
with elementary operations MICRO­
PROGRAMMING
THE SPECTRA 70/35
by C. R. CAMPBELL and D. A. NEILSON

In recent month~ several computer manufactur­
ers, domestic and foreign, have announced new
product lines that offer processors using read­
only memories for control. These read-only

memories have a particular number of fixed length words
which contain control instructions, instructions that are on
a lower machine level than the .computing instructions.
The systems they are controlling have consistent data
paths, so common repetitive programming is applicable.
The control instructions transfer data from register to
register, trigger main memory, perform the arithmetic and
logical choices, test flip-flops and conditionally or uncon­
ditionally branch to other read-only memory instructions ..
These instructions, which are bit confIgurations of various
lengths depending upon machine design, are known as
Elementary Operations or, commonly, EO's. A group of
Elementary Operations make up a microprogram. The mi­
croprogr~m performs the operating instruction.

Most microprogramming is done in some sort of symbolic
coding language, an example of which might be "A + (2)
B • . B." This could be translated as, "Add the A
register to the two's complement of the B ~egister and store
the results in the B register." Along with this particular
operation, there could also bea test and branch or an
unconditional branch. Deperidin'g upon the size of the
EO, both the conditional and the alternate branch address
could be carried in each instruction.

The bit configuration that results from the symbolic
coding causes the correct sequence of operations to take
place at the correct time. Now if, in addition, testable in­
dicators stich as "carry" or "zero result" are automatically
set, the microprogrammer can check the result of his
manipulations.

In order to give the microprograrhmer sufficient flexi­
bility in his control of the internal operations, several basic
functions, such as "add binary," "add decimal," "shift,"
and "cycle memory" must be provided. These functions
are planned, along with the tests and indicators, and the
control problems are solved before function definition.

64

When definition is finally made, internal operation can be
considered from the symbolic level, free from hardware
constraints. If the Elementary Operation is straightforward,
the microprogramming of an instruction algorithm is simi­
lar to the programming of any application, and the job can
be done by a programmer, not necessarily an engineer~
This, of course, assumes that the programmer working at
the symbolic level cannot create any problems for himself
other than programming problems.

As an illustrative example, staticizing an instruction ex­
ercises most of the basic functions available to the micro­
programmer. A program counter retains the address of the
next operating instruction. Using the address stored in the

. P counter, the microprogram cycles the memory and reads
the first two bytes of the instruction to be performed. These
bytes are stored in registers for testing. The first byte
contains the operation code of the instruction to be per­
formed, and by analyzing certain bit positions the micro-

Before becoming supervisor of
microprogramming control of
the RCA Spectra 70/35 proc­
essor, Mr. Campbell was senior
product planner on the 70/ J 5
and /25. A former systems
analyst at Thiokol Chemical
Corp. and General' Motors
Ternstedt Div., he holds a as
from Wayne State U'.'iv.

DATAMATION

program can distinguish between different instructioh for­
mats. The operand addresses are staticized according to
the format type, and then the eight-bit operation code is
transferred to the read-only-memory address register. This
operation affects a branch to the correct microprogram that
executes that particular instruction. If the operation code
is not a valid one, the branch is to the microprogram for
op-code trap interrupt.

Writing microprograms at the symbolic level for internal
processor control requires more than just precise EO defini.;.
tion. A few of these requirements and a method to satisfy
them can be seen by an examination of the RCA 70/35.

The 70/35 is RCA's latest member of the compatible
SPECTRA 70 family. A general system description can be
divided into three categories:
1. Control of the data structure for instruction staticizing

and execution is by Elementary Operations (EO's) con­
tained in a nondestructive read-only memory (ROM).

2. All the instructions that are featured in the larger
SPECTRA 70 processors are available in the 70/35.

3. All I/O devices in the SPECTRA 70 line communicate
with the 70/35 via a multiplexor or selector channel
and the RCA standard interface.

In this article we will concern ourselves with the first
category. The most significant feature of the 70/35, and
the one that guided the general design concept that de-·
veloped, was the use of a 27 -bit EO word.

Several secondary features are unique to the 70/35.
However, these are a direct result of the basic EO format
decision. Two of the features are: 1) the easy develop­
ment of a comprehensive EO simulator and assembly sys­
tem, and 2) the feature that allows performing Elementary
Operations obtained from main memory as well as read­
only memory.

