$001/801-50d

WALSAS ATENISSY

=
m
N
m
=
m
=
()
m
=
=
=
—
=
P

o
-

-

-
i

o

.t

-

L

2 # ik e =

e 2 : o 5

L G i cigssa
o Ll - o

!
o
H - - S
R i
=

PRIMARY OPERATING SYSTEM (POS
TAPE OPERATING SYSTEM (TOS)
TAPE-DISC OPERATING SYSTEM (TDOS)

e - T T =
G e e S
- e e aE
e e s e
. o = i e T

L e
B 5 S| sanw

b
e

S

B

SFPECTRAS 70

RADIO CORPORATION OF AMERICA « ELECTRONIC DATA PROCESSING

PRIMARY OPERATING SYSTEM (POS)
TAPE OPERATING SYSTEM (TOS)

TAPE-DISC OPERATING SYSTEM (TDOS)

ASSEMBLY SYSTEM
REFERENCE MANUAL

RADIO CORPORATION OF AMERICA
70-00-602

March 1968

The information contained herein is subject to

change without notice. Revisions may be issued
to advise of such changes and/or additions.

First Printing: November, 1965

Reissued: February, 1966

Reissued: March, 1968

FOREWORD

4 This publication is intended as a reference manual for the programmer
using the assembly language. It contains all information necessary to
program in assembly language when used with the Primary (POS), Tape
(TOS), or Tape/Disc (TDOS) Operating System Reference Manuals,

The information in this publication is stated based on the assumption
the reader knows basic programming concepts and has had programming
experience with computer systems, It is assumed the reader understands
the content of the Spectra 70/35-45-55 Programmers' Training Manual
(70-35-801).

Macro definition language specifications are included in the latter
sections of this Assembly System Reference Manual, RCA supplied macros
are described in the appropriate Operating System Reference Manuals (POS
70-00-605 and TOS/TDOS 70-00-608). Spectra 70/25 Assembly Language
exceptions are summarized in Appendix F,

iii

1. INTRODUCTION
TO SPECTRA 70
ASSEMBLY SYSTEM

2. ASSEMBLY
LANGUAGE
STRUCTURE

CONTENTS

Features St s e e e et e e e . e
Mnemonic Operation Codes c et e e
Symbolic Addressing+ co vt eeneeas . .

Data Representationttt et eiennane PR
Program Sectioning and Linkage
Base Register Calculation c e e e e
Relocatabilityo 0o
Program Listings et e
Error Indications . . « « o v v 0 v vttt vt o v eeeeens e e

Minimum Equipment Requirementst v v v vt eeeen.
POS. .ttt it ies e .o e e e
TOS i it ittt oo aeansccensssesseesesossnessas
TDOS . ot ittt e e esnessncsasas e et

The Coding FOTmM . « ¢ ¢ v v et vttt vt vnnnnsoas -
Name Fieldt iiiii it tneesansnsean
Operation Field et et et e et
Operand Field c et et
Comments Fieldttt ineeennns
Identification Field e

The Character Set

Terms C e e s s e s s e et e e et e e
Symbol Def1n1t1on

Symbol Tablet iitiiineeeeroennnas
Symbol Length Attr1bute P .. oo
Self-Defining Terms. .« v v o v v o W ce e e e s
Decimalc00000 .. . e e e s e e
Hexadecimal c et e e
Binary . v v ittt ittt ittt et e e e e
Character00.. e h st e e s e
Literals . . v v v 0o v v v e .
Defining Literals . . . v ¢ v vt vt vttt e v neennsas
Literal Pool e et et e e
Location Counter Reference00.. e e e e

EXpressions + .. eeeeeeesoecoceoss
Combining Termso 0000000 s et e ..
Absolute EXpressions . « v o o oo e 00 0o c e e e
Relocatable EXPressions . v o v v c o e s e v v v oo et e

Addressing o v e 0. C et e et e e et
Base Reglster Address Calculatlon et
Base Register Considerations e e e e
Explicit Addressing¢cve e et e e
Implied Addressing c et e e e e e e ..
Relative « v v v v vt vt it o s oo oo onnosssnsensenas
Self-Relative eveeeeceenss e e et
USING . i vt et e v o oo onessasecssosssseosssssas
DROP........ . et s e e et i e
Programming with the USING Instruction oo

\4

Page

e I T e N e e e e i
[U U S
B0 oD DN DN

e
RN

N N
11

[\
1

g
[0 ol e oo JREEN BIEN e I« I« I P I S V) |

l??l\')

DN DN DNDNDN
1

[\
] 1
= O
S

3. BASICPROGRAM
ELEMENTS

4. PROGRAM
STRUCTURE

CONTENTS
(Cont'd)

Assembly of Machine Instructions e e e
Machine Format et s s e e e .
Alignment and Checking e e et e e e e e e .
Operand Formats....... et e e e e ..

Subfields v v v v it ittt e et
Mnemonic OperationCodes e et et e e
Operand Fields . . v v v v v ittt i it vttt ti e et eaeens

Extended MNemoniCs . ¢ v o v v v v oo oo oeenonnoseoeenas

Storage Definition¢c¢ vt ettt it eanans ..

Contiguous Assignment . . ¢ ¢ v e v v v e vt oot vt enn
Noncontiguous Assignment. v e v e v e een..

EQU e e
Constant Definition00ttt ittt eeenenran
DC -Data ConstantsS. v v v v e v v v v o et vt v v o oennenan
Alignment of Constants
Typesof Constants oo ittt it e ieeenenenns
Character (C) v v v v v v vttt et ittt it teeneenns
Hexadecimal (X)00cu..
Binary (B) . vttt ittt ettt b e e e
Decimal (P) & v v v it ittt ettt it teneeennnas
Decimal (Z) v v vt vttt oot e eeeesnneaeennss
Fixed Point (F,H) ... v vt ittt ittt i eeneeenns
Floating-Point (E,D)0.iieueee...

DC - Address Constants v vt v vttt teeneenns
A -Type & ittt e e it

Y - Type & vt et vttt oo noesscnns C e e e e e e

Control SECtions . v v ot ottt v oo onoeeeeeenens
Control Section Definitiont i eeen.
First Control Section e e e et

COM ittt ittt et it aseseasasessnsaansnes
Program Linkage Controlling Codes . . v v v v o vt v v o v enns
ENTRY N
EXTRNttt iiinieneenns

vi

| U U L
O RN

i
= - 00 00 =1 B

wwmwwwwwwc'ooocowwwwww

|
=1 U1 DD

(=]

[T T T |
I e
g\

L S
(=232

5. ADDITIONAL
ASSEMBLY
INSTRUCTIONS

6. INTRODUCTION
TO SPECTRA 70
MACRO LANGUAGE

7. WRITING MACRO
DEFINITIONS

CONTENTS

(Cont'd)

Listing Controls t t e e s e e e et et
TITLE C e h s e ettt
EJEC T . it ittt ittt oo onooeeeacannonsesesens
SPACE......cvuvu . et e et .
PRINT e et e et s et e et e e
AOPTN T, et e e

Program Controls . .. vt o v v v vttt v s ot oeeeenonnnas
(O et e e e
ISEQ + v ittt v vt en C e e e e e e e
REPRO e et et e
PUNCH et e
XFR(POS) & vt vttt tonensoesneans e e e e e
MCALL . ..ttt ittt sonsoneseanss e e e e e
MPRTY0... ettt et e et

Macro Definition et e e e e e
SIrUCLUTE . v v v et v et e et s ettt s et e enssoeeeeas

Types of MACTOS v v v v o s ot oo e s nneunnnsa e e e
Positional c et e e e e e e e
Keyword c e e s e et e e e e e e

Macro Call Statement C e et et et e e

Variable Symbols ¢t v v v v ventennes
Types e ettt et e e e e s et e e
Valid Symbols .« e v v v v v 0 v v et e et e e

Symbolic Parameters e et s e e e e e
Restrictions for Symbolic Parameters.

Varying the Generation . . «

Sectioning of Macro Language Information¢00 ..

Macro Definitions Contents . « . v v v v o v v et e v o v o et e nnas
MACRO - Header Statementt eeeeenas
MEND - Trailer Statement e e e e e ot e
Positional Prototype Statement
Model Statements 000 c et e et

Specifications et e e e e e e e
Combining Symbolic Parameters e e e
Commentsovvvveennenneess

vii

Page

(93]
I
[y

[|
o

|
= = = 00 00 oW

(2 BV) BV) JNS) B BV B BNG) B &) B) B B B |
[1
=
(S I U

|
—
3

LU U
=t

| |
QO R W W W NN N

OO
§

L1 U
© O WN

3 -3 =3 -3 ~3 =3 -3
|

|
—
(]

8. MACRO CALL
STATEMENTS

9. SET AND
CONDITIONAL
MACRO COMMANDS

10. SPECIAL
PURPOSE FEATURES

CONTENTS

(Cont'd)

General Description

Positional MacroCall v v v i vt vt i v ann Chee e
Operand Rules and Examples ¢.coc e e . .
Continuation Rules e i e .
Quoted Strings . . v v v v vt ittt e s et e
Call Value (eight characters) e e e e e e
Null Parameters C e e e .

Inner MacroCalls c et e e e
Nested Macros cas e e e . .

Introductionc000 0. C e et
Set Variable Symbols . . v v v vt ottt it ettt s

Defining Symbols « v v ¢ ettt v ottt v e v nnaoenns .

Global Values¢oceeuesnn et e e e e

Local Values . ..o eveeanas e et e c e et

Uses for Set Symbols . . v v e v v e v vttt v oo as PN

WhereUsed .. .covveeoeonsoeessoesansas .

Set CommandsS. « o v v ot ot o s s s ovseosoencasaesos

SETA - Set Arithmetic c e et

SETC -SetCharacter. . . « v v ottt et v v nss

Substring Notation .« e e oo oo v o v v esooeeeoses e

Combining Substrings
Combining Substrings
Use of Substrings. . . e e .o
SETB-Set Binary . . « « ¢ ¢ e e et e aaneenss
Logical Expressions.
Relational Expressions

Null Parameters

Logical Operator Evaluation .
Conditional Commands . .
Sequence Symbols

AIF - Assembly IF.

AIFB - Assembly IF Backwards
AGO - Assembly GO.....

AGOB - Assembly GO Backwards
ANOP - Assembly NO Operations

Introductioncieeveeeeoestocsscens
Additional Generator Commands
MEXIT - Macro Definition Exit ..
MNOTE - Error Message Request

viii

e o 0 0 o o o

e o 0o o o o

e o o o . ..
ooooo . . .
o o . . .
e o o o . .
ooooo e s o o

|
W ww NN N

IS

1
P e -]
¥

TR 1
fd et
S0 N = o

= O

I
NNN%NNHH

oW N

WO W WWWWWWWOWWWUWPYWOWO LoV o oo
1

§ T
[N]
o =3

9-29

10. SPECIAL
PURPOSE FEATURES
(Cont’d)

1. KEYWORD
MACROS

LIST OF APPENDICES

CONTENTS

(Cont'd)

System Variable Symbols

Trace Commands

&SYSNDX - Macro Call Index e e e e

&SYSECT - Current Control Section

Minimum Generation . .

® 06 o o o 0o 6 0 0 0 0 0 0

&SYSLIST - Macro Operand Field

MTRAC - Macro Trace.

NTRAC - No Trace

Introduction
Prototype Statement . . .
MacroCall

Qs HOOWE >

HR &S

=

Operand Order
Replacement Rule .
Null Parameters . .

@ o o o 2 0 0 0 0 2 0 0 0 0 0 0 0 0 s 0 0 0

@ e 06 s 0 0 0 0 0 0 ¢ 0 0 0 0 0

Summary of Assembly Input/Output

Assembly Exrror FIags . v v v o o o et e o e v e v oo

Macro Error Flag& MNOTE v v v v
Source Program Symbol Limits
70/85-45-55 Machine Instructions..........

Instruction Formats .

® o o s 6 0 0 0 0 0 0 0 8 0 0

Instructions - Alphabetically Listed

Summary of 70/25 EXceptions

Source Language Correction (TOS/TDOS)
Overlay (Segmentation) Methods

POSand 70/25. « e v v vt evnnnnns
TOS/TDOS &+ ¢t v te v v s nenennnsnsnn
Macro Language Terminologye¢evs..

Summary of Macro Definition Operation Codes .
Type of Macro EXpressions « « v o v o o o o0 0o o s
Summary of Macro Symbolic Parameters and . .

Variable Symbols

Hexadecimal-Decimal Conversion Chart
Sample Program - TOS Assembly..........

oooooooo

Page
10-6
10-6
10-8
10-9
10-11
10-13
10-13
10-15

11-1
11-2
11-4
11-5
11-5
11-6

[J I D B N |
=2}

AauwIIocQ-dEEEHDODOQWE >
HHHHHP—‘H#LOQNF—‘HHHH

1. SPECTRA 70
ASSEMBLY
SYSTEM

INTRODUCTION

FEATURES

Mnemonic
Operation Codes

Symbolic Addressing

Data Representation

€& The Spectra 70 Assembly System is a machine-oriented, symbolic
programming language which expedites the writingof programsfor Spectra
70 Systems. Assembly language programs consist of four basic types of
statements: machine instructions, assembly instructions, macro instruc-
tions, and comments statements.

Machine instruction statements are one-for-one symbolic repre-
sentations of actual machine instructions. The Assembly System produces
an equivalent machine instruction in the object programfrom each machine
instruction statement in the source program,

Assembly instruction statements provide auxiliary functions that assist
the programmer in checking and documenting his programs, in controlling
the assignment of storage addresses, in program sectioning and linking, in
defining data and storage fields, and in controlling the Assembly System
itself, Assembly instruction statements specify these auxiliary functions
to be performed by the assembly, and, with a few exceptions, do not result
in the generation of any machine language code by the assembly.

Macro instruction statements enable the Assembly System to retrieve
specially coded symbolic routines, modify these routines according to
information supplied in the macro instruction, and insert the resultant
generated source statements into the assembly process for translation
into machine language.

The Assembly System resides on a systems tape and operates under
control of a control system which provides input/output, library, and
other services required in assembling a source program. Device inter-
changeability at assembly time also is provided to permit substitution of
magnetic tape for source input, object program, and program listings.

¢ Predefined mnemonic codes are provided in the assembly language for
all machine instructions and assembly instructions, Additional extended
mnemonics are provided for the various forms of the Branch-on-Condition
instruction.

€ The assembly language provides for the symbolic representation of
addresses, machine components (such as registers), and actual values
required in source statements.

4 Decimal, binary, hexadecimal, and character representations of ma-
chine language values can be used by the programmer in writing source
statements. The programmer selects the representation best suited to his
purpose.

1-1

Program Sectioning
and Linkage

Base Register
Calculation

Relocatability

Program Listings

Error Indications

Spectra 70
Assembly System

® The assembly provides facilities for generating (optionally) multi-
sectional programs, and for symbolically linking separately assembled
programs or program sections,

The output of the assembly consists of the assembled control sections
and an External Symbol Dictionary. The External Symbol Dictionary con-
tains information that the Linkage Editor requires to complete cross-
referencing between control sections as it combines these sections into a
single object program.

Symbols can be defined in one assembly and referred to in another
assembly, thus providing symbolic linkages between independent assem-
blies. Specifically, these symbols provide linkages between separately
assembled control sections. The assembly places the required linkage
information in the External Symbol Dictionary (ESD) on the basis of the
linkage symbols identified by the ENTRY and EXTRN assembly instructions,

The ENTRY instruction identifies the symbol, within a given assembly,
that is to be used as the name of the entry point from another program (or
section). Similarly, the program that uses a symbol defined in some other
assembly must identify it by use of the EXTRN instruction, which provides
linkage to the point of the definition,

¢ The base register addressing scheme requires the designation of a
general register (containing a base address value) anda displacement value
for specifying a storage location. The Assembly System assumes the
clerical burden of calculating storage addresses in these terms for the
symbolic address used by the programmer. The programmer retains
control of general register usage and the values entered therein by means
of the USING and DROP assembly instructions,

¢ Object programs produced by the Assembler are in a format that
permits them to be relocated from the originally assigned areas to any
other suitable area. It is also possible to produce object programs that
are absolute (not relocatable),

¢ A listing of the source program statements and the resulting object
program statements may be produced by the Assembly System for each
source program it assembles. The programmer can partly control the
format and content of the listing,

® As a source program is assembled, it is analyzed for actual or potential
errors in the use of the Assembly language. Detected errors are indicated
in the program listing, Up to six error flags are printed for each state-
ment processed that has been found to contain errors.

1-2

MINIMUM
EQUIPMENT
REQUIREMENTS

POS Equipment
Requirements

Notes

TOS Equipment
Requirements

Spectra 70
Assembly System

¢ The minimum equipment configurations to operate the Assembly
System under control of the POS, TOS, and TDOS operating systems are
detailed below. In each case, additional memory over the stated minimum
is used to allow more symbols and to process macro expansions more
efficiently. (The maximum number of symbols permitted for each system
is discussed in Appendix D.) In addition, it should be noted that the output
device and listing device required for assembly output may be omitted if
no output is desired. (See AOPTN control message, page 5-6.)

4 The Primary Operating System equipment requirements are asfollows:

Processor

Magnetic tape devices

(four required)

Input Device
Output Device

Listing Device

Model 70/35D, 70/45D, or 70/55E.

Includes three work tapes (capable of being
read in reverse direction) and the system
tape. (See Notes 2 and 4.)

Card reader or magnetic tape.

Card punch or magnetic tape. (See Note 2.)

Printer or magnetic tape.

¢ 1. If the source input is contained on magnetic tape, it may be batched

in blocks of one to five cards.

