

5PE'_ I
RADIO CORPORATION OF AMERICA • ELECTRONIC DATA PROCESSING

~RADIO

SYSTEMS

70 ~5 55

TRAINING GUIDE

CORPORATION
70 - 45 - 801

o F AMERICA

The information contained herein
is subject to change without notice.
Revisions may be issued to advise
of such changes and/or additions.

First Printing: December, 1964
Second Printing: January, 1965

CONTENTS

Page

FUNCTIONAL DESCRIPTION OF RCA 70/45-55 SYSTEMS.......... 1
Introduction•...•................................ 1
System Characteristics. • . • • 1
Scratch Pad Memory 1
Data Formats. • • 2
Instruction Formats. .. .• • 2
Address Generation.• 2
Program Interrupt•........ 7
Input/Output.. •. .• • 7
Symbology. 9

DECIMAL ARITHMETIC•....•........... 11
Instruction Format. • • 11
Data Format........•..• 11
Packing, Unpacking Data. • • 11
Decimal Operations. •• 11

RCA 70/45-55 ASSEMBLY SySTEM.............................. 15
Program Format. • . • • • . • . • •. 15
Symbols.. 15
Expressions. • • • • • • • • . . . • . • . • 15
Defining Storage••••.••.•..•....•.....•.•......•..... 16
Defining Constants ...•....•.•...•.......•.•........•...... 16
Attributes • • . . • • • • . • 16
Statement Fields . • • • • • • • • • • . . . • • • • • 17

DA TA MANIPULA TION •......••••.............•••..•.••....•.•. 22
Bit Manipulation .•..•.................•....••••...•.•••... 22
Instructions •.•.•••...••.•..•....•.......•..•..••.•......• 22
Assembly System Hexadecimal Constants .• • • • • . • • •. 22
Decimal Data Shifting.... ••.• • .•. .•.. • •.••••. .•.•.. 23
Logical Data Shifting. . . • • • . . • • . . • . . • . • . . • 23
Character Movement •••....•..........•.••....••.......... 24
Logical Testing. • • • . • 24
Editing Data. • . . • • • • . • . . • . . .• 25

FIXED- POINT ARITHME TIC•..•..•....•...... 27
Fixed- Point Numbers. • . . • • • . • • • 27
Assembly System Constants • • . • • 27
Assembly Storage Definition••.•.•...•...... 27
Instructions ...•..•.•....•........•....•..•.•....••.•..... 28

PROGRAMMING TECHNIQUES. • • • • . . • . . • . • .• 32
Address Manipulation.....••• .• .. . •.. ...•.. 32
Expression Constant...... •. . •. •• •. •. .•.. 32
Using, Drop Instructions. • • • 32
Data Translation . . • • • • • . • . . • . . • . • . . • . . .• 33
Subroutines. • • . . • • • . • . • • • • • . . • . • .. 35
P-counter . . . • . . • . • . . • • • • • • • • • . • • • 35
Program Switches. . • . . • . • • . • • • . . . • . . • . . • • . . . • . . • •. 36
Program Loops • • . • • • • • . • • • • • • • . . • • • • . • . . . •. 37

CONTENTS (Continued)

Page

FLOATING-POINT ARITHMETIC 0 ••••••••••••••••••• 0 •••••• 40
Introduction 0 •••••••••••••••••••••••••••••• 0 •••• 0 40
Data Format. .. 40
Conversion •.............•..•.............•.••.. 0... 40
Normalization ...••.........••.•.........•.....•........ o. 41
Assembly System Constants ..•. • • . • • . • . • • 42
Load and Store Instructions ...•....•.....•.....•.••.•...... 43
Arithmetic Instructions .•. o. •• 45
Compare and Halve Instructions. .. . •. . •.•. . •• • •. •. • .•. .• 47
Condition Code... .•. •.••.• .. •• .. •. 47

INPUT/OUTPUT •....•••..••••.•.....•.••.•.. 0 •••••• 0 •••••• 00" 49
Basic Components .••.••••.••.•.••......•••••.•.•••.• 0 • • • •• 49
Input/Output Operations •.••.•..•.•..•..•.••..•••.••.•..•. 0. 50
Assembly System Instructions ..•.••.•..•.••• 0 •••• 0 •••••• 0 •• 55
Data Flow •• 0 •• 55
Multiprocessor Connections. . • . • • . • • . • • . • . • . • • • . . • •. 56

PROGRAM CONTROL AND LINKING ...•.••.•...•.••••••••..•..•. 57
Program Control Instructions. .•. . . •. . .•.. . .•• .•. .• ••. •. 57
Program Linking ..••.••.•••.......•..•.......••.•. 0 • • • • • •• 58

INTERRUPT SYSTEM•.•.•. 0 •• '0' •• 59
Concepts of Interrupt System ••..•......•.••. 0 • • • • • • • • • • • • •• 59
Processor States .•...•......•........•......••..•....•.. 0 0 59
Scan•. 0" ••• 59
P and ISR•....•..•.................••..•.••.•....•. 60
Interrupt Condition Summary.•. .••. •• ..• .•. .• ..•. 63
Privileged Instructions. . . • • • • 64
Memory Protection•. 0 •• 65
Clock•.•..•..•.•... 0 ••••••••••••••••••• 0 o. 66

APPENDIX A - INSTRUCTIONS IN ORDER BY MNEMONIC. . • •. 67

APPENDIX B - CONDITION CODE •.....•..•.••.••.••••..•••.. 0'" 68

FOREWORD

70/45-55 TRAINING GUIDE

This manual is designed as an instructor/student guide
to the Spectra 70/45-55 Systems. Emphasis is placed
on programming techniques and on the application of
the more powerful elements of the systems. Many pro­
gramming illustrations and exercises are supplied.
While the manual is organized from a pedagogical point
of view, it depends heavily on the 70/45-55 Assembly
and System Reference Manuals and should not be con­
sidered without access to these documents.

On the matter of content, the basic processor functions
and instructions are described. Input/Output operations
and programming are described as they relate to the
basic processors. Programming is illustrated in the
basic assembly language and the features of the basic
assembly system are described.

Inexperienced programmers might find it helpful to
study either the 70/15 or 70/25 Training Manual be­
fore studying this document.

FUNCTIONAL DESCRIPTION OF RCA 70/45-55 SYSTEMS

INTRODUCTION

This section of the manual describes the functional
characteristics and the principal features of the
70/45-55 processors. The intent is to give the
reader a coherent and meaningful summary of the
capabilities of the processor, primarily from a sys­
tem viewpoint.

This introductory section is not exceSSively con­
cerned with detail, for each of the topics discussed
here will be amplified in the succeeding sections.
Appended to this section is a definition of the sym­
bols used throughout the manual.

SYSTEM CHARACTERISTICS

The RCA 70/45-55 are medium- to large-scale
processors within the Spectra 70 family.

Some of their salient features are summarized in
Charts 1 and 2.

An extremely importantfeature of the processors is
the compatibility that they possess with the other
processors in the Spectra 70 family, and with the
IBM 360 System. The following charts summarize
these compatibility features.

SCRATCH-PAD MEMORY

The Scratch-Pad Memory contains the processor
working registers. Each location is addressable
and may be manipulated by several of the privileged
instructions.

Scope
Maximum Data Rate
Storage
Access Time
Data Path
Implementation

Medium
465K bytes
16-262K bytes
1. 44us
2 bytes
Logic controlled
by EO's contained
in 2 read only
memories

- Chart 1 -

• 4 Processor States for efficient interrupt
control

• Unique sets of general-purpose registers
for each state

• Privileged instructions (those which can be
executed only when specified by a program
switch)

• Variable length instructions
• EBCDIC or ASCn Code
• Fixed and variable length data formats
• Memory protection
• Elapsed time clock
• 32 individually maskable interrupt conditions
• Multiplexor channel to simultaneously control

up to 8 slow-speed I/O devices
• High-speed selector channels
• Multiplexor and each selector can control up

to 256 I/O devices
• Wide variety of I/O devices, mass storage

and communication equipment
• II-way simultaneity on 70/45
• 14-way simultaneity on 70/55
• Up to 256 communications devices can operate

simultaneously
• Read/write direct control for multiprocessor

systems
• Scratch-Pad Memory of 512 bytes with 300ns

32-bit access cycle time
• DXC (Data Exchange Control) memory-to­

memory transfer between 2 processors
• SHARING of memory by processors

(70/55 only)
• Floating point arithmetic for scientific appli­

cations (optional in 70/45)

- Chart 2 -

Medium - Large
640K bytes
65-524K bytes
. 84us
4 bytes
Order code
implemented
by Hardware

Compatibility (within the Spectra family)

A. Data Compatible
1. Sam e internal data code used by all

processors.
2. Any peripheral device controller and

its associated devices can be
operated by any processor.

B. Program Compatible
1. 70/25 programs executable on

70/45-55 with
a. Minor editing
b. Reassembly to link into 70/45-55

Operating System
2. Two-way compatibility between 70/45

and 70/55.

- Chart 3 -

Compatibility with System 360

A. Machine language compatible with 360
series systems having similar comple­
ments for all programs limited to 360's
"Problem State".

B. 360 series assembly language programs
may be assembled and run on 70/45-55
provided the following are redefined:

1. Linkage to and descriptive information
for 360 I/O and executive control
routines.

2. User defined macro-instructions.
3. Privileged operations within user's own

code.
4. References to standard locations (first

128 bytes of storage).

C. External control parameters to the operating
system must be defined in accordance with
70/45-55 requirements.

- Chart 4 -

Scratch Pad contains:

1. General-purpose registers for each
processor state.

2. Floating-point registers.
3. Interrupt masks.
4. Program control information.
5. Control words for I/O operations.
6. Buffer area for I/O operations.
7. Various hardware utility registers.

- Chart 5 -

2

Scratch Pad Characteristics:

• 128 Words
• 32 bits per word
• 300 nanosecond cycle time
• Locations are uniquely addressed
• Not part of main memory

- Chart 6 -

GENERAL-PURPOSE REGISTERS

Each program state has its own set of general­
purpose registers. These registers can be used:

1. as index registers
2. in address aritlunetic and indexing
3. as accumulators for fixed point and logical

operations.

Each register has a 32-bit capacity andis designated
by number, 0-15. For some operations, two ad­
jacent registers can be coupled, providing a two­
word capacity.

FLOATING-POINT REGISTERS (optional in 70/45)

Four floating-point registers are provided having a
64-bit capacity. They are designated by the num­
bers 0, 2, 4, and 6.

DATA FORMATS

The basic building block of the various data (and in­
struction) formats is the byte. A byte contains 9
bits--8 bits of information plus a parity bit, which
is used for accuracy control.

Bytes may be grouped to form:

1. Halfwords
2. Words
3. Double Words

2 consecutive bytes
4 consecutive bytes
8 consecutive bytes

Each byte isbinarily addressable starting withloca­
tion O. Fixed length fields such as halfwords or
words must begin on integral boundaries as shown
in the following chart.

Binary Address

0000 I 0001 J 0010 I 0011 0100 I 0101 0110 I 0111
Byte I Byte J Byte 1 Byte Byte I Byte Byte I Byte

Halfword I Halfword Halfword Halfword
Word Word

Double Word

- Chart 7 -

Note, therefore, that the addresses for the various
units of information are related in the following way:

1000 I 1001
Byte I Byte I

Halfword I
Word r

Double Word

CHARACTER CODE

Unit

Byte
Halfword
Word

Address Must Be a Multiple Of

1
2
4
8

Characters(S-bit bytes)maybe represented in either
EBCDIC or ASCII code with equal facility. The user
specifies the code by setting a program switch.

Double Word
Illustration

- Chart 8 -
The characters 'RCA' are shown in both codes:

Ascn 1011 0010
R

Fixed length data of 8, 16, 32, or 64 bits and vari­
able length data of up to 256 characters may be proc­
essed. The eight data formats are summarized
below. EBCDIC 1101 1001

1. Fixed point halfword I S I Integer
o 1 15

2. Fixed point word I S I Integer
o 1 31

3. Short floating I S I Characteri sticl Fraction
point number o 1 7 31

4. Long floating I S I Characteri sticl Frac j/
point number o 1 7

1010 0011 1010 0001
C A

1100 0011 1100 0001

tion
63

5. Packed Decimal Digit : Digit Digit Digit I = I Digit Digit Digit: Sign

Maximum - 31 digits and sign

6. Zoned Decimal Zone : Digit I Zone Digit I = I Zone Digit Sign Digit

Maximum - 15 digits and sign

7. Fixed length logical Logical Data
o 31

8. Variable length logical I Character I Character ~ = = I Character I
o 8 16

Maximum - 256 characters

3

Illustration

The number +1234 is expressed in the 4 possible
decimal formats.

1. Zoned-Decimal, EBCDIC 1111 0001 1111 0010 1111 0011 1100 0100
1 2 3 + 4

2. Packed-Decimal, EBCDIC 0000 0001 0010 0011 0100 1100
1 2 3 4 +

3. Zoned-Decimal, ASCII 0101 0001 0101 0010 0101 0011 1010 0100
1

4. Packed-Decimal, ASCII 0000 0001 0010
1 2

INSTRUCTION FORMATS

There are five basic instruction formats. The in­
struction format expresses, in general terms, the
operation to be performed as shown in the following
chart:

RR register-to-register operation
RX register-to-indexed storage operation
RS register-to-storage operation
SI storage-and-immediate operand operation
SS storage-to-storage operation

- Chart 9 -

The detailed format of each instruction is shown in
Chart 10. (See following page.)

The instruction sub-fields are defined as follows:

R1 , R2,

X2
B1 , B2

D1' D2

12

4, L2

L

R3 4 bit operand register specification

4 bit index register specification

4 bit base register designator

12 bit displacement

8 bit immediate operand

4 bit operand length specification

8 bit operand length specification

- Chart 11 -

ADDRESS GEN ERATION

The effective storage address is computed from the
following binary components:

2 3 + 4

0011 0100 1010
3

4

4 +

1. Base (contents of the designated base register,
B1 or B2)

2. Displacement (D1' D2), and

3. Index (contents of the designated index register,
X2) for RX instructions

In computing the address, the base and index are
treated as unsigned 24-bit positive binary integers
in bits 8-31 of the designated register. The dis­
placement is treated as a 12-bit positive binary inte­
ger. The effective address is computed by adding
the components as binary numbers, ignoring over­
flow.

NOTE: If register 0 is specified as the base regis­
ter and/or the index register, then a zero
quantity is to be added, regardless of the
contents of register o.

The following illustrations use decimal addresses
for convenience.

Illustration

Assume Reg. 12 00 00 20 00
Reg. 13 00 00 04 80

Instruction B1 D1 B2 D2

/ 12 0 13 20

The effective address of B1, D1 is 00 00 20 00.

The effective address of B2' D2 is 00 00 05 00.

Type

RR

RX

RS

SI

SS

Size
In

Bytes

2

4

4

4

6

o
I
I ,
I

I
1
0

I
I

I

First Halfword
Byte 1 Byte 2

Register
Operand 1

Second HW

I
I

Register
Operand 2

Op Code I R1 I R2 I
7 8 11 12 15

Register
Operand 1

l Address
'Operand 2

...--"--- .--------- ~
Op Code

7 8 11 12 15:16 19 20

--
31,

I
I

Register Reg. I Address I
Operand 1 Op. 3 Operand 2 I

---"- --"-'--------........~

Op Code I Rl I Ra I B21 D2 I
78

Op Code

7 8

11 12 15116 19 20

Immediate
Operand

1

I

Address
Operand 1

31

I

31

Third Halfword

Address Address
Length Operand 1 Operand 2
~~I~

I Op Code

o 7 8 11 12 15 16 19 20 31 47

- Chart 10 -

5

Illustration

Assume Reg. 3 00 03 00 10
Reg. 2 00 00 02 00

Instruction X2 B2 D2

j 3 2 1000

The effective address, composed of X 2, B2, D2, is

00 03 00 10 + 00 00 02 00 + 1000 = 00 03 12 10.

Illustration

PROGRAMMING NOTE ON ADDRESSING

Because ovcrflow is ignorcd, "wrap-around" can
occur. The RCA 70/45 System allo\\'s addressing of
a maximum of 262,144 bytes beyond which '\vrap­

around" occurs. The 70/55 allows for addressing of
a maximum of 524,288 bytes before "wrap-around"
occurs.

IIlu stration

Assume 262 143
000 003, then the

70/45 effective address is 000 002 and the
70/55 effective address is 262 146.

Record 1 Record 2

Field
1

Field
2

Field
3

Field Field Field
3 1 2

Memory
Address

1 ITI~lllTITilTITITIITITTITI t
t123456789 t123456789 1123

5000 5010 5020

~Base Address~
Register 2 [5000

Instruction J

Effective Address
for Field 2:

2 4

5000 + 4 = 5004

To process Record 2, the contents of Register 2 are
increased by 12, the size of Record 1. The instruc­
tion field illustrated would then refer to Field 2 of
Record 2.

If the instruction is an index-type instruction, a sec­
ond general-purpose register, called an index regis­
ter, also generates the address. In the above illus­
tration, the index register (Register 3, for example)
would initially be cleared to zero. After the first
record is processed, the contents of Register 3 is
increased by the record size. Then the instructions
using Register s 2 and 3 for addressing would refer to
Record 2. An illustration of this follows:

