

5F1E'-
RADIO CORPORATION OF AMERICA· ELECTRONIC DATA PROCESSING

TAPE OPERATING SYSTEM (TOS)

TAPE-DISC OPERATING SYSTEM (TDOS)

PROGRAMMING SYSTEM
INFORMATION MANUAL

@ RADIO CORPORATION OF AMERICA

The information contained herein is subject to
change without notice. Revisions may be issued
to advise of such changes and/or additions.

First Printing: January, 1966

INTRODUCTION

TAPE OPERATING
SYSTEM (TOS)

EXECUTIVE ROUTINE

FILE CONTROL
PROCESSOR

MONITOR

CONTENTS

Page

1

System Components . 2

Functional Des cription . 4

Program Initiation .. 4
Operator Type-In. .. 4
Successor Program Initiation. .. 4
Monitor Routine. .. 4
Executive Components. .. 4
Executive Lists .. 4
Executive Elements 5
Input/Output Processing .. 7
Multiprogramming. .. 8
Input/Output Description. .. 9
Equipment Requirements .. 9
Memory Requirements .. 9
Related Programming Components. .. 9
Tape-Disc System . 10

Functional Description . 11
Logical FCP 11
File Definition Macros . 11
I/O Control Macros . 11
Physical FCP . 11
FC P Standards 12
General•.......................... 12
Label Processing. 12
Label Creation and Checking . 12
File Processing. 12
OPEN Macro. • . 12
C LOSE Macro .'. 13
Record Processing. 13
Processing Overlapped with Input/Output 13
Input/Output Description 14
Equipment Requirements . 16
Memory Requirements . 16
Related Programming Components . 16
Accuracy Control. 16
Timing .. 16

Functional Des cription . 1 7
Sample Monitor Session 18

iii

ASSEMBLY SYSTEM

REPORT PROGRAM
GENERATOR

CONTENTS
(Cont'd)

Page

Functional Description .. 20
Mnemonic Operation Codes .. 20
Symbolic Addressing 20
Data Representation. .. 20
Program Sectioning and Linkage. .. 21
Base Register Calculation. .. 21
Relocatability .. 21
Program Listings 21
Error Indications .. 21
Fixed-Point Constants•.............. 21
Floating-Point Constants 22
Macro Definition Language 22
Input/Output Description. .. 23
Input .. 23
Name Entry • • 24
Operation Entry ..•................................ 24
Operand Entry •.•.......................•......... 24
Comments Entry . . • .. 24
Identification/Sequence Entry. • 24
User-Defined Boundaries 25
Assembly System Control Card•........... 25
Output .. 25
Object Program. 25
ESD Card .. 25
TXT Card .. 26
RLD Card .. 26
END Card .. 26
XFR Card•.....•................•.... 26
Program Listing•............................ 26
Equipment Requirements .•...•........................ 26
Memory Requirements • . • • 27
Related Programming Components • 27
Accuracy Control 27
Assembly System Controlling Codes . 28
Macro Definition Language 30

Functional Description . • 31
Input/Output Description•....................... 32
Equipment Requirements • • 32
Memory Requirements • • • • 33
Related Programming Components . 33
Accuracy Control. • . . . • . . • . . • 33
TOS RPG Operations•......... 33

iv

FORTRAN IV
COMPILER

COBOL COMPILER

UTILITY ROUTINES

CONTENTS
(Cont'd)

Page

Functional Description .. 36
Input/Output Description. .. 37
Equipment Requirements. .. 37
Memory Requirements .. 37
Related Programming Components .. 37
Accuracy Control 37
FORTRAN Source Language 38

Functional Description .. 40
Identification Division. .. 40
Environment Division . 40
Data Division 40
Procedure Division 40

Input/Output Description. .. 41
Equipment Requirements. .. 42
Memory Requirements .. 42
Related Programming Components .. 42
Accuracy Control. .. 42
COBOL Language Outline 43

Identification Division 43
Environment Division 43
Data Division 44
Procedure Division 45
Report Section 48
Report Group Description .. 49
Report Procedure Division Considerations 49
Sort Description Entry .. 49
Sort Procedure Division Considerations 50
Random Processing .. 50
Copy/Include Program Library Facility. 50

Sort/Merge 51

Peripheral Routines
Card or Paper Tape to Punch and Printer 53
Card or Paper Tape to Tape 54
Card or Paper Tape to Punch 55
Card or Paper Tape to Printer 56
Tape to Card 57
Tape Edit 58
Tape to Printer. .. 59
Tape to Tape 60
Random Access Data Transcription Routines 61

v

UTILITY ROUTINES
(Cont'd)

LIST OF TABLES

LIST OF FIGURES

CONTENTS
(Cont'd)

Diagnostic Routines
Automatic Integrated Debugging System (AIDS)
Console Routines .
Memory Print . • . .
Self-Loading Memory Print
Tape Compare
Test Data Generator

Page

63
64
66
67
68
69

Trace 70

Library Maintenance
Program Section Librar¥ Maintenance 72
Linkage Editor 73

Table 1. Device Control Macros .
Table 2. Topical FCP Macros
Table 3. Assembly System Controlling Codes

Figure 1. Monitor Test Session
Figure 2. TOS Assembly System Configuration

vi

8
14
27

19
25

INTRODUCTION • The Spectra 70 Tape Operating System (TOS) is a tape-oriented multi­
programming system designed to facilitate the efficient operation of a wide
variety of installation problems. TOS is comprised of three groups of
programming components: the Control Systems which have total respon­
sibility for monitoring the processor environment; the Language Systems
which provide a number of languages to assist in the preparation of programs;
and the Utility Systems which consist of diagnostic routines, peripheral
routines, and library maintenance routines that simplify testing and produc­
tion operations.

The Control System Executive controls the internal environment of the
processor. Program loading, memory allocation, interrupt analysis,
operator machine communication, and multiprogramming control are
functions which are the responsibility of the Executive. The Executive
permits up to six independent programs to execute concurrently requiring
only that sufficient memory and devices be available for program use.
The Control System File Control Processor (FCP) is responsible for con­
trolling all peripheral devices connected to the 70/35-45-55 Processors.
Random access capabilities are inherent in the FCP. Varying levels of FCP
usage are available to provide programming flexibility. Included are such
facilities as label checking, logical data manipulation, and error recovery.
The Control System Monitor provides a dynamic program sequence which
uses job stream parameters to control the sequential execution of an
unlimited number of programs. Operator intervention is minimized in
order to optimize program thruput.

The Language Systems provide a complete set of programming languages
that provides an installation with a language most suited to its requirements.
All languages are integrated and a single program may be composed of
element~ from all languages. Languages provided consist of COBOL - an
English language oriented system; FORTRAN - a scientific language; Report
Program Generator designed to facilitate report preparation; and the
Assembly System - a machine-oriented pseudo code system.

The Utility Systems provide four basic sets of routines normally required
in a given installation. Diagnostic routines provide tools to the programmer
which assist him in program testing. The Sort/Merge system provides an
efficient sophisticated sort package. Peripheral routines are designed to
provide standard functions such as card to tape, random access to tape, etc.
Library maintenance routines are provided to permit efficient maintenance
of all TOS library systems.

The Spectra 70 Tape/DiSC Operating System (TDOS) is a powerful
extension of the TOS system. In addition to all TOS functions, TDOS
provides a sophisticated communications package as well as prOViding the
capability to execute the Control System, RCA -supplied routines, and
installation programs using the 70/564 Disc or 70/565 Drum as the basic
storage media. The TOS Multichannel Communication Program provides
a system which can be tailored to meet the specific communications re­
quirements of the installation. Use of the 70/564 and 70/565 as a program
storage media significantly enhances thruput capabilities. TOOS is designed
to significantly enhance capabilities of the TOS user without requiring
transitional programming or reassembly/recompilation efforts.

1

INTRODUCTION
(Cont'd)

SYSTEM
COMPONENTS

I ntroduc t ion

The TOS and TDOS* are designed to be run on a Spectra 70 processor
with at least 65,536 bytes of memory (model E) and with the following
minimum peripheral equipment:

1 Console Typewriter, Model 70/97

1 Card Reader, Model 70/237, or Videoscan Document Reader, Model
70/251 with Card Read Feature

1 Printer, Model 70/242, or 70/243

5 Magnetic Tape Devices, Model 70/432, 70/442, or 70/445

(At least two of these magnetic tape devices must be 9-channel,
one for the System Tape and one for the Load library. The
remainder may be 9-channel or 7-channel with the Pack/Unpack
feature. All tapes and random access devices must be connected
to selector channels.)

• Control System:

Executive

File Control Processor

Monitor

Language Processors:

Assembly System

Report Program Generator

FORTRAN

COBOL

Utility Routines:

Sort/Merge

Peripheral Routines:

Card or Paper Tape to Punch and Printer

Card or Paper Tape to Tape

*In the TOOS, a Disc Storage Unit, Model 70/564, or Drum Storage Unit,
Model 70/565, is used in place of one tape.

2

SYSTEM
COMPONENTS

(Cont'd)

Card or Paper Tape to Punch

Card or Paper Tape to Printer

Tape to Card

Tape Edit

Tape to Printer

Tape to Tape

Random Access Data Transcription Routines

Diagnostic Routines:

Automatic Integrated Debugging System (AIDS)

Console Routines

Memory Print

Self-Loading Memory Print

Tape Compare

Tes t Data Generator

Trace

Library Maintenance:

Program Section Library Maintenance

Linkage Editor

3

Introduction

EXECUTIVE
ROUTINE

FUNCTIONAL
DESCRIPTION

Program Initiation

Executive Components

Executive Lists

• The Executive routine is responsible for complete control of the com­
puter's internal environment and associated peripheral devices. Control
of the internal environment consists of memory allocation, interrupt
analysis and control, check-point recording, rerun, control of programs
in test status, and multiprogramming control. Associated peripheral
device control includes device allocation, channel scheduling of I/O
operations, console typewriter control, and error recovery.

• Programs can be initiated by an operator type-in to the Executive by
the termination of a previous program or by control of the Monitor routine.

1. Operator Type - in - An operator request for program initiation
informs the system which program is to be run, which device
contains the load library tape, and what priority the program is to
receive.

2. Successor Program Initiation - On termination, a program can
request the Executive to initiate a successor program. The program
can specify file names for devices to be passed to the successor
program. The priority of the successor program and the location
of the load library containing the successor program is assumed to
be the same as the calling program.

3. !\Ionitor Routine - The Monitor routine can initiate programs re­
quested by control cards in the Monitor job stream which is discussed
on page 17.

• The Executive maintains and uses a set of dynamically controlled lists
in performing its multiprogramming and device processing functions.
These lists and their functions are as follows:

1. Operation List - The uperation list contains an entry for every
program that is eligible for execution, is waiting for an I/O termina­
tion, or is waiting for the completion of an ~ecutive operation.

2. Current Operation Slot - The current operation slot describes the
code being executed and the priority of the program to which the
code belongs.

3. 110 Request List - The I/O request list contains requests for I/O
initiation. The list is subdivided into separate lists for each channel.

4. Device List - The device list contains an entry for each device on
the computer. This entry contains information about the device and
information recorded by the executive relating to initiation and
termination of activity on the device.

4

Executive Elements

Executive Routine

• Executive elements consist of resident and nonresident control elements.
Resident control elements are responsible for the continuous control of the
processor during program execution. The nonresident elements are respon­
sible for those control functions that are required infrequently. Nonresident
elements are loaded into memory only when required. The various elements
and functions are described as follows:

1. Successor Program Initiator - On termination, a program can
request the Executive to initiate a successor program. The program
can specify file names for devices to be passed to the sucq,essor
program. The priority of the successor program, the location of the
load library containing the successor program, and the memory
allocated is the same as the calling program.

2. Locator - The Locator routine locates the requested program on the
load library tape, and loads the program's header block.

3. Loader - The Loader routine reads in the program text and modifier
blocks, floats the text in accordance with the memory assignments
for the program, and enters the program on an Executive operation
list.

4. Overlay Loader - The Overlay Loader routine locates, loads, and
floats a requested program overlay.

5. De-Allocator - The De-Allocator routine is entered at program
termination. The Free Memory table is adjusted, the program is
deleted from the Program table, and all devices that are not passed
to a subsequent program are entered in the device list as available
for subsequent assignment. The program being terminated has the
ability to indicate the next program to be loaded.

6. 110 Dispatcher - The I/O Dispatcher is responsible for the initiation
of all activities directed to an input/output device except the console
typewriter. A check is initially made to determine if the particular
channel is available. If the channel is free, the I/O Dispatcher
creates the necessary control information and issues the instruction.

If the channel is busy, the request is queued and is issued after all
previously scheduled I/O requests for that channel have been issued.
If the channel is inoperable, the operator is informed and appropriate
status information is provided to the program. If a second channel
has been assigned, both channels are checked before queueing the
request.

7. Device Return - The Device Return routine is responsible for the
processL'1g of I/O interrupts. When control is received by this
routine, the channel status is checked to determine the type of in­
terrupt that occurred. A normal I/O interrupt causes control to be
transferred to the I/O dispatcher so that a queued I/O command for
that channel can be executed. An abnormal interrupt causes channel
status information to be stored in the program, and control to be
transferred either to the error recovery routines in the Executive
and/or back to the program. These interrupts can include manual
interrupts, Program Control interrupts, and console request
interrupts.

5

Executive Elements
(Cont'd)

Executive Routine

8. Priority Relinquish - The Priority Relinquish routine selects the
highest priority entry on the Operation List, puts it into the Cur­
rent Operation Slot, and branches to the Control Switcher routine.

9. Control SU'itcher - When control is received from Priority Relin-
quish routine, the Control Switcher routine determines whether the
program specified in the Current Operation Slot was also the last
to use the machine state to which control is to be given. If it is,
control is given to that state. If not, that state's registers are
stored in the last program's Executive InformationArea and loaded
with the current program's settings. The state's P Counter is then
set to the address specified by the Current Operation Slot and con­
trol is given to that state.