2. If UPSI switch 0 is set ON, the assembly uses only two work tapes
(SYS001 and SYS002). SYS000 is not used which allows for object
output to tape on a four-tape system.

3. Object programs are batched in blocks of one to five cards and may
be stacked on the output tape.

4. The systems tape may be a seven-level tape.

Processor

Magnetic tape devices

(five required)

Input Device
Output Device

Listing Device

1-3

The Tape Operating System equipment requirements are as follows:

Model 70/35E, 70/45E, or 70/55E,

Includes three work tapes, the Call Library
Tape (all capable of being read in reverse)
and the nine-channel system tape. (See Note
3.)

Magnetic tape or card reader.

Magnetic tape or card punch. (See Note 6.)

Printer or magnetic tape.

Notes

TDOS Equipment
Requirements

Spectra 70
Assembly System

Batched assemblies are permitted by TOS Assembly. That is, be-
tween the END card of program N and the START card of program
N +1, no Monitor control cards are present. Object coding is batched
in blocks of one to five cards and may be stacked on the output tape.
Linkage Editor and other system utility routines require object
module files to be in ascending sequence by program name.

If the source input is contained on magnetic tape, it may be batched
in blocks of one to five cards.

If all macros used are submitted with the source program, or if no
macros are used, the Call Library Tape is not required.

If the object coding and listing information are assigned to magnetic
tape, they must be assigned to the same device.

The optional source language correction and update feature requires
one or two additional tape devices. (See Appendix G.)

Generation of the object program may be omitted or it may be gen-
erated on:

a. SYSOPT.
b. SYSUT1 or alternate device.
c¢. Both a and b above.

If SYSUT1 already contains an object module or is to receive the
object program, it is considered unavailable as a work tape. An
alternate work tape (SYSUT4) can be specified, if available, If an
alternate tape is not specified, the assembly operates with only
two work tapes.

The Tape/Disc Operating System equipment requirements are as follows:

Processor - Model 70/35E, 70/45E or 70/55E,
Magnetic Tapes - Work Tapes. Two of these tapes must be nine-
(three required) level, If a seven-level tape is used, it must

have the pack/unpack feature.

Disc Storage Unit or - Macro library and System library are on this

Drum Memory Unit device.

Input Device - Magnetic tape or card reader.
Output Device - Magnetic tape or card punch.
Listing Device - Printer or magnetic tape.

Spectra 70
Assembly System

Notes & 1. Refer to Notes 1 through 6 under TOS Equipment Requirements,

2. The Macro library (if present) must reside on a random access
device. This may be either the device containing the system library
or a separate device.

3. Input and output devices must be assigned to card devices and/or
magnetic tape devices. The Program Load Library produced by the
Linkage Editor may be transcribed to a random access device or
operated directly from tape.

1-5

2. ASSEMBLY
LANGUAGE
STRUCTURE

THE CODING FORM

Name Field

Operation Field

Operand Field

¢ The coding associated with a statement line normally occupies columns
1 through 71 and, if needed, columns 16 through 71 of a Single continuation
line, A continuation line is designated by entering any nonblank character
in column 72 of the statement line to be continued. Columns to the left of
column 16 on the continuation line must be blank.

Note:

Only one continuation line is allowed for assembly instructions,

Source statements normally occupy columns 1 through 71 of the state-
ment line and 16 through 71 of a continuation line. Therefore, columns 1,
71, and 16 are referred to as the begin, end, and continue columns, re-
spectively. These standards may be altered by the use of the controlling
code, Input Format Control, (See ICTL, page 5-8.)

Statements may consist of from two to four entries in the statement
field. They are, from left-to-right: An 8-character Name entry, a 5-
character Operation entry, and a 56-character Operand and/or Comments
entry.

¢ The Name entry is an optional symbol created by the programmer to
identify the statement line. The symbol must consist of eight characters
or less, and, if used, must start in the begin column of the statement line.
If the begin column is blank, the Assembler assumes that the statement line
is unnamed., Rules for proper symbol definition are listed on page 2-4.

¢ The Operation entry is a mandatory entry that begins at least one posi-
tion to the right of the begin column, and specifies the machine mnemonic
or assembly function desired. Valid operation codes consist of five char-
acters or less, and may not contain embedded blanks.

4 Depending on the requirements of the instructionspecifiedin the opera-

tion entry, this entry contains coding that identifies and/or describes
storage, masks, storage-area length, or types of data. One or more
Operand entries may be needed to properly specify the instructions.
Operand entries are separated by commas; blanks may not intervene
between the operands and the commas that separate them.

Operand entries may not contain embedded blanks, except when the
Operand entry is used to specify constants, literals, or immediate data,
and the data string contains blanks. The Operand field must start at least
one position to the right of the Operation field. In the absence of a Com-
ments field, the operand field may extend through the "END" column.

Symbols appearing in operand entries must be defined only once in a
program. A symbol is defined when it appears in the name field of a
statement.

2-1

-2

DATE PAGE OF

CHARGE NO. SPECTRA 70
ASSEMBLY PROGRAM FORM

PROGRAM

DATE REQ'D

PROGRAMMER

FLOW CHART REFERENCE

NAME OPERATION OPERAND COMMENTS IDENTIFICATION

2|3f4 s 6|7 |89 iolnlizfizfralis|ie|17{18]i9]20 {21122 23] 24|25{26 {27 28]291 30|31 132|33 34|35 |36 {37[38] 39} 4041 {42]43 |44]45]| 46 |47]48 |49]50]51[52]|53|54]55] 56|57 | 58]59|60]61 |62|63]|64|65|66 |67 168)69]70 |71]72)73174175|76|77|78|79]80

1(2]3]4]s]|6|7([8]9]r0]nnfr121314]15]16]17[18]19]20 |21 |22 23| 24]|25|26 [27]28|29 | 30|31 13233 [34|35]|36|37|38]39 |40 | 41| 42| 43144|45 |46 |47 |48 |49 |50]|51 |52]53|54(55)|56 |57|58]59)60 |61 |62|63 64|65 (66|67 [68|69{70|71]72]73|74|75]76| 77| 78} 79|80

28-00-119

Figure 2-1. RCA Spectra70 Assembly Program Form

a8pnSuvy £1QuLasSsy

2ANJONAIS

Comments Field

Identification-
Sequence Field

CHARACTER SET

Assembly Language
Structure

¢ Comments are descriptive items of information that are to be included
in the program listing. All valid characters, including blanks, can be used
in writing comments. Comment entries may follow the last operand entry.
A blank must separate it from the last operand. Comment entries may not
extend beyond the end column, and a blank must be used to separate it from
the operand.

One or more statement lines may be used entirely for comments by
placing an asterisk (*) in the begin column of each statement line.

In statements where an optional Operand entry is omitted and comments
are desired, the missing operand must be indicated by a comma followed
by one or more blanks prior to writing comments,

¢ An optional entry, when used, specifies program identification and/or
statement sequence characters. If the entry or a portion of the entry is
used for program identification, the identification is punched by the pro-
grammer in the statement cards, and reproduced by the assembly in the
source program listing.

As an aid in keeping source statements in order, the programmer may
code a sequence of characters in ascendingorder in this field, or a portion
of this field, which will be checked by use of the input sequence check in-
struction, (See ISEQ, page 5-10.)

¢ Assembly language statements are written using the following letters,
numeric digits, and special characters:

Letters: There are 29 characters classified as letters.
These include the characters @, #, and $ as well
as the alphabetic characters A through Z. The
three additional characters are included so that
the category can accommodate certain languages,

Numeric Digits: 0 through 9.
Special Characters: + - , =, * () '/ & BLANK

These letters, digits, and special characters are only 51 of the set of
256 code combinations defined as the Extended Binary-Coded-Decimal
Interchange Code (EBCDIC). Each of the 256 codes (including the 51 char-
acters above) has a different card punch code, Most of the terms used in
assembly language statements are expressed by the letters, digits, and
special characters shown above. However, such assembly language features
as character self-defining terms and character constants permit the use of
any of the 256 EBCDIC codes.

2-3

TERMS

Symbol Definition

Symbol Table

Assembly Language
Structure

¢ All terms represent a value. This value may be assigned by the Assem-
bly System (symbols, length attributes, Location Counter reference, and
literals) or may be inherent in the term itself (self-defining terms),

¢ Symbols provide the most commonly used means of addressing instruc-
tions, constants, storage locations, and control sections. Symbols are
normally defined in the Name field of a source statement line, A symbol
that is defined in another assembly is specified as defined elsewhere by
the EXTERN statement. (See EXTERN, page 4-16.) After a symbol has
been defined, it can be referred to by other Operand entries,

The value assigned to the symbol is the address of the leftmost byte of
the instruction, constant, storage location, or control section named by
the symbol. Because the address of these items may change upon program
relocation, the symbols naming them are considered relocatable terms,
The value of a symbol may be equated to an absolute value. (See EQU,

page 3-15.)

4 The Assembly System compiles a table containing all the symbols that
appear in the Name field. A specific memory address and a length attribute
are stored in the symbol table. The length attribute of a symbol is the
size, in bytes, of the storage field named by the symbol. References to
symbols cause the Assembly System to interrogate the symbol table for
the address and the size of the field being referred to. This information
is used by the Assembly System for instructionaddress generation, Correct
symbol definition is dependent on the following rules:

1. A symbol can be a single character or group of characters created
from the standard character set, not exceeding eight characters,

2, A symbol must begin with an alphabetic character other than the
letter I. The remaining characters may be alphabetic, numeric or
a combination thereof.

3. No special characters or embedded blanks may appear within a
symbol,

4. A symbol may be defined only once in any single assembly. Thus,
two or more control sections assembled together cannot define the
same symbol. (Exception: The Name field of a control section used
in the START, CSECT, or DSECT assembly statements. (See page
4-3.)

5. Symbol values may not exceed a value of 219 -1 (524,287).

6. The maximum number of symbols permitted in an assembly is
dependent on the amount of memory available to the Assembler.
See Appendix D for a complete summary of symbol limits.

7. Operand entries used within the instruction may contain addresses
that are generated from other than symbol table references. These
entries are classified as self-defining terms, literals, constants,
or expressions,

Valid Symbols

Symbol Length Attribute

Chart 2-1. Use of
Symbol Length Attribute

Self-Defining Terms

Assembly Language
Structure

¢ The following are examples of valid symbols:

READER
A2345678
N

X4F2

S4

$3

€ The length attribute of a symbol may be used as a term. Reference to
the length attribute is made by writing the symbol preceded by the letter L
and a single quotation mark, for example, L'BETA, The assembly sub-
stitutes the associated length for the symbol.

Chart 2-1 shows how a programmer might usea symbol length attribute.
Al names a storage location of eight bytes, and B2 names a character
constant that is two bytes in length. The statement line named HIORD
moves the contents of B2 into the leftmost two bytes of storage location
Al, The term (L'B2) supplies the length specification required by the
machine instruction MVC, Statement line named LOORD movesthe contents
of B2 into the rightmost two bytes of Al. The expression A1+L'Al1-L'B2
results in a value equal to the seventh byte of field Al, Again, (L'B2)
supplies the length specification needed by the instruction.

¢ NAME OPERATION OPERAND
Al DS CL8
B2 DC CL2'AB'
HIORD MVC A1(L'B2),B2
LOORD MVC Al1+L'Al-L'B2(L'B2),B2

¢ A self-defining term is one whose value is inherent in the term. The
Assembler program does not assign a value to the term but uses the term
itself as the value to be assembled. All self-defining terms are classified
as being absolute, since the value of the term does not change when the
program in which they appear is relocated.

Self-defining terms are the means of specifyingimmediate data, masks,
addresses, registers, operand lengths, and I/0 information to the Assem-
bler. Self-defining terms differ from constants and literals when used in
instructions in that the value of the term is assembled into the instruction.
By contrast, a data constant or literal has the address of the data assem-
bled into the instruction,

Four types of self-defining terms are available to the programmer:
decimal, binary, hexadecimal, and character.

2-5

Decimal Self-Defining
Terms

Chart 2-2. Example of
Decimal Self-Defining
Terms

Hexadecimal Self-
Defining Terms

Binary Self-Defining
Terms

Character Self-Defining
Terms

Assembly Language
Structure

€ A decimal self-defining term is an unsigned decimal number written as
a series of decimal digits. Limitations as to the value of the term depends
entirely on its use within the program, Decimal self-defining terms are
assembled as binary equivalents, and must not exceed eight digits (224-1).
(See chart 2-2,)

¢ NAME OPERATION OPERAND COMMENTS
MVC TO(225),FROM MOVE 225 BYTES
AP SUM(12),ADD(3) ADD THREE BYTES OF
PACKED DECIMAL TO
A 12 - BYTE FIELD
BC 15,COMPUTE UNCONDITIONAL

BRANCH TO COMPUTE

¢ A hexadecimal self-defining term is an unsigned hexadecimal number
written as a series of hexadecimal digits. The digits must be enclosed in
single quotation marks and be preceded by the letter X, Each hexadecimal
digit is assembled as a four-bit binary value. The maximum hexadecimal
term is X'FFFFFF' (See chart 2-3.) The following is a summary of the
hexadecimal bit patterns:

0 - 0000 4 - 0100 8 - 1000 C - 1100
1 - 0001 5 - 0101 9 - 1001 D - 1101
2 - 0010 6 - 0110 A - 1010 E - 1110
3 - 0011 7 - 0111 B - 1011 F - 1111

4 A binary self-defining term is an unsigned sequence of 0's and 1's
enclosed in single quotation marks and preceded by the letter B; for
example, B'1011', The maximum binary self-definingterm is 24 bits. These
terms are used primarily in designating bit patterns for masks used in
logical instructions. (See chart 2-4,)

¢ A character self-defining term consists of from oneto three characters
enclosed in single quotation marks and may be preceded by the letter C,
All letters, decimal digits, and special characters may be used in this
type of self-defining term. Any of the 256 punch combinations may be used
to indicate the character that will be assembled in 8-bit code. (See chart
2-5.)

Note:

Care must be used when specifying the characters single quotation (')
or ampersand (&) in character self-defining terms or character con-
stants, The assembly itself uses these characters to denote special
functions. When the programmer uses these characters, two quotation
marks or ampersands must be indicated; for example, to specify the
term A'# as a character constant, the programmer would write C'A"#",

2-6

Chart 2-3. Example of
Hexadecimal Self-
Defining Terms

Chart 2-4. Example of
Binary Self-Defining
Terms

Chart 2-5. Example of
Character Self-Defining
Terms

Literals

Defining Literals

Assembly Language

Structure
¢ NAME OPERATION OPERAND COMMENTS
BC X'4' ABLE BRANCH TO ABLE
IF CONDITION CODE
IS 0100 (CONDITION
CODE 1)
¢ NAME OPERATION OPERAND COMMENTS
™™ CODE,B'10101010"
4 NAME OPERATION OPERAND COMMENTS
™™ MEM,C'1!' THE CHARACTER 1
(11110001) IS USED
AS MASK
MVI SWITCH,'1'

4 A literal term is a convenient way of entering data into a program. It
is a constant preceded by an equal sign (=) coded as an operand in an
instruction; for example: MVC FIELD(1),=C'A', The constant itself is
specified in the same manner as in a define constant (DC) statement. (See
DC, page 3-186.)

Literals represent data, not references to where data is stored. The
use of a literal in a statement line directs the Assembly System to place
the value of the literal into a reserved portion of memory called a literal
pool and to substitute this assigned address in place of the literal.

€ All types of address constants (except S-type) can be expressed as
literals. A duplication factor of zero is not permitted in a literal.

Chart 2-6 shows the use of aliteralas an Operand entry. The statement
named Alpha is an AP instruction with the second Operand field containing
a literal. When assembled, the literal is replaced with an address of the
location in which the assembly has stored the binary value of P'1’,

Notes:

1. Only one literal may appear in a statement line,

2. Literals may not be combined in expressions.

3. Program instructions cannot alter literals.

4, Literals cannot be receiving fields.

5, Literals may not be used in address constants.

6. Literals are considered to be relocatable terms.

2-7

Literal Pool

Chart 2-6. Use of Literal
as Operand Entry

Location Counter
Reference

EXPRESSIONS

Assembly Language
Structure

€ Literals collected by the assembly are placed in a special area called
a literal pool. The positioning of the literal pool, if not controlled by the
programmer, will be the end of the first control section. The programmer
may create multiple literal pools and/or relocate the literal pool under
control of the LTORG assembly instruction, (See page 4-10.)

* NAME OPERATION OPERAND
ALPHA AP COUNT,=P'1'

® The Spectra 70 Assembly System maintains an internal Location
Counter for each control section under assembly. This counter is similar
to the Program Counter which contains the main memory address of the
next instruction to be executed. The Location Counter in the assembly
assigns storage addresses to program statements. Program statements
for each section are assigned addresses from the Location Counter for
that section.

As each machine instruction or data area is assembled, the Location
Counter is first adjusted to the proper boundary for the item (if adjustment
is necessary), and then incremented by the length of the assembled item.
Therefore, the Location Counter always points to the location of the next
available storage location in memory after the instruction has been
assembled.

The programmer may refer tothe current settingof the Location Counter
by inserting an asterisk (*) in the Operand field entry. This method of
addressing is the same as assigning anameto the statement line and using
the name as an Operand entry, The leftmost byte address is supplied when
reference to the Location Counter is made within an instruction.

The location counter setting can be controlled by using the START and
ORG Assembler instructions (see pages 4-3 and 3-11). The Counter af-
fected by either of these instructions is the counter for the control section
in which they appear. The maximum value of the location counters is 2241
on the 70/35-45-55 Processors.