Register 2 (base) 5000

Register 3 (index) 12

Instruction X2 B2 D2
~~~1--3~--2~----4----~ 

Effective Address for Field 2, 
Record 2: 5000 + 12 -+ 4 = 5016 

6 

The address wrap-around property provides nega­
tive indexing. 

Illustration 

It is desired to decrement the storage address by 1. 

Thus, the rightmost 24 bits of the register specified 
by X2 should be all 1 bits; i, e., 524,287, 

In forming constants to get deliberate wrap-around, 
say for decrementation, the situation should be 
viewed as if both processors wrapped at 524,288 !Q 

maintain compatibility. Thus, in the preceding ex­
ample, although decrementation could be achieved on 
the 70/45 with X 2 = 262,143, such would not be the 
case in the 70/55. 

INSTRUCTION EXECUTION 

Instructions are performed by the basic processing 
unit primarily in the sequential order of their loca­
tions. This sequence is alteredbybranchinginstruc­
tions and program interrupts. 



The detailed operation of the various branching in­
structions is determined by the Condition Code (CC). 
The two bits of the Condition Code provide for four 
possible settings--O, 1, 2, and 3. The Condition 
Code reflects such conditions as first operand high, 
equal, overflow, channel busy, etc. 

PROGRAM INTERRUPT 

The interrupt system is designed to respond to asyn­
chronously occurring external and I/O signals and 
to monitor exceptional conditions generated by the 
program Processor. The interrupt is facilitated in 
that the processor has four program states, each 
with its own set of registers. 

Processor States 

1. Processing (User's program(s» 
2. Interrupt response (interrupt conditions 

serviced) 
3. Interrupt control (interrupt conditions 

analyzed) 
4. Machine condition (machine error 

interrupts) 

- Chart 12 -

There are thirty-two possible interrupt conditions 
such as Op-code trap, decimal overflow, selector 
trunk 1 terminate, etc., each individually mask­
able. Except for machine error conditions, if an in­
terrupt condition is effected and is not masked out, 
control is given to state 3. 

Other important features facilitating the interrupt 
system are outlined in Chart 13. 

Interrupt Features 

A. Read/Write Direct Control 
B. Privileged instructions. 
C. 32 interrupt conditions, each individually 

maskable. 
D. Priority scheme for interrupt conditions. 
E. Weight register allows cause of interrupt 

to be detected efficiently. 
F. Elapsed time clock with maximum cycle 

of 15.5 hours. 
G. Memory protection in blocks of 2048 bytes. 

- Chart 13 -

INPUT /OUTPUT 

A wide variety of input/output devices may be con­
nected to the 70/45-55 processors. The processors 
contain I/o channels so that these devices can run 
off line, independent of program operation. 

There are two types of I/o channels: Selectors and 
Multiplexors. A selector channel may have up to 
256 devices connected, but only one may be operat­
ing at a time. Each of these devices is connected to 
a Control Electronics which, in turn, connects to the 
Selector via the RCA Standard I/O Interface. In gen­
eral, several devices may be connected to a Control 
Electronics. 

A Multiplexor channel may have connected up to 256 
devices, and it is possible for all the devices to be 
operating at one time. The Multiplexor may be 
operated in a burst mode so that the Multiplexor in 
effect functions as a Selector. 

Diagram 1 depicts the logical connection of the I/o 
channels and I/O devices. (See following page.) 

The following chart summarizes the I/O character­
istics of the two processors. 

I/O Characteristics 70/45 70/55 

Maximum data rate 
Number of selectors 
Control Electronics/selector 
Devices/ selector (maximum) 
Multiplexor (standard) 
Control Electronics for Multiplexor 
Devices attached to Multiplexor 
Maximum total Control Electronics 

- Chart 14 -

7 

465K bytes 
0-3 
1-2 
256 

1 
8 

256 
14 

640K bytes 
0-6 
1-4 
256 

1 
8 

256 
20 



- Diagram 1 -

70/45-55 Input/Output Flow 

Console Typewriter/Keyboard 

8 



Some possible I/o connections are shown below. 

1/ 0 Connections 

# Control Electronics Attached 
Per Channel 

70/45 
A B C D 

Selector 1 2 2 
2 2 2 
3 1 

Multiplexor 1 8 1 8 

- Chart 15 -

Thus, in configuration D, Chart 15, II-way simul­
taneity is possible because each of the 3 selectors 
can control an II 0 device while the Multiplexor can 
control 8 devices at the same time. 

# Control Electronics Attached 
Per Channel 

70/55 
A B C D 

Selector 1 2 4 4 
2 2 2 
3 1 2 
4 1 2 
5 1 
6 1 

Multiplexor 1 8 4 8 

- Chart 16 -

Because devices operating in the multiplex mode 
require more processor time to service each byte 
than selector or burst mode, the peak data rates 
must be weighted. The weights for the various modes 
of operation are shown below. 

70/45 70/55 
Weight Weight 

Multiplexor 7.5 4.0 
Burst Mode 1.0 1.0 
Selector 1.0 1.0 

Thus, two 120KC tapes could not operate simul­
taneously via the Multiplexor because their com­
bined data rate, 960KC, exceeds the maximum data 
rate of the processor. 

9 

SYMBOLOGY 

The following symbols are used throughout this man­
ual to define and describe instructions. 

Bn Instruction base register number field n 
(B1 or B2) 

Dn Instruction displacement field n (D1 or D2) 

12 Immediate data byte of an instruction(oper­
and 2) 

Ln Instruction length-of-operand field n (L, 
L1, or L2) 

M Instruction mask field (replaces an R field) 

Rn 

(Rn) 

Rtf 1 

RN 

S 

Sbn 

Instruction general-purpose register field n 
(R1' R 2 , or R 3) 

The contents of the general-purpose regis­
ter specified 

The absolute value of the contents of Rn 

The next sequential register following the 
one specified 

General-purpose register N; N=O, 1, 2, ... ,15 

The next sequential register following RN 

Storage field of an assembly instruction (S, 
Sl' or S2) 

Storage location whose address is (Bn)+Dn 

Srn Storage location whose address is contained 
inRn 

Sxn Storage location whose address is (xn) + (Bn) 
+Dn 

Instruction index register field (operand 2) 

Is transferred to 

Is equal to 

> Is greater than 

< Is less than 

< Is less than or equal to 

> Is greater than or equal to 

Is not equal to 



Note that symbols such as Bn represent some base 
(general-purpose) register and/or its address as an 
instruction field. Also, while Sbn, for example, is 
the address of one byte in memory, it also refers to 
the entire field starting at that byte. 

Questions 

1. How many general-purpose registers are there 
in the Processing State? What are their uses? 

2. To what do ASCII and EBCDIC refer? 

3. Match the following: 

ASCII a. 32 bits 

Packed b. Zoned data 

Word c. 8 bits 

Byte d. Decimal data 

4. What is the result of packing the following field? 
Is it plus or minus? 

111111001 111110000 111110101 111010110 1 

5. What are the sizes of the following numeric 
fields? 

a. fixed-point number 

b. floating-point number 

c. decimal arithmetic field 

10 

6. What is integral storage alignment? 

7. What is the Processing State? 

8. \Vhat is the Condition Code? 

9. What is immediate data? 

10. General-purpose registers 2, 3, 4, and 5 con­
tain the following addresses: 

2 3000 
3 
4 
5 

25 
4000 

142 

What are the effective addresses generated for 
the following instruction fields? 

a. 

4 25 

b. 

/L3 2 5 

c. 

~~I __ 0~ __ 5 __ ~_2~ 

11. What are the major differences between selector 
and multiplexor channels? 



DECIMAL ARITHMETIC 

This section describes the instructions and data for­
mat associated with decimal arithmetic. Instruction 
formats, in machine and written form, are illus­
trated. Overflow and the condition codes set by the 
instructions are illustrated. 

INSTRUCTION FORMAT 

Bytes 

88 form: 

1 

OP 

Written form: OP 

Note that the written Vs are one unit greater than the 
machine Vs; i. e., the written L is the actual field 
length, the machine L is one byte less. 

Bytes 1 4 

RX form: 
OP 

DATA FORMAT 

Decimal operations use the packed format for data. 
Z means zone in the following example. 

Unpacked: Z1 Z2 Z 3 + 4 

Packed: 01 23 4+ 

PACKING, UNPACKING DATA 

PACK(88): 

UNPK(88): 

(8b2) is extended with leading zeros, if necessary, 
to fill 8b1. (The R indicates that the operation is 
performed right to left.) The fields may overlap. 

DECIMAL OPERATIONS 

When CC appears following an instruction definition, 
it indicates that the Condition Code is set. The L 
indicates a left to right operation. (8ee table below. ) 

Note that the MVC instruction specifies only one L 
field. Thus, L can have a maximum value of 256 
(255 in machine form). 

Programming note: Because the move operation is 
performed from left to right, one character at a 
time, it is possible to propagate a character through 
a field by having the 8b1 field start one byte to the 

right of the 8b2 field. The two fields must overlap. 

CONDITION CODES 

OPERATION 0 1 2 3 

Arithmetic result is 0 8 + overflow 

Operand 1 compares < > I 
Note that overflow only applies to AP, 8P, and ZAP. 
Also, plus zero compares as equal to minus zero. 

Name (Form) Mnemonic Operation Written Operand Form 

Add Decimal (88) 
8ubtract Decimal (88) 
Zero and Add (88) 
Divide Decimal (88) 
Multiply Decimal (88) 
Compare Decimal (88) 
Move (88) 
Branch on Condition 

(RX) 

AP 
8P 
ZAP 
DP 
MP 
CP 
MVC 
BC 

(8b1) + (8b2) ~ 8b1 D1(Lr, B1), D2(L2, B2) 
(8b1) - (8b2) ~ 8b1 D1 (L1, B1), D2(L2, B2) 

0 + (8b2) - 8b1 D1(L1, B1), D2(L2, B2) 

(8b1) (8b2) - 8b1 D1 (L1, B1), D2(L2, B2) 
(8b1) (8b2) -+ 8b1 D1 (L1' B1), D2(L2, B2) 
Compare (8b1) : (8b2) D1 (L1' B1), D2(L2' B2) 
(8b2) ~ (8b1) D1 (L, B1), D2(B2) 

M, D2(X2 , B2) 

Branch to 8x2 if a mask bit corresponds 
to a condition code. 

11 

CC 
CC 
CC 

CC 
L 



Illustrations 

The relation of the Condition Code and sever al masks 
of a BC instruction is shown below: 

CC 

M=4 
M=I2 
M=I5 

o 

o 
1 
1 

I 

1 
1 
1 

2 

o 
o 
I 

3 

o 
o 
1 

test CCI 
test CCO or I 
test all 

When M = 15 the instruction acts as an Unconditional 
Branch instruction, 

MUL TIPLICATION 

00 00 42 34 I + x (Sb ) 01 2-
2 --

~ 

Product 00 05 08 09 2-

Invalid Operations 

(Sbl) OP (Sb2) Reason 

42 3+ + 62 1+ Sum too large 
42 3+ + 24 00 o - (Sb2) too long 
02 5+ x 00 6 - ~=4 
63 4+ x 4 - (Sb1 ) lacks 

leading zeros 
41 24 0+ 52 3 - (Sb1) lacks 

leading zero 
00 41 0+ 03 2 - 0320 < 0410 

the quotient 
would be too 
large 

00 41 2+ 05 
Instruction Illustration 

23 o - L2 = ~ 
Locations 4004-4007: 00 00 24 3+ Sb1 
Locations 4008-4009: 92 5+ Sb2 
Register 4: 40 00 

Written form: OP Dl (LIt B1), D2(L2' B2) 

MP 4(4,4),8(2,4) 

Result 4004-4007: 02 24 77 5+ 

Example 1: (Z represents the four-bit zone) 

Item Data Form Value Locations 

Part Number Zoned Z2 Z3 Z4 4001-4003 
Quantity Packed 01 24 3+ 4004-4006 
Unit Cost ($9.25) Packed 92 5+ 4007-4008 
Discount factor 
Test constant 

DIVISION 

04 12 4+ 

7- 46 3+ 

Quotient Remainder 
L1-L2 bytes L2 bytes 

Examples of valid and invalid arithmetic operations 
follows: 

Valid OQerations 

(Sbl) OP (Sb2) Result: (Sbl) 

42 3+ + 00 02 4- 39 9+ 
00 08 9+ x 0- 00 00 0-

00 4+ 4- 01 6-
04 12 4+ 52 3- 7 - 46 3+ (rem. ) 
00 41 2- 32 3+ 1 - 08 9- (rem. ) 

12 

Packed 09 0+ 4009-4010 
Zoned Z5 ZO ZO +0 4011-4014 

Prepare an output item, in zoned form, containing 
the part number and total cost, starting at location 
5000. If the quantity equals or exceeds 5000, apply 
a 10% discount to the total cost. Assume that Gen­
eral-Purpose Registers 1, 4, and 5 contain 1000, 
4000, and 5000 respectively. 



Storage Inst. 
Location Bytes OP Operand Remarks 

1000 6 MVC 0(3,5), 1(4) Part number __ output 

1006 6 PACK 15(3,4), 11(4,4) Pack the test constant 
1012 6 CP 4(3,4), 15(3,4) Quantity: 5000 
1018 4 BC 10, 44(0,1) If Qty 25000, go to 1044 
1022 6 ZAP 15 (5,5), 4(3,4) Extend quantity field 
1028 6 MP 15 (5,5), 7(2,4) Quantity x cost = total cost 
1034 6 UNPK 3(7,5), 15(5,5) Unpack total cost 
1040 4 BC 15, 40 (0,1) Go to 1040 (wait) 
1044 6 ZAP 15(7,5),4(3,4) Extend quantity field 
1050 6 MP 15(7,5),7(2,4) Quantity x unit cost 
1056 6 MP 15(7,5), 9(2,4) Apply discount 
1062 6 UNPK 3(9,5), 15(7,5) Unpack total cost 

ANAL YSIS OF CODING 

Instruction 
Location 

1000 
1006 

1012 
1018* 

1022 

1028 
1034 

1040* 

(4001-4003) transferred to 5000-5002 
(4011-4014) packed and transferred to 
4015-4017 
(4004-4006) compared to (4015-4017) 
Mask of 1010 compared to Condition 
Code. Instruction branches if code is 
o or 2, equal or greater. 
Four leading zeros are added to the 
number from 4004-4006 so that it is 
large enough to contain the product. 
(5015-5019) multiplied by (4007-4008) 
Zones inserted in number in 5015-
5019, expanding it to 5003-5009 

Example 2: 

Locations Contents 

1000-1001 N1 02 5-An unconditional branch to the loca­
tion containing the branch instruc­
tions has the effect of stopping the 
computer 

1002-1007 N2 00 00 05 73 42 7+ 

1044-
1062 

These instructions are executed when 
the quantity equals or exceeds 5000. 
Note that 90% of the total cost pro­
duces a 10% discount and a result with 
four decimal places. 

*When zero is used for an X or B field, the field 
is ignored. Register zero is not specified. 

Storage OP 
Location 

0500 SP 
0506 MP 
0512 AP 
0518 DP 

1008-1010 N3 
1011 N4 

1012-1013 N5 

Register 2 
Register 3 

N1 (N2-N3) 
Calculate R = N5 

N4 + 

Operand 

2(6,3), 8(3,3) (1002-1007): 
2(6,3), 0(2,3) (1002-1007) : 

12(2,3), 11(1,3) (1012-1013): 
2(6,3), 12(2,3) (1002-1007) : 

13 

24 32 6+ 
5+ 

01 2+ 

5 00 
10 00 

Results 

00 00 05 49 
00 01 37 27 

08 07 50 1-

10 1+ 
52 5-
01 7+ 
00 8-



Exercise 1 

Write the instructions to propagate the byte in loca­
tion 5000 through the field in location 4000--l055. 
Assume that register three contains 3000. 

Exercise 2 

Input data (Zoned) Locations Format 

Part number 
Quantity 
Unit cost 

4000-4007 
4008-4011 
4012-4015 

ZX ZX ZX ZX ZX ZX ZX ZX 
ZX ZX ZX +X 
ZX ZX ZX +X 

t 
assumed decimal point 

Constants (Packed) Locations Format 

95% 5000-5001 
90% 5002-5003 

+1000 5004-5006 
+5000 5008-5010 

+100 5012-5013 
+2 5014 

Registers Contents 

2 2000 
4 
5 
6 

4000 
5000 
6000 

09 
09 

01 00 
05 00 

10 

Prepare an output item in packed form starting at 
location 6000 and consisting of the part number and 
total cost. The total cost is computed as follows: 
if quantity exceeds 5000, the first 1000 units receive 
a 10% discount, half of the remainder receives a 5% 
discount, and the remaining half are billed at the 
unit cost. (Assume that the quantity is an even num­
ber.) If the quantity does not exceed 5000, it is 
billed at the unit cost. Locate the assumed decimal 
point in both possible results. 

5+ 
0+ 
0+ 
0+ 
0+ 
2+ 

14 

This example may be shown symbolically as: 

If Q >5000, total cost = 

1000 xUx 90% + Q-1000 xUx 95% + Q-1000 xU 
2 2 

If Q~5000, total cost = Q x U 

(Note: Keep track of the position of the assumed 
decimal point throughout. The factor of 100 
will be required to adjust the number of 
decimal places in at least one partial result.) 



RCA 70/45-55 ASSEMBLY SYSTEM 

This section introduces the basic features of the 
RCA 70/45 -55 Assembly System. The use of sym­
boIs and expressions is illustrated. The method of 
defining storage and constants is explained, and the 
details of writing instructions are described. 

PROGRAM FORMAT 

The elements of a program are illustrated by the 
following chart. 

EXPRESSIONS 

Expressions specify operand fields of machine and 
assembly instructions. They maybe simple or com­
pound as shown below: 

NAME OPERATION OPERAND COMMENTS 

Symbol Mnemonic Symbols, 
Instruction Expressions 
Code 

MACHINE 
STATEMENTS 

START AP ABLE(3), BAKER ABLE+BAKER 
BC 15,*+14 LOCATION COUNTER 

Symbol Assembly Defining Fields 
Instruction 

ABLE DS 2C24 DEFINE STORAGE 
ASSEMBLY 
STATEMENTS 

CONST DC 2L3C'123' DEFINE CONSTANT 
REGL EQU 10 

SYMBOLS 

Symbols are prepared by the user to identify state­
ments (names), work areas, and I/O units. Exam­
ples of valid and invalid symbols follow. 

Valid 

A 
A12 
ABLE2A 

Invalid 

1A (begins with a decimal digit) 
A+ 23 (contains a special symbol) 
ABLEABLEABLE (too long) 
ABLE (contains a blank) 

Symbols are either absolute or relocatable. 

The EQU instruction can define a symbol and make 
it absolute or equate one symbol with another. Ex­
amples of absolute and relocatable symbols follow. 
It is assumed that all of the EQU instructions below 
are executed in order in the same program. 

NAME OPERATION OPERAND 

REGL EQU 
OPND EQU 
BEGIN BC 
START EQU 

1 Absolute 
REG L Both absolute 
2,3(4,5) Relocatable 
BEGIN Both Relocatable 

15 

EQUATE SYMBOLS 

SIMPLE EXPRESSIONS 

ABLE (symbol) 

2 lj self-defining values 
C'B' 
*(Location counter) 

COMPOUND EXPRESSIONS 

*+23 
ABLE +10 
ABLE-BAKER + ALPHA 
A + B*Y=(A+(B*y)) 

(Self-defining values may be decimal or hexadeci­
mal numbers up to six digits in length, or a single 
character. ) 

INVALID COMPOUND EXPRESSIONS 

ABLEX'02' (arithmetic operator missing) 
A+-I0 (two arithmetic operators together) 
- ALPHA+IO (begins with arithmetic operator) 
A-B+C,10 (too many terms) 
**5 (multiply follows location counter) 

Correct Form 

ABLE*X'02' 
A-I0 
ALPHA+I0 
A-B,C 
*+5 

Expressions are either relocatable or absolute de­
pending on the nature and relation of the included 
symbols. A relocatable expression must be posi­
tive. An absolute expression may be negative. 



In the illustrations below, the symbols have the fol­
lOwing values: 

A 
B 
C 
FOX 

2000 "t 
1000 (' 
4000 J 

500 

relocatable 

absolute 

ABSOLUTE EXPRES~ONS VALUE 

A-B+I0 
FOX*10 

FOX+25 
A-B+FOX 

RELOCATABLE 
EXPR ESSIONS 

1010 
5000 

525 
1500 

VALUE 

1500 A-FOX 
*+10 
A+I0 
A-B+C 

Depends on location counter 
2010 
5000 

Note that the value of a relocatable symbol or ex­
pression depends on where the program is loaded. 
The maximum value of an expression is 131,071. 

INVALID EXPRESSIONS 

A +B + 10 
A*FOX 
A+B+C 
A-B-C 
FOX-A 

B-2000 

(two relocatable symbols added) 
(relocatable symbol multiplied) 
(no minus) 
(no plus) 
(relocatable subtracted from 

absolute) 
(relocatable expression cannot be 

negative) 

DEFINING STORAGE 

Correct Form 
A-B+I0 
FOX*5 
A-B+C 
A-B+C 
FOX+A 

B-FOX 

Input/Output areas and work areas are reserved by 
the Define storage instruction, DS. The form of its 
operand is dCLn. (d is the duplication factor and n 
is the number of bytes in the length of storage be­
fore duplication.) In the following example, 10 bytes 
(characters) of storage will be reserved starting at 