In December, 1964, RCA announced four new proces­
sors, one of which, the 70/45, utilized a read-only-memory'
type control structure. A read-only memory had been de­
signed for this processor, and it used a 53-bit word. The
70/35 design group decided to add one bit and to use the
54 bits as two 27 -bit EO words. Each 54-bit group is ac­
cessed in 960 nanoseconds, providing an effective read­
only-memory cycle time of 480 nanoseconds. The decoding
network for the 70/35 is unique, but the basic read-only
memory is the same employed on the 70/45. With the
54-bit word, the read-only memory contains 1024 words.
With the 27 -bit format this, of course, doubles.

This type of control, therefore, uses 2048 words of
lesser complexity as opposed to 1024 larger, more power­
ful EO's. This, in effect, halves the control memory cost
if a one-for-one relationship can be retained. The design

September 1966

Mr. Neilson is the project man­
ager directing design of the
Spectra 70/35 processor. For­
merly the product planning
manager at RCA's Palm Beach
Gardens facility aiding in the
development of Spectra 70/ l5
and /25, he has also been as­
sociated with Burroughs and
IBM. He received a B.S. in
electrical engineering from the
Univ. of California.

group concluded that with a relaxation of performance
specifications (in comparison with the 70/45), a simple
EO structure could more easily utilize sophisticated pro­
gramming techniques and make up for the loss in EO
power. The relaxed performance requirements allow the
technique of modular programming with many common
routines, a method ,that pays a time penalty but saves EO
steps. Another factor in the EO word design was that in
the final judgment; an EO is still function bound. No mat­
ter what the power of any step, whether it be a status

1'--------------, ,-----------,
1 ,:

! I~I [Ji M
A HSM
R

I r---l I
I L-..-.....J I
I 1 L ___________ J

r------------,
I I

I D' I I
~----~--~----------+_~ I I

1

I 1
I 8- BIT ADD E R I
1---------------1
I I
I I

;00 i

I I
L_-'=-O~':...~~~L~~ __ J

70/35 BLOCK DIAGRAM

level or elementary operation, it still must perform its
basic function-branching steps sequentially. The adoption
of this EO word enabled all 144 operating instructions to
be contained in 2048 EO words. Although 144 instructions
seems to be a large amount, the greater number require an
extremely simple algorithm. In addition, many instructions
are similar in their operation and can be combined into
common routines that still provide tolerable timing speci­
fications. Wheh the shared routine method is employed, a
sufficient number of the smaller steps are left to handle
the more complicated instructions.

register communication
Register communication in the 70/35 is implemented

through a modified one-byte input bus and a modified
one-byte output bus. The microprogrammer can address
all the registers in the main data structure, with the ex­
ception of the memory address register (MAR). and the
memory data register (MR). There are fifteen addressable
8-bit registers in the 70/35 that can be used for data
manipulation. Some of these registers are further subdi­
vided into two 4-bit registers which also require separate
addresses. The 4-bit registers are used to perform such
instructions as Pack, Unpack, Move Numeric, etc. Any

65

SP'ECTRA 70/35 ...

two 8-bit registers can be used as the operands in any
of the register-to-register operations. For the decimal func­
tions the 4-bit registers can be used as a destination with
any 4-bit or 8-bit source. This feature' aids in the emulation

- of 6-bit machines. The 70/35 uses a 2-byte memory access
with configurations of 16, 32 and 65K. Each of these
memory configurations has a section of unaddressable or
shaded memory.

In order to apply programming techniques to machine
control, functions had to be designed that would provide
the programmer with the ability to share routines. One
general method, of course" was to make the individual
steps very basic, thereby making them common to many
algorithms. This was inherent in the extremely basic 27-
bit Elementary Operation. Another general method was
to provide testing capability in each EO to simplify linkage
problems; ,

The 70/35 Elementary Operations fall into two catego­
ries; register-to-register operations, and variable operations
(i.e., cycle memory, offset address, etc.). Of the 27 bits,
five are always used to describe the function type. Four­
teen of the functions are the register-to-register operations.
These are described as follows:

W
5

EO LAYOUT
X Y T
556

J
6

W - This is the five-bit function field. This is the EO op code
and directs the operation to be performed.

X - This Rve-bit field describes the source and destination
register for the operation as described by W.