€ Operand entries written for the Spectra 70 Assembly System consist of
either a singleterm or anarithmetic combination of terms and are referred
to as expressions. An expression can be consideredas being either simple
or multiterm. Simple expressions are Operand entries containing symbols,
self-defining terms, Location Counter references, literals, or length
attributes. Multiterm expressions are simple expressions that have been
combined by arithmetic operators for evaluation,

Terms may be combined by use of the following arithmetic operators:
+ Addition; that is, Alpha +2

© Subtraction; that is, Alpha ® Beta

* Multiplication; that is, 5 * L.'Beta

/ Division; that is, (Alpha - Beta)/2

2-8

Combining Terms

Assembly Language
Structure

® The following rules describe the method by which terms can be com-
bined; these rules must be followed if expressions are to be evaluated
properly.

1.

6.

Terms may be grouped within parentheses to indicate the order in
which they are to be evaluated. The terms within parentheses
(grouped) are evaluated first; this value is then used to reduce the
rest of the expression to another single value.

Expressions may not begin with an arithmetic operator, that is,
(+,@.,*%,/).

Expressions may not contain two terms or two operators in suc-
cession,

Expressions may not contain more than three levels of parentheses,
that is, nest of three.

Final values of expressions may not exceed a maximum value of
219_1, or have an intermediate value greater than 231-1.

Multiterm expressions may not contain Literals.

The following are examples of valid expressions:

Simple Expressions Multiterm Expressions
FIELD AREA +X'2D'
L'FIELD *+ 32
B'101’ N-25
C'ABC' FIELD+ 332
29 ((EXIT - ENTRY)/8)
=C'ABC' L'BETA*10
* TEN/TWO

Expressions are evaluated in a definite order. The following rules
define this method of evaluation:

Single expressions take on the value of the term involved, that is,
BETA,X'123',*,L'TAG.

Multiterm expressions, are scanned from left-to-right, and each
term is assigned a value,

The terms within the parentheses are evaluated first, with multi-
plication and division preceding addition and subtraction.

Division by zero is valid and produces a zero result,

Division yields an integer result; fractions are dropped.

2-9

Absolute Expressions

Note

Relocatable
Expressions

Assembly Language
Structure

® Expressions can be further divided into two additional classifications
namely, absolute and relocatable expressions. An expression is called
absolute if its value is unaffected by program relocation. An absolute ex-
pression may be a single absolute term or an arithmetic combination of
absolute terms. An absolute term may be an absolute symbol, self-defining
term, or length attribute. All arithmetic operators are permitted between
absolute terms,

Paired Terms

An absolute expression may contain two relocatable terms (RT), along
or in combination with an absolute term (AT) provided:

1. The relocatable terms are paired, that is, they must appear within
the same control section and have opposite signs., The paired terms
do not have to be contiguous, for example, RT+AT & RT.

2. No relocatable term may enter into a multiply or divide operation.
Thus, RT - RT*10 is invalid, However, (RT & RT)*10 is valid.

The pairing of relocatable terms cancels the effect of relocation.
Therefore, the value represented by the paired terms remains constant,
regardless of program relocation.

The following combinations illustrate absolute expressions:

Rl® R2
R1® R2+A
A® R1+R2
A*A
* @ R1
where:
R1, R2
A

1]

Relocatable Terms from the same control section.

Absolute Terms.

€ A reference to the location counter must be paired with another re-
locatable term from the same control section.

¢ A relocatable expression is one whose value would change by n if the
program in which it appears is relocated n bytes away from its originally
assigned storage area. All relocatable expressions must have a positive
value.

Relocation is needed to load the object program (control section) into
storage locations other than those originally assigned by the Assembler.
All addresses using the same base register may be relocated by simply
changing the contents of that base register upon loading.

2-10

Relocatable
Expressions
(Cont'd)

ADDRESSING

Base Register
Calculation

Assembly Language
Structure

A relocatable expression may contain relocatable terms, alone or in
combination with, absolute terms under the following conditions:

1. Relocatable expressions must contain an odd number of relocatable
terms, If a relocatable expression contains three relocatable terms,
two of them must be paired. Pairing is described under Absolute
Expressions, above.

2. A relocatable term may not enter intoa multiply or divide operation.

3. A relocatable expression reduces to a single relocatable value, This
value is the value of the odd relocatable term adjusted by the values
represented by the absolute terms and/or paired relocatable terms
associated with it,

For example, in the expression: RT1 ® RT2+RT1, RT1 and RT2 are
relocatable terms from the same control section, If RT1 equals 10 and RT2
equals 5, the value of the expression reduces to 15. However, if the pro-
gram is relocated 100 bytes from its original location, the value of the
expression becomes 115, The paired terms RT1 and RT2 remain constant
at 5 regardless of the relocation factor. Thus, the result of the expression
is the value of the unpaired term RT1 adjusted by the value of RT1- RT2.

The following examples are valid relocatable expressions. A is an abso-
lute term, RT1 and RT2 are relocatable terms from the same control
section and Y is a relocatable term from a different control section.

Y - 32*%A =X"'1234"
RT1-RT1+RT2 A*A+RT1
RT1- RT2+* RT1 - RT2+Y
* (location counter reference) RT1

A reference to the Location Counter in an expression must be paired
to a relocatable term in the same control section as: *-TAG.

& Spectra 70 addresses may range from zero through 219 -1, The final
address is produced by adding the base address value in a general register
and a displacement value. The final address may be produced by adding a
third value (index factor) from another general register in certain instruc-
tions. The Assembler permits the programmer to specify the general
register(s) and the displacement explicitly or to direct the Assembler to
calculate the address from a symbolically stated address. The programmer
can direct the Assembler to perform address calculation by specifying
which general registers are available as base registers and what values
each register is assumed to contain, (See USING, page 2-15.) Whenever
the Assembler encounters a symbolic address in the operand field of an
instruction it determines the base register and displacement value for this
address by subtracting it from the value in each available register. The
register producing the smallest displacement below 4,095 is selected. If
two or more registers produce the same displacement, the highest numbered
register is used.

2-11

Register
Considerations

Explicit Addressing

Chart 2-7. Example of
Explicit Addressing

Chart 2-8. Example of
implied Addressing

Implied Addressing

Relative Addressing

Chart 2-9. Relative
Addressing

Assembly Language
Structure

¢ Certain general registers have special uses in conjunction with the
Operating System, particularly for input output functions. (See pertinent
FCP Reference Manual.)

Values placed in general registers must be word-aligned. They are
automatically aligned when expressed as address constants,

A register designated as containing an absolute value is available only
for absolute addresses. If the absolute value is less than 4,096 and a base
register has not been specified, the Assembler will select register 0.

€ The programmer may refer to an address explicitly in a given instruc-
tion by coding the base register and displacement as self-defining terms.
(See Section 3 for correct coding options for each instruction class.) Chart
2-7 illustrates an explicitly coded instruction,

¢ NAME OPERATION OPERAND
BC 15,4(0,8)

¢ NAME OPERATION OPERAND COMMENT
MVC ABLE,BAKER (IMPLIED LENGTH

AND REGISTER)

¢ In chart 2-8 it is assumed that thenames ABLE and BAKER are assigned
the addresses 3850(10) and 8173(;1¢) in the symbol table and that General
Registers 2 and 3 contain values of 0100(7¢) and 4195). In interpreting
the Move (MVC) instruction, the Assembly System subtractsthe base value
from the address associated with the symbol. The difference is the dis-
placement. The displacement may not be negative and may not exceed 4095,

The resulting machine instruction is:

OP L Bl D1 B2 D2
D2 00 2 3750 3 3978

4 Relative addressing is a technique of addressing instructions and data
areas by designating their location as relative to a symbolic location,
The programmer can refer to any location to the right or left of a defined
symbol by indicating a plus (+) or minus (-) value; for example, SYMBOL
+ VALUE. The value specified is always in terms of bytes. (See chart
2-9.)

4 NAME OPERATION OPERAND
MVI PRINT,X'40'
MVC PRINT +1(131),PRINT

2-12

Assembly Language
Structure

Self-Relative | & Self-relative addressing allows the programmer to use the current value
Addressing of the Location Counter plus or minus a value to refer to locations (in
bytes) of various locations within the program. (See chart 2-10,)

Ch_an 2-10. Self- ¢ NAME OPERATION OPERAND
Relative Addressing BC 0.%+18 4 BYTES
MVI TABLE,X'00" 4 BYTES
MVC TABLE +1(255),TABLE 6 BYTES
MVI *-13,X'FO' 4 BYTES
MVC RECORD,WORK 6 BYTES

Further details on permissible instruction coding formats are found in
Section 3.

2-13

Assembly Language

Structure
Name Entry Operation Entry Operand Entry
One or more
Is a Symbol I's a Mnemonic Operands thot
which is an Operation Code are composed
of an
Machine Assembler Macro
Instruction or Instruction °r Instruction Exp or Exp(Exp) or Exp(Exp, Exp)
Ordinary
Symbol (RT)
or
Variable
Symbol or
or
Arithmetic
Term Combination
Sequence of Terms
Symbol
which may be
any one of
the following
A Location . Symbol Length
A Symbol A S.elf- Counter Refer- A Literal Attribute Refer-
e.g., BETA defining ence i.e.,* e.g.,=F'1259* ence e.g.
(AT or RT) Term (AT) (RT) (RT) L' Symbol(AT)
which may be
any one of
the following
AT=Absolute Term
RT=Relocatable Term
Exp=Expression
Decimal Hexadecimal Binary Character
e.g., 15 e.g. X'C4 e.g., B'101 e.g.,C'ABY’

Figure 2-2. Assembler Language Structure - Machine and Assembler Instructions

2-14

Use Base Register

General Description

Specification Rules
Name Field
Operation Field
Operand Field

Assembly Language
Structure

€ The USING instruction indicatestothe Assemblerthe general register(s)
that are available for use as base registers, and the value(s) that the
register(s) are assumed to contain at object time.

¢ The format of the USING instruction is as follows:

NAME OPERATION OPERAND
Not Used USING (Expressions of the form:
VvV, rl, r2, r3, r4, r5 ---, rX)
4 Not used.
¢ USING.,

& Contains the base address value and the register(s) to be assigned.
Operand V must be an absolute or relocatable expression. Literals are not
permitted. The value that are assumed in the base registers rl through
rx will be in the form of V, V+4096, V+8192, V+ 12288, etc. The expres-
sions used to indicate the registers rl through rx must be between 1-15,
Any number of registers may be specified in one USING statement.

¢ (See chart 2-11.)

¢ 1. The USING instruction may be used as often as needed and at any
point in the program to indicate to the Assembler changes in the
register(s) or their value(s).

2. Since the USING instruction does nof actually load the assigned
general registers; it is the user's responsibility to ensure that the

register(s) are loaded with the value(s) specified in the USING
instruction,

3. General register 0 may not be used as a base register.

Chart 2-11. Example of USING Instruction

OPERAND COMMENTS

<

19 (20 §21(22|23|24|25{26|27|28|29|30(31 32|33 |34 35|36 |37|38| 39[40 |41 [42[43 44|45 |46 |47[48 |49[50|51[52[53|54 55| 56|57 |58|59 |60 |61 |62|63]|64|65]66 67 |68[69]70 |71

2 (|L|O[C|A|T|I}|O|N C|O/U/N T E R , L|O|C|A[T|I|O|N C|O|U N|T|E|R|+| 4|8 9|6 WILIL B H

A|S[S|UIM|E|D LiO|A|D| E; D I/N |G|E/N|E{RA|L R|E! G| I|S|T E|/ RS 8 A| N| D! 9

2-15

DROP
Drop Base Register

General Description

Format

Specification Rules

Name Field
Operation Field

Operand Field

Example

Notes

Assembly Language
Structure

4 The DROP instruction allows the user toeliminate a general register(s)
previously assigned in a USING statement.

& The format of the DROP instruction is as follows:

NAME OPERATION OPERAND

Not Used DROP Absolute Expression(s) of theform
rl, r2, 43, r4, r5 --- rx

€ Not used,.

¢ DROP,

€ Contains absolute expressions indicating the register(s) to be dropped.
Any number of registers may be dropped with one DROP instruction.
Only those registers specified will be dropped.

€ (See chart 2-12))

¢ 1. It is not necessary to DROP a general register before changing its
value with another USING instruction.

2. A dropped register may be made available again through another
USING instruction.

Chart 2-12. Example of DROP Instruction

NAME OPERATION OPERAND COMMENTS
1 lZ]3 415 [6 7 [U 9 ‘0]” 121131415 |16 l7’|8||9|70|21 22—’23 24(25)26 {27{28|29 3013] 3213] 34!35'36 37|33 J?]lﬂ 4|Jf2 43 ““5 “l‘7l“ ‘7'5015] |52 5354 ﬂi‘ 57 5"5’ 60 |61 1 “I“J“ 67 6'|69 70 |71
i ST fH[l BAARARARREREERVARRRR T | !
i (Y lusTve] [*, 30,061, 050,060 | 1] i(|a|s|si1ic/nl1]n g ,4ELG,1‘SLT‘LF.LRS) \ ‘ 1
i ‘ R RERRRERRRE mRARREEER RERI l |
SR S B — o - T f st AT T i
e AR l] i INREE T ,
\‘ 1 4 k 1 “ 1 i’ ‘ J } JJ L ’ i
,DR}O{P; 3,16 | (DRO]P RIE|G[I|S|T{& kS| |3] |A[NQ |6 . 4| |A/N/D| |5
T 1 f T
L | s|rirjo|ul 1/n| E[FiF|E/C[T]) ‘ i
| R 1 i

2-16

Programming With
the Using Instruction

Loading Register

Expanding Assembly
Addressing

Chart 2-13. Loading a
General Register by way
of BALR Instruction

Assembly Language
Structure

4 The USING (and DROP) instructions may be used anywhere in a pro-
gram, as often as needed, to indicate the general registers that are
available for use as base registers and the base address values the
Assembler may assume each contains at execution time. Whenever an
address is specified in a machine-instruction statement, the Assembler
determines whether there is anavailable register containinga suitable base
address. A register is considered available for a relocatable address if it
was loaded with a relocatable value that is in the same control section as
the address. A register with anabsolute value is available only for absolute
addresses. In either case, the base address is considered suitable only if
it is less than or equal to the address of the item to which the reference is
made. The difference between the two addresses may not exceed 4,095
bytes.

If two or more registers can be used to develop an address, the one
yielding the smallest displacement is used. If two or more registers yield
the same displacement, the highest numbered register is used. If an ab-
solute address islessthan4,096, and if no base register has been specified,
the Assembler will automatically select register 0.

¢ Using the BALR (Branch and Link Register) instruction and the USING
instruction; chart 2-13 shows a possible method for loading a general
register with the address of the first instruction of the program. The
BALR loads General Register 2 withthe addressthat is in the Program (P)
register at object running time. The USING instruction notifies the
Assembly that General Register 2 contains this value. When using this
method, the USING instruction must immediately follow the BALR instruc-
tion and the last program statement line must be within the 4,095-byte
range.

® To expand the addressing capabilities of the assembly beyond 4,095
bytes with the LM (Load Multiple) instruction, the technique in chart 2-14
(on page 2-18) can be used.

In chart 2-14, the BALR instruction initially loads General Register 2
with the current value in the P register and proceeds to the next instruc-
tion, The USING instruction notifies the Assembly System that General
Registers 2, 3, 4, and 5 are available for base addressing and contain the
relocatable value of HERE. Here, being the name of the Load Multiple
statement line, loads General Registers 3, 4, and 5 with address constants
of HERE + 4096, 8192, and 12288. By increasing the number of general
registers and constants, the number of addressable bytescan be increased.

* NAME OPERATION OPERAND
BEGIN BALR 2,0
USING *,2
FIRST

2-17

Chart 2-14. Expanding
the Addressing
Capabilities of the
Assembly System

NAME

BEGIN

HERE

BASEADDR

FIRST

LAST

2-18

Assembly Language
Structure

OPERATION OPERAND
BALR 2,0
USING HERE,2,3,4,5
LM 3,5,BASEADDR
B FIRST
DC A(HERE +4096)
DC A(HERE +8192)
DC A(HERE + 12288)
END BEGIN

3. BASIC
PROGRAM
ELEMENTS

ASSEMBLY OF
MACHINE
INSTRUCTIONS

Machine Format

Instruction Alignment
and Checking

Chart 3-1. Assembly
Statement

4 Machine instructions are coded symbolically as assembly language
statements, Instructions that require base-displacement format may be
coded using implied addressing or explicit addressing.

The assembly language coding format varies for each class of machine
instruction: RR, RX, RS, SI, and SS, Further coding variations are permitted
within an instruction class, The assembly coding sequence that represents
a machine instruction is:

1. Mnemonic operation code.
2. Operand operated upon,
3. Additional operand.

Any assembly instruction may be symbolically named such that any
other assembly instruction may reference it by name as an operand. The
symbol refers to the address of the leftmost byte of the instruction. The
symbol is given the length attribute of the instruction being referenced.
This length attribute is:

2 for RR instructions
4 for RX, RS, and SI instructions

6 for SS instructions

¢ All generated instructions are properly aligned by the Assembler on
half-word boundaries. Instruction alignment may cause the Assembler to
skip bytes. These bytes are filled with hexadecimal zeroes.

Storage addresses are checked for boundary alignment appropriate for
the instruction in which they occur. Similarly, instructions that require an
even-numbered register designation are checked. They are: Multiply or
Divide (word), Double Shift, and all Floating-point instructions,

For example, assume that FIELD is a relocatable symbol that has been
assigned a value of 7400, Assume also that the assembly has been notified
(by a USING instruction) that General Register 8 currently contains a re-
locatable value of 4096 and is available as a base register. The example
in chart 3-1 shows a machine instruction statement as it would be written
in assembly language and chart 3-2 shows the instruction as it would be
assembled., The assembled instruction is presented in decimal.