10. Contingency Control - The Contingency Control routine receives
control when a program generated interrupt or a test mode inter­
rupt is detected. Information required to service these interrupts
is placed in the program's Executive Information Area. The in­
terrupted program's Executive Information Area contains the ad­
dress of the routine to receive control on this condition.

11. Interrupt Decoder - The Interrupt Decoder routine obtains control
at every interrupt with the exception of power failure and machine
error interrupt. The type of interrupt is analyzed and control is
transferred to the appropriate Executive control elements.

12. Program Terminate - The Program Terminate routine halts the
operation of a given program. A program can be halted based upon
an internally generated program instruction, an operator request,
or a request from the Executive.

13. Device Assignment - The Device Assignment routine is given con­
trol before executing the first physical I/O command for each file.
The Device Assignment routine requests a device number from the
operator and enters the file name in the device list. This device is
retained by the program until the program releases it, or until
program termination.

14. Console Control - The Console Control routine controls the console
typewriter. Program requests for use of the typewriter are trans­
ferred to console control for execution. A program identification
is appended to the message to be typed. If a reply is expected, the
program is marked WAITING until the message is received. Ex­
ternal requests for type-in's (signalled by the console request but­
ton) are also accepted by console control. Console control reads
the message, determines the program to which the request is di­
rected' removes the program's WAITING mark, and transfers the
message to the appropriate program.

Requests for nonresident console routines are recognized within
this element and are passed to the Locator for loading and execution.

6

Executive Elements
(Cont'd)

Input /Output
Processing

Executive Routine

15. Tape Error Recovery - The Tape Error Recovery routine performs
automatic retry for transient magnetic tape errors detected during
read or write operations. If the retry is unsuccessful, control is
returned to the program for further action or the program is termi­
nated' according to a programmer-selected option.

16. Operator Type-In Initiator - An operator request for program ini-
tiation informs the system which program is to be run. The opera­
tor has the option of specifying which device contains the load
library tape, the priority it is to receive, the amount of memory to
be allocated, and the location of label information.

17. Monitor - Program initiation can also be requested by means of
control cards in the Monitor job stream.

18. Memory Allocator - The Memory Allocator routine assigns mem-
ory to the program and records the allocation in the executive area
Free Memory and Program tables.

19. Restart - The Restart routine locates the program to be rerun and
re-establishes memory, priority and device as signments. The
memory assignment is the same as that previously held since float
information does not accompany a rerun program. The file names
and associated devices are typed out and the operator can change
any or all of them.

20. Nontape Error Recovery - The Nontape Error Recovery routine
performs automatic retry for transient nonmagnetic tape errors
detected during read or write operations. If unsuccessful, control
is returned to the program for further action or the program is
terminated, according to a programmer-selected option.

• The Executive transfers data between memory and the I/O devices at
the physical device level. This type of input/output processing is called
Device Control. To perform the input/output functions, the Devi ce Control
macros* listed in table 1 are included within the Executive.

*In addition to these macros, the DTFPH and OPEN macros of the File
Control Processor allow the processing of labels automatically when
Device Control is used. (See File Control Processor.)

7

Input/Output
Processing

(Cont'dJ

Multiprogramming

Macro

In struction

EXCP

WAIT

EXCPW

CCB

Executive Routine

Table 1. Device Control Macros·

Function

This macro is issued to request the performance of
physical I/O operations.

This macro is issued to determine if the I/O opera­
tions, initiated by an EXCP macro, are completed so
that the program can continue.

This macro is issued to request the performance of
physical I/O operations. Control is not returned to the
program until the requested I/O operation is terminated.

This macro must appear in the program once for each
I/O device. It causes a command control block to be cre­
ated. This block is required to communicate informa­
tion to the Supervisor so that a physical I/O instruction
can be initiated by means of the EXC P and EXC PW
macros.

*In addition to these macros, the DTFPH and OPEN macros of the File
Control Processor allow the processing of labels automatically when
Device Control is used. (See File Control Processor.)

• Multiprogramming provides the programmer with the capability of
executing a maximum of six programs concurrently. The normal program,
in most of its operations, is suspended from time to time while awaiting
the termination of an I/O instruction. To permit a more effective use of
the powerful characteristics of the Spectra 70 computer, the Executive
permits the programmer to balance more effectively the use of peripheral
devices. This balancing is performed by transferring control from a
locked program (one which must wait for I/O termination) to a program
that can effectively use the processor functions.

Multiprogramming capabilities are provided so that the programmer
need not be concerned, while programming, with the characteristics of
other programs that will be executed on a multiprogramming basis. The
Executive has established a priority system whereby those programs that
must be executed first will obtain control most frequently. Control is
transferred to a lower priority program only when the higher priority pro­
grams are suspended. A routine is also available that permits the pri­
ority of a program to be changed after it has been initiated. The Executive
performs the actual transferring of control analysis each time an inter­
rupt occurs. This technique ensures that this analysis is performed with­
out requiring specific transfer of control by the program to the Executive
system.

8

INPUT /OUTPUT
DESCRIPTION

Input

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Optional Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

Executive Routine

• The basic input to the Executive is in the form of console typewriter
requests.

• The basic output of the Executive is in the form of messages to the
operator by means of the console typewriter.

• 1 Processor - Model E (65,536)

1 Magnetic Tape Device - Model 70/432, 442 or 445 (9-level)

1 Console Typewriter - Model 70/97 (Includes console)

• Processors Model F (131,072 bytes), Model G (262,144 bytes), or
Model H (524,288 bytes) can be substituted for the Model E Processor.

• The memory requirement for the Executive is 16,000 bytes.

• The Executive is required for operation of all TOS programs. Com­
munication between a program and the Executive is achieved through the
use of:

1. An Executive Information Area contained in every program.

2. Supervisor Calls and specification packages associated with them.

3. 110 Channel Status packages.

A program's Executive InformationArea is located at the starting posi­
tion of the program in memory and must not be overlaid while the pr9gram
is in memory.

The Executive Information Area contains the following information:

1. Storage for general-purpose and processor-state registers.

2. Storage for floating-point registers.

3. Indicators and register storage for program-generated interrupts.

4. Indicator and register storage for program execution in the test
mode.

Programs request Executive services by performing Supervisor calls.
Each Supervisor call contains an identifier that specifies the type of execu­
tive service required. Supervisor calls refer to a specification package
that contains the information the Executive needs to carry out the re­
quested service.

9

RELATED
PROGRAMMING

COMPONENTS
(Cont'd)

T APE-DISC SYSTEM

Executive Routine

I/O devices return information about I/O activity to the processor. This
information is contained in I/O Channel Status packages stored in scratch­
pad memory. The Executive delivers channel status packages to the pro­
gram to which the device is assigned.

• The Tape Operating System has the capability to make effective use
of the Model 70/564 Disc Storage Unit. A number of components are
available.

1. The basic Tape System can store data on disc.

2. The Tape System contains, when requested by the programmer,
the capability of executing from the disc. When this option is
selected, the Operating System is loaded from tape to disc and
remains on disc from that point.

3. The third option available to the programmer is to store and execute
programs from disc. When the third option is selected, the Oper­
ating System itself must be located on disc. Therefore, the tape­
disc system provides the programmer with a technique for rapid
access to both the Operating System elements and program over­
lays. Programs can be permanently stored on disc and initiated
from disc by the operator. The tape-disc system contains the same
basic elements as are contained in the Tape System. No program
modification and/or assembly is required when a program is to be
executed from dis c rather than from tape.

10

FILE CONTROL
PROCESSOR

FUNCTIONAL
DESCRIPTION

Logical FCP

• The File Control Processor (FCP) is a generalized input/output system
that is designed to work with the Executive to control all input/output func­
tions. FCP reduces the amount of the detailed programming required by
I/O operations. Input/ output operations are controlled on two levels; file
control level and device control level.

File Control (Logical FCP) is provided by way of I/O macros included
within the Assembler. Under this concept, the programmer always works
at the logical record level.

Device Control (Physical FCP) is provided by way of Supervisor Calls
included within the assembly which relates to the Executive I/O device
macros. Under this concept, the programmer always works at the physical
record level.

• Programs make use of logical FCP by issuing certain macro instruc­
tions that provide the following functions.

File Definition Macros

1. Describe characteristics of the logical file.

2. Describe the physical device on which the logical file resides.

3. Identify options to be taken under certain predefined conditions.

4. Supply addresses of certain programmer-written routines.

110 Control Macros

1. Make files available for processing (including label checking).

2. Make logical records available for processing (blocking and de-
blocking).

3. Alternate I/O areas (when two I/O areas are used).

4. Store logical records after processing.

5. Perform control operations such as rewind and stacker select.

6. Handle end-of-reel and end-of-file conditions (including label
writing) .

7. Make files unavailable for processing.

Physical FCP • If the programmer wishes to write his own logical data handling rou­
tines, PhYSical FCP provides macro instructions for the reading and writing
of data, processing of standard labels, checkpoint records, nondata opera­
tions (for example, rewind, stacker select) and error recovery processing.
At this level, the programmer is responsible for all record blocking and
de-blocking, data movement to and from work areas and reel swapping.

11

FCP STANDARDS

General

Label Processing

Label Creation
and Checking

File Processing

OPEN Macro

File Control Processor

• Tape files that are processed by FCP routines must conform to pub­
lished Spectra 70 Systems Standards with respect to labels, file standards,
and data record formats.

• In general, the FCP routine for Standard" labels performs the follow­
ing functions:

1. For header labels on an input tape

a. Verify proper volume.

b. Verify proper identification.

c. Issue appropriate error messages.

2. For header labels on an output tape

a. Analyze old header label to check expiration date.

b. Write new header label.

c. Issue appropriate error messages.

3. For trailer labels on an input tape

a. Verify input block count with trailer block count field.

b. Analyze the label identifier field for EOV or EOF and take ap­
propriate action.

4. For trailer labels on an output tape

a. Write trailer labels with output block count and an EOF identi­
fier' if the end-of-file condition exists; or an EOV identifier,
if the end-of-volume condition exists.

• The FCP will create, write and check standard labels. Files with
standard, nonstandard or no labels can be specified. However, the user
must construct and check nonstandard labels and the user's portion of
standard labels if specified.

The DTFSR entry LABNAME specifies label information that is stored
in the user's program for FCP label checking and label creation.

• Before using logical FCP, files must be made available for processing
by use of the OPEN macro. The OPEN macro verifies that the correct
reel is mounted (if standard labels are used) and also positions the file for
processing.

The OPEN/CLOSE, end-of-file and end-of-volume routines follow the
DTFEN statement. The programmer may issue OPEN or (CLOSE) macros
anywhere in the program.

12

OPEN ,\Jacro
(Cont'd)

CLOSE ,\1acro

Record Processing

Processing Overlapped
with Input/Output

Fi Ie Con trol Processor

FCP can overlay the coding generated by the OPEN macro when it is no
longer needed. To overlay the OPEN routine, the programmer must specify
the operand OVLA Y in the DTFEN statement.

1. Multireel tape files are not allowed when the OPEN routine is
overlaid.

2. For multifile reels only one logical file on that reel can be handled
by the program.

• The CLOSE macro deactivates a file previously activated by an OPEN
macro. CLOSE is normally written after the end-of-file condition is sensed
on an input file. For an output file, any records in memory, a tape mark,
and the trailer label (if standard labels used) are written. If the program
is to be overlaid by the CLOSE routine, the programmer must also specify
the operand OVLAY in the DTFEN statement.

• The FCP package handles the following types of record format:

1. Fixed-length, Unblocked.

2. Fixed -length, Blocked.

3. Variable-length, Unblocked.

4. Variable-length, Blocked.

5. Undefined, Unblocked.

All of these formats conform to published Spectra 70 Systems Standards.

• The program uses the Executive's I/O functions logical I/O routines in
order to read and store records in memory. All of these routines are
designed to provide for overlapping the physical transfer of data with proc­
essing. The amount of overlapping or simultaneity actually achieved is
governed by the program through the assignment of I/O areas and work
areas.

An I/O area is the area of memory to or from which a block of data is
physically transferred. A work area is an area used for processing an
individual record from the block of data.

There are several possible combinations of I/O areas and work areas.
These are as follows:

1. One I/O area with no work area.

2. One I/O area with a work area.

3. Two I/O areas with no work area.

4. Two I/O areas with a work area.

In addition, certain devices are buffered, increasing the available amount
of processing I/O overlap. In order to achieve maximum overlap, alternate
I/O areas are required.

13

INPUT -OUTPUT
DESCRIPTION

Input

File Control Processor

• Input to the File Control Processor is in the form of macro instructions
that are written in the programmer's source assembly programs. The
macro instructions and their functions are briefly described in this section.

The macro instructions are written in a form similar to other coding in
the program. The general format for macro instructions is

Name Operation Operand 1, Operand 2, Operand n
or

Name Operation Operand 1

Operand 2

Operand n

where Name is a valid tag, Operation is the name of a macro instruction
and Operands 1-n are required parameters to be specified. The macros
may be classed as action macros or as descriptive macros depending on
whether or not they lie in the instruction path (action) of the program. In
general, the action macros are of the position type while the descriptive
macros are of the key-word type.

Macro

Instruction

DTFSR

DTFEN

Table 2. Logical FCP Macros

Function

File Definition Macro

This macro describes the logical file, indicates the
type of processing to be used for the file, and specifies
memory areas for the file. These macros follow the
START instruction in the program andprecede the in­
struction path coding. There are many different DTFSR
detail entries that apply to each type of file when logical
FCP is used. The operands of this macro are of the key­
word type. They may be omitted if not required. The
DTFSR operands are:

ALTTAPE, BLKSIZE, CHECKPT, CKPTREC, CON­
TROL, CRDERR, CTLCHR, DEVADDR, DEVICE,
EOFADDR, ERROPT, FILABL, IOAREA1, IOAREA2,
IOREG, LABADDR, PRINTOV, READ, RECFORM,
RECSIZE, REWIND, TRANS, TYPEFLE, VARBLD,
WORKA, WLRERR, and LABDES.