ALPHA, ten starting at BETA, and ten at GAMMA. 

NAME OPERATION OPERAND 

ALPHA 
BETA 
GAMMA 

DS 
DS 
DS 

2CL5 
CLIO 
10C 

Note that the storage area reserved is not cleared. 
Ln has a maximum value of 256. 

16 

Exercise 1 

NAME OPERATION OPERAND 

COST DS 10CL2 
FILE DS SOC 
WORK DS 10CLI0 
CON EQU 125 
MAST EQU FILE-COST 

Assume that the above instructions are executed. 
Indicate which of the following symbols and expres­
sions are valid, invalid, absolute, or relocatable. 

a. MAST+CON 
b. COST*CON 
c. COST-CON+ FILE 
d. MAST*CON 
e. WORK+CON-COST 

DEFINING CONSTANTS 

Constants are defined by the Define Constant instruc­
tion: DC. Its form is dCLn 'characters'. The fol­
lowing instructions cause the constant 123bb123bb to 
be created (b = blank) in zoned form. 

NAME OPERATION 

CONI 
CON2 

DC 
DC 

OPERAND 

2CL5'123' 
C'123bbI23bb' 

Note that if Ln is too small, the rightmost charac­
ters of the constant within the quotation marks are 
truncated. The maximum length of a character con­
stant is 16 bytes, before the duplication factor is 
applied. 

ATTRIBUTES 

Symbols and expressions generally have two attri­
butes: a value and a length. The value may be a 
storage address, a register number, or a numerical 
v~lue. The length attribute is used by the assembly 
system to provide L fields for SS instructions. The 
following illustration assumes that the coding is as­
sembled according to the storage locations shown on 
the left. The attributes apply to the expressions or 
symbols on the same line. (See example on follow­
ing page.) 

Note that the length attribute of a compound expres­
sion is the implied length of its first simple expres­
sion (e. g. ABLE in ABLE+I0 above). If the first 
simple expression is a self-defining value, the length 
attribute of the expression is one (10+ABLE above). 



Storage Attribute 
Location NAME OPERATION OPERAND Value Length 

1000 ABLE DS 20CL3 1000 3 
1060 BAKER DS 6C 1060 1 
1066 CONST1 DC 2C'123' 1066 3 
1072 CONST2 DC 4CL10'123' 1072 10 

REG EQU 2 2 1 
1112 BEGIN LR 3,4 1112 2 
1114 AP ABLE+10, 3(2, 4) 1010 3 
1120 AP 10+ABLE(3),4(1,5) 1010 1 

STATEMENT FIELDS 

An assembly program consists of a sequence of 
statements. A statement is composed of four fields, 
e~ch separated by at least one blank: Name field, 
Operation field, Operand field, and Comment field. 

NAME FIELD 

The Name field is blank unless it is necessary to 
reference the statement, in which case a symbol is 
written. A comment may also begin in the Name 
field as illustrated on page 19. 

OPERATION FIELD 

The Operation field contains a mnemonic machine or 
assembly system instruction. 

NAME OPERATION 

ADD 
ABLE 

START 
AP 
DS 

OPERAND FIELD 

assembly instruction 
machine instruction 
assembly instruction 

The Operand field contains information to complete 
the instruction begun in the Operation field. 

MACHINE INSTRUCTION OPERANDS 

Note that storage fields (Sl' S2) are relocatable ex­
pressions. All other fields must be absolute. The 
Assembly System determines the Band D fields for 
ABLE, and the B

1
, D1, and L fields for BAKER. 

BAKER must have a suitable length attribute, which 
would have been assigned by a Define Storage instruc­
tion, for example; note also that the Assembly L is 
one byte longer than the machine L. (The Chart on 
the following page shows all possible combinations 
for operand fields. ) 

In order to write machine instructions with implied 
base registers, a procedure utilizing the USING as­
sembly instruction must be employed. The method 
will be explained in a later section. The program­
mer must keep in mind that general purpose regis­
ters must be loaded with addresses bracketing the 
entire area of memory required. For example, as­
sume that the programmer loaded registers 2 and 3 
with the addresses 1000 and 5096 (1000 + 4096), re­
spectively. The assembly system will treat the fol­
lowing instruction operands on the left, as if they 
were written as shown on the right. 

----------------------------
Instruction Explicit 

Type Form Examples 

RR R1,R2 2, REG3 
RX R1, D2(X2, B2) TEN, 25(2, 3) 
RS R1, R

3
, D

2
(B2) 1,2,125(3) 

SI D1 (B1), 12 40(9), C' $' 
SS D1 (L1, B1), D

2
(L

2
, B2) 10(3,1),5(4,2) 

Implied Implied 
Instruction Base Register Base Register 

Type Form Examples 

RX R l' S2(X2) REG2, ABLE(3) 
RS R 1, R3,S2 3,4,ABLE 
SI Sl,I2 ABLE, C'B' 
SS Sl (L1), S2(L2) ABLE(5), BAKER 

17 



Storage Converted 
Location NAME OPERATION OPERAND Operand 

1046 BEGIN AP ABLE(5), BAKER 904(5,3),1304(5,3) 

2000 

6000 
6400 

ABLE 
BAKER 

BC 

DS 
DS 

15, BEGIN 

100CL4 
14CL5 

15,46(0,2) 

ASSEMBLER OPERAND FIELD CHARACTEillSTICS 

OPERAND SIMPLE 
FIELD BIT COM- ABS. MAX. 

MACHINE FORMAT FORMAT FIELD SIZE POUND REL. VALUE 

RR 

10 ~IR: 1:21 
R1,R2 R1, R 2, R3 4 S A 15 

D1,D2 12 SC A 4095 

B1 , B2 4 S A 15 

10 ~IR:. R1 X2 4 S A 15 
L1,L2 4 S A 16 
L 8 S A 256 

10 ~I 8 

1 
I 1,12 8 S A 255 

I Sl,S2 16 SC R 

MACHINE FORMAT OPERAND FORMAT 

EXPLICIT EXPLICIT IMPLIED IMPLIED 
BASE, BASE, BASE, BASE, 

EXPLICIT IMPLIED EXPLICIT IMPLIED 
LENGTH LENGTH LENGTH LENGTH 

RX 

10 ~1:11;21~21 ~!I R1, D2(X2, B2) R1 ,S2(X2) 
R1 , S 2 (no indexing) 
R1, D2 (no X or B) 

RS 10 ; 1:11;31~21 ~:I R1, R3' D2(B2) R1, R3, S2 

I 

10 ;1;1.B~1 ~~I R1, D2(B2) I R1,S2 

SI 10 ;11 :1:11 ~~I D1 (B1), 12 Sl,I2 

10 ~_;ll 12 

1 
D1 (B1) Sl 

D1 

SS 1 814 1 414 1 12 1 4 1 121 D1(Ll' B1), D1 (, B1) Sl (L1) Sl 

1° pi L11 L21B11 D1 IB21 D 21 D2(L2' B2) D2(' B2) S2(L2) S2 

10 ;1 ~1:11 ~~ 1~21 ~~I D1 (L, B1) D1 (, B1) Sl (L) Sl 
D2(B2) S2 

18 



Note that if indexing is not to occur for an RX in­
struction, zero must be written for the X field if a 
B field exists. If the field or fields within paren­
theses are zero, the parentheses and the included 
field or fields may be omitted. Whenever zero is 
specified for an Z or B field, the field is ignored. 

Illustrations 

BC 15, START No indexing, implied B 

SLL 2,15 B omitted (a shift left) 

BC 15,25(0,3) No indexing, B required 

Exercise 2 

An 80-column card is to be read into storage. It is 
composed of the following fields: 

Field Name Columns 

1 ID 1-10 
2 COST 11-20 
3 QTY 21-25 
4 LEAD 26-30 
5 UNKN 31-80 

Define each field, and an 80-byte area called WORK. 
Write the instructions to transfer all 80 characters 

NAME 

PART 
QrY 
COST 
FACTOR 
CONST 
OUTPUT 
BEGIN 

DISCNT 

to WORK. Multiply COST times QTY a) from the 
original storage area and b) from their locations in 
WORK. (Assumes that COST has a sufficient number 
of leading zeros.) 

Exercise 3 

What are the length attributes of the DS symbols and 
valid expressions in Exercise I? 

Comments 

The two forms of comments are shown below. 

NAME 
OPERA­

TION 
OPERAND COMMENTS 

*THIS COMM~NT REQUIRES AN ASTERISK 
BC 2,A12 THIS FOLLOWS THE OPERAND 

Example 

Example 1 of page 12 could be coded as shown be­
low. The test factor, 5000, has been defined by a DC 
instruction. The following facts are significant and 
should be noted. 

MVC 

OUTPUT has a length attribute of 1. Thus the length 
of the field moved (3) must be written. If OUTPUT 
were defined as 4CL3, the length of field could be 
omitted. 

OPERA 
TION OPERAND COMMENTS 

DS CL3 
DS CL3 
DS CL2 
DS CL2 
DC C'SOOO' 
DS l2C 
MVC OUTPUT(3),PART PART~OUTPUT 

PACK CONST,CONST Z 5Z0Z0S0~000 SOoo+ 
CP QTY,CONST COMPARE QTY:SOOO 
BC lO,DISCNT GO TO DISCNT IF ~ 
EAP OUTPUT+ 3 ( 4 ) , QTY EXTEND QTY WITH 0' S 
MP OUTPUT+3(4),cOST QTYxCOST-40UTPUT+3 
UNPK OUTPUT+3(7),OUTPUT+3(4) UNPACK RESULT 
BC lS,* WAIT 
2JAP OUTPUT + 3 ( S ) , QTY EXTEND QTY WITH O'S 
MP OUTPUT+3(S) , COST QTYxCOST~OUTPUT+3 

MP OUTPUT+3(S) ,FACTOR OUTPUT+ 3 xF ACTOR 
UNPK OUTPUT+3(9),OUTPUT+3(S) UNPACK RESULT 
BC lS,* 

19 



PACK, CP Note that the symbols in the expression equated must 
all have been previously defined. 

The length attributes of the operands are adequate: 
the L fields can be omitted. 

ZAP 

BC 

*, the location counter is the address of the BC 
instruction. 

OUTPUT + 3 is a relative address: of the first byte 
following the output part number. Because it is used 
often, it could be defined as OUT, for example, as 
follows: 

Exercise 4 

Data in the format shown, is read into the defined 
storage areas. ZI S represent zones, X's represent 
decimal digits, S represents a sign, and the carat 
(A) represents an assumed decimal point. Write 
the instructions to perform the specified operations. 
If overflow can occur during an operation, provide 
a branch to OVERFL. 

NAME OP OPERAND 

OUT EQU OUTPUT+3 

The instruction operand would then be OUT(4) , QTY. 

a. ABLE plus BAKER less FOX (result in ABLE) 
ABLE DS CL7 ZO ZO ZX ZX ZX ZX SX 
BAKER DS CIA OX XX XX XS 
FOX DS CIA 00 OX XX XS 

b. ABLE less BAKER plus FOX (result in FOX) 
ABLE DS CL5 ZX ZX ZX ZX SX 
BAKER DS CL5 ZO ZX ZX ZX SX 
FOX DS CL3 XX XX XS 

c. ABLE plus BAKER (result in ABLE) 
ABLE DS CIA XX XX XX XS 
BAKER DS CIA XX XX XX XS 

do ABLE times BAKER plus FOX (result in FOX) 
ABLE DS CL5 ZO ZO ZX ZX SX 
BAKER DS CLl XS 
FOX DS CL5 ZO ZX ZX ZX SX 

e. ABLE times BAKER less FOX (result in ABLE) 
ABLE DS CL5 00 00 XX XX XS 
BAKER DS C L2 00 XS 
FOX DS CL6 ZX ZX ZX ZX ZX SX 

f. ABLE times BAKER times FOX (result in GEORGE) 
ABLE DS CIA ZX ZX ZX SX 
BAKER DS CL3 ZX ZX SX 
FOX DS CL2 OX XS 
GEORGE DS CL9 ZX ZX ZX ZX ZX ZX ZX ZX SX 

g. ABLE divided by BAKER (result in ABLE) 
ABLE DS CL5 ZO ZO ZX ZX+ X 
BAKER DS CL2 OX X-

h. ABLE divided by BAKER (quotient in FOX, remainder in GEORGE) 
ABLE DS CL5 00 XX XX XX XS 
BAKER DS CL2 XX XS 
FOX DS 
GEORGE DS 

20 

CL3 XX XX XS 
CL3 XX XX XS (Contld. on following page) 



Exercise 5 

i. ABLE divided by BAKER, quotient plus FOX (result in GEORGE) 
ABLE DS CL3 XX XX XS 
BAKER 
FOX 

DS CL3 XX XX XS 
DS CLI XS 

j. ABLE times BAKER compared to FOX (branch on "less than") 
ABLE DS CL3 ZX ZX SX 
BAKER DS CL2 XX XS 
FOX DS CIA ZX ZX ZX SX 

k. If ABLE is less than or equal to BAKER, add ABLE to FOX 
otherwise multiply FOX by BAKER (result in FOX) 
ABLE DS CL2 XX XS 
BAKER DS CL2 XX XS 
FOX DS CL5 00 00 OX XX XS 

1. ABLE times BAKER plus FOX (result in BAKER) 
ABLE DS CL5 ZO ZO ZXI\ZX SX 
BAKER DS CL2 I\ZX SX 
FOX DS CL6 ZO ZX ZX ZXI\ZX SX 

Define the storage and constants of Exercise 2 on 
page 14 and recode it using symbols, expressions, 
and implied base registers and lengths wherever 
possible. 

21 



DATA MANIPULATION 

This section illustrates the instructions and tech­
niques that modify and examine logical and numeric 
data. Bit s, dec i mal digits, and alpha-numeric 
characters will be examined and altered. 

BIT MANIPULATION 

The rules for manipulating bits by And, Or, and 
Exclusive Or instructions follow. 

AND 

Operand 1 

1 
0 
1 
0 

OR 

0 
1 
1 
0 

EXCLUSIVE OR 

0 
1 
1 
0 

INSTRUCTIONS 

AND (RR) 
AND (RX) 
AND (SI) 

Operand 2 

o 
1 
1 
o 

1 
o 
1 
o 

1 
o 
1 
o 

NR 
N 
NI 

Result 

o 
o 
1 
o 

1 
1 
1 
o 

1 
1 
o 
o 

(R1)And(R2) .~ R1 
(R1)And(Sx2) -> R1 
(Sb1)AndI2 .. Sb1 

AND (SS) NC (Sb1)And(Sb2) -> Sb1 
OR (RR) OR (R1)Or(R2) -> R1 
OR (RX) 0 (R1)Or(Sx2) -> R1 
OR (SI) 01 (Sb1)OrI2 -> Sb1 
OR (SS) OC (Sb1)Or(Sb2) -> Sb1 
EXCLUSIVE OR (RR) XR (R1)XOr(R2) .. R1 
EXCLUSIVE OR (RX) X (R1)XOr(Sx2) -> R1 
EXCLUSIVE OR (SI) XI (Sb1)XOrI2 -> Sb1 
EXCLUSIVE OR (SS) XC (Sb1)XOr(Sb2) -> Sb1 

Note that there is only one (8 bit) L field in the SS­
type instructions above. Note also that words in 
storage-to-register operations must be aligned on 
word boundaries. 

22 

CONDITION CODE 

I o 

Result is Zero 

1 

Not 
Zero 

2 3 

Programming note: AND may be used to set bits to 
zero, OR may be used to set bits to one, and EX­
CLUSIVE OR can be used to invert bits. (Note that 
Exclusive Or retains bits that do not have corre­
sponding one bits in the mask. ) 

ASSEMBL Y SYSTEM HEXADECIMAL CONSTANTS 

Hexadecimal constants are frequently used to create 
masks for bit manipulation. In the following exam­
pIe, MASK 1 becomes the address of the first byte 
of a six byte (2xLn) constant. The constant will be 
OOOFOCOOOFOC (all characters shown are four­
bit hexadecimal digits. 

NAME I OPERATION IOPERAND Length Attribute 

MASK 1 DC 2XL3'FOC' 3 

Note that hexadecimal zeros are padded to the left 
of the X field to make an even number of hexadeci­
mal digits. The maximum constant length before 
the duplication factor is applied is 16 bytes. Hexa­
dec i mal immediate-data takes the form: X, dd', 
where d is a hexadecimal digit 0000-1111 or 0-9, 
A-F. If Ln is too small, digits on the left will be 
truncated. 

R 1,R2 CC 
R 1, D2(X2, B2) CC 
D1(B1),I2 CC 
D1(L, B.J.), DiBz> CC 

RV R 2 CC 
R1' D2(X2, B2) CC 
D1(B1),I2 CC 
D1(L, B1), D2(B2) CC 
R1,R2 CC 
R1, D2(X2, B2) CC 
D1(B1),I2 CC 
D1(L, B 1), D2(B2) CC 



Illustration 

1. Location ABLE: 3+ 
Instruction: NI ABLE, X'OF' 

Location ABLE after: 0+ 
CC=1, result not all zero 

00111100 
00001111 

00001100 

2. Register 5: 0110111010 ----- 0 
Register 6: 10111010010 0 

Instruction: OR 5, 6 

Result: Register 5: 11111110110 ----- 0 
Register 6 unchanged 
CC=1, result not all zero 

3. ABLE 
BAKER 

1101011101011001 
1101011100000000 

Instruction: XC ABLE(2), BAKER 

ABLE after: 0000000001011001 
BAKER unchanged 
CC=1, result not all zero 

Shift Left Logical (Single) 
Shift Right Logical (Single) 
Shift Left Double Logical 
Shift Right Double Logical 

DECIMAL DATA SHIFTING 

Decimal data are shifted by combinations of move 
and bit-manipulating instructions. (A n Lon the 
right indicates that the operation is performed left 
to right. An R indicates right t.o left. ) 

12 ~ 8b1 

(RS) 
(RS) 
(RS) 
(RS) 

Note that if the second field is shorter than the first 
field in an MVO instruction, the second field will be 
padded with leading zeros. The MVN and MVZ re­
place half of each byte in the specified field without 
altering the other half bytes. MVN operates on the 
right halves of bytes and MVZ the left halves. 

ABLE 
BAKER 

12 
88 

34 
88 

56 
88 

7+ 
88 

OPERATION OPERAND Result to BAKER 

MVC 
MVN 
UNPK 
MVI 

Exercises 

BAKER+2(2), ABLE 
BAKER+3(1), ABLE+3 
BAKER, BAKER+2(2) 
BAKER, C'$' 

88 88 12 34 
88 88 12 3+ 
00 Z1 Z2 +3 
58 Z1 Z2 +3 

1. Shift the decimal field ABLE left two digits, 
three digits. ABLE = 12 34 56 7+ 

2. Shift the original ABLE field right two digits; 
three digits. 

LOGICAL DATA SHIFTING 

The contents of any register or pair of registers 
may be shifted left or right. Every bit is shifted. 
Zero bits fill vacated positions and a number of bits, 
equal to the number shifted, are lost. These in­
structions are used to eliminate unwanted data and/ 
or to select bits for processing. 

SLL 
SRL 
SLDL 
SRDL 

(R1) Shifted Left 
(R1) Shifted Right 
(R1' R1 +1) Shifted Left 
(R1' R1 +1) Shifted Right 

R1, D 2(B2) 

R1' D2(B2) 
R1, D2(B2) 
R1, D2(B2) 

The low-order six bits of (B2)+D2 specify the num­
ber of bit positions to shift. RN and RN+1 must be 
an even-odd pair of registers. 

Illustration 

Registers 4 and 5 contain the following bytes: PQRS 
and TUVW. Register 6 contains binary zeros. 

D1(B1),12 Move (Immediate) (SI) 
Move Numeric (SS) 
Move with Offset (88) 
Move Zones (88) 

MVI 
MVN 
MVO 
MVZ 

8b2 numerics ~ 8b1 
8b2 offset ~8b1 
Sb2 zones ~ 8b1 

D1(L, B1), D2(B2) L 
D1(L1, B1), D2(L2, B2) R 
D1(L, B1), D2(B2) L 

23 



OPERATION 

SRDL 
SLL 
SLDL 

OPERAND 

4,24(6) 
4, 8(6) 
4,16(6) 

Register 4 

OOOP 
OOPO 
POQR 

Register 5 

QRST 
QRST 
STOO 

Note that the B2 and X2 fields may be omitted if the 
D2 field is to specify the shift amount. The first 
operand could be 4, 24. 

CHARACTER MOVEMENT 

The two following instructions are used to select a 
byte from storage and to store a byte in storage. 

CONDITION CODE 

OPERATION J 0 

Compare 
Operand 1 

Test 
Selected bits zeros 

(or the 
mask is 
zero) 

Insert Character (RX) 
Store Character (RX) 

IC (Sx2) byte --> R1 
STC (R1) byte --> SX2 

R1, D2(X2, B2) 
R1, D2(X2, B2) 

In each case the byte in the register is the rightmost 
byte. 

Illustrations 

1. Register 3: 011010 - 0 
Register 4: 010111- 1 

Instruction: CLR 3,4 

1 2 3 

< > 

mixed ones 

Condition code set: 2, first operand (R3) greater 
than second operand. 

2. ABLE (byte) 10101111 

LOGICAL TESTING 
Instruction: TM ABLE, X' EB' 
(note: X'EB' = 11101011) 

The following instructions are used to test or com­
pare bits, fields, and words. 

Condition code set: 1, some selected bits are 
zero, some one. 

Compare Logical (RX) CL Compare (R1) : (Sx2) 
Compare Logical (Character) SS CLC Compare (Sb1) : (Sb2) 
Compare Logical Immediate (SI) CLI Compare (Sb1) : 12 
Compare Logical (Register) (RR) CLR Compare (R1) : (R2) 
Test under Mask (SI) TM Test Sb1 bits: 12 bits 
Branch on Condition (RR) BCR Go to Sr2 if a mask 

bit corresponds to a 
Condition Code 

Note that only one L field is included in the CLC in­
struction. Also, the 12 field of TM is a mask; one 
bits select corresponding Sb1 bits to examine. If the 
BCR instruction contains zeroforR2, the instruction 
is ignored (is effectively a non-operation). The word 
specified by the CL instruction must be aligned on a 
word boundary. 

24 

R1, D2(X2, B2) CC 
D1 (L, B1), D2(B2) CC 
D1 (B1), 12 CC 
R1,R2 CC 
D1(B1),I2 CC 
M,R2 



Exercises 

3. The bits in location PERSON have the following 
significance: 

ZERO ONE 
SEX (leftmost bit) Male Female 
EDUCATION High School College 
MILITARY SERVICE No Yes 
MARITAL STATUS Single Married 
U. S. CITIZENSHIP No Yes 
AGE OVER 35 No Yes 
UNION MEMBER No Yes 
SA VINGS PLAN No Yes 

a. Write the instructions necessary to branch 
to statement FOUND if the person repre­
sented by PERSON is a married, U. S. citi­
zen, over 35. 

b. Branch to statement FOUND if PERSON is a 
single, male, college graduate, under 35. 

4. LOCATIONS OP1 and OP2 are decimal numbers 
to be divided: OP1 by OP2. OP1 contains seven 
decimal digits plus the sign and OP2 contains 
five decimal digits plus the sign. Without divid­
ing, determine if a division would be performed 
by the computer. Both fields have length attri­
bute s of one. 

5. Register 2 contains all ones. Register 3 con­
tains a four-byte field. Determine if the right­
most byte in Register 3 is the letter A. 

a. without shifting 
b. utilizing shifts of Register 3 
c. utilizing shifts of Register 2 

6. Locations UNIT 1 and UNIT 2 are records with 
the following contents: (see top right col. ) 

Field 

Unit Number 
Unit Quantity 
Part Number 1 
Part 1 Quantity 
Part Number 2 
Part 2 Quantity 

Format 

6 alphanumeric bytes 
xx xx x+ 
8 alphanumeric bytes 
xx xx x+ 
8 alphanumeric bytes 
xx xx x+ 

The two units combined may have two, three, or four 