. NAME OPERATION OPERAND
STM 4,4,FIELD

3-1

Chart 3-2. Assembled
Instruction

Operand Formats

Table 3-1. Explicit and
Implied Operand
Formats

Subfields

Basic Progvam Elements

oP LI | L2 | Bl D1

90 4 4 8 3304

4 An address may be specified explicitly as a base register and displace-
ment by the formats shown in the second column of table 3-1. The address
may be specified as an implied address by the formats shown in the third

column.
* Type Explicit Address Implied Address
RX D2(X2,B2) S2(X2)
D2(0,B2) S2
RS D2(B2) S2
SI D1(B1) S1
SS D1(1.1,B1) S1(L1)
D1(L,B1) S1(L)
D2(L2,B2) S2(L2)

¢ A comma must be written to separate operand entries. Parentheses
must be written to enclose a subfield or subfields, and a comma must be
written to separate two subfields within parentheses. When parentheses

are
mus
clos

1.

used to enclose one subfield and the subfield is omitted, the parentheses
t be omitted, When two subfields are separated by a comma and en-

ed by parentheses, the following rules apply:

If both subfields are omitted, the separating comma and parentheses
must be omitted.

. If the first subfield in the sequence is omitted, the comma that sepa-
rates it from the second subfield must #0f be omitted. The paren-
theses must also be written. (See chart 3-3.)

If the second subfield in the sequence is omitted, the comma that
separates it from the first subfield must be omitted. The parentheses
must be written. (See chart 3-4,)
Chart 3-3. Separation of Operands
NAME OPERATION OPERAND
MVC 32(16,5),FIELD2
MVC BETA(,5),FIELD2 IMPLIED LENGTH
Chart 3-4. Separation of Operands, Omitted Commas

NAME OPERATION OPERAND

INST1 MVC 32(16,5),FIELD2

INST2 MVC FIELD1(16),FIELD2 IMPLIED ADDRESS

3-2

Subfields
(Cont'd)

Table 3-2. Expressing
Field Lengths

Basic Program Elements

Fields and subfields in a symbolic operand are represented either by

absolute or by relocatable expressions, depending on the requirements of
the field. (An expression has been defined as consisting of one term or a
series of arithmetically combined terms.)

Note:

Blanks may not appear in an operand unless provided by a character
self-defining term or a character literal. Thus, blanks may not inter-
vene between fields and the comma separators, between parentheses
and fields, etc.

The length field in certain instructions can be explicit or implied. To

imply a length, the programmer omits a length field from the operand.
The omission indicates that the length field is either of the following:

1. The length attribute of the expression specifying the displacement,
if an explicit base and displacement have been written.

2. The length attribute of the expression specifying the effective ad-
dress, if the base and displacement have been implied.

In either item 1 or 2, the length attribute for an expression is the length

of the leftmost term in the expression. By contrast, an explicit length is
written by the programmer in the operand as an absolute expression. The
explicit length overrides any implied length,

Whether the length is explicit or implied, it is always an effective length.

The value inserted intothe lengthfields of the assembled instruction is one
less than the effective length in the machine instruction statement,

Note:

If a length field of zero is desired, the length may be stated either as a
one or as a zero,

To summarize, the length required in certain instructions can be spec-

ified explicitly by the formats shown in the first column of table 3-2, or
can be implied by the formats shown in the second column, Observe that
the two lengths required in one of the instruction formats are presented
separately. An implied length is used for one and an explicit length is used
for the other.

*

Explicit Length Implied Length
D1(L1,B1) D1(,B1)
S1(L1) S1
D1(L,B1) D1(,B1)
D2(L2,B2) D2(,B2)
S2(L2) S2

3-3

Mnemonic Operation
Codes

Operand Fields

Basic Program Elemenls

4 The mnemonic operation codes are constructed so thatthey indicate the
functions of the machine instruction, A modifier is appended as the last
character to distinguish the function further. For example, the function of
addition is designated by the mnemonic A (fixed-point arithmetic additions),
This is distinguished from other arithmetic additions by appending another
character, for instance:

AP Add Packed-Decimal

AL Add Logical

AH Add Halfword

AE Add Normalized (word) "Exponent"

AU Add Unnormalized (word)

AD Add Double word (normalized)

AW Add Double word (Unnormalized)
4 An operand that represents an address in base-displacement form may
be symbolically coded in implied or explicit form. If explicitly coded the
Assembler requires the address to be expressed in the sequence D(B) in

contrast to the machine-instruction format. Explicit addresses must be
represented by absolute expressions,

An operand that represents a register may be coded as a self-defining

(absolute) term or a symbol equated to an absolute term. (See EQU, page
3-15.)

Instructions of the RR format, where each operand is expressed as a
single field without subfields, are coded in the form: operation, operand 1,
operand 2, For example:

BALR 14,15
Instructions of the RS format that refer toa base-displacement address
implicitly may also be coded explicitly. For example, either:
LM 3, 5, BASEVALU
or
LM 3, 5, POINTER (2)
or
LM 3, 5, 8 (2)
are acceptable assembly formats. Note that BASEVALU implies the base
register and displacement; POINTER (2) states the base register explicitly,
but implies the displacement; and that 8(2) states both base register and

displacement explicitly. An implied address may be represented by
either a relocatable or absolute expression.

3-4

Operand Fields
(Cont'd)

Basic Program Elements

The Shift instructions (RS) have several coding options, For example:
SLL 5,4(0)
and
SLL 5.4
will use the low-order six bits of the displacement as the shift count, but
SLL 5,0 (4)

will add the value of the displacement to the contents of register 4. The low-
order six bits of the resulting sum will be used for the shift count.

Implied addresses are permitted provided the programmer specifiesthe
base-register(s) and base value(s) with a USING statement and omits the
base register. Explicit coding of the base register will override implied
addressing. Omitting the base register reference permits the Assembler
to select a suitable base register.

Instructions of the RX format reference anindexregister as well as the
base register and displacement. Indexing is specified by appending the
designated index register to the implied address. For example:

L 6, TABLE(8)

When no indexing is needed the appendage is omitted and register 0 is
generated for the index register, An instruction which specifies index
register 0 results in only the base register and displacement being used to
form the effective address. For example:

L 6,VALUE

would generate a hexadecimal 60 in the second byte.

The explicit form may be used to form an address with indexing. For
example:

CL 6,8(7,3)

forms the address of the second operand by adding the index value to the
base and displacement value.

However, note that the explicit operand address has the form D(X,B).
The indexing factor may not be omitted when the operand is coded ex-
plicitly. When the explicit form is used and indexing is not required, index
register zero must be specified. For example:

ST 6,80(0,3)

results in storing the contents of register 6 without indexing,

3-5

Operand Fields
(Cont'd)

Note

Basic Program Elements

A comma must be used to separate the index register from the base
register. Both must be enclosed within parentheses. However, the base
register and the comma may be implied by omitting both.
¢ The value of a general register may be incremented by the value of
the displacement when the LA (Load Address) instruction is coded ex-
plicitly, such as:

LA 6,100(0,6)

The instruction will take the value in register 6, add the displacement
value 100 to it and then store it back in register 6. Reversing the base and
index registers in the above example produces the same result, Register 0

may not be designated as the first operand for this purpose.

Instructions of the SS format are coded with the length subfield being
implied or explicitly stated as:

MVC SAVE (256), WORK
or
MVC SAVE, WORK

Further, packed decimal instructions with two length factors may be
coded with implied or explicit lengths with either operand as:

SP BALANCE (6), AMOUNT (3)
or
SP BALANCE, AMOUNT
Various combinations other than those above may be used such as:
MVC 48(L'ITEM,BR4),ITEM
Instructions of the SI format are coded as illustrated below.
TM CODE, B'10101000'
or
Ol DATA+6, X'FO'
or

MVI FIELD-1, '$'

3-6

Basic Progrvam Elements

EXTENDED & For the convenience of the programmer, the Assembly System provides
MNEMONIC CODES extended mnemonic codes, which allow conditional branches to be speci-
fied mnemonically as well as through the use of the BC machine instruction.
These extended mnemonic codes specify both the machine branch instruc-
tion and the condition on which the branch is to occur. The codes are not
part of the set of machine instructions, but are translated by the assembly
into the corresponding operation and condition combinations. The allowable
extended mnemonic codes are shown in table 3-3.
Table 3-3. Extended
Mnemonic Codes Extended Meaning Extended Machine
Codes Format Instruction
B Branch Unconditional D2(X2,B2) | BC 15,D2(X2,B2)
BR Branch Unconditional R2 BCR 15,R2
NOP No Operation D2(X2,B2) | BC 0,(X2,B2)
NOPR No Operation (RR Format)| R2 BCR 0,RR
Used After Compare Instructions
BH Branch on High D2(X2,B2) | BC 2,D2(X2,B2)
BL Branch on Low D2(X2,B2) | BC 4,D2(X2,B2)
BE Branch on Equal D2(X2,B2) | BC 8,D2(X2,B2)
BNH Branch on Not High D2(X2,B2) BC 13,D2(X2,B2)
BNL Branch on Not Low D2(X2,B2) | BC 11,D2(X2,B2)
BNE Branch on Not Equal D2(X2,B2) | BC 7,D2(X2,B2)
Used After Arithmetic Instructions
BO Branch on Overflow D2(X2,B2) | BC 1,D2(X2,B2)
BP Branch on Plus D2(X2,B2) | BC 2,D2(X2,B2)
BM Branch on Minus D2(X2,B2) BC 4,D2(X2,B2)
BZ Branch on Zero D2(X2,B2) | BC 8,D2(X2,B2)
Used After Test Under Mask Instructions
BO Branch if Ones D2(X2,B2) | BC 1,D2(X2,B2)
BM Branch if Mixed D2(X2,B2) | BC 4,D2(X2,B2)
BZ Branch if Zeros D2(X2,B2) BC 8,D2(X2,B2)

Basic Program Elewments

DEFINING STORAGE ¢ The DS instruction allows the programmer to reserve areas of memory
for the storage of data and to assign names to those areas, Input/output
areas and working storage can be classified as contiguous and non-
contiguous storage., The Location Counter, which is used by the assembly
to allocate storage, can be set and reset to any desired value through use
of the ORG instruction. The setting and resetting of the Location Counter
enables the programmer to define and redefine the allocated areas of

memory.
DS
Define Storage
General Description ¢ The DS (Define Storage) instruction reserves working storage and input/

output areas in memory. Names can be assignedto refer to these reserved
areas symbolically,

Format & The format for the DS instruction is as follows:
NAME OPERATION OPERAND
A symbol or blank, DS DTXn ['constant'] or DT

Specification Rules

Name Field ¢ Any symbol or blank,
Operation Field ¢ DS,
Operand Field ¢ One operand expression in the following format DTXn 'constant' where

D

the duplication factor.

T = the type of unit to be allocated halfword (H), fullword (F)
double word (D) or byte (C).

Xn = the length of the field type to be reserved.

'constant' = a map of the actual data to be stored. (The data shown is
used by the assembly for size calculation only. The con-
stant shown is not stored in the allocated area.) This sub-
field is optional.

Chart 3-5. Example of
DS Instruction

H.F.D.
Type Operands

Notes

Forcing Alignment

Basic Progrvam Elements

NAME OPERATION OPERAND
READIN DS 80C
AREA DS CL100
SOC# DS C'182243291"

€ A DS (define storage) operand may have the format dt, where

d
t

a duplication factor.
a type code as follows:

]

TYPE ADDRESS ALIGNMENT IMPLIED LENGTH

H Halfword 2 bytes
F Word 4 bytes
D Double Word 8 bytes

Additional examples of DS are given in chart 3-6.

The symbol in the Name field is assigned a left-hand byte address
of the area allocated.

The length attribute is the length of the data type specified.

Skipped locations are not zeroed when proper positioning is
necessary.

Packed (P), zoned (Z), character (C), hexadecimal (X), and binary
(B) fields have an implied length of one byte. If more than one byte
is to be reserved, the length modifier must be specified.

To reserve areas of storage greater than 256, a duplication factor
must be used.

¢ The Location Counter can be forced to a double-word, full word, or
halfword boundary by using one of the three special field types shown in
chart 3-7 with a duplication factor of zero.

The zero duplication factor in chart 3-7 can be used to assign a name
to a field without actually reserving storage. Additional DS instructions
can then be used to name the individual fields (see chart 3-8),

3-9

Basic Program Elements

Chart 3-6. Additional Examples of DS Instruction

NAME OPERATION OPERAND COMMENTS
l[zlSIl s]s 7‘! 9 \Olﬂ 12]\]“15 16 \7|a|vzolzuzz 232425!36 271282913031 32|33 (343536 |37 |38 39]40 |41 |4243 |44 45|46 [a7[48 |49]50 |51 [52|53]|54]55] 56|57]58|59}60 |61 |62|63]|64|65]66 |67 {s8l69]70 {7}
ONE ‘ : D‘S ‘ CL8¢:ONEE8¢-BYTE F|I'E! L D! !
T@b [Js ! 8lg'c) II‘BYTE FII|EILIDS
1lu|RIE|E D'S 6|F slI|x| |FlujL|L] |w|o|R|D|s!,| |AlT/T|R[I|B/UT O F |4
Folur| | ! DS D o|N D B|LIE| |w|o|R|D|,| |A|T|T{R[1|B/U/T/E |O/F |8
FIVE Disi | 4lu] Flolulr uALHwonns, alr/ /el 1lslulTEl |ofF !2

Chart 3-7. Examples of DS Instruction Using Zero Duplication Factor

NAME | operaTion OPERAND COMMENTS
1 2‘1 4 5|6 7 |8]9 profn r2fa3)rafisjre | 17f18 119 |20 [2122 [23| 24|25 |26 | 27| 28]29[30]31 32|33 |34 (35|36 |37] 38 39|40 |41 [42]43 | 44]| 45|46 {a7{48 {49150 [51{52]53]54|55) 56|57 |58|59}60(61 |62)63)64 65|66 [67168]49[70 |71
| D|s #| D] p|o|u|B|L|E|~|w|o|R|D| |A|L|1|G| N|M E|N
Hi pls glF Flu|L|n|-|wjo|R|D] |Alz|z|c|N|M EIN T
pls g|u H|a|L|F|W|o|R|D| |A|L|I|c|N|ME/NT
D|s g\F
R D|s 8lg|c als|s|1|G|N| |oiN|E R|E{A |8 g |B y|[T|E[s |LioNg
O(R G M|A(S|T{E|R| |RIE|S|E|T| |L{O[C|A|T/I[ON| {C|T(R [TiO| L EFT |BYTE |[OF |MAa'S TEHR
1iTiEM|L Dis ciu|1|g| |R|E|D|E|F{T|N|E| A|L|L|ojc|a|T|E|D| {8|#| |B|Y|T|E| |A|R|E|A
1T EM|2 ; DS clui2lg| | " " " i
ITEM|3 DjS CiLiL:g " : " " " "
! ! o!RG!‘ Mia|s|TIE|R|+|8|# “RESTORE vjofclalTizioln| |c/7Rr |mo |nEx{T |a|v|a|z|LialslL|E| |1 olc].

Chart 3-8. Examples of DS Instruction Naming Fields

NAME OPERATION OPERAND COMMENTS
1 12[3 ll 5 16 7|89 hovijizi3f14fis |6 [17[18119 (20 | 21 j22 23] 24[25] 26 | 27{ 28|29 30]31 [32|33 |34 [35 |36 |37 | 38| 39} 40 |41 [42]43 [44]45 4647]48 4950 | 51)52153 (5455|5657 | 5859|6061 |62]|63|64|65[66 |67 48]69]70 |71
READM N glciLislg InaME |ANID| |LiE|N|G|TiH| |A|s|s|1!c/NE[D|,|N 0! [s|T|olrlalclE| |&|E|s|E|RIV]E|D .
1T EM[1 D S clLi2g RIE|A[DA| |D|EF I NED-BY |TH/E |Flo|L|L|o/w|1|N 1iTlE|M|s . |
(rrema | | Iosi || leiiog | | | | | [1] E | | | |
rTEM3 | ﬁﬂ‘ CL2¢£ | | ! |
I TEM4 DS cli 29l |

: 0.R[G) 1T E[M4 |REDEFINE |[1TEM |4

SUBI|TEM1 i clLs siu/B |1
suBIfsmz il clLs S|ulB| |2 | | ; | |
S UB.I|T.EM.3 i ClL 19 S|UBl (3 i | | i i
| : oRGC R[E/AIDIA ! | | Ll [E
M A S TIE R DS ¢/cL8@ RENAME IREADA !TO MAISTER i i

3-10

ORG
Set Location Counter

General Description

Format

Specification Rules

Name Field

OperationField

Operand Field

Chart 3-9. Example of
ORG Instruction

Notes

Basic Program Elements

¢ The ORG instruction alters the setting of the Location Counter for the
current control section.

€ The format of the ORG instruction is as follows:

NAME OPERATION OPERAND

Not Used ORG A relocatable expression or blank,
¢ Not used.
¢ ORG.

® Any relocatable expression composed of previously defined symbols,
The unpaired relocatable symbol must be defined in the same control
section in which the ORG statement appears.

L 4 NAME OPERATION OPERAND
ORG *+500
ORG START

¢ 1, The Location Counter is set to the value of the expression in the
Operand Field.

2. Omission of an Operand entry causes the Location Counter to be set
one byte higher than the maximum location assigned for the control
section up to this point.

