INP 

or in machine format as: 

OP L 

7 

It should be noted that in assembly format as in ma­
chine format, the second field is the address of the 
left end of the sending area. The first address is 
the left end of the receiving area. 

Based on the example above, assume the field INP 
contained the value as shown below. 

00 01 02 03 04 05 06 07 
3 7 014 965 

The field OUP would be filled with characters from 
the INP area as shown below with the effect on the 
registers after each character is transferred as 
shown below: 



00 01 02 03 04 
22 

x x x x x 

3 x x x x 

3 7 x x x 

3 7 0 x x 

3 7 0 1 x 

3 7 0 1 4 

3 7 0 1 4 

3 7 0 1 4 

3 7 0 1 4 

05 06 

x x 

x x 

x x 

x x 

x x 

x x 

9 x 

9 6 

9 6 

07 

x 

x 

x 

x 

x 

x 

x 

x 

5 

No. of 
Chars. 
Transf. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

*Execution Terminating Condition 

The Move Character instruction may also be used to 
move instructions or addresses in the coding portion 
of a program. An example of this use of the Move 
Character instruction is furnished in the section on 
Transfer of Control Inst'ructions. 

A data field may be filled with a given character or 
cleared by the Move Character instruction by over­
lapping the receiving field so that it begins one po­
sition to the right of the sending field. Thus the first 
character transferred is generated in each position 
of the receiving area. 

As an example, assume a 120 character area is to 
be filled with blanks and it is known that a blank 
(EO)16 appears in the first position. 

The area is allocated as follows: 

Name Operation Operand 

ORG 5000 
PRNT DC X'EO' 

DS 119C 

The area PRNT would be allocated HSM location 
5000. The area is cleared initially by the following 
instruction: 

Name Operation Operand 

HSKP MVC PRNT+1(119) , PRNT 

The following diagram illustrates the overlapping of 
the sending area by the receiving area. 

22 

Register Contents (in Decimal) 

L 

07
16 

2200 2000 

06
16 

2201 2001 

05
16 

2202 2002 

04
16 

2203 2003 

03
16 

2204 2004 

02
16 

2205 2005 

01
16 

2206 2006 

00
16 

2207 2007 

*FF
16 

2208 2Q08 

Sending Area 

5119 

xxxxxxx x 

PRNT Recei ving A rea 

Because the transfer takes place one character (byte) 
at a time, upon completion of the execution of the in­
struction the area 5000 to 5119 will be filled with the 
Blank (EO) 16 character. 

Exercises: Move Character (MYC) Instruction 

For the purpose of this exercise, assume a pro­
grammer has allocated memory as follows: 

Name Operation Operand 

ORG 2000 
WORK DS 5C 
NAME DS 10C 
BAL DS 6C 
DATA DS 5C 

ORG 2100 
WA1 DS 26C 

PART I 

Write the instructions to perform the following op­
erations. Place your answers in the space provided. 



1. Move 'Work' to 'Data'. 

2. Zero fill the 'Bal' field. (Assume the first 
byte of 'Bal' is a zero.) 

3. Clear the 'Work' and 'Name' fields to blanks. 
(Assume the first byte of 'Work' is a blank.) 

ANSWERS 

1. 

2. 
3. 

PART II 

Name Operation Operand 

Assume the allocated areas appear as below, and 
show the results of each of the instructions on Line 2 
below. (Do each question in sequence as each pre­
vious question may affect the result of the following 
question. ) 

Line 1 

00 lOll 02 03 04 05 06 07 08 09 10 11 
20 

BL 0 1 7 5 J 0 H N BL S M 

"--- WORK--" NAME 

Line 2 
WA1 

12 

I 

Item No. of Chars 

Account No. 8 
Name 25 
Type Account 3 
Street Address 20 
City State Code 2 
Credit Code 5 
Balance 8 
Total Purchases 8 
Total Returns 8 

Write a routine that will construct an output record 
in the following format. 

Account No. 
Credit Code 
Balance 
Total Returns 
Total Purchases 
Name 
Street Address 
City State Code 

In addition to the instructions allocate memory for 
the input record at location 2000 and for the output 
record at location 2100. Coding is to begin at 2300. 
Assume the record is present in memory at the be­
ginning of your routine. 

13 14 15 16 17 18 19 20 21 22 23 24 25 

T H 0 0 1 4 3 2 2 6 4 3 1 

/\. BAL "'--- DA TA -----.I 

50151 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 

4. 
5. 
6. 
7. 

21 

Name 

PART III 

Operation 

MVC 
MVC 
MVC 
MVC 

Operand 

WA1(4), WORK+2 
WA1 +20(6) ,NAME+5 
WA1 +4(1), WORK+1 
WA1 +5(15), WA1 +4 

Each record on an input tape contains the following 
units of information. 

23 

PACKING AND UNPACKING DATA 

The previous section discussed the movement of a 
data field from one to another area of memory using 
the Move Character instruction. This instruction 
moved byte(s) without changing the structure of the 
individual bytes. 

However, as outlined in the section on Data Format, 
data must be in packed format before decimal arith­
metic operations may be performed. Data must be 
in unpacked format before any type of display output 
(such as printing) may be performed. The Pack and 
Unpack instructions enable the user to perform these 
operations as the data is moved. 



PACK INSTRUCTION (PACK) 

To illustrate the Pack instruction assume that an 
area must be allocated for input transactions (Un­
packed) which are in the following format: 

Stock No. 
Code 
Amount 

8 
2 
8 

One area is allocated for reading in the transaction, 
and another (a work area) for packing the Amount 
field prior to updating the Master Record balance 
field. 

The input area is allocated as follows: 

Name Operation Operand 

ORG 3000 
STNO DS 8C 
CODE DS 2C 
AMT DS 8C 

The work area for packing the Amount (AMT) field is 
as follows: 

Name Operation Operand 

WAMT DS 5C 

It should be noted that the unpacked field (AMT) can 
be packed into a much smaller field (WAMT). 

The least significant byte of the unpacked field is the 
only byte that fully occupies a byte position in the 
packed field. All other bytes are stripped of the zone 
portion before transfer to the packed field. There­
fore, a quick way of determining the number of byteb 
necessary in the packed field is to divide by two the 
size (in bytes) of the unpacked field and add 1. Thus, 
(Unpacked field) 8/2 + 1 = 5 (number of bytes for 
packed result). 

Assuming the amount (AMT) field contained the value 
as indicated below, the instruction to pack the field 
in WAMT and the resulting packed field are shown: 

Unpacked 
(Sending) 
Field 

Assembly 
Instruction 

AMT, 

10 
30 

ZO 

Operation 

Pack 

11 

ZO 

12 13 14 15 16 17 

ZO Z2 ZI Z4 Z9 S7 

Operand 

WAMT (5), AMT (8) 

24 

Generated 
Instruction 

Packed 
(Receiving) 
Field 

OP 

F21614 17 

WAMT 
'-

50 
30 

00 

51 

00 

305010 1301010 

52 53 54 

21 49 7S 

The receiving field is considered the controlling 
field for terminating the execution of the instruction. 

If the receiving field is not large enough to contain 
all of the digits in the unpacked (sending) field, then 
truncation of the high order digits takes place. 

If the receiving field is larger than necessary to con­
tain all digits in the sending field, the high order 
half-bytes of the packed field are filled with zero 
digits. 

The programmer must be sure that he is dealing with 
valid fields for both the packing and unpacking opera­
tions. 

There is no hardware check, for example, that valid 
numeric characters (or a sign) exist. The first byte 
position processed in the sending field merely has 
its half bytes transposed and sent to the receiving 
(packed) field. Each successive byte in the sending 
field has its zone portion stripped and the numeric 
portion forms successive half-bytes in the packed 
field. 

UNPACK INSTRUCTION (UNPK) 

The unpacking operation is the reverse of the pack­
ing operation. 

The first byte in the sending (packed) field is proc­
essed by having its zone (sign) and numeric portions 
reversed and sent to the receiving (unpacked) field. 