Y - This five-bit field describes the other source register for
the operation described by W.

T - The six-bit field describes a test to be perfot-med. With
six, bits, 64 tests are available to the 70/35.

J - This six-bi~ field has a branch address that is taken as
the test is true. Because of the six-bit limitation this
branch address is limited to modulo 64.

FUNCTIONS
Transfer -

When the function (W Field) describes a transfer, the
bit configuration held in the register described by Y is
transferred to the register described by X.

Add-
This function transfers the quantity in the register
described by X to a holding register. It then takes the
quantity in the register described by Y; adds it to the
quantity in the holding register, and gates the result
back to the register described by X

Add One's Complement-
This function is similar to the Add except that the X
quantity is complemerited before the Add.

The balance of the functions used in register-to-register
operations provide for decimal adding and subtracting,
adding with a signed binary, and for performing the logical
operations (And, Or, Exclusive Or). The register-to-regis­
ter operations can also be used with an eight-bit literal
operand held in the EO word. '

Along with the register-to-register operations, several
other functions are available to the 70/35 inicroprogram­
mer. There is a function to cycle the main memory, a
function to quickly create memory addresses from a 4-bit
register number, a function to permit internal two-byte
transfers register-to-register, and a two-way branching
function. All the functions that are not register-to-register
allow a choice of either a test and branch or an uncondi-

66

tional branch. The test and branch will still allow only
modulo 64 branching~ The unconditional branch,how­
ever, allows branching to ariy location iri the read-only
memory.

Two functions greatly aided routine sharing in the 70/35,
the first of which was an "indirect function." This function
utilized as its decoding base (function bit configuration),
the low order four bits of the op code register. Routines
then could be written for a general approach with the
arithmetic or logical operation determined by the particular
instruction to be performed. By using the four low order
bits of the op register, 12 different indirect functions cari
be performed in the 70/35. Assuming staticizing is con­
cluded, the example is a general illustratiori of the indirect
function:
1. Read operand 2; test
2. Read operand 1
3. Perform indirect functions; test
4. Write operand (result bf function)
5. Decrease length and if not zero branch to # 1

With initializing and the proper tests assigned, this
routine can handle Add Decimal, Subtract Decimal, And,
Or, Exclusive Or and with tests that permit skipping one
step or another, the routine can also do Zero and Add,
Compare Logical or Compare Decimal.

Another function added for programming versatility was
the indirect branch, a method by which the branch ad­
dress is previously prepared in a particular register. Upon
conclusion of a routine, the register is transferred to the
ROM address register and the proper return address is
effected. This is, of course, a common programming tech­
nique. However, the important thing is that it was imple­
mented in the 70/35 specifically as a microprogramming
aid.

The 70/35 presently has 26 defined functions, with sev­
eral having multiple variations. This leaves six functions
for future unique applications.

The elementary operations available to the 70/35 mi­
croprogrammer are as follows:

Register-to-Register
Add
Add With Sign

Add One's Complement
Acid One's Complement

With Sign
Add With Reset Carry
Add Two's Complement
Add Decimal
Add Nine's Complement
And
Or
Exclusive Or
Compare (binary)
Transfer
Indirect Function

Variation
Cycle Memory (3 functions)
Offset Transfer (address)
(2 functions)
Two Byte Transfer
Shift
Literal Increment-

Decrement
I/O Control
Special Branch (2 functions)
Special Control

Early in the 70/35 design study a simulation system was
designed that would be the main tool for testing algorithm
logic on the engineering prototype. Microprograms were
written in a simple coding language and assembled in an
edit phase. Wheri the microprogrammer was ready to test
his program, he entered it along with any required initial­
izing data into the simulator phase. This program traced
the microprogram and provided a step-by-step internal
picture of the machine for the programmer to analyze.
After the complete microprogram, file was considered log­
ically. true, read-only-memory allocation data and logic
definition were combined with the file to produce the
Elementary Operation, bit configurations and the read­
only-memory wiring list. In addition to the edit, simulation

and read-only-memory assembly, the system provides many
statistical runs analyzing test and branch data.