3. An ORG statement must not specify a locationbelow the beginning of
the current control section,

3-11

Contiguous Assignments
in Allocating Storage

Chart 3-10. Example of
Contiguous Area
Assignment

Chart 3-11. Redefining
Areas Using
ORG Instruction

Noncontiguous
Assignments in
Allocating Storage

Chart 3-12. Examples of
Noncontiguous
Assignments

Basic Program Elements

¢ Contiguous memory, such as input/output areas, may be allocated in
units of bytes (C), halfwords (H), words (F), and double words (D). The
Location Counter is positioned to the proper boundary before the desired
storage area is allocated. The area allocated will not be filled with zeros.

To redefine the areas allocated in chart 3-10, the programmer can,
through use of the ORG instruction, reset the Location Counter to the
lefthand value originally used by INPUT, (See chart 3-11.)

To reset the Location Counter to the next available location for storage
assignment, a relative address of INPUT +80 is used.

L 2 NAME OPERATION OPERAND
INPUT DS 80C
ORG INPUT
NUMB DS 10C
CODE DS 10C
TYPE DS 10C
SIZE DS 10C
COLOR DS 10C
AMT1 DS 10C
AMT2 DS 10C
EM DS 10C
¢ NAME OPERATION OPERAND
ORG INPUT
ITEM1 DS 40C
ITEM2 DS 40C

® Through the use of the ORG and the unit of assignment options, the
programmer can allocate areas of storage that are not contiguous, but are
allocated separately and positioned on the proper halfword, word or
double-word boundary. (See chart 3-12.)

L 2 NAME OPERATION OPERAND
WORK1 DS 10C
WORK2 DS 40H
WORK3 DS 15F
ORG WORK1+100

3-12

CNOP
Conditional No
Operation

General Description

Format

Specification Rules

Name Field
Operation Field

Operand Field

Basic Progrvam Elements

¢ The CNOP instruction allows the programmer to align an instruction at
a specific word boundary. If any bytes must be skipped to align the instruc-
tion properly, the assembly ensures an unbroken instruction flow by
generating no-operation instructions. This facility is useful in creating
calling sequences consisting of a linkage to a subroutine followed by param-
eters such as channel command words (CCW).

& The format of the CNOP instruction is as follows:

NAME OPERATION OPERAND
Not Used CNOP Two decimal terms of the formb,w.
€ Not used.
€ CNOP,

4 Two operands in the form of b,w where:

b specifies the byte in a word or double word in which the Location
Counter is to be set. Values of 0,2,4, or 6 may be specified.

w specifies whether the byte b is a word (four bytes) or double word
(eight bytes). The following pairs are valid combinations:

b,w Specifies

0,4 | Beginning of a word

2,4 Middle of a word

0,8 Beginning of a double word

2,8 Second half word of a double word

4,8 Middle (third half word) of a double word
6,8 Fourth half word of a double word

Assuming that the Location Counter is currently aligned at a double-word
boundary, then the CNOP instruction in sequence givenin chart 3-13 has no
effect; it is merely printed in the assembly listing. However, the sequence
given in chart 3-14 causes three branch-on-conditions (no-operations) to
be generated, thus aligning the BALR instruction at the last halfword in a
double word as given in chart 3-15,

3-13

Basic Program Elements

Opevand Field

(Cont'd) Double Word

Word Word

Halfword Halfword Halfword Halfword

Byte : Byte Byte Byte

X
2,4
2,8

’

Byte Byte

Byte i

2k
V'
)4

(=
0 >
o N
0

B O

Figure 3-1. CNOP Alignment of Double Word Using (0,4,2,4)

After the BALR instruction is generated, the Location Counter is at a
double-word boundary, thereby ensuring an unbroken instruction flow,

¢ The CNOP instruction ensures the alignment of the Location Counter
setting to a halfword, word, or double-word boundary. If the Location
Counter is already properly aligned, the CNOP instruction has no effect,
If the specified alignment requires the Location Counter to be incremented.
one to three no-operation instructions are generated, each of which uses

Note

Chart 3-13. Effect of
CNOP Sequence

Chart 3-14. Effect of
CNOP Sequence

Chart 3-15. CNOP
Sequence Causing

Branch-on-Condition

two bytes.

OPERATION
CNOP
BALR

NAME

OPERATION
CNOP
BALR

NAME

OPERATION
BCR
BCR
BCR
BALR

NAME

3-14

OPERAND
0,8
2,14

OPERAND
6,8
2,14

OPERAND
0,0
0,0
0,0
2,14

EQU
Equate

General Description

Format

Specification Rules

Name Field

Operation Field

Operand Field

Note

Basic Program Elements

¢ The EQU instruction is used to define a symbol by assigning to it the

attributes of an expression specified in the Operand field.

€ The format of the EQU instruction is as follows:

NAME OPERATION OPERAND

A symbol EQU An expression,
& Any valid symbol.
¢ EQU,

¢ The expression may be absolute or relocatable. The symbols used in
the expression must be previously defined.

In chart 3-16, the programmer chooses to equate General Register 2
to the symbol REG2 and to equate the hexadecimal term X'3F'to the
symbol TEST. The expression ALPHA ® BETA + GAMMA is computed by
the Assembler and the value of the expression is assigned to the symbol
FIELD,

® Both name and operand entries are mandatory.The symbol used in the
Name field is assigned the calculated value of the expression used in the
Operand field and is assigned the length attribute of the leftmost (or only)
term of the expression. The EQU controlling code is the only means of
making a symbol absolute.

Chart 3-16. Example of EQU Instruction

NAME OPERATION OPERAND COMMENTS
1113]75 67189]0[" 311311415 161718 (19120 | 21§22 | 23| 24|25 | 26 | 27 28|29 | 30|31 323“]51“37”39“‘41 42)43 IIJ‘S 46|47 148 [4950 | 515215354 55| 56|57 | 58159 |60 (61 [62|6364]65]66 167 |68|69|70 |71

=
RIE|G!2 E|Q|U 2 GEFERAL RIEG(ISTIER
T{E(S|T E|Q|U X\ '3 F KIMMED|IATE A T A
Fl1|E|L|{D ElQ|U AlL|p|H Al -/ B|E[T A +|6|a| MM a L L Wil E|l arlplujals|2
' [ADDR_E_ﬁ;_f_S F AL [PsH |A S AIDIDIRIE SIS O F BIE|T|A +
Ii * D |D (RIE SIS 0 F G A LENGT_lH_ O |F AL |P|H A IS
A}LWxPHA D[C[c '/100" clivlElN] ITlo] FlIE[LID])
BIETA p.cl ! clri2lol s J
) e T
GAMMA} D‘C ciri30lt | ‘ W : 8

! i | |

[J } { [‘_I [i i | ! -
RN I o 1 SRR SR RN EEE

i : | | [[

3-15

DEFINING
CONSTANTS

Basic Progvam Elements

¢ Data in the form of a character, hexadecimal, binary, decimal, fixed-
point, or floating-point constant can be entered into a program through the
use of the DC (Define Constant) instruction.

The format of the DC instruction is:

NAME OPERATION OPERAND

Symbol or blank. DC A single operand describing
a constant or set of constants

These constants are classified as data constants or address constants,
Data constants are enclosed in quote marks while address constants are
enclosed in parentheses. Data constants are describedinthis section prior
to address constants. Fixed- andfloating-point data constants are described
after the Character (C), Hexadecimal (X), Binary (B), and Decimal (P,Z)
constants but before the address constants (A, Y, S, V).

Literals follow the same rules as constants; however, they may not be
used with S-type address constants,

The following chart lists the types of constants that may be defined by
the DC instruction,

CODE USED TO GENERATE

C Eight-bit code for each CHARACTER.

X Four-bit code for each HEXADECIMAL digit.

B One or more binary digits (BIT).

P PACKED decimal digit, signed.

Z ZONED decimal digit, unpacked.

F Fixed-point binary value, signed 32-bit FULLWORD,
implied.

H Fixed-point binary value, signed 16-bit HALFWORD,
implied.

E Floating-point, Single precision 24-bit mantissa, 8-bit
EXPONENT,

D Floating-point, DOUBLE precision 56-bit mantissa, 8-bit
exponent,

A Binary address, fullword,

Y Binary address, halfword,

S Base-displacement address, halfword.

\Y% External symbol address, fullword reserved.

3-16

Basic Progvam Elements

DC

Define Constant

General Description & The DC (Define Constant) instruction is used to provide constant data
in storage. One or more of a variety of constants may be specified in a
single DC instruction.

Format € The format of the DC instruction is as follows:
NAME OPERATION OPERAND
A symbol DC [D][1] [X,] 'constant'
k.,
or blan (constant)
'constant, ..., constant

Specification Rules

Name Field ¢ Contains a symbol or is left blank., If a symbol is used to name the
constant it is assigned the leftmost byte address and the value attribute
of the first, or only constant specified.

Operation Field ¢ DC.
Operand Filed ® Consists of three optional subfields preceding the constant subfield,.

CONSTANT - enclosed by quotes or parentheses: 'constant' used with
all data constants; (constant) used only with address constants; 'constant,

. » constant' multiple data constants. The last form may not be used with
C, X, or B type constants,

T = TYPE - specifies type of constant to be generated, If omitted,
Character is assumed.

D = DUPLICATION - when specified, it causes the constant(s) to be
duplicated D times after the constant hasbeen generated. D must be speci-
fied as an unsigned decimal number,

X =1, 8, or E - a Length, Scale, or Exponent modifier followed by a
decimal number where:

defines explicitly the number of bytes assigned to the constant.

Ln

Sn = defines the scaling applicable to ¥, H, or E, D constants (see
pages 3-22 and 3-25).

En = defines the preadjustment to ¥, H, or E, D constants (see pages
3-24 and 3-26),

3-17

Alignment of
Constants

Types of Constants

Character Constants
(C-Type)

Chart 3-17 Constant
Generation

Chart 3-18. Constant
Generation

Basic Program Elewments

¢ All constant types except character (C), hexadecimal (X), binary (B),
packed decimal (P), and zoned decimal (Z), are aligned on the proper
boundary, unless a length modifier is specified. In the presence of a
length modifier, no boundary alignment is performed. If an operand speci-
fies more than one constant, any alignment applies to the first constant
only, Thus, for an operand that provides five fullword constants, the first
would be aligned on a fullword boundary, and the rest would automatically
fall on fullword boundaries.

The total storage requirement of an operand is the product of the length
times the number of constants in the operand times the duplication factor,
plus any bytes skipped for alignment reasons.

¢ The following description denotes the various types of constants, their
descriptive features, and positioning within the Spectra 70 Assembly
System.

& Any of the 256 punch combinations can be used in defining a character
constant., Character constants may not exceed 256 bytes, are enclosed in
single quotation marks, and are preceded by a letter C, Special attention
should be given to the constant that requires the use of the quotation mark
and ampersand. Only one character constant may be specified per operand,
and no boundary alignment is performed on the assembled bytes. (See
chart 3-17.)

If a length modifier is not specified, the length of the constant is implied
by the constant itself. Each character is converted into an eight-bit byte
and assigned a left-hand byte address to the symbol naming it. If a length
modifier is specified that is less than or exceeds the stated constant,
truncation or padding with blanks is performed starting at the 7ighimost
end of the constant generated. (See chart 3-18.)

¢ NAME OPERATION OPERAND COMMENTS
K1 DC C'TITLE PAGE' Generates - TITLE
PAGE
K2 DC '‘CREDIT' C-Type Code implied
K3 DC C'O"CLOCK!' Generates - O'CLOCK
¢ NAME OPERATION OPERAND COMMENTS
K4 DC CL5'TRUNCATE' Generates - TRUNC
K5 DC CL5'PAD' Generates -PAD _ _

3-18

Chart 3-19. Defining
Character Constants

Hexadecimal Constants
(X-Type)

Chart 3-20. Defining
Hexadecimal Constants

Binary Constants
(B-Type)

Basic Program Elements

¢ NAME OPERATION OPERAND COMMENTS
EOF DC C'END OF RUN'! Generates - END OF RUN
CON1 DC 3C'ABC' Generates - ABCABCABC
CON2 DC 2CL5'AD’ Generates - AD
AD_
CON3 DC 3C1L4'ABCDETF' Generates -
ABCDABCDABCD

¢ Hexadecimal constants are normally used in place of the character
constant when one or more of the bytes cannot be expressed by a character
value. Hexadecimal digits 0-9 and A-F are used to denote the constant.
The constant is written as a series of hexadecimal digits, is enclosed in
single quotation marks, and is preceded by an X,

The maximum number of hexadecimal digits may not exceed 512 (256
bytes). The hexadecimal digits, starting at the leftmost end of the
constant are paired and used to generate the byte. If an odd-number of
hexadecimal digits is specified, the leftmost byte has its leftmost bits
filled with a hexadecimal zero and the rightmost byte contains the first
digit., The implied length (if no length modifier is specified) is half the
number of hexadecimal digits in the constant.

Truncation or padding occurs if a length modifier has understated or
over-stated the constant storage area. Truncation and hexadecimal zero
padding start at the leftmost end of the constant. (See chart 3-20.)

4 NAME OPERATION OPERAND COMMENTS
TAGA DC X'40206B' Generates - 40206B
LENGTH IS 3
TAGB DC 2XL3'A6F4E' Generates - 0A6F4EQOA6F4E
PADDING
TAGC DC 3XL2'A6F4E' Generates - 6F4E6F4EGF4E
TRUNCATION

® Binary constants are written using the binary digits 1 and 0, enclosed in
single quotation marks and preceded by a B. The maximum length of a
binary constant is 256 bytes. The length modifier range is, as in all the
constants previously mentioned, summarized in table 3-4. The implied
length is the number of bytes including padding used to store the constant.
Padding and truncation begins at the leffmost byte. Padding is with zeros.
(See chart 3-21.)

3-19

Chart 3-21. Defining
Binary Constants

Packed Decimal
Constants (P-Type)

Note

Chart 3-22. Example of
Packed Decimal
Constants

Zoned Decimal
Constants (Z-Type)

Basic Program Elements

¢ NAME OPERATION OPERAND COMMENTS

BCON DC B'11011101° Generates - 11011101
LENGTH IS 1

BTRUNC DC BL1'100100011" Generates - 00100011
TRUNCATION

BPAD DC BL1'101' Generates - 00000101
PADDING

BDUP DC 2BL1'11111111" Generates -
1111111111111111

¢ A decimal constant is written as a signed or unsigned decimal value.
The absence of a sign causes a plus sign to be assumed. The decimal
point may be written or omitted from the constant. The placement of the
decimal point does not affect the assembly of the constant. Decimal point
alignment is not performed by its use within the constant. Proper decimal
point alignment is determined by the programmer before defining the data
or by selecting instructionsthat will operate onthe data properly. Boundary
alignment is not performed. The maximum size of the decimal constant is
31 decimal digits and a sign.

Each pair of decimal digits is translated and stored in one byte. The
rightmost byte contains the rightmost digit and sign. The plus sign is trans-
lated into the hexadecimal C and the minus sign into the hexadecimal D,
(See chart 3-22.) The length attribute of the constant, if length modification
is not specified, will be the number of bytes the constant occupies.

¢ If an even number of packed decimal digits is stated, the leftmost byte
is left unpaired and the unused bits are set to zero. The rightmost byte
combines the last digit with the sign. Truncation or padding occurs when
the length modifier and actual constant values disagree, Truncation or
zero (001¢) padding occurs starting at the leftmost byte.

¢ NAME OPERATION OPERAND COMMENTS
TAX DC P'+1.25' Generated CONSTANT 125C
2 BYTES
DC P14'-0.5"' Generated CONSTANT -

0000005D 4 BYTES

® In zoned decimal format (Z), each decimal digit is translated into one
full byte (not paired). The rightmost byte contains the sign and the right-
most digit. The remaining rules for zoned decimal are identical to the
packed decimal rules specified above. Padding is done with full bytes of
decimal zeros (F0yg).

3-20

Zoned Decimal
Constants (Z-Type)

(Cont'd)

Chart 3-24.

Fixed-Point Constants
(F-,H-Type)

Format

Basic Program Elements

Chart 3-23. Example of Zoned Decimal Constants

NAME OPERATION OPERAND COMMENTS
PRINTO1 DC Zr2'1! Generated Constant - FOC1
ZEROS DC 132Z1L.1'0' Generates 132 bytes,

Length of 1
BLANKS DC Z1.132' ! Generates 132 bytes,

Length of 132

Some coding illustrations of the previous types of constants used as
literals in instructions are illustrated in chart 3-24,

. NAME OPERATION OPERAND
MVC FIELDX(5),=5C" '
AP FIELDY(3),= PL3'1"
CLC FIELDZ(6), =6X'0"
XC BINCODE(1),=B'111"
PACK MAXIMUM, =5ZL2'99"

¢ When the fixed-point arithmetic mode is selected, fixed-point binary
data constants are specified by the I'-type or the H-type DC.

A fixed-point constant is written as a decimal number, which may be
followed by a decimal exponent if desired. The number can be an integer,
a fraction, or a mixed number (that is, one with integral and fractional
portions), The format of the constant is as follows:

¢ NAME OPERATION OPERAND
Symbol DC [D] T [Stn E<n]'constant [E+n]'
or blank 'series of constants'
where:

D = the Duplication factor.

T = fullword (F) or halfword (H).
S+ = the Scale Modifier.
E+ = the Exponent Modifier (preceding) or the Exponent of the constant

(following).

The number is written as a signed or unsigned decimal value, The
decimal point is placed before, within, or after the number, or it is omitted,
in which case number is assumed to be an integer. A positive sign is
assumed if an unsigned number is specified.

Halfword or fullword alignment is performed unless an explicit length
is specified. A length of two bytes for halfword or four bytes for fullword
is implied unless an explicit length is stated. The explicit length may not
exceed eight bytes.