different parts. Prepare an output record, OUTPRT, 
which contains a part number and quantity for each 
existing part. (Note that the part numbers are in 
sequence; that is, each first part number is logical­
ly smaller than the corresponding second part num­
ber.) Storage must be defined. 

EDITING DATA 

Decimal data is unpacked and edited for output by 
the following two instructions shown at bottom of page. 

Note that only one L field is included in these in­
structions. It is the length of the mask pattern. Al­
so note thatthebyte address is one to the right of the 
last symbol-filled character position unless a sig­
nificance-start symbol is encountered before a non­
zero digit. General-purpose register one is always 
implied. 

CONDITION CODE 

I 0 1 2 3 

Result is 0 G + 

EDITING SYMBOLS 

Symbol 
Hexadecimal 

Code 

Explanatory 
Symbol 
U sed Function 

Fill 
Significance-Start 

Digit Select 

Field Separator 

Edit Symbols 

Edit (SS) 
Edit and Mark (SS) 

ED 
EDMK 

any any Replaces leading zeros. 
21 -S- Stops replacement of zeros. 

Al so acts as digit select. 
20 -tI- Specifies digit position in 

data (replaced by fill). 
22 -I- Indicates editing of new field 

to begin (replaced by fill). 
any any Inserted in result or replaced 

by fill. 

25 

The most common fill characters are the asterisk (*) 
and the blank (-6-). 

Edit (Sb2) by (Sb1) 
Edit; byte address -> R1 

D1(L, B1)' D2(B2) 
D1(L, B1), D2(B2) 

CC 
CC 



OPERA TION OPERAND Remarks/Results 

Illustrations 

Field ABLE: 
Field NUMBER: 

Instruction: 

Result: ABLE 
Condition Code: 

If ABLE were: 

Result: ABLE 

-btM-,.aas-. ~R 
0123456+ 

LA 
EDMK 
BCTR 
01 

ED ABLE(13), NUMBER 

l:ffil., 234. 56Mffi 
2: the result is positive 

00 00 005-

b131313131313. 05bCR 
Condition Code: 1: the result is negative 

If the instruction executed was EDMK, Register 1 
would containABLE+2 in the first case. In the second 
case, Register 1 would contain its original contents 
because an address is not stored if a significance­
start symbol is encountered before a non-zero digit 
is encountered. 

To utilize the EDMK instruction for currency sym­
bol insertion, Register 1 should initially be loaded 
with the address of the character following the 
significance-start symbol. Furth e rm 0 r e, after 
executing the EDMK instruction, the add res s in 
Register 1 must be reduced by one to address the 
last non-significant zero digit-position. Two in­
structions which may be used in this procedure are 
the Branch on Count instruction, which subtracts a 
one from the contents of a register, and the Load 
Address instruction. 

1,MASK+4 
MASK(7), NUMBER 
1,0 
0(1), C'$' 

(R1) = MASK +4 
MASK=J3.bh1.23Bfffl, (R1) = Mask+3 
(R1) = MASK+2 
MASK=bfi$1. 23Mffi 
Condition Code = 2 

The reader should verify that the Or instruction per­
forms the desired function. (.a = 01000000, $ = 
01000100 or 01011011, ASCII or EBCDIC) 

Exercise 7 

Field NUMBER contains two numeric quantities such 
as: 

00 12 34 5S 07 64 3S 

S indicates sign. Prepare an edit mask as a con­
stant or constants, and write the instructions to edit 
the numbers for printing as: 

.aa.a123. 45Sbl3.al376. 43S 

If a sign is plus, the S should be blank. If a sign is 
minus, the S should be a -. What will the condition 
code be if the first number is plus and the second 
minus?, both numbers minus?, both plus?, the first 
minus and the second plus? 

Exercise 8 

In the preceding example, use the Insert Character 
and Store Character instructions instead of the 01 
instruction. 

Branch on Count (RR) BCTR (R1)-1-. R1 R1, R2 
Branch to (Sr2) 
if (R1) of 0 

Load Address (RX) 

Note that (R1) is reduced and no branching occurs if 
zero is specified for R2. (Another form and other 
uses of the Branch on Count instruction will be illus­
trated in a later section.) Note also that LA does 
not access storage. 

Example 

Edit field NUMBER and insert a dollar sign in the 
last blank-filled position. 

Field MASK: 
Field NUMBER: 

WdS.aaaCR 
00123+ 

26 



FIXED-POINT ARITHMETIC 

FIXED POINT NUMBERS 

Addresses, index quantities, counters, and data are 
manipulated in fixed-point arithmetic. Numbers are 
represented in halfwords, words, and double words. 

Halfword fixed-point numbers consist of a sign bit 
and a 15-bit integer 0 Full word fixed-point numbers 
consist of a sign bit and a 31-bit integer. A full 
word can represent a maximum value of 2, 147, 483, 
347 or -2, 147, 483, 648. Conversions to or from 
decimal form produce or use 15 decimal digits plus 
sign (64 bits). 

Negative numbers are represented in two's comple­
ment form with the sign as the leading bit. (A num­
ber is complemented by changing its binary zeros to 
ones, i.ts ones to zeros, and by adding a one to the 
low order bit. When the sign bit is 1, the number is 
a complement and represents a negative value. ) 

The range of numbers is illustrated below. 

Maximum posHi ve 
Smallest positive (+1) 
Zero (always positive) 
Smallest negative (-1) 
Maximum negative 

3ASICO\RITHMETIC 

011 ... 11 
00 ... 01 
00 ... 00 
11. .. 11 
10 ... 00 

The following examples illustrate binary arithmetic 
with five-bit operands. (The maximum positive 
number would be 15; the maximum negative number 
is 16.) 

5 
+3 

8 

00101 
a0011 
01000 

5 
-3 

2 
00011 

00101 
11101 
00010 

Constant 

OVERFLOW EXAMPLES 

Overflow occurs when a sum or difference exceeds 
the limits. When overflow occurs the carry into the 
sign position differs from the carry out. 

10 
+ 7 

17 

01010 
00111 
10001 (-15) 

- 9 
- 9 
-18 

ASSEMBL Y SYSTEM CONSTANTS 

10111 
10111 
01010 (10) 

Halfword and full-word, fixed-point constants may 
be defined by the DC instruction. The form of the 
operand is dH 'digits' or dFLn 'digits' for halfword 
and full word, respectively. "d" is the duplication 
factor and n is the explicit length in bytes before 
the duplication factor is applied. The constant will 
be aligned at an appropriate storage boundary un­
less an L field is used (i. e., at an address ending 
in one, two, or three zeros for halfwords, full 
words, or double words). If the constant written is 
larger than the implied length (two for H and four 
for F) or larger than the explicit length, a constant 
of zero will be generated. The maximum value of a 
fixed-point constant depends on the number of bytes 
in the constant, as illustrated in the following table. 

Length in Maximum Maximum 
Bytes Positive Negative 

4 2,147,483,647 -2,147,483,648 
3 8,388,607 -8,388,688 
2 32,767 -32,768 
1 127 -128 

!IIustrations 

Number of 
OPERATION OPERAND Bytes Result Length 

DC 
DC 
DC 
DC 

2 by~2_~tes Attribute 
2H' -123' 4 -123-123 2 
H' +65000' 2 0 2 
F'100000' 4 100000 4 
FL3'100000' 3 100000 ;) 

27 

ASSEMBL Y 5TORAGE DEFINITION 

Storage areas for fixed-point data are defined by the 
DS instruction with operand fields of dH, dF, or dD 
for halfword, full-word, or double-word storage, 
re specti vely. 



Illustrations 

OPERATION OPERAND Bytes Reserved Length Attribute 

DS H 2 2 
DS F 4 4 
DS 2H 4 2 
DS 3F 12 4 
DS D 8 8 
DS 2D 16 8 
DS OD 0 

The last instruction sets the location counter at the 
next double-word boundary and will not reserve any 
storage. 

INSTRUCTIONS 

Add (Register) (RR) AR (R1) + (R2) -. Rl 
Add (Indexed) (RX) A (R1) +(Sx2) - Rl 

1 Add Halfword (RX) AH (R1) + (Sx2) ~ Rl 
Add Logical (RR) ALR (Rl) + (R2) -+ Rl 
Add Logical (RX) AL (Rl) + (Sx2) -+ Rl 

2 Divide (Register) (RR) DR (R1) ~ (R2) -. Rl + 1 
2 Divide (Indexed) (RX) D (R1) + (Sx2) --. Rl + 1 

Subtract (Register) (RR) SR (R1) - (R2) -. Rl 
Subtract (Indexed) (RX) S (R1)-(Sx2)--' Rl 

1 Subtract Halfword (RX) SH (R1) - (Sx2) ---. Rl 
Subtract Logical (RR) SLR (Rl) - (R2) ~ R, 
Subtract Logical (RX) SL (R1) - (Sx2) ----. Rl 

3 Multiply (Register) (RR) MR (Rl + 1) x (R2) ~ Rl,Rl+ 1 
3 Multiply (Indexed) (RX) M (Rl+l) x (Sx2) ~ Rl,Rl+l 

1, 10 Multiply Halfword (RX) MH (R1) x (Sx2) -.R1 
Compare (Register) (RR) CR (Rl) : (R2) 
Compare (Indexed) (RX) C (Rl) : (Sx2) 

1 Compare Halfword (RX) CH (R1) : (Sx2) 
8 Convert to Binary (RX) CVB Convert (Sx 2) ~ Rl 

4,8 Convert to Decimal (RX) CVD Convert (Rl) -.- Sx2 
Load (Register) (RR) LR (R2) -. Rl 
Load (Indexed) (RX) L (Sx2) -+ Rl 

1 Load Halfword (RX) LH (Sx2) -+ Rl 
Load and Test (RR) LTR Test (R2) ---. Rl 
Load Complement (RR) LCR -(R2) -. Rl 
Load Positive (RR) LPR I R21 --. Rl 
Load Negative (RR) LNR -IR21-' Rl 

5 Load Multiple (RS) LM (Sb2) ---. Rl ... R3 
4 Store (Indexed) (RX) ST (R1) - Sx 2 

1,4 Store Halfword (RX) STH (Rl) --. Sx2 
4,5 Store Multiple (RS) STM (R1) ... (R3) --. Sb2 
6, 9 Shift Left Single (RS) SLA (R1) shifted left 
6,9 Shift Right Single (RS) SRA (R1) shifted right 

6, 7, 9 Shift Left Double (RS) SLDA (R1), (Rl +1) shifted left 
6,7,9 Shift Right Double (RS) SRDA (R1), (R1+l) shifted right 

28 

R1,R2 CC 
RIo D2(X2, B2) CC 
Rl, D2(X2, B2) CC 

RIoR2 CC 
RIo D2(X2, B2) CC 

Rl,R2 
Rl, D2(X2, B2) 
RIoR2 CC 
R1, D2(X2, B2) CC 
R1, D2(X2, B2) CC 
Rl,R2 CC 
Rl, D2(X2, B2) CC 
Rl,R2 
R1, D2(X2, B2) 
Rl, D2(X2, B2) 
R1,R2 CC 

Rl' D2(X2, B2) CC 

Rl, D2(X2, B2) CC 

R1, D 2(X2' B2) 
R1, D2(X2, B 2) 
R1,R2 
R 1, D 2(X2, B 2) 
Rl, D2(X2, B2) 
R1,R2 CC 
Rl,R2 CC 
Rl,R2 CC 
R1,R2 CC 
Rl, R3, D2(B2) 
R1, D2(X2' B 2) 
Rl, D 2(X2' B2) 
Rl, D2(X2' B2) 
R1, D2(B 2) CC 
R 1, D2(B 2) CC 
R1, D2(B2) CC 
R 1, D2(B 2) CC 



Notes 

1. Halfwords are fetched from memory and the sign 
is propagated to the left to produce a full word 
before the operation is performed. Halfwords 
are stored from the right half of the specified 
register; the left half is ignored. 

2. The dividend must be a 64-bit number located in 
an even-odd pair of registers. R1 must specify 
the even register. The quotient appears in the 
odd register. The remainder appears in the 
even register; its sign is the sign of (R1). The 
divisor (Sx2) or (R2) must be larger in absolute 
value than the first word of the dividend (R1). 

3. The product of full-word multiplication is a 64-
bit number which appears in an even-odd pair of 
registers. R1 must be even. The multiplicand 
is selected from the odd register. 

4. This is the only fixed-point instruction in which 
the result appears in the operand 2 location. 

5. The multiple operations use consecutive regis­
ters (R1 to R3) and consecutive words in stor­
age. Register 0 follows Register 15. 

6. Right-shift operations propagate the sign. Over­
flow results during left-shift operations if a bit 
different from the sign is shifted out of posi­
tion 1 (the position to the right of the sign). The 
sign bit does not change when a shift is performed. 

OPERATION 

Load Positive 
Load Negative 
Add, Subtract 

7. Double shifts utilize an even-odd pair of registers 
and HI must be even. 

8. In binary/decimal conversions, the decimal 
operand occupies a double word and must be 
aligned at an integral storage boundary. 

9. Shifting a number is equivalent to multiplying 
(shift left) or dividing (shift right) by a power of 
two. 

10. Multiply Halfword yields a 32-bit product. 

All operands and results in storage must be located 
on integral storage boundaries. 

Programming notes 

The complement of zero is zero. When the same 
register is specified for Rl and R2 in subtraction, 
the register is cleared to zero. 

Because of the settings of the condition code, a left 
shift of zero places can be used as a sign and magni­
tude test. 

CONDITION CODE 

I 0 1 2 3 

0 + overflow 
R 0 G 
E 0 0 + overflow I Shift Left, Load Complement S 0 0 + overflow 

) 
* Add Logical U O,NC FO,NC O,C FO, C 
* Subtract Logical L FO,NC O,C FO,C 

Load and Test, Shift Right T 0 0 + 

Compare: Operand 1 

29 

< > 

Note that multiplication and division do not set the 
condi tion code. 

*C indicates that there was a carry out of the sign 
position. NC indicates that there was no carry. 



Illustrations 

1. FIELD ABLE (32 hits): 
FIELD ABLE+4 (32 hits): 
FIELD ABLE+8 (32 hits): 

OPERATION OPERAND 

LM 3,5,ABLE 

AR 3,5 

CR 4,3 

0--010101 = + 21 
0-- 01110 = + 14 
0-- 10110 = - 10 

Result 

(R3) == 21, (R4) 
== 14, (R5) == -10 

(R3) == 11: 0-01011 

CC == 2, (R4) >(R3) 

3. The one-byte field PERSON contains single-bit 
codes in the right three bit positions representing 
sex, marital status, and citizenship as follows: 

OOOOOS MC 
M S Alien 
F M U.S. 

o l binary 
1 \ value 

Thus, 00000101, indicates a female, single, 
U. S. citizen. Field FACTOR is a binary four: 
00000100. 

2. Two eight-digit decimal numbers in zoned format 
are located at fields Nl and N2. N1 is to be di­
vided by N2 in fixed-point arithmetic. Assume 
that Nl is +75 and N2 is +4. 

The following coding causes a branch in the in­
structions which process each individual case. 
(Note that there are eight possibilities, each 
represented by a binary number: 00000000 -
00000111.) Assume that the assembled coding is 
loaded starting at location 1000. 

NAME 

N1 
N2 
NUMBR1 
NUMBR2 

OPERATION 

DS 
DS 
DS 
DS 
PACK 
PACK 
CVE 
CVE 
SR 
DR 

Storage 
Location 

1000 
1002 
1004 
1108 
1112 
1116 
1120 
1124 
1128 
1132 
1136 
1140 
1144 
1148 
1152 

OPERAND Results/Remarks 

CL8 Define 8 byte storage 
CL8 Define 8 byte storage 
D Define double word 
D Define double word 
NUMBR1,N1 NUMBRl= 00000000000075+ 
NUMBR2,N2 NUMBR2= 00000000000004+ 
3, NUMBR1 (R3)= 0 01001011 
4, NUMBR2 (R4)= 0 00000100 
2,2 (R2)== 0 0 
2,4 (R3)== 0 010010(18) 

(R2)== 0 000011(3) 

NAME OPERATION OPERAND Results/Remarks 

FIRST 

MSA 

MSU 

SR 
SR 
IC 
IC 
MR 
BC 
BC 
BC 
BC 
BC 
BC 
BC 
BC 
BC 

30 

3,3 
4,4 
3, PERSON 
4, FACTOR 
2,4 
15, FIRST (3) 
15, MSA 
15, MSU 
15, MMA 
15, MMU 
15, FSA 
15, FSU 
15, FMA 
15, FMU 

Clear Register 3 
Clear Register 4 
(PERSON) R3: Multiplicand 
4 R4: Multiplier 
(PERSON) x (FACTOR) R2, R3 
Branch to FIRST -~ product 
Code 000 x 4 == FIRST 
Code 001 x 4 == FIRST + 4 
Code 010 x 4 == FIRST + 8 
Code 011 x 4 == FIRST + 12 
Code 100 x 4 = FIRST + 16 
Code 101 x 4 == FIRST + 20 
Code 110 x 4 == FIRST + 24 
Code 111 x 4 = FIRST --I-- 28 
Process Male Single Alien 

Process Male Single U. S. citizen 



Note that the manipulation of PERSON could have 
been per for me d by the following sequence of 
instructions: 

3,3 SR 
IC 3, PERSON 
AR 3>3 
AR 3,3 

This sequence of instructions uses one register in­
stead of two, and four instructions instead of five, as 
in the exam pIe. 

Note that the significant bits of the product will be 
right aligned in register threeo Because the branch 
instruction at location 1116 is an indexed instruction, 
the product (R3) is added to FIRST to create the ef­
fective branch address. The factor four is used be­
cause there are four bytes in each branch instruc­
tion in the sequence of instructions beginning with 
FIRST. Thus, if PERSON contained 00000101 
(5==FSU), the product would be 0-010100(20), the ef­
fective branch address of the branch instruction at 
1116 would be FIRST+20 == 1120+20 == 1140, and the 
program would branch to FSU. 

Exercise J 

Fields A, B, C, and D are to be defined as full-word 
binary fields. Create an address for a branch in­
struction by adding 

to the address LIST 0 

Exercise 2 

C(A+B) 
D 

Define the following as halfwords: 

A: 216 
B: 34 
C: 252 

31 

Perform the calculation and store result of: 

(A+B) - C 

a. what is the condition code? 
b. write the binary result. 

Exercise 3 

Define the following as full words: 

A: 25 
B: 11 

multiply the two numbers and store the result. 

Exercise 4 

Define the following as character constants: 

A: 136 
B: 29 

In fixed-point arithmetic, divide A byB and store the 
quotient. If there is a non-zero remainder, branch 
to RE MDR and store the remainder. 

Questions 

1. What is the condition code for an invalid divide 
operation? multiply operation? 

2. How will the results of a multiply operation be 
effected under the following circumstances: 

a. the multiplicand is in register 10? 
b. the instruction specified register 11 as the 

first operand? 

3. List the rules for correct multiplication and 
division. 

4. What is the effect on the value of a halfword 
vvhen it is extended to a full word during a half­
word arithmetic operationo 



PROGRAMMING TECHNIQUES 

This section defines and illustrates the machine and 
assembly instructions used for address manipula­
tion, data translation, subroutine linkage, program 
switch operations, and program looping. 

ADDRESS MANIPULATION 

Much data processing involves the calculation and 
manipulation of addresses. One illustration of this 
was included in the previous section: the calculation 
of a branch address to select a particular process­
ing routine. This section describes a useful con­
stant form and the creation of the Band D fields of 
instructions. 

EXPRESSION CONSTANT 

Addresses or other expressions can be defined with 
the A constant as illustrated below: 

NAME OPERATION OPERAND 

ABLE DC AL2(A-B) 

The halfword at ABLE contains the address or value 
of A-B. A-B maybe absolute or relocatable. It may 
be relocatable only if the length is implied (four) or 
if Ln is three or four. It maybe negative if it is ab­
solute. Note that Ln must be less than or equal to 
four and if included will prevent boundary alignment 
of the constant. If L is not present a full word, ap­
propriately aligned, will be produced. 

Illustration 

The following instructions load the address of ALPHA 
in regi ster six. 

Storage 

USING, DROP INSTRUCTIONS 

TheUSING instruction informs the assembly system 
that a specific register contains a particular address. 
The assembly system uses the registers so defined 
to create displacement and base register fields for 
instructions with implied base registers and lengths. 
The DROP instruction informs the assembly system 
that a register is no longer available for displace­
ment and base register field creation. A program 
may alternately assign and drop registers as re­
quired throughout a program. 

The format of the two instructions are: 

NAME OPERATION 

USING 

DROP 

OPERAND 

Relocatable expression, 
simple absolute expression 

Simple absolute expression 

The simple absolute expressions are normally reg­
ister numbers. 

The following instructions load regi ster 3 and inform 
the assembly system that it contains ALPHA. 

LA 
USING 

3,ALPHA 
ALPHA, 3 

BRANCH AND LINK INSTRUCTION 

The Branch and Link machine instruction, BALR(RR) 
loads a register to be used in conjunction with USING. 
R2 is specified as zero to avoid a branch. When 
BALR is executed, the address of the instruction 
following BALR is loaded in R1. (Other uses of 