Each successive half-byte in the packed field is used 
to form a byte in the unpacked field with a zone por­
tion of F 16 (1111)2 being generated by hardware dur­
ing execution of the instruction. 

As an example of the Unpack instruction assume that 
it is desired to print a balance field as a part of an 
output record. 

The balance field is a packed field that has accumu-
1ated the transaction amounts. It is inpacked format 
and assume it contains the following value: 



Packed 
(Sending) 
Field 

40 

BAL 

50 51 

00 17 

52 53 

24 3S 

An area for printing the balance field has been allo­
cated as follows: 

Name Operation Operand 
Assumed HSM 

Allocation 

PBAL DS 7C 5037-5043 

The instruction as shown below would unpack BAL 
with the result in the field PBAL: 

Assembly 
Instruction 

Generated 
Instruction 

Unpacked 
(Receiving) 
Field 

Operation Operand 

UNPK PBAL(7) .BAL(4) 

OP L1 L2 Sl S2 

I F316 I 6 I 3 15037
10 1

4050
10 I 

PBAL 

37 38 39 40 41 42 43 * 
50 

FO FO F1 F7 F2 F4 S3 

*F = F = 1111 
16 2 

S = Sign 

The receiving (unpacked) field can be considered the 
controlling field. If it is larger than necessary, high 
order bytes will be filled with the numeric character 
zero F016• 

If it is not large enough to receive all digits in the 
sending (packed) field, the high order digit(s) of the 
sending field will be truncated. 

To determine the size of the unpacked field neces­
sary to receive the digits in a packed field, the size 
(in bytes) of the packed field should be doubled and 
one should be subtracted for determining the num­
ber of bytes necessary. 

Exercises 

Assume that the following allocations have been made 
in a program: 

25 

Name Operation Operand 

ORG 2000 
BAL DS 5C 

DS 3C 
WDAT DS 5C 

ORG 2150 
DATA DS 3C 

DS 6C 
WBAL DS 4C 

and that the actual locations contain the values as 
shown below: (Each location has the contents rep­
resented in Hexadecimal digits.) 

BAL, 

00 01 02 03 04 05 06 07 08 09 10 11 12 
20 

FO F1 F2 F5 C7 FO C3 

DATA, "WBAL 

50 51 52 53 54 55 56 57 58 59 60 61 62 
21 

00 24 5C 

Answer each of the following questions by writing the 
assembly instruction in the space provided and show­
ing the result of the instruction in the plank locations 
above. 

1. Pack 'BALT in 'WBAL' 

2. Unpack 'DATA' in 'WDAT' 

ANSWERS 

1.~ 

2 .... 

Name Operation Operand 

Show the generated instruction for each of the as­
sembly instructions that follow and the results of 
each instruction in the blank. locations above. 

Operation Operand I 
3. PACK WDAT-1(1) ,BAL+6(1) I 



OP 

Operation Operand 

4. UNPK DATA+4(5) ,DATA(3) 

OP 

Operation Operand 

5. PACK DATA+3(1) ,BAL(5) 

6. A Master Inventory File is in the following for­
mat with all fields in unpacked format. 

Item No. No. of Chars. 

1 Stock No. 9 
2 Agency Code 3 
3 Activity Code 1 

* 4 Forecast Requirement 8 
5 Manufacturer 15 
6 Mfgr's Address 20 
7 Mfgr's City State 15 

* 8 Stock on Hand 7 
* 9 Reserve Requirement 6 
*10 Due In 6 

11 Review Date 6 

Items preceded by an asterisk (*) are signed num­
eric fields (unpacked) 

Requirement No.1 

Using DS and ORG controlling codes, allocate mem­
ory for the input format (as above) to begin at loca­
tion 300010 , The output record format is the same 
as above, except that asterisked items are in packed 
format. Allocate an area for this format beginning 
at 310010 , 

Requirement No.2 

Write a routine with coding to begin at 3200 that will 
construct an output record. Assume for the purposes 

26 

of writing your routine that the input record is pres­
ent in memory. 

DECIMAL ARITHMETIC 

The RCA 70/15 has two decimal arithmetic instruc­
tions, Add Decimal (AP) and Subtract Decimal (SP). 

Both require data fields to be in packed format, and 
the rightmost byte addressed in each field is assumed 
to contain the sign in the low order four bits. 

A sign is generated in the least significant byte of 
the result field based on the algebraic result of the 
addition or subtraction of the two signed operands. 

The sign (rightmost four bits of the result operand) 
will be a C16 (1100)2 for a positive field or a D16 
(11012) if the result field is negative. 

The Condition Code Indicator is set following execu­
tion of the instruction based on whether the result 
field is zero, positive (greater than zero), negative 
(less than zero), or if overflow has occurred. 

Overflow,. if present, overrides the setting for a posi­
tive or negative result. 

As an example, assume the following fields are in 
memory: 

BAL 

. ) 06 :07 08 09 
50 t----'-'-----~ 

23;87231+ { 

AMT 

50 51 52 ~ 
51 /-------""""' 

23 47 5+ ~ 

and the following instruction is issued: 

Assembly 
Instruction 

Generated 
Instruction 

Operation 

AP 

Operand 

BAL(3) ,AMT(3) 

then the result field will appear and the Condition 
Code Indicator will be set as follows: 



BAL 

06 07 08 09 ( 
50 

I 23 10 70 6+ 
) 

Condition Code = 3 (overflow) 

Whenever overflow occurs, the position to the left of 
the result field (HSM 5006 above) is not affected by 
the 1 carry out of the MSD of the result. Also, the 
overflow setting (Condition Code 3) overrides the 
positive result setting which would otherwise be set 
(Condition Code 2). 

The operands being added (or subtracted) do not have 
to be of equal length. The first (and result) operand, 
however, should be the longer operand if they are un­
equal. The first operand can be considered the con­
trolling operand. 

If the second operand is shorter in length, high order 
zeros are generated by hardware until the leftmost 
digit of the first operand has been reached. 

If the second operand is longer, its high order ex­
cess bytes do not affect the result. 

It should be noted that this condition will not neces­
sarily set the overflow condition. Overflow is set 
only by a 1 carry from the most significant digit of 
the result. 

For example, assume HSM contains a field with the 
following value. 

BAL 

00 01 02 
) 

30 
75 23 4+ 

and an Amount field contained the following values: 

Example 1 Example 2 

AMT AMT 

20 21 22 23 24 ) 
30 ) 

00 05 21 67 5+ ' 

20 21 22 23 24 ) 
30 

00 03 31 84 2+ ( 

If an attempt were made to add the amount to the 
balance with the following instruction: 

27 

Assembly 
Instruction 

Operation 

AP 

Operand 

BAL(3) ,AMT(5) 

Generated 
OP L1 L2 S1 S2 

Instruction I FAl61 2 14 1300010 1302010 1 

the result in the balance BAL would be as follows and 
the Condition Code would be set as indicated. 

Example 1 Example 2 
Result Result 

BAL BAL 

00 01 02 ) 00 01 02 5 30 

> 
30 ) 96 90 9+ 07 07 6+ 

CC = 2 (Positive CC = 3 (Overflow) 
Result) 

Note that in Example 2 , the Condition Code of 3 (over­
flow) is notan indication that truncation has occurred 
as truncation also has occurred in Example 1. The 
overflow setting is based on the 1 carry from the 
MSD of the Result field. 

There is no hardware check or error indication for 
invalid or incorrectly addressed fields. It is the re­
sponsibility of the programmer to be sure that he has 
addressed valid packed fields. 

A field may be added to (or subtracted from) itself 
if desired. 