3-21

Format
(Cont'd)

Chart 3-27.

Scale Modifiev

Basic Program Elements

The binary number occupies the rightmost portion of the field in which
it is placed. The unoccupied portion (the leftmost bits) is filled with the
sign. That is, the setting of the bit designating the sign is the setting for
the bits in the unused portionof thefield. If the value of the number exceeds
the length, the necessary leftmost bits are dropped. A negative number is
generated in 2's complement binary form as shown in chart 3-25.

Chart 3-25.
NAME OPERATION OPERAND

MINUS1 DC F'-1' generates FFFFFFFF 16

A mixed number such as 1.5 may be defined using a scale modifier as
shown in chart 3-26.

Chart 3-26.
NAME OPERATION OPERAND
MIXS4 DC HS4'1.5' generates 001 ,8

16

When the scale modifier is omitted a binary integer is generated, (See
chart 3-27,)

4 NAME OPERATION OPERAND

DC H'100' generates 0064 , 16

& The scale modifier specifies the power of 2 by which the constant must
be multiplied after it has been converted to its binary representation,
Just as multiplication of a decimal number by a power of 10 causes the
decimal point to move, multiplication of a binary number by a power of
two causes the binary point to move, This multiplication has the effect of
moving the binary point away from its assumed position in the binary
field; the assumed position being to the right of the rightmost position.

Thus, the scale modifier indicates either of the following: (1) the number
of binary positions to be occupied by the fractional portion of the binary
number, or (2) the number of binary positions to be deleted from the
integral portion of the binary number,

A positive scale of x shifts the integral portion of the number x binary

positions to the left, thereby reserving the rightmost x binary positions
for the fractional portion. (See chart 3-28.)

3-22

Scale Modifier
(Cont'd)

Basic Program Elements

Chart 3-28.
NAME OPERATION OPERAND
MIXSF1 DC HS1'1,5' generates 000000000000001,\12
MIXSF4 DC HS4'1.5' generates 000000000001,\10002
MIXSF8 DC HS8'1.5' generates 00000001,\100000002

A negative scale shifts the integral portion of the number right, thereby
deleting rightmost integral positions. (See chart 3-29,)

Chart 3-29.
NAME OPERATION OPERAND
Vi DC HS0'14' generates OOOF,\16
HALFV1 DC HS-1'14"' generates 0007"16
QTRV1 DC HS-2'14' generates 0004

Al6

Where positions are lost because of scaling, rounding occurs in the
leftmost bit of the lost portion. The rounding is reflected in the rightmost
position saved.

Note:

If a scale modifier does not accompany a fixed-point constant contain-
ing a fractional part, the fractional part is lost and the closest integer
is generated. (See chart 3-30.)

Chart 3-30.
NAME OPERATION OPERAND
DC F'1.5' generates 00000002"16
DC F'1.1' generates 00000001"16

To retain the fractional value a scale factor must be specified in the
DC.

The decimal number may be adjusted by a power of ten before it is
converted to binary form. This Exponent of the constant is specified by
appending E with a positive or negative power of ten. (See chart 3-31.)

Chart 3-31.
NAME OPERATION OPERAND
DC H'0.4E1' generates 0004"16

This allows the fraction to be written as such, but generated as an
integer.

3-23

Scale Modifier
(Cont'd)

Floating-Point Constants
(E-,D-Type)

Basic Progvam Elements
The exponent can be in the range -85 to +75, If an unsigned exponent
is specified, a plus sign is assumed.

Maximum and minimum values, exclusive of scaling, for fixed-point
constants are:

LENGTH MAX, MIN.
8 263_1 _263
4 231_.1 _231
2 215-1 —215
1 27—1 —27

When a series of binary constants are coded the exponent modifier and
scaling option, if stated, apply to all the constants. (See chart 3-32.)

Chart 3-32.
NAME OPERATION OPERAND
DC HS4E1'1.5,2.5,3.5"

would adjust 1.5,2.5 and 3.5 by 101 and then the generated values would
each be moved left four places to represent 15,0,25,0 and 35,0,

The Exponent modifier precedes the constant(s), but the Exponent of
the constant pertains only to the constant it follows.

Chart 3-33.
NAME OPERATION OPERAND
5 .2
DC FE2'44E5' means 44x10 x10

¢ [loating-point constants are specified by the E-type and D-type
constants for floating-point arithmetic.

Machine format for a floating-point number is in two parts: the portion
containing the exponent, called the characteristic, followed by the portion
containing the fraction, called the mantissa. Therefore, the number speci-
fied as a floating-point constant must be converted to a fraction before it
can be translated intothe proper format. For example, the constant 27,35E2
represents the number 27,35 times 102, Represented as a fraction, it would
be .2735 times 10%, the exponent havingbeen adjusted to reflect the shifting
of the decimal point.

3-24

Floating Point Constants
(E'/ D'TYPe)
(Cont'd)

Format

Chart 3-34.

Scale Modifier

Basic Progvam Elements

A floating-point constant is written as a decimal number, which is
followed by a decimal exponent, if desired. The number can be an integer,
a fraction, or a mixed number (that is, one with integral and fractional
portions). The format of the constant is as follows:

NAME OPERATION OPERAND
Symbol DC D T Sn E+n 'constant E+n'
or blank. 'series of constants'
where:

D = the Duplication factor,
T = E (single word) or D (double word).
Sn = the Scale Modifier,
E+n = the Exponent Modifier (preceding) the Exponent of the constant
(following).

The number is written as a signed or unsigned decimal value. The
decimal point is placed before, within, or after the number, or it is omit-
ted. If the decimal point is omitted, the number is assumed to be an
integer. A positive sign is assumed if an unsigned number is specified.

¢ NAME OPERATION OPERAND
DC E'0.5' generates 4080000016
DC E'5.0' generates 4150000016

¢ When the scale modifier is omitted a normalized floating-point number
is generated; that is, the fraction is not preceded by any hexadecimal
zeros. (See chart 3-35.)

Chart 3-35.
NAME OPERATION OPERAND
DC E'0.1' generates 4019999A

16

Only a positive scale modifier can be used with a floating-point constant.
This modifier indicates the number of hexadecimal positions that the
fraction is to be shifted to the right. Note that this shift amount is in terms
of hexadecimal positions, each of whichisfour binary positions. (A positive
scaling actually indicates that the point is to be moved to the left.) The
point is assumed to be at the left of the leftmost position in the field. Be-
cause the point cannot be moved left, the fraction is shifted right and the
exponent is adjusted to retain the correct magnetude. Thus, scaling that
is specified for a floating-point constant provides an assembled fraction
that is unnormalized; that is, contains hexadecimal zeros in the leftmost
positions of the fraction. When hexadecimal positions are lost, rounding
occurs in the leftmost hexadecimal position of the lost portion. The
rounding is in the rightmost hexadecimal position saved.

3-25

Exponent Modifier

Basic Program Elements

& This modifier denotes the power of 10 by which the constant is to be
multiplied before its conversiontothe proper internalformat. The modifier
is written as En where n is a decimal value. The decimal value may be
preceded by a sign; if none is present, a plus sign is assumed. The maxi-
mum values for exponent modifiers are summarized in table 3-4,

Chart 3-36.
NAME OPERATION OPERAND

DC DE2'0,01' generates 4019999999999A

The same value can be obtained by the Exponent Modifier and the
Exponent of the constant being specified as in chart 3-37.

Chart 3-37.
NAME OPERATION OPERAND

D DE1'0.01E1'

The exponent modifier is written immediately before the number as En,
where n is an optionally signed decimal value specifying the exponent of
the base 10. The exponent can be in the range -85 to +75. If an unsigned
exponent is specified, a plus sign is assumed.

This modifier is not to be confused with the exponent of the constant
itself. Both are denoted as En. The exponent modifier affects each constant
in the operand, whereas the exponent written as part of the constant only
pertains to that constant. Thus, a constant can be specified with an exponent
of +2, and an exponent modifier of +5 can precede the constant, In effect,
the constant has an exponent of +7,

Note:

There is a maximum value for exponents, both positive and negative,
listed in table 3-4. This applies bothto exponent modifier and exponents
specified as part of the constant, or to their sum if both are specified.

Any duplication factor that is present is applied after the constant is
converted to its binary format and assembled into the proper number of
bytes.

A field of three full words is generated from the statement in chart
3-38. The location assigned to CONWRD is the address of the leftmost
byte of the first word, and the length attribute is four, the implied length
for a fullword, fixed-point constant. The expression CONWRD + 4 could
be used to address the second constant (second word) in the field.

Chart 3-38. F-Type Constant

NAME OPERATION OPERAND COMMENTS
CONWRD DC 3F'658474"'

3-26

Exponent Modifier
(Cont'd)

Chart 3-39. H-Type
Constant,Scaled for
Eight Bits

Chart 3-40. H-Type
Constant as a Literal

Address Constants

Format

A-Type Address
Constant

Chart 3-41.

Chart 3-42.

Basic Program Elements

In chart 3-39, the next constant (3.50) is multiplied by 10 to the -2
before being converted to its binary format. The scale modifier reserves
eight bits for the fraction portion. The same constant could be specified
as a literal, (See chart 3-40.)

* NAME OPERATION OPERAND COMMENTS
FULLCON DC HS8'3.50E-2"
* NAME OPERATION OPERAND
AH 7=HS8'3.50E2'

¢ An address constant is a storage address that is translated into a
constant, Address constants are normally used to initialize base registers
(A-type), represent base-displacement addresses within instructions (S-
type) or provide a means of transferring control between control sections
of a multisection program (V-type). In addition, a Y-type address constant
is provided to represent addresses in two bytes, halfword aligned.

& The address constant is enclosed in parentheses with A, Y, S,or Vv
preceding the left parentheses, There must be a separate statement line
for each address constant, A-type and V-type constants are fullword
aligned. Y- and S-type constants are halfword aligned.

¢ The A-type address constant provides a storage location (word oriented)
for the assembly to store the value of a simple expression (symbol) or a
calculated complex expression. The maximum value of the expression may
not exceed 2 1—1 for the 70/35-45-55 Processors.

The implied length of the A-type constant isfour bytes and is aligned on
a fullword boundary. If length modifier notation is used, it will override
normal fullword alignment. Length modifier specification depends on the
type of expression generated. If the expression is absolute, a length of
one to four bytes may be specified with the value placed in the rightmost
portion, (See chart 3-41.)

An A-type constant may contain a reference to the Location Counter,
which refers to the leftmost byte of the constant.

When a Location Counter reference occurs in a literal, the value of
the Location Counter is the address of the first byte of the instruction.
(See chart 3-42.)

. NAME OPERATION OPERAND
ADCON1 DC A(STRT)
ADCON2 DC A(8192)
] NAME OPERATION OPERAND
LC DC A(*)
LM 4,4, = A (*+4096)

Y-Type Address
Constant

Complex Relocatable
Expressions

S-Type Address
Constant

Chart 3-43. Example of
Address Constants,
S-Type

Note

Basic Program Elements

¢ The Y-type constant provides the storage facilitiesfora 16-bit address.
The storage location is aligned on a halfword boundary and has an implied
length of two bytes. Length specification may specify one byte or two bytes.
The remaining characteristics of the Y-type constant are the same as the
A-type constant mentioned above,

€ A complex relocatable expression can only be usedto specify A-type or
Y-type address constants. A complex relocatable expression occurs when
two (or three) unpaired relocatable terms are combined. For example, if
the relocatable symbol A is defined in CSECT1 and the relocatable symbol
B is defined in CSECT2, the reference A+ B is a complex relocatable
expression,

In contrast to relocatable expressions, complex relocatable expressions
may represent a negative value. The symbols A and B as described above
could be expressed A- B, If B were larger a negative value would occur.

A complex relocatable expression might consist of external symbols
(which cannot be paired) and designate an address in an independent assem-
bly that is to be linked andloaded with the assembly containing the address
constant.

Absolute or paired relocatable terms may be present in the expression
containing unpaired relocatable terms or a negative relocatable term.

¢ S-Type address constants are used to store an address in base dis-
placement format. S-type constants are assembled as halfword values
and stored on halfword boundaries. The leftmost four bits of the constant
are the register number and the remaining 12 bits are the displacement
value, If length specification is used, only two bytes may be specified.
The constant can be specified as an absolute or relocatable expression, or
the constant expression is stated as two absolute terms, the first term
representing the displacement and the second term representing the base
register. (See chart 3-43,)

¢ NAME OPERATION OPERAND COMMENTS
ADCON1 DC S(BETA) GEN CON ADDRESS OF BETA
ADCON DC S(400(13)) GEN CON ADDRESS OF 400
AND GR13 IN BASE DISPL'T
FORMAT

¢ S-Type address constants may not be specified as literals.

If an S-type constant is specifiedas an EXTRN, a USING statement must
be issued to provide the base register designation. (See EXTRN, page 4-16.)

3-28

V-Type Address
Constants

Chart 3-44. V-Type
External Address
Referencing

Basic Program Elements

¢ This constant reserves storage for the address of an external symbol
that is used for branching to other programs (separately assembled
control sections),

A V-type constant is aligned to a fullword boundary. The implied length
is four bytes. A length modifier of three or four bytes may be specified,
but boundary alignment does not occur.

The reserved word is set to zeros until the program containing the
named symbol is bound. The symbol is specifiedas one relocatable symbol,
Specifying a symbol as the operand of a V-type constant does not constitute
a definition of the symbol for this assembly. Whatever symbol is used is
assumed to be an external symbol because it is supplied in a V-type
constant,

A V-type constant need not be identified by an EXTRN statement,
Note:
The constant cannot be used for external data references.

V-type constants provide a convenient methodfor linkingto a separately
assembled object module or control section. A V-type address constant is
specified with the name of the external symbol as the operand. When control
is to be transferred to the external object module, the constant value is
loaded by the programmer into a general register and a branch to the
control section desired is issued by means of the BALR instruction, (See
chart 3-44.)

* NAME OPERATION OPERAND
MAIN CSECT
BEGIN BALR 2,0
USING *,2
L 3,=V(VECTORX1)
BALR 1,3
END BEGIN

3-29

Basic Program Elements

Table 3-4. Summary of Constants

Exponent
Implied Len.g?h Number of pont Sc.ul.e Truncation/
. Modifier " Modifier Modifier .
Type Length |Alignment Range Specified by Constants Range Range Padding
er Operand Side
(Bytes) (Lm) P P (Em) (Em)
C as needed byte 1 to 256 characters one right
X as needed byte 1 to 256 hexadecimal one left
digits
B as needed byte 1 to 256 binary digits one left
F 4 word 1to8 decimal multiple -85 to +75 ~187 to +346 left
digits
H 2 halfword 1to8 decimal multiple -85 to +75 -187 to +346 left
digits
E 4 word 1to 8 decimal multiple -85 to +75 0 to 2L-2 right
digits (8)]
D 8 double 1to 8 decimal multiple -85 to +75 0 to 2L-2 right
word digits 1)
P as needed byte 1to 16 decimal multiple left
digits
Z as needed byte 1to 16 decimal multiple left
digits
A 4 word l1to4 any expression one left
A% 4 word 3or4 relocatable one left
symbol
S 2 halfword 2 only one absolute one left
or relocatable
expression or
two absolute
expressions:
exp (exp)
Y 2 half word 1to4 any expression one left

(1) L is length of constant. Negative scaling is not permitted.

3-30

4. PROGRAM
STRUCTURE

CONTROL SECTIONS

Control Section
Definition

¢ To the Assembly System, there is no such thing as a program; instead,
there is an assembly, which consists of one or more control sections.
(However, the terms assembly and program are often used interchangeably.)
An unsectioned program is treated as a single control section.

For instance, a single control section may be defined by a series of
statements preceded by a START or CSECT instruction and terminated by
an END instruction. The output of the assembly consists of the assembled
control section and a Control Dictionary.

To the Linkage Editor, there are no programs, only control sections or
object modules that must be fashioned into an object program, The Control
Dictionaries contain information needed by the Linkage Editor to complete
cross-referencing between control sections so that they may be combined
into an object program.

The Linkage Editor can take control sections from various assemblies
and combine them properly with the help of the corresponding Control
Dictionaries., Successful combination of separately assembled control
sections depends on the techniques used by the programmer to provide
symbolic linkages between the control sections.

& The concept of program sectioning is a consideration at coding time,
assembly time, and load time. To the programmer, a program is a logical
unit, which may be divided into sections called control sections, Control
sections are written so that control passes properly from one section to
another regardless of the relative physical position of the sections in
storage. A control section is a block of coding that can be relocated, inde-
pendently of other coding, within the same assembly, without altering or
impairing the operating logic of the program. It is normally identified by
the CSECT assembly instruction. However, if it is desired to specify a
tentative starting location, the START assembly instruction may be used
to identify the first control section,

Sectioning a program is optional, and many programs can best be
written without sectioning, The Assembly System, however, provides
facilities for creating multisectioned programs, which can be assembled
separately and linked at a later time into an object program.

Whether the programmer writes an unsectioned program, a multi-
sectioned program, or part of a multisectioned program, eventually these
sections will be entered into storage. Because storage has been defined
symbolically, the exact location of each section may not be shown. There
is no constant relationship between control sections; thus, knowing the
location of one control section does not make another control section
addressable by relative addressingtechniques, Sectioning is not synonymous
with segmentation or overlay methods,

Control Section
Definition
(Cont’d)

First Control Section

Program Structure

Note:

The combined number of control sections and dummy sections may not
exceed 32. The combined number of EXTRN and V-type address
constants may not exceed 255.