Branch and Link instructions will be illustrated later 
in this section. ) 

Location NAME OPERATION OPERAND Result 

1000 ALPHA DS 4C 1000-1003 reserved 

2000 ALADRS DC A(ALPHA) (2000-2003) = 1000 

2700 L 6, ALADRS (R6) = 1000 

Note that L 6, ALPHA would load the contents of 
(1000-1003) in register 6. (Note also that LA 6, 
ALPHA would have the same result as L 6, ALADRS.) 

32 



The coding on the following page illustrates the us­
ING and BALR instructions. The USING instructions 
infonn the assembly system that registers 4, 5, 6, 
and 7 contain addresses 0002, 4097, 8192, and 9000, 
respectively. Note that the LA instruction loads the 
address specified by its operandfield whereas the L 
instruction loads a storage field, which is an ad­
dress. 

Note also that becauseR6 contains 8192 and R7 con­
tains 9000, either register could theoretically ad-

Field LIST: 
Field TABLE: 

Instruction: 

dress ALPHA (9000) or ALPHA+6 (9006). R7 is 
used, however, because it produces the smaller 
displacements. If two registers would produce equal 
displacements, the higher numbered register would 
be used. (Additional examples of USING and address 
manipulation are given later in the section.) 

DA T A TRANSLATION 

The Translate instruction translates characters 
from one fonn to another, such as ASCII code to 
EBCDIC. Similarly, fields are tested for the pres­
ence or absence of certain characters, by the Trans­
late and Test instruction. The latter procedure is 
usually repetitive and may be simplified by using 
the Execute instruction. 

Translate (SS) TR Select Sb1 bytes. 

CONDITION CODE (TRT) 

o all Sb2 bytes are zero. 
1 a non-zero Sb2 byte was found. 
2 the last Sb2 byte was non-zero. 

Illustration 

The following illustrates the nature of the Translate 
instruction. 

C1, C2' C3'···' CL 
Ev E2, E3'.·· 

TR LIST (L), TABLE 

L characters to translate 
Table of up to 256 elements to 
translate C's 

Each character (Cn) is replaced as follows: 

(TABLE + Cn)~ LIST + n - 1 n = 1, 2, 3, ... , L 

Note that (TABLE + Cn) is the element En 

If characters were to be translated from ASCII code 
to EBCDIC code, the decimal digit portion of the 
table would appear as follows, assuming that the 
code for zero is in location 3080 (Because 3000 is 
the address of the first location of the table, 3080 is 
the location selected by the character whose binary 
configuration equals 80. That character is ASCII 
zero: 01010000.) 

L 
Corresponding Sb2 bytes ... Sb1 

Translate and Test (SS) TRT Select Sb1 byte. 
If corresponding Sb2 byte iO, 
Sb2 byte ... R2, Sbl byte 
address ~ Rl. If Sb2 byte = 0, 
select next Sb1 byte. 

Execute (RX) EX Execute instruction at SX2 
after (R1), bits 24-31, are 
Or'd with (Sx2)' bits 8-15. 

*Condition Code setting depends on the instruction 
being executed. The Or operation does not alter 
storage or register contents. Note that bits 8-15 
are the L, R, or I portions of an instruction. 

Location: 3000 

Contents: 
EBCDIC 

3080 3081 3082 

11110000 11110001 11110010 
o 1 2 

33 

CC,L 

CC* 

3089 

11111001 
9 



Stor- OP-
age NAME ERA- OPERAND COMMENTS Loca-

tion TION 

OOOC BAL."R. 4,0 0002 -+ R4 
fUSING *,4 

000::: BEGIN LA S,*+4095 4097 -RS 
fUSING D3EGIN+409S,5 

OOOt ~A 6,4095(O,S) 4095+4097 -t R6 
fUSING BEGIN+8190,6 

001C ~ 7)ADALPH 9000 ..... R7-operancl becomes 
tuSING ALPHA) 7 7)1118(0,4) 

1120 VWALPB DC A (ALPHA) 4 BYTES: 0 -09000 

2740 AP ALPHA(6),ALPHA+6(6) operand:0(6,7),6(6,7) 

6430 BC lS)BEGIN operand:1S,O(o,4) 

9000 ~LPHA DS ~OC 

Thus, if an ASCII 2 (010100102 = 8210) were added 
to 3000, the result (3082) would be the address of 
EBCDIC 2. The latter value replaces the corre­
sponding byte in the Sb1 field. 

Note that the table needcontain only as many entries 
as there are different characters in the Sb1 field. 
Therefore, although 256 locations are needed for a 
full table, those locations that will not be used for 
translation may be used for other purposes. 

The Translate and Test instruction differs from 
Translate in the following ways: if the table entry 
found is binary zero, the next character in the first 
operand field is processed; the first operand field is 
never changed; when a non-binary zero table entry 
is found, the address of the processed character 
from the first operand field is loaded into register 
one and the table byte is loaded into register two 
(bits 24-31), 

NAME 

LENGTH 
INPUT 
TABLE 

TRANS 

Illustration 

Assume that INPUT is a 200-byte data string. It is 
composed of variable length fields. A blank separates 
one field from another. TABLE is a 256-byte trans­
late table that contains binary zeros in all positions 
except the one corresponding to the blank (i. e. , 
TABLE + 0100000). That location contains an A. 
Assume that a blank exists in location INPUT + 25. 

The following instructions will search the INPUT 
string. (The L field of the TRT instruction is zero 
and is Or'd with (R3). The effective L is, there­
fore, 200.) 

OPERAl\ID OPERATION 

DC 
DS 
DS 
LA 
L 
EX 

TRT 

34 

F'199' 
200C 
256C 
1, INPUT 
3, LENGTH 
3, TRANS 

o (0,1), TABLE 

t t t 
D1 L B1 

1 

INPUT 
INPUT 

2 3 

199 
INPUT+25 A 199 

INPUT+25 A 199 



Exercise 1 

Write the instructions that will move the field bound 
by the blank found by the illustrative coding. Also, 
write the additional instructions necessary to enable 
the EX and TRT instructions to find each subsequent 
blank. (The instructions in the illustration may re­
quire modification.) Hint: execute the move instruc­
tion with an Execute instruction. 

SUBROUTINES 

A convenient method of writing a program is topre­
pare a framework section to direct the logic of the 
program. The fram ework perform s som e of the 
total pro c e s sing but most can be performed by 
branching to subroutines. The subroutines will per­
form well-defined portions of the job. A subroutine 
may have several entrances, which are locations to 
branch to, and usually one exit: a branch instruc­
tion to return to the framework. The following dia­
gram illustrates this process. Note that the exit 
branch addresses must be modified to enable them 
to return to the proper location in the framework. 

P-COUNTER 

One of the computer operations performed for every 
instruction is the generation of the address of the 
next sequential instruction. This address is stored 
in the P-Counter: a word in the scratchpad memory. 
If a branch is performed, the branch address re­
places the address in the P-Counter. When a BAL 
or BALR instruction is performed, the address in 
the P-Counter is transferred toR1, before the branch 
address is placed in the P-Counter. 

The address is called a link address because it is 
used by the subroutine as a link with theframework. 
Specifically, the subroutine uses the link address to 
create a branch address for the exit branch instruc­
tion. 

Thus, the framework branches to a subroutine via a 
BAL instruction. The subroutine stores or retains 
the link address. After completing the subroutine, 
the exit branch instruction uses the link address to 
return to the framework. 

FRAMEWORK SUBROUTINES 

SIN/COS Subroutine 

Branch to COS _1-------,.- COS entrance 

entrance 
Branch to SIN 

BC 15, 

Branch to Sl 
Sl Subroutine 

~ Entrance 

Branch to S2 

BC 15, 

S2 Subroutine 

Entrance 

BC 15, 

Subroutine programming is facilitated by the Branch 
and Link instructions. 

R1' R2 

exit 

exit 

exit 

Branch and Link (RR) 
Branch and Link (RX) 

BALR 
BAL 

Go to Sr2 or SX2 
Link address -+ R1 R1, D2(X2, B2) 

35 



Illustration 

The following instructions illustrate the use of sub­
routines and the BAL and BALR instructions. 

Storage 
Location NAME OPERATION OPERAND Remarks/Results 

1000 ABLE DS F 

1990 LA 4, SUB 4064-R4 
1994 BALR 3,4 Go to 4064; 1996-R3 
1996 

3046 BAL 3, COS Go to 5000; 3050 - R3 
3050 

4064 SUB Subroutine processing Do not alter (R3) 

EXIT 1 BCR 15,3 Go to 1996 = (R3) 

5000 COS ST 3,ABLE (R3) = 3050-ABLE 
Subroutine processing 

L 
EXIT 2 BCR 

3,ABLE 
15,3 

(ABLE) = 3050 - R3 
Go to 3050 

The address 1996 and 3050 are the addresses of the 
instructions following the branch instructions at 1994 
and 3046, respectively. Subroutine SUB must not 
alter (R3) because its exit branch utilizes (R3). 
Subroutine COS stores (R3) so that R3 may be used 
by the subroutine. 

Exercise 2 

Write the instructions that perform the following 
functions in fixed -point arithm etic: 

1. Go to a subroutine to calculate x. 
2. Multiply x by two after returning from the 

subroutine. 
3. Go to a subroutine to add the product to a sum. 
4. Go to the calculate-x subroutine. 
5. Multiply x by four after returning. 
6. Go to the add subroutine. 
7. Go to step 1. 

Ignore the actual calculation of x and the selection 
of successive values of x. 

36 

PROGRAM SWITCHES 

It is often necessary to perform some function, per­
haps by a subroutine, and then branch to one of sev­
eral locations depending on predetermined condi­
tions. Such a branch instruction is called a program 
switch. 

Based on the pre-determined conditions, the switch 
is set to branch to the appropriate location. 

III ustration 

The following instructions illustrate a switch at loca­
tion SW A. It is set to branch to Al or A2 depending 
on whether OPN1 or OPN2 is performed before sub­
routine CMPUTE. 



Storage 
Location NAME OPERATION OPERAND 

1000 OPN1 

1090 LA 3,A1 
1094 BC 15, CMPUTE 
1096 OPN2 

LA 3,A2 
BC 15, CMPUTE 

1400 CMPUTE 

1530 SWA BCR 15,3 

1600 Al 

1700 A2 

OPN1 ends by setting SWA to Al (LA 3, AI). The 
branch instructions at SW A will therefore branch to 
AI, because (R3) = AI. Note that CMPUTE must not 
alter (R3). If R3 is needed by CMPUTE, (R3) must 
be stored and then reloaded before exiting at SW A. 
(Program switches may also be programmed by 
modifying or replacing instructions, or the contents 
of base or index registers; and by testing bits that 
have been set to indicate conditions. ) 

Exercise 3 

Branch on Count (RR) 
Branch on Count (RX) 
Branch on Index High (RS) 
Branch on Index Low or Equal (RS) 

Write the instructions toperform the following func­
tions. Use a program switch. 

1. Calculate x. 
2. Go to step 3. (The next time through the loop 

go to step 6; next time to step 3, etc.) 
3. Multiply x by two. 
4. Go to a subroutine to add the product to a sum. 
5. Go to step 1. 
6. Multiply x by four. 
7. Go to step 4. 

Results/Remarks 

Operation one is performed 

1600-R3 
Go to 1400 
Operation two is performed 

1700-R3 
Go to 1400 

Perform CMPUTE 

Go to 1600 or 1700 
depending on (R3) 

PROGRAM LOOPS 

The two preceding exercises are examples of pro­
gram loops; that is, a function is performed, and 
the program loops back to some point to process the 
next item, record, or value. In the preceding case 
subsequent values of x must be selected. Four in­
structions that are useful inprogrammingloops are: 

BCTR} 
BCT 

(R1) - 1-R1 
Go to Sr2 or SX2 if (R1)10 
See below 

R1,R2 
R1, D2(X2, B2) 
R1, R3' D2(B2) 
R1, R3, D

2
(B

2
) 

BXH 
BXLE See below 

37 

BXHandBXLE: (Rl) + (R3) .... R 1; Compare (R1): (Ra) 

[Ra = R3 or R3 + 1, whichever is odd] 

BXH: after the above, go to Sb2 if (R1) > (Ra) 

BXLE: after the above, go to Sb
2 

if (R1) S. (Ra) 

A loop using the BX instructions is comprised of 
index-type (RX) instructions. Loops that do not con­
sist of inC9x-type instructions can use the BCT in­
structions to count the number of executions of the 
loop. In a loop of index-type instructions the index 
registers are incremented to address successive 
values. In a loop of decimal instructions, however, 
the contents of the base register or registers have 
to be modified to address successive values. Cau­
tion must be exercised when modifying base regis­
ters, however, because the registers modified may 
have been used to address instructions or other data. 



Illustration 

Compute the surr.. of the 100 packed decimal numbers 
beginning at location NUMBER. Each number is two 
bytes long. The sum may be three bytes long. 

Storage 
Location NAME OPERATION OPERAND 

0000 BALR 2,0 
USING *,2 

0002 LA 3, NUMBER 
USING NUMBER, 3 

0006 L 4, LIMIT 
0010 ZAP SUM, NUMBER 
0016 LOOP A 3,INCRMT 
0020 AP SUM, NUMBER 
0026 BCT 4, LOOP 
0030 BC 15, END 
0034 INCRMT DC F'2' 
0038 LIMIT DC F'99' 
0042 SUM DS CL3 
0045 NUMBER DS 100CL2 

The instruction at LOOP causes R3 to address the 
current number: location 0047 after its first execu­
tion, 0049 the next time, etc. The instruction AP 
SUM, NUMBER is equivalent to AP 40(3,2), 0(2,3). 
40(3, 2) always addresses location 0042. 0(2, 3) will, 
however, address successive numbers because (R3) 
is incremented by two by the instruction at LOOP 
after every addition to the sum. The BCT instruc­
tion reduces the limit of 99 (there will be 99 addi­
tions to the sum) and branches to LOOP except after 
the 99th addition. At that time (R4) = zero. Note 
that the limit of 99 could have been loaded by the in­
struction LA 4,99. 

Notice that either R2 or R3 could theoretically ad­
dress NUMBER. R3 would be used by the assembly 
system because it results in a smaller displacement. 

38 

Results/Remarks 

0002- R2 

0045 - R3 

99-R4 
First number - SUM 
(R3)+2 -R3 
(SUM)+ current number- SUM 
(R4)-1-R4, if iO, Go to LOOP 
Go to END on completion 
Increment for addresses 
Lim it on additions 
Sum storage 
Number storage 

Exercise 4 

Delete the instruction LA 3, NUMBER and the follow­
ing USING instruction in the illustration. Change A 
3,INCRMT to A 2, INCRMT. Will the resulting pro­
gram run correctly? Why or why not? 

Exercise 5 

Recode the preceding example without using a BCT 
instruction. Test (R4) against an address limit to 
determine when all numbers have been added. 

Exercise 6 

Recode Exercise 3 using the BCT instruction. The 
calculation of X, to be performed using decimal 
arithmetic, is: X=2Y+3. There are 100 values of 
Y, each of which is two bytes inlength. Define stor­
age for the 200 numbers and the resulting sum. (The 
sum will be 2X1 +4X2+2X3+ ... +4X100' ) 

Illustration 

Move the 100 consecutive full words from area A to 
area B. 



NAME OPERATION OPERAND COMMENTS 

BALR 6,0 R6 used for 
USING *,6 address generation 
L 4,INCRMT 4-R4 
SR 3,3 0-R3 
LA 5,396(0,3) 396-R5 

LOOP L 2, A(3) (A+(R3) )- R2 
ST 2, B(3) (R2)"B+(R3) 
BXLE 3,4, LOOP (R3)+(R4)- R3; i. e. (R3)+4 - R3 

Go to LOOP until (R3)=400 
(R5) 

A DS lOOF 
B DS lOOF 
INCRMT DC F'4' 

(Note that in actual practice MVC instructions would 
be used to move data. ) 

The LA instruction creates the constant 396 and loads 
it into R5. The Land ST instructions operate with 
A and B as base addresses. These addresses are 
indexed (incremented) by (R3), which is zero initi­
ally, four during the next execution, etc. R3 con­
tains 396 (4x99) after the 99th word is moved and 
(R3) is added to (R4); BXLE branches. After the 
lOOth word is moved, R3 becomes 400 and BXLE 
does not branch; the loop is completed. Note that 
because R4 is used as the R3 field in the BXLE in­
struction, R5 is used for the comparison. 

39 

Exercise 7 

Records of binary data consisting of four words each 
are stored starting atlocationINPUT. There are ten 
such records. Create and store one output record 
for each input record, beginning at OUTPUT, by per­
forming the following claculation: 

D (A+B) - C 

where A is the first word of the input record, B is 
the second word, C is the third word, and D is the 
fourth word. Each output record consists of one 
word. Assume that the product is contained in one 
word. 



FLOATING-POINT ARITHMETIC 

INTRODUCTION 

A fundamental problem in scientific applications is 
the maintenance of as much significance as possible 
while dealing with numbers of widely varying size. 
Furthermore, it is desirable to have an automatic 
scheme for keeping records on decimal point loca­
tion. The floating point instruction reperatory, an 
optional set of instructions, supplies these needs. 
Short- and long-form precision operand formats, 
which in turn may be normalized or unnormalized, 
are provided. 

DATA FORMAT 

Floating point operands are in one of two forms: 

1. Full-word short form 
2. Double-word long form 

Both formats use a sign bit in- position 0, followed by 
a characteristic in bit positions 1-7. Short-precision 
floating point operands contain a fraction (mantissa) 
in bit positions 8-31, while long-precision operands 
have the fraction in bit positions 8-63. 

1-7 
Charac. 

CONVERSION 

8-31 
Fraction in short form 

The step-wise process to convert numbers into their 
internal (machine) formats is illustrated. 

1. Decompose the number into adecimal integer and 
a decimal fraction. 

149.25 
79 0 5 

.01 

149 plus. 25 
79 plus 05 
o plus. 01 

2. The decimal integer must be converted to hexa­
decimal. 

To convert a decimal integer to hexadecimal, 
divide repeatedly by 16. Each time write the 
remainder, starting from the right, and divide 
the quotient by 16 to get the next digit. 

40 

9 

16~ 
144 

51st 
remainder 

o 
16/9 

~ 
9 2nd remainder, 

hence, (95)16 

3. The decimal fraction is then converted to its 
hexadecimal representation. 

(.25)10 

( .5)10 

To convert a decimal fraction to hexadecimal, 
multiply the fraction by 16. Write down what­
ever appears to the left of the decimal point as 
the first hexadecimal digit. Multiply the frac­
tional part of the product by 16, again, etc. 

Example: 

Convert (.25)10 to hexadecimal. 

.25 
16 

150 
25 

4. 00 1st digit is 4 

00 
16 
00 A result of zero indicates that the conver­

sion process is complete o Thus the 
answer is (.4)16 

Example: 

Convert (.33)10 to hexadecimal. 

.33 
16 

198 
33 

5.28 

.28 
16 

168 
28 

4.48 

.48 
16 

288 
48 

7.68 etc. Thus, our answer to 3 places is (. 547)16 



4. Combine the integral and fraction parts and ex­
press as a power of 16 (exponent). 

Thus, (149.25)10 (95.4)16 

(4F.0)16 

2 
.954 x 16 , 

2 
.4F x 16 . 

5. The characteristic is obtained by adding 64 (deci­
mally) to the exponent and converting to binary. 

For .954 x 162, the characteristic 
exponent + base = 02 + 64 

= 66 and (66)10 = (100 0010)2. 

6. The fraction is converted to binary and grouped 
hexadecimally: 

(.954)16 (.1001 0101 0100)2 

70 The characteristic and fraction are combined and 
stored in short- or long-precision form. 

"'u stration 

149.2510 = 149 plus. 25 

(149)10 

(.25)10 

(95.4)16 
2 

.954 x 16 

characteristic = 2 + 64 = (66)10 = (100 0010)2 

fraction = (.954)16 (.1001 9101 0100)2 

NORMALIZATlm~ 