This macro indicates to the Assembler that all files
have been defined (by DTFSR entries).

14

Input (Cont'd)

Macro
Instruction

OPEN

LBRET

GET

PUT

RELSE

TRUNC

CNTRL

CHKPT

CLOSE

FEOV

PRTOV

DTFPH

File Control Processor

Table 2. Logical FCP Macros (Cont'd)

Function

This macro activates each file in the program. It is
used for all files processed by logical FCP. With
physical FCP it is used only for tape files with standard
labels.

This macro is l~sed with tape files that contain addi­
tional standard or nonstandard labels that the pro­
grammer desires to check or write. It must be issued
at the end of the label routine.

This macro makes the next consecutive logical record
from an input file available for processing in either an
input area or specified work area.

This macro writes, punches, or displays logical records
that have been built directly in the output area or in a
specified work area.

This macro is used only with blocked input records read
from tape. It allows the programmer to skip the re­
maining records in a block and to continue processing
with the first record of the next block, delivered to him
by his next GET macro.

This macro is used only with blocked output records
that will be written on tape. It allows the programmer
to write a short block of records.

This macro provides physical nondata operations for
magnetic tape units, card readers, punches, and print­
ers. Such functions as rewinding tape, card stacker
selection, and line spacing may be specified.

This macro causes checkpoint records to be written to
a tape for restart purposes.

This macro deactivates any file previously opened in
any input/output unit in the system.

This macro is used for either input or output files on
tape to force an end-of-volume condition.

This macro specifies the operation on a printer over­
flow condition.

File Definition Macro

This macro is used only when physical I/O macro in­
structions are used in a program. It is necessary to
define only tape files with standard labels. No other
files require definition. The DTFPH detail entries
that apply to a file are DEVADDR, LABADDR, and
TYPEFILE.

15

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Optional Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

File Control Processor

• Output of the FCP is the execution of the input, output, or control
operation desired.

• The number and type of peripheral devices that FCP can accommodate
are optional and depend on the requirements of the programmer.

• 1 Processor, Model E (65,536 bytes)

1 Magnetic Tape Device: Model 70/432, 442 or 445 (9 level)

• A Model F (131,072 bytes), Model G (262,144 bytes) or Model H
(524,288 bytes) can be substituted for the Model E Processor.

Paper Tape Reader Punch: Model 70/221

Card Punch: Model 70/234 or 70/236

Card Reader: 70/237

Printer: Model 70/242 or 70/243

Bill Feed Printer: Model 70/248 (Continuous Forms only)

Videoscan Document Reader: Model 70/251 (Demand Feed only)

Magnetic Tape Stations: Model 70/432, 70/442 and 70/445

Disc Storage: Model 70/564

Drum Memory: Model 70/565

Mass Storage: Model 70/568-1

• The generated FCP requires approximately 4000 bytes. However, this
amount is variable depending on the data and device-type definitions of the
file definition macros (DTFSR' s).

• FCP works closely with the Executive program by making explicit calls
on certain Supervisor routines. Both logical and physical FCP incorporate
these calls within their procedures.

The Assembler must be used to generate FCP into the object program
upon recognition of FCP macro instructions in the source program.

• The FCP system observes the standard set of Spectra 70 accuracy
controls.

• Timing estimates for execution of the different macro routines are not
available at this time.

16

MONITOR

FUNCTIONAL
DESCRIPTION

• All program preparation runs, including the language processors,
Linkage Editor and library maintenance routines are under the control of
the TOS Monitor program. The Monitor, which is initiated by operator
type-in, operates under control of the Executive and is directed by pro­
grammer supplied control cards. Production program execution may also
be performed under Monitor control.

Input to the Monitor is a job stream (on cards or tape) consisting of
control cards, source language statements and/or program sections. A
single job may contain source program sections written in more than one
source language. Processing of the total job stream is called a Monitor
session. Any number of jobs may be performed within a session. Those
programs that are executed under Monitor control are called suiJpw('('ssors.

The input job stream is under total control of the Monitor. Any sub­
processor or program running under Monitor control requiring access to
the job stream must direct its request to the Monitor which reads the card
and returns it to the subprocessor or program. Likewise, system printer
output is controlled by the Monitor.

Each job to be performed is described by control cards. The Monitor
executes the jobs sequentially, requesting the Executive to load each sub­
processor and maintaining control over the execution of each. Control
cards directing the subprocessors are also included in the input stream
and directed by the Monitor to the subprocessor. When the subprocessor
execution terminates Monitor determines within the input stream the next
subprocessor to be executed.

As defined previously, program preparation includes language transla­
tion, linkage editing and library maintenance of both the Object Module
Library and the Load Library. Any logical combination of these functions
may be performed within a job.

Language translation may include any combination of the following
translators:

1. Assembler

2. FORTRAN

3. COBOL

4. Report Program Generator

5. Sort/Merge Generator

Output from each translator consists of one or more program sections,
appropriate listings and error notations.

The Linkage Editor binds the program sections into a loadable program.
It selects routines that are required by the input program sections, if any,
from an Object Module Library and writes a single program Load Library.
If no routines are needed to be bound in from the Object Module Library,
this library is not required by the Linkage Editor.

17

FUNCTIONAL
DESCRIPTION

(Cont'd)

SAMPLE MONITOR
SESSION

:\lonitor

The functions of the Object Module Library Update routine are to create
an Object Module Library and to update it by the addition, deletion, or re­
placement of one or more translated program sections or sets of program
sections onto an Object Module Library.

The functions of the Load Library Update are to create a Load Library
and to update it by the addition, deletion or replacement of one or more
programs in loadable format onto a new Load Library.

Neither the Program Section Library Update nor the Load Library
Update is required for program execution.

In addition to program preparation, the Monitor control cards may
request production program execution. The Monitor requests the Executive
to load the program from the Load Library. On program termination,
control will be returned to the Monitor to continue processing the job stream.

The following are some of the functions available through the use of
Monitor control cards.

1. Begin job.

2. End job.

3. End monitor session.

4. Comments.

5. Subprocessor call.

6. Specify input stream from cards.

7. Specify input stream from tape.

8. Execute program.

9. Specify dump parameters.

10. Request operation action.

• Figure 1 shows the operation of a Monitor test session consisting of a
source program language translation, Linkage Editor, and program
execution in simplified form.

18

MON I TOR

I'
JOB

STREAM

I _____ ..J

(CONTROL CARDS AND
SOURCE PROGRAM)

LANGUAGE
TRANSLATOR

LINKAGE
EDI TOR

PROGRAM

EXECUTIVE

Figure 1. Monitor Test Session

19

~Jonitor

(OPTIONAL)

TAPE OPERATING
ASSEMBLY

SYSTEM
FUNCTIONAL
DESCRIPTION

Mnemonic Operation
Codes

Symbolic Addressing

Data Representation

• The TOS Assembly System is a machine-oriented, symbolic program­
ming language that expedites the writing of programs for the Spectra 70/35,
70/45, and 70/55 Systems.

Assembler-language programs consist of three types of statements:
machine instruction, assembler instruction, and macro instruction.

Machine instruction statements are one-for-one symbolic representa­
tions of machine instructions. The Assembler produces an equivalent
machine instruction in the object program from each machine instruction
in the source program.

Assembler instruction statements provide auxiliary functions that assist
the programmer in checking and documenting programs, in controlling
storage-address assignment, in program sectioning and linking, in data and
storage-field definition, and in controlling the Assembler program itself.
Assembler instruction statements specify these auxiliary functions to be per­
formed by the Assembler, and, with a few exceptions, do not result in the
generation of any machine language code by the Assembler.

Macro instructions may be used in the source language to generate a
series of machine code instructions in the object program from a single
source macro statement. Macro instruction statements cause the Assem­
bler to retrieve a unique symbolic routine, to modify the routine according
to information supplied within the macro instruction, and to insert the
modified routine into the source program for translation into machine
language. RCA supplies specially-coded input/output routines as part of
the macro library. Macro instructions can be written by the programmer
and called from the macro library by use of a programmer-defined macro
instruction call line. Furthermore, macro definitions may be included
in the source deck for use within the program being assembled.

• Predefined mnemonic codes are provided in the assembly language for
all machine instruction, assembler instruction and RCA-supplied I/O
macro instruction statements.

All of the operations of the POS Assembly system are contained in the
TOS Assembler. Additional mnemonics are contained in the TOS Assembly
System to provide for the Channel Command Word (CCW) , Conditional No
Operation (CNOP), and two additional register-to-register (RR) options for
the Branch-on-Condition operation code.

• The Assembly language provides for the symbolic representation of
addresses, machine components (such as registers), and actual values
required in source statements.

• Decimal, binary, hexadecimal, or character representation of machine­
language binary values may be used by the programmer in writing source
statements. The programmer selects the representation best suited to his
purpose.

20

Program Sectioning
and Linkage

Base Register
Calculation

Relocatability

Program Listings

Error Indications

Fixed-Point Constants

Tape Operating Assembly System

• The TOS Assembly System provides facilities for generating (option­
ally) multisectioned programs and for symbolically linking separately
assembled programs or program sections.

A control section is a block of coding that can be relocated at load time,
independently of other coding, without altering or impairing the operating
logic of the control section program. An unsectioned program is treated
as a single control section. Dummy sections can also be defined.

The output of the Assembler consists of the assembled control sections
and a control dictionary. (See ESD, page 25.) The control dictionary
contains information that the Linkage Editor requires to complete cross­
referencing between control sections as it combines them into a single
object program.

Symbols may be defined in one assembly and referred to in another,
thus effecting symbolic linkages between independent assemblies. Spe­
cifically, these symbols provide linkages between independent assembled
control sections. The Assembler places the required linkage information
in the control dictionary (ESD) on the basis of the linkage symbols identi­
fied by the ENTRY and EXTRN instructions.

The ENTRY instruction identifies the symbol, within a given section,
that is to be used as the name of the entry point from another program.
Similarly, the program that uses a symbol defined in some other program
must identify it by use of the EXTRN instruction, which will effect linkage
to the point of definition.

• The base register addressing scheme used in the 70/35, 70/45, and 70/55
requires the designation of a base register (containing a base address value)
and a displacement value in specifying a storage location. The Assembly
System assumes the clerical burden of calculating storage addresses in
these terms for the symbolic address used by the programmer. The pro­
grammer retains control of base register usage and the values entered
therein by means of the USING and DROP assembler instructions.

• The object programs produced by the Assembly System are in a format
that enables relocation from the originally assigned storage area to any
other suitable area.

• A listing of the source program statements and the resulting object pro­
gram statements may be produced by the Assembly System for each source
program it assembles. The programmer can control the form and content
of the listing.

• As a source program is assembled, it is analyzed for actual or potential
errors in the use of the assembly language. Detected errors are indicated
in the program listing. Up to six error flags can be printed for each
statement.

• The programmer can define fixed-point constants with appropriate
scaling and exponent modifiers. The constants can be aligned on full or
half-word boundaries.

21

Floating-Point Constants

Source Language
Maintenance

Macro Definition
Language

;\lacro Definition

Tape Operating Assembly System

• Floating-point constants can be specified with proper scaling and ex­
ponential factors appended. This type of constant can also be aligned on
full or double-word boundaries.

• Corrections can be applied against a source language library tape for
reassembly. Optionally, an updated source library can be produced or an
updated source program only.

• A macro instruction can represent many machine instructions and/or
assembly instructions. The single coded macro instruction is, in turn,
transferred into a number of machine and/or assembly instructions, thus
reducing detailed coding on the part of the programmer.

A macro instruction can be one of two types: positional or keyword.
A positional macro instruction implies that the values to be substituted
must be in a prescribed order. A keyword macro instruction implies that
the values to be substituted are paired with keywords defined in the defini­
tion of the macro.

Before the programmer can code a macro instruction statement, he
must define the series of statements that the macro represents. This is
done by a macro definition.

A macro definition is composed of a macro definition header statement,
a macro definition trailer statement, a macro instruction prototype state­
ment, and one or more model statements. In addition the programmer can
include, in the macro definition, conditional instructions and instructions
that define arithmetic values, character values, and logical values. A
brief description of each component of a macro definition follows.

• The macro definition header statement indicates the beginning of a macro
definition. The macro definition trailer statement indicates that a macro
definition is complete.

The macro instruction prototype statement defines the format and the
mnemonic operation code of the macro instruction. Because the param­
eters defined in prototype statements must be general, the entries are
referred to as symbolic parameters. The difference between a keyword
and pOSitional macro is found in the format of the macro instruction. The
positional macro instruction prototype statement is generally used in a
macro where most, if not all, of the symbolic parameters must be present.
The keyword macro instruction prototype statement is generally used in a
macro with a large number of symbolic parameters, many of which can be
omitted.

The model statements are composed of machine instructions and/or
assembly instructions. The Operand fields of the model statements can
contain symbols defined in source programs, or symbolic entries incor­
porated by the macro definition. The symbolic entries are, in turn, re­
placed by the values theyrepresent. The symbolic entries can be symbolic
parameters or variable symbols that are described below.

22

Macro Definition
(Cont'dJ

INPUT -OUTPUT
DESCRIPTION

Input

Tape Operating Assembly System

Variable symbols can be equated to arithmetic values , character values ,
and logical values by using a group of instructions called the SET instruc­
tions. A SET variable symbol can be used in the Name field and/or Operand
field of any model statement. The value to which a SET variable symbol is
equated can be changed at any time by using a SET instruction.