As an example, assume that a field has been used 
for accumulation and it is desired to zero fill itwith 
a valid sign in the rightmost byte position. The field 
WBAL is as follows: 

WBAL 

43 44 45 46 ~ 61 
02 15 24 3+ ) 

The following instruction zero fills and preserves 
the sign position: 

Assembly 
Instruction 

Operation 

SP 

Operand 

WBAL(4) ,WBAL(4) 



Generated 
Instruction 

Result 
Field 

FB16 [3 1 3 1614310 1614310 

WBAL 

43 44 45 46 { 
61 1-----------4 

00 00 00 0+ ) 

1. 
2. 
3. 
4. 
5. 

Operation Operand 

AP AMT 1 (3) ,AMT 2(2) 
AP AMT 3(2) ,AMT 1(3) 
SP AMT 2(2) ,AMT 3(2) 
SP AMT 4(6) ,AMT 5(3) 
AP AMT 5 + 2(1) ,AMT 4 + 5(1) 

Condition Code 

o 123 

Ex erci ses 1 . I--__+_-~__+_--I 
2 • I--__+_-~__+_--I 

Assume HSM has been allocated as indicated on Line 3. ~--+--~--'---I 
1 and that each location contains the values as shown. 4. ~__+_-~--'---I 

5. L----'-_'------'---I 

Line 1 

Line 2 

AMTI 

~ 

21 
00 

01 

09 

2+ 

18 

47 

21 
00 

09 

01 02 

25 6+ 

AMT2 

" 10 11 

00 24 

19 20 

9+ 00 

01 02 

10 11 

AMT5 

03 

00 

12 

3-

03 

12 

~ 
04 05 

12 47 

AMT4 

" 13 14 

00 12 

04 05 

13 14 

]jjj 

AMT 3 

~ 
06 07 08 

5+ 04 21 

15 16 17 

47 83 21 

06 07 08 

15 16 17 

For each of the assembly instructions listed below, 
show the result of the instruction on Line 2 above 
and the Condition Code as set following execution of 
the instruction. (Consider each question independ­
ently based on the contents of Line 1.) 

28 

DATA EDITING 

In previous sections we have seen that data may be 
moved from one area to another either unchanged in 
byte structure or with packing or unpacking being 
performed. 

Another option is that data may be edited as it is 
moved. 

Editing is very much like unpacking data with the 
advantage, however, of having two added functions 
being performed as the data is unpacked. The edit­
ing instruction allows the programmer to (1) sup­
press leading zeros to a predetermined location in 
the edited field and (2) to insert editing characters 
as the data is moved to the edited field. 

A data field to be edited is assumed to be in valid 
packed format, i.e. , each half-byte is a valid nu­
meric (0-9) except the rightmost half-byte which is 
a sign. 

Data is moved from this packed field to a receiving 
field that controls the insertion of the numeric digits 
(half-bytes). The numeric digits are unpacked as 
they are transferred to the edited field. 

The receiving field (edit mask) consists of charac­
ters to be inserted as editing symbols such as the 
comma, decimal point, and asterisk, for example. 
In addition, the following characters are used as con­
trol characters in the edit mask: (Hexadecimal for­
ma t of byte shown.) 

X ' 20 ' - DIGIT SELECT 

This character is placed in the edit mask where it is 
desired to insert a digit from the packed field. The 
digit will be inserted unless it is a leading insignifi­
cant zero and a Significance Start character has not 
been previously encountered. 



X'21' - SIGNIFICANCE START 

This character serves the same function as the Digit 
Select character with one added function. It speci­
fies that all of the following digits are to be inserted 
from the packed field even if one or more leading 
zeros are still present. 

X'22' - FIELD SEPARATOR 

This character is used for editing multiple fields. 
It specifies the end of one and the start of another 
field and resets the edit operation to begin for an­
other field. 

To illustrate the editing functions, assume that a 
packed field has the following format and value: 

AMT 

20 
00 01 02 03 

00 02 37 8+ 

and that the field is to be edited so that leading zeros 
will be suppressed. 

To do this, allocate an edit mask. a.s follows: 

Name Operation Operand 

MASK DC X'E02020202020202060' 

Hexadecimal characters are used because some of 
the bytes cannot be represented by a character con­
stant. 

T'he first character of the mask is a fill character. 
It replaces digit select (X'20') and editing symbols 
in the mask until one of the following conditions 
takes place: 

1. The first non-zero numeric Qi'gtt is encoun­
tered in the packed (sending) field. 

2. A Significance Start character has been en­
countered in the edit mask (receiving) field. 

The fill character also replaces all remaining posi­
tions in the edit mask when a plus sign is encountered 
in the packed (sending) field unless processing mul­
tiple packed fields. 

To illustrate the above example, assume the edit 
mask above has been assigned the following mem­
ory allocation: 

29 

00 
29 

-

where: 

01 

d 

e 

d 

HSM before 
and after 
Execution 

HSM before 
Execution 

Assembly 
Instruction 

Generated 
Instruction 

HSM after 
Execution 

02 03 04 05 

d d d d 

Blank 
Digit Select 
Minus Sign 

AMT 

20 
00 01 02 

00 02 37 

06 07 08 

d d e 

03 

8+ 

MASK 

00 01 02 03 04 05 
29 

d d d d d -

Operation Operand 

06 07 08 

d d e 

ED MASK (9) ,AMT 

OP L Sl S2 

I DE16 I 
8 

I 
2900

10 
2000

10 

00 01 02 03 04 05 06 07 08 
29 

- - - - 2 3 7 8 -
Significance ~ 
Trigger Setting* 

o • 1------I.~0 

*To determine when to insert the fill character 
in the Edit Mask, the hardware employs a Sig­
nificance Trigger. This trigger is set to zero 
initially. The zero setting specifies use of the 
fill character in the edit mask positions. The 
trigger retains a zero setting until either: 

1. A Digit Select character in the mask refer­
ences the first non-zero numeric digit in 
the packed (sending) field, 

OR 

2. A Significance Start character has been 
encountered in the Edit Mask field. 

The trigger is set to 1 after either of these conditions. 
The 1 setting specifies insertion of the digit (regard­
less of value) from the packed field in the Edit Mask 
where a Digit Select character is present. It also 
specifies insertion of editing symbols present in the 
Edit Mask. 



The setting of 1 is retained until either a plus sign is 
encountered in the packed field or a field separator 
character is encountered in the Edit Mask. Either of 
these conditions will reset the trigger to zero. 

The condition code is set by the Edit Instruction. It 
is set to zero if the packed field has a zero value. 
It is set to one if the value is negative and to two if 
the value is positive. 

Example 1 

The mask that would edit the previous field (AMT) 
with a decimal point and also a comma if the value 
were 1,000.00 or higher in value would be as fol­
lows: 

Name Operation Operand 

EDMK 

HSM before 
and after 
Execution 

HSM before 
Execution 

Assembly 
Instruction 

Generated 
Instruction 

HSM after 
Execution 

DC X'E020206B2020204B202060' 

AMT 

00 01 02 03 
20 

00 02 37 8+ 

EDMK 

00 01 02 03 04 05 06 07 08 09 10 
29 

- d d , d d d d d e 

Operation Operand 

ED EDMK (11), AMT 

OP L SI S2 

IDE16 I 
10 

I 
2900

10 200010 I 

EDMK 

00 01 02 03 04 05 06 07 08 09 10 
29 

- - - - - 2 3 7 8 -
Significance 0 --------j.,~1 ., 0 
Trigger Setting 

Condition Code 2 

Example 2 

(Editing with Decimal Point and at least two zeros 
present. ) 

30 

HSM before 
and after 
Execution 

HSM before 
Execution 

Assembly 
Instruction 

HSM after 
Execution 

AMT 

00 01 02 03 
20 

00 00 00 0+ 

MASK 

00 01 02 03 04 05 06 07 08 09 10 
29 

- d d , d d S d d -

Operation Operand 

ED MASK (11) ,AMT 

MASK 

00 01 02 03 04 05 06 07 08 09 10 
29 

- - - - - - - 0 0 -
O--------~., 1------~~~0 

Condition Code = 0 

Examples 3 and 4 

(Same Mask - Result after positive and negative 
field. ) 

HSM before 
and after 
Execution 

Example 3 

00 01 02 
20 

01 23 4+ 

Example 4 

00 01 02 
20~------~ 

0427 58 

MASK 

HSM before 
Execution 

21 00 01 02 03 04 05 06 07 08 09 

Assembly 
Instruction 

- d 

Operation 

ED 

d d d d 8 C 

Operand 

MASK (10) ,AMT 

Example 3 

HSM after 
Execution 

00 01 02 03 04 05 06 07 08 09 
21 

- - 1 2 3 4 - - -
Trigger ~ .,0--.... 