A floating point number is normalized when the high­
order digit (bit positions 8, 9, 10, 11) is not zero. 
It is unnormalized if the high-order digit contains all 
zeros. A floating point operation yields the greatest 
precision if the fractions of the operands are nor­
malized. There are scientific applications, how­
ever, where it is desirable not to have the processor 
automatically normalize all results so as to control 
or predict the significance of the results. 

Illustration 

The number (95.4321)16 is shown in normalized 
form, and followed by three possible representations 
in unnormalized form. 

number (short form) o 1000010 1001 0101 0100 0000 0000 0000 

III ustration 

-95.15 - (95 plus. 15) 

(95)10 (5F)16 

(.15)10 = (.266666)16 

(95.15)10 = (5F. 266666)16 

(5F.266666)16 = • 5F266666 x 16
2 

Characteristic = 2 + 64 = (66)10 = (100 0010)2 

Fraction = (5F266666)16 = (.0101 1111 0010 0110 0110 0110)2 

Number (short form) = 1 1000010 0101 1111 0010 0110 0110 0110 

41 



(95.4321)16 .954321 x 16
2 = 0 1000010 1001 0101 0100 0011 0010 0001 

.0954321 x 163 = 0 1000011 0000 1001 0101 0100 0011 0010 

.00954321X16
4 = 0 1000100 0000 0000 1001 0101 0100 0011 

Note: 1. It is not possible to express the number, 
say, as 95.4 x 160, since 95.4 is not a 
fraction. 

2. Observe how the rightmost digits of the 
number are dropped as the original num­
ber is shifted to the right during the un­
normalization process. 

Exercise 1 

Express the following numbers in normalized short­
precision floating point form. 

Exercise 2 

1.0 
-10 

.0005 
193.52 

Express the following numbers, where possible, in 
short-precision floating point form with a charac­
teristic of 1000011. Which numbers are then in un­
normalized forrn? 

450 
-2 

4515 
.1 

Name Operation 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

Exercise 3 

a. Write the binary configuration (in short form) for 

1. zero, 
2. the largest positive number, and 
3. the smallest positive number. 

b. What are the advantages and disadvantages of the 
long-precision floating point form? 

c. Without lmowingthe fraction, given that the expo­
nent of A is 1000011 and that the exponent of B is 
1000001, can one determine which is the larger 
number in absolute value? 

ASSEMBLY SYSTEM CONSTANTS 

Floating point constants can be generated by using 
the DC instruction with an operand of the form: 

D 'number' or 
E 'number' 

for long-precision and short-precision, respectively. 

Illustration 

Samples of the proper uses of DC, for floating point 
constants, are shown below: 

Operand Result, Remark 

E'46.2' 
D'7.29' 
D'7' 
D'-12345' 

Aligned at word; length is 4 
Aligned at double word; length is 8 
No decimal point is required 

D' -123. 45E+2· 
D'-.12345E+5' 
D' -7295700E-2' 
4E'3.4' 

1/ I ustration 

Identical constants 

Duplication factor is allowed 

The following DC operands are invalid: 

42 

E'25.2E76' 
E3L'15.2' 
D'2. 5. 2' 
E'999999.E74' 
D'2.5-' 

Exponent is too large 
L notation is not allowed 
Two decimal points 
Number is out of range 
Sign must precede the number 



LOAD AND STORE INSTRUCTIONS 

The first group of floating point instructions to be 
discussed are of the data-handling type. 

LOAD (long) RR LDR 

LOAD (long) RX LD 

LOAD (short) RR LER 

LOAD (short) RX LE 

LOAD and TE ST (long) RR LTDR 

LOAD and TEST (short) RR LTER 

LOAD COMPLEMENT (long) RR LCDR 

LOAD COMPLEMENT (short) RR LCER 

LOAD POSITIVE (long) RR LPDR 

LOAD POSITIVE (short) RR LPER 

LOAD NEGATIVE (long) RR LNDR 

LOAD NEGATIVE (short) RR LNER 

STORE (long) RX STD 

STORE (short) RX STE 

43 

(R2,)~R1 R1,R2 

(Sx2)-+R1 R1, D2 (X2' B 2) 

(R
2
)--.R1 R1,R2 

(Sx
2

)--+R
1 R1, D2 (X2' B 2) 

(R2)----.R1 R1,R2 CC 

(R2)-...R1 R1,R2 CC 

(-R2)-.R1 R1,R2 CC 

(-R2)-+R1 R1,R2 CC 

(I R21 )--+R1 
R1,R2 CC 

(I R21 )-+R1 Rl'R2 CC 

(-I R2 1 )--+R1 R1,R2 CC 

(-IR2 1 )--+R1 R1,R2 CC 

(R1)~Sx2 R1, D2 (X2' B 2) 

(R1)-.Sx2 R1, D2 (X2' B 2) 

Floating point operands use 4 double-word registers 
numbered 0, 2,4, and 6. These are different from 
the registers numbered 0,2,4,6 among the 16 general­
purpose registers. Short form instructions use only 
the first word of these double-word registers. 



" /ustration 

Data handling instructions for floating-point operands 
are shown below. 

Name Operation 

A DC 
B DC 
C DC 
D DC 
E DC 
F DC 

WA1 DS 
WA2 DS 

LE 

LDR 
LER 
LD 
LTDR 
STD 
STE 
LE 
LCER 
LNER 
LD 
LPDR 
LCDR 

Exercise 4 

Operand 

E'46.2' 
E'-7.5' 
E'O' 
D'100' 
D'-90' 
D'123E+2' 
D 
2F 
0, A 

2,4 
2,0 
6,D 
4,6 
4, WA1 
4, WA2 
0, B 
2, 0 
4, 0 
6, E 
4, 6 
4, 4 

Result, Remarks 

Short form 46.2 
Short form of -7. 5 
Short form 0 
Long form 100 
Long form -90 
Long form of 12300 
One double word reserved 
2 Full words reserved 
46.2 to register 0; second word 

of RO unchanged 
Garbage? to register 2 
46. 2 to register 2 
Long form 100 to register 6 
Long form 100 to register 4; CC = 2 
W Al = long form 100 
NOTE: WA2 = short form 100 
Short form -7. 5 to register 0 
Short form 7. 5 to register 2 
Short form -7.5 to register 4 
Long form -90 to register 6 
Long form 90 to register 4 
Long form -90 back to register 4 

Exercise 5 

The double-word field A contains a long form -15. 
Load -15 in register 0 in long form. 

Store the second word of register 0 in both words of 
floating-point registers 2, 4, 6. Define any work­
ing storage necessary. Load -15 in register 2 in short form. 

Load 15 in register 4 in long form. 
Load 15 in register 6 in long form. 
Do not use any other instructions not yet covered in 

this section. 

44 

Exercise 6 

Put the complement of the short form floating-point 
number in floating-point register 6 into General­
Purpose register 3. 



ARITHMETIC INSTRUCTIONS 

The following chart summarizes the principal arith-
metic instructions in the floating-point set. 

ADD Normalized (long) RR ADR (R
1

) + (R2) ---. Rl R I ,R2 CC 

ADD Normalized (long) RX AD (RI ) + (Sx
2
)-+RI R

I
,D2 (X2' B 2) CC 

ADD Normalized (short) RR AER (RI ) + (R2) -+RI Rb R2 CC 

ADD Normalized (short) RX AE (RI ) + (Sx2)-+RI R I , D2 (X2' B 2) CC 

ADD Unnormalized (long) RR AWR (RI ) + (R2) -+RI RI ,R2 CC 

ADD Unnormalized (long) RX AW (RI ) + (Sx2)-+RI R I ,D2 (X2, B2) CC 

ADD Unnormalized (short) RR AUR (RI ) + (R2) ~RI R I ,R2 CC 

ADD Unnormalized (short) RX AU (RI) + (Sx2)~RI RI ,D2 (X2, B 2) CC 

SUBTRACT Normalized (long) RR SDR (RI ) - (R2) --. RI R I ,R2 CC 

SUBTRACT Normalized (long) RX SD (RI ) - (Sx2) --. RI R I ,D2 (X2, B 2) CC 

SUBTRACT Normalized (short) RR SER (RI) - (R2) --. RI RI,R2 CC 

SUBTRACT Normalized (short) RX SE (R I ) - (Sx2) --. RI R I ,D2 (X2, B 2) CC 

SUBTRACT Unnormalized (long) RR SWR (RI ) - (R2) ~RI R I ,R2 CC 

SUBTRACT Unnormalized (long) ~X SW (RI ) - (Sx2)~RI R I ,D2 (X2, B 2) CC 

SUB TRACT Unnormalized (short) RR SUR (RI ) - (R2) ~RI R I ,R2 CC 

SUBTRACT Unnormalized (short) RX SU (RI ) - (Sx2)~RI R I ,D2 (X2' B2) CC 

MUL TIPLY (long) RR MDR (RI ) * (R2) -+RI RI,R2 

MULTIPLY (long) RX MD (RI ) * (Sx2)-+RI RI ,D2 (X2, B2) 

MULTIPLY (short) RR MER (RI ) * (R2) -+RI R I ,R2 

MULTIPLY (short) RX ME (RI ) * (SX2) ...... RI R I ,D2 (X2, B2) 

DIVIDE (long) RR DDR (RI ) / (R2) ...... RI R I ,R2 

DIVIDE (long) RX DD (RI ) / (Sx2)-+RI R I ,D2 (X2, B 2) 

DIVIDE (short) RR DER (RI) / (R2) -+RI R I ,R2 

DIVIDE (short) RX DE (RI) / (SX2) ...... RI RI,D2 (X2, B2) 

Normalization usually takes place when the inter-
mediate result is changed to the final result. Such 
a proces s is called post-normalization. On the in-
structions, designated above as unnormalized, post-
normalization does not take place. 

45 



Illustration 

Let (R2) 

(R4) 

(111)10 

(110)10 

Now, SUR 2, 4 
would place 

While, SER 2, 4 
would place in 
register 2. 

III u stration 

o 1000010 0110 1111 0000 0000 0000 0000 

o 1000010 0110 1110 0000 0000 0000 0000 

o 1000010 0000 0001 0000 0000 0000 0000 

o 1000001 0001 0000 0000 0000 0000 0000 

(The remaining illustrations in this section use short 
form operands and normalized instructions. ) 

Compute: A = Ci + Di , i = 1,5. 

Name Operation Operand Result, Remarks 

C DC 5E'1. 2' Values for Ci 
D DC 5E '1. 3' Values for Di 
A DS F 

ADDR DC F'O' Constants for looping 
DC F'4' 
DC F'16' 
LM 1,3,ADDR R1 = 0, R2 = 4, R3 = 16 
SER 0, 0 RO = 0 

LOOP AE 0, C(I) RO = RO + Ci 
AE 0, D(I) RO = RO + Di 
BXLE 1,2, LOOP Branch 
STE 0, A Result to A 

Illustration 

Set A = A * B if C = 0 

A = (C/B)2 if C ~ 0 

Name Operation Operand Remark, Comments 

LE O,C RO = C 
LTER 0,0 Set CC 
BC 8, ZPATH Go to Z PA TH if C 0 
LE 2, C R2 C 
DE 2,B R2 = C/B 
MER 2,2 R2 = (C/B)2 
BC 15, END Jump to end 

ZPATH LE 2,A R2 = A 
ME 2,B R2 = A * B 

END STE 2,A Store result in A 

46 



Exercise 7 Condition Code Summary 

The array A, is composed of 100 short-form floating 
operands. Determine the average number of the 
array and place it in floating-point register 6. 

COMPARE AND HALVE INSTRUCTIONS 

The remaining, miscellaneous floating-point instruc­
tions are summarized below. It is worth noting that 
the compare instructions make life much easier. 
Comparison is algebraic, taking into account the sign. 
Moreover, exponent inequality is not decisive for 
magnitude determination because fractions may have 
different numbers of leading zeros in the unnormal­
ized format. 

Compare (long) RR CDR (R1) (R2) 

Compare (long) RX CD (R1) (Sx2) 

Compare (short) RR CER (R1) (R2) 

Compare (short) RX CE (R1) (Sx2) 

Halve (long) RR HDR (R2) / 2--.R1 

Halve (short) RX HER (R2) / 2 ---+R1 

Illustration 

Find the largest number in the array Ai' i ::= 1, 5. 
Place the number in floating-point register 2. 

Operation 

ADD, SUBTRACT 1 
LOAD POSITIVE R 

LOAD AND TEST ~ 
LOAD COMPLEMENTS(~ 
LOAD NEGATIVE } 

COMPARE: OPERAND 1 

R1,R2 CC 

R1, D2(X2, B2) CC 

R1,R2 CC 

R1, D2(X2, B2) CC 

R 1,R2 

R1,R2 

Name Operation Operand Result, Remarks 

ADDR DC F'4' Constants for looping 
DC F'4' 
DC F'19' 
LM 1,3, ADDR R1 ::= 4, R2 ::= 4, R3 ::= 19 
LE 2,A A1 to R2 

LOOP CER 2, A(l) R2 to Ai 
BC 4, RESET Less than, Equal; continue 

TEST BXLE 1,2, LOOP 
STOP 

RESET LE 2, A(l) Reset R2 to Ai 
BC 15, TEST 

CONDITION CODE 

The condition code settings for the floating-point 
operands are summarized above. 

47 

o 

o 

o 

o 

o 

o 

1 2 3 

+ OF 

+ 

+ 

+ 

< > 



Exercise 8 

Find the square root y of the number a by applying 
the Newton-Raphson formula of: 

or 

2 
Yi +1 = Yi + 1:. (J!. - y") = a + Yi 

2 Yl" 1 2 
Yi 

1 
- (a/y" - Y1") 2 1 

The procedure is to make some guess Yo at the square 
root of a. A corrected second approximation y is 
computed by then applying the formula, a third ~p­
proximation by applying it again, etc. Each time an 
approximation is computed, it is compared with the 
previous one. As soon as they agree to within some 
value (let us use 00001), the process is stopped. 
NOTE: To find the nth root of the number a, one 
may apply the formula: 

Yi+l =Yi + 1 (~- yo) 
n yn-l 1 

48 

Exercise 9 

HINT: Observe that 

The evaluation can be set up as a simple loop, start­
ingfrom the innermost parenthesis and working out­
ward. This process is called NESTING. 

Assume that the fixed point binary value of n is in 
general-purpose register 1 and that x is in floating­
point register 2. The coefficients are stored in HSM 
as words as follows: 



INPUT /OUTPUT 

The Input/Output can be programmed with machine 
instructions or software instructions. This section 
illustrates the basic concepts of the RCA 70/45-55 
systems required for either type of programming. 

BASIC COMPONENTS 

The following diagram shows one possible config­
uration of input/output components. A description 
of the components follows the diagram. 

Multiplexor Channel 

Controls low-speed input/output devices via 
eight trunks. A ninth trunk. is connected to the 
M u 1 tip lex 0 r channel to control a console 
typewriter/keyboard (optional). All devices 
connected to the Multiplexor channel may oper­
ate simultaneously. RCA 70/45-55 systems 
have one Multiplexor channel. 

70/45 -55 Input/Output Components 

PROCESSOR 

SCRATCH 

PAD 

MEMORY 

MAIN 

MEMORY 

Selector 

Channel 

Selector 

Channel 

Selector 

Channel 

Multiplexor 

Channel 

Control 

Electronics 

Control 

Electronics 

Console Typewriter/Keyboard 

Selector Channel 

Controls high-speed input/ output devices. Only 
one device on each channel may operate at a 
time. An RCA 70/45 System may have three 
selector channels; a 70/55 may have six. 

49 

Standard Interface 

Connects an I/O SUb-system (i. e., a Control 
Electronics and its associated devices) to a 
channel. 



Control Electronics 

Provides immediate control over devices. Up 
to 16 devices may be connected to a Control 
Electronics. The following table illustrates 
the number of Control Electronics possible on 
each channel. 

70/45 Selector - 2 
70/55 Selector - 4 
Multiplexor - 9 

Sub/Channel 

Connects an input/output device to a control 
electronics on a Multiplexor channel. 

PRIORITY OF OPERATIONS 

Channels are scanned and serviced in a priority or­
der. Selector channel one has the highest priority 
and the Multiplexor channel has the lowest priority. 
After servicing (transferring data, etc.) is com­
pleted for one selector channel, scanning begins 
again with the first selector channel. 

The Multiplexor trunks are also scanned in a priority 
order. Mter a Control Electronics has been serv­
iced, scanning resumes with the first Control Elec­
tronics on the first selector channel. The Multiplexor 
scan is interrupted whenever a selector channel re­
quires service. Then all selector channels are 
scanned, and serviced if required. 

Start Device (SI) 
Halt Device (SI) 
Check Channel (SI) 
Test Device (SI) 

SDV 
HDV 
CKC 
TDV 

Finally, if more than one device is connected to a 
Control Electronics on the Multiplexor channel, the 
Control Electronics determines the priority of scan­
ning its devices. 

INPUT /OUTPUT OPERATIONS 

Three types of control words initiate input/output 
operations. 

1. Input/ Output Instruction 

OP _B1 ! Dl 

8 8 4 12 

a. Addresses the device 
b. Initiates an operation 

50 

2. Channel Address Word 
(always Main Memory 
location 72) 

Address of CCW 

4 4 24 

a. Addresses a Channel Command Word 
b. Specifies memory storage protection key 

3. Channel Command Word 

Com­
mand 

Data Address 

8 24 

flagsi 0 ..... 0 Data Count 

5 11 16 

a. Specifies the input/output operation 
b. Contains the address of the first byte of stor­

age to be accessed 
c. Specifies the amount of data to be transferred 
d. Specifies variations to the basic operation 

(flags) 

INPUT/OUTPUT INSTRUCTIONS 

There are four input/output instructions (pri vile ged): 

Initiate data transmission 
Halt data transmission 
Set CC based on channel 
Set CC based on device 

D1 (B1)' 12 
D1(B1),12 
D1(B1),12 
D 1(B1),12 

CC 
CC 
CC 
CC 

The CAW and CCW are used only with the Start De­
vice Instruction. The 12 field is not used. The 
rightmost eleven bits of the sum (B1) + D1 is the 
address of the desired device. The address has the 
following format. 

C C C D D D D D D D D ---------
Channel Device 

l 
000 Multiplexor Channel 
001 Selector Channel 1 
010 Selector Channel 2 
011 Selector Channel 3 
100 Selector Channel 4 
101 Selector Channel 5 
110 Invalid 
111 Selector Channel 6 



The four input/output ins t r u c t ion s are used as 
follows: 

Start Device 

initiates an input/output data transmission (if 
possible). The Condition Code is set to indi­
cate whether or not the operation was initiated. 

Test Device Check Channel 

The processor can test specific devices and/or 
channels to determine if a data transmission 
has been completed or if one may begin so as 
to optimize input/output operations. 

Halt Device 

stops adata transmission so that the processor 
can initiate higher priority operations. 

COMMANDS 

The command field of the Channel Command Word 
(CCW) specifies the operation to be performed. The 
commands vary depending on the specific input/output 
device but certain characteristics are common to all, 
as shown on the following chart. The command is 
f.hown in hexadecimal. This table is illustrative 
only and docs not include all devices. (X in the com­
mand indicates modifier bi ts peculiar to each device. ) 

General Magnetic Card 
Command Meaning Tape Reader 

X2 Read 
Backward 

X3 Write Write 

X4 Erase 

X5 Read Read Read 

X7 Write Select 
Control* Rewind Stacker 

BURST MODE 

In the case of devices connected to a Multiplexor 
channel, however, one of the modifier bits indicates 
that the operation is performed in the burst mode. 
That is, the Multiplexor channel acts like a selector 
channel and only one device operates at one time. 

COMMAND MODIFICATION 

The flag bits of the Channel Command Word augment 
the command to: 

Chain data: 

Execute a series of commands, in consecutive 
CCW's, such as tape write commands, to out­
put data from non-contiguous areas of mem­
ory, with one Start Device instruction. (See 
Program Controlled Interrupt, which follows.) 

Chain commands: 

Execute a series of similar commands, with 
one Start Device instruction: such as search 
then read from a random access device. 

Suppress length indication: 

Card 
Punch 

Punch 

Accept as correct, an operation in which the 
data length does not equal the CCW count. This 
feature is useful, for example, when reading 
variable-length records. 

Printer 

Print 

Set Punch 
Mode Advance Paper 

X9 Transfer in channel (all): the next CCW is selected from the data 
address location. 

Xl Sense (all): read the sense byte (status information) into memory 

* Only one of many write control functions is shown for each device for 
illustrative purposes. 

51 



Skip data: 

Move m agne ti c tape, for example, without 
transferring data to memory. 

Program controlled interrupt: 

Causes an interrupt signal when the channel 
control word is fetched. During c h a in i n g , 
CCW's, except the first one, can have this bit 
set. Then, after one CCW command terminates 
and the next CCW is fetched and initiated, an 
interrupt occurs informing the program that 
previous operation is complete. 

TRANSFER IN CHANNEL 

When commands or data are to be chained, the chan­
nel command words normally occupy sequential loca­
tions in memory. The Transfer in Channel command 
causes the selection of the next channel command 
word to be selected from the location specified by the 
data address field. 

Condition 
Code start Device Halt Device 

O· Operation initiated Operation not 
