


5iFlE'_ I 
RADIO CORPORATION OF AMERICA • ELECTRONIC DATA PROCESSING 

~RADIO 

SYSTEM 

7C25i 

TRAINING MANUAL 

CORPORATION 
70-25-801 

o F AMERICA 



The information contained herein 
is subject to change without notice. 
Revisions may be issued to advise 
of such changes and/or additions. 

First Printing: December, 1964 
Second Printing: January, 1965 



TABLE OF CONTENTS 

Page 

General Description . . . . • • • • • . . . • . • . • • . • . • . . • • • . • • • • • . • . . • • • • . • . . . . • • . • . . 1 

High-Speed Memory • • . • . . . • • • • . • . • • . • . • . • . • . • . . • • • . • • . • • • . • • • • • • . . . • • • • • • 3 
Introduction .••..•.•••...•.•....•.•.••.•..•••..•..••••••..••••••.•.. 3 
HSM Addressing ..••••••..•.•••••.••.••.•.•.•.•..•.••.•..••.•••...•.. 3 
Hexadecimal Numbering System • . . • • • . • . . • . • . . • • • . • . • • • • . • • • • . . • • • . . • • • • • • 4 
Exercise .••••••......•.•.•.•.••••••.•.•.••••••.•••••••••..•.•..••• 5 

Data and Instruction Format ........•.•.••.•••••.•.•..•.•••••..•.•.••••...•• 6 
Data Formats . . . . • . • . • . • . • • • • • . • . • • . • • • • • • • • • • • • . • . • • • • • • • • • • . • • • • . • 6 
Unpacked Format .•.•..•••••••••.•.•••••••.••••.••••.••••.••.••••.••• 6 
Edited Format .•.•...••••••......•..•..•••..•.•..•.•.•••.•.•.••.•••• 6 
Machine Instruction Format •.•...••.••••••••...••.••.•.••.•.•.••....•••• 7 
Exercise .•••.•..•.•..••..••••••••••••.••••••••.•..•.••••••..••••.• 7 

Interrupt .••..•.•..•••.•.••.••••.••••.•.....••.•••..••••••.•.••.••.•.• 9 
Introduction ••.•.•.•..•••....•.•.•..•..•..•.•.....••.•.••..••••..•.. 9 
Programming States. . . • . • • • . • • . • . • . • . • . • • • . • • • • . • • . • . • • . • • • • • • . • • • • • • • 9 
Processing State . . . . . . . . • . . . . . . • . . . . • • • . • . • . . • . . . . . . . . . . . • . . . . . . . • . • • 9 
Interrupt State • . • . • . • • • . . . • . . . . . . • • • • • • . • . • . . • • . • • . . • • • • . • • . . . • • • • • . • 9 
Types of Interrupt . • • . • • . . . . . . . • . • . • . . . . • . . . . . . . . . . . • • • • • • . • . . • . . • . . . • 9 
I/O Interrupt •. . . • • • . . • • • • • • . • . • . • • . • • • • • . . • . • . . . . . . • • . • . • . • . • . . • . • • 9 
Operation Code Trap .•...•••••.•.•.•••••••........•..••.....•........• 10 
Arithmetic Overflow and Divide Exception . . . . . • . • . . . . . • . • . . . . . . . • . . . . . . . . . . . . 10 
Elapsed Timer Interrupt. . . . . . • . • . . . • . . . . . . . . . • . • . . . . • . . . • • • • • . . . . . . . • . . 11 
Inhibiting Interrupt •••..•••.••.•..•.•..••....•...•....•.•••......•.... 11 
Exercise ...•....•.............•.................•......•...•....•. 11 
Summary of Interrupt Logic ..•..•..•.•...•...•.•......••.•....•..•...... 12 

Elapsed Time Clock. • • • • . • • • • • • • . • • • . • • • . . • . • . • . • • • . • • • . • • • • • • . . . • . • • • • . . 13 

Introduction to the RCA 70/25 Assembly Language . ..• • • • . • . • • • . • . • • • . • • • . • . . • • . • • • 14 
Format Requirements •••.•.•••.•.•••.•.•••...•••.••••.•••.••.•..••••.. 14 
Addressing . . • • • • . • • . • • • • . • • • . . • • • . • . • . • • • • • . • . . • . • • • . • • • • • • . • • • . • • • 14 
Self-Defining Values •••••.••••.•••••.•.•.•••.••.••••.•••••••••.•..•.•. 16 
Expressions • . • • • . • . • • • • • • • . . • • • . . . • . • . • . • . • • • • • . . • . • • • • • • • • • . • • • • . . 16 
Implied Lengths ..........•.•.•.....•..•...•.•......•.•.•...•.....•.• 17 
Assembler Controlling Codes •.••.•••..••••••••.•...•••.••••...••••..•••. 17 

Define Storage (DS) .•.•.•.••..•.•.•••••••.•.••••.••••••••.•..•.•.•• 18 
Origin Code (ORG) • . • . . . • . • . • . . • • . • • . . . . . . . • • . . • . • . • • . . • . . • . . . . . . • • 18 
Constant Definition (DC) ...•.•.•...•.••.••.•.....••... 0 • • • • • • • • • • • • • • 18 
Program Linking Codes (ENTRY and EXTRH) .•.•.•........ 0 • • • • • • • • • • • • • • • 19 
Run and Segment Controlling Codes (START, END, CSECT) . . . . . . . . . . . . . . . . • . . 20 
Equate Code (EQU) ....•....•.........•........•..•.....•.......••• 21 
Base Register Controlling Codes (USING, DROP) .........•.................. 21 
Extended Mnemonic Instructions . • . . . • . • . • . • • . . • . • . . . . . . . . . . . • . . • • . • . . . • 21 

Exercise .....•.•.•.•.......•...•......•.........•................. 22 



TABLE OF CONTENTS (Continued) 

Instruction Complement 
Data Movement Instructions 

Move Character (MVC) 
Exercises .... 

Packing and Unpacking Data (PACK and UNPK). 
Exercises ..... 

Decimal Arithmetic Instructions 
Decimal Add (AP) and Subtract (SP) 
Decimal Multiply (MP) . . . . . . . 
Decimal Divide (DP) ........ . 
Exercises ............. . 

Data Editing Instruction (ED) 
Examples .. 
Exercises ...... . 

Comparison and Branching Instructions 
Compare Logical (C LC) . 
Compare Decimal (CP) 
Branch on Condition (BC) 
Branch and Link (BAL) . 
Branch on Count (BCT) . 
Set P2 Register (STP2) . 
Exercises 

Load and Store Instructions 
Load Multiple (LM) . 
Store Multiple (STM) . . 

Binary Arithmetic Instructions . 
Binary Add (AB) and Subtract (SB) . 
Exercise .... 

Logical Instructions 
Logical And (NC) . 
Logical Or (OC) 
Exclusive Or (XC) 
Use of Logicals 
Test Under Mask Instruction (TM). . 

Data Translation, Translate (TR) 

InputlOutput . . . . . . . . . . . . 
Introduction. . . . . . . . . . 
Read Instructions (RDF) and (RDR) 
Writing Data (WR) and (WRE) . 
Controlling Peripheral Devices 
Error Recognition . . . . . . . 
Flow Chart of Basic II 0 Logic. . 
Standard Device Byte ..... 
Sensing Exceptional Conditions 
Peripheral Unit Sense Bytes 
Summary of 1/0 Logic .. 
Example of 110 Coding . 
Exercise ........ . 

ii 

Page 

24 
24 
24 
25 
26 
27 

29 
29 
30 
31 
31 

33 
34 
35 

37 
37 
37 
38 
38 
39 
39 
39 

41 
41 
41 

42 
42 
42 

45 
45 
45 
45 
46 
47 

47 

49 
49 
49 
50 
50 
51 
52 
53 
53 
54 
55 
56 
57 



FOREWORD 

70/25 TRAINING MANUAL 

This manual is designed for use in formal training programs which 
mayvaryinlengthfrom about 15 classroom hours (with appropriate 
outside assignments and work sessions) to 45 hours or more, 
depending upon the experience of the student. People with good and 
recent programming experience may find the text helpful in 
self-study. 

Principal references which should be used in either formal or 
self-study situations are: 

1. 70/25 Assembly Manual 
2. 70/25 System Reference Manual 

iii 



GENERAL DESCRIPTION 

INTRODUCTION 

The RCA 70/25 is the intermediate member of the 
Spectra 70 Data Processing series. It is a powerful 
small-to-medium scale data processor. Equipped 
with communications gear, the 70/25 has high-speed, 
high-volume message switching or remote processing 
capabilitie s. 

70/25 PROCESSOR 

The RCA 70/25 Processor is a general-purpose, 
stored program, digital machine that includes High­
Speed Magnetic Core Memory, Program Control, and 
the appropriate Input/Output logic for the Spectra 70 
Systems standard Interface Unit. 

HIGH-SPEED MEMORY 

The High-Speed Memory (HSM) is a magnetic core 
device that provides storage and work area for pro­
grams and data. The memory capacity is either 
16,384, 32,768, or 65,536 bytes. A byte is the 
smallest addressable unit in memory, and consists 
of eight information bits and a parity bit. Each byte 
location maybe accessed with a 16-bit binary address 
consisting of two parts: a displacement carried in an 
instruction, and a base address stored in a general 
register. The sum of the two form an effective mem-
0ry address. 

The Memory Cycle is 1. 5 microseconds, which is 
the time it takes to transfer four bytes from HSM to 
a memory register and to regenerate the bytes 
in storage. 

PROGRAM CONTROL 

The Program Control executes the instructions of 
the program stored in the HSM. An instruction can 
be interpreted and executed by the Program Control 
only after it has been brought out of HSM. The 
process of interpreting and placing the components 
of the instruction in the proper registers is called 
staticizing. An instruction is first staticized and 
then executed by the Program Control logic. 

AUTOMATIC INTERRUPT 

The RCA 70/25 can staticize and execute all instruc­
tions in one of two programming states; the Proces­
sing State and the Interrupt State. The Processing; 
State is the normal mode of operation. A condition 
that causes interrupt will transfer the computer to 
the Interrupt State. Interrupt is mechanized in the 

70/25 hardware. It automatically senses the pres­
ence of interrupt conditions, and transfers control to 
the Interrupt State. 

INSTRUCTION COMPLEMENT 

The RCA 70/25 Order Code consists of thirty-one 
instructions which can be divided into four classeso 

1. DATA HANDLING 

The data-handling instructions allow for the move­
ment of data fields within HSM. Data may be moved 
without changing format or it can be packed, unpacked 
or edited for printing during the movement. A Trans­
late instruction facilitates code conversion and data 
validation. 

2. ARITHMETIC INSTRUCTIONS 

This set includes Decimal Add, Subtract, Multiply 
and Divide instructions, as well as Binary Add and 
Subtract operations. It also incorporates the ability 
to perform Boolean Operations on bit structures. 

3. DECISION AND CONTROL 

The decision and control instructions allow for the 
comparing of both Decimal and Binary fields, and 
the branching to a location in HSM according to a 
Condition Code Indicator. Also included are Branch 
and Link and Branch-Qn-Count instructions that 
simplify subroutine linkage, and control of iterative 
coding. 

4. INPUT/OUTPUT 

Read and Write instructions transfer data between 
the processor and all peripheral equipment on-line 
to the 70/25. Included are the necessary instructions 
to control the devices and to recognize and recover 
from error conditions. 

INSTRUCTION FORMAT 

There are three basic instruction formats in the 
70/25; six-byte, four-byte, and a two-byte instruc­
tion. The first byte of every instruction is the 
operation code. Depending on the instruction, the 
remaining byte~ refer to field lengths, register and 
storage addresses, or contain peripheral device 
identification. 

DATA FORMAT 

The basic unit of storage is the byte, which can 



represent, in the unpacked format, one alphabetic 
or numeric character, or two numeric digits in the 
packed format. Data is represented in HSM in the 
Extended Binary-Coded-Decimal Interchange Code 
(EBCDIC) . 

INPUT /OUTPUT 

The RCA 70/25 communicates with peripheral 
devices through eight I/O channels. 

2 

Each peripheral device contains its own control 
electronics in order to transmit to the processor 
the status of the device, and any error conditions 
generated by an I/O command. 

Each channel is a separate simultaneous mode, allow­
ing execution overlap with other channels and the 
processor. An II 0 termination interrupt is included 
in the system to facilitate efficient use of these 
powerful overlap capabilities. 



HIGH-SPEED MEMORY 

INTRODUCTION 

The RCA 70/25 magnetic core High-Speed Memory 
(HSM) may consist of one, two or four memory 
planes. Each plane contains 16,384(10) byte locations 
(4 x 64 x 64 bytes). The byte is the smallest addres­
sable unit in memory, and is made up of eight 
information bits and a parity bit. 

BYTE 

Bit Identification P 27 26 25 24 23 22 21 20 

Bit (X = 0 or 1) X X X X X X X X X 

Four bytes of HSM may be transferred to a memory 
register and regenerated in memory within 1.5 
microseconds. These four bytes are moved side by 
side or in parallel. 

MEMORY REGISTER 

0 

1 

HSM 
2 

3 

To save processing time, the memory access hard­
ware moves instructions and data in four byte units 
whenever possible, returning to a byte after byte 
or serial transfer when necessary to stay within 
limits defined by a specific operation. These four 
byte units are called words. The first four bytes 
of memory, locations 0, 1, 2, and 3, constitute the 
first word. The second begins with location 4, and 
the third with 8, etc. Even Word boundary is the 
term used to describe the initial byte of each word; 
locations 0, 4, 8, etc. The addresses contained in 
several 70/25 instructions must begin at even-word 
boundaries (see page 41). 

HSM ADDRESSING 

The address of each byte location is expressed as 
a binary number. Sixteen bits are required to ad­
dress the highest location of a four plane system 
(65,536). 

3 

Examples: 
BINARY ADDRESS 

215 214 213 212 211 210 29 2 8 27 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 1 0 

0 0 0 0 1 1 1 1 1 

0 1 0 0 0 0 0 0 1 

1 1 1 1 1 1 1 1 1 

26 25 24 23 

0 0 1 1 

1 1 0 1 

1 1 0 1 

1 1 1 1 

0 0 0 0 

1 1 1 1 

22 21 20 

0 0 1 

1 0 1 

1 1 1 

1 1 I 0 

0 o I 0 

1 1 1 

DECIMAL 
EQUIVALENT 

25 

109 

879 

4.094 

16.512 

65,535 

The first example shows the binary representation 
of HSM location 25. The conversion to decimal re­
quires the adding of the 2n value of all bits that are 
one (1). 

BINARY DECIMAL EQUIVALENT 

20 1 

23 8 

24 16 
-
25 

Within the 70/25 instruction format two bytes, 16 
bits, are allocated for each memory address. 

1 st ADDRESS 2nd ADDRESS 

An address is divided into two parts: (1) a displace­
ment of 12 bits contained in the instruction, and (2) 
a base address which is pre-stored in one of the 
fifteen General Registers. 

The most significant four bits of each address, the 
Bl or B2 fields, designate the General Register 
containing the associated base address. 

B FIELD 

0001 (2) - General Register 1 

1000(2) - General Register 8 

1111(2) - General- Register 15 

0000(2) - No base address 

Assume that General Register One contains 
40,000(10) . 



OP M 

147 (16) F(16) 0001(2) 4000(10) 

When an instruction is staticized the displacement 
is added to the base address. The absolute sum of 
the two is called the effective address, and is the 
address value actually used in execution. In the 
example above, 

the displacement, 

is added to the base address in 
register 1, 

resulting in an effective address 
of 

4000(10) 

40000(10) 

44000(10) 

This technique makes it unnecessary to carry lengthy 
addresses within instructions. Each displacement 
is a fixed length of 12 bits. However, since the 16 
least significant bits of general registers may be used 
for base address values, it is possible to access 
locations which require 13, 14, 15, or 16 bit 
addresses. 

This addressing concept is a necessary feature in 
larger members of the Spectra 70 series where ad­
dresses may exceed 16-bit lengths. 

The maximum value of a displacement is 4095(10)' 

r-,--
2,048 1.024 512 256 128 

211 210 29 28 27 
r----

1 1 1 1 1 

. --
64 32 16 8 4 2 

26 25 24 23 22 21 

1 1 1 1 1 1 

1 DECIMAL VALUE 
-~ 

2° POWER OF TWO 

1 BINARY ADDRESS 

2 
4 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 
4095 

When addressing locations between 0000(10) and 
4095(10)' no base address need be associated with 
a displacement. The 12-bit address carried in the 
D1 or D2 fields becomes a direct address when the 
value 0000(2) is placed in the corresponding B1 and 
B2 fields. 

HEXADECIMAL NUMBERING SYSTEM 

The binary system, although efficient for the 70/25, 
is not a convenient notation for the programmer. The 
hexadecimal numbering system, which operates on 
the base sixteen, is a convenient method to express 
the binary representation of HSM addresses. 

The decimal system is a numbering system based 
upon the number ten. It uses ten single symbols 
(0-9) to represent the basic digits. By a system of 
positional notation that indicates multiplication by 

4 

powers of the base, any value can be expressed. The 
hexadecimal system requires sixteen symbols to ex­
press its basic digits. The alphabetic letters A 
through F have been assigned to represent the decimal 
values 10 through 15 in order to maintain single 
symbols for the digital values of the hexadecimal 
system. 

Each symbol in the hexadecimal system can be 
expressed by four bits in the binary system. There­
fore, two hexadecimal marks are required to repre­
sent a byte, and four hexadecimal marks can express 
an HSM address. 