The conditional instructions alter and control the order in which the
macro generator processes the statements in a macro definition. The
operands of some conditional instructions can contain an arithmetic, char­
acter, or logical relation, and a sequence symbol that names the next
statement to be processed if the relation is true. It is possible to branch
to statements within the macro definition that precede or follow the condi­
tional instruction.

Three system variable symbols, allowing special functions, are pro­
vided for the use of the programmer.

A macro definition can contain as a model statement another macro in­
struction that is generated when it is encountered. The macro instruction
within a macro definition is called an inner macro instruction.

A macro definition may be placed in the macro library or supplied with
the source program. These macro definitions can be referred to by any
program to be assembled. Macro definitions supplied with the source deck
may only be referred to by the program currently being assembled. The
source program definitions must be placed in the deck prior to their first
use.

After the macro definition is in the macro library, the programmer can
code a macro instruction in an assembly language program. The macro
instruction is coded in the same format as the macro definition prototype
statement. Substituted in the place of the symbolic parameters of the
prototype statement would be the actual values or symbols that stand for'
actual values.

• The input to the TOS Assembly System is source program statements
consisting of the Statement field, columns 1-71, and the Identification­
Sequence field, columns 73-80. The coding of a statement occupies col­
umns 1-71 and, if necessary, columns 16-71 of a single continuation card.
The Spectra 70 Assembly Program Form (#28-00-119) is used by the pro­
grammer to record the statement field.

Statements consist of one to four entries in the Statement field. From
left to right on the form, they are: a Name entry, an Operation entry, and
Operand entry, and a Comments entry. Each entry must be separated by
one or more blanks and must be written in the order stated. Space is pro­
vided on the coding form for an eight-characte.r Name field, a five-character
Operation field and a 56-character Operand/Comments field. An optional
entry called the Identification/Sequence is also provided. A description of
each field follows.

23

Name Entry

Operation Entry

Operand Entry

Comments Entry

Identification/
Sequence En try

Tape Operating Assembly System

• The Name entry (optional) is a symbol used by the programmer to identify
a statement. The symbol must consist of eight characters or less. If the
Name field is left blank, the assembly assumes no name has been entered.

Symbol definition also involves the assignment of a length attribute to
the symbol. This is merely the size, in bytes, of the storage field whose
address is represented by the symbol. For example, a symbol naming an
instruction that occupies four bytes of storage has a length attribute of
four. The Assembly System maintains a symbol table in which the values
and attributes of symbols are kept. When a symbol is encountered in an
operand, the assembly refers to the table for the values associated with
the symbol.

• The Operation entry is the mnemonic operation code that specifies the
machine operation or assembly function desired. An Operation entry is
mandatory and must appear in the first statement line, starting at least
one position to the right of the Name field. Valid operation codes consist
of five characters or less.

• The Operand entry represents coding that identifies and describes data
to be acted upon by the instruction, indicating such things as storage loca­
tions, masks, storage area lengths, or types of data.

Depending on the needs of the instruction, one or more operands may
be written, with a comma separating each one. Blanks may not intervene
between operands and the commas that separate them.

• Comments are descriptive items of information that are to be inserted
in the program listing. All valid characters, including blanks, may be
used in writing a comment.

A blank must separate the comment from the Operand field and the com­
ment itself cannot extend beyond column 71.

An entire line may be used for a comment by placing an asterisk (*) in
column 1. Extensive comments can be written by using a series of lines
with an asterisk in column 1 of each statement line or by using continua­
tion lines.

In statements where an optional Operand entry is omitted but a Com­
ments entry is desired, the absence of the Operand entry must be indicated
by a comma, preceded and followed by one or more blanks.

• This optional entry may take one of two forms:

1. Program Identification - May be used by the programmer to desig-
nate his particular ID. The identification is reproduced by the
assembly in the program listing.

2. Sequence Field - To aid in keeping the source statements in a logical
sequence of characters may be included in this field. During as­
sembly, the sequence of the statement cards can be verified by use
of the Input Sequence Checking (ISEQ) assembly instruction.

24

User-Defined Boundaries

Output

Object Program

Tape Operating Assembly System

• If desired, the programmer can disregard the standard boundaries and
write the Name, Operation, Operand, and Comment entries in other loca­
tions. By use of the Input Control (ICTL) assembly instruction, the pro­
grammer may designate his own format.

• The normal assembly output consists of the generated object program
on cards or magnetic tape (as card images) and a program listing. (See
Figure 2.)

• The object program consists of five types of cards listed as follows:

External Symbol Dictionary Cards (ESD)

Text Cards (TXT)

Relocation Dictionary Cards (RLD)

End Card (END)

Transfer Card (XFR)

A description of each card type is given below:

(OPTIONAL)

SOURCE
PROGRAM

TOS
ASSEMBLY

PROGRAM
LISTINGS

(OPTIONAL)

Figure 2. TOS Assembly System, Block Diagram

(OPTIONAL)

ESD Card - This card contains all symbol-card storage memory
assignments for a program section. ESD cards supply all the
necessary information to link together program sections to form an
operating program. For instance, the ESD card contains all sym­
bols defined in this section which are referred to by some other
section (ENTRY's) and all symbols referred to by this section which
are defined in some other section (EXTRN' s).

25

Object Program
(Cant'd)

Program Listing

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Remarks

Tape Operating Assembly System

TXT Ccud - The generated machine instructions to be loaded into
storage are contained on TXT cards. The address of the instruc­
tions or data and the number of bytes are contained within the card.
The TXT cards will be modified as required by RLD information
(see below).

RLD Ccud - The RLD card identifies portions of the TXT card which
must be modified due to relocation (i. e. floated). The RLD cards
provide the information necessary to perform the relocation and
are produced in the same order as the source input.

END Card - The END card is always generated by the assembly and
indicates the end of a program section.

XFR Card - The XFR card is only produced by the assembly at the
point in the text where speCified by the XFR assembly instruction.
This card is used by the Program Loader and Linkage Editor rou­
tines to define the transfer point or entry point of a phase, or overlay.

• The program listing consists of five lists of information: ESD listing,
source and object listing, RLD listing, error listing, and symbol table.
Options are available to suppress various portions of the printed listings
and to control the format of the listings.

• The following minimum equipment is required:

1 Processor:

*5 Magnetic Tapes:

1 Card Reader:

1 Printer:

Models 70/35E, 70/45E or 70/55E

Models 70/432, 70/442 or 70/445

Model 70/237

Models 70/242 or 70/243

• 1. Additional Memory up to 131K bytes may be used for increased
efficiency in processing macro expansions and symbols.

2. The 70/251 Videoscan Document Reader with the card read feature
may be substituted for the card reader.

3. Three of the tapes are work tapes and may be 9-channel tapes or
7 -channel tapes with the pack/unpack feature. The fourth tape is
the System tape and must be a 9-channel tape.

4. If macros are called from the library, either programmer defined
macros or RCA supplied macros such as EXCP, a library tape
must be used and thus the minimum number of tapes would be five.
This last tape must be a 9-channel tape.

5. Magnetic tapes may be substituted for the card reader, and the
printer.

* This includes the macro library tape. This tape is not required if the
macro definitions are included in the source deck. (See 4. above.)

26

Remarks
(Cont'dJ

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

Tape Operating Assembly System

6. A card punch may be substituted for magnetic tape output.

7. One or two additional tapes are required for the source library
maintenance option.

• (To be supplied)

• The assembly operates under control of the Tape Operating System.

• The assembler observes all of the standard set of program halts of the
Tape Operating System. In addition extensive error checking is performed
on the source program.

Table 3. Assembly System Controlling Codes

Name Mnemonic

Start Program START

Set Location Counter ORG

End of Program END

Define Storage DS

Define Constant DC

Identify Entry Point ENTRY

External Symbol EXTRN

Identify Control Section CSECT

Drop Base Address Register DROP

Identify Dummy Section DSECT

Start New Page EJECT

Equate Symbol EQU

Input Format Control ICTL

Input Sequence Check ISEQ

Begin Literal Pool LTORG

Print Optional Data PRINT

Reproduce Following Card REPRO

Space Listing SPACE

Identify Assembly Output TITLE

Use Base Address Register USING

Generate a Transfer Card XFR

Punch a Card PUNCH

Define Channel Command Word CCW

Conditional No Operation CNOP

27

ASSEMBLY SYSTEM
CONTROLLING

CODES

START
Start Program

ORG
Set Location Counter

END
End of Program

OS
Define Storage

DC
Define Constant

ENTRY
Identify Entry Point

EXTRN
External Symbol

CSECT
Identify Control Section

DROP
Drop Base Reg ister

DSECT
Identify Dummy Section

EJECT
Start New Page

Tape Operating Assembly System

• The START statement must be the first statement in a program. The
Name field of the statement names the program and the Operand field sets
the Assembly Location counter to its initial value.

• The ORG statement allows the programmer to change the Assembly
Location counter from its present setting.

• The END statement indicates to the Assembly System that all statements
have been processed and is used to indicate the starting address of the ob­
ject program.

• The DS statement allocates storage for such things as input/output areas,
temporary and working storage. This statement does not generate instruc­
tions but does reserve memory for the area defined.

• The DC statement generates data constants within an object program.
The constants may consist of any valid EBCDIC character, hexadecimal
digit, or memory address.

• The ENTRY statement identifies a linkage symbol that is defined in this
program but may be used in some other program. The ENTRY and EXTRN
statements provide the facility to load and execute as a unit, programs that
are independently assembled. The linkage between the programs is pro­
vided by defining a symbol in one program and referring to the symbol as
an operand in the second program. The location associated with the sym­
bol in the defining program is called the entry point. A reference to an
entry point in the other assembled program is called an external reference.

• The EXTRN statement refers to an entry point in another Control section.

• The CSECT statement identifies the beginning or the continuation of a
control section or segment of a program. All statements following a CSECT
are assembled as part of that control section until a statement identifying a
different control section is encountered .. The first section of a program is
preceded by a START statement rather than a CSECT statement.

• The DROP statement specifies a previously available register that may
no longer be used as a base register. The registers previously used were
defined using a USING statement.

• The DSECT statement identifies the beginning or resumption of a dummy
section. A dummy section represents a control section that is assembled
but is not part of the object program. A dummy section is a convenient
means of describing the layout of an area of storage without actually re­
serving the storage.

• The EJECT statement causes the next line of the assembly listing to
appear at the top of a new page.

28

EQU
Equal Symbol

ICTl
Input Format Control

ISEQ
Input Sequence Control

lTORG
Begin Literal Pool

PRINT
Print Optional Data

REPRO
Reproduce

Following Card

SPACE
Space Listing

TITLE
Identify Assembler Output

USING
Use Base

Address Register

XFR
Generate A

Transfer Instruction

PUNCH
Punch a Card

CCW
Channel Command Word

CNOP
Conditional

No Operation

Tape Operating Assembly System

• The EQU statement defines a symbol by assigning to it the attribute of
an expression in the Operand field. This statement is the means of equating
symbols to register numbers, immediate data, and other arbitraryvalues.

• The ICTL statement allows the programmer to alter the normal format
of the source program statement.

• The ISEQ statement instructs the assembler to sequence check the input
following the ISEQ statement.

• The LTORG statement causes all literals thus far encountered in the
source program to be assembled at appropriate boundaries starting at the
first double word boundary following the LTORG statement.

• The PRINT statement controls the printing of the assembly listing and
controls printing of this listing until further print statements are found in
the source program.

• The REPRO statement causes the assembler to punch into the object
deck a duplicate of the statement immediately following the REPRO. This
can be used to insert information required by the Linkage Editor into the
object program immediately at assembly time.

• The SPACE statement inserts one or more blank lines in the assembly
listing.

• The TITLE statement enables the programmer to identify the assembly
listing and the assembled output cards.

• The USING statement indicates to the Assembly System that one or more
general registers are available. This statement also specifies the base
address values that the assembly may assume will be in the registers at
object time. This statement tells the Assembly System that it may assume
that the current value of the Location Counter will be in one general register
at object time, and that the current value of the Location Counter will be in
another general register at object time.

• The XFR statement is provided to cause the generation of a transfer
card in the assembled text in the same location that the XFR statement
appeared in the source program. A transfer card is used by the Loader
and Linkage Editor routines to define the transfer or entry points of a con­
trol section.

• The PUNCH statement is similar to the REPRO statement except that
the Macro Generator can substitute values for symbolic parameters or SET
variable symbols in the operand of the PUNCH statement if it appears in a
macro definition. This allows the controlled generation of phase names.

• The CCW statement provides a method of defining and generating an
eight-byte channel command word aligned on a double-word boundary.

• The CNOP statement enables the programmer to align a statement at a
specific halfword. This facility is useful in creating calling sequences
consisting of a linkage to a subroutine followed by parameters such as
channel command words (CCW).

29

MACRO
DEFINITION

LANGUAGE

MACRO
Macro Definition Header

MEND
Macro Definition Trailer

SETA
Set Arithmetic

SETB
Set Binary

SETC
Set Charader

AIF
Conditional Branch

Forward

AIFB
Conditional Branch

Backward

AGO
Unconditional Branch

AGOB
Unconditional Branch

Backward

ANOP
No Operation

MEXIT
Macro Definition Exit

Tape Operating Assembly System

• The MACRO macro indicates to the Assembly System that a Macro
Definition follows.

• The MEND macro indicates to the Assembly System that a Macro
Definition is complete.

• The SETA macro assigns an arithmetic value to a SETA variable
symbol.

• The SETB macro sets a value true or false to a SETB variable symbol.

• The SETC macro assigns a character to a SETC variable symbol.

• The AIF macro conditionally alters the sequence in which source state­
ments are processed by the Macro Generator.

• The AIFB macro conditionally alters the sequence in which source
statements are processed by the Macro Generator.

• The AGO macro alters the sequence in which source statements are
proces sed by the Macro Generator.

• The AGOB macro alters the sequence in which source statements are
processed by the Macro Generator.

• The ANOP macro facilitates conditional branching to statements that
are named by s ymbolics or set variable symbols.