This complete operation was viewed from the symbolic
level by the microprognimmer. In the original planning,
hardware aids;. function requirements and many other sig­
nificant design decisions were mutually discussed, but sub­
sequeritly all algorithms were written and tested using the
simulatoL

In order to demonstrate the operation of a 70/35 micro­
program and the symbolic lariguage used to program it,
the sequence for Move Numeric and Move Zone is shown
with a detailed explanation. The operation code for Move
Numeric is Dh6 (11010001); the operation code for
Move Zone is D316 (11010011). During staticizing, the
operation. code is· placed in the F register, the length is
placed in the G register, a fully staticized second operand
address is placed in the B register and a fully staticiied
second operand address is placed in the A register. With
the operation code in the F register; the microprogram
can distinguish between Move Numeric and Move Zone by

\
~ 55 FORMAT OP COOE 02

16

FUNCTIONAL FLOWCHART OF THE MICROPROGRAM FOR THE

55 .ORMAT ~ INSTRUCTION

examining the one bit where the two op codes differ. This
example assumes the instruction has been staticized.

l. A ~ S, RR, + 1 (the symbolic expression for a cycle
memory read) '.

2. M2~ Co
3. B ~ S, RR, +0 Fl=O Branch to 7
4. COH~ M2H
5. B ~ S, WRS + 1 G='(OO) Branch to Staticize
6. G-(l)~ G Branch to 1
7. COL ~ M2L Branch to 5

l. The second operand is read from main memory and put
into M2. The A address is incremented by one.

2. Register M2 is transferred to Co. Both M2 and Co
are sub-divided into two four-bit registers. .

3. The first operand is read from main memory and put
into M2. In addition the bit F1 is tested to see whether

September 1966

the branch is taken. If not, the next sequential step is
performed.

4. The zone from the second operand previously stored in
Co replaces the zone of the first operand.

5. The modified first operand is written to main memory
and the B address .is incremented by one. The G regis­
ter, which holds the length count, is checked for zero.
A length of zero indicates the instruction is complete.
If the test is true, the branch to staticizing is taken.
If the test is not true, the next sequential instruction
is performed. ,

6. One is subtracted from the G register and the micro-
program unconditionally branches to Step 1. ,

7. In Step 3, a test was made for instruction type by
checking bit Fl. If the instruction was Move Numeric,
Step 3 is followed by Step 7 which replaces the
numeric portion of the first operand and unconditionally
branches to Step 5.

special features
The 70/35 can contain an optional second read-only­

'memory bank.. Assuming one is used to perform the 144
SPECTRA 70 instructions (this is not a systems requirement),
this provides another 2048 27 -bit elementary operations
for some other purpose. With a control structure that is
"data oriented" rather than "instruction oriented," it is
possible to emulate almost any machine organization. In
fact, with the hardware improvements available, the 70/35
emulates older 6-bit machines with a substantial improve­
ment factor.

Another unique feature on the 70/35 is the implemen­
tation of the Diagnose instruction. The Diagnose instruc­
tion is primarily a test and maintenance feature which aids
troubleshooting in the field and initial checkout in manu­
facturing; However, it can also test future read-only­
memory bit configurations for accuracy.

The object of any maintenance aid is to ideritify the
problem area. To do this effectively, it was determined
that the test and rriaintenahce programs should be able to
control the internal structure of the machine. The adoption
of the small EO word structure provided the 70/35 with
the ability to easily perform microprogramming steps o,b,;.
tained from main memory. This method allows the test and
maintenance programs to make internal checks never be­
fore possibie. It also permits the programmer to simulate
foreign instructions at the microprogram level.

The Diagnose instruction will perform any function that
can be performed from the ROM except input/output
instructions. For I/O the test and maintenance routine
must jump back to the program level. However, because
they are able to control internal machine operation this
presents no problem. Termination interrupts can be han­
dled at the program level or at the microprogram level.
The preparation of test and maintenance microprograms
can use a variation of the same simulation system used by
the microprograms in ROM. As in the regular micropro­
grams, coding is done in the simple assembly language and
all work is done at the symbolic level. The Stimulation
System provides the listings; the testing, and the object
bit configuration.

The techniques developed in the current processors using
read-only-memory control offer a. high degree of flexibility
for future system design and marketing. If the Elementary
Operations are basic and easy to understand, a user could
program his, own internal data structure. The specialized
customer has selected system configurations that approxi­
mate his real need; but at the same time has long wished
for a system tailored to his unique application. The design
method used with read-only-memory controlled processors
make this unique system practical for both user and manu­
facturer. •

67