and proceeding2 terminated be-

STATUS OF INPUT/OUTPUT OPERATIONS 

The status of an input/output operation is determined 
by examining three levels of status information. 
These are: 

1. condition code 
2. scratch pad indicators (16 bits: 

channel status byte and standard device byte 
3. sense bytes in the device 

The condition code is set when any input/output in­
struction is issued. The condition code indicates 
whether or not the desired operation could be or has 
been performed. For many situations, the condition 
code contains all the information necessary for proc­
essor action. The following chart defines the Condi­
tion Code for all input/output instructions. 

Test Device Check Channel
2 

Specified device is Channel available 
available and can (Device or Sub-

cause the Channel accept an operation channel not tested) 
or Sub-channel 
was not busy 1,2 

1 Operation not Operation not Specified device Interruption pending 
initiated, consult terminated, con- cannot accept an in Selector Channel 
status bits stored suIt status bits oPeration, consult (Multiplexor not 
in Scratch Pad stored in Scratch status bits stored tested) 
Memory Pad Memory in Scratch Pad 

Memory 

2 Operation not Operation was Specified device Selector Channel 
initiated because terminated cannot accept an busy or Multi-
the Channel or Sub- operation because plexor busy 
channel was busy the Channel or Sub- operating in burst 
or an interrupt is channel is busy2 mode 
pending2 

3 Operation not Operation not Specified device I/O Channel is 
initiated because terminated be- cannot accept an inoperable 
the Channel or Sub- cause the Channel operation because 
channel is or Sub-channel is the Channel or Sub-
inoperable2 inoperable2 channel is 

inoperable2 

NOTES 
1. Multiplexor Sub-channel busy but not with specified device. 
2. The status bytes are not stored by this instruction or condition code. 

52 



In certain instances, the Condition Code does not con­
vey enough information for processor action (e. g., 
Condition Code one for a start Device instruction). 

In such a case, the program must tr ansfer the status 
bytes to main memory and then test them. (The sta­
tus bytes are transferred by privileged instructions 
defined in a later section.) The status bytes are 
automatically stored in the scratch-pad memory if 
an operation cannot be initiated or if difficulties are 
encountered during the operation. 

The status bytes contain information common to all 
devices. If they do not contain sufficient informa­
tion, the sense bytes peculiar to the device must be 
examined by issuing a Sense Command (by a start 
Device instruction) which reads the sense bytes into 
main memory. They are then examined to determine 
the action necessary. A list of status bits and an 
illustration of sense bytes follow. 

SENSE {COMMAND} BYTE {each device} 

STANDARD DEVICE BYTE (each channel) 

status modifier (during chaining a CCW is skipped 
due to a preceding CCW operation) 

Interrupt pending (a non-input/output interrupt con-
dition exists) 

Device busy 
Control busy 
Device end (device operation has terminated) 
Secondary indicator (sense command required) 
Device inoperable 
Manual Request 

CHANNEL STATUS BYTE (each channel) 

Program controlled interrupt (program requested 
interrupt, usually during chaining) 

Incorrect length (data transferred F count) 
Program check (e. go, invalid data address) 
Protection check (read attempted into protected 

memory) 
Channel data check (parity error detected in channel, 

main or scratch-pad memory) 
Channel control check (machine[channel]malfunction) 
Termination interrupt pending (interrupt caused by 

I/O termination not effected) 
Termination interrupt (I/O termination interrupt 

accepted). 

Bit Magnetic Tape Card Reader Card Punch Printer 

1 Control code sensed Buffer available 

2 Be gin/E nd Tape Paper low 

3 Tape mark read Manual servicing Manual Servicing Manual servicing 

4 Tape record too Intervention Illegal 
small required character 

5 Channel parity Invalid punch Transmission Transmission 
parity parity 

6 Read count error stacker problem Punch buffer 
parity 

7 See below* See below* 

8 Read/Write error Read error Punch error 

* If a data byte could not gain access to a channel or Control Electronics because of other 
higher-priority data transmissions, a "Service Request Not Honored" signal sets a bit 
in the sense byte. 

53 



TERMINATION OF INPUT/OUTPUT OPERATIONS 

When an input/output operation terminates, success­
fully or otherwise, the program is interrupted, if 
the interrupt mask is set to allow interrupt. (The 
details of program interrupt are given in alater sec­
tion.) The interrupt mask gives the program the 
option of accepting an interrupt when the operation 
terminates or at a later time. 

In either case, status bytes are automatically stored 
in the scratch-pad memory and must be examined 
before another Start or Test Device instruction is 
issued. (A Start or Test Device instruction clears 
the standard device byte. ) 

SEQUENCE OF INPUT/OUTPUT 
PROGRAMMING OPERATIONS 

The following is an outline of the steps required for 
input/ output progr amming. 

A. Issue a Start Device instruction. 

B. Test the Condition Code. The Condition Code 
settings and the required action are shown in 
the following table. (See the Condition Code 
chart for more detail. ) 

CC Indication 

(If the interrupt was not accepted at termination, the 
program must allow the interrupt to occur before 
issuing another Start Device instruction. The opera­
tions in step D are then performed. ) 

Illustration 

A record is to be read from magnetic tape: 

Device number: 
Selector channel: 
Record length: 
Memory data address: 
CCW location: 
No storage protection 

Action 

14 
2 

600 bytes 
2400 
1600 

o 
1 
2 
3 

Operation proceeding 
Operation not initiated 
Operation not initiated 
Operation not initiated 

Continue with program 
Transfer status bits to memory and test 
Issue Check Channel instruction 
Manual action required 

C. When the status bits are tested: 

1. Sufficient information may be available for 
program action, or, 

2. The sense byte(s) must be read into memory 
(Sense command) and tested by the program. 

D. When the operation terminates and an interrupt 
occurs: 

1. Test the status bits as in C above. (This 
assumes that there is an interrupt or execu­
ti ve routine. ) 

2. Take program action, if necessary, to over­
come difficulties 0 

3. Inform the main program, by setting a pro­
gram switch for example, that the operation 
was completed successfully. 

4. Return to the main program. 

54 



Storage 
Location 

0072 

0500 

Contents 

CAW 0000 I 

start Device 9C 

0000 1600 

B] D1 

(}--O 0000 001000001110 I (binary) 

0504 
0508 

BC 7,TRUBLE 
Operation initiated 

CC 1, 2, or 3 set. operation not initiated 

1600 CCW 00000101 

1604 0>------,0 

2400 Data 

At location TRUBLE the exact setting of the Condi­
tion Code is determined. Status bits may require 
testing, sense bytes may be required, and it may be 
necessary to test the channel. 

ASSEMBL Y SYSTEM INSTRUCTIONS 

Two assembly instructions that facilitate input/output 
programming are the Define Channel Command Word 
and Conditional NOP instructions. 

CCW - DEFINE CHANNEL COMMAND WORD 

This instruction defines an eight-byte Channel Com­
mand Word aligned on a double-word boundary. The 
name field is a symbol and the operand field consists 
of four expressions, separated by commas. They 
are: 

1. Command Code: simple absolute expression 
(one byte) 

2. Data address: 
3. Flags: 

4. Count: 

relocatable expression 
simple absolute expression 
(one byte) 
simple absolute expression 
(two bytes) 

The following instruction creates a CCwto read 1000 
data bytes into INPUT. It suppresses an incorrect­
length indication (third bit of second half of CCW). 

NAME OPERA TION OPERAND 

CONWRD CCW X'05', INPUT, X'20', 1000 

/' " Read: 00000101 Flag: 00100000 

55 

2400 

600 

CNOP - CONDITIONAL NO OPERATION 

The CNOP assembler instruction is used when it is 
necessary to align instructions on specific bounda­
ries. The format of the instruction is: 

NAME OPERATION OPERAND 

Not used CNOP Two decimal values 
I separated by a comma 

First value: sets location counter to a specific 
byte in a word or double word. It 
may be 0, 2, 4, or 6. 

Second value: specifies word (4) or double word (8). 

The following are valid combinations of values. 

0,4 first byte of a word 
2,4 third byte of a word 
2, 8 third byte of a double word 

If bytes are skipped for alignment, NOPinstructions 
(BCR) fill the skipped positions. 

DATA FLOW 

Data being transferred through a selector channel are 
controlled by addressable words in the scratch-pad 
memory. Furthermore, the data is read or written, 
one byte at a time from the assembly word in the 
scratch pad. This word functions as a buffer be­
tween channel and main memory. It collects four 
bytes before writing data or transferring input data 
to main memory. 



Data transferred through' a Multiplexor channel is 
read or written, one byte at a time, directly from 
main memory. Control words are located in main 
memory (not program accessible) and are trans­
ferred to the scratch pad to service the operating 
device as required. 

The following is an illustration of the control regis­
ters. CAR is the channel address register and CCR 
is the channel command register. 

CAR 

CCR-l 

CCR-2 

Assembly 
(Selector) 
/Status 

8 

I De­
vice # 

4 4 

24 

Address of next CCW 

24 

Data Address 

5 3 8 16 

24 8 

Buffer (32 bits) 

~ 

when operation 
is complete 

The scratch-pad memory contains one group of these 
registers for each selector channel and one group 
for the Multiplexor. There are two additional words 
for each selector channel to hold the next CCW. 

For each sub-channel (on a Multiplexor channel) 
there is one CAR, CCR-l, and CCR-2 word in main 
memory. 

MULTIPROCESSOR CONNECTIONS 

As an option, up to seven 70/45-55 processors may 
be connected in a multi -processor systems cluster. 
Each processor may signal any other and transmit a 
byte of information with the Read and Write Direct 
instructions (pri vile ged). 

Read Direct (SI) RDD 
Write Direct (SI) WRD 

Other processor byte- Sb1 
(Sb1)- other processor 

56 

In both instructions 12 sets up a pattern of pulses 
that specifies connecting lines to be sampled (read) 
or transmitted (write). 

Questions 

1. How many devices maybe operating on a selector 
channel at one time?, on a multiplexor channel? 

2. What is "burst mode"? 

3. What is the function of each field of the following ? 

a. Start Device instruction 
b. Channel Address Word 
c. Channel Command Word 

4. Write the CCW assembly instruction that could 
be used to punch one full punched card from 
storage area CARD. 

5. 

6. 

What is the sequence of operations that must be 
performed to read a block of data, initiate a 
second read while the program processes the 
first block, and then start processing the second 
block as soon as possible after the completion of 
the read. 

What is command chaining?, data chaining? 
How could the latter be used advantageously dur­
ing a data merging operation? When would a 
Transfer in Channel Command be used? 

7. What is the purpose of a program-controlled 
interrupt during data chaining? 

8. What is the difference between write and write 
control com man d s ? What function does a 
write control command perform in a printing 
operation? 



PROGRAM CONTROL AND LINKING 

PROGRAM CONTROL INSTRUCTIONS 

The following a ssembly instructions name programs, 
control the format of the program input and output, 
and control the storage allocation of instructions. 

START 

START must be the first instruction in a program. 
It may name the program and determine its starting 
location. The NAME field may be blank. If the 
OPERAND field is invalid or blank, the location 
counter is made zero. The following instruction 
names the program CALCLT and sets the program 
counter to 960. 

NAME 

CALCLT 

CSECT 

OPERATION 

START 

OPERAND 

960 (Self-defining 
value) 

CSECT identifies the beginning of a control section 
or program segment. Each section of a program that 
is to be loaded individually, except the first section, 
requires a CSECT instruction. 

The following illustration represents the program 
FIRST. It consists of three sections, each of which 
is to be loaded individually. 

FIRST NAME 

SEC 2 CSECT 

SEC 3 CSECT 

The name field of a CSE CT instruction may be blank 
or contain a symbol. The operand field is blank. 

END 

END must be the last statement in a program. If its 
operand field is used, it must contain a relocatable 
expression. This expression specifies the location 

57 

of the first instruction in the program to be executed. 
Program MASTER, shown below, is loaded starting 
at location 2400 and begins with the instruction at 
BEGIN. 

NAME OPERATION OPERAND 

MASTER START 2400 
WORK DS 100C 
INP DS 80C 
CON DC A(ALPH) 
BEGIN BALR 2,0 

END BEGIN 

EJECT 

EJECT causes the printer to advance the output list­
ing so that printing continues on the next page. One 
use of EJECT is to separate routines in a program 
listing. The EJECT statement is printed prior to 
advancing the paper. 

SPACE 

The decimal operand of the SPACE instruction speci­
fies the number of blank lines to insert in the pro­
gram listing. 

The following coding causes routines COS and SIN to 
appear on separate pages of the listing. Routine 
MA TRIX follows routine SIN and is separated from 
it by five lines. 

NAME OPERATION OPERAND 

EJECT 
COS 

EJECT 
SIN 

SPACE 5 
MATRIX 



ORG 

The ORG instruction resets the location counter to a 
new origin, or it reserves storage areas. The oper­
and field is a relocatable expression whose value 
must be greater than the original value ofthe location 
counter. Symbols in the expression must have been 
previously defined. The following instruction causes 
480 bytes to be skipped. 

NAME OPERATION OPERAND 

ORG * + 480 

PROGRAM LINKING 

Two or more programs maybe assembled independ­
ently, loaded together, and then may call on one an­
other by means of the program linking instructions, 
ENTRY and EXTRN. In the following illustration, 
program MAIN branches to or calls p;rogram SINCOS. 
Specifically, MAIN branches to COS, an entrance or 
entry point in SINCOS. 

MAIN START 
EXTRN COS 

BAL 15, COS 

SINCOS START 
ENTRY COS 

I 

COS ST 1;,8TOR I 
I 

MAIN 

All EXTRN and ENTRY instructions must immedi­
a tely follow START. There must be one EXTRN and 
one ENTRY for each linkage symbol (e. g. COS). 
There must be no more than 14 EXTRN instructions 
in one program. The name of a program may also 
be an entry point. In such a case the calling program 
must define the name with an EXTRN. No ENTRY 
instruction is required. 

In addition to using ENTRY and EXTRN instructions, 
the calling program (e. g. MAIN) must contain an 
Expression Constant (e. g. A (COS» so that the loader 
can store the address of the entry point. The coding 
at bottom of page illustrates the requirements for 
MAIN to branch to, and return from SINCOS. 

Exercise 

Two programs named ONE and TWO are to be as­
sembled separately and loaded together. ONE has 
entry points A and B. TWO has entry points C andD, 
When ONE is assembled, the coding for A and B 
should each begin on separate pages of the listing. 
When TWO is assembled, the coding for D should be­
gin 10 spaces after C ends on the listing. 

The name of the first instruction to be executed in 
ONE is START, the name of the first instruction to 
be executed in TWO is BEGIN (if the programs were 
run independently). Write the control, branch, and 
load instructions and define the necessary constants 
to satisfy the above requirements and the following: 
TWO is to branch to ONE, A, and B; and ONE is to 
branch to TWO, C, and D. 

START 
EXTRN 

L 
BALR 

COS 

4,ADCOSt 
15,4 I 

SINCOS 

COS 

START 
ENTRY COS 

ADC08 DC -;;08) ~ EXIT BCR 15,4 

This may be a relocatable This could be: 
compound expression such 
as: 
COS+10 

58 

L 
USING 

4,ADCOS 
COS,4 

BAL 15,COS 



INTERRUPT SYSTEM 

CONCEPTS OF INTERRUPT SYSTEM 

The interrupt system responds to asynchronously 
occurring external and I/o signals and monitors ex­
ceptional conditions generated by the program itself. 
The specifications of an interrupt system are dictated 
by the special needs of multi -programming and real­
time processing. Some of the salient hardware that 
are provided in conjunction with the interrupt system 
are listed below: 

1. Adequate Memory 
2. Processing rates in excess of memory access 

rates. 
3. Asynchronous Input/Output operations. 
4. Any interrupt condition can be masked (i. e., 

inhibited) 
5. Clock (or timer) option 
6. Memory protection option 
7. Minimal op e I' a to r's console and 0 pe I' a ti ng 

procedures 
8. Priority scheme for interrupt conditions 
9. Weight register defines specific interrupt 

condition 
10. Four processor states 
11. Privileged instructions 
12. Debugging option 
13. Program control instruction to return to previous 

state 
14. Read/Write Direct Control option 

PROCESSOR STATES 

The processor may operate in one of four states; 
UNIQUE registers are assigned to each state. Thus, 
the processor, upon interrupt, shifts states or con­
trol, rather than going through some more complex 
process (which probably would be partly by hard­
ware and partly by software) of saving registers, 

counters, indicators, etc. and loading a new set of 
values from registers, counters, indicators, etc. 
In short, the efficiency of an interrupt system is 
measured in terms of time it takes to safekeep the 
reminders of where it was at the time of interrup­
tion, switch to the interruptive work, and then switch 
back to the prior work. 

The four states and their associated registers are 
summarized at bottom of page. 

In practice, the user need be concerned only with 
state 1. Interrupt conditions, when present and not 
masked, initiate either state 3 or state 4 (only mach­
ine malfunction error conditions go to state 4). Thus, 
the user should view RCA supplied software for states 
2, 3, and 4 (such as FCP, Supervisor, interrupt ana­
lyzer, etc.) as an integral part of the system---in 
effect another black box. 

SCAN 

There are 32 possible conditions that may cause in­
terrupt, for example, OP-code trap, decimal over­
flow, selector trunk 1 terminate. 

Associated with these conditions are two registers: 