Condition Code = 2 

Example 4 

HSM after 
Execution 

00 01 02 03 04 05 06 07 08 09 
21 

- - 4 2 7 50 C R 

Condition Code = 1 

R 



Note that in Example 3 the significance trigger is set 
to zero by the plus sign in the packed sending field. 
In Example 4, however, the minus sign in the packed 
field does not set the trigger back to zero. 

Example 5 

(Editing multiple fields.) 

HSM before 
and after 
Execution 

20 

AMTS 

00 01 02 03 04 05 

01 23 7+ 00 29 5-

MASK 

HSM b~fore 1 21 1
00 

\--
ExecutlOn . _ - d d S . d d C R f f f - __ 

Assembly 
Instruction 

HSM after 
Execution 

: : .... I--d -d-S-.-d-d-C-R-:-
1

--1\ 

Operation Operand 

ED MASK (22) ,AMTS 

MASK 

- 12. 37-

o ~1 • 0 ------t~ 

Significance --...-~ 1 
Trigger 

• 0 

Condition Code = 1 (Based on las t field processed) 

The field separator character resets the significance 
trigger to zero, so that unwanted characters are 
properly suppressed in the next field. 

As can be seen in the previous examples the length 
of and values in the Edit Mask control execution of 
the instruction and the insertion of digits from the 
packed field. 

31 

Exercises 

21 

VAL ACC 

+ + 
00 01 02 03 04 

01 24 7+ 00 00 

DEST 

~ 
11 12 13 14 15 

15 0+ 27 50 1+ 

BOH 

~ 
05 06 07 08 09 10 

0+ 00 00 47 21 58 

Based on the packed format and symbolic values as­
signed as above, show the result of each instruction 
in the locations provided and based on the mask as 
shown in Column II. 

Symbols representing characters in the mask are as 
follows: 

Blank s Significance Start 

e Minus f Field Separator 
d Digit Select , . Insertion Characters 

* Asterisk 

COLUMN I 

1. Operation Operand 

ED MASK (8), VAL 

MASK 
COLUMN II 

00 01 02 03 04 05 06 07 

22 - d d S d d e 

2. Operation Operand 

ED MASK (8) ,ACC 

MASK 

00 01 02 03 04 05 06 07 

22 - S d d d d e 



3. Operation Operand 

ED TDTL (14), BOH 

22 

4. Operation 

ED 

22 

TOTL 

50 51 52 53 54 55 

* d d d S , 

58 59 60 

d d 

Operand 

OVL (15), DEST 

OVL 

70 71 72 73 74 75 

- d d d e 

78 79 80 81 

d d S 

56 57 

, d 

61 62 63 

d d e 

76 77 

f -

82 83 84 

d d e 

5. The exercise requires the preparation of an 
edited output record from an input record in 
the following format: 

Account No. 
Total Deposits 
Total Checks 
Preyious Balance 

8 
7 
7 
7 

Chars 
Chars 
Chars 
Chars 

The following processing steps are required: 

a. Add the Total Deposits to the Previous Balance 

b. Subtract the Total Checks from the J>revious 
Balance 

c. Prepare an output record in the edited format. 

32 

The output record is in the format: 

Account No. 8 Chars 
(Blanks) 4 Chars 

*Total Deposits 12 Chars 
(Blanks) 4 Chars 

*Total Checks 12 Chars 
(Blanks) 4 Chars 

*Present Balance 12 Chars 
(Blanks) 76 Chars 

*Edit Format 
$-ZZ ,ZZZ .DDS 

Blank 
Z Suppressed zero (blank) or digit 
D Digit 
S Sign 

6. Prepare assembler statements for allocating 
storage memory and constants. Routine coding 
will not include input or output instructions. 

COMPARISON AND BRANCHING 

There are two instructions that test the relative 
value of two operands. The Compare Logical instruc­
tion tests the relative binary value of two operands. 
The Compare Decimal instruction tests the relative 
algebraic value of two operands that are in packed 
format. 

Both instructions set the condition code based on the 
relati ve value of the two operands. 

COMPARE LOGICAL (CLC) INSTRUCTION 

The Compare Logical instruction tests the relative 
binary value of two equal length operands. The two 
operands may be in either packed or unpacked for­
mat. The instruction operates from left to right 
comparing the bit values in a byte from each field. 
The instruction terminates when either inequality is 
found or, if both operands are equal in value, when 
the last byte in each field has been compared. 

The values of the operands remain unchanged in 
memory. 

Example 

(Comparison of Key Criteria Fields) (Character 
values shown) 

HSM before 
and after 
Execution 

27 
00 01 

7 5 

MACN 

02 03 04 

8 4 3 

05 06 07 

1 2 F 



HSM before 
and after 
Execution 

Assembly 
Instruction 

Generated 
Instruction 

TACN 

00 01 02 03 04 05 06 07 
28 

7 5 8 4 3 1 2 D 

Operation Operand 

CLC MACN (8), TACN 

D516 1 7 1270010 280010 

Condition Code = 2 (First Operand High) 

Example 

(Comparison of Address Fields) 

HSM before 
and after 
Execution 

20 

00 

ADR1 

01 

4007
10 

ADR2 

02 

20 4017 
10 

03 

OFA7
16 

OFB1
16 

Assembly 
Instruction 

Generated 
Instruction 

Operation 

CLC 

Operand 

ADR1 (2), ADR 2 

Condition Code 1 (First Operand Low) 

COMPARE DECIMAL (CP) INSTRUCTION 

The Compare Decimal instruction tests the relative 
algebraic value of two packed operands. The oper­
ands may be of unequal length. However, the first 
operand should be longer if the operands are un­
equal. If the second operand is longer than the first, 
the excess bytes will not enter into the comparison. 
If the second operand is shorter in length it will be 
assumed to contain high order zeros. 

The instruction operates from right to left. As the 
rightmost half-byte contains the sign, these respec­
tive half-bytes are compared first. If the signs are 
unlike, the condition code is set to reflect the rela:­
tive algebraic value of the operands and the execu­
tion of the instruction is terminated. 

33 

If the signs are alike, the execution of the instruc­
tion is terminated when the leftmost byte of the first 
operand has been compared with the actual (or zero­
extended) relatively po~itioned byte of the second 
operand. The condition cod e setting will, in this 
case, also be based on the relative algebraic values 
of the operands. 

Example 

HSM Before 
and After 
Execution 

Instruction 

Generated 
Instruction 

AMT 

50 
00 01 02 03 

01 39 64 2-

VAL 

20 21 22 
51 

02 34 5+ 

Operation Operand 

CP AMT(4), VAL(3) 

1 F9161312 1500010 1512010 1 

Condition Code = 1 (First Operand Low) 

Example 

HSM Before 
and After 
Execution 

40 

41 

CHK 

02 03 

12 39 

BAL 

20 21 

09 12 

04 

4+ 

22 23 

39 4+ 



Instruction 

Generated 
Instruction 

Operation Operand 

CP CHK(3) , BAL(4) 

Condition Oode = 0 (Operands Equal)* 

*Note that because the second operand was longer 
than the first operand the Condition Code does not 
reflect the true relative value of each field. 

Had the operands been reversed, i.e., Bal (4), 
CHK (3), the Condition Code would have been set to 
2 (first operand high). 

BRANCH ON CONDITION INSTRUCTION 

The Branch On Condition (BC) instruction transfers 
control based on the setting of the Condition Code 
indicator. 