• The MEXIT macro indicates to the Macro Generator that it terminates
processing of the Macro Definition.

30

REPORT
PROGRAM

GENERATOR

FUNCTIONAL
DESCRIPTION

• The TOS Report Program Generator produces an object report pro­
gram from a problem-oriented source language. Common report features
such as input data selection, editing, calculating, summarizing, and control
breaks are provided by the generator.

The source program is the input to the Report Program Generator. The
language describes to the generator, information concerning the input data
format, operations to be performed on the data and the output format of the
report. The generator generates an object program required to perform
the requested functions.

Source programs written in RPG on the Spectra POS (Primary Operating
System) can be compiled without change using this compiler.

Some of the features of the Report Program Generator are as follows:

1. Problem-oriented language designed for ease of use

2. A wide variety of input and output options

3. Up to nine control breaks

4. Write up to eight printed reports

5 . Use Table Lookup

6. Checking the sequence of different record types within a control
group or checking the sequence of control groups.

7. Exit to a programmer's subroutine written in a language other than
RPG.

8. Editing by a mask

9. Random processing of files

10. Obtain data records from single or multiple input files

11. Updated output tapes

12. Perform calculations on data taken from input records or RPG
literals.

31

INPUT /OUTPUT
DESCRIPTION

Report Program Generator

Input • Input to the RPG consists of TOS Job Control statements and an RPG
Control Card combined with a source deck. The source consists of the
following forms:

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Remarks

1. File Description Specifications

2. File Extension Specifications

3. Input Specifications

4. Calculation Specifications

5. Output Format Specifications

• The output of the RPG consists of an object program containing all of
the computer instructions and linkage to the control system necessary to
prepare the desired report.

A listing of the object program, the source statements, and errors (if
present) is produced.

• The following minimum equipment is required:

1 Processor: Models 70/35E, 70/45E and 70/55E

5 Magnetic Tape Devices: Models 70/432, 70/442 and 70/445

1 Card Reader: Model 70/237

1 Printer: Models 70/242 or 70/243

• 1. Magnetic tapes may be substituted for the card reader and the
printer.

2. A card punch, Model 70/234 and 70/236, may be substitutedfor one
of the five tapes.

3. One of the five tapes is the system tape and must be a 9-channel
tape. The other four tapes may be 9- or 7-channel tapes, but if
7-channel tapes are used they must have the pack/unpack feature.

4. The Model 70/251 Videos can Document Reader with the optional
card read feature may be substituted for the card reader.

32

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TOS REPORT
PROGRAM

GENERATOR
OPERATIONS

Arithmetic Operations

Add (ADD)

Zero and Add (Z-ADD)

Subtract (SUB)

Zero and Subtract (Z-SUB)

Multiply (MULT)

Divide (DIV)

Move Remainder (MVR)

Move Operations

Move (MOVE)

Move Left (MOVEL)

Report Program Generator

• (To be supplied.)

• The Report Program Generator operates under control of the Tape
Operating System.

• The Report Program Generator observe all of the standard set of
program halts of the Tape Operating System. In addition all erroneous
source-language statements are flagged on the output listing.

• This operation adds algebraically the contents of the field or literal in
Factor 2 to the contents of the field or literal in Factor 1.

• This operation causes the result field to be set to zeros and then causes
the data contained in the numeric literal or the field in Factor 2 to be placed
in the Result field.

• This operation subtracts algebraically the contents of the field or literal
in Factor 2 from the contents of the field or literal in Factor 1.

• This operation causes the negative of the number contained in the literal
or the field in Factor 2 to be placed in the Result field speCified after the
Result field has been set to zeros.

• This operation causes the contents of the field or literal in Factor 1 to
be multiplied algebraically by the contents of the field or literal in Factor 2.

• This operation causes the contents of the field or literal in Factor 1 to
be divided by the contents of the field or literal in Factor 2.

• This operation moves the remainder from a divide operation to a sepa­
rate field that has been set to zeros by the RPG processor.

• This operation causes data characters, starting at the rightmost position,
to be moved from the field or literal contained in Factor 2 to the rightmost
positions of the Result field.

• This operation causes data characters, starting at the leftmost position,
to be moved from the field or literal contained in Factor 2 to the leftmost
positions of the Result field.

33

Move High-la-Lou' Zone
(MHLZO)

Move Low-la-High Zone
(MLHZO)

I\Jove High-ta-High Zone
(MHHZO)

Move Low-to-Low Zone
(MLLZO)

Testing or Compare
Operations

Compare (COMP)

Test Zone (TESTZ)

Branching and Exit
Operations

Exit to a Subroutine
(EXIT)

RPG Label (RLABL)

User's Label (LABEL)

Branching or Go To
(GOTO)

Providing a Label
For Go To (TAG)

Turning Indicators
On and Off

Set Indicators On
(SETON)

Set Indicators Off
(SETOF)

Table Operations

Table Lookup (LOKUP)

Report Program Generator

• This operation moves the zone at the leftmost position of Factor 2 to the
rightmost position of the Result field.

• This operation moves the zone at the rightmost position of Factor 2 to
the leftmost position of the Result field.

• This operation moves the zone at the leftmost position of Factor 2 to the
leftmost position of the Result field.

• This operation moves the zone at the rightmost position of Factor 2 to
the rightmost position of the Result field.

• This operation causes the contents of the field or the literal in Factor 1
to be compared against the contents of the field or literal in Factor 2.

• This operation tests the zone of the leftmost position of the field that is
entered in the Result field.

• This operation enables the programmer to transfer control from the
RPG program to a programmer's subroutine.

• This operation provides the facility for a subroutine, external to the
RPG program, to reference a field in the RPG program.

• This operation enables the RPG program to refer to a field contained in
a programmer's subroutine.

• This operation enables branching to occur in the object program.

• This operation provides a name to which the program can branch.

• This operation causes the indicators specified on the calculation speci­
fication card to be turned on.

• This operation causes the indicators specified on the calculation speci­
fication card to be turned off.

• This operation causes the field name contained in Factor 1 to be used
as the search argument in a table lookup operation.

34

Conversion Routine
Operations

External Conversion
Routines (EXTCV)

Record Key (KEYCV)

Report Program Generator

• This operation indicates the point in the RPG program where the random
address conversion routine is to be performed.

• This operation establishes the name of the field that is to contain the key
of the disc record.

35

FORTRAN IV
COMPILER

FUNCTIONAL
DESCRIPTION

• The FORTRAN Compiler translates programs written in the FORTRAN
source language, a scientific data processing language, into machine
language programs.

The FORTRAN source program consists of five basic types of statements
that are used to describe the data to be processed and to detail the way in
which the data is to be manipulated.

One type of statement calls for input/output operations such as reading
of data, printing a result, or punchinK a result. A second type of statement
specifies the arithmetic and logical operations that are to be performed on
the data. A third specifies the flow of control through the set of statements
or the sequence in which operations are to be performed. A fourth consists
of statements that provide certain information about the type and format of
data. The fifth type of statement allows one to define FORTRAN sub­
programs.

Some of the features of the Compiler are as follows:

1. Problem -oriented language

2. Fast compilation speeds

3. Efficient object programs

4. Comprehensive error checking of source input

5. Arithmetic statement functions

6. Subprograms

7. Mode declarations permitting the overriding of the normal mode
for a variable or function name

8. Logical expressions and conditional statements to allow decisions
to be based directly on the true or false value of a quantity which
is logical rather than arithmetic in nature

9. Mathematical relations used to make a comparison

10. Logical operators, variables, and constants

11. Literal constants

12. Adjustable array dimensions in subprograms

13. Variable attribute control: specify data type, length, dimension,
and initial values

14. Mixed mode expressions

15. Named I/O list

16. Literal format code

17. Multiple entries into subroutine subprograms

18. Number of subscripts can range from one to seven

36

INPUT /OUTPUT
DESCRIPTION

Fortran IV Compiler

Input • The primary input to the compiler is the source program. The source
program is punched on cards in a standard format. The format is:

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Remarks

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

Column 1 can contain a "C" denoting a comment card.

Columns 1-5 contains the statement number.

Column 6 indicates a continuation card.

Columns 7 -72 the FORTRAN statement.

Columns 73-80 - These columns are not processed by FORTRAN and
may contain program identification.

• The primary output from the compilation consists of object programs
for execution and program listings. If errors are detected, diagnostic
messages are listed.

• The following minimum equipment is required:

1 Processor: Models 70/35E, 70/45E or 70/55E

5 Magnetic Tape Devices: Models 70/432,-70/442 or 70/445.

1 Card Reader: Model 70/237

1 Printer: Models 70/242 or 70/243

• 1. Magnetic tapes may be substituted for the card reader and the
printer.

2. A card punch may be substituted for one of the five tapes.

• (To be supplied.)

• The FORTRAN Compiler operates under control of the Tape Operating
System.

• The FORTRAN Compiler observes all of the standard program halts of
the Tape Operating System.

37

Fortran IV Cumpiler

FORTRAN SOURCE
LANGUAGE

Constants • I. Integer

2. Real

3. Complex

4. Logical

5. Literal

Expression • I. Arithmetic

2. Logical

Control Statements • 1. Unconditional GO TO

2. Computed GO TO

3. Assigned GO TO

4. ASSIGN

5. Logical IF

6. Arithmetic IF

7. DO

8. CONTINUE

9. PAUSE

10. STOP

II. END

Input/Output Statements • I. READ (a, b) list

2. WRITE (a, b) list

3. READ b, list

4. PRINT

5. PUNCH

6. FORMA T elements

a) T, X, P literal, A, I, F, E, D, H, G, L

7. END FILE

8. BACKSPACE

9. REWIND

10. NAME LIST

38

SPECIFICATION
STATEMENTS

Subprograms

Fortran IV Compile'r

• 1. Type REAL, INTEGER, DOUBLE PRECISION, LOGICAL COM-
PLEX

2. DIMENSION

3. COMMON

4. IMPLICIT

5. EQUIVALENCE

6. DATA

• 1. Statement functions

a) arithmetic

b) logical

2. FUNCTION

3. BLOCK DATA

4. SUBROUTINE

5. CALL

6. ENTRY

7. RETURN

8. EXTERNAL

9. FORTRAN supplied subprograms

39

COBOL
COMPILER

FUNCTIONAL
DESCRIPTION

• The COBOL Compiler translates programs written in the COBOL source
language, a business data processing language, into machine language
programs. The COBOL Compiler implements COBOL as defined in detail
in this write-up.

The COBOL source language specifies the solution of a business data
processing problem. The four elements of this specification are:

1. Program identification of the program.

2. Description of the equipment being used in the processing.

3. Description of the data being processed.

4. Set of procedures which determine how the data is to be processed.

The COBOL source language has a separate division within the source
program for each of these elements. The names and descriptions of these
divisions are as follows:

Identification Division - The Identification Division identifies the source
program and the outputs of a compilation. In addition, the programmer
may include the date the program was written, the date it was compiled
and any other information desired.

Environment Division - The Environment Division specifies the equip-
ment required. It contains descriptions of the computers for both compiling
the source program and for running the object program. Memory size,
number of tape units, printers, etc., are among many items that may be
mentioned for a particular computer. Problem oriented names may be
assigned to a particular equipment.

Data Division - The Data Division uses file and record descriptions to
describe the files of data that the object program is to manipulate or create,
and the individual logical records that comprise these files. The character­
istics or preparation of the data are described in relation to a standard
data format rather than an equipment criteria format.

Procedure Division - The Procedure Division specifies the steps that
the programmer wishes the computer to follow. These steps are expressed
in meaningful English words, statements, sentences and paragraphs. This
aspect of the overall system is often referred to as the program but is the
only part of the total specification of the problem solution and is insufficient
by itself to describe the entire problem. Repeated references must be
made to information appearing in other divisions. This division more than
any other, allows the programmer to express his thoughts in meaningful
English.

40

FUNCTIONAL
DESCRIPTION

(Cont'd)

INPUT -OUTPUT
DESCRIPTION

Input

Output

Cobol Compiler

Some of the features of the Compiler are:

1. Chain or (stacked) compilations

2. Comprehensive source language verification. COBOL elements
not specified in this section will be recognized and a printout
warning to the programmer of these elements will be provided.

3. Compilation speeds are increased when additional memory is
available.

4. Copy library facility

5. Facility to bind programs or subprograms written in other languages

6. Comprehensive compiler listings

7. Several types of compilations are:

a) Compilation without corrections.

b) Compilations with corrections.

8. A source computer of 65K bytes may produce an object program for
memory sizes up to 524K bytes.

• Source Program - The primary input to the compiler consists of source
programs on cards or stored on magnetic tape.

Parameter Information - This information deSignates the type of Com-
pilation, Listings, etc. , to the compiler.

Copy Include Library - This tape contains previously created Data
Descriptions and Procedure Statements which can be called in by a Source
Program and automatically incorporated into the program. With this
facility, common Data Layouts and Subroutines can be used thus reducing
the total programming effort.

Source Program Corrections - Corrections are accepted from cards or
card images on magnetic tape. An indicator on the output listings will
deSignate the source line corrected.

• 1. Loadable Object Program on magnetic tape.

2. Detailed Listings which include the following:

a. Reference edit listing of the source program

b. Memory map of the Data Division with cross-reference infor­
mation to each item of data. Cross references are made to
sequence numbers of statements in the Procedure Division.

41

Output c. Object program with references to the Procedure Division by
(Cont'd) sequence number.

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Remarks

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

d. Diagnostic messages; when present, a listing of all detected
source program errors is provided.

3. Updated Copy Library. When changes are applied to the Copy
Library, an updated Copy Library is provided.

4. Operator Instructions. Appropriate instructions to the operator
are displayed.

• The following minimum equipment is required:

1 Processor: Models 70/35E, 70/45E or 70/55E

5 Magnetic Tape Devices: Models 70/432, 70/442 or 70/445

1 Card Reader: Model 70/237

1 Printer: Models 70/242 or 70/243

1 Card Punch: Models 70/234 or 70/236

1 Console Typewriter

• 1. Magnetic Tape devices are acceptable substitutes for the card
reader, card punch, and the printer.