HEXADECIMAL BINARY DECIMAL 

0 0000 0 
1 0001 1 
2 0010 2 
3 0011 3 
4 0100 4 
5 0101 5 
6 0110 6 
7 0111 7 
8 1000 8 
9 1001 9 
A 1010 10 
B 1011 11 
C 1100 12 
D 1101 

I 
13 

E 1110 I 14 
F 1111 I 15 

Conversion of Hexadecimal to Decimal 

The decimal number 472 represents: 

4 x 100 + 7 x 10 + 2 x 1 = (472)10 

The binary number (101101)2 can be converted 
to its decimal equivalence by: 

1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 
32 + 0 + 8 + 4 + 0 

+ 1 x 20 

+ 1 = (45)10 

A hexadecimal number is converted to a decimal 
value by multiplying the hexadecimal characters 
by the appropriate value of 1 Gn . 



Examples: 

1. Convert (1024)16 to Decimal 

1 x 163 + 0 x 162 + 2 x 161 + 4 x 160 

4096 + o + 32 + 4 = (4132)10 

2. Convert (3AFj16 to Decimal 

3 x 162 + 10 x 161 + 15 x 160 

3 x 256 + 10 x 16 + 15 x 1 

768 + 160 + 15 = (943)10 

The first example shows the hexadecimal address 
(I024h6 which has a decimal value of (4132)10. The 
actual machine (binary) address is: 

0001000000100100 

Each hexadecimal character can be represented by 
four bits. Therefore, hexadecimal is converted to 
binary by replacing each hexadecimal character with 
its binary value. 

(0001000000100100)2 = 4096 + 32 + 4 (4132)10 

The second example shows that the hexadecimal ad­
dress 3AF has a decimal value of 943. 

Exercise: 

1. A byte consists of __ information bits and 
a ___ bit, and is the ___ addressable unit in 
the 70/25 HSM. 

5 

2. An effective HSM address is the absolute sum 
of a and a ___ _ 

3. Base address values are stored in . The 
___ and! or fields of an instruction 
specify which base address will be used to com­
pute an effective address. 

4. The decimal value of a displacement may not 
exceed ___ _ 

5. Convert following hexadecimal numbers to 
binary: 

a. A4E8(16) 

b. E82C(16) 

c. 3D71(16) 

6. Convert following hexadecimal numbers to 
decimal: 

a. B5F9(16) 

b. F93D(16) 

7. Convert following binary numbers to hexa­
decimal: 

a. 1100011000001010(2) 

b. 0000101001001110(2) 

c. 0010110001100000(2) 

8. Convert following decimal numbers to hexa­
decimal: 

a. 55067(10) 

b. 7007(10) 



DATA AND INSTRUCTION FORMAT 

DATA FORMATS 

When representing data, a byte may store a single 
character (unpacked format), or two numeric digits 
(packed format). 

UNPACKED FORMAT 

A byte in the unpacked format uses all eight bits to 
represent one alphabetic or numeric character. This 
format, for example is required for the storage of 
any characters that are to appear on any type of dis­
play output such as the Printer or Typewriter. 

Some of the more commonly used characters, and 
the hexadecimal representation of their bytes are as 
indicated in the tables below. 

ALPHABETIC NUMERIC 

Char. Hex. Char. Hex. Char. Hex. Char. Hex. 
0 FO 

A Cl J Dl 1 Fl 
B C2 K D2 S E2 2 F2 
C C3 L D3 T E3 3 F3 
D C4 M D4 U E4 4 F4 
E C5 N D5 V E5 5 F5 
F C6 0 D6 W E6 6 F6 
G C7 P D7 X E7 7 F7 
H C8 Q D8 y E8 8 F8 
I C9 R D9 Z E9 9 F9 

SPECIAL CHARACTERS 

Char. Hex. Char. Hex. 

BLANK EO - (Minus 60 
. (Period) 4B / Hyphen) 61 
< 4C , (Comma) 6B 
( 4D % 6C 
+ 4E # 7B 
& 50 @ 7C 
$ 5B t (Quote) 7D 

* 5C = 7E 
) 5D Space 40 

A decimal numeric field in unpacked format is 
assumed to contain a sign in the high-order four bits 
of the right most byte. All other bytes, in the zone 
portion, will have the four high-order bits a value of 
all ones (1111 2), 

However, the decimal numeric field must be packed 
before it may be used as an operand in a decimal 
arithmetic operation. 

6 

PACKED DATA FORMAT 

In packed data format, one byte stores two decimal 
digits except for the rightmost byte which contains the 
sign in the four low-order bits. 

The following example shows the same field in un­
packed and packed format. Each location represents 
a byte shown in hexadecimal format. 

UNPACKED 

PACKED 

1 FO 1 F3 1 F1 I F6 1 F2 1 F1 I 80 I 

103 I 16 1 21 1 OS I 
It should be noted (as in the example above) that when 
either packing or unpacking a field the rightmo st byte 
has its zone and numeric portions reversed. 

SIGN RECOGNITION 

In decimal arithmetic operations the sign of a field 
is recognized as positive ifthe sign position contains: 

(1) All one bits (1111)2 

(2) Qriftherightmostbitisa(0}z Le., (1010)2' 
(1110)2' 

If the sign has a low-order bit of (1) 2' and at least 
one of the remaining bits is (0) 2' it is considered 
negative. 

Mter a decimal arithmetic operation the sign of the 
result is one of the following: 

(1100)2 for positive 

(1101)2 for negative 

Thus, in preparing source card input for numeric 
data fields, the user may follow existing procedures, 
L e., for a negative field an overpunch of the minus 
(11 punch) in the least significant position generates 
a zone portion of (11012), 

EDITED FORMAT 

A packed numeric field may be placed in edited 
format with a single EDIT instruction (see page 33). 
A field in edited form is unpacked and contains neces­
sary edit symbols. 

01 01 I 23 48 

+ I - 1 - 1 0 1 1 2 3 4 1 -I 



MACHINE INSTRUCTION FORMAT 

The 70/25 instruction format is variable in length. 
An instruction may contain either two, four, or six 
bytes. 

The first byte of each instruction is an operation code. 
The format of the second byte varies from one in­
struction to the next. In some instructions it is used 
as a binary length counter (L). In others , the byte is 
divided into two length counters of four bits each 
(Ll' L2). In still others, it is used to hold a mask 
(M), or one or more General Register numbers (R), 
(R1-R3). The second byte of a I/O command con­
tains a trunk and device designation. 

The third and fourth bytes hold the address displace­
ment (D) and the number of the General Register (B) 
which contains the base address to be associated 
with that displacement. 

3rd byte 4th byte 

In a two-address instruction the fifth and sixth bytes 
constitute the Band D field of the second address. 

The machine formats and the type of instructions 
using each format are shown below: 

SIX-BYTE INSTRUCTIONS 

Binary Arithmetic 
Decimal Arithmetic 
Decimal Comparison 
Packing and Unpacking 

Data Movement 
Logical Operations (And, Or, Excl. Or) 
Logical Comparison 
Data Editing 

Input/ Output 

7 

FOUR-BYTE INSTRUCTIONS 

IGN: 

lop 81M41IG~IB241D2 121 

1 op 81 R:IIG~I B241 D2 121 
Conditional and Unconditional Branch 

Test Under Mask 

Set P2 Register 

Load Multiple 
Store Multiple 

These bits are not used (ignored) by the 
instruction. 

TWO-BYTE INSTRUCTIONS 

Halt 

Input/Output (Post Status) 

True and False Exercise 

T F 1. Data Edited for display purposes may 
be in packed format. 

T F 2. A numeric field in unpacked format is 
assumed to contain an (F)16 in the high 
order four bytes of each byte. 

T F 3. When packing or unpacking a field, the 
rightmost byte has its zone and numeric 
portions reversed. 



T F 4. The values (1101)2 and (1001)2 are valid T F 6. Each displacement field accommodates 
negati ve signs. a 12 bit address. 

T F 5. The Bl or B2 fields of machine instruc- T F 7. An instruction is variable in length; 
tion format contain the HSM address of either two, three, four, or six bytes. 
a general register. 

8 



INTERRUPT 

INTRODUCTION 

An interrupt facility provides an automatic means for 
the detection of exceptional conditions, and a method 
for an immediate program response. The function 
of sensing for exceptional conditions and the auto­
matic transfer of control to software has been 
mechanized in the RCA 70/25 hardware. Combining 
software with the hardware interrupt makes it 
unnecessary to halt the computer when an error 
develops, and eliminate s program sensing of external 
demands. This system allows the user to program a 
response independently of his production processing. 

PROGRAMMING STATES 

All instructions are executed in one of two states: 
(1) the Processing State (P1) , or (2) the Interrupt 
State (P2). The Processing State is the normal mode 
of operation. An interrupt causes the computer to 
transfer from the Processing State to the Interrupt 
State where it remains until instructed to return to 
the original Processing State. 

PROCESSING STATE 
During the execution of instructions in the P1 state 
the address of the next instruction to be executed is 
stored in the P1 counter (reserved HSM forty (28)16 
and forty-one (29)16' 

BYTE (40)10 BYTE (41)10 

121512141213121212111210129128127126125124123122121120 I 
PI COUNTER 

Each time an instruction is staticized in the P1 state 
the contents of the P1 counter is updated to contain 
the address of the next instruction. All thirty-one 
instructions may be executed in the P1 state. The 
computer remains in this state until an interrupt 
occurs. 

INTERRUPT STATE 

When an exceptional condition is detected, and an 
interrupt initiated, the hardware transfers control 
to the instruction whose address is stored in the P2 
counter (reserved HSM forty-four (2C)16 and forty­
five (2D)16)' 

BYTE (44)10 

P2 COUNTER 

9 

The system is now in the Interrupt State. Each time 
an instruction is staticized the contents of the P2 
counter is updated to contain the address of the next 
instruction to be executed. All thirty-one instruc­
tions may be executed in the P2 state, and the com­
puter remains in this state until a STPP2 instruction 
(see page 39) is executed. The STPP2 instruction 
resets the P2 counter to its original value, and 
returns Control to Pl. The Interrupt State is not 
interruptable. Any interrupt attempted will be 
"PENDING" until the computer returns to the Process 
State. 

Interrupt occurs only after the termination of an 
instruction. Therefore, when the system returns 
to the Process after interrupt, the P1 counter holds 
the address of the instruction that immediately fol­
lows the point where interrupt took place. This 
automatic linkage permits the user to disregard 
interrupt considerations when programming his 
process. 

TYPES OF INTERRUPT 

There are four conditions that can interrupt the 
Processing State: 

1. I/O Device (Manual or Termination) 

2. Operation Code Trap 

3. Arithmetic Overflow or Divide Exception 

4. Elapsed Timer Overflow 

1/0 INTERRUPT 

An interrupt occurs after the termination of each 
Input/Output Command. A termination interrupt 
indicates one of two possible terminating conditions: 

1. The I/O instruction was not completed success­
fully (ERROR). In this case, the Secondary 
Indicator bit in the Standard Device Byte is (1) 2 
(see page 53). 

2. The channel and device that executed the instruc­
tion is now free, and ready to receive the next 
command (NORMAL TERMINATION). In this 
event, the 26 bit of the Standard Device Byte is 
set to (1)2' (see page 53). 

The purpose of normal termination interrupt is to 
notify system software that an I/O channel is avail­
able. With this knowledge, the software can use 



efficiently the overlap capabilities of a system con­
taining eight I/O Channels. 

A communications device request, or a request for 
control by the operator at the console typewriter also 
generates an I/O Interrupt. Console request inter­
ruption is distinguished by the fact that the 27 bit of 
the Standard Device Byte is set to (1)2' 

Prior to entering the P2 state, the computer auto­
matically: 

1. Stores the state ofthe Condition Code Indicator, 
The present value ofthe Condition Code is stored 
in the 20 - 21 bits of the reserved HSM location 
forty-three (2Bh6' 

~~ 

The Condition Code Indicator is then set to (00) 2' 

2. Stores the identification (Trunk and Device 
Number) of the interrupting device in the 
reserved HSM location forty-seven (2Fh6' The 
Device Number is stored in the 20 - 23 bits, and 
the Trunk Number is stored in the 24 - 27 bits. 

BYTE (47)10 

127 126 125124123\ 22 \ 21 120 
~~ 

Trunk 
Number 

Device 
Number 

3. Stores the Standard Device Byte for the Inter­
rupting device in the reserved HSM location 
forty-six (2Eh6' 

See page 53 for a desc ription of the Standard Device 
Byte. 

The P2 counter contains the address of the first in­
struction of a routine to be executed when interrupt 
occurs. This routine tests the Condition Code (with 
a Branch On Condition instruction). A setting of 
(00) 2 indicates that interrupt had been caused by an 
I/O device. The Trunk and Device Number have been 
stored in a reserved area of HSM, allowing the 
routine to identify the device that caused the interrupt. 
For example, if the Console Typewriter is Device 
one on Trunk three, and the Interrupt button had 
been depressed, then HSM location forty-seven would 
contain: 

Trunk 
3 

Device 
1 

10 

OPERATION CODE TRAP 

If an instruction is staticized in which the Operation 
code is not one of the thirty-one legitimate codes, an 
interrupt is initiated. This interrupt is called an 
Operation Code Trap. 

Prior to entering the P2 state, the computer auto­
matically: 

1. Stores the state of the Condition Code Indicator 
in the 20 - 21 bits oflocation forty-three (2Bh 6' 

2. Stores the illegal operation code that caused the 
interrupt in the reserved HSM location forty­
two (2A)16' 

BYTE (42)10 

The two high-order bits of the Operation Code in­
dicate the length of the instruction. 

00 
01 or 10 

11 

two-byte instruction 
four-byte instruction 
six-byte instruction 

3. Sets the Condition Code to (01)2' The interrupt 
routine tests the Condition Code. A setting of 
(01)2 indicates that the interrupt was caused by 
an illegal operation code in the instruction pre­
viously staticized in the PI state. Depending on 
the situation, the illegal operation could actually 
be an error, or an intentional interrupt. In the 
latter case, the interrupt could simulate an in­
struction that is not part of the 70/25 order code. 
For example, the 70/45 operation code (4E)16 
for Convert Decimal would cause an interrupt 
on the 70/25. However, the decimal conversion 
could be simulated by instructions in the P2 
state. 

ARITHMETIC OVERFLOW AND DIVIDE EXCEPTION 

A carry out of the high-order position of the first 
operand during the execution of an Add Decimal 
(FAh6 or a Subtract Decimal (FBh6 instruction 
causes interrupt. If the operands of a Divide Decimal 
(FD) 16 operation are not properly edited, an inter­
rupt occ urs . 

Hardware stores the state of the Condition Code in 
the 20 - 21 bits of reserved location forty-three 
(2Bh6' and resets the code to (10)2' before trans­
ferring to the Interrupt State. 



ELAPSED TIMER INTERRUPT 

General Register Zero serves as an elapsed time 
clock. Every 16-2/3 milliseconds (using 60 cycle 
power) the power supply generates a (1) 2 bit that is 
added to the contents of Register Zero. When the 
register overflows, interrupt takes place. The time 
intervals between interrupts is controlled by the 
value pre-stored in the register (see page 13). 

Before transfer to the P2 state, the current setting 
of the Condition Code is stored in the 20 - 21bits of 
reserved location forty-three (2Bh6' and the code 
reset to (11)2' 

INHIBITING INTERRUPT 

All interrupts except the Operation Code Trap may 
be inhibited. Reserved HSM location forty-nine 
(31)16 allows the user to inhibit interrupt on all or 
selected I/O channels. The user places a mask into 
the eight rightmost bit positions of the reserved loca­
tion. The bit positions, (20-2 7), correspond to the 
eight I/O channels, 0-7. A (1)2 bit permits interrupt 
and a (0)2 bit inhibits it. 

LOCATION 49 (31)16 

A mask of 10010110 allows channels one, two, four 
and seven to interrupt, and inhibits interrupt from 
channels zero, three, five, and six. 

If an interrupt on an I/O channel is inhibited, the 
channel remains busy until a Post Status instruction, 
addressed to that channel, is executed (see page 53). 

Three bit positions (22_2°) in reserved location 
forty-eight (30) 16 allow the user to inhibit the Elapsed 
Timer, Arithmetic Overflow, and MULTIPLEX 
CHANNEL interrupts. 

21=Overflow 
22=Timer 
20co Multiplex Channel 

A mask of 101 in the 22_20 allows Timer and Multi­
plex interrupt, but inhibits interrupt caused by 
arithmetic overflow or divide exception. 

INTERRUPT PRIORITIES 

Op Code Trap - immediate 
I/O 1 
Elapsed Timer 2 
Overflow and 

Divide Exception 3 

11 

Exercise: 

T F 1. Only fifteen of the thirty-one 70/25 in­
structions can be executed in the 
Interrupt State. 

T F 2. The main program is executed in the 
Processing State. 

T F 3. The Processing State is not inter­
ruptible. 

T F 4. The Interrupt State is not interruptable. 

T F 5. The Condition Code is stored prior to 
changing states. 

T F 6. The Condition Code is always set to 00 
prior to going into the P2 state. 

T F 7. The two program counters are stored 
in the reserved area of memory. 

T F 8. The Processing State uses only one 
counter to indicate the address of the 
next instruction. 

T F 9. The PI counter is destroyed by the 
interrupt. 

T F 10. The computer remains in the P2 state 
until another interrupt occurs. 

T F 11. The operation code is stored on an 
Operation Code Trap. 

T F 12. The Standard Device Byte is stored on 
an Operation Code Trap. 

T F 13. Interrupt from any r/o device is the 
only interrupt that can be inhibited. 

14. Describe the use of HSM location 49. 

15. Describe two uses of the Operation Code 
Trap. 

16. Write the masks necessary to inhibit all 
possible interrupts. Where must they 
be stored? 

17. Describe what is stored in reserved 
memory when each of the four types of 
interrupt takes place. 



SUMMARY OF 70/25 INTERRUPT LOGIC 

Instruction 

Op Code Trap 

Store: 

1. CC in HSM 43 
2. Op Code in HSM 42 

Arith. Overflow 

Store CC 
in 

HSM 43 

Interrupt 
Indicator 

Set? 

Yes 

I/O or 

Op Code Trap? 

Neither 

Arithmetic 
Overflow or 
Elapsed Timer? 