The BC is a four byte instruction with the second 
byte being a mask spec,ifying in the four high-order 
bits the Condition Code setting(s) upo n which the 
transfer of control depends. 

A 1 hit in the respective bit positions below will 
generate a transfer of control if the Condition Code 
Indicator is set to the position shown. 

2
4 

Condition Code 3 
2

5 
Condition Code 2 

2
6 

Condition Code 1 
2

7 
Condition Code 0 

The least significant four bits of the mask (20 to 23) 
must be zero. 

In assembly language, however, the mask is speci.,. 
fied as one hexadecimal digit and the four leas t sig­
nificant zero bits will be generated. 

In the following example, assume that the Be instruc­
tion is used following a decimal subtract instruction 
and the programmer wants to transfer control to an 
error routine (ERRT) if overflow has occurred or to 

34 

an overdraft (OVDF) routine if the result of the sub­
traction is negative. For a positive or zero result, 
he enters a process (PRCS) routine. 

The coding would be: 

Name Operation Operand 

SP BAL(4), SUBTR. AMT. 
AMT(3) FROM BAL. 

CC3 BC X'l', BR. TO ERROR 
ERRT RTN 

CC1 BC X'4', BR TO OVERDR. 
OVDF RTN 

PRCS ENTER PROC. RTN 

An unconditional transfer of control will take place 
if all the high order bits have a value of 1. 

The Branch (B) operation code simplifies the writing 
of this instruction. A mask of X'FO' (111100002) is 
generated automatically. 

Thus, each of the following generates an uncondi­
tional transfer to STRT. 

Operation Operand 

BC X'F', STRT 

Operation Operand 

B STRT 

SET P2 REGISTER (STP2) INSTRUCTION 

This instruction transfers the computer from the 
Interrupt State to the Processing State. It sets the 
P2 Register with the desired value and transfers to 
the address contained in the PI Register (Reserved 
Locations 40 and 41). 

The Condition Code Indicator is also reset to the 
Condition Code that existed at the time the Proces­
sing State was interrupted. In addition, the hard­
ware interrupt register is reset by the interrupt 
mask in reserved memory. 

Example 

Assume the following values are stored in HSM im­
mediately before execution of the instruction. 



HSM Before 
Execution 

00 

00 

P2 Counter 

44 45 

4000
10 

PI Counter 

40 41 

2300
10 

and that ENTR had been assigned a value of 380010 
by the Assembler. 

The following instruction will transfer the computer 
to the PI state, and store 380010 in the P2 counter. 

Assembly 
Instruction 

Generated 
Instruction 

Operation Operand 

STP 2 ENTR 

~8_2_16 __ ~0_0~_3_8_0~ 

PI Counter P2 Counter 

HSM After 
Execution 00 

40 

2300
10 

41 
00 

Transfer of Control to 2300 
10 

Condition Code Reset to 3 

Exercise 

44 

3800
10 

BAL 

" 
VAL AMT 

24 

-

50 51 

00 12 

NUM 
/ 

59 60 

98 42 

"-
52 53 

4+ 12 

61 62 

17 0+ 

54 55 

74 50 

CO~ 

63 64 

00 00 

"-
56 

98 

65 

1+ 

57 

21 

UNIT 
/ 

66 

00 

58 

2+ 

67 

12 

45 

68 

4e 

3S 

Based on the packed format and symbolic names as 
shown above, show the Condition Code that will be 
set following execution of the instruction. 

Compare Decimal Condo Code 

1. 

2. 
3. 

25 

Operation 

CP 

CP 
CP 

DEF , 
00 

FO 

01 

Fl 

02 

F3 

Operand 

BAL (3), UNIT + 
1 (2) 
VAL (3), COST (3) 
AMT (3), NUM (4) 

03 04 

F7 AA 

05 

AA 

MNO 
/' 

06 

AB 

07 

CD 

PQ} Jl<} ABC 
/ 

10 11 

24 57 

--EEJ 
~ 

12 13 

AB CD 

14 15 16 17 

EF AA AO FO 

08 09 

EF 01 

18 

Fl 

Based on the above, show the Condition Code that 
will be set following execution of the instruction. 
(Hexadecimal values of bytes shown.) 

Compare Logical 

4. 
5. 
6. 

24 

Operation 

CLC 
CLC 
CLC 

ONE 

50 51 

00 12 

60 61 

42 17 

52 

4+ 

62 

0+ 

Condo Code 

Operand 

ABC (4), DEF 
GHI (2), JKL 
MNO (8), PQR 

TWO THRE FOUR 

53 54 55 56 57 58 59 

12 74 50 98 21 2+ 98 

FIVE SIX 

63 64 65 66 67 68 

00 00 1+ 00 12 4e 

Based on the above, indicate which instruction will 
be executed next in the space provided: 

NI = NEXT SEQUENTIAL INSTRUCTION 



7. Operation Operand 

CP SIX + 1 (2), ONE (3) 
BC X'B', UPD 

NI ___ _ UPD 

8. Operation Operand 

CP FIVE (3), TWO (3) 
BC X'7', NEWD 

NI ___ _ NEWD ___ _ 

9. Operation Operand 

CP THRE (3), FOUR + 1 (3) 
BC X'D', MIST 

NI ____ MIST ___ _ 

BINARY ARITHMETIC 

The two binary arithmetic instructions, Add Binary 
and Subtract Binary, operate on an integral number 
of bytes as controlled by the length of the first op­
erand. 

If the operands are unequal, the second operand, as 
in decimal arithmetic operations, is truncated jf 
longer, or, if shorter, is extended with zero value 
bytes. 

Name 

INP 
RPR 

ACCT 
NAME 
ADR 
AMT 
FILL 

Name 

RDIN 
INCR 
TLY 
CTR 

Allocation of Input and 
Record Processing Area 

Operation Operand 

ORO 3000 
DS 400C 
DS 80C 
ORG RPR 
DS 8C 
DS 25C 
DS 30C 
DS 10C 
DS 7C 

Allocation of Constants 

Operation Operand 

DC A (INP) 
DC A(80) 
DC X'0505' 
DC X'Ol' 

36 

Both instructions operate from right to left in per­
forming the binary arithmetic operation. The in­
struction is terminated when the left-end byte has 
been processed. 

The Condition Code Indicator is set based on the re­
sult as follows: 

Condition 
Code 

Example 

o 

1 

2 

3 

Add Binary Subtract 
Binary 

Result is Zero 

Not Used I Difference Less 
Than Zero 

Result is Greater 
Than Zero 

Overflow I Not Used 

As sume an input tape that contains a block of five 80 
character records. 

For processing, the programmer moves each record 
to a separate processing area. The Add Binary in­
struction is used to increment the second address of 
the instruction which moves a record to the proces­
sing area. 

The Subtract Binary instruction, with a branch to 
read if the input area has been exhausted, determines 
when the last record is processed. 

The Input Block, Record Processing, and constant 
areas can be allocated as follows: 

HSM 
Allocation 

3000-3399 
3400-3479 

3400-3407 
3408-3432 
3433-3462 
3463-3472 
3473-3479 

3480-3481 
3482-3483 
3484-3485 
3486 

Stored Value 
of Constants 

(Hex. Format) 

OB B8 
00 50 
05 05 



\ Read 

I Input 
Block 

Initialize 
S2 Address 

of IN4 

Initialize 
TLY 

Constant 

Move Record 
To Processing 

Area 

Increment 
S2 Address 

of IN4 

Record 
Processing 

Steps 

Subtract 
(BIN) CTR 
From TLY 

1 

2 

3 

4 

5 

-

6 

Name 

IN2 

Name 

IN3 

Name 

IN4 

Name 

IN5 

Operation Operand 

MVC IN4 + 4 (2), RDIN 

Operation Operand 

MVC TLY(l), TLY+l 

Operation Operand 

MVC RPR (80), INP 

Operation Operand 

AB IN4 + 4 (2), INCR (2) 

Record Process 
Coding Not 

Shown 

~--------------------------------'----

Name Operation Operand 

IN6 SB TLY(l), CTR(l) 

Name Operation Operand 

IN7 BC X'8', INl 

Name Operation Operand 

B IN4 

37 



The preceding functional chart shows the matching 
coding steps. Only the steps pertinent to the use of 
the Binary Arithmetic instructions are shown. 