2. Additional memory results in more efficient processing.

3. When the source program contains copy and/or include statements,
an additional tape is required.

• (To be supplied)

• The compiler operates under control of the tape operating system.

• The Compiler performs extensive error checking of the input source
program and error message are displayed for, incorrect source statements.
COBOL elements not implemented by this compiler are flagged for sub­
sequent changing.

42

COBOL LANGUAGE
OUTLINE

Identification Division

Environment Division

• PROGRAM-ID. program-name. [any sentence.]

[AUTHOR. any sentence.]

[INSTALLATION. any sentence.]

[DATE-WRITTEN. any sentence.]

[DATE-COMPILED. any sentence']

[SECURITY. any sentence.]

[REMARKS. any sentence.]

• CONFIGURATION SECTION

SOURCE-COMPUTER. RCA-SPECTRA [model-number.]

OBJECT-COMPUTER. RCA-SPECTRA [model-number.]

INPUT-GUTPUT SECTION

FILE-CONTROL

SELECT file-name

ASSIGN TO{ DIRECT-ACCESS [device-number UNIT [s]] l
UTILITY [device-number UNIT [s]] S
UNIT-RECORD device-number UNIT s

[ACCESS IS 1 SEQUENTIAL t]
RANDOM ~

[ORGANIZATION IS1 INDEXED l]
RELATIVE~

[RESERVE {~~ger } ALTERNATE AREA [s]]

[SYMBOLIC KEY IS data-name]

[ACTUAL KEY IS data-name]

Cobol Compiler

[SAME RECORD AREA FOR file-name-l file-name-2 [file-name-3 .. J .J
[RERUN EVERY 1 END OF UNIT OF file-name t .]

integer CLOCK-UNITS ~

[APPLY RESTRICTED SEARCH OF integer TRACKS TO file-name ...]

[APPLY condition-name TO FORM-OVERFLOW OF file-name.]

[APPLY RECORD PROTECTION TO file-name.J
[APPL Y section-name TO saved-area-name file-name

[FOR integer CYCLES] .]

43

Data Division • FILE SECTION

FILE DESCRIPTION ENTRIES

RECORD DESCRIPTION ENTRIES

SORT DESCRIPTION ENTRIES

RECORD DESCRIPTION ENTRIES

SA VED AREA ENTRIES

RECORD DESCRIPTION ENTRIES

WORKING-STORAGE SECTION

RECORD DESCRIPTION ENTRIES

LINKAGE SECTION

RECORD DESCRIPTION ENTRIES

REPORT SECTION

REPORT DESCRIPTION ENTRIES

REPORT GROUP DESCRIPTION ENTRIES

REPORT ELEMENT DESCRIPTION ENTRIES

FILE SECTION ENTRIES

FD file-name VALUE OF FILE-ID IS external-name

[BLOCK CONTAINS integer RECORDS]

[RECORD CONTAINS [integer 1 TO] integer-2 CHARACTERS

[WITHOUT COUNT CONTROL]

lOMITTED l
[LABEL RECORDS ARE data-name ~]

lRECORD IS I
[DATA RECORDS ARE record-name]

RECORD DESCRIPTION ENTRY

{
data-name}

level-number FILLER

[REDEFINES data-name-2]

~
alpha-form }
an-fonn

PICTURE IS numeric-form
floating-point form

[BLANK WHEN ZERO]

[OCCURS integer TIMES [DEPENDING ON data-name]]

44

Cobol Compiler

Data Division
(Cont'd)

Procedure Division

[VALUE IS literal]

[JUSTIFIED RIGHT]

{
LEFT l

[SYNCHRONIZED RIGHTf]

[USAGE IS ~~:~~iATIONAL \]
COMPUTATIONAL-l
COMPUTATIONAL-2
COMPUTATIONAL-3

Cobol Compiler

• OPEN f INPUT file-name [WITH NO REWIND] [REVERSED] }
) OUTPUT file-name [WITH NO REWIND]
~ 1-0 file-name

[INPUT 1 file-name [WITH NO REWIND] [REVERSED]]
[OUTPUT 1 file-name [WITH NO REWIND J
[1-01 file-name

READ file-name RECORD [INTO data-name]

J
AT END t
INVALID KEY ~ imperative-statement ...

WRITE record-name [FROM data-name-l]

[INVALID KEY imperative-statement]

1
data-name-2 i

AFTER ADVANCING integer LINES

REWRITE record-name [FROM data-name]

[INVALID KEY imperative-statement ...]

CLOSE J file-name [UNIT] [WITH 1 ~WIND!] ! ...

{
data-name} [UPON CONSOLE]

DISPLAY literal . .. UPON SYSPCH

ACCEPT data-name [FROM CONSOLE]

MOVE f data-name-Il
-- lliteral f TO data-name-2 ...

MOVE CORRESPONDING data-name-l TO data-name-2 ...

EXAMINE data-name TALLYING, ALL) 'character-I'
) LEADING ~ t UNTIL FIRST f

REPLACING BY 'character-2'

45

Procedure Division
(Cont'd)

EXAMINE data-name REPLACING \' ALL) 'character-I'
) LEADING \
J UNTIL FIRST (
f, FIRST ,

BY 'character-2 '

TRANSFORM data-name-3 CHARACTERS

f figurative-constant-It S figurative-constant-2 t
) non-numeric-literal-I ('I non-numeric-literal-2 (

FROM ~ data-name-I' TO t data-name-2 ,

COMPUTE data-name-I [ROUNDED] = l~~:~~i:~~ral ~
floating-point-literal
arithmetic-expression

[ON SIZE ERROR imperative-statement ...]

~ numeric-literal l))
) floating-point-literal) TO ~

ADD ~ data-name-I ~ . . . t GiVING S data-name-n

[ROUNDED] [ON SIZE ERROR imperative statement ..]

ADD CORRESPONDING data-name-I TO data-name-2

[ROUNDING] [ON SIZE ERROR imperative-statement]

S data-name-I l
SUBTRACT) numeric-literal-I (

t floating-point-literal-I "

{

' data-name-m [OIVING] data-name-n '}
FROM numeric-literal-m GIVING data-name-n

floating-point-literal-m GIVING data-name-n

[ROUNDED] [ON SIZE ERROR imperative-statement ...]

SUBTRACT CORRESPONDING data-name-I FROM data-name-2

[ROUNDING][ON SIZE ERROR imperative-statement ...]

S data-name-I)
MULTIPLY) numeric-literal-I (

~ floating-point-literal-I)

S data-name-2 [GIVING] data-name-3 }
numeric-literal-2 GIVING data-name-3

BY t floating-point-literal-2 GIVING data-name-3

[ROUNDED] [ON SIZE ERROR imperative-statement ...]

S data-name-I)
DIVIDE) numeric-literal-I {

t floating-point-literal-I'

46

Cobol Compi leT

Procedure Division
(Cont'd)

{

data-name-2 [GIVING] data-name-3 l
INTO numeric-literal-2 GIVING data-name-3
-- floating-point-literal-2 GIVING data-name-3)

[ROUNDED] [ON SIZE ERROR imperative-statement. ..]

STOP {~:al}
GO TO procedure-name

Cobol Compiler

GO TO procedure-name-l [procedure-name-2] DEPENDING ON data-name

ALTER {procedure-name-l TO PROCEED TO procedure-name-2}

PERFORM procedure-name-l THRU procedure-name-2

PERFORM procedure-name-l [THRU procedure-name-2]

{
integer }
data-name TIMES

PERFORM procedure-name-l [THRU procedure-name-2] UNTIL test-condition

PERFORM procedure-name-l [THRU procedure-name-2]

{
numeric-literal-2 t

VARYING data-name-2 FROM data-name-2 f

j numeric-literal-3}
BY l data-name-3 [UNTIL test-condition-l]

{
numeric-literal-4}

[AFTER data-name-4] FROM data-name-5

{
numeric-literal-6 l

BY data-name-6 f [UNTIL test-condition-2]

{
numeric-literal-B l

[AFTER data-name-7] FROM data-name-B f

f numeric-literal-9}
BY l data-name-9 [UNTIL test condition-3]

ENTER LINKAGE

CALL entry-name [USING argument ...] .

ENTER LINKAGE
CALL entry-name [USING argument ...] .

ENTER LINKAGE
ENTRY entry-name [USING data-name ...] .
ENTER COBOL

ENTER LINKAGE
RETURN [VIA entry-name] .
ENTER COBOL

47

Procedure Division
(Cont'd)

Report Section

paragraph-name. EXIT.

NOTE comment. .. .

USE FOR CREATING [BEGINNING]
LENDING

LABELS ON OUTPUT [file-name ...] .

USE FOR CHECKING [BEGINNING l
ENDING J

LABELS ON INPUT [file-name ...] .

{
Statement-l l

IF condition [THEN] NEXT SENTENCE f

[{
ELSE } {statement-2 }
OTHERWISE NEXT SENTENCE

l
data-name-l ~ >
arithmetic-expression-l <

IF figurative -constant-l IS [NOT] =
literal-l GREATER THAN

~
~ data-name-2 ~
ari thmetic-expre s si on-2
fi gurati ve -Con stant-2
literal-2

LESS THAN
EQUAL TO

{
data-name } f POSITIVE)

IF arithmetic-expression IS [NOT]) ZERO (
~ NEGATIVE)

j~UMERIC t
IF data-name IS [NOT]jALPHABETIC\

IF [NOT] condition-name

• RD report-name

[CODE "character"]

[{
CONTROL IS } {FINAL l-J
CONTROLS ARE data-name (.

FINAL data-name'

PAGE integer-p [LINES] [HEADING] integer-h

[FIRST DETAIL integer-d]

[LAST DETAIL integer-e][FOOTING integer-f]

48

Cobol Compiler

Report Group
Description

Report Procedure
Division Considerations

Sort Description Entry

• 01 [data-name]

TYPE

~
S integer-I ')]

LINE.) PLUS integer-2 (
~ NEXT PAGE ,

[
f' integer-I)]

NEXT GROUP) PLUS integer-2.(
{, NEXT PAGE ,

REPORT HEADING

PAGE HEADING
OVERFLOW HEADING

CONTROL HEADING 1 data-name-li
....::;....:;..~~= -===~. FINAL ~

DETAIL

CONTROL FOOTING 1 d. ata-name-2i
FINAL ~

OVERFLOW FOOTING
PAGE FOOTING
REPORT FOOTING

REPORT ELEMENT DESCRIPTION ENTRY

level-number data-name LINE-clause

[COLUMN integer]

[GROUP INDICATE]

[RESET ON 1 data-name i]
-- FINAL ~

{

SOURCE data-name }
SUM data-name-I [UPON data-name-n]
VALUE IS literal

• {ALL } INITIA TE report-name...

GENERATE data-name

{
ALL l

TERMINATE report-name ... f

USE BEFORE REPORTING data-name

• SD sort-file-name

VALUE OF FILE-ID is external-name

[RECORD CONTAINS [integer-1 TO]

integer-2 CHARACTERS]

49

Cobol Compiler

Sort Description Entry
(Cont'dJ

Sort Procedure Division
Considerations

Random Processing

Copy/Include Program
Library Facility

COpy Clause

Cobol Compiler

[f RECORD IS }]
DATA t RECORDS ARE record-name ...

• { DESCENDING} SORT sort-file-name ASCENDING data-name-1 ...

[
fDESCENDING}] t ASCENDING data-name-2 ...

{
USING .} INPUT PROCEDURE sectlOn-name-1

{
OUTPUT PROCEDURE section-name-2}
GIVING file-name-2 '

RELEASE record-name

RETURN sort-file-name [AT END imperative-statement .. .J

• FILE ENTRIES

SA saved-area-name

PROCEDURE DIVISION

PROCESS section-name

HOLD [ALL,]
sectIOn-name . . .

• Prewritten source program entries can be included in a COBOL pro­
gram at compile time. Thus, an installation can utilize standard file de­
scriptions, record descriptions, or procedures without having to repeat
programming them. These entries and procedures are contained in a user­
created library. They are included in a source program by means of a
COpy clause or an INCLUDE statement.

• The COpy clause permits the programmer to include prewritten Data
Division entries or Environment Division clauses in his source program.
The COpy clause is written in the Data Division in one of the following forms:

Option 1
(Within a Saved Area Description entry)
SA saved-area-name COPY library-name FROM LIBRARY
Option 2
(Within a Sort Description entry)
SO file-name COPY library-name [FROM LIBRARY].
Option 3
(Within a Report Description Entry)
RD data-name CODE non-numeric-literal
COpy library-name FROM LIBRARY
Option 4
(With a Report Group Description entry)
01 data-name COpy library-name FROM LIBRARY

Library-name is contained in the programmer's library and identifies
the entries to be copied. It is an external name and must follow the rules
for external-name formation.

50

SORT/MERGE
GENERATOR

FUNCTIONAL
DESCRIPTION

INPUT -OUTPUT
DESCRIPTION

EQUIPMENT
REQUIREMENTS

• A Sort/Merge Generator is provided as part of the Spectra 70 Tape
Operating System. This routine enables a programmer to generate a pro­
gram that sorts files of random records or merges files of sequenced
records into one sequential file. From one to twelve control fields may
be specified, with the output in ascending or descending order. Control
statements are used to tailor the program to the programmer's needs.

The Sort/Merge system has two distinct phases. The Generation phase
interprets parameters and creates the desired program. The Object phase
structures memory, and performs the actual sort or merge.