Transfer 
to 

Interrupt State 

Identify Interrupt 
(CC Setting) and 

Process 
Accordingly 

STP2 
Register 

Return to Processing State 

12 

No 

I/O 

Instruction 

Interrupt 
"Pending!! 

Interrupt 
Inhibi ted By 

Mask? 
HSM 49 

No 

Yes 

Store: 
1. CC in HSM 43 
2. TK and DV# in HSM 47 
3. Stand. DV. Byte in HSM 48 

Set CC 
to 

(00)2 

r 
HARDWARE 

PROGRAMMING 

1 



ELAPSED TIME CLOCK 

The least significant 24 bits of Register Zero, the 
first General Register, may serve as an elapsed time 
clock. The 70/25 power supply generates a (1)2 bit 
every 16-2/3 milliseconds (60 cycle power). This 
bit is added to the contents of Register Zero. When 
register overflow develops, an interrupt is initiated 
(see page 11). The programmer may control the 
time interval between these interrupts by the selec­
tion of the value stored in the register. 

A (1) 2 is added to the low order bit of the register 
as follows: 

50 CYCLE POWER 60 CYCLE POWER 

1 ADD EVERY 20 MILLISECONDS 1 ADD EVERY 16-2/3 MILLISECONDS 
50 ADDS EVERY SECOND 60 ADDS EVERY SECOND 

3000 ADDS EVERY MINUTE 3600 ADDS EVERY MINUTE 
180000 ADDS EVERY HOUR 216000 ADDS EVERY HOUR 

If the Timer is set to a value of all one bits 
(16,777,215>10' the first add causes overflow. If 
the Timer contains all zeros, overflow will take 
place approximately 93 hours later, using 50 cycle 
power, or 77 hours later using 60 cycle power. 

The number of adds required to clock off more 
meaningful time intervals are indicated below: 

60 CYC LE POWER 

16-2/3 MILLISECONDS 
1 SECOND 
30 SECONDS 
1 MINUTE 
30 MINUTES 
1 HOUR 

1 ADD 
60 ADDS 
1800 ADDS 
3600 ADDS 
108,000 ADDS 
216,000 ADDS 

13 

The overflow value of the 24 bit Timer is 
16,777,216

10
. Let us assume we wish to generate 

an interrupt every minute. By subtracting 360010' 
the number of adds executed in a minute, from the 
overflow value, we can determine the amount to be 
stored in the register. 

16,777,216(10) 

3,600(10) 

16,773,616(10) 

to 

FFF1EF(16) 

It should be remembered that the timer contents is 
reduced to zero at the point of overflow. As long as 
the initial value is added to the register contents be­
fore the computer returns to the Processing State, 
no time loss results. 

Regi ster Zero may not be used for general storage 
purposes. Even though interrupt has been inhibited 
(the 22 bit of reserved HSM location 48 is (0)2), the 
addition of (1) 2 bits to the register contents continues. 

Exercise: 

If we want interrupt after 5 minutes and 30 seconds, 
what value should be stored in register zero? 



INTRODUCTION TO THE RCA 70/25 
ASSEMBLY LANGUAGE 

FORMAT REQUIREMENTS 

The RCA 70/25 Assembly is an automatic program­
ming system designed to translate a symbolic 
machine-oriented program into a machine-coded 
program for subsequent execution on the RCA 70/25 
system. The source language consists of one-line 
statements written on the RCA Spectra 70 Assembly 
Program Form. Each single-line statement per­
forms one of the following functions: 

1. Generates an object program instruction. 

2. Allocates data areas or constants. 

3. Notifies the assembler to perform a specific 
function. 

OPERATION FIELD 

Every statement, except a line used solely for an 
output listing comment, must have an entry in the 
OPERATION field (Cols. 10-14) specifying one of 
the above three functions. 

NAME FIELD 

The NAME field (Cols. 1-6 only) may be used when 
it is desired to symbolically identify the leftmost 
location of the field generated by the statement. The 
NAME entry symbol must consist of at least one 
alphabetic (A-Z) character followed by any combina­
tion of alphabetic and/or numeric (0-9) characters 
that do not exceed a total of six characters. The 
only exception to the symbol entry above is that an 
asterisk may appear in Col. 1 if the statement line 
is to be used for an output listing comment. 

OPERAND FIELD 

The OPERAND field has entries as required by the 
OPERATION field. Thus, if the OPERATION field 
specifies that a constant is being defined, the 
OPERAND field entry is the value of the constant. 
If an instruction Operation Code appears, the 
OPERAND field must follow the prescribed format 
for that particular instruction. 

COMMENTS FIELD 

A comment may appear in any statement line fol­
lowing the OPERAND entry. It must be separated 
from the required OPERAND entry by at least one 
blank column. The entire statement line (to Col. 71) 
may be used for a comment if an asterisk appears 
in Column 1. 

14 

IDENTIFICATION FIELD 

The contents of the IDENTIFICATION field has two 
functions. In the START statement, the first four 
positions, columns 73-76, may contain a name to be 
assigned to the object program. If the last four 
positions, columns, 77-80, are numeric, the contents 
is used as the initial setting ofthe Assembly sequence 
counter. If not numeric, the counter starts at all 
zeros. Each object instruction has a sequence 
number either derived from the value in columns 
77-80 or from zeros. 

ADDRESSING 

A symbolic name is the most frequently used means 
of addressing and referencing a location. When a 
symbol has been used in the NAME field to define a 
location, it may be referenced as frequently as de­
sired in the OPERAND field. The value assigned is 
the address of the left end of the data field or in­
struction on the 'NAMEd' line of assembly coding. 

As stated previously, the symbol may be any com­
bination of the alphabetics (A-Z) or numerics (0-9). 
There are two restrictions: (1) no name may exceed 
six characters, (2) the first character must be al­
phabetic. 

The following are examples of valid and invalid 
symbols: 

VALID 

Al 
STKNKI 
C 
INI 

INVALID 

OPN 
BEGINERR 
IA 
IN.I 

(Space invalid character) 
(Too many characters) 
(First character not alphabetic) 
(Period invalid character) 

The Assembler builds a table containing all the 
symbolics that appear in the name field. A specific 
HSM address is assigned to each symbolic. The 
LOCATION COUNTER, a program counter main­
tained by the Assembler, generates these addresses 
and makes assignments. Assume a routine is to 
begin at HSM location 2000. 



The Controlling Code, 

NAME OPERATION OPERAND 

START Xt7D~t 

places the initial value of (2000ho in the Location 
counter. As memory is allocated for fields and 
instructions, the counter is incremented so that it 
always contains the address at the next location avail­
able. If a statement contains a name, that name is 
placed in the table, and assigned an address equal to 
the current value in the counter. 

Consider the following examples: 
FOR TillS 

LINE 
SYMBOL ADVANCE 

ASSEMBLY CONTENTS (TAG) ADDRESS LOCATION 
STATEMENT OF LINE ~ ASSIGNED COUNTER TO: 

A 5-byte field Work 2000 2000 
A 2-byte field ADDR 2005 2005 
A lO-byte Constant WCON 2007 2007 
A 6-byte Instruction STRT 2018 2018 * 
A 4-byte Instruction 2024 ** 

*Note that the Location Counter is advanced one byte location by the Assembler 
to orient the instruction to an even address. 

**NO SYMBOL (TAG) ASSIGNED. 

IMPLICIT BASE ADDRESS SYSTEM 

The User may explicitly state base register values in 
his Assembly Statements, or he may ask the Assem­
bler to assign base addresses and compute displace­
ments. This latter method is called the implicit Base 
Address System. Base values are considered to be 
implied whenever they are not explicitly stated. 

NAME OPERATION OPERAND 

MVC Dl (L. Bl ). D2 (B2) Explicit Base Addresses 
MVC SI (L). S2 Implied Base Addresses 

We tell the Assembly what base addresses to use, 
for implicit assignment, through a series of Using 
Statements. 

NAME OPERATION OPERAND 

START 
USING 
USING 
USING 

X'064' 

*.9 
4195.10 
*+8190.11 

Set Location Counter to 100(10) 
Using 100(10) in General Register 9 
USing 4195(10) in Genera) Register 10 
USing 8290(10) in General Register 11 

With this information, the Assembly selects the base­
address that gives the least displacement, and com­
putes the B1-D1 (or B2-D2) field in the object instruc­
tion. 

Assume the two names ABLE and BAKER have been 
assigned the addresses 3850(10) and 8173(10) in the 
symbol table. The assembly subtracts a smaller 
base value from the effective (Symbol Table) Address. 
The difference is the displacement. 

15 

3850 8173 
0100 4195 

3750 3978 

If the displacement exceeds 4095, the statement is 
flagged. 

If we move ABLE to BAKER the object result is: 

OP I L I 
I I 
I I 

D2(16) ~I 00(16) I 
I I 

9(16) 3750(10) A(16) I 3978(10) 
I I I 

Additional rules for implicit aadress generation: 

1. If more than one register produces a valid dis­
placement (notover4095(10», the register whose 
contents produce the smallest displacement is 
used. 

2. If two or more registers produce the same dis­
placement the highest numbered register is used. 

3. If no register produces a valid displacement the 
object instruction contains anOP code and zeros. 
The statement is flagged. 

4. The UsingStatementis an Assembly Controlling 
Code. The User must write additional instruc­
tions and constants to physically load and manip­
ulate register contents. 

5. Address values to be stored in general registers 
for base address purposes should be defined with 
an address constant controlling code (DC, A 
option) • If other means are used, the program 
block will not be relocatable. Float factors are 
added to address constants, not to the displace­
ment values. 

RELATIVE ADDRESSING 

As mentioned above, a symbol appearing in the NAME 
field has an address assigned by the Location Counter. 
The aSSignment will be the address of the leftmost 
byte of the defined field. 

The programmer may reference any location to the 
right or left of this address by indicating a plus (+) 
or minus (-) value. 

As an example, assume a field (WARE) has been 
assigned as follows: 

WARE 

[ 30 1-1_°° __ °1 __ 02_0_3-1 



The programmer may refer (in the OPERAND field) 
to the right-end (3003) of this field as: 

WARE+3 

SELF- RELATIVE ADDRESSING 

The asterisk, as the first character of an operand, 
specifies the current value of the location counter as 
the address. The address is always the leftmost 
byte generated by the statement line. Thus, the 
asterisk, with a plus or minus value, can address a 
position to the right or left of the first byte generated 
by the statement line. 

Assuming the location counter value is 2000 for a 
given statement line, *+6 generates an address of 
2006 and *-3 furnishes an address of 1997. An as­
terisked address is relocatable. 

SELF- DEFINING VALUES 

In the previous example, a self-defining value of 3 
incremented a symbolic address. 

Self-defining values may be in three forms; decimal, 
hexadecimal, and character. They may modify ad­
dresses, express masks and lengths, and represent 
I/O trunk and device numbers. Self-defining values 
may also be usedfor location addresses. When used 
for this purpose, they should not exceed 4095(10). 

DECIMAL 

A one to six decimal digit number may be used. The 
Assembler converts it to the binary equivalent. 

Example: 

OPERAND 
ABLE (4) , 

OPERAND 
0049, 

HEXADECIMAL 

Four (4) used to define length of 
ABLE 

Forty-nine to address location 
4910 (Interrupt Mask) 

Up to six hexadecimal digits may be written as a 
self-defining value by enclosing the digits in single 
quote marks preceded by an X. This option is used 
to represent binary configurations such as masks. 

Examples: 

OPERAND 
X'3F', Represents the binary config­

uration 0011 1111. 

16 

CHARACTER 

A character may be specified by enclosing it in single 
quote marks preceded by a C. 

Example: 

OPERAND 
CtA', 

The character A (or in binary 
1100 0001) is desired. 

Example: The three statements below generate the 
same value: 

OPERAND 
CtA' 

X'C1' 
192, 

EXPRESSIONS 

CHARACTER 
HEXADECIMAL 
DECIMAL 

All will 
generate 
1100 0001 2 

An expression is a symbol or a self-defining value, 
or a combination of the two, written in the operand 
field of an Assembly statement. A simple expression 
contains one factor. 

NAME OPERATION OPERAND 

START 
MVC 
AP 

XtABC t 

ABLE (3) ,BAKER 
Xl (6),120(4) 

The compound expression is made up of two or three 
simple expressions. 

OPER-
NAME ATION OPERAND 

MVC 
AP 

* e 55(3), BAKER*ABLE 
SUM1 e SUM2+66(6), *+T ANG e 5 

Expressions are further divided into two additional 
classifications, absolute and relocatable. An abso­
lute expression generates an object machine address 
that is fixed, and may not be legitimately changed. 
The address generated by a relocatable expression 
is relative to the starting point of the program seg­
ment and may be altered when coding blocks are re­
located in memory. 

Assembly rules for the formation of compound ex­
preSSions must be followed closely. Otherwise, 
absolute addresses may be generated where relo­
catable ones are required. 

SUMMARY OF RULES FOR FORMING EXPRESSIONS 

A simple expression is a single symbol, or one self­
defining value used as an operand. 



A compound expression is an arithmetic combination 
of at least two, but not more than three simple ex­
pressions. The expressions may be compounded 
with addition (+), subtraction (-), or multiplication 
(*) • 

*+50 ABLEeSTARTP 15*6+3 

Compound expressions must not begin or end with an 
arithmetic operator. Simple expressions within com­
pound ones must be separated with one and only one 
operator. 

The following are incorrect: 

eROUT ABLE BAKER SIZE++ PRICE 

An expression becomes absolute if it contains only 
absolute symbols and/or self-defining values. It is 
also absolute if it has one of the following forms: 

Rl, R2 = relocatable symbols 

A = absolute symbol or self-defining value 

Thus, the following are all absolute expressions: 

X'3X', 168, RI-R2E.603, 5*5+1, RI-R2+37, 
39*x'H4'+2 

Relocatable expressions must conform to the rules 
stated below: 

1. An expression must contain either one or three 
relocatable symbols. 

2. If there is one relocatable symbol, it must not 
be preceded by a subtraction (-) operator. 

3. If three relocatable symbols are present, one 
and only one may be preceded by a subtraction 
operator. 

4. Relocatable symbols may not be compounded 
with the multiplication operator. Only absolute 
expressions are legitimate operands in multi­
plication. 

The following are examples of correct relocatable 
expressions: 

DOG, DOGel03, *910. 

DOG+CA T e FIGHT, ABLE+437*6 

17 

Illegal Expressions: 

1. OO(}l-CAT 
2. 50*HOPE 
3. DOG+CAT+HOPE 
4. 176 - DOG 
5. OOG - CAT - HOPE 

IMPLIED LENGTHS 

Contains two relocatable symbols 
Multiplication of relocatable symbol 
No subtraction operator 
Single relocatable symbol preceded by 
Two subtraction operators 

The length of an operand may be implied by omitting 
any reference to length in an Assembly statement. 

NAME OPERATION OPERAND 

MVC 

MVC 

ABLE (3) ,BAKER Explicit 
Length 

ABLE, BAKER Implied 
Length 

In line two of the example above, the number of 
bytes moved from location BAKER to ABLE is equal 
to the number allocated when the name BAKER was 
defined. If BAKER is the name of a 3 byte 

NAME OPERATION OPERAND 

BAKER DS CL3 

storage area, the implied length is three. 

An implied length that exceeds the value permitted 
in an instruction is flagged, and the object length 
field is set to zeros. 

If a name is defined in a statement using an asterisk 
or a self-defined-value, the implied length is one. 

When a compound expression is used as all operand, 

NAME OPERATION OPERAND 

MVC ABLE, A+B-C Implied Length 
is Length of A 

the implied length is the length assigned to the left­
most factor in the expression. 

ASSEMBLER CONTROLLING CODES 

The DS (Define Storage) code allocates and reserves 
working storage and input/output areas. 

The number of units of memory to be reserved, fol­
lowed by the letters C, H, or F (byte, halfword, or 
full word), appears in the OPERAND field. 



A symbol appearing in the NAME field is assigned 
the address of the leftmost byte ofthe reserved area. 

The Location Counter maybe set to any desired value 
with the ORG code. This code sets the location 
counter to the value appearing in the operand field . 
The operand may be a symbol or an asterisk (incre­
mented or decremented) or a self-defining value; 
if a symbol, then it must have been previously de­
fined in the NAME field. With this tool, areas may 
be allocated beginning at any desired location, or 
may be re-allocated to accommodate varying for­
mats. 

NAME OPERATION OPERAND 

READIN DS 80C 

The character "C", following the area length 80, 
tells the Assembler to allocate 80 consecutive one­
byte fields beginning at the current position of the 
location counter. 

The statements 

NAME OPERATION OPERAND 

1. READIN DS 20F 
2. READIN DS 40 H 

allocate the same amount of memory. However, the 
first example (20F) instructs the Assembler to ad­
vance the location counter to the next word boundary. 
and then allocate 20 fields of four bytes each; where­
as the second example (40H) advances the location 
counter to the next even byte address, and then al-

locates 40 fields of two bytes each. 

Example (ORG and DS Codes) 

Assume a read-in area is allocated for a file that 
contains transactions in three different formats. The 
maximum size record is 80 characters. We want to 
name the area, and to name every field within each 
format. 

NAME OPERATION OPERAND 

INAR DS 80C 
ORG INAR \ 

NACN DS lOC ) 
NCOD DS 2C ( 
NDAT DS 4C New Account 
NCUS DS 25C I Transaction 
NADR DS 30C 

) NTYP DS 2C 
NAMT DS 7C 

18 

Example (ORG and DS Codes) Cont'cJ 

NAME OPERATION OPERAND 
ORG INAR 

PACN DS lOC I 
PCOD DS 2C I 

PDAT DS 4C Payment 
PAMT DS 7C 1 Transaction 
PTYP DS 2C 
RACN ORG 

INARl RCOD DS lOC 
RDAT DS 2C Receipt 
RAMT DS 4C Transaction 

DS 7C 
ORG INAR+80 Reset Location 

Counter to 
value after 
INAR above 

Areas allocated by the DS code are not cleared. The 
NAME field may be left blank for areas that must be 
allocated but are not referenced directly. 