Example 

ADD BINARY OF PREVIOUS INSTRUCTION BINARY 

VALUE 

HSM Before 
and After 
Execution 

HSM Before 
Execution 

Assembly 
Instruction 

Generated 
Instruction 

HSM After 
Execution 

Exercise 

Line 1 

Line 2 

24 

24 

INCR 

82 83 
34 0000 0000 0101 0000 

00 50 

IN4+4 

40 
16 17 

0000 1011 1011 1000 
OB B8 

AB IN4+4 (2), INCR (2) 

I F6 I 1 11 1401610 13482101 

16 17 
40 

OC 08 
0000 1100 0000 1000 

Condition Code = 2 

H I G D 
t t t t 

00 01 02 03 04 05 06 07 

A3 B4 21 76 B6 12 74 F5 

H I D 

/ \/ 
00 01 02 03 04 05 06 07 

Indicate the results of each instruction (Column I 
above) in the locations on Line 2 above. Show the 
results in a hexadecimal format. Consider each 
question independently based on the contents of the 
locations of Line 1. In Colum II show the Condition 
Code that will be set following the execution of each 
instruction. 

08 

04 

08 

38 

Column I 

Add Binary 

1. 
2. 
3. 

Operation 

AB 
AB 
AB 

Subtract Binary 

4. 
5. 
6. 

Operation 

SB 
SB 
SB 

Operand 

A(3), B(3) 
C(4), D(4) 
E(2), F(2) 

Operand 

D(3), G(3) 
H(l), 1(1) 
1(5), J.:(2) 

LOGICAL INSTRUCTIONS 

Column II 

Condition Code 

The Logical Instructions perform operations on the 
individual bits of a byte. The operation works from 
left to right on equal length operands (256) max­
imum) . Proper parity is generated for each byte 
based upon the eight least Significant bits. 

The three principal logical operations are AND (re­
sult is one if and only if both bits are one), OR (re­
sult is one if either or both bits are one), EXCLUSIVE 
OR (result is one if either but not both bits are one). 
One additional logical operation is a test comparison 
with a specified mask. 

AND INSTRUCTION 

The rule of the AND instruction is that a 1 bit in the 
same relative bit position of both operands produces 

A J E 
t t t 

C B F 
t l t 

09 10 11 12 13 14 15 16 17 18 :],9 

68 08 D6 AA 17 AA 47 4A 28 7D 14 

A E C 
\ / \j \j , 

09 10 11 12 13 14 15 16 17 18 19 

a 1 bit in the same position in the result. Any other 
combination of bits produces a zero bit in the result. 

0+0=0 
0+1=0 
1 + 0 = 0 
1 + 1 = 1 



Example 

H8M Before 
Execution 

H8M Before 
and After 
Execution 

Assembly 
Instruction 

Generated 
Instruction 

H8M After 
Execution 

OR INSTRUCTION 

AD1 
Bit Configuration 

00 01 
30 

00 9A 
0000 0000 1001 1010 

INC 

00 01 
31 1111 1111 1111 1010 

FF FA 

Operation Operand 

NC AD1 (2), INC 

OP L 

1 

AD1 

00 01 
30 

00 9A 
0000 0000 10011010 

Conditi.on Code = 1 

This instruction inserts 1 bit(s) in any bit position(s) 
of a byte. 

The rule of OR is that a 1 bit in the same relativ~ 
position of either field will product a 1 bit in the 
same position of the result. 

Example 

H8M Before 
and After 
Execution 

H8M Before 
Execution 

37 

40 

0+ 0 =0 
0+ 1 = 1 
1 + 0 = 1 
1 + 1 = 1 

CH 

00 01 02 

00 00 01 

BAL 

80 81 82 

07 89 8C 

Bit Configuration 

0000 0000 0000 0000 
0000 0001 

0000 0111 1000 1001 
1000 1100 

39 

Assembly 
Operation Operand 

Instruction 
OC BAL (3), CH 

OP L 81 82 

Generated 
D616 Instruction 

2 408010 3700
10 I 

BAL 

80 81 82 
H8M Mter 
Execution 

40 
07 89 8D 

0000 0111 1000 1001 
1000 1101 

Condition Code = 1 

EXCLUSIVE OR INSTRUCTION 

The Exclusive Or instruction extracts 1 bit(s) in 
specified bit position(s) of one or more bytes. 

The Exclusive Or may also be used to alternate des­
ignated bits so that they will have a value of 1 the 
first time and 0 the second time the Exclusive Or 
instruction is performed. This is accomplished by 
a modifying mask with one bit in the designated bit 
positions where the function is desired. 

The rule of Exclusive Or may be considered the 
same as binary addition without a carry being gen­
erated, or as follows: 

Example 

0+ 0 = 0 
1+0=1 
0+ 1 = 1 
1 + 1 = 0 

H8M Before INH 

and After EHfjo 
Execution 31 

3F 

H8MBefore~ 
Execution Ll...::...J 
Assembly Operation 
Instruction 

XC 

OP L 

Generated I D7 16 0 
Instruction 

Bit Configurations 

0011 1111 

0011 1111 

Operand 

X'0031'(1),INH 

81 82 

0049 3110 



HSM After 
Execution* 
~ 
~ 
Condition Code = 0 

0000 0000 

*Note that this example has set the Interrupt Mask 
to prohibit interrupt from any Ilo channel. 

The same mask applied again will set the Inter­
rupt Mask (location 0049) to allow interrupt from 
any channel. 

USE OF LOGICALS 

There are many programming situations where the 
Logical instructions are useful. For example, 
a program switch may be a Branch On Condition in­
struction. Following the BC instruction is a section 
of coding which is bypassed if the Branch takes 
place. When this condition is desired based on the 
data, a Logical instruction may be used which inserts 
all one bits in the mask of the BC making it an Un­
conditional Branch. When execution of the coding 
following the BC is desired, a logical instruction 
which inserts all zero bits in the mask may be used. 
This makes the BC a 'no-Op' instruction. 

Logical instructions are used to alter the value of a 
field. A logical instruction may be used to change 
the sign of a packed field from a plus sign (1100)2 to 
a minus sign (1101)2. This is useful when editing 
the packed field. The minus sign allows the inser­
tion of editing symbols to the right of the digits in an 
edited field. Thus a field may be made pseudo­
negative for fields of a prescribed value. For ex­
ample, if an asterisk is desired to the right of any 
edited balance field below $100.00, the packed field 
sign position could be altered to a negative sign. 
(See OR example.) 

The Condition Code Indicator is set by the Logical 
instructions. It is set to zero if all of the bits in the 
result field are zero. It is set to one if any of the 
result bits are one. 

TEST UNDER MASK INSTRUCTION 

This instruction compares the relatively positioned, 
bits of a byte with a mask byte and indicates the re­
sult by a setting of the Condition Code Indicator. 

40 

The mask byte is written as the second byte of the 
TM instruction. The Sl address is the location of 
the byte to be tested. 

A one bit in the mask will test the presence of a one 
bit in the corresponding bit position of the byte ad­
dressed. 

The Condition Code Indicator is set to zero if all of 
the selected bits are zero (or if the mask is all 
zeros) . The setting will be one if the selected bits 
are a mixture of zeros and ones. Condition Code 
three will be set if the selected bits are all ones. 

Condition Code two is not set by this instruction. 