Two or more control sections assembled together cannot define the
same symbol. However, the symbol that appears as the name of a START
or CSECT instruction may be used ona subsequent CSECT to designate the
continuation of the CSECT. For instance:

NAME OPERATION OPERAND

PROG START FIRST CONTROL SECTION

DATA CSECT SECOND CONTROL SECTION
PROG CSECT CONTINUATION OF FIRST CSECT

Control section contents can be intermixed because the Assembly
System provides a Location Counter for each control section, Locations
are assigned to control sections so that the sections are placed in storage
consecutively in the same order as they first occur in the program. Each
control section after the first control section begins at the next available
double-word boundary, For example, if Control Section 1 starts at loca-
tion 1000 and is 98 bytes long, then the Location Counter for Control
Section 2 is set to 1104, If Control Section 1 is resumed after Control
Section 2, and the resumed part is 102 bytes long, then Control Section 2
will begin at location 1200 instead. Thus, the programmer may code data
and program sequences as they are required, but still maintain them in
distinctly assembled control sections,

4 The first control section of a program has the following special
properties:
1. Its tentative loading location may be specified as an absolute value.
2, It normally contains the literals requested in the program, although

their positions can be altered. This is further explained under the
discussion of the LTORG assembly instruction.

4-2

START
Start Assembly

General Description

Format

Specification Rules

Name Field

Operation Field

Operand Field

Chart 4-1. Examples of
START Instruction

Program Structure

¢ The START instruction is used to specify a tentative starting location
for the program. Only one START instruction is permitted in an assembly,
The START instruction may be preceded by any type of assembly statement
that does not affect or depend upon the setting of the Location Counter.

€ The format of the START instruction is as follows:

NAME OPERATION OPERAND
A symbol or blank, START A self-defining term or blank,

¢ If a symbol is specified in the Name Field it must be a valid relocatable
symbol. The symbol represents the address of the first byte of the control
section, Its length attribute is one. The control section is considered un-
named if the Name Field is left blank,

Note:
A control section that contains internal or external references must be
named.

¢ START,

¢ The assembly uses the self-defining value specified by the operand as
the tentative starting location of the program. This value must reference
a double-word boundary. The operand field may be blank.

¢ NAME OPERATION OPERAND
START
START 4096
START X'1000'
PROG2 START
PROG2 START 8192
PROG2 START X'2000'

END
End Assembly

General Description

Format

Specification Rules

Name Field
Operation Field

Operand Field

Chart 4-2. Example of
END Instruction

Note

Progrvam Structure

& The END instruction terminates the assembly of a program. It may
also designate a point in the program to which control may be transferred
after the program is loaded. The END instruction must always be the last

statement in the source program,

€ The format of the END instruction is as follows:

NAME OPERATION
Not Used END

4 Not used.

¢ END.

OPERAND

A relocatable expression or blank,

4 Contains any expression whose value specifies the pointto which control
is transferred after loading the object program. If the operand is left
blank, control is transferred to the first byte of the control section,

* NAME

OPERATION

OPERAND

PRGNAM

IO

ENTRY

NEXT

ENTRY

® The operand may contain an external symbol, which must be a single-

term, relocatable expression.

4-4

CSECT
Identify Control
Section

General Description

Format

Specification Rules

Nawme Field

Program Structure

¢ The CSECT instruction identifies the beginning or the continuation of a
control section. All statements that follow the CSECT instruction are
assembled as part of that control section until another statement that
identifies a different control section is encountered.

¢ The format of the CSECT instruction is as follows:

NAME OPERATION OPERAND

A symbol or blank, CSECT Not used. Comments allowed.

¢ The symbol entered in the Name field establishes the name of the
control section, If omitted, the section is considered to be unnamed. The
symbol in the Name field must be a valid relocatable symbol the value of
which represents the address of the first byte of the control section, It
has a length attribute of one.

Several CSECT statements with the same name may appear within a
program, The first statement is considered to identify the beginning of
the control section; the rest identify the resumption of the section, Thus,
statements from different control sections may be interspersed. The
Location Counter for each CSECT instruction is set to the next highest
double-word boundary. However, the START card may be used to identify
the first CSECT, and the START card may specify an initial value for its
Location Counter, CSECT text becomes output in the same physical order
as the input source.

Unnamed Control Section - If neither a named CSECT instruction
nor START instruction appears at the beginning of the program, the
assembly determines that it is to assemble an unnamed control section in
a program, If one unnamed control section is initiated and is then followed
by a named control section, any subsequent unnamed CSECT statements
are considered to resume the unnamed control section.

Progvam Structure

Operation Field & CSECT.

Example & The example in chart 4-3 shows the use of the CSECT instruction in
sectioning a program that consists of two sections. The first section is
oriented to start at the setting 1600. Although the CSECT named BGN
is split, note that the location assigned to NAME is 2400, The CSECT
named SEG2 is assembled at location 4800 and terminates at 6000,

Chart 4-3. Example of * NAME OPERATION OPERAND
CSECT Instruction -
BGN START 1600
800 BYTES
SEG2 CSECT
OVER ’ (1200 BYTES
BGN CSECT
NAME
2400 BYTES
END BGN

DSECT
Identify Dummy

Section

General Description

Format

Specification Rules

Name Field

Operation Field

Additional Information

Dummy Section
Location Assignment

Program Structure

¢ A dummy section is a control section that is assembled but is not part
of the object program. A dummy section is a convenient means of des-
cribing the layout of an area of storage without actually reserving the
storage. (It is assumed that the storage is reserved either by some other
part of this assembly or else by another assembly.) The DSECT instruction
identifies the beginning or resumption of a dummy section, More than one
dummy section may be defined per assembly, but each must be named,

€ The format of the DSECT instruction is as follows:

NAME OPERATION OPERAND

A symbol, DSECT Not used. Comments allowed.

¢ The symbol in the Name field establishes the name of the dummy
control section and must be a valid relocatable symbol which represents
the first byte of the dummy section. A length attribute of one is assigned.

¢ DSECT.

¢ DProgram statements belonging to dummy sections can be interspersed
throughout the program or can be written as a unit, In either use, the
appropriate DSECT instruction should precede each set of statements.
When multiple DSECT instructions with the same name are encountered,
the first instruction is considered to initiate the dummy section and the
rest to continue it.

¢ A Location Counter determines the relative locations of named pro-
gram elements in a dummy section. The Location Counter is always set
to zero at the beginning of the dummy section, The location values assigned
to symbols that name statements in the dummy section relate to the initial
statement in the section,

Note

Addressing Dummy
Systems

Example

Program Structure

® An address constant may contain a symbol that names a statement in a
dummy section only if the symbol is paired (with the opposite sign) with
another symbol from the same dummy section,

¢ The programmer may wish to describe the format of an area whose
storage location is not determined until the program is executed. He can
describe the format of the area ina dummy section, and he can use symbols
defined in the dummy section as the operands of machine instructions. To
refer to the storage area, he does the following:

1. Provides a USING statement that specifies a general register,
which the assembly can assign to the machine instructions as a
base register, and that specifies a value from the dummy section,
which the assembly assumes is contained in the base register.

2. Ensures that the same register is loaded with the actual address
of the storage area.

The values assigned to symbols defined in a dummy section relate to
the initial statement of the section. Thus, all machine instructions that
refer to names defined in the dummy section will, at execution time, refer
to storage locations that relate to the address loaded into the register.

¢ Assume that two independent assemblies (Assembly 1 and Assembly 2)
are loaded and are to be executed as a single overall program. Assembly
1 is an input routine that places a record in a specified area of storage,
places the address of the input area containing the record in General
Register 3, and branches to Assembly 2. Assembly 2 processes the record.
The coding shown in Chart 4-4 is from Assembly 2.

The input area is described in Assembly 2 by the DSECT control
section named INAREA, Portions of the inputarea (that is, record) that the
programmer wishes to work with are named in the DSECT control section
as shown. The Assembly instruction USING INAREA,3 designates General
Register 3 as the base registertobe used in addressing the DSECT control
section, and that General Register 3 is assumed to contain the address of
INAREA.

Assembly 1, during execution loads the actual beginning address of the
input area in General Register 3. Because the symbols used in the DSECT
section are defined relative to the initial statement in the section, the
address values they represent, will, at the time of program execution, be
the actual storage locations of the input area.

4-8

Program Structure

Chart 4-4. Example of DSECT Option

NAME OPERATION OPERAND COMMENTS
1 4s e (7|89 ho|nnp2pi3fta1s)16]17{18[19]20 | 21(22|23|24(25(26|27]|28§2930(31 [32)33|34]35[36|37]38| 39|40 |41 |42 |43 [44]| 45|46 [47(48 [49|50 51|52 (53|54 |55] 5657 | 58{59 |60 61 63[64165]66 |67 4816970 |11
AlSMIBIL|Y|2 clsElC|T
BIEG|IN B|A LR 2],1l¢
uis (I NG| |*],]2
.
.
uls|I|N|G| |A|R|E|A[I|N][,]|3 AlS|SURHES |clHOTICcE JF |[REGISTE 3
o DIEIIN|, |=|cl [al® F| O c T H s
BE A|T{Y|P|E
.
.
ATYPE v |c O|RIKIA|, |NP|U/TIA
v iC o > INJP|UIT|{R
.
.
W0 R KIA D|S ciL[2|¢
W0 R[KIB D|s clL|1]8
.
.
A RIEAlT D|SEIC|T
Clo'D|E[I D (S c|L|L
NP U|T|A D|s clL|2ig
IN[P|U|TB D|s c|L|1]8
N
= InoIn

4-9

LTORG
Begin Literal Pool

General Description

Format

Specification Rules
Name Field
Operation Field
Operand Field

Chart 4-5. Example of a
LTORG Statement

Program Structure

¢ The LTORG instruction causes all literals thus far encountered in
the source program to be assigned at appropriate boundaries starting
at the first double-word boundary following the LTORG statement.
Literals that are not collected by a LTORG statement are placed at the
end of the first control section,

€ The format of the LTORG instruction is as follows:
NAME OPERATION OPERAND
Symbol or blank, LTORG Not used.

¢ Contains any symbol representing the first byte of the relocated literal
pool. The symbol used toname the field is assigned a length attribute of one.

4 LTORG.

4 Not used.
¢ NAME OPERATION OPERAND
START
BEGIN BALR 2,0
USING * 2
SECT2 CSECT
BALR 3,0
USING *3
L 4,=A(TABLE)
AP COUNT,=PL1'1"
LTORG ,NOTE THAT THIS LTORG

*STATEMENT ENSURES THAT THE ABOVE LITERALS ARE
*ASSEMBLED WITH THIS CONTROL SECTION
END BEGIN

4-10

Notes

Program Structure

¢ 1. Literals are listed and punched in the object program when the

LTORG statement is encountered. Literals not covered by a LTORG
statement are listed and punched when the END card is detected.
In TOS/TDOS, the STMNT field on the listing shows the statement
number which first specified a given literal,

Duplicate literals within a pool are punched and listed only once.
However, if a literal is an address constant containing a reference
to the Location Counter, a duplicate literal is generated.

. If there are no LTORG statements in a program, the programmer

must ensure that the first control section is always addressable.
This means that the base address register for the first control
section should not be changed through use in subsequent control
sections. If the programmer does not wish to reserve a register
for this purpose, he may place a LTORG statement at the end of
each control section thereby ensuring that all literals appearing
in that section are addressable. Itis recommendedthat all programs
using FCP contain a LTORG statement at the end of the user coding
to ensure that all user literals are covered by a base register.

4. A maximum of 32 LTORG instructions may be specified.

4-11

Program Structure

COM

Define Common
Control Section

General Description € The COM Assembler instruction identifies and reserves a common area
of storage that may be referred to by independent assemblies that have
been linked and loaded for execution as one overall program. The common
area may be broken into subfields through the use of the DC and DS
Assembler instructions. Names of subfields are defined relative to the
beginning of the common section, as in the DSECT control section.

Format & The format of the COM instruction is as follows:
NAME OPERATION OPERAND
Symbol or blank, COM Not used.

Specification Rules

Name Field ¢ Symbol or blank,

Operation Field ¢ COM.

Operand Field ¢ Not used.

Notes ¢ 1. No instruction or constants appearing in a common control section
are assembled. Data can be placed in a common control section
through execution of the program.

2, When assembled, common location assignment starts on the next
double-word boundary after the highest tentative location assigned
to the assembly. If more than one common section is defined, the
first is assigned as described above; the second common section
starts on the next double-word boundary after the highest tentative
location assigned to the first common; the third after the second,
and so forth. Common control sections may be split,

4-12

Chart 4-6. Example of
COM Instruction

NAME
MAIN
BEGIN

COMAREA

SECT1

LETTER
CON1
CON2

COMAREA
CODE
ENTRY1
ENTRY2
ENTRY3

OPERATION

START
BALR
USING
L
USING
LPOV

BALR
TYPE
TERM
EXTRN
CcOM
DS
END

START
USING

USING
MVC
MvVC
MVC
MVI
MVC
BR
DC
DC
DC
DS
COM
DS
DS
DS
DS
END

4-13

Program Structure

OPERAND

12,0
*,12

13, = A(COMAREA)
COMAREA,13
SECT1
15,=A(SECT1)
14,15

CODE,80

SECT1

CL80
BEGIN

*,15

13, =A(COMAREA)
COMAREA,13
LETTER,CODE
CON1,ENTRY1
CON2,ENTRY2
ENTRY3,C'A'

ENTRY3+1(28),ENTRY3

14

cLi1'c’
5CL5'12345"
5CL5'ABCDE'
CL50

CL1

CL25
CL25
CL29

PROGRAM LINKAGE
CONTROLLING
CODES

Note

Program Structure

4 Symbols can be defined in one program and referred to in another, thus
effecting symbolic linkages between independently assembled programs,
The linkages can be effected only if the assembly is able to provide
information about the linkage symbols to the Linkage Editor, which
resolves these linkage references at load time. The assembly places the
necessary information in the Control Dictionary on the basis of the linkage
symbols identified by the ENTRY and EXTRN instructions,

Note:

These symbolic linkages are described as linkages between inde-
pendent assemblies; more specifically, they are linkages between
independently assembled control sections,

In the program where the linkage symbol is defined (thatis, usedasa
name), it must also be identified to the assembly by means of the ENTRY
assembly instruction. It is identified as a symbol that names an entry
point, which means that another program will use that symbol to effect a
branch operation or a data reference. The assembly places this informa-
tion in the Control Dictionary.

Similarly, the program that uses a symbol defined in some other
program must identify it by the EXTRN assembly instruction. It is ident-
ified as an externally defined symbol (that is, defined in another program)
that is used to effect linkage tothe point of definition. The assembly places
this information in the Control Dictionary.

Another means of obtaining symbolic linkage is by using the V-type
address constant., It is created from an externally defined symbol, but
that symbol need not be identified by an EXTRN statement.

¢ The V-type address constant may be used for effecting branches to
other programs, It may not be used for referring to data in other programs.
For instance:

L 15, =V(symbol)

BALR 14,15

4-14

ENTRY
Identify Entry

Point Symbol

General Description

Format

Specification Rules

Nawme Field
Operation Field
Operand Field
Example

Notes

Program Structure

¢ The ENTRY instruction identifies a linkage symbol that is defined in
this program but may be used by some other program.

€ The format of the ENTRY instruction is as follows:

NAME OPERATION OPERAND
Not used. ENTRY A relocatable symbol that also

appears as a statement name.

¢ Not used.

¢ ENTRY.

¢ Contains any symbolic name to identify an entry point to the assembly.
€ (See chart 4-7.)

€ 1. The symbol used in the Operandfield may be used by other programs
as operand entries,

2. ENTRY statements may not contain a symbol defined in an un-
named control section or a dummy section.

3. The name of a control section need not be identified by an ENTRY
instruction when another program uses it as an entry point. The
Assembly System will automatically include the section names in
the Control Dictionary.

Chart 4-7. Example of ENTRY instruction

NAME OPERATION OPERAND COMMENTS
||234567l7|0|||2|3|4|515|7“|’ 2122 nulln.ﬂ"ll31333415)637383’40“"'"“‘ 46(47/48 149150 1515215354 |55] 56 /57 | 58] 59160 [61 67 168/69170 }71
*Hvossxsns R EEBEEEERE
{dlafz]w sl|a R [3]9]99

PR EER A EEEE
g Nt Ry |clos| N E
ol p|E| N Mals e R, REHO[RT,|p[uN|c|E[o/T sle[e| [r[c[e| [p|e[s|c[r[z[e[z][1]o]N]s
.
6 E| 7 LRELER s|ele| |F|c|®| |p|E|s|c|r|1|p|T|1]0|N|s
siINE T M s|E|N|s|E|,|x|'|F
.
.
.
o
clols|1|n|E s|T|M 3,3 AlvV|E
.
il
o
I
.
I
wirlI|T|E plufT M|a|s|T E|R|,|W o R K|A s|ele| |F|cl®l |p/Es|crineTIoNS
ENITRY WRIT
| il + ;7 .
Majsit|E|rR b|s clu|s|g o/ N{E| {88~ B|Y T|E [ARE
wlo[r [k |a pls 4g|c|n Flo|R|T|¥| |2|~|8 Y| T8 |E1/ELDS
saWE plc A|(|g) o|n|E| |4~ B|¥|™ & |F z|E LoD |zElR0 |F ILLED
.
L]
E|N[D MlA|T{N

4-15

EXTRN
Identify External

Symbol

General Description

Format

Specification Rules
Name Field

Operation Field

Operand Field

Examples

Notes

Progrvam Structure

¢ The EXTRN instruction identifies a linkage symbol that is used by
this program but defined in some other program. Each external symbol
must be identified; this includes symbols that name control sections,

€ The format of the EXTRN instruction is as follows:

NAME OPERATION OPERAND
Not used. EXTRN A relocatable symbol.
¢ Not used.