CONSTANTS 

The DC (Define Constant) code both allocates mem­
ory for, and stores the value of a constant. The 
value is written in the OPERAND field, and is ex­
pressed in one of three forms, as a character, hex­
adecimal or address constant. The length of each 
constant is implied by the value in the operand field. 

CHARACTER CONSTANTS 

A constant not exceeding 16 characters may be writ­
ten on one statement line. Each character is con­
verted to a byte. The value, enclosed in single quote 
marks, is preceded by a C. 

NAME 

EOF 
CaDS 

OPERATION OPERAND 

DC C'END OF RUN' 
DC C t OI2AB' 

HEXADECIMAL CONSTANTS 

A hexadecimal constant must be used in lieu of a 
character constant when one or more of the bytes 
cannot be expressed by a character value. The 
value is written in an even number of hexadecimal 
digits not exceeding thirty-two. Each pair of hexa­
decimal digits (starting from the left end of the ex­
pressed value) is used to generate a byte. 

OPERATION OPERAND 

DC X'4020206B20204B202060' 

An explanation of the above example is given in DATA 
EDITING (page 33). 



ADDRESS (EXPRESSION) CONSTANT 

An address may be stored as a two-byte constant. 
There must be a separate statement line for each 
constant of this type. The constant is enclosed in 
parenthesis and preceded by an A as in the follow­
ing example s. 

1. 
2. 
3. 

Explanation 

OPERATION OPERAND 

DC A(*-6) 
DC ACSTRT) 
DC A(256) 

1. stores the current value of the Location Counter 
- 6 as a constant (RELOCATABLE). 

2. Stores the value of STRT as a constant (RE­
LOCATABLE). 

3. Stores the binary equivalent of 256 as a con­
stant (NOT RELOCATABLE). 

DEFINING REPETITIVE CONSTANTS 

Constants in character and hexadecimal form may be 
defined in repetitive fashion. 

gC'cv' 
gX'cv' 

In the format above, g represents the actual number 
of constants to be generated, and 'cv' represents 
the constant value. 

The statements, 

NAME 

CONI 
CON2 

OPERATION OPERAND 

DC 
DC 

3C'ABC' 
2X'3F4' 

generate ABCABCABC and 03F403F4. 

The g factor may not be properly incorporated in an 
address constant statement. 

The implied length of CONI and CON2, in the above 
example, is three and two. 

19 

DEFINING EXPLICIT CONSTANT LENGTHS 

The define constant format may be expanded to in­
clude specific references to length. 

gCLn'cv' 
gXLn'cv' 
ALn'cv' 

L may not exceed 25610 
n = number of bytes 
n may not exceed (16)10 

The explicit length takes precedence if it does not 
correspond to the physical length of the 'cv' value. 

NAME OPERATION OPERAND GENERATED 

DC 
DC 
DC 

2C L3 t ABC t ABCABC 
2XL5 '3F6' 00000003F600000003F6 
2CL2 t lAB' lAlA 

In the third example above, the B, rightmost char­
acter of the constant lAB, was truncated because a 
length of two was specified. In like manner, the 
constant defined on the second line was padded-out 
to a length of fi ve . 

If an explicit length is not included when defining an 
ExpressionConstant, a lengthof 4 bytes is assumed, 
and the generated constant is aligned on an even word 
boundary. 

When a length other than four (4) is specified, the 
constant is not aligned and is not relocatable. If the 
value of the expression exceeds the assigned num­
ber of bytes, the high-order bits of the value are 
truncated. 

Absolute expressions may have negative values which 
are generated in 2's complement form. 

Example: 

NAME OPERATION OPERAND 

CONI DC All (-2) 
CON2 DC ALI (-5) 

PROGRAM LINKING CODES 

Generated 
Binary Constant 

11111110 
11111011 

The two codes, ENTRY and EXTRN, provide com­
munication between two programs that have been 
assembled independently. The ENTRY code speci­
fies the location(s) addressed by another program. 
The EXTRN code defines a symbol in another pro­
gram. 

ENTRY CODE 

A separate ENTRY verb must appear for each entry 
point in the program (see START code for exception). 
ENTRY appears in the OPERATION field and a sym­
bol must be used in the OPERAND field. The NAME 
field is not used on this line. 



EXTRN CODE 

Reference to a symbol in another program is defin­
ed by the EXTRN Code. A separate statement must 
appear for every symbol appearing in another pro­
gram. EXTRN appears in the OPERATION field and 
a symbol must be used in the OPERAND field. The 
NAME field is not used on this line. 

EXAMPLE OF ENTRY AND EXTRN 

One use of the ENTRY and EXTRN codes is to link a 
program to a subroutine. Assume that a SINE-CO­
SINE subroutine has two ENTRY points; SINE and 
COS, and one EXTRN point; RTN. Programs using 
the SINE-COSINE routine can BRANCH to either 
SINE or COS depending on which function is to be 
computed. The SINE-COSINE routine BRANCHES to 
RTN after computing the function. 

SINE-COSINE ROUTINE 

NAME OPERATION OPERAND 

SINE 

COS 

START 
ENTRY 
EXTRN 

B 

B 
END 

COS 
RTN 

RTN 

RTN 

MAIN PROGRAM 

NAME OPERATION OPERAND 

BGN 

RTN 

START 
ENTRY 
EXTRN 

B 

END 

RTN 
COS 

~COS is an ENTRY 
COS point in the SINE­

COSINE Routine 

The main program defines RTN as an ENTRY point 
that allows the SINE-COSINE routine to BRANCH to 
RTN. 

20 

RUN AND SEGMENT CONTROLLING CODES 

The first and last statements of the source program 
must be a START and END statement, respectively. 
If a program contains sections which are to be load­
ed individually, the second and succeeding sections 
must begin with a CSECT control code. 

START CODE 

In addition to flagging the start of the source pro­
gram, a START code can set the location counter to 
an initial value and identify an entry into the pro­
gram. 

START must appear in the OPERATION field. A 
self-defining value, written in the OPERAND field, 
sets the location counter. A symbol appearing in the 
NAME field is considered an ENTRY point into the 
program (see ENTRY code). 

NAME OPERATION OPERAND 

BEGIN START 

END CODE 

S'064' Set Location 
counter to 100(10)' 
Establish "BEGIN" 
as an entry point. 

The END code informs the Assembler that all source 
input statements have been processed. The OPER­
AND field specifies the starting address of the object 
program. A symbol, self-defining value, or aster­
isked address may appear in the OPERAND field. 

NAME OPERATION OPERAND 

END 

CSECT CODE 

STARTP STARTPisthe 
name of the pro­
gram starting 
address 

The CSECT code identifies both the beginning of a 
new section (segment) and the termination of the pre­
vious section. The START code identifies the first 
section, therefore CSECT should be used for the 
second and succeeding sections only. The NAME 

field may contain a symbol or be left blank. A sym­
bol used in one segment can be referenced by any 
other segment in the program. 



Example of CSECT 

NAME OPERATION OPERAND 

BGN START 1000 

If no ORG SEG2 
entry, then a 
segment will CSECT 
be loaded ORG BGN+100 
following the 
previous segment 

CSECT 
ORG SEG2 

END 

The above example illustrates a program consisting 
of three segments. The second segment is loaded at 
HSM location 11 001 O. The third segment will over lay 
the first two segments at the location named SEG2. 

EQUATE CODE 

The Equate (EQU) command assigns symbolic names 
to values, or assigns the same address to two sym­
bolics. The statement, 

NAME OPERATION OPERAND 

XYZ EQU 6 

enters the name XYZ in the symbol table, and to it, 
assigns the value 6. One name may be equated to 
another in similar fashion. 

NAME OPERATION OPERAND 

BTAG EQU ATAG 

The above statement causes the Assembly to enter 
the name BT AG in the table, and assign to it the 
address previously assigned to ATAG. The symbol 
appearing in the Operand field must have been pre­
viously defined. It must have appeared in the name 
field of a prior statement. 

BASE REGISTER CONTROLLING CODES 

The USING Code indicates to the Assembler what 
base address values will be in specific general re­
gisters at object time. The Assembler creates a 
table of these values, and then uses them to assign 

21 

registers and to compute displacements when base 
references are not included in an expression. (See 

page 3). 

The first operand denotes the value assumed to be in 
a register. The second operand specifies the regis­
ter. 

NAME OPERATION OPERAND 

USING 
USING 

STARTP+6,5 
*-10,6 

The first operand may be a relocatable expression 
while the second is simple and absolute. 

The USING code does not load a general register. A 
Load Multiple, Move Character or Branch and Link 
instruction places the actual base address in a gen­
eral register. 

The assumed value of a register may be altered by 
incorporating another USING statement at any place 
in the source program. 

NAME OPERATION OPERAND 

USING *+500,5 

The only function of the DROP code is to delete a 
base value from the Assembly table. 

NAME OPERATION OPERAND 

DROP 6 

It is not necessary to drop a base address from the 
table prior to changing it with a second USING state­
ment. 

EXTENDED MNEMONIC INSTRUCTIONS 

The assembler provides a Simplified method of de­
fining the various options available via the Branch on 
Condition instruction. The pseudo operation codes 
listed below replace the BC and the associated mask. 



PSEUDO BC 
OP FUNCTION EQUIVALENT 

B Branch Unconditional BC XIF', Sl 
NOP No Operation Be X'O', Sl 
BH Branch on High BC X'2',Sl 
BL Branch on Low BC X'4', Sl 
BE Branch on Equal BC X'8',Sl 
BO Branch on Overflow 

(Arithmetic) or Branch 
if Ones (after TM) BC Xlll,Sl 

BP Branch on Plus BC X'2', Sl 
BM Branch on -Minus 

(Arithmetic) or Branch 
if Mixed (after TM) BC X'4',Sl 

BZ Branch on Zero 
(Arithmetic) or Branch 
if Zero (After TM) BC X'8',Sl 

Examples: 

OPERATION OPERAND 

B BEGIN 
BH ERR 
BZ ZERO 

Exercise: 

1. What does the symbol * (asterisk), in column 1 
of the Assembler Coding form, tell the Assem­
bler program? 

2. What is a redundant name? 

3. If a statement has a symbol in the name field 
and an * (asterisk) as its first operand, which 
of the following Is true? 

a. 

b. 

c. 

Name address and asterisk address are 
the same. 
Asterisk address is name address plus 
one. 
Asterisk address is name address plus 
two. 

4. Indicate the type of the following self-defining 
value. 

Self-Defining Value 

C'9' 
X'4645' 
CIA' 
246 
C'A9' 

22 

5. Indicate whether the follOWing statements are 
true 0 r false. 

T F 

T F 

T F 

T F 

T F 

a. 

b. 

c. 

d. 

e. 

A DS code reserves a portion of 
memory and clears the reserved 
area to blanks. 

Three types of constants may be de­
fined with the DC instruction. 

The length of a constant must be ex­
plicit. 

If the length of a constant defined by 
a single DC statement is 17 bytes 
the rightmost byte will be truncated. 

A hexadecimal constant consisting of 
an odd number of hexadecimal digits 
will have a zero digit padded at the 
left end and the statement will be 
flagged in the listing. 

6. Describe the use of the EXTRN and ENTRY 
codes. 

7. How many external symbols may be identified 
by an EXTRN statement? 

8. Explain the restrictions imposed by the Assem­
bler on the placing of ENTRY statements in the 
program. 

9. Using the Assembler coding form, write the 
Assembler and machine instructions necessary 
to: 

a. 

b. 

c. 

d. 

Set the Location Counter to an initial set­
ting of 1000. 

Provide linkage to a subroutine called 
ABLE which is not a part of this program. 

Set aside a working storage area of 75 

bytes. 

Provide an address constant of 3000. 

10. Define the following abbreviations as used by the 
machine instructions. 

a. L 

b. 

c. 

d. S 

e. 



10. (Cont'd) 

f. S2 

g. M 

h. T 

i. D 

11. Briefly define the following terms: 

a. compound expression 

b. implied length 

c. implied base address 

d. relocatable expression 

12. Write a statement generating six repetitions of 
the hexadecimal constant 'XYZ'. Give the con­
stant an explicit length of 6. 

23 

What would the statement generate? 

13. Write a statement allocating a work area of 100 
bytes. Align the left-hand end of the area on an 
even word boundary. 

14. How are 32 bit relocatable expression constants 
defined? 

15. Using the EQU command, write statements 
equating 

a) 

b) 

the address of the name BEGIN to the 
name ENDP. 

the name NINE to the value 9. 

16. Describe the purpose of the USING and DROP 
statements. How are general registers loaded 
with base addresses? 



INSTRUCTION 

The RCA 70/25 Order Code consists of thirty-one 
instructions that can be divided into four classes. 

1. DATA HANDLING 

The data handling instructions allow fo r the 
movement of data fields within HSM. Date may be 
moved without changing format or it can be packed. 
unpacked, or edited for printing during the move­
ment. A translate instruction facilitates code con­
version and data validation. 

2. ARITHMETIC INSTRUCTIONS 

This set includes .Qecimal Add, Subtract, Mul­
tiply, and Divide instructions, as well as Binary 
Add and Subtract operations. It also incorporates 
the ability to perform Boolean Operations on bit 
structures. 

3. DECISION AND CONTROL 

The decision and control instructions allow for 
the comparing of both Decimal and Binary fields, 
and the branching to a location in HSM according to 
a Condition Code Indicator. Also included are Branch 
and Link and Branch on Count instructions which 
simplify subroutine linkage, and control of iterative 
coding. 

4. INPUT/OUTPUT 

This set reads and writes data between the pro­
cessor and all peripheral equipment on-line to the 
70/25. It includes the necessary instructions to 
control the devices, and to recognize and recover 
from error conditions. 

DATA MOVEMENT INSTRUCTIONS 

Data may be moved from one point in memory to 
another with or without change. The changes that 
can occur during a moving operation are to pack, 
unpack, or to unpack and edit. 

MOVE CHARACTER INSTRUCTION 

The Move Character instruction transfers one byte 
or one word at a time from a sending to a receiving 
field. The number of bytes transferred is control­
led by the L Register. When possible the hardware 
accesses a word at a time. The L character (sent 
to the L Register in the staticizing process) is one 
less than the number of characters to be transferred 
(in machine format) because (1) the first character 
is transferred before the L Register is decremented 

24 

COMPLEMENT 

and (2) the L Register is compared after decrement­

ing to FF16 (1 less than 0016) to terminate the execu­
tion of the instruction. 

Example: 

Construct an output record by transferring selected 
fields from the input area. 

Assume that an input record area (INP) is located in 
memory at 2000-2099 and an output record area 
(OUP) is in2200-2299. An account number, 8 char­
acters, is the first field in each record area. 

The following instruction would move the account 
number to output record area. 

OPERATION OPERAND 

MVC OUP(8),INP 

or in machine format as: 

OP L 

7 200010 I 
General Register one contains 0000 

It should be noted that in assembly format as in 
machine format, the second field is the address of 
the left end of the sending area. The first address 
is the left end of the receiving area. 

Based on the example above, assume the field INP 
contains the value as shown below. 

INP 

00 01 02 03 04 05 06 07 
20 3 7 0 1 4 9 6 5 

The field OUP would be filled with characters from 
the INP area as shown below. 

OUP 

00 01 02 03 04 05 06 07 
22 3 7 0 1 4 9 6 5 

A data field may be filled with a given character or 
cleared by the Move Character instruction by over­
lapping the receiving field so that it begins one posi­
tion to the right of the sending field. Thus the first 



character transferred is generated in each position 
of the receiving area. 

As an example, assume 120-character area is to be 
filled with blanks. It is known that a blank (40)16 
appears in the first position. 

The area is allocated as follows: 

NAME OPERATION OPERAND 

ORG 5000 
PRNT DC X'EO' 

DS 119C 

The name PRNT is assigned the address 5000. The 
area is cleared by the following instruction: 

NAME OPERATION OPERAND 

HSKP MVC PRNT+1(119) , PRNT 

The following diagram illustrates the overlapping 
of the sending area by the receiving area. 

SENDING AREA 
Ii:"'" 

/ \ 

1~5:: =-----l\ ~L----XXXXXXX_____l51~91 
I \~ ____________ ~7~ 

PRNT RECEIVING AREA 

Upon completion of the execution of the instruction 
the area 5000 to 5119 will be filled with the Blank 
(EO) 16 character. 

Exercise: 

For the purpose of this exercise, assume memory 
to be allocated as follows: 

NAME OPERATION OPERAND 

ORG 2000 
WORK DS 5C 
NAME DS 10C 
BAL DS 6C 
DATA DS 5C 

ORG 2100 
WA1 DS 26C 

PART I 

Write the instructions to perform the following oper-

25 

ations. Place your answers in the space provided. 

1. Move 'Work' to 'Data' 

2. Zero fill the 'Bal' field. (Assume the first byte 
of 'Bal' is a zero.) 

3. Clear the 'Work' and 'Name' fields to blanks. 
(Assume the first byte of 'Work' is a blank.) 

ANSWERS 

NAME OPERATION OPERAND 

1. 

2. 

PART II 

Assume areas allocated as shown on Line 1. How 
would the area called WA1 appear after execution of 
the four instructions below? 

Line 1 

00 01 02 

Line 2 

4. 
5. 
6. 
7. 

NAME 

PART III 

OPERATION OPERAND 

MVC WA1(4) , WORK+2 
MVC W A1 +20(6), NAME+5 
MVC WA1+4(1) , WORK+1 
MVC WA1+S(15), WA1+4 

Each record on an input tape contains the following 
fields of data. NO OF 

ITEM CHARS ---

Account No. 8 
Name 25 
Type Account 3 
Street Address 20 
City State Code 2 
Credit Code 5 
Balance 8 
Total Purchases 8 
Total Returns 8 



Write a routine that will construct one output record 
in the following format. 