Example #7 

HSM Before 
and After 
Execution 

Assembly 
Instruction 

Generated 
Instruction 

Example #2 

HSM Before 
and After 
Execution 

Assembly 
Instruction 

Generated 
Instruction 

LOC 

10 
60 

0101 11002 

Operation Operand 

TM LOC, X'OF' 

OP M 

Condition Code = 1 

49 
00 

0011 1101 

Operation Operand 

TM X'31', X'02' 

OP M Sl 

91 16 0000 00102 0049 10 

Condition Code = 0 



INPUT /OUTPUT 

INTRODUCTION 

The Programmer may elect to control Input and Out­
put through the use of assembly I/O commands, or 
through the use of I/O subroutines which are part of 
the 70/15 software package. This section describes 
and illustrates the use of the eight assembly input/ 
output instructions, and the methods of error recog­
nition and recovery. 

The RCA 70/15 communicates with all peripheral 
devices through the RCA Spectra 70 standard inter­
face unit. Each peripheral device contains its own 
Control Electronics which communicates between the 
device and the standard interface unit. The Control 
Electronics also has the ability to transmit to the 
processor the status of the device, and any error 
conditions generated,by an I/O command. 

Trunk 0 

Trunk 1 
RCA 

70/15 Trunk 2 
Channel 

Processor 
Trunk 3 

Trunk 4 

Trunk 5 

The assumed configuration indicated below will be 
referenced by all the examples in this section. 

Trunk Unit Device 

1 1 Card Reader 
2 1 Card Punch 
3 1 Printer 
4 1,2,3,4 Tape Stations 

READING DATA 

There are three Read Commands to bring data into 
High-Speed Memory (HSM). The Read Device For­
ward and Read Auxiliary commands can select all 
peripheral equipment on line to the 70/15. The Read 
Device Reverse command can be issued only to tape 
stations. 

41 

The Read instructions: 

Operation Operand 

RDF T(D), SI' S2 

RDR T(D), SI' S2 

RDA T(D), SI' S2 

select a Trunk and Device, and indicate the HSM area 
to receive the data. 

Control 
Electronics Device 

Control Device 
Electronics 

Control 
Device 

Electronics 

Control 
Device 

Electronics 

Control 
Device 

Electronics 

Control 
Device 

Electronics 

Assuming the two HSM areas: 

INPT (HSM 1000-1100) 
OUTP (HSM 1200-1319) 

The instruction: 

Operation 

RDF 1(1), 

Operand 

INPT, INPT+79 

reads a card from the Card Reader (Trunk 1) into 
HSM location starting at 1000 (INPT) and ending at 
HSM 1079 (INPT+79). 

The same instruction with the Trunk number changed: 



Operation Operand 

RDF 4(1), INPT, INPT+79 

reads a block from magnetic tape filling eighty char­
acters of HSM (1000-1079). 

The read Device Reverse (RDR) can be issued only 
to magnetic tape. The instruction: 

Operation Operand 

RDR 4(1) INPT+79, INPT 

causes the magnetic tape to be moved in a reverse 
direction. The first byte read is placed in INPT+79 
(HSM 1079), the second byte is placed in INPT+78 
(HSM 1078), etc., and the last byte read will be 
placed in INPT (HSM 1000). Notice that the Sl and 
S2 addresses had to be reversed. 

The Read Device Forward and Read Device Reverse 
instructions must complete execution before the next 
instruction in sequence can be staticized. The Read 
Auxiliary (RDA) instruction uses auxiliary registers 
to provide overlapping operations. That is, the com­
puter can staticize and execute another instruction 
at the same time that the Read Auxiliary instruction 
is being executed. The format of the Read Auxiliary 
instruction is the same as the RDF instruction ex­
cept that the S2 operand is ignored. The RDA in­
struction will be terminated by either reaching a gap 
on magnetic tape or by reading one card. The RDA 
instruction: 

Operation Operand 

RDA 4(2), INPT, INPT+99 

MVC AREA(12), TEMP 

reads 100 bytes from magnetic tape 2 into HSM 1000-
1099. The next instruction in sequence (MVC) will b~ 
staticized and executed while the data is being physi­
cally read from magnetic tape 2. 

Notice that both the RDF and RDR instructions are 
terminated by: 

1. Reaching a gap on magnetic tape or reading 
one card, or 

2. Reading the amount of data specified by the ad­
dress operands. 

The RDA instruction is terminated only by the first 
condition (above). 

42 

WRITING DATA 

The Write instruction (WR) transfers data from HSM 
to the selected device. The instruction: 

Operation Operand 

WR 3(1) , OUTP, OUTP+79 

prints the contents of HSM 1200-1319 (OUTP area) 
to the Printer. The same command with the Trunk 
number changed: 

Operation Operand 

WR 4(1) , OUTP, OUTP+79 

writes a block of eighty bytes to magnetic tape 1 on 
Trunk 4, or: 

Operation Operand 

WR 2(1), OUTP, OUTP+79 

punches a card. 

The Erase (WRE) instruction can be considered an 
output command except that it can only write blanks 
to magnetic tape. The instruction: 

Operation Operand 

WRE 4(2), OUTP, OUTP+50 

erases an area of tape that is equal to 51 bytes in 
length. 

CONTROLLING PERIPHERAL DEVICES 

The I/O instructions covered so far have as their 
function the moving of data between HSM and the se­
lected devices. The Write Control (WRC) instruc­
tion has the function of communicating control in­
formation (rewind tape, paper advance, pocket se­
lect, etc.) to the selected device. The WRC in­
struction transmits a byte from HSM to the Control 
Electronics of the selected device. The configura­
tion (bits) of the control byte is defined for each of 
the peripheral devices as indicated below. 

CARD READER CONTROL BYTE 

Select Output Stacker #1 

Select Output Stacker #2 



22 Translate mode 

23 Binary 

24_27 NOT USED 

MAGNETIC TAPE CONTROL BYTE 

2
0 

21 

22 

2
3 

24 

2
5 

Not Used 

Not Used 

Re-Read 

Unwind one gap 

Rewind one gap 

Rewind and Disconnect 

2
6 

Unload without Rewind (cartridge tape only) 

27 Rewind to BT Marker 

PRINT ER CONTROL BYTE 

\ ~CO~T 
Advance the paper up to fif­
teen single spaces, or se­
lection of Paper Loop Chan­
nel (1-11). 

Examples 

NOT USED 

o = Paper advance following next print ac-
tion. 

1 = Paper advance immediately. 
o = Paper advance by 20_22. 
1 = Paper advance by Paper Tape Loop as 

selected by the 20-22 count. 

Assuming the following bytes in memory: 

CTLI 
CTL2 
CTL3 

00000001 
00001000 
01000010 

The instructions: 

1. 
2. 
3. 

will: 

Operation 

WRC 
WRC 
WRC 

(01h6 
(08h6 
(C2h6 

Operand 

1(1), CTLl, CTLl, 
4(3), CTL2, CTL2 
3(1), CTL3, CTL3 

1. Select Output Stacker #1 on the Card Reader. 
2. Rewind one gap on Magnetic Tape 3. 
3. Paper advance the printer two lines immedi­

ately. 

43 

ERROR RECOGNITION 

An error condition generated during the execution of 
an I/O instruction does not halt the computer. 

If the selected device is busy, the instruction is re­
staticized until the device is available. All I/O in­
structions set the condition code to one of three con­
ditions. If the device is inoperable, the instruction 
is terminated and sets the Condition Code to one (1). 
If the instruction was executed (with or without er­
rors) the Condition Code is set to zero (0) when the 
instruction terminates. If an interrupt is pending on 
a device, and an I/O instruction selects that device, 
then the in~truction terminates and the Condition Code 
is set to 2. 

For example, if the interrupt button was depressed 
on the Interrogating Typewriter, but interrupt had 
been inhibited on that Trunk, then an I/O command 
to the Interrogating Typewriter would not be executed. 

The flow chart (shown on the following page) indicates 
both hardw.are and programming logic for basic I/O. 

STATUS INFORMATION 

An indication that an error occurred is made avail­
able by directing the Control Electronics of a par­
ticular device to transmit the Standard Device Byte 
into the reserved area of memory for that Trunk. 
The Standard Device Byte is standard for all peri­
pheral equipment in the RCA Spectra 70 System. 