The Object phase, after memory is structured, is subdivided into four
parts. The Internal Sort reads the input data and, using a replacement
selection technique, generates strings onto work tapes. The External Sort
performs successive reverse-reading polyphase merges, decreasing the
number of strings until no tape contains more than one string. The Final
External Sort merges the data into one sequenced string. The File Merge
performs a forward-reading merge of input files when the merge function
has been specified or when the volume limit has been exceeded.

A summary of the features included in the Sort/Merge are listed below:

1. Up to a 16-way sort or merge is provided.

2. Standard Spectra 70 label processing is provided, as well as pro­
vision for programmer checking of non-standard labels.

3. Exits are provided for user own-codingwhichwill permit inserting ,
deleting, altering records, etc.

4. Checkpoints are taken before each External Sort pas s and at the end
of each cycle to allow for restarts.

5. Tape alternation may be specified for both input and output files.
Certain input-output work tape duplication is also permitted.

• Input records may be fixed or variable in size, blocked or unblocked.
Record formats and labels must adhere to Spectra 70 standards.

The maximum size of the input file is determined by the way of the sort
times the number of records that can be written to a reel (based on the in­
ternal blocking factor).

• 1 Processor (65K bytes)
1 Card Reader
1 Console Typewriter
3 to 17 Tape Devices (7 or 9 track) plus Operating System tapes.

A minimum of one selector channel is required. At least two selector
channels are required for maximum efficiency.

51

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

SortAlerge Ge nerator

• The Sort/Merge normally uses all of memory. However, the pro­
grammer has the option of specifying the upper limit. A minimum of 12K
must be available to the program.

• The Sort/Merge is part of the Spectra 70 Tape-Oriented System and
functions under the control of the Tape Operating System.

• The Sort/Merge validates input parameters and observes the standard
set of error messages. Control is given to the programmer at a designated
exit point if input/output errors cannot be corrected by the program.

• See Sort/Merge Timing Formula section of the Spectra 70 Sales/System
Guide (#99-70-001) for timing information.

52

CARD OR PAPER
TAPE TO PUNCH

AND PRINTER

FUNCTIONAL
DESCRIPTION

INPUT -OUTPUT
DESCRIPTION

• The Card or Paper Tape to Punch and Printer routine produces card
output files in EBCDIC format, and printed output in display format, from
SO-column card input files or SO-character paper tape blocks of EBCDIC
format. The input cards may be field-selected, packed, unpacked, se­
quence checked, and sequence numbered before being transferred to the
card punch and printer.

The display format provides a visual picture of the input and/or output
card file in character mode. Each input card starts a new print line with
positions reserved to indicate the card number.

Input • Input to this routine consists of a card file or paper-tape file punched in
EBCDIC format.

Output • Output from this routine consists of a punched-card file in EBCDIC for­
mat and a printer listing in SO-column character mode.

EQUIPMENT
REQUIREMENTS

Minimum Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

• 1 Processor (65K bytes)
1 Card Reader or Paper Tape Reader/Punch
1 Card Punch
1 Printer
1 Magnetic Tape Device
1 Console Typewriter

• (To be supplied)

• (Not applicable)

• This routine performs validation of input parameter records and pro­
duces a standard set of error messages.

• (To be supplied)

53

CARD OR PAPER
TAPE TO TAPE

FUNCTIONAL
DESCRIPTION

INPUT -OUTPUT
DESCRIPTION

Input

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

• The Card or Paper Tape to Tape routine provides a convenient method
of transcribing data from card files or paper tape to magnetic tape. Op­
tional control parameters direct this routine to perform one or more of the
following functions:

1. Tape positioning prior to conversion

2. Blocking of output records on tape

3. Sequence checking of input records

4. Editing (field selection and rearranging of fields within the record)

5. Data conversion (packing and unpacking of numeric fields)

• This routine accepts 80-character card records on cards or paper tape
(punched in EBCDIC format) as input.

• Output from this routine may consist of a labeled, single-reel, mag­
netic tape file containing unblocked records. Optional control parameters
provide for the production of multireel files, and blocked fixed-length
records.

• 1 Processor (65K bytes)
1 Card Reader or Paper Tape Reader/Punch
2 Magnetic Tape Devices
1 Console Typewriter

• (To be supplied)

• (Not applicable)

• This routine validates input parameter records and produces a standard
set of error messages. In addition, the routine checks the expiration date
on the volume label of the output file prior to transcribing the input file.

When the routine terminates, card count and tape block counts are dis­
played on the console typewriter. At the programmer's option, the routine
may be directed to perform a sequence check on input.

• (To be supplied)

54

CARD OR PAPER
TAPE TO PUNCH

FUNCTIONAL
DESCRIPTION

INPUT -OUTPUT
DESCRIPTION

Input

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

• The Card or Paper Tape to Punch routine provides a facility to repro­
duce 80-column card or paper-tape files. Via optional control parameters,
the routine can also be directed to perform one or more of the following
functions:

1. Field selection (rearrangement of one or more fields)

2. Editing (packing or unpacking of numeric fields)

3. Sequence checking of input records

4. Sequence numbering of output records

• Input to this routine consists of parameter cards (if required) and the
programmer's card input deck or paper-tape reel.

• Output consists of a card file punched as directed by the control param­
eters. If no control parameters are submitted, the output file is identical
to the input file.

• 1 Processor (65K bytes)
1 Card Reader or Paper Tape Reader/Punch
1 Card Punch
1 Magnetic Tape Device
1 Console Typewriter

• (To be supplied)

• (Not applicable)

• This routine validates input parameter records and produces a standard
set of error messages. Card counts of the input and output records are
displayed at the termination of the routine. Sequence checking of input
records and sequence numbering of output records are provided as pro­
grammer options.

• (To be supplied)

55

CARD OR PAPER
TAPE TO
PRINTER

FUNCTIONAL
DESCRIPTION

INPUT -OUTPUT
DESCRIPTION

Input

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

• The Card or Paper Tape to Printer routine prints information contained
in an SO-column card or paper tape file (punched in EBCDIC format) under
the direction of programmer-supplied control parameters. One of two out­
put formats may be specified: Display or List.

The Display format provides a visual picture of the input file. Each
input card starts on a new output line with positions reserved to indicate
the card number. In this format data may be displayed in either a hexa­
decimal or character mode.

The List format provides a simple edited listing of the input file. In
this format each logical record forms one line of printed output, with data
being listed in either a hexadecimal or character mode.

• Input to this routine consists of a card or paper-tape file that is punched
in EBCDIC format.

• Output from the routine consists of a printed copy of the input file in the
format specified by the user.

• 1 Processor (65K bytes)
1 Card Reader or Paper Tape Reader/Punch
1 Printer
1 Magnetic Tape Device
1 Console Typewriter

• (To be supplied)

• (Not applicable)

• This routine validates input parameter records and produces a standard
set of error messages. At the termination of this routine a card count and
a page count are displayed on the console typewriter. The programmer
may also specify a sequence check on the input records.

• (To be supplied)

56

TAPE TO CARD

FUNCTIONAL
DESCRIPTION

INPUT -OUTPUT
DESCRIPTION

Input

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

• The Tape-to-Card routine transcribes fixed-length records stored on
magnetic tape (7 or 9 level) to 80-column punched cards. The input tape
records may be blocked or unblocked; output cards are punched in standard
EBCDIC format.

By means of parameters the following options are also provided:

1. Multireel input

2. Positioning of input tape

3. Label handling

4. Unblocking of input records

5. Field selection (rearrangement of input fields to card output fields)

6. Packing or unpacking of input field data before transfer to the output
card field

7. Sequence numbering of output cards

The numbers of input blocks processed and output cards generated are
displayed on the console typewriter at the end of the routine.

• Input records are fixed-length, blocked or unblocked. When the field
selection option is used, the portion of the input record transferred to the
output card cannot exceed 80 characters.

• Each output record contains the contents of one logical input record,
punched in EBCDIC format.

• 1 Processor (65K bytes)
1 Card Reader
2 Magnetic Tape Devices
1 Card Punch
1 Console Typewriter

• (To be supplied)

• (Not applicable)

• This routine performs validation of input parameter records and pro­
duces a standard set of error messages.

• (To be supplied)

57

TAPE EDIT

FUNCTIONAL
DESCRIPTION

INPUT -OUTPUT
DESCRIPTION

Input

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

• The Tape Edit routine displays the contents of a magnetic tape, which
has been recorded in EBCDIC format, on the on-line printer. The edited
output is displayed in both alphanulneric and hexadecimal format.

Optional control parameters are provided to allow for the following
functions:

1. Positioning the input tape before or after printing.

2. Printing a specified number of blocks or files.

3. Printing pre-edited tapes (output from Memory Print and Trace
Routines).

4. Provision for programmer-specified header lines.

• Input to this routine consists of a 7- or 9-level magnetic tape that has
been recorded in EBCDIC format. Input blocks may be fixed or variable in
length, blocked or unblocked. Pre-edited tapes produced by the Memory
Print and Trace routines are also accommodated.

• Standard output from this routine is an on-line printer listing showing
both the alphanumeric and hexadecimal equivalents of each eight-bit input
character. The programmer has the option to select only alphanumeric or
hexadecimal format.

When pre-edited tapes are used as input, the input data is transcribed to
the printer without modification.

• 1 Processor (65K bytes)
1 Card Reader
1 Printer
2 Magnetic Tape Devices
1 Console Typewriter

• (To be supplied)

• (Not applicable)

• This routine validates input parameter records and produces a standard
set of error messages.

• (To be supplied)

58

TAPE
TO PRINTER

FUNCTIONAL
DESCRIPTION

INPUT-OUTPUT
DESCRIPTION

Input

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

• The Tape-to-Printer routine displays the contents of a magnetic tape
file on the on-line printer. Two print formats are provided: Display and
List.

The Display format presents a visual representation of the data file in
hexadecimal format. The output line contain descriptive information about
the file, such as block size, block number, and record number.

The List format provides a simple alphanumeric edited listing of data
files that contain fixed-length records. With this format each logical
record forms one print line. In addition, the programmer has the facility
to select various editing options in transferring fields from the input record
to the print record. These options include field selection, pack, unpack,
and hexadecimal representation.

This routine includes input tape positioning and label checking as standard
functions. Optional functions include multireel input, positioning to the
first logical record to be printed, fixed- or variable-length blocked input
records, page headings, suppression of page numbering, and double or
triple spacing between lines.

• This routine accepts magnetic tape (7 or 9 level), single or multi­
volume. Records may be fixed or variable in length, blocked or unblocked.

• Output of this routine is a listing of the tape file on the on -line printer.

• 1 Processor (65K bytes)
1 Card Reader
2 Magnetic Tape Devices
1 Printer
1 Console Typewriter

• (To be supplied)

• (Not applicable)

• This routine validates input parameter records and produces a standard
set of error messages.

Tape block counts and page counts are displayed on the console type­
writer at the termination of the routine.

• (To be supplied)

59

TAPE TO TAPE

FUNCTIONAL
DESCRIPTION

INPUT -OUTPUT
DESCRIPTION

Input

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

• The Tape-to-Tape routine transcribes all, or selected portions, of an
input magnetic tape to an output magnetic tape. The input file records can
be blocked or unblocked; fixed, variable, or undefined in size.

By means of parameter control cards programmer can exercise the fol­
lowing options during the transcription process:

1. M ul tireel input or output

2. Tape pos itioning, both input and output

3. Tape label handling

4. Unblocking of input records

5. Blocking of output records

6. Field selection* (rearrangement of input fields to output fields)

7. Packing or unpacking of input fields*

*For fixed-length records only.

• This routine accepts single or multivolume magnetic tape (7- or 9-
level) .

• Output of this routine is a single or multivolume magnetic tape (7- or
9-level) .

• 1 Processor (65K bytes)
1 Card Reader
3 Magnetic Tape Devices
1 Console Typewriter

• (To be supplied)

• (Not applicable)

• This routine validates input parameter records and produces a standard
set of error messages.

Input and output block counts are displayed on the console typewriter at
the termination of the routine.

• (To be supplied)

60

RANDOM
ACCESS DATA

TRANSCRIPTION
ROUTINES

FUNCTIONAL
DESCRIPTION

INPUT -OUTPUT
DESCRIPTION

• The Random Access Data Transcription routines are a group of utility
routines that transcribe data to orfrom a random access device. In trans­
cribing data to an output random access device, the input may appear on
cards, magnetic tape, another random access device, or the same random
access unit as the output device. Transcription from a random access
device can be directed to cards, magnetic tape, or the on-line printer.

By means of control cards, these routines can be directed to perform
one or more of the following functions:

1. Copy - This function transcribes data from the input device to the
output device without change.

2. Reblock - This function is used when data transcribed to or from
magnetic tape is to be blocked or unblocked.

3. Field select - This function is used when input data is to be re­
formatted before being transcribed to the output device.

4. Reblock and field select - This function is used when a combination
of the Reblock and Field Select options is des ired.

5. List - This function is used when transcribing data from a random
access device to the printer. Output is restricted to one print line
per record and is listed in hexadecimal format. Page headings and
page numbering may be specified.

6. Display - This function is used when transcribing data from a ran­
dom access device to the printer. Output is displayed in both alpha­
numeric and hexadecimal format, although either format can be
suppressed. When using this function, an input record may extend
over several print lines. Page headings and page numbering can
also be specified.

7. Display and Field Select - This function is a combination of the Dis­
play and Field Select options and is used when an edited print-out of
random access records is desired.

Input • When data is transcribed to a random access device, input to this routine
can include all, or selected portions of, a magnetic tape, a card file, an­
other random access device, or the same random access device .

Output • When data is transcribed from a random access device, all or selected
portions of the random access area can be transcribed to magnetic tape,
to an on-line printer, to a card file, to another random access device, or
to the same random access device.

61

EQUIPMENT
REQUIREMENTS

Minimum Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

• 1 Processor (65K bytes)

1 Console Typewriter

1 Random Acces s Device

1 Magnetic Tape Device

1 Card Reader

Random Access Data
Transcription Routines

Magnetic Tape Devices, Card Reader, Card Punch, Printer (as re­
quired for input-output devices)

• (To be supplied.)