Account No. 
Credit Code 
Balance 
Total Returns 
Total Purchases 
Name 
Street Address 
City State Code 

Allocate memory for the input record at location 
2000 and for the output record at location 2100. 
Coding is to begin at 2300. Assume the record is 
present in memory. 

PACKING AND UNPACKING DATA 

The previous section discussed the movement of a 
data field from one to another area of memory using 
the Move Character instruction. This instruction 
moved byte(s) without changing their structure. 

As outlined in the section on Data Format, data must 
be in packed format before decimal arithmetic oper­
ations maybe performed. Data must be in unpacked 
format before any type of display output (such as 
printing) may be performed. The Pack and Unpack 
instructions enable the user to perform these opera­
tions as the data is moved. 

PACK INSTRUCTION (PACK) 

To illustrate use of the Pack instruction assume that 
an area must be allocated for input transactions (Un­
packed) which are in the format as follows: 

STOCK NO. 8 
CODE 2 
AMOUNT 8 

One area is allocated for reading in the transaction, 
and another (a work area) for packing the Amount 
field prior to updating the Master.Record balance 
field. 

The input area is allocated as follows: 

NAME OPERATION OPERAND 

ORG 3000 
STNO DS 8C 
CODE DS 2C 
AMT DS 8C 

The work area for packing the Amount (AMT) field 
is as follows: 

26 

NAME OPERATION OPERAND 

WAMT DS 5C 

It should be noted that the unpacked field (AMT) can 
be packed into a much smaller field (W AMT) . 

The least significant byte of the unpacked field is the 
only byte that fully occupies a byte position in the 
packed field. All other bytes are stripped of the 
zone portion before transfer to the packed field. 
Therefore, a quick way of determining the number 
of bytes necessary in the packed field is to divide 
by two the size (in bytes) of the unpacked field and 

add 1. Thus, (Unpacked field) .§ + 1 = 5 (number of 
2 

bytes for packed result). 

Assuming the amount (AMT) field contained the value 
as indicated below, the instruction to pack the field 
in WAMT and the resulting packed field are shown: 

UNPACKED 
(SENDING 
FIELD 

ASSEMBLY 
INSTRUCTION 

GENERATED 
INSTRUCTION 

PACKED 
(RECEIVING) 
FIELD 

10 11 12 13 14 15 16 17 

ZO ZO ZO Z2 Zl Z4 Z9 87 

OPERATION OPERAND 

PACK WAMT(5).AMT(8) 

OP L1 L2 B1 D1 B2 

I F216 14 17 
1
110 305010 

1
110 

D2 

1301010 I 
General Register one contains 0000 

WAMT 

30 50 51 52 53 54 
00 00 21 49 7S 

The receiving field is considered the controlling 
field for terminating the execution of the instruc­
tion. 

If the receiving field is not large enough to contain 
all the digits in the unpacked (sending) field, then 
truncation of the high-order digits takes place. 

If the receiving field is larger than necessary to 
contain all digits in the sending field, the high-order 
half-bytes of the packed field are filled with zero 
digits. 

The programmer must be sure that he is dealing with 
valid fields for both the packing and unpacking oper­
ations. There is no hardware check, for example, 



that valid numeric characters (or a sign) exist. The 
first byte position processed in the sending field 
merely has its half bytes transposed and sent to the 
receiving (packed) field. Each successive byte in 
the sending field has its zone portion stripped and 
the numeric portion forms successive half-bytes in 
the packed field. 

UNPACK INSTRUCTION (UNPK) 

The unpacking operation is the reverse of the pack­
ing operation. 

The first byte in the sending (packed) field is pro­
cessed by having its zone (sign) and numeric por­
tions reversed and sent to the receiving (unpacked) 
field. 

Each successive half-byte in the packed field forms 
a byte in the unpacked field with a zone portion of 
F16 (1111)2 being generated by hardware during 
execution of the instruction. 

As an example of the Unpack instruction assume that 
it is desired to print a balance field as a part of an 
output record. 

The balance field is a packed field that has accumu­
lated the transaction amounts. Assume it is in pack­
ed format and contains the following value: 

PACKED 
(SENDING) 
FIELD 

40 
50 

00 

BAL 

51 

17 

52 53 

24 3S 

An area for printing the balance field has been al­
located as follows: 

NAME OPERATION OPERAND 
ASSUMED HSM 
ALLOCATION 

PBAL DS 7C 5037-5043 

The instruction as shown below would unpack BAL 
with the result in the field PBAL. 

ASSEMBLY 
INSTRUCTIOX 

OP 
GENERATED 
INSTRUCTION I F316 I 

OPERATION OPERAl'ID 

UNPK PBAL(7), BAL(4) 

Ll L2 Bl Dl B2 D2 

6 
1

3 
1

210 
I 

0941 10 
1

110 14050101 

General Register one contains 0000 
General Register two contains 409610 

27 

UNPACKED 
(RECEIVING) 
FIELD 

* F = F16 = 11112 

S = Sign 

PBAL 

50 37 38 39 40 41 42 43 
FO FO F1 F7 F2 F4 S3 

• 

The receiving (unpacked) field can be considered the 
controlling field. If it is larger than necessary, 
high-order bytes are filled with the numeric charac­
ter zero FOI6. 

If it is not large enough to receive all digits in the 
sending (packed) field, the high-order digit(s) of the 
sending field are truncated. 

To determine the size of the unpacked field necessary 
to receive the digits in a packed field, the size (in 
bytes) of the packed field should be doubled and one 
should be subtracted for determining the number of 
bytes necessary. 

Exercise: 

Assume that the following allocations have been 
made: 

NAME OPERATION OPERAND 

ORG 2000 
BAL DS 5C 

DS 3C 
WDAT DS 5C 

ORG 2150 
DATA DS 3C 

DS. 6C 
WBAL DS 4C 

and that the allocated areas contain the hexadecimal 
values as shown below: 
BAL WDAT 
~ ,?'-

20 
00 01 02 03 04 05 06 07 08 09 10 11 12 

FO Fl F2 F5 C7 FO C3 

D4"TA "JVBAL 

21 50 51 52 53 54 55 56 57 58 59 60 61 62 

00 24 5C 

Answer each of the following questions by writing the 
assembly instruction in the space provided and show­
ing the result of the instruction in the blank locations 
above. 

1. Pack 'BAL' in 'WBAL' 

2. Unpack 'DATA' in 'WDATA' 



ANSWERS (Assume that General Register one con­
tains 0000.) 

NAME OPERATION OPERAND 

1.-' 

2.~ 

Show the generated instruction for each of the assem­
bly instructions that follow and the results of each 
instruction in the blank locations above. 

OPERATION OPERAND 

3. PACK WDAT-1(1) , BAL+6(1) 

OP 

OPERATION OPERAND 

4. UNPK DAT A+4(5) , DAT A(3) 

OP 

OPERATION OPERAND 

5. PACK DATA+3(1), BAL(5) 

28 

OP 

A Master Inventory File is in the following format 
with all fields in unpacked format. 

NO. OF 

ITEM NO. CHARS. 

1 STOCK NO. 9 
2 AGENCY CODE 3 

3 ACTIVITY CODE 1 
* 4 FORECAST REQUIREMENT 8 

5 MANUFACTURER 15 
6 MFGR'S. ADDRESS 20 

7 MFGR'S. CITY, STATE 15 
* 8 STOCK ON HAND 7 

* 9 RESERVE REQUIREMENT 6 

*10 DUE IN 6 

11 REVIEW DATE 6 

Items preceded by an asterisk (*) are signed numeric 
fields (Unpacked). 

Requirement No.1 

Allocate memory for the Input Record beginning at 
3000 and for the output record beginning at 3100. 
The output record area is allocated in the same for­
mat sequence as the Input record area, however, 
asterisked items are in packed format and of a min­
imum size to contain all digits in the input items. 

Requirement No.2 

Write a routine with coding to begin at 3200 that will 
construct an output record. Assume for the purposes 
of writing your routine that the input record is pre­
sent in memory. 



DECIMAL ARITHMETIC INSTRUCTIONS 

Decimal Add and Subtract 

The RCA 70/25 has four decimal arithmetic instruc­
tions, Add Decimal (AP) Subtract Decimal (SP) , 
Multiply Decimal (MP) , and Divide Decimal (DP) • 

All require operands to be in packed format. The 
rightmost byte in each field is assumed to contain 
the Sign in the low-order four bits. 

A sign is generated in the least significant byte of the 
result field. 

The sign (rightmost four bits of the result operand) 
is aC16 (1100)2 for a positive field or a D16 (1101 2) 
if the result field is negat,ive. 

The Condition Code Indicator is set following execu­
tion of the instruction based on whether the result 
field is zero, positive (greater than zero), negative 
(less than zero), or if overflow has occurred. Over­
flow interrupt can occur after add and subtract oper­
ation, but not after multiply or divide. Overflow, if 
present, overrides the setting for a positive or neg­
ative result. 

As an example, assume the following fields are in 
memory: 

BAL 
I 

06 I 07 08 09 
50 

23 I 87 23 1+ 
I 

( 
\ 

AMT 

51 50 51 52 ) 
23 47 5+ 

and the following instruction is issued: 

ASSEMBLY 
OPERATION OPERAND 

INSTRUCTION AP BAL(3), AMT(3) 

OP Ll L2 Bl Dl B2 D2 
GENERATED 

I FA16 12 I 2 
1

210 
1

091110 
1

210 1105410 I INSTRUCTION 

General Register two contains 409610 

29 

the result field will appear and the Condition Code 
Indicator will be set as follows: 

BAL 

06 : 07 08 09 
50 

23 : 10 70 6+ 

CONDITION CODE = 3 (overflow) 

When overflow occurs, the position to the left of the 
result field (HSM 5006 above) is not affected by the 
1 carry out of the MSD of the result. The overflow 
setting (Condition Code 3) overrides the positive 
result setting which would otherwise be set (Condi­
tion Code 2). 

The operands being added (or subtracted) do not have 
to be of equal length. The first (and result) operand, 
however, should be the longer operand if they are 
unequal. The first operand can be considered the 
controlling operand. 

If the second operand is shorter in length, high­
order zeros are generated by hardware until the 
leftmost digit of the first operand has been reached. 

If the second operand is longer, its high-order ex­
cess bytes do not affect the result. 

It should be noted that this condition does not neces­
sarily set the overflow condition. Overflow is set 
only by a 1 carry from the most Significant digit of 
the result. 

For example, assume HSM contains a field with the 
following value: 

BAL 

00 01 02 
30 

75 23 4+ 

and an Amount field contained the following values: 

EXAMPLE 1 EXAMPLE 2 

AMT AMT 

20 21 22 23 24 ) 20 21 22 23 24/ 
30 

5+ ) 
30 

00 05 21 67 00 03 31 84 2+, 
\ 



If an attempt were made to add the amount to the 
balance with the following instruction: 

ASSEMBLY OPERATION OPERAND 
INSTRUCTION ~---------4------------~ 

AP BAL (3), AMT (5) 

~!~~~~~~gN 1 FA1612 141110 13000101110 13020101 

General Register one contains 0000 

the result in the balance BALwould be as follows and 
the Condition Code would be set as indicated. 

EXAMPLE 1 RESULT 
BAL 

1
30 

I ~~ ~~ ~ { 

CC = 2 (pOSITIVE RESULT) 

EXAMPLE 2 RESULT 
BAL 

I 30 I ~~ ~~ ~! ~ 
CC = 3 (OVERFLOW) 

Note that in Example 2, the Condition Code of 3 
(overflow) is not an indication that truncation has 
occurred as truncation also has occurred in Example 
1. The overflow setting is based on the 1 carry from 
the MSD of the Result field. 

There is no hardware check or error indication for 
invalid or incorrectly addressed fields. It is the re­
sponsibility of the programmer to be sure that he 
has addressed valid packed fields. 

A field may be added to (or subtracted from) itself 
if desired. 

As an example, assume that a field has been used 
for accumulation and it is desired to zero fill it with 
a valid sign in the rightmost byte position. The 
field WBAL is as follows: 

61 

WBAL 

43 44 45 46 ) 

02 15 24 3+ ) 

The following instruction would zero fill and pre­
serve the sign pOSition: 

ASSEMBLY 
OPERATION OPERAND 

INSTRUCTION SP WBAL(4). WBAL(4) 

GENERATED 
INSTRUCTION 

General Register two contains 409610 

30 

RESULT 
FIELD 

WBAL 

43 44 45 46 
61 t-----------{ 

00 00 00 0+ 

MULTIPLY DECIMAL 

Multiplication may be performed on two packed oper­
ands. The result (product) replaces the first oper­
and (multiplicand) following execution of the instruc­
tion. 

The number of leading zeros in the multiplicand 
should equal the number of significant digits in the 
multiplier. If the multiplicand field has an insuf­
ficient number of leading zeros, the high-order 
product digits are truncated. 

The programmer must ensure that fields are valid 
numerics as the hardware performs no check of this 
type. The Condition Code is not affected by the exe­
cution of this instruction. 

Example #J 

In this example assume the two fields are present in 
memory and have been assigned the following values: 

PRCE 

07 08 
21 

21 57 

09 
22 

2+ 

NUNT 

30 31 

02\7+ 

The item PRCE, to be multiplied by NUNT, is not 
of sufficient length to receive the product. It could 
be moved to a zero-filled work area and multiplica­
tion performed as follows: 

HSM BEFORE 
EXECUTION 

HSM BEFORE 
AND AFTER 
EXECUTION 

ASSEMBLY 
INSTRUCTION 

WPRC 

OPERATION OPERAND 

MP WPRC(5) ,NUNT (2) 

~:s~~~~~~gN I FC16 1410 1110 I
Z

10 I
zo0

10 1210 IZ30 lO I 

GENERAL REGISTf;R 1 CONTAINS Z00010 

HSM AFTER 
EXECUTION 



It should be noted, based on the above example, that 
with only two significant digits in the multiplier the 
leftmost zero-filled byte in the product was not need­
ed. However, if the field NUNT contained three 
significant digits the added zero byte would be re­
quired as in the following example: 

Example #2 

HSM BEFORE 
EXECUTION 

HSM BEFORE 
AND AFTER 
EXECUTION 

ASSEMBLY l 
INSTRUCTION 

GENERATED 
INSTRUCTION 

HSM AFTER 
EXECUTION 

DIVIDE DECIMAL 

22 

22 

22 

WPRC 

00 01 02 03 04 

00 00 21 57 2+ 

30 31 

87 5+ 

See Example 1 above 

WPRC 

00 01 02 03 04 

01 88 75 50 0+ 

Division is performed on two packed operands with 
the quotient and remainder replacing the first oper­
and (dividend) following execution of the instruction. 

Two conditions cause a divide-exception interrupt 
(assuming permit mask): 

1. Dividend does not contain at least one signifi­
cant (leading) zero. 

Example: 

VALID 

INVALID 

5 BYTE 
DIVIDEND FIELD 

I 02 11 7 I 54 I 31 I 8+ I 
112 11 7 I 54 I 31 I 8+ I 

2. The divisor digits, when aligned with the digits 
one position to the right of the leading zero of 
the dividend, have a lesser or equal value. 

31 

Example: 

I 01 I 751 42 1 1+ I DIVIDEND 

VALID 

1411 7+ I DIVISOR 

- - - -

1 01 I 751 42 1 1+ I DIVIDEND 

INVALID 

1 04 11+ I DIVISOR 

A divide-exception interrupt is avoided by position­
ing the dividend with sufficient leading zero digits. 
For example, a two-byte divisor containing from one 
to three Significant digits would not cause a divide 
exception if two or more of the most significant bytes 
of the dividend were zero. 

Example: 

HSM BEFORE 
AND AFTER 
EXECUTION 

HSM BEFORE 
EXECUTION 

ASSEMBLY 
INSTR UCTION 

NAME OPERATION OPERAND 

DP DIVD(4), DIVS(2) 

~:S~~~~~~~N 1 FD \310 1110 I 2 1003010 I 21000010 I 

HSM AFTER 
EXECUTION 

General Register 2 = 220010 

DIVD 

Following the execution of a Divide instruction, the 
remainder appears right justified in the dividend 
field and is equal in length to the divisor. The length 
of the quotient, therefore, is Ll - L2. 

Exercise: 

1. Assume HSM has been allocat ed as indicated on 
Line 1 and that each location contains the values 
as shown. 



1. 

2. 

3. 

4. 

5. 

For each of the assembly instructions listed be­
low, show the result of the instruction on Line 2 
above and the Condition Code as set following 
execution of the instruction. (Consider each 
question independently based on the contents of 
Line 1.) 

CONDITION CODE 

OPERATION OPERAND 

AP AMT 1 (3), AMT 2 (2) 

AP AMT 3 (2), AMT 1 (3) 

SP AMT 2 (2), AMT 3 (2) 

SP AMT 4 (6), AMT ,5 (3) 

AP AMT 5 + 2 (1), AMT 4 + 5 (1) 

2. Write an assembly statement multiplying the 
contents of area TOTAL by the contents of area 
PRICE. 

1000 1001 1002 1003 1004 1005 
TOTAL 

8\3 6\0 4\7 8\4 4 \ 3 o \-

1200 1201 1202 
PRICE 

411 01 4 61 4 

NAME OPERATION OPERAND 

32 

3. 

Show the contents of TOTAL area after execu­
tion. 

TOTAL 

Assume six values stored in HSM. Write the 
assembly statements necessary to compute the 
average value. Place the most significant 
digit of the result in location 15000. 

Assumed values: 

10012 10013 10014 10015 10016 10017 

41 3 01 0 11 + o 10 61
7 9\+ 

NAME OPERATION OPERAND 

Result: 



DATA EDITING 

In previous sections we have seen that data may be 
moved from one area to another either unchanged in 
byte structure or with packing or unpacking being 
performed; or, data may be edited as it is moved. 