STANDARD DEVICE BYTE 

ILLEGAL OPERA TION - Improper com­
mand code for this device, i. e., read 
from Card Punch. 

INOPERABLE - The device is unusable 
until the condition is cleared, i. e., no 
power, jammed, interlock open, etc. 

SECONDARY INDICA TOR SET - Indicates 
that a bit in the "SENSE BYTE" is set. A 
"I/O SENSE" operation must be executed 
to determine the particular condition. 

DEVICE END - Set when device termi­
nates. Indicates that device is available. 

CONTROL BUSY -Same as DEVICE BUSY 
on 70/15. 

DEVICE BUSY - Device is engaged in pre­
viously initiated operation. 

TERMINA TION INTERRUPT - Not used 
on 70/15. 



I -- -- -- ----

l I 

I 

I 

I 

I 

I 
L 

STATICIZE 
I/O 

INSTRUCTION 

YES 
DEVICE BUSY 

-- --

NO 

BRANCH ON 
CONDo CODE 

1 OR 2 

C. C = 0 

MANUAL INTERRUPT PENDING - Inter­
rupt button on Interrogating Typewriter 
depressed. Interrupt requested. 

Six of the eight bits convey information that is not 
applicable to the 70/15. The Manual Interrupt Pend­
ing (2 7) bit indicates the same information as the 
Condition Code being set to 2 after staticizing an 
I/O instruction. This bit may be tested to determine 
if the interrupt button on the Interrogating Type­
writer had been depressed (and the interrupt had been 
inhibited) prior to issuing a command to the Type­
writer. 

The "Secondary Indicator Set" bit (22) is the primary 
indicator of the Standard Device Byte. This bit set 
to one (1) means that an error has occurred and that 

1 

14 HARDWARE 

I 

I 

I 

-- -- J 

44 

1 OR 2 

BRANCH ON 
CONDo CODE 

2 

1 

DEVICE IS 
INOPERABLE 

2 

INTERRUPT 
PENDING 

control information is available. The Programmer 
must issue an I/O Sense instruction (see page 45) to 
determine the exact condition that caused this bit to 
be set. 

The Post Status (PS) instruction directs the selected 
device to transmit the Standard Device Byte to the 
reserved area of memory for that Trunk. 

The instruction: 

Operation Operand 

PS 2 (1) 

causes the Standard Device Byte for the Card Punch 
to be placed in the reserved HSM location 10. 



I/O SENSE INFORMATION 

The Input/Output Sense instruction: 

Operation Operand 

lOS 

causes the selected device to transmit one byte to the 
HSM location referenced by S , S2. The Sense Byte 
is different for each type of Jevice. Each bit of the 
Sense Byte indicates a particular error or control 
condition. The programmer can test the bits to de­
termine the condition indicated. 

The chart (shown below) summarizes the meaning 
of each bit of the Sense Byte for the Card Reader. 
Card Punch, Magnetic Tapes, Interrogating Type­
writer, and Printer. 

Exercise 

T F 

T F 

T F 

T F 

T F 

1. All I/O operations are serial in the 70/15. 

2. All I/O instructions are two address (6 
byte) format. 

3. On the 70/15 one to six I/O channels may 
be available. 

4. If an I/O device is busy when an I/O in-
struction using that device is attempted, 
a hold off will occur and the instruction 
will be restaticized until the device be-
comes available. 

5. After an I/O instruction is performed, a 
condition code setting of 3 indicates "In-
terrupt pending" . 

Typical Peripheral Unit Sense Bytes 

Bit 
Card Reader Card Punch 

Position 

2
0 

Tape Mark Code Not Used 

21 Not Used Not Used 

22 Manual Service Manual Service 
in Progress in Progress 

2
3 

Not Used 
Intervention 
Required 

24 Invalid Transmis s ion 
Punch Code Parity Error 

2
5 Pocket Selection Punch Memory 

Too Late Parity Error 

2
6 Service Request 

Not Used 
Not Honored 

27 Read Error Punch Error 

Sample Coding 

The series of instructions in the sample coding does 
not represent a complete program. It is included to 
illustrate the use of the Read, Post Status, I/O Sense, 
and the necessary masks required to do some input 
operations in 70/15 assembly language. 

2887-2885 
Typewriter Printer 

Mag. Tapes 

Not Used Not Used Parity Error 

ET or BT Not Used Low Paper 

Tape Mark Human Error 
Manual 
Service 

Short Message Time Out 
Non-Printable 
Code 

Transmiss ion 
Write Error 

Transmission 
Error Parity Error 

Data Block 
Not Used Not Used 

> Than Count 

Service Request Service Request 
Not Used 

Not Honored Not Honored 

Read or Read 
Not Used Not Used 

After Write Error 

T F 6. The direction of operation for all I/O in­
structions is from left to right. 

4S 

T F 7. The instruction which tests for an error 
condition after an I/O instruction is the 
POST STATUS instruction. 



8. What are some of the uses of the WRITE 
CONTROL instruction? 

9. What are the formats of the 70/15 I/O 

a. Read a Card 

b. Punch a Card 

c. Write a message tothe console type-
instructions? writer 

10. What does the Sl field contain in an I/O 
instruction? 

11. Write a Read Forward and a Read Reverse 
instruction which will read data from 
trunk #2, unit #2, into the area 0100-
0110. 

12. Write the necessary instructions to: 

46 

d. Read a message from magnetic tape 

Include the sensing, the condition code, 
POST STATUS, I/o SENSE for each op­
eration. 



The flow chart (below) indicates the programming logic for Input/Output control: 

I/O 
SENSE 

Test Under 
Mask 

Branch on 
Condo Code 

Error 
Routine 

1 

Set 

Error 
Routine 

1 

Branch on 
Condo Code 

1 or 2 

CoC = 0 

Post Status 

Secondary 
Indicator Set 

Not 
Set 

Continue 
Processing 

47 

CoCo = 1 or 2 

Branch on 
Condo Code 

2 

CoC = 1 

Device is 
Inoperable 

Interrupt 
Pending 



SAMPLE CODING 

NAME OPERATION OPERAND COMMENTS 

12 34 56 78 910 1112 13 14 15 16 1718 1920 21 2223 24 2526 27 2829 30 31 32 3334 35 3637 38 39 40 4142 43 44 4546 47 4849 50 51 52 53 54 55 56 5758 59 6061 

RE lAD R D F 4 ( 1 ) , I N P T , I N P T + 9 9 RE A D DA T A 

B C X I 6 I , NC D 0 B R A N C H I F I N 0 P E R A B L E 

P S 4 ( 1 ) P 0 S. T S T A T U S 

T M 1 8 ,M S K I T E S T I F S E C I N D I C A T 0 R S E T 

B C X I 1 ' , E R R B R A N C H I F S E T 

B R E A D B R A N C H T 0 R E A D 

NPD B C X I 2 I C D 2 T E S T F 0 R I N 0 P E R A B L E 

H C 0 N D I T I 0 N 0 N E 

CD2 H C 0 N D I T I 0 N T WO 

ERR I o S 4 ( 1 ) S E N S , S E N S R E A D S E N S E B Y T E 

T M S E N S M S K 2 T R A N S M I S S I 0 N 0 R R E A D E R R 0 R 

B C X I 1 I , E R R 1 B R A N C H I F E R R 0 R 

B R E A D B R A N C H T 0 R E A D 

ER R1 H E R R 0 R 

SE NS D S 1 C 

IN PT D S 1 0 0 C 

MS K1 D C X I 0 4 , 
MS K2 D C X 

, 9 0 , 

12 34 56 78 910 1112 1314 1516 1718 19 2021 22 23 24 2526 27 28 29 3031 32 33 3435 3637 38 39 40 4142 43 44 45 46 47 4849 50 51 5253 54 55 56 5758 59 60 61 


	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48