1. Interrupt Flag Register (1 for the entire system) 
2. Interrupt Mask Register (1 per processor state) 

The user may permit or not permit any interrupt 
condition, when present, to cause interrupt by set­
ting the appropriate bit in the Mask Register. 

When an interrupt condition is present, the corre­
sponding bit is set in the Interrupt Flag Register. 
This event may occur at any time. However, scan­
ning for an interrupt condition takes place only at 
certain logical times: 

~-~.-------------,--------~- ,------ -------,-------------,-----~ 

~. State 1. 2. Interrupt 
--

~sters .~ Processing Response 

P Counter 
General Purpose 
Floating Point 

1 

16 I 
1 

16 

3. Interrupt 
Control 

1 
6 

* 
double

4
word I * 

Interrupt Mask 1, 1 I 1 

Weight - -

4. Machine 
Condition 

1 
5 

i 
* 

I 1 I 
1 
1 I I 

Interrupt Status (ISR) 1 1_ 1 l_ 11 

'-------------------~-------- - --- - -------- ~--------'---------' 

*May use floating-point registers of Processing State. 

59 



1. A flag is set in the Interrupt Flag Register. 
2. The Mask Register of the current state is 

changed. 
3. A state is initiated by the Program Control 

instruction. 

If, say, an I/O interrupt condition is set in the In­
terrupt Flag Register while afloatingpoint add oper­
ation is in progress, the add is completed before 
scanning for the interrupt condition takes place. 
With that in mind, we may summarize by saying that 
scanning for interrupt CAN ONLY OCCUR after the 
current instruction is finished. The current in­
struction is finished in one of three ways: 

1. Instruction is completed (Normal completion) 
2. Instruction is terminated (Aborted) 
3. Instruction is suppressed (Never started) 

P AND ISR 

The P counter is composed of the following fields: 

2 2 4 24 

lSI, Interrupted State Identifier, specifies the inter­
rupted state. 

The states are designated as follows: 

000 Machine Condition 
001 Interrupt Control 
010 Interrupt Response 
011 Proce s sing 

Key is the 4-bit key used for the memory protect 
feature. 

11 specifies the internal code to be used. 

A = 1 specifies ASCn while 
A = 0 specifies EBCDIC. 

.li specifies whether or not privileged instructions 
may be executed by this state. 

N = 0 allows them. 
N = 1 does not allow them. 

The rightmost 8 bits of ISR contain the R1, R2 fields 
of a supervisor call. 

ILC CC Program Mask Next Instruction Address 

A. ILC, Instruction Length Code, contains the length 
in bytes of the last instruction executed in this 
state. 

B. CC - Condition Code 

C. Program Mask allows for a further level of mask­
ing on the following interrupt conditions: 

1. Significance error 
2. Exponent underflow 
3. Decimal overflow 
4. Fixed point overflow 

D. Next Instruction Address is the address of the 
next instruction in sequence to be executed. 

The ISR, Interrupt Status Register, is composed of 
the following fields: 

3 5 4 1 2 1 8 
lSI 00000 Key A 00 N 0000 0000 

60 

The following flow chart outlines interrupt action. 
Fig. 1 summarizes the effect that changing of states 
has on the various fields in P and ISR. 

8 
Instruction 
bits 8-15 



INTERRUPT 

OCCURS 

Yes 

INTERRUPT (Non-program Control Type) 

CHANGE TO 
STATE 3 

CHANGE TO 
STATE 4 

Figure 1 

SET FLAG BIT IN 
INTERRUPT FLA 

REGISTER 

STORE ILC 
CC 
MASK 

IN OLD P 
COUNTER 

61 

Interrupt 
No Left Pending 

STORE OLD PR~ 
GRAM STATE NO. 
IN FIRST 3 
BITS OF NEW 
ISR 

EXTRACT 
CC, MASK 
FROM NEW 

P 

EXTRACT 
KEY,A,N 

FROM NEW 



Figure 1 (Continued) 

STORE WEIGHT 
OF INTERRUPT 
IN NEW WEIGHT 

REGISTER 

GO TO INSTRUCTION 
WHOSE ADDRESS IS 

IN NEW P COUNTER 

62 



EFFECTS UPON STATES 

Program Control Program Control 
Program Interrupt (no Interrupt) (with Interrupt) 

Field Register Leaving Entering Leaving Entering Leaving Entering Designated 

ILC P-Counter S - S - S - U 

CC P-Counter S E S E S E U 

Mask P-Counter S E S E S E U 

Address P-Counter U - U** - U** - U 

lSI Interrupt status U S*** U U U S**** U 

Key Interrupt status U E U E U E U 

A Interrupt status U E U E U E U 

N Interrupt Status U E U E U E U 

R 1,R2 Interrupt status U* - U - U - U 

* Modified during Op Code Trap or Supervisor Call 
** Modified by Program Control Instruction 

*** Indicates state 
**** Indicates state designated by Program Control 

S STORED 
E EXTRACTED (Made Machine Condition) 
U lJNALTERED 

INTERRUPT CONDITION SUMMARY 

The principal interrupt conditions are summarized 
below (#1 corresponds to the high-order bit position 
of the Mask Register). 

1. Power Failure 
Go to state 4 

2. Machine Check 

3. External Signal No. 1 

4. External Signal No. 2 
Set when a signal is re-

5. External Signal No. 3 ceived on 1 of 6 exter-
nalline s ass 0 cia ted 

6. External Signal No. 4 with the direct control 
features. 

7. External Signal No. 5 

8. External Signal No. 6 

9. Not Specified 

10. Selector Trunk 1 Terminate 

63 

11. Selector Trunk 2 Terminate 

12. Selector Trunk 3 Terminate 

13. Selector Trunk 4 Terminate 

14. Selector Trunk 5 Terminate 

15 0 Selector Trunk 6 Terminate 

16. Multiplexor Trunk Terminate 

17. Elapsed Time Clock: Count counts from positive 
to negative 

18. Console Request 

19. Not Specified 

20. Not Specified 

21. Supervisor Call : Result of execution of Super­
visor Call instruction 



22. Privileged Operation 

23. Operation Code Trap 

24. Address Error 

a. Out of memory 

b. Execute - Execute 

c. storage and Protection Keys do not match 

d. Incorrect boundary 

e. Operand specifies odd register for a pair of 
double registers 

f. Floating point operations address registers 
other than 0, 2, 4, 6 

g. Decimal Multiplier or Divisor exceeds 15 
digits and sign 

h. Block address used to set storage key has 4 
low-order bits non-zero 

i. Memory protection not installed and a non­
zero protection key is provided. 

25. Data Error 

a. Sign or digits incorrect in decimal arithmetic, 
editing, or convert instructions 

b. Fields overlap incorrectly 

c. Decimal Multiplicand has too many high order 
significant digits 

26. Exponent Overflow 

27. Divide Error 

28. Significance l If interrupt is 
Error not taken, the 

29. May also be Exponent operation is 
Controlled by Underflow completed by 

30. Program Decimal making the re-
Mask in ISR Overflow suIt true zero. 

31. Fixed Point 
Overflow 

32. Debugging Mode 

a. Program debugging interrupt flag is set by 
the Program Control Instruction 

64 

b. When interrupt flag bit and the associated in­
terrupt mask bit are both set, the interrupt 
is effected after each instruction in states 1 
and 2 

c. Software canprovide various trace functions 

Exercise 1 

Write the mask so that all Selector Trunk terminate 
interrupts will be inhibited. 

Exercise 2 

The instruction "LTER 0, 2" is being executed at 
location 120 in program state 1. Floating point 
register 2 contains a -7. 5. An External Signal 3 
interrupt, which is not masked out, occurs. 

1. Show the contents of the old P and old ISR. 
2. What state will be initiated? 
3. What are the contents of the weight register of 

the new state? 

Exercise 3 

A BCTR instruction, at location 100, is being exec­
uted by an "EX" instruction at location 150 when an 
interrupt occurs. 

What is in the old and new ILC after the interrupt 
takes place? 

Exercise 4 

A program is running in state 1 with A = 0 and N = 0 
in the ISR. Describe the operation to be performed 
so that the program can process ASCII code. 

PRIVILEGED INSTRUCTIONS 

The privileged instructions, except those relating to 
I/O control, are summarized: 



*SUPERVISOR CALL RR SVC See below 

LOAD SCRATCH PAD SS LSP (Sb2).-. Sb1 D1 (L, B 1), D2(B2) 

D1 (L, B 1), D2(B2) STORE SCRATCH PAD SS SSP (Sb1)-...Sb
2 

SET STORAGE KEY RR SSK See below 

*SET PROGRAM MASK RR SPM See below CC 

INSERT STORAGE KEY RR ISK See below 

PROGRAM CONTROL SI PC See below 

DIAGNOSE SI See below 

IDLE SI IDLE See below 

*Not a privileged instruction. 

Supervisor Call - communicates with the operating 
system by transferring control to state 3. Requests 
and directives to the operating system are stipulated 
by the immediate operand R1 R2. 

Set storage Key - specifies the key (for the memory 
protection option) of a designated block. 

Insert storage Key - stores (inspect) the storage key 
of a designated block. 

Set Program Mask - specifies the 2nd level of mask­
ing for: 

1. Significance error. 
2. Exponent underflow. 
3. Decimal overflow. 
4. Fixed point overflow. 

The CC is also reset by this instruction. 

Program Control - terminates the current state. 

Normally, RCA software (e. g. EXEC, FCP) returns 
control to the Processing State via this instruction. 

The principal functions of Program Control are to: 

1. Terminate the present state. 
2. Reset P counter of state being left to D1 (B1). 
3. Initiate new state and set controls as speci­

fied by 1
2

. 

The 8 bits of the immediate operand 12 are subdivided 
as follows: 000 D SSS R, where 

D=l Set program debugging mode for initiated 
state. Scan ofinterrupt flags is DELAYED 

65 

until the first instruction of the interrupted 
state is executed. Then, SCAN is per­
formed in usual way. 

D=O Debugging mode not to be effected. 

SSS state desired to enter. 

000 - P4 
001 - P3 
010 - P2 
011 - PI 

R=l Specifies indirect state control(go to state 
specified in IS of ISR of this state). Thus, 
ignore SSS. 

R=O Go to state specified by SSS. 

Diagnose - The instruction is for machine trouble­
shooting and should not be used. 

Idle - The instruction effects the Idle Mode by caus­
ing the processor to continuously branch on itself. 
Any interrupt occurring during the Idle Mode will be 
taken. 

MEMORY PROTECTION 

Main storage is divided into blocks of 2048 bytes. A 
four-bit storage key is associated with each block; 
the SSK instruction changes the key, while the ISK 
instruction stores the key. 

When data is stored in a block, the storage key is 
compared with the protection key. If storing is speci-



fied by an instruction, the key of the ISR is used but 
if storing is specified by an I/O operation, the key 
supplied in the Channel Address Word (CAW) is used. 
The keys match if they are equal or when either is 
zero. 

Illustration 

HSM 

2048 
byte 
block 

Block 1 

Block 2 

Block 3 

Block 4 

KEY Assume ISR Key = 2 

2 STORE into Block 1 

STORE into Block 2 

o 
STORE into Block 3 

STORE into Block 4 
4 

STORE into Block 5 

2 STORE into Blocks 4, 5 

Valid 

Valid 

Interrupt 

Valid 

Interrupt 

Interrupt 

(operation terminates when crossing 
over from Block 4 to Block 5) 

10 
Block 5 

Assume CAW Key = 4 

READ into Block 1 Interrupt I 
I 

READ into Block 2 Valid 

READ into Block 3 Valid 

WRITE from Block 4 Valid 

READ into Block 4 Interrupt 

CLOCK 

The elapsed time clock occupies the word at loca­
tion 80 in main memory. Clock count is performed 
by decrementing bits 21 and 23 every 1/60th of a 
second or by decrementing bits 21, 22 by every 
1/50th of a second, depending on line frequency (in 
either case, the effect is equivalent to reducing the 
timer by 1 in bit 23 every 1/300th of a second). The 
word is treated as a signed binary operand and fol­
lows the rules of fixed-point arithmetic. An inter­
rupt condition is effected when the clock goes from 
positive to negative. 

The clockdoes job accounting by measuring the dura­
tion of time for each job, monitors interrupt to pre­
vent a runaway job from controlling the system, re­
cords time of day, and monitors a communication 
network on regular intervals-say, every minute or 
hour. 

66 

Illustration 

Word 80 is set equal to: 

o 000 0000 0000 0000 0000 1001 1000 0010 

How much time will elapse before the clock will 
effect interrupt? 

This is equivalent to (982)16 = (2434)10 

The clock decrements by (256)10 every 3. 3ms. 

Thus, in 33ms interrupt is effected. 

Exercise 5 

What constant could one store in word 80 so that the 
clock will effect interrupt every 5 minutes? 



APPENDIX A 

INSTRUCTIONS IN ORDER BY MNEMONIC 

Mnemonic Operation Operand Field 
Instruction Code Code Format 

Add A 5A R1, D2(X2, B2) 
Add Normalized, Long AD 6A R1, D2(X2, B2) 
Add Normalized, Long ADR 2A R1,R2 
Add Normalized, Short AE 7A R1, D2(X2, B2) 
Add Normalized, Short AER 3A R1,R2 
Add Half-Word AH 4A R1, D2(X2, B2) 
Add Logical AL 5E R1, D2(X2, B2) 
Add Logical ALR 1E R1,R2 
Add Decimal AP FA D1(L1, B1), D2(L2, B2) 
Add AR 1A R1,R2 
Add Unnormalized, Short AU 7E R1, D2(X2, B2) 
Add Unnormalized, Short AUR 3E R1,R2 
Add Unnormalized, Long AW 6E R1, D2(X2, B2) 
Add Unnormalized, Long AWR 2E R1,R2 
Branch and Link BAL 45 R1, D2(X2, B2) 
Branch and Link BALR 05 R1,R2 
Branch on Condition BC 47 M, D2(X2, B2) 
Branch on Condition BCR 07 M,R2 
Branch on Count BCT 46 R1, D2(X2, B2) 
Branch on Count BCTR 06 R1,R2 
Branch on Index High BXH 86 R1, R3, D2(B2) 
Branch on Index Low or Equal BXLE 87 R1, R3, D2(B2) 
Compare Algebraic C 59 R1, D2(X2, B2) 
Compare, Long CD 69 R1, D2(X2, B2) 
Compare, Long CDR 29 R1,R2 
Compare, Short CE 79 R1, D2(X2, B2) 
Compare, Short CER 39 R1,R2 
Compare Half-Word CH 49 R1, D2(X2, B2) 
Check Channel CKC 9F D1(B1) 
Compare Logical CL 55 R1, D2(X2, B2) 
Compare Logical CLC D5 D1(L, B1), D2(B2) 
Compare Logical Immediate CLI 95 D1(B1), I 
Compare Logical CLR 15 R1,R2 
Compare Decimal CP F9 D1(L1, B1), D2(L2, B2) 
Compare Algebraic CR 19 R1,R2 
Convert to Binary CVB 4F R1, D2(X2, B2) 
Convert to Decimal CVD 4E R1, D2(X2, B2) 
Divide D 5D R1, D2(X2, B2) 
Di vide, Long DD 6D R1, D2(X2, B2) 
Di vide, Long DDR 2D R1,R2 
Divide, Short DE 7D R1, D2(X2, B2) 
Divide,_ Short DER 3D R1,R2 
Divide Decimal DP FD D1(L1, B1), D2(L2, B2) 
Divide DR 1D R1,R2 
Edit ED DE D1(L, B1), D2(B2) 
Edit and Mark EDMK DF D1(L, B1), D2(B2) 
Execute EX 44 R1, D2(X2, B2) 
Halve, Long HDR 24 R1,R2 
Halt Device HDV 9E D1(B1) 
Halve, Short HER 34 R1,R2 
Idle IDLE 80 
Insert Character IC 43 R1, D2(X2, B2) 
Insert Storage Key ISK 09 R1,R2 
Load L 58 R1, D2(X2, B2) 
Load Address LA 41 R1, D2(X2, B2) 
Load Complement, Long LCDR 23 R1, R2 
Load Complement, Short LCER 33 R1, R2 
Load Complement LCR 13 R1,R2 
Load, Long LD 68 R1, D2(X2, B2) 

67 



APPENDIX A (Continued) 

Instruction 

Load, Long 
Load, Short 
Load, Short 
Load Halfword 
Load Multiple 
Load Negative, Long 
Load Negative, Short 
Load Negative 
Load Positive, Long 
Load Positive, Short 
Load Positive 
Load 
Load Scratch Pad 
Load and Test, Long 
Load and Test, Short 
Load and Test 
Multiply 
Multiply, Long 
M ul ti ply, Long 
Mul ti ply, Short 
Multiply, Short 
Multiply Halfword 
Multiply Decimal 
Multiply 
Move Characters 
Move Immediate 
Move Numeric 
Move with Offset 
Move Zones 
AND Logical 
AND Logical 
AND Logical Immediate 
AND Logical 
OR Logical 
OR Logical 
OR Logical Immediate 
OR Logical 
Pack 
Program Control 
Read Direct 
Subtract 
Subtract Normalized, Long 
Subtract Normalized, Long 
Start Devices 
Subtract Normalized, Short 
Subtract Normalized, Short 
Subtract Halfword 
Subtract Logical 
Shift Left Single Algebraic 
Shift Left Double Algebraic 
Shift Left Double Logical 
Shift Left Single Logical 
Subtract Logical 
Subtract Decimal 
Set Program Mask 
Subtract 
Shift Right Single Algebraic 
Shift Right Double Algebraic 
Shift Right Double Logical 
Shift Right Single Logical 
Set Storage Key 

Mnemonic 
Code 

LDR 
LE 
LER 
LH 
LM 
LNDR 
LNER 
LNR 
LPDR 
LPER 
LPR 
LR 
LSP 
LTDR 
LTER 
LTR 
M 
MD 
MDR 
ME 
MER 
MH 
MP 
MR 
MVC 
MVI 
MVN 
MVO 
MVZ 
N 
NC 
NI 
NR 
o 
OC 
01 
OR 
PACK 
PCTL 
RDD 
S 
SD 
SDR 
SDV 
SE 
SER 
SH 
SL 
SLA 
SLDA 
SLDL 
SLL 
SLR 
SP 
SPM 
SR 
SRA 
SRDA 
SRDL 
SRL 
SSK 

68 

Operation 
Code 

28 
78 
38 
48 
98 
21 
31 
11 
20 
30 
10 
18 
D8 
22 
32 
12 
5C 
6C 
2C 
7C 
3C 
4C 
FC 
lC 
D2 
92 
Dl 
Fl 
D3 
54 
D4 
94 
14 
56 
D6 
96 
16 
F2 
82 
85 
5B 
6B 
2B 
9C 
7B 
3B 
4B 
5F 
8B 
8F 
8D 
89 
IF 
FB 
04 
IB 
8A 
8E 
8C 
88 
08 

Operand Field 
Format 

Rl,R2 
Rl, D2(X2, B2) 
Rl, R2 
Rl, D2(X2, B2) 
Rl, R3, D2(B2) 
Rl,R2 
Rl,R2 
Rl,R2 
Rl, R2 
Rl,R2 
Rl,R2 
Rl,R2 
Dl(L, Bl)D2(B2) 
Rl,R2 
Rl,R2 
Rl,R2 
Rl, D2(X2, B2) 
Rl, D2(X2, B2) 
Rl,R2 
Rl, D2(X2, B2) 
Rl,R2 
Rl, D2(X2, B2) 
Dl(Ll, Bl), D2(L2, B2) 
Rl, D2(X2, B2) 
Dl(L, Bl), D2(B2) 
Dl(Bl), S2 
Dl(L, Bl), D2(B2) 
Dl(Ll, Bl), D2(L2, B2) 
Dl(L, Bl), D2(B2) 
Rl, D2(X2, B2) 
Dl(L, Bl), D2(B2) 
Dl(Bl), I 
Rl,R2 
Rl, D2(X2, B2) 
Dl(L, Bl), D2(B2) 
Dl(Bl), I 
Rl,R2 
Dl(Ll, Bl), D2(L2, B2) 
Dl(Bl) 
Dl(Bl), I 
Rl, D2(X2, B2) 
Rl, D2(X2, B2) 
Rl, R2 
Dl(Bl) 
Rl, D2(X2, B2) 
Rl,R2 
Rl, D2(X2, B2) 
Rl, D2(X2, B2) 
Rl, D2(B2) 
Rl, D2(B2) 
Rl, D2(B2) 
Rl, D2(B2) 
Rl,R2 
Dl(Ll, Bl), D2(L2, B2) 
Rl 
Rl,R2 
Rl, D2(B2) 
Rl, D2(B2) 
Rl,D2(B2) 
Rl, D2(B2) 
Rl,R2 



APPENDIX A (Continued) 

Mnemonic Operation Operand Field 
Instruction Code Code Format 

store Scratch Pad SSP Do D1(L1, B1), D2(B2) 
Store ST 50 R1, D2(X2, B2) 
Store Character STC 42 R1, D2(X2, B2) 
store, Long STD 60 R1, D2(X2, B2) 
Store, Short STE 70 R1, D2(X2, B2) 
store Halfword STH 40 R1, D2(X2, B2) 
Store Multiple STM 90 R1, R3, D2(B2) 
Subtract Unnormalized Short SU 7F R1, D2(X2, B2) 
Subtract Unnormalized SUR 3F R1,R2 
Supervisor Call SVC OA I 
Subtract Unnormalized Long SW 6F R1, D2(X2, B2) 
Subtract Unnormalized Long SWR 2F R1,R2 
Test Device TDV 9D D1(B1) 
Te st Under Mask TM 91 D1(B1), I 
Translate TR DC D1(L, B1), D2(B2) 
Translate and Test TRT DD D1(L, B1), D2(B2) 
Unpack UNPK F3 D1(L1~ B1), D2(L2, B2) 
Write Direct WRD 84 D1(B1), I 
Exclusive OR X 57 R1, D2(X2, B2) 
Exclusive OR SC D7 D1(L, B1), D2(B2) 
Exclusive OR, Immediate XI 97 D1(B1), I 
Exclusive OR XR 17 R1,R2 
Zero and Add Decimal ZAP F8 D1(L1, B1), D2(L2, B2) 

69 



Operation 

Result of: 

Arithmeticl, 4 

And, Or, Xor 
ED, EDMK 
Shift Left3 

Load complement 
Load positive 
Load negative 
Load and test 
Logical arithmetic2 

Shift right3 

Comparisons: 

Operand 1 is 

TRT 

Set Program Mask 

TM: Selected Bits 

Notes 

APPENDIX B 

CONDITION CODE 

0 1 

0 -
0 I: 0 
0 -
0 -
0 -
0 
0 -
0 -

0,NC5 1:0, NC 
0 -

=: < 

all table bytes 0 table byte I: 0 found 

Reset Reset 

Zeros (or Mask 
Mixed 

is zero) 

1. Overflow in floating point arithmetic is exponent overflow. 

2. In logical arithmetic, C indicates a carry out of sign position; 
NC indicates no carry. 

3. Only algebraic shifts set the condition code. 

4. Multiply, Divide, and Halve do not set the condition code. 

5. Add only. 

70 

2 3 

+ overflow 

+ 
+ overflow 
+ overflow 
+ overflow 

overflow 
+ 

0, C 1:0, C 
+ 

> 

last table byte I: 0 

Reset Reset 

Ones 


	000
	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70