Editing is very much like unpacking data except that 
two additional functions are performed as the data is 
unpacked. The editing instruction can (1) suppress 
leading zeros to a predetermined location in the 
edited field and (2) insert editing characters as the 
data is moved to the edited field. 

A data field to be edited is assumed to be in valid 
packed format, i. e., each half-byte is a valid num­
eric (0-9) except the rightmost half-byte which is a 
sign. 

Data is moved from this packed field to a receiving 
field that controls the insertion of the numeric digits 
(half-bytes) . The numeric digits are unpacked as 
they are transferred to the edited field. 

The receiving field (edit mask) consists of charac­
ters to be inserted as editing symbols such as the 
comma, decimal point, and asterisk, for example. 
In addition, the following characters are control 
characters in the edit mask: (Hexadecimal format 
of byte shown.) 

X'20' - DIGIT SELECT 

This character is placed in the edit mask where it is 
desired to insert a digit from the packed field. The 
digit is inserted unless it is a leading insignificant 
zero and a Significance Start character has not been 
encountered previously. 

X'21' - SIGNIFICANCE START 

This character serves the same function as the Digit 
Select character with one added function; it specifies 
that all of the following digits are to be inserted from 
the packed field even if one or more leading zeros 
are still present. 

X'22' - FIELD SEPARATOR 

This character is used for editing multiple fields; it 
specifies the end of one and the start of another field 
and resets the edit operation for the beginning of 
another field. 

To illustrate the editing functions, assume that a 
packed field has the following format and value: 

33 

AMT 

00 01 02 03 
20 

00 02 37 8+ 

and that the field is to be edited so that leading zeros 
will be suppressed. 

To do this, allocate an edit mask as follows: 

NAME OPERATION OPERAND 

MASK DC X'E02020202020202060' 

Hexadecimal characters are used because some of 
the bytes cannot be represented by a character 
constant. 

The first character of the mask is a fill character; 
it replaces digit select (X'20') and editing symbols 
in the mask until one of the following conditions 
takes place: 

1. The first non-zero numeric digit is encountered 
in the packed (sending) field. 

2. A Significance Start character has been encoun­
tered in the edit mask (receiving) field. 

The fill character also replaces all remaining posi­
tions in the edit mask when a plus sign is encountered 
in the packed (sending) field unless processing mul­
tiple packed fields. 

To illustrate the above example, assume the edit 
mask above has been assigned the following mem­
ory allocation: 

00 01 02 03 04 05 06 07 08 
29 

d d d d - d d d e 

where: BLANK 
d DIGIT SELECT 
s= MINUS SIGN 

HSM BEFORE AMT 

AND AFTER 00 01 02 03 

EXECUTION 00 02 37 8+ 



~M BEFORE 
EXECUTION 

ASSEMBLY 
INSTRUCTION 

GENERATED 

MASK 

29 
00 01 02 03 04 05 06 07 08 

d d d d d d d e -

OPERATION OPERAND 

ED MASK (9), AMT 

OP L B1 D1 B2 D2 

INSTRUCTION I DE16! 8 1 110 1 290010 1 110 1 200010 I 
General Register one contains 0000 

HSM AFTER 
EXECUTION 29 

00 01 02 03 04 05 06 07 08 

- - - - 2 

SIGNIFICANCE~ O---~~ 1 
TRIGG ER SETTING* 

3 7 8 + 

*To determine when to insert the fill character in 
the Edit Mask, the hardware employs a Significance 
Trigger. This trigger is set to zero initially. The 
zero setting specifies the fill character in the edit 
mask positions. The trigger retains a zero setting 
until either: 

1. A Digit Select character in the mask references 
the first non-zero numeric digit in the packed 
(sending) field, 

2. 

OR 

A Significance Start character has been encoun­
tered in the Edit Mask field. 

The trigger is set to 1 after either of these conditions. 
The 1 setting specifies insertion of the digit (regard­
less of value) from the packed field in the Edit Mask 
where a Digit Select character is present. The 1 set­
ting also specifies insertion of editing symbols pres­
ent in the Edit Mask. 

The setting of 1 is retained until either a plus sign is 
encountered in the packed field or a field separator 
character is encountered in the Edit Mask. Either of 
these conditions resets the trigger to zero. 

The Edit instruction sets the Condition Code to zero 
ifthe packed field has a zero value, to one if the value 
is negative, and to two if the value is positive. 

34 

Example #1 

The mask that would edit the previous field (AMT) 
with a decimal point and a comma (if the value were 
1,000.00 or higher) would be as follows: 

NAME OPERATION OPERAND 

EDMK DC 

HSM BEFORE 
AND AFTER 
EXECUTION 

HSM BEFORE 
EXECUTION 

ASSEMBLY 
INSTR UCTION 

GENERATED 

INSTRUCTION 

HSM AFTER 
EXECUTION 

X'E020206B2020204B202060' 

AMT 

00 01 02 03 
20 

00 02 37 8+ 

EDMK 

00 01 02 03 04 05 06 07 08 09 10 

- d d , d d d 

OPERATION OPERAND 

ED EDMK (11), AMT 

I DE16 110 1110 1 290010 1 110 [200010 1 

General Register one contains 0000 

EDMK 

00 01 02 03 04 05 06 07 08 09 10 

- - - - - 2 3 78-

SIGNIFICANCE 
TRIGGER SETTING 

o ------>3>1-----~> 0 

CONDITION CODE = 2 



Example #2 

Editing with Decimal Point and at least two zeros 
present. 

HSM BEFORE 
AND AFTER 
EXECUTION 

HSM BEFORE 
EXECUTION 

ASSEMBLY 
INSTRUCTION 

HSM AFTER 
EXECUTION 

AMT 

100 01 02 03 
201-------1 

100 00 00 0+ 

MASK 

00 01 02 03 04 05 06 07 08 09 10 

- d d d d S d d -

OPERATION OPERAND 

ED MASK (11), AMT 

MASK 

00 01 02 03 04 05 06 07 08 09 10 

o 0 

o 

CONDITION CODE == 0 

Examples 3 and 4 

Same Mask - Result after positive and negative field. 

HSM BEFORE 
AND AFTER 
EXECUTION 

HSM BEFORE 
EXECUTION 

ASSEMBLY 
INSTRUCTION 

HSM AFTER 

EXAMPLE 3 EXAMPLE 4 

I 
00 01 02 03 04 05 06 07 08 09 

21t--------i 
-ddd ddeCR 

OPERATION OPERAND 

ED MASK (10), AMT 

Exa.mple 3 Example 4 

EXECUTION ~1 1--------1 - 2-.-3 4 __ _ 
00 01 02 03 04 05 06 07 08 09 

--42.75QCR 

0-..,.1 TRIGGER~ O~I-----o>O~ 

CONDITION CODE = 2 CONDITION CODE ~ 1 

Note that in Example 3 the significance trigger is set 
to zero by the plus sign in the packed sending field. 
In Example 4, however, the minus sign in the packed 
field does not set the trigger back to zero. 

35 

Example 5 

Editing multiple fields. 

HSM BEFORE 
AND AFTER 
EXECUTION 

HSM BEFORE 
EXECUTION 

ASSEMBLY 
INSTRUCTION 

HSM AFTER 
EXECUTION 

SIGNIFICANCE 
TRIGGER 

AMTS 

00 01 02 03 04 05 

01 23 7+ 00 29 5-

MASK 

121 I o~ d d S • d d C R f f f - d d S • d d C R2~1 

OPERAND 

MASK(22), AMTS 

MASK 

121 I o~ _ 1 2 3 7 ________ 2 9 5 C R2~! 
o~ 1---7 0 ) l----'>~O 

CONDITION CODE = 1 (Based on last field processed) 

It should be noted that the field separator character 
resets the significance trigger to zero, so that proper 
suppression of unwanted characters will take place in 
the next field. 

As can be seen in the previous examples the value in 
the Edit Mask controls execution of the instruction 
and the insertion of digits from the packed field. 

Exercise: 

VAL ACC BOH DEST 

J J J J 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 

01 24 7+ 00 00 0+ 00 00 47 21 ~ 15 0+ 27 50 1+ 

Based on the packed format and symbolic values as­
signed as above, show the result of each instruction 
in the locations provided and based on the mask as 
shown in Column II. 

Symbols representing characters in the mask are as 
follows: 

BLANK 

e = MINUS 

d DIGIT SELECT 

* ASTERISK 

s = SIGNIFICANCE START 

f = FIELD SEPARATOR 

INSERTION CHARACTERS 



COLCM:-i [ COLDI:-; [] 
MASK 

TOTL 

3. 

4. i OPERATION I OPERk'ID I 
I ED i OVL(15). DEST I 

This exercise requires the preparation of an edited 
output record from an input record in the following 
format: 

ACCOUNT NO. 
TOTAL DEPOSITS 
TOTAL CHECKS 
PREVIOUS BALANCE 

8 
7 
7 
7 

CHARS 
CHARS 
CHARS 
CHARS 

36 

The following processing steps are required: 

a. Add the Total Deposits to the Previous Balance 
b. Subtract the Total Checks from the Previous 

Balance 
c. Prepare an output record in the edited format. 

The output record is in the format: 

ACCOUNT NO. 8 CHARS 
(BLANKS) 4 CHARS 

* TOTAL DEPOSITS 12 CHARS 
(BLANKS) 4 CHARS 

* TOTAL CHECKS 12 CHARS 
(BLANKS) 4 CHARS 

* PRESENT BALANCE 12 CHARS 
(BLANKS) 76 CHARS 

* EDIT FORMAT 
$-ZZ, ZZZ.DDS 

BLANK 
Z 
D 
S 

SUPPRESSED ZERO (BLANK) OR DIGIT 
DIGIT 
SIGN 

Prepare assembler statements for allocating storage 
memory and constants. Routine coding does not in­
clude input or output instructions. 



COMPARISON AND BRANCHING 

There are two instructions that test the relative value 
of two operands. The Compare Logical instruction 
tests the relative binary value of two operands. The 
Compare Decimal instruction tests the relative alge­
braic value of two operands that are in packed format. 

Both instructions set the Condition Code based on the 
relati ve value of the operands. 

COMPARE LOGICAL (CLC) INSTRUCTION 

The Compare Logical instruction tests the relative 
binary value of two equal-length operands. The two 
operands maybe in either packed or unpacked format. 
The instruction operates from left to right comparing 
the bit values in a byte from each field. The instruc­
tion terminates when either inequality is found or, if 
both operands are equal in value, when the last byte 
in each field has been compared. 

The values of the operands remain unchanged in 
memory. 
Example: 

(Comparison of Key Criteria Fields) 
(Character values shown) 

MACN 

HSM BEFORE 
AND AFTER 
EXECUTION 

27 

28 

00 

7 

00 

7 

01 

5 

01 

5 

02 03 04 

8 4 3 

TACN 

02 03 04 

8 4 3 

05 

1 

05 

1 

ASSEMBLY 
INSTRUCTION 

OPERAND 

06 

2 

06 

2 

MACN(8), TACN 

GENERATED 
INSTRUCTION 

OP L B1 D1 B2 

I D516 I 11
10 I 2700

10 110 

General Register one contains 0000 

07 

F 

07 

D 

D2 

280010 I 

CONDITION CODE = 2 (FIRST OPERAND ffiGH) 
Example: 

(Comparison of Address Fields) 

HSM BEFORE 
AND AFTER 
EXECUTION 

ASSEMBLY 
INSTRUCTION 

ADRI 

00 01 

20 400710 

OFA716 

OPERATION 

CLC 

ADR2 

02 03 

20 401710 

OFBI
1G 

OPERAND I 
ADRl(2), ADR21 

37 

GENERATED 
INSTRUCTION 

OP 

General Register one contains 0000 

CONDITION CODE = (FIRST OPERAND LOW) 

COMPARE DECIMAL (CP) INSTRUCTION 

The Compare Decimal instruction tests the relative 
algebraic value of two packed operands. The oper­
ands may be of unequal length. However, the first 
operand should be longer if the operands are unequal. 
lithe second operand is longer than the first, the ex­
cess bytes do not enter into the comparison. li the 
second operand is shorter in length it is assumed to 
contain high-order zeros. 

The instruction operates from right to left. As the 
rightmost half-byte contains the sign, these res­
pective half-bytes are compared first. If the signs 
are unlike, the Condition Code is set to reflect the 
relative algebraic value of the operands and the 
execution of the instruction is terminated. 

If the signs are alike, the execution of the instruction 
is terminated when the left~ost byte of the first oper­
and has been compared with the actual (or zero-ex­
tended) relatively positioned byte of the second 
operand. The Condition Code setting, in this case, 
is also based on the relative algebraic values of the 
operands. 

Example: 

HSM BEFORE 
AND AFTER 
EXECUTION 

INSTRUCTION 

GENERATED 
INSTRUCTION 

Example: 

HSM BEFORE 
AND AFTER 
EXECUTION 

INSTRUCTION 

AMT VAL 

102410 I 
General Register two contains 409610 

CONDITION CODE = 1 (FIRST OPERAND LOW) 

CHK BAL 

OPERAND 

CHK(3), BAL(4) 



OP Ll L2 Bl Dl B2 D2 

GENERATED I FG16 2 I 3 I 110 I 400210 I 210 002410 I INSTRUCTION 

* 

General Register one contains 0000 
General Register two contains 409610 

CONDITION CODE = 0 (OPERANDS EQUAL)* 

Note that because the second operand was longer 
than the first operand the Condition Code does 
not reflect the true relative value of each field. 

Had the operands been reversed, i. e., BAL (4), 
C HK (3), the Condition Code would have been set 
to 2 (first operand high). 

BRANCH ON CONDITION INSTRUCTION 

The Branch On Condition (BC) instruction transfers 
control based on the setting of the Condition Code 
indicator. 

The BC is a four-byte instruction with the second byte 
being a mask specifying in the four high-order bits 
the Condition Code setting(s) upon which the transfer 
of control depends. 

A 1 bit in the respective bit pOSitions below generates 
a transfer of control if the Condition Code Indicator 
is set to the position shown. 

24 Condition Code 3 
25 Condition Code 2 
26 Condition Code 1 
27 Condition Code 0 

The least significant four bits of the mask (20 to 23) 
must be zero. 

In assembly language, however, the mask is speci­
fied as one hexadecimal digit and the four least­
significant zero bits will be generated. 

Example: 

In the following example, assume thatthe BC instruc­
tion follows a decimal subtract instruction and the 
programmer wants to transfer control to an error 
routine (ERRT) if overflow has occurred or to an 
overdraft (OVDF) routine if the result of the sub­
traction is negative. For a positive or zero result, 
he enters a process (PRCS) routine. 

The coding would be: 

NAME OPERATION OPERAND 

SP I BAL (4). AMT (3) SUBTR. AMT. FROM BAL. 

I CC3 Be X'I'. ERRT BR. TO ERROR RTN 

eel Be X'4'. OVDF BR. TO OVERDR. RTN 

PRes ENTER PRoe. RTN. 

38 

An unconditional transfer of control takes place if 
all the high-order bits have a value of 1. 

The Branch (B) operation code Simplifies the writing 
of this instruction. A mask of X'FO' (111100002) is 
generated automatically. 

Thus, each of the following generates an unconditional 
transfer to STRT. 

OPERATION OPERAND 

BC X'F', STRT 

OPERATION OPERAND 

B STRT 

BRANCH AND LINK INSTRUCTION 

This instruction performs an unconditional branch 
and stores a return address in a specified register. 

It is a four-byte instruction with the four high-order 
bits of the second byte specifying a general register 
used for storage of the P Register. (The P Register 
after staticizing, contains the address of the next in­
struction.) The P Register address is stored before 
branching takes place. 

The register that stores the P Register may be used 
for return linkage as in the example shown below. 

Example: 

In the following example, a BRANCH AND LINK in­
struction transfers control to a routine at location 
EDIT. 

NAME OPERATION OPERAND 

l f ~ 
TRFED BAL 10, EDIT 
RETRN 

The P Register (containing the address of RETRN) is 
stored in General Register 10. At the conclusion of 
the edit routine, the same register may be used for 
return as follows: 

NAME OPERATION OPERAND 

EDIT ! f 
BC X'F', 0(10) 



BRANCH ON COUNT INSTRUCTION 

This instruction allows a program to loop through a 
routine a given number of times. 

A general register holds the count of the number of 
times the loop is to be executed. Each time the Branch 
on Count is executed, the register is decremented by 
one (binary count). When it has been decremented to 
zero, the branch address is ignored and the next se­
quential instruction is executed. 

Example: 

In the following section of a program the routine EDTB 
is to be executed seven times before proceeding on 
to the next routine CONT. 

NAME OPERATION OPERAND 

~ 
~ EDTB 

( ) I 

BCT 9,EDTB 
CONT t J 

Prior to entering the routine (EDTB), General Reg­
ister 9 was loaded with a binary value of six (see 
LOAD MULTIPLE Instruction in this section). 

The routine (EDTB) is executed once and repeated the 
number of times specified by the binary count in 
General Register 9. When the count is decremented 
to zero the Branch Address is ignored and the next 
sequential instruction (CONT) is executed. 

SET P2 REGISTER (STP2) INSTRUCTION 

This instruction transfers control from the Interrupt 
State to the Processing State. It sets the P2 Register 
with the desired value and transfers to the address 
contained in the PI Register (Reserved Locations 40 
and 41). 

The Condition Code Indicator is also reset to the Con­
dition Code that existed at the time the Processing 
State was interrupted. In addition, the hardware in­
terrupt register is reset by the interrupt mask in 
reserved memory. 

39 

Example: 

Assume the following values are stored in HSM im­
mediately before execution of the instruction, 

HEM BEFORE 
EXECtTTION 

PI COL~'TER P2COL":-;TER 

and that ENTR had been assigned a value of 380010 
by the Assembler. 

The following instruction transfers control to the PI 
state, and stores 3800

10 
in the P2 counter. 