• Not applicable.

• This routine validates input parameters and produces a standard set
of error messages.

• Timing is variable, depending on the input and output device used and
extent of data manipulation (blocking, field select, etc.).

62

AUTOMATIC
INTEGRATED
DEBUGGING

SYSTEM

FUNCTIONAL
DESCRIPTION

INPUT-OUTPUT
DESCRIPTION

Input

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Optional

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

• The Automatic Integrated Debugging System (AIDS) is designed to
minimize the time taken for program testing, thereby maximizing com­
puter efficiency. This system provides programmers with a simple
method of collecting their programs and test data for off-site (remote)
program testing.

AIDS is a two-phase routine. In the first phase, the program(s) and
associated test data are collected onto a single input test tape, together
with control information for memory prints and tape edits.

At program test time, phase two is executed by the console operator.
This phase distributes the test data on the input tape to those input tape
devices specified by the programmer in phase one. The object program is
then loaded and executed. At the conclusion of each test, a memory print
and an edit of the output tapes are optional.

• Input to this routine consists of the program(s) and test data, which
can be stored on cards or magnetic tape. In addition, parameter cards
are included that identify the programs and test data sets to be collected
onto the test tape, as well as the diagnostic routines desired.

• Output of this routine consists of a single output test tape in loadable
format for program testing.

• 1 Processor (65K bytes)

1 Card Reader

4 Magnetic Tape Devices (9 level)

1 Console Typewriter

• Additional magnetiC tape devices may be used as input to phase one.

• (To be supplied.)

• Not applicable.

• This routine validates input parameter records and produces a standard
set of error messages.

• Not applicable.

63

CONSOLE
ROUTINES

FUNCTIONAL
DESCRIPTION

• To limit intervention by the operator as much as possible, a number of
diagnostic routines available in the system can be called in by means of
the console typewriter. Functions that normally require extensive manual
console manipulations can be initiated by a minimum of parameters entered
at the typewriter. The console routines available to the operator are as
follows:

APPLY PATCHES DISPLAY GENERAL REGISTERS

OPEN DIAGNOSTIC DEVICE DISPLAY FLOATING-POINT REGISTERS

CLOSE DIAGNOSTIC DEVICE DISPLAY HIGH-SPEED MEMORY

TAPE EDIT DISPLAY DEVICE RETURN TABLE

MEMORY PRINT DISPLAY PROGRAM START TABLE

SNAPSHOT DRUM PRINT

DISPLAY ENVIRONMENT DRUM INDEX EDIT

1. Apply Patches - This routine provides the ability to apply object­
time patches from the card reader, console typewriter, paper tape
or magnetic tape.

2. Open Diagnostic Device - This routine specifies the device that is to
receive the output of certain diagnostic routines. All debugging
routines requested use this output device.

3. Close Diagnostic Device - This routine inhibits the use of a particu-
lar output device by those diagnostic routines that previously
recognized the device as open.

4. Tape Edit - This routine permits the operator to print the entire
contents of a magnetic tape or selected files on the tape.

5. Memor), Print - This routine provides a printer listing of all or
parts of high- speed memory including the console area and register
settings.

6. Snapshot - By means of this routine the programmer may specify
selected portions of m.emory to be dumped at program intervals of
his choice.

7. Display Environment - This routine displays, via the console type-
writer, tables used by the control system that are associated with
the object program.

8. Display General Registers - This routine transcribes to the console
typewriter the general register contents at the time of the request.

64

FUNCTIONAL
DESCRIPTION

(Cont'd)

INPUT -OUTPUT
DESCRIPTION

Input

Output

EOUIPMENT
REQUIREMENTS

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

Console Routines

9. Display Floating-Point Registers - This routine transcribes to the
console typewriter the contents of the floating-point registers at
the time of request.

10. Display High-Speed Memory - This routine displays to the console
typewriter, in hexadecimal format, the contents of specified
memory areas.

11. Display Device Return Table - This routine prints on the console
typewriter all I/O devices associated with a particular program.

12. Display Program Start Table - This routine indicates the program
name, starting address, and priority of the program or program
segment.

13. Drum Print - This routine provides a printer listing of parametel
specified drum areas.

14. Drum Index Edit - This routine edits the control information of
the Drum Index Table and transcribes it to the console typewriter
in hexadecimal format.

• The input to the console routines is by means of parameters inserted
by the operator using the console typewriter.

• See routine description.

• Processor (65K bytes)

Console Typewriter

2 Magnetic Tape Devices (9 level)

1 Random Access Device

NOTE: Additional eqUipment requirements depend upon the individual
routines.

• (To be supplied.)

• Not applicable.

• These routines validate input parameters and produce a standard set of
error messages.

• (To be supplied.)

65

MEMORY PRINT
FUNCTIONAL
DESCRIPTION

I NPUT -OUTPUT
DESCRIPTION

Input

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Optional

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

• The Memory Print routine is a program testing aid used to display the
general registers, channel status indicators, and designated core areas
during the execution of the program. This data is normally displayed on­
line, but a magnetic tape may be used for off-line printing.

The programmer selects those points at which memory prints are to be
taken by inserting parameters at appropriate places in his assembly source
program. These parameters are then assembled as part of the program.

The description of the areas to be printed may be supplied in the as sem­
bled source program or at execution time by means of console type-ins or
parameter control cards.

The Memory Print routine can be incorporated in the program at assem­
bly time, or this routine can be bound to the program through the Linkage
Editor routine.

• Input to this routine consists of a program and parameter information
describing the core areas to be printed.

• Output consists of an edited printer listing of the contents of the general
registers, channel status indicators, and the user-selected area of memory.
This listing can be displayed on the on-line printer or written to magnetic
tape for subsequent printing.

• 1 Processor (65K bytes)

1 Card Reader

1 Printer

1 Magnetic Tape Device

1 Console Typewriter

• A magnetic tape device may be substituted in lieu of the on-line printer
for off-line listings.

• (To be supplied.)

• This routine operates in conjunction with a programmer problem pro­
gram. It may be assembled with the problem program or linked to it by
means of the Linkage Editor.

When the output from Memory Print routine is written to magnetic tape,
the Tape Edit routine is required for subsequent printing.

• This routine validates input parameter records and produces a standard
set of accuracy controls.

• (To be supplied.)

66

SELF-LOADING
MEMORY PRINT

FUNCTIONAL
DESCRIPTION

INPUT -OUTPUT
DESCRIPTION

Input

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Optional

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

• The Self-Loading Memory Print routine is a program testing aid used
to display the contents of core when a program under test has terminated
abnormally.

The printed output is displayed in hexadecimal and graphic format.
This data is normally displayed on-line, but a magnetic tape may be used
for off-line printing.

• Input to this routine consists of the starting and ending addresses of
the memory area to be printed, supplied at object running time.

• Output from this routine is a printed listing of the contents of the
channel status indicators, the general registers, and the memory area
defined by the operator. At the operator's discretion the output may be
printed directly to the on-line printer, or written to magnetic tape for
printing at a later time.

• 1 Processor (65K bytes)

1 Card Reader

1 Printer

1 Magnetic Tape Device

1 Console Typewriter

• A magnetic tape device may be substituted in lieu of the on-line printer
for off-line listings.

• (To be supplied.)

• When the output from this routine is written to magnetic tape, the Tape
Edit routine is required for printing the output tape.

• Not Applicable.

• (To be supplied.)

67

TAPE
COMPARE
FUNCTIONAL
DESCRIPTION

INPUT -OUTPUT
DESCRIPTION

• The Tape Compare is a diagnostic routine that enables the programmer
to compare the contents of two magnetic tapes. During the comparison
process any discrepancies that exist between the two input tapes are dis­
played on the on-line printer.

The programmer can elect to compare the entire contents of the input
tapes, or by optional parameter cards, specify certain portions only.

Input • The input to this routine consists of two volumes of magnetic tapes,
plus parameter cards if positioning of input tapes is required for selective
comparison.

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

• The output of this routine is a printer listing of the differences existing
between the two tapes, displayed in hexadecimal format. If the contents
of the tapes are identical, a print-out to this effect is given at the end of the
routine.

• 1 Processor (65K bytes)

3 Magnetic Tape Devices

1 Printer

1 Console Typewriter

• (To be supplied.)

• Not applicable.

• This routine validates the input parameters and produces a standard
set of error messages.

• (To be supplied.)

68

TEST DATA
GENERATOR

FUNCTIONAL
DESCRIPTION

INPUT -OUTPUT
DESCRIPTION

Input

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

• The Test Data Generator routine automatically creates program test
data from programmer- supplied parameter descriptions and transcribes
this data to cards or magnetic tape. Multifile volumes and multivolume
files can be generated, with record size, blocking factor, and the number
of fields to appear in the output records determined by the programmer.

Provision is made for the generation of alphanumeric or numeric data
in the output record fields, with the base value for these fields supplied
via input parameters. In addition, the programmer may include an increment
value for any field that will be added to the designated field each time a
new output record is generated.

• The input to the Test Data Generator routine consists of programmer
supplied parameter control cards that specify the type of data generation
desired.

• The output of this routine is a card or magnetic tape file containing
the generated test data.

• 1 Processor (65K bytes)

2 Magnetic Tape Devices

1 Card Reader

1 Console Typewriter

1 Card Punch or Magnetic Tape Station

• (To be supplied.)

• Not applicable.

• This routine validates input parameters and produces a staudard set of
error messages.

• Not applicable.

69

TRACE

FUNCTIONAL
DESCRIPTION

INPUT -OUTPUT
DESCRIPTION

Input

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

Optional

• The Trace routine is a program testing aid that provides diagnostic
information regarding the instructions executed in a program and the
status of registers after the instructions have been executed. This routine
is normally used when the programmer is unable to isolate a problem
using the standard testing routines such as memory dumps and snapshot
prints.

When this routine is used, the programmer supplies the addresses of
the first and last instructions to be traced. Whenever control is trans­
ferred to any instruction within the defined area, the routine displays the
instruction being executed, its core location, the contents of the general
registers utilized by the instruction, and the status of the condition code
after the instruction has been executed. The programmer is thus provided
with a detailed picture of the sequence of conditions that occur during the
running of his program.

By using control parameters, the programmer can direct the routine to
defer tracing until the instructions within the area to be traced have been
executed a specified number of times. In addition, the output from this
routine can be specified to be written to the on-line printer or to a magnetic
tape for printing at a later time.

• Input to this routine consists of a program and parameter information
designating the program area to be traced.

• Output from this routine is an on-line edited listing of the executed
program instructions and the contents of selected registers associated
with each instruction, printed in hexadecimal or graphic format. An off-line
listing can be produced at the programmer's option.

• 1 Processor

1 Card Reader

1 Printer

1 MagnetiC Tape Device

1 Console Typewriter

• A magnetic tape device may be substituted in lieu of the on-line printer
for off-line listings.

70

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

Trace

• (To be supplied)

• The Trace routine is assembled independently of the program and com­
bined with the program by means of the Linkage Editor routine. The Trace
routine must reside in memory at the time that the program is executed.

If the Trace output is written to tape, the Tape Edit routine is used to
obtain the printed listings.

• This routine validates input parameter records and produces a standard
set of error messages.

• (To be supplied)

71

PROGRAM
SECTION
LIBRARY

MAINTENANCE
ROUTINE

FUNCTIONAL
DESCRIPTION

INPUT -OUTPUT
DESCRIPTION

• The Program Section Library Maintenance routine is a service routine
that provides the programmer with a means for inserting, replacing or
deleting program control sections from a Program Section Library tape.

Input • Input to this routine consists of:

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

1. Control cards defining the program sections to be inserted, re­
placed or deleted, followed by an End-of-Input card.

2. A Program Section Library tape.

3. A Program Section File on magnetic tape that contains the program
sections that are to replace corresponding program sections on the
Program Section Library and any new sections that are to be inserted
into the Program Section Library.

• Output from this routine is an updated Program Section Library tape.

• 1 Processor (65K bytes)

1 Card Reader (or a 9-level magnetic tape station)

3 Magnetic Tape Devices (9 level)

1 Console Typewriter

• (To be supplied.)

• The Program Section File used by this routine is the standard output
generated by the Assembly, Report Program Generator, FORTRAN or
COBOL systems.

• This routine produces a standard set of error messages.

• (To be supplied.)

72

LINKAGE
EDITOR

FUNCTIONAL
DESCRIPTION

INPUT -OUTPUT
DESCRIPTION

Input

Output

EQUIPMENT
REQUIREMENTS

Minimum Equipment

MEMORY
REQUIREMENTS

RELATED
PROGRAMMING

COMPONENTS

ACCURACY
CONTROL

TIMING

• The Linkage Editor routine is a service routine that is used for the
maintenance and creation of programmer Load Library tapes. This routine
accepts program sections from an input magnetic tape and binds these
sections into loadable programs on the programmer's Load Library tape.
The facility is also provided for selecting and updating programs from
an existing Load Library, as directed by input control cards.

• Input to the Linkage Editor consists of:

1. Control cards that specify the Linkage Editor functions and the load
structures of the programs to be bound, followed by an End-of-Input
card.

2. A Program Section Library tape containing the program sections to
be bound into loadable programs on the output tape.

3. A programmer Load Library tape.

• Output from this routine is a new programmer Load Library tape.

• 1 Processor (65K bytes)

1 Card Reader

5 Magnetic Tape Devices

1 Console Typewriter

• (To be supplied.)

• The output Load Library tape is in a format acceptable for loading and
execution by the Tape Executive routine.

• This routine validates input parameters and produces a standard set of
error messages. In addition, this routine displays the names of any pro­
gram sections designated for linkage, addition, selection or deletion that
were not found on the specified source tape.

• (To be supplied.)

73

	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73