ASSEMBLY 
INSTRUCTION 

GENERATED 
INSTRUCTIOK 

HSM AFTER 
EXECUTION 

Exercise: 

OPERATION 

STP2 

OP M 

00 380010 I 
General Register one contains 0000 

PI Counter P2 Counter 

40 41 44 45 
00 00 

230010 380010 

TRANSFER CONTROl:, TO 230010 

CODE RESET TO 3 

USing the memory layout above, indicate which Con­
dition Code would be set after execution of the fol­
lowing instructions. 

COMPARE DECIMAL 

OPERATION OPERAND 

1 CP BAL (3), UNIT + 1 (2) 

2 CP VAL (3), COST (3) 

3 CP AMT (3), NUM (4) 

CONDo 
CODE 



DEF GHI MNO 
J; 

'" 
it 

00 01 02 03 04 05 06 07 08 
25 

FO Fl F3 F7 AA AA AB CD EF 

Based on the above, show which Condition Code would 
be set following execution of the three instructions 
below. (Hexadecimal values of bytes shown.) 

COMPARE LOGICAL CONDo CODE 

OPERATION OPERAND 

4. CLC ABC (4), DEF 

5. CLC GHI (2), JKL 

6. CLC MNO (8), PQR 

09 

01 

40 

PQR JKL ABC 
~ W W 

10 11 12 13 14 15 16 17 18 19 20 

24 57 AB CD EF AA AO FO Fl F4 F7 

Based on the above, indicate which instruction would 
be executed next. 

NI = NEXT SEQUENTIAL INSTRUCTION 

7. OPERATION OPERAND NI ___ UPD 

CP SIX + 1 (2), ONE (3) 

BC X'B', UPD 

8. OPERATION OPERAND NI ___ NEWD __ 

CP FIVE (3), TWO (3) 

BC X'7', NEWD 

9. OPERATION OPERAND NI ___ MIST __ 

CP TIffiE (3), FOUR + 1 (3) 

BC X'D', MIST 



LOAD AN D STORE REGISTER 

There are two instructions that enable the program­
mer to address registers so that he may either load 
a value in the register(s) selected, or store the con­
tents of the register(s) in memory. 

The four-byte memory locations used for either 
storing or loading registers must be word-oriented. 

LOAD MULTIPLE 

This instruction places designated value(s) into one 
or more consecutively numbered general registers. 

The following instruction: 

NAME OPERATION OPERAND 

LM 3,3, ALPHA 

loads General Register 3 with the value stored in the 
word-oriented four-byte addresses by ALPHA. 

The instruction below loads General Registers 2, 3, 
4, 5, 6, and 7 with the values stored in the word­
oriented 24 bytes addressed by ALPHA. 

NAME OPERATION OPERAND 

Example: 

HSM BEFORE 
AND AFTER 
EXECUTION 

LM 

GENERAL REGISTERS 1-8 
BEFORE EXECUTION 

ASSEMBLY 
INSTRUCTION NAME 

2,7, ALPHA 

1 

I 000010 

3 

I 819210 

5 

I 1638410 

7 I 2457610 

OPERATION 

LM 

2 

I 409610 

4 I 1228810 

6 I 2048010 

8 I 2867210 

OPERAND 

2,7, ALPHA 

41 

OP B2 GENERATED 
INSTRUCTION 

1
9816 210 \710 \110 \240016 1 

GENERAL REGISTER 1 = 000010 (AS ABOVE) 

GENERAL REGISTERS 1-8 1 2 
FOLLOWING EXEOUTION I 000010 100010 

3 4 

I 200010 300010 

5 6 

I 500010 600010 

7 8 

I 700010 2867210 

STORE MULTIPLE 

This instruction places the contents of one or more 
consecutively numbered general registers into mem­
ory. The locations that store the register(s) must 
be word-oriented. A full word is used for the storage 
of the contents of each register. 

The Operand format is the same as for the LOAD 
MULTIPLE instruction. 

Example: 

GENERAL REGISTERS 1-8 1 
BEFORE AND AFTER I 000010 
EXECUTION 

3 

I 200010 

5 
500010 

7 

I 700010 

HSM BEFORE 
EXECUTION 

ASSEMBLY 
INSTRUCTION 

GENERATED OP Rl R3 B2 D2 
INSTRUCTION 

1 9011; I 210 
7 

10 1 10 240°10 

GENERAL REGISTER 1 ~ 000010 (AS ABOVE) 

HS;\1 AFTER 
EXECUTION 

2 

I 100010 

4 

I 300010 

6 

I 600010 

8 

I 2867210 



BINARY ARITHMETIC INSTRUCTIONS 

In the two binary arithmetic instructions, Add Binary 
and Subtract Binary, the length of both operands is 
controlled by the length of the first. 

As in decimal arithmetic operations, if the operands 
are unequal, the second operand is truncated, if 
longer, or, is extended with zero-value bytes, if 
shorter. 

Both instructions operate from right to left. The 
instruction is terminated when the left-end byte has 
been processed. 

The Condition Code Indicator is set based on the 
result as follows: 

Condition Code Add Binary Subtract Binary 

o Result is Zero 

Not Used I Difference Less Than Zero 

2 Result is Greater Than Zero 

Overflow I Not Used 

Example: 

Assume an input tape that contains a block of five 
SO-character records. 

For processing, the programmer moves each record 
to a separate processing area. The Add Binary in­
struction increments the second address of the in­
struction that moves a record to the processing area. 

The Subtract Binary instruction, with a branch to 
read if the input area has been exhausted, is used to 
determine when the last record is processed. 

The Input Block, Record Processing, and constant 
areas could be allocated as follows: 

ALLOCATION OF INPUT AND 
RECORD PROCESSING AREA 

NAME OPERATION OPERAND 

ORG 3000 

INP os 400C 

RPR DS 80C 

ORC RPR 

ACCT DS 8C 

NAME DS 25C 

ADR DS 30C 

AMT DS 10C 

FILL DS 7C 

HSM 
ALLOCATION 

3000-3399 

3400-3479 

3400-3407 

3408-3432 

3433-3462 

3463-3472 

3473-3479 

STORED VALUE 
OF CONSTANTS 
(HEX. FORMAT) 

42 

ALLOCATION OF CONSTANTS 

NAME OPEHATlO'l OPEHA;-':D 

RDIN DC A(INP) :l4RO-:l4R 1 OB B~ 

r"CH DC A(RO) 00 0,0 

TLY DC X 'o;iOi) , 0" 05 

CTR DC X'O! ' :l4RG 

The functional chart on the following page shows the 
matching coding steps. Only the steps pertinent to 
the Binary Arithmetic Instructions are shown. 

Example: 

Add Binary of Previous Instruction Binary Value 

HSM BEFORE 
AND AF:TER 
EXECUTION 

HSM BEFORE 
EXECUTION 

ASSEMBLY 
INSTRUCTION 

GENERATED 
INSTRUCTION 

HSM AFTER 
EXECUTION 

Exercise: 

Line I 

Line 2 

INCH 

34 0000 0000 0101 0000 

00 50 

0000 1011 1011 1000 

OPERAND 

IN4+4 (2), INCR (2) 

OP L1 L2 B1 D1 Bz D:2 

F6 1 I 1 I 110 401610 110 348210 

General Register one contains 0000 

0000 1100 0000 1000 

CONDITION CODE = 2 



1 

2 
Initialize 

S2 Address 
of IN4 

3 
Initialize 

TLY 
Constant 

4 
Move Record 

To Processing 
Area 

5 
Increment 
S2 Address 

of IN4 

RECORD 
PROCESSING 

STEPS 

Subtract 
(BIN) CTR 
From TLY 

NAME 

IN2 

NAME 

IN3 

NAME 

IN4 

NAME 

IN5 

.... 

_r. 

NAME 

IN6 

NAME 

IN7 

NAME 

43 

OPERATION OPERAND 

MVC IN4 + (2), RDIN 

OPERATION OPERAND 

MVC TLY (1), TLY + 1 

OPERATION OPERAND 

MVC RPR (80), INP 

OPERATION OPERAND 

AB IN4 + 4 (2), INCR (2) 

w ...... ., 

RECORD PROCESS 
CODING NOT 

SHOWN 

OPERATION OPERAND 

SB TLY (1), CTR (1) 

OPERATION OPERAND 

BC X'8', IN1 

OPERATION OPERAND 

B IN4 



Indicate the results of each instruction (Column I 
below) in the locations on Line 2, page 42. Show the 
results in hexadecimal format. Consider each 
question independently based on the contents of the 
locations of Line 1. In Column II show the Condition 
Code that will be set following the execution of each 
instruction. 

Column I Column II 

ADD BINARY CONDITION CODE 

OPERATION OPERAND 

1. AB A(3) , B(3) 

2. AB C(4), D(4) 

3. AB E(2) , F(2) 

SUBTRACT BINARY 

OPERATION OPERAND 

4. SB D(3) , G(3) 

5. SB H(l), 1(1) 

6. SB 1(5), J(2) 

44 



LOGICAL INSTRUCTIONS 

INTRODUCTION 

The Logical Instructions perform operations on the 
individual bits of a byte. The operation works from 
the left to right on equal length operands (256 maxi­
mum). Proper parity is generated for each byte 
based upon the eight least-significant bits. 

The three principal logical operations are AND 
(result is one if and only if both bits are one), OR 
(result is one if either or both bits are one), EX­
eLUSIVE OR (result is one if either but not both bits 
are one). One additional logical operation is a test 
comparison with a specified mask. 

AND INSTRUCTION 

The rule of the AND instruction is that a 1 bit in the 
same relative bit pOSition of both operands produces 
a 1 bit in the same pOSition of the result. Any other 
combination of bits produces a zero bit in the result. 

Example: 

HSM BEFORE 
EXECUTION 

HSM BEFORE 
AND AFTER 
EXECUTION 

ASSEMBLY 
INSTRUCTION 

GENERATED 
INSTRUCTION 

HSl\l AFTER 
EXECUTIO~ 

o + 0 o 

0+1 o 

1 + 0 o 

1 + 1 1 

AD1 BIT CONFIGURATION 

30 
00 01 

0000 0000 1001 1010 

00 9A 

INC 

00 01 
31 1111 1111 1111 1010 

FF FA 

OPERATION OPERAND 

NC AD1 (2), INC 

OP L B1 D1 B2 D2 

D416 1 110 300010 110 310010 

General Register one contains 0000 

0000 0000 1001 10]0 

CONDITION CODE = 1 

45 

OR INSTRUCTION 

This instruction maybe used to insert 1 bit(s) in any 
bit position (s) of a byte. 

The rule of OR is that a 1 bit in the same relative 
position of either field produces a 1 bit in the same 
position of the result. 

Example: 

HSM BEFOHE 
AND AFTER 
EXECUTION 

HSM BEFORE 
EXECUTION 

ASSEMBLY 
INSTRUCTION 

GENERATED 
INSTRUCTION 

HSM AFTER 
EXECUTION 

0+0 o 

o + 1 1 

1 + 0 1 

1 + 1 1 

('II BIT CONFIGURATION 

0000 0000 0000 0000 0000 0001 

BAL 

1000 1001 1000 1100 

General Register one contains 0000 

BAL 

0000 0111 1000 1001 1000 1101 

CONDITION CODE = 1 

EXCLUSIVE OR INSTRUCTION 

The Exclusive Or instruction extracts 1 bit(s) in 
specified bit position(s) of one or more bytes. 

The Exclusive Or may also be used to alternate des­
ignated bits so that they will have a value of 1 the 
first time and 0 the second time the Exclusive Or in­
struction is performed. In this case the modifying 
mask has a one bit in the bit positions where the inter­
change is desired. 

The rule of Exclusive Or may be considered the same 
as binary addition. However, there is no carry from 
one bit to the next. 



o + 0 0 

1 + 0 1 

o + 1 1 

1 + 1 0 
Example: 

INH BIT CONFIGURAGIONS 

IISM BEFORE 

Gm AND AFTER 31 0011 1111 
EXECUTION 3F 

HSM BEFORE 
EXECUTION GB 00 3F 0011 1111 

ASSEMBLY OPERATION OPERAND 
INSTRUCTION 

XC INH(l), X'0031' 

OP B2 D2 
GENERATED 
INSTRUCTION I D716 I 0 I 110 \311010 \110 \ 0049101 

HSM AFTER 
EXECUTION * 

General Register one contains 0000 

~ 
~ 

0000 0000 

CONDITION CODE = 0 

Note that this example has set the Interrupt Mask 
to prohibit interrupt from any I/O channel. 

The same mask applied again will set the Interrupt 
Mask (location 0049) to allow interrupt from any 
channel. 

USE OF LOGICALS 

There are many programming situations where the 
Logical instructions are useful. For example, a 
program switch may be a Branch On Condition in­
struction. Following the BC instruction is a section 
of coding which is bypassed ifthe Branch takes place. 
When such a condition is desired, a Logical instruc­
tion may be used to insert all one bits in the mask of 
the BC making it an Unconditional Branch. When ex­
ecution of the coding following the BC is desired, a 
logical instruction that inserts all zero bits in the 
mask may be used. This makes the BC a 'no-Op' 
instruction. 

Logical instructions can alter the value of a field. A 
logical instruction may change the sign of a packed 
fieldfromaplus sign (1100)2 to a minus sign (1101)2. 
This feature is useful when editing the packed field. 
The minus sign allows the insertion of editing sym­
bols to the right of the digits in an edited field. Thus 
a field may be made pseudo-negative for fields of a 
prescribed value. For example, if an asterisk is 

46 

desired to the right of any edited balance field below 
$100.00, the packed field sign position could be al­
tered to a negative sign. (See OR example.) 

The Condition Code Indicator is set by the Logical 
instructions. It is set to zero if all of the bits in the 
result field are zero. It is set to one if any of the 
result bits are one. 

TEST UNDER MASK INSTRUCTION 

This instruction compares the relatively positioned 
bits of a byte with a mask byte and indicates the re­
sult by a setting of the Condition Code Indicator. 

The mask byte is written as the second byte of the 
TM instruction. The S1 address is the location of 
the byte to be tested. 

A one bit in the mask tests the presence of a one bit 
in the corresponding bit position ofthe byte addressed. 

The Condition Code Indicator is set to zero if all of 
the selected bits are zero (or if the mask is all zeros). 
The setting is one if the selected bits are a mixture 
of zeros and ones. Condition Code three is set if the 
selected bits are all ones. Condition Code two is not 
set by this instruction. 

Example #1 

HSM BEFORE 
AND AFTER 
EXECUTION 

ASSEMBLY 
INSTRUCTION 

10 
60 

0101 11002 

OPERATION OPERAND 

TM LOC, X'OF' 

OP 
GENERATED 
INSTRUCTION \91 161 0000 111121 210 \191410 I 

General Register two contains 409610 

CONDITION CODE = 1 
Example #2 

HSM BEFORE 
AND AFTER 
EXECUTION 

00 
49 

0011 1101 

ASSEMBLY OPERATION OPERAND 
INSTRUCTION I---------I-------i 

GENERATED 
INSTRUCTION 

TM X'31', X'02' 

General Register one contains 0000 

CONDITION CODE = 0 



DATA TRANSLATION 

The Translate instruction provides the user with the 
ability to accept data in 'foreign' code, and translate 
and process it in the 'native' code of the computer 
being used. The data may then be translated back to 
the 'foreign' code by the Translate instruction, if de­
sired, prior to the output operation. 

The Translation process employs a table that is ad­
dressed by each data character to be translated. The 
binary value of the data character being translated is 
added to the addre ss of the 256 -byte translation table. 
The character in that position of the table replaces 
the data character. 

The Translate instruction maybe used for preserving 
the security of information being transmitted over 
communication lines. Data may be translated in an 
unintelligible code by the use of a program and one or 
a series of translation tables at the sending location, 
and sent to the receiving location where a similar 
program and table(s) re-translates the data to its in­
telligible form. 

Another use of the Translate instruction is to validate 
data. As an example, assume that a ten-character 
amount field must contain all numeric (unpacked) 
characters. 

The numeric characters, hexadecimal FO through 
F9, have binary values equal to 24010 to 24910. Thus, 
the table could be constructed as follows with all zero 
bit-filled bytes in these pOSitions such as the following: 

NAME OPERATION OPERAND 

EDTB DS 240C 
DS X'OOOOOOOOOOOOOOOOOOOO' 
DS 6C 

The first 240 and the last 6 bytes of the table would 
be filled with 1 bits. Thus, any character in the data 
field except an unpacked numeric can address a byte 
filled with one bits. 

If the original data field must be preserved, the trans­
lationmaybeperformedfrom a Work area. Assume 
the data field has been transferred to a work area 
and appears as follows: (shown in hexadecimal) 

WAMT 

00 01 02 03 04 05 06 07 08 09 

FO FO F2 F7 F6 F3 C3 F2 F8 F1 

47 

It should be noted that all characters are nume ric 
(unpacked) except the hexadecimal C3 in pOSition 
2006. Thus, after translation this byte will be filled 
with one bits and the others filled with zero bits. 

The Translate instruction is written as in the follow­
ing format. (Assume the translation table begins at 
2200.) 

HSM BEFORE 
EXECUTION 

ASSEMBLY 
INSTRUCTION 

GENERATED 
INSTRUCTION 

HSM AFTER 
EXECUTION 

WAMT 

02 03 04 05 06 07 08 09 

FO FO F2 F7 F6 F3 C3 F2 F8 F1 

OPERATION OPERAND 

TR W AMT(l 0), EDTB 

OP 

DC16 1 910 1 210 100001012 10200 

General Register 2 == 2000 

WAMT 
00 01 02 03 04 05 06 07 08 09 

00 00 00 00 00 00 FF 00 00 00 

The presence of any 1 bits in the translated field in­
dicates that the original data field contained an invalid 
character. The field could be tested against a zero­
bit-filled field with a Compare Logical instruction as 
follows: 

NAME OPERATION OPERAND 

CLC WAMT(10) , EDTB+239 
BC X'7',INV 

VAL 

The Compare Logical instruction tests the field for 
all zero bits. The Branch instruction transfers to a 
routine for handling a field that is invalid (INV). If 
the field is all zero, the routine for handling a field 
that is valid (VAL) will be entered. 

As another example of the Translate instruction for 
validation, assume a field that consists of either 
alphabetic or numeric characters. Any other char­
acter would make the field invalid. 



The binary values of all alphabetic and numeric char­
acters range as follows: 

A to I inclusive 19310 to 20110 

J to R inclusive 20510 to 21710 

S to Z inclusive 22610 to 23310 

o to 9 inclusive 24010 to 24910 

The table could be allocated by the DC (Define Con­
stant) code as follows: 

NAME OPERATION OPERAND 

TABLE DC 193x'FF' 
DC 9x'OO' A to I 
DC 7x'FF' 
DC 9x'00' J to R 
DC 8x' FF' 
DC 8x'OO' S to Z 
DC 6x'FF' 
DC 10x'OO' o to 9 
DC 6x'FF' 

48 

Then, using instructions similar to those in the pre­
ceding example, a field could be tested for alpha or 
numeric content. 

Any other character will translate into a 1 bit-filled 
byte. For example, assume the field contained a 
period, an invalid character. A period (.) has a bi­
nary value of 01001011 2 or 7510 , It would address 
the 75th position of the table and be replaced by a 1 
bit-filled byte. 

The previous examples have illustrated the Translate 
instruction for validation. A table of this type is fairly 
easy for the programmer to construct using the DC 
and DS codes. 

For translating from one code to another, such as 
from the ASCII to the EBCDIC code a prepared table 
could be used which would be entered into memory 
from an input device. 



INPUT /OUTPUT 

INTRODUCTION 

The user may elect to control Input/Output by Assem­
bly I/O instructions or by software I/O subroutines. 
This section describes the eight Assembly I/O in­
structions, and the methods of error recognition and 
recovery. 

Up to nine channels connect the RCA 70/25 main­
frame to I/O devices. Each channel has its own 
Control Electronics, and is capable of the independent 
execution of I/O commands. A feature called MUL­
TIPLEXING makes it possible to connect many 
devices, printers, card readers, etc., to a single 
channel without the loss of simultaneous capabilities. 

CHANNEL 0 I CONTROL 
ELECTROI'HCS 

CHANNEL 1 CONTROL 
ELECTRONICS 

CHANNEL 2 CONTROL 

"1 
El ECTRONICS 

u 
~ CHANNEL 3 CONTROL 
"- ELECTRONICS RCA ~ 

70/2!J 
"1 

PROCESSOR ~ CHANNEL 4 CONTROL 
ELECTRONICS 

q 
~ CHANNEL 5 CONTROL ~ 

~ EI 

~ 

1;; CHANNEL G CONTROL 
JeT. 

CHANNEL 7 I CONTROL 
1 ELECTRONICS 

CHANNEL R I CONTROL 

MULTIPLEX 
ELECTRONICS 

I DE\lCE I 
I DEVICE I 
I DEVICf: I 
I DEVICE I 
I DEVICE I 
I DEVICE I 
I DEVICE I 
I DEVICE I 
~H 

DEVICE 

H DEVICE 

4 DEVICE 

Up tu FI trunks 
on a Multiplex 

I 
I 

I 

Two of the eight channels may be used for high-speed 
transmission, and the remaining six for medium 
speed, or all eight may be used for the medium speed. 
The high-speed channels must be the first two (0 and 
1) channels. 

To these channels maybe added the ninth channel, a 
MULTIPLEX that accommodates up to eight trunks. 

The total theoretical data rate available on the 70/25 
is 667KB. Because the medium-speed channels and 
multiplexor take more time to process each byte than 
the high-speed channels, devices operating on the 
slower channels must have their peak data rates mul­
tiplied by a weighting factor in the determination of 
total equivalent data rate. These weighting factors 
are 2.;) for a device operating on a medium-speed 
channel, and 4.5 for a device operating in multiplex 
mode on the multiplexor channel. (The multiplexor, 
however, cannot exceed a total data rate of ll1KB.) 

49 

The following configuration is assumed for all ex­
amples in this section. 

CHANNEL UNIT DEVICE 

1 
1 
1 

CARD READER 
CARD PUNCH 
PRINTER 

1 
2 

3 
4 1,2,3,4 TAPE STATIONS 

READING DATA 

Data is read into High-Speed Memory (HSM) by two 
Read Commands. The Read Device Forward can 
address all peripheral equipment on line to the sys­
tem. The Read Device Reverse command can be 
issued only to tape stations. 

READ INSTRUCTIONS 

OPERATION OPERAND 

RDF T(D), D1 (B1)' D2(B2) 

RDR T(D), D1 (B1), D2(B2) 

These commands select a Channel and Device, and 
indicate what HSM area is to receive the data. 

Assuming the two HSM areas: 

INPT (HSM 1000-1100) 
OUTP (HSM 1200-1319) 

The instruction, 

OPERATION OPERAND 

RDF 1(1), INPT, INPT + 79 

reads a card from the Card Reader (Trunk 1) into 
HSM location starting at 1000 (INPT) and ending at 
HSM 1079 (INPT+79). Base addresses are implied. 

The same instruction with the Trunk number changed: 

OPERATION OPERAND 

RDF 4(1), INPT, INPT + 79 

reads a block from magnetic tape filling eighty char­
acters of HSM (1000-1079). 



The Read Device Reverse (RDR) can be issued only 
to magnetic tape. The instruction: 

OPERATION OPERAND 

RDR 4(1), INPT + 79, INPT 

causes the magnetic tape to be moved in a reverse 
direction. The first byte read is placed in INPT+79 
(HSM 1079), the second byte is placed in INPT+78, 
etc., and the last byte read is placed in INPT (HSM 
1000). Note that the addresses had to be reversed. 

Once staticized and accepted by the channel Control 
Electronics, I/O instructions are executed in a si­
multaneous manner, leaving the processor free to 
staticize the next instruction in sequence. 

The 70/15 Read Auxiliary instruction (RDA) is recog­
nized and executed on the 70/25 as a Read Device 
Forward, and does not initiate an Operation Code 
Trap interrupt. 

Notice that both the RDF and RDR instructions are 
terminated by: 

1. Reaching a gap on magnetic tape or reading one 
card, or 

2. Reading the amount of data specified by the ad­
dress operands. 

WRITING DATA 

The Write instruction (WR) transfers data from HSM 
to the selected device. 

The instruction: 

OPERATION OPERAND 

WR 3(1), OUTP, OUTP + 79 

prints the contents of HSM 1200-1279 (OUTP area) 
to the Printer. Base addresses are implied. 

The same command with channel number changed: 

OPERATION OPERAND 

WR 4(1), OUTP, OUTP + 79 

50 

writes a block of eighty bytes to tape 1 on channel 4, or 

OPERATION OPERAND 

WR 2(1), OUTP, OUTP + 79 

punches a card. 

The Erase (WRE) instruction is a Write command; 
however, it can only erase a section of magnetic tape. 
The instruction, 

OPERATION OPERAND 

WRE 4(2), OUTP, OUTP + 50 

erases an area oftape equal to the length of 51 bytes. 

CONTROLLING PERIPHERAL DEVICES 

The instructions discussed above serve the function 
of moving data in and out of HSM. The Write Control 
(WRC) command has the function of communicating 
control information (rewind tape, paper advance, 
pocket select, etc.) to a specific device. The instruc­
tion transmits a byte from HSM to the Control Elec­
tronics of the selected device. The bit configurations 
of these control bytes are illustrated below. 

CARD READER Control Byte 

Select Output Stacker #1 
Select Output Stacker #2 
Translate mode 
Binary mode 
NOT USED 

MAGNETIC TAPE Control Byte 

NOT USED 
NOT USED 
Reread 
Unwind one gap 
Rewind one gap 
Rewind and Disconnect 
Unload without Rewind (cartridge Tape 

Only) 
Rewind to BT Marker 



PRINTER Control Byte 

;! l = COUNT 
23 
2 

1 
o 
1 

NOT USED 

Examples of Write Control 

Advance the paper up to fifteen 
single spaces, or selection of 
Paper Tape Loop Channel 
(1-11) . 

Paper advance following next 
print action. 
Paper advance immediately. 
Paper advance by 20-22 count. 
Paper advance by Paper Tape 
Loop as selected by the 20-22 
count. 

Assuming the following bytes in memory: 

CTL1 
CTL2 
CTL3 

00000001 
00001000 
01000010 

(01)16 
(08h6 
(C2)r 6 

The instructions: (Base Addresses implied) 

NAME OPERATION OPERAND 

WRC 1(1) , CTL1, CTL1 
WRC 4(3) , CTL2, CTL2 
WRC 3(1), CTL3, CTL3 

will: 

51 

1. Select Output Stacker #1 on the Card Reader 
2. Unwind one gap on Magnetic Tape 3 
3. Advance the paper on the printer two lines im­

mediately. 

ERROR RECOGNITION 

An error condition that develops during the execution 
of an I/O instruction does not halt the computer. 

If the selected device is busy the instruction is ~ 
staticized until the device is available. I/O instruc­
tions set the Condition Code to one of three conditions. 
If the device is inoperable, the instruction terminates 
and the Condition Code is set to one (1). If the in­
struction has been accepted for execution by the Con­
trol Electronics, the Condition Code is set to zero 
(0), and the normal mode is free to staticize the next 
instruction in sequence. If an interrupt is pending 
on a device, and an instruction selects that device, 
the instruction terminates and the Condition Code 
is set to (2). 

Note: If inter rupt is inhibited on an I/O channel, the 
termination interrupt generated by the end of 
a command using that channel, will be pending 
and the channel will remain busy until a Post 
Status Instruction resets the busy bit in the 
Control Electronics. 



The Flow Chart (below) indicates both hardware and programming logic for basic I/O. 

,- - - - - - - - - - - - - - - - - - -

I 
I 

Yes 

STATICIZE 
I/O 

INSTRUCTION 

No 

BRANCH ON 
CONDITION CODE 

1 or 2 

CC = 0 

INSTR UCTION 
ACCEPTED 
FOR EXECUTION 

52 

I 
I+--- Hardware 

I 

I 

CC = 1 or 2 

BRANCH ON 2 
CONDo CODE 

11 
DEVICE IS INTERRUPT 
INOPERABLE PENDING 



STATUS INFORMATION 

As previously stated, an I/O error does not stop the 
computer. At the termination of each command, 
either a software or a user routine determines if the 
command was completed successfully. The Control 
Electronics of each channel maintains a STANDARD 
DEVICE BYTE. This byte contains info rmation about 
the current status of the channel. 

STANDARD DEVICE BYTE 

BIT 

20 ILLEGAL OPERATION - Improper command 
code for this device. i. e., Read from Card 
Punch. 

21 INOPERABLE - The device is unusable until 
condition is cleared. i. e. , No power, jammed, 
interlock open, etc. 

22 SECONDARY INDICATOR SET - Indicates that a 
bit in the "SENSE BYTE" is set. An I/O SENSE 
operation must be executed to determine the 
particular condition. 

23 DEVICE END - Set when device terminates. 
Indicates that device is available. 

24 CONTROL BUSY - Channel is engaged in pre­
viously initiated operation. 

25 DEVICE BUSY - Device is engaged in previously 
initiated operation. 

26 TERMINATION INTERRUPT -

27 MANUAL INTERRUPT PENDING - Interrupt 
button on Interrogating Typewriter depressed. 

When an I/O instruction has been completed, the bit 
configuration of the Standard Byte indicates how the 
command was terminated. 

- If the 22 bit (Secondary Indicator) is set, an 
error or exceptional condition developed dur­
ing execution. 

- If the 26 bit is set, a normal termination is 
indicated. The instruction was completed suc­
cessfully. 

- The 27 bit (Manual Interrupt) diffe rentiates 
between a termination interrupt and an exter­
nal interruption initated by the operator at 
the console typewriter. 

The Standard Device Byte is transferred from the 
Control Electronics into HSM using one of two 
methods. 

53 

One - If I/O Interrupt is not inhibited, hardware 
automatically stores the Standard Byte in 
reserved memory location (46)10 when 
interrupts occurs. 

Two- If I/O Interrupt ~ inhibited, it is neces­
sary to execute a Post Status (PS) instruc­
tion. This command stores the Standard 
Byte in one of eight reserved locations, 
depending on which channel is addressed. 

If the instruction: 

OPERATION OPERAND 

PS 2(1) 

is executed, the Standard Device Byte for Channel 2, 
device 1 is stored in reserved HSM Location 10. 

The Post Status Command does not transfer the Stan­
dard Byte into memory, until an I/O instruction has 
reached some type oftermination. Ifwe immediately 
follow a read or write with a Post Status, the main­
frame is "held-off", and simultaneous overlap is 
lost. 

SENSING EXCEPTIONAL CONDITIONS 

Once the Standard Device Byte has been stored in 
HSM, the Secondary Indicator (22) can be checked. 
If the bit is set, it is necessary to transfer a second 
byte, the Peripheral Unit Sense Byte, from the con­
trol Electronics to memory. The format ofthis byte 
differs from one peripheral unit to the next, and in­
dicates specifically what error or exceptional con­
dition set the Secondary Indicator. The chart (below) 
summarizes the meaning of each bit of the Sense 
Byte for the Card Reader, Card Punch, Magnetic 
Tapes, Interrogating Typewriter, and Printer. 

The Input/Output Sense instruction transfers the 
"sense" byte into a HSM location determined by the 
operands of the instruction. 

OPERATION OPERAND 

lOS 

There the byte is analyzed by the Test Under Mask 
instruction. 
Example of 110 Coding 

The following sample I/O routine illustrates how the 
Branch on Condition, Post Status, and I/O Sense 
instructions facilitate input-output logic. It is not 
intended to be a complete program; nor is simultan­
eous logic included. Assume that I/O interrupt is 
inhibited. 



PERIPHERAL UNIT SENSE BYTES 

BIT CARD CARD 2887-2885 
POSITION READER PUNCH MAG. TAPES TYPEWRITER PRINTER 

2° Tape Mark Code Not Used Not Used Not Used Parity Error 

21 Not Used Not Used ET or BT Not Used Low Paper 

Manual Manual Manual 
22 Service in Service in Tape Mark Human Error 

Progress Progress Service 

Intervention Non-Printable 
23 Not Used Required Short Message Time Out Code 

24 Invalid Transmission Transmission Transmission 
Punch Code Parity Error Error Write Error Parity Error 

Pocket ~unch Memory Data Block 
25 Selection Not Used Not Used 

Too Late Parity Error >Than Count 

Service Service 
26 Request Not Not Used Request Not Not Used Not Used 

Honored Honored 

Read or Read 
27 Read Error Punch Error After Write Not Used Not Used 

Error 

54 



YES 

POST 
STATUS 

MOVE INPUT TO 
PROCESSfNG 

AREA 

PROCESS 

55 

1 or 2 



NAME OPERATION OPERAND COMMENTS 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ~4 35 36 37 38 39 40 41 42 43 44 ~5 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 

R E AD R DF 4 ( 1 ) , I NP T, I N P T + 9 9 R E AD D AT A 

BC X I 6 I N C D 0 B , RA N CH ~ F I NO PE RA BL E 

P S 4 ( 1 ) PO ST S T AT U S 

TM 1 8 , M S K 1 T E ST I F S EC . I ND I CA tr OR S E T 

B C XI 1 I E RR BR AN CH I F I T I S SErr , 

B RE AD BR AN CH TO R EA D 

N ~ DO B C XI 2 I C D 2 T E ST FO R I N OP ER AB L~ , 

H C 0 ND I T I pN b NE 

C to 2 H C 0 ND I T I b N T W 0 

E ~R lOS 4 ( 1 ) , S E NS , SE N S R E AD I N S E NS E BY TE 

T M S E NS , M S Kl T ES T I F F 0 R TR A NS OR R E A D E R ROR 

B C XI 1 I , B RA NC H I F ER R 0 R 

B RE AD B RA NC H TO RE A D 

S rE N S D S 1 C 

I ~ P T D S 1 0 o C 

M S K 1 D S XI o 4 I 

M S K 2 D C XI 9 0 I 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 



Exercise: 

T FLAIl I/o OPERATrONS overlap other 
operations in the 70/25. 

T F 2. All r/o instructions are two address (6 
byte) format. 

T F 3. On the 70/25 one to eight r/o channels 
are available. 

T F 4. If an r/o device is busy when an r/o 
instruction using that device is at­
tempted, a hold off will occur and the 
instruction will be restaticized until the 
device becomes available. 

T F 5. After an r/o instruction is performed, 
a Condition Code setting of 3 indicates 
rnterrupt pending. 

T F 6. The direction of operation for all r/o 
instructions is from left to right. 

T F 7. The instruction that tests for an error 
condition after an r/o instruction is the 
POST STATUS instruction. 

T F 8. Unless inhibited an interrupt takes 
place after each r/o command. 

T F 9. The purpose of r/o termination inter­
rupt is to transfer the Standard Device 
Byte into HSM. 

T F 10. A Post Status Command will terminate, 
and control will be passed to the next 

T 

57 

instruction if the channel addressed is 
busy. 

F 11. If a device is inoperable, and a read 
orwrite is directed to it, the Secondary 
Indicator of the Standard Device Byte 
is set and int-errupt takes place. 

12. What are some ofthe uses of the WRITE 
CONTROL instruction? 

13. What are the formats of the 70/25 I/O 
instructions? 

14. What does the Sl field contain in an 
1/ a instruction? 

15. Write a Read Forward and a Read Re­
verse instruction which will read data 
from trunk #2, unit #2, into the area 
0100-0110. 

16. Write the necessary instructions to: 

a. Read a Card 

b. Punch a Card 

c. Write a message to the console 
typewriter. 

d. Read a message from magnetic 
tape. 

Include the sensing, the condition code, 
POST STATUS, I/O SENSE, for each 
operation. 


	0000
	0001
	0002
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57