¢ EXTRN,

& Contains any relocatable symbol defined in some other control section.
It may not appear as the name of a statement in the section containing the
EXTRN statement.

¢ In chart 4-8, Program A contains two Branch instructions that refer to
a program called Calculation (chart 4-9), Calculation contains two Branch
instructions that refer to Program A. The points of entry between between
Program A and Calculation are described to the assembly by the EXTRN
and ENTRY statements shown in charts 4-8 and 4-9. Program A will
branch to Calculation at points named CALC1 and CALC2, The return
points to Program A will be at points CONT and CONT2,

One method to reference externally defined areas is by using the
EXTRN instruction to identify the external symbol, and by creating an
A-type address constant from the symbol. The generated address constant
is loaded into a base register and used for base register calculation of
addresses.

The example in chart 4-10 shows address calculation for an externally
defined area.

& 1. External symbols, when used in an expression, may not be paired.
The assembly processes them as though they originated from
different control sections.

2. A symbol may be redundantly defined to be external.
3. V-type address constants neednot be defined by an EXTRN statement,

4-16

Chart 4-8. Program A

Chart 4-9. Calculation

CONT

CONT2

EXT
EXT1

NAME

SUBRT

CALC1

CALC2

ACONT

4-17

OPERATION
START
ENTRY
EXTRN
EXTRN
USING
USING

LM
LM

B
BAL

DC
DC

END

OPERATION
START
ENTRY
ENTRY
EXTRN

MVC

USING

LM

B

AP

.
.

BALR
DC
END

Program Structure

OPERAND
X'0BB8'
CONT
CALC1
CALC2
CALC1,4
CALC2,5

4,4 ,EXT
5,5,EXT1

CALC1

6,CALC2

A(CALC1)
A(CALC2)

BEG

OPERAND

CALC1
CALC2
CONT

CONT,5
5,5,ACONT
CONT

0.6
A(CONT)
SUBRT

Chart 4-10. Data
Reference from External
Control Section

NAME

MAINPROG

BEGIN

RATEADDR

4-18

OPERATION

CSECT

BALR

USING

EXTRN

LM
USING

DC

END

Progvam Structure

OPERAND

2,0

* 9

RATETBL

4,4, RATEADDR
RATETBL,4

3,RATETBL

A(RATETBL)

BEGIN

5. ADDITIONAL
ASSEMBLY
INSTRUCTIONS

LISTING CONTROLS

TITLE
Identify Assembly
Ouvutput

General Description

Format

Specification Rules

Name Field

Operation Field

Opevand Field

Chart 5-1. Example of
TITLE Instruction

Notes

& The TITLE instruction is used to identify an assembly listing and
assembly output cards.

€ The format for the TITLE instruction is as follows:

NAME OPERATION OPERAND
Name or TITLE A sequence of characters, enclosed
Not used. in single quotation marks,

¢ One to four characters, or notused. Used for punching columns 73-76 of
the output cards of the program except cards produced by the REPRO or
PUNCH instructions, Only the first TITLE card of a program should have
a name entry, Name fields on subsequent TITLE cards must be blank,

¢ TITLE,

¢ Contains the title of the program to be printed on the assembly listings.
Maximum entry is 100 characters enclosed in single quotation marks,

¢ NAME OPERATION OPERAND

PAO1 TITLE 'PAYROLL UPDATE RUN'

¢ 1. A program may contain more than one TITLE statement., Each
statement provides the heading for the listing of the statements that
follow it until another TITLE card is read.

2, Each TITLE card encountered after the first one causes a page
change before the header is printed,

3. The additional title cards must not contain name entries. The first
title card name will remain the constant value to be punched into the
object cards (columns 73-76), and printed atthe top of each assembly
page.

4, In chart 5-1, PAO1l is punched in columns 73-76 of all output cards
(except REPRO or PUNCH) and the heading "PAYROLL UPDATE
RUN" appears at the top of each page.

5-1

EJECT
Start New Page

General Description

Format

Specification Rules

Nawme Field
Operation Field
Operand Field

Note

Additional Assembly
Instructions

¢ The EJECT instruction causes the next line of the listing to appear at
the top of a new page. This instruction provides a convenient way to sepa-
rate routines in the program listing,

& The format for the EJECT instruction is as follows:

NAME OPERATION OPERAND

Not used. EJECT Not used; should be blank, but
will be treated as a comment.

@ Not used.
& EJECT.
4 Blank,

¢ If the next line of the listing normally appears at the top of a new page,
the EJECT statement has no effect.

5-2

Additional Assembly

Instructions
SPACE
Space Listing
General Description € The SPACE instruction is used to insert one or more blank lines in the
listing,
Format r'Y NAME OPERATION OPERAND
Blank SPACE A decimal value or Blank,
Specification Rules
Name Field ¢ Blank.
Operation Field ¢ SPACE.

Operand Field ¢ Contains a decimal value up to 15 that is used to specify the number of
blank lines to be inserted in the assembly listing, A blank operand causes
one blank line to be inserted. If the value exceeds the number of lines re-
maining on the listing page, the statement will have the same effect as an
EJECT statement.

Chart 5-2. Example ¢ NAME OPERATION OPERAND
SPACE 4

5-3

PRINT
Print Optional Data

General Description

Format

Specification Rules

Name Field
Operation Field

Opervand Field

Additional Assembly
Instructions

¢ The PRINT instruction controls printing of the assembly listing.

& The format of the PRINT instruction is as follows:

NAME OPERATION OPERAND

Not used. PRINT One to four operands.

€ Not used.

¢ DRINT.

4 One or all of the following terms can be used in the operand field:

SINGLE

Text listing is single spaced.

DOUBLE - Text listing is double spaced.

ON - A listing is printed,

OFF - No listing is printed.

GEN - All statements generated by macro instructions are printed.
NOGEN - Statements generated by macroinstructions-are notprinted.

However, the macro instruction itself and MNOTE mes-
sages will appear in the listing.

DATA - Constants are printed in full in the listing,

NODATA - Up to 8 bytes (16 hexadecimal digits) of the first constant,
whichever is shorter, of the assembled data is printed on
the listing,

DECK -~ Resume punching of the object program if object program
output was specified,

NODECK - Inhibit punching of the object program. (Note: in TOS this
will inhibit tape and/or card output.)
NUM - Print the card number of the various object program card

types. The card number is printed as a separate line when
the card is punched. (TOS/TDOS.)

NONUM - Inhibit printing the card number of the various card types.
(TOS/TDOS.)

(Note: NUM and NONUM are accepted by the POS Assembler
but do not have any effect on the listing.)

OPEN - Cross reference listing is double spaced (TOS/TDOS).
CLOSED - Cross reference listing is single spaced (TOS/TDOS).
Note:

Underlined options are the preset conditions.

5-4

Examples

Chart 5-3.

Chart 5-4.

Chart 5-5.

Chart 5-6.

Note

Additional Assembly
Instructions

€ Until the first PRINT statement is encountered, the statement in chart
5-3 is assumed. For example, if the statement in chart 5-4 appears in a
program, 256 bytes of zeros are assembled, If the statement in chart
5-5 is the last PRINT statement to appear before the DC statement, all
256 bytes of zeros are printed in the assembly listing, However, if the
statement in chart 5-6 is the last PRINT statement to appear before the
DC statement, only eight bytes of zeros are printed in the assembly
listing.

NAME OPERATION OPERAND
PRINT ON,NODATA,GEN,SINGLE,DECK,NUM
4 NAME OPERATION OPERAND
DC XL.256'00'
¢ NAME OPERATION OPERAND
PRINT DATA
* NAME OPERATION OPERAND
PRINT NODATA

¢ A program can contain any number of PRINT statements. A PRINT
statement controls the printing of the assembly listing until another PRINT
statement is encountered.

AOPTN
Assembler Option*

General Description

Format

Specification Rules

Name Field

Operation Field

Opervand Field

Additional Assembly
Instructions

€ The AOPTN instruction is used to control the normal outputs of the
Assembler.

& The format of the AOPTN instruction is as follows:

NAME OPERATION OPERAND

Not used. AOPTN One or more of the specified
options, separated by commas,

& Not used.

¢ AOPTN.

® Each of the following options may be specified in separate AOPTN
cards or appear as multiple operands (separated by commas) in a single
card,

NODECK - The object program (ESD, TEXT, and RLD data) will not
be produced on cards or tape. (This does not affect their
appearance on the Listing.)

NOESD - External Symbol Dictionary cards will not be produced
in the object program or on the Listing,

NORLD - Relocatable control cards will not appear in the object
program.
NOLIST - Program listing will not be produced; however, statements

containing errors will be listed.

*Valid on POS only. AOPTN functions are performed by Monitor PARAM

message on TOS and TDOS,

5-6

Operand Field
(Cont'd)

Notes

Additional Assembly
Instructions

NOERR - Error flags will not be printed on the program listing, but

a statement indicating the number of errors will be listed.

NOSYM - The symbol table will not be listed.

IPL - The IPL loader will be included in the object program

preceding the ESD data (POS only).

LITERAL - This option is ignored, and literals may be used without

specifying the option.

ENTRY - An entry card will be produced following the output card

1.

that is generated for the End statement. This option is
required by the POS Linkage Editor.

If NOLIST and NOERR are specified there is no need to specify a
listing device.

Any number of AOPTN cards may be specified; there is no restriction
as to their order or placement within the source program.

AOPTN cards may be used to specify options separately or in
combination,

5-7

PROGRAM
CONTROLS

ICTL
Input Format Control

General Description

Format

Specification Rules

Name Field

Operation Field

Operand Field

Additional Assembly
Instructions

¢ The ICTL instruction allows the programmer to alter the normal
format of his source program statements. The ICTL statement may be
used as often as desired. The fields must be in the sequence: Name,
Operation, Operand. Each must be separated by one or more blanks.

& The format of the ICTL instruction is as follows:

NAME OPERATION OPERAND

Not used. ICTL 1-3 decimal values of
the form b, e, c.

4 Not used,

¢ ICTL code.

€ Contains one to three decimal values in the format b, e, c.

b specifies the begin column of the source statement, This value must
always be used. Operand b must be less than c.

e specifies the end column of the source statement. If omitted, column
71 is assumed to be the end of the statement line, Operand e must be
less than or equal to 80,

¢ specifies the continuation column of the source statement. If the
continue column is not specified, or if column 80 is specified as the
end column, the assembly assumes no continuation cards (all state-
ments must be contained on a single card). Operand ¢ must be less
than e.

5-8

Example

Chart 5-7. Example of
ICTL Instruction

Notes

Additional Assembly
Instructions

€ The example in chart 5-7 designates the begin column as column 25. Since
the end column is not specified, itisassumed to be column 71, No continu-
ation cards are recognized because the continue column is not specified.

L 4 NAME OPERATION OPERAND

ICTL 25

¢ If the ICTL statement is omitted in the source program, the assembly
assumes a statement line is contained in columns 1-71 and that continua-
tion lines begin in column 16. Any number of ICTL statements may be used
in an assembly,

The first ICTL must conform to standard Assemblerformat as opposed

to the format described by the statement. Succeeding ICTL statements
must conform to the format of the ICTL currently in effect.

5-9

Additional Assembly

Instructions
ISEQ
Input Sequence
Checking
General Description € The ISEQ instruction checks the sequence of source input cards.
Format & The format of the ISEQ is as follows:
NAME OPERATION OPERAND
Not used. ISEQ Two decimal values of

the form L,R; or blank.

Specification Rules

Name Field € Not used,
Operation Field ¢ ISEQ code.
Operand Field ® Contains two decimal values in the form L,R.

L specifies the leftmost column of the input card to be checked.

R specifies the rightmost column of the input card to be checked.

Notes ¢ 1. Sequence checking begins with the first card following the ISEQ
statement, Comparison of adjacent cards make use of the eight-bit
internal collating sequence.

2, Any ISEQ with a blank operand terminates the operation. Checking
can be resumed with another ISEQ statement,

3. Statements generated by macros are not included in the sequence
check. (Source deck macro definitions will be checked.)

4, Operand L. must be greater than the end column plus one,
5. Operand R must be equal to or greater than L.

6. The maximum value of R-L is seven; this is a maximum field size
of eight bytes.

5-10

REPRO
Reproduce Following
Card

General Description

Format

Specification Rules

Name Field
Operation Field
Opevand Field
Chart 5-8. Example of
Stacked Assemblies -

Separately Bound
(TOS/TDOS)

Additional Assembly
Instructions

€ The REPRO instruction allows the inclusion of Linkage Editor phase
definition cards into the object program deck (module) to eliminate the
necessity of manually inserting them.

& The format of the REPRO instruction is as follows:

NAME OPERATION OPERAND

Not used. REPRO Blank or any operand
for comments.

€ Not used.
¢ REPRO,
¢ Blank,

¢ //_STARTM
Insert ASSIGNS
// _JOB_STACK
Insert Assembly options (PARAM)
//_ASSMBL
REPRO
PROG ASSY1
START

END

REPRO
PROG ASSY2

START

END
// LNKEDT
// ENDMON

-11

[¥2]

Notes

1,

Additional Assembly
Instructions

REPRO causes a duplicate (80-80 card format) of the card im-
mediately following.

Reproduced cards resulting from REPRO instructions appear at
the same point in the object as they were in the source deck.

If a REPRO instruction precedes the START instruction or the
implied START instruction, the cards reproduced will precede the
ESD cards for the assembly.

In TOS, MONITOR control cards cannot be reproduced by the
REPRO Statement.

5-12

PUNCH
Punch a Card

General Description

Format

Specification Rules

Name Field
Operation Field

Opevand Field

Chart 5-9. Example of
PUNCH Instruction

Notes

Additional Assembly
Instructions

¢ The PUNCH assembly instruction may be used to perform the same
functions as the REPRO assembly instruction., The PUNCH assembly
instruction causes the data in the operand to be punched into a card. As
many PUNCH statements may be used as are necessary.

€ The format of the PUNCH instruction is as follows:

NAME OPERATION OPERAND
Not used. PUNCH 80-character maximum

self-defining term.

& Not used.
¢ PUNCH code.

¢ A character self-defining term of 80 characters maximum enclosed in
single quotation marks.

4 NAME OPERATION OPERAND
PUNCH 'ABCDEFG'

¢ 1. The position immediately to the right of the left quotation mark is
regarded as column one of the card to be punched.

2, The assembly does not process the data in the Operand field other
than to punch it.

3. The punched cards appear at the same point in the assembled text
as they appeared in the source program.

4, The main difference between the PUNCH instruction and the REPRO
instruction is the capability of the macro generator to substitute
values for symbolic parameters or to set variable symbols in the
operand of a punch instruction appearing in a macro definition,
(This allows such things as controlled generation of phase names.)

5. If the PUNCH card precedes the START card, the punched cards
will precede the ESD cards of the assembly.

XFR
Generate a
Transfer Card*

General Description

Format

Specification Rules

Name Field
Opevation Field

Operand Field

Example

Additional Assembly
Instructions

® A transfer card is used by the Loader and Linkage Editor routines to
define the transfer point or entry point of a phase or overlay, The XFR
assembly instruction causes the generation of a transfer card in the
assembled text in the same location that the XFR instruction appeared
in the source program.

& The format of the XFR instruction is as follows:

NAME OPERATION OPERAND
Not used. XFR A relocatable symbol.
¢ Not used.
4 XFR code.

¢ Any predefined symbol from within the assembly or defined as an
ENTRY or EXTRN point,

¢ See Appendix H Overlay Methods.

*Valid on POS only, This card is flagged, but produced on TOS/TDOS,

5-14

MCALL
Macro Call

General Description

Format

Specification Rules

Name Field
Operation Field

Operand Field

Notes

Additional Assembly
Instructions

¢ The optional instruction MCALL permits the specifying of any or all
macros required by a program. Inasmuch as macros are normally re-
trieved from the macro library in the order in which they are called, this
feature eliminates access to the Library on an "as needed' basis,

& The format of the MCALL is as follows:

NAME OPERATION OPERAND

Not used. MCALL Symbols separated by commas,
€ Not used.
¢ MCALL,

4 Symbols separated by commas specifying the macros to be called from
the macro library.

¢ 1

If the macro has been previously specified in a prior MCALL state-
ment, defined as a source-deck macro, or already called, the symbol
is ignored.

. Any number of MCALL statements may be specified and the state-

ment is allowed in a macro definition (that is, as a model line),

After the macro definition is retrieved from the library, it is
encoded into a form which requires less memory. The encoded
macro is retained in memory or placed on a work tape if sufficient
memory is not available,

The MCALL verb gives the programmer the capability to accomplish
the following:

a. To specify the macros that should first be placed into HSM if
space exists,

b. To specify the order in which the macros should be placed on the
work tape.

c. To reduce substantially the search time requiredtofetch macros

from the library tape. Note that each macro is called only once
from the library tape.

-15

(V2]

Notes
(Cont'd)

Example

Additional Assembly
Instructions

4, Macros are retained on the macro library in four priority groups.
The macros which are specified in the MCALL operand field are
retrieved from the tape In the order in which the macros appear on
the tape, not necessarily in the order they were specified,

¢ OPERATION OPERAND
MCALL P,B,G X, H A

Assume macros X and H are in priority group 1; and that P, B, and A
are in priority group 2, and that G is in priority group 3.

The macros are called from the library tape in the following order:

H, X, A, B, P, G. After macro G has been retrieved, tape searching

terminates, since no further priority 3 or any priority 4 macros are
specified.

5-16

MPRTY
Macro Priority

General Description

Format

Specification Rules

Name Field
Operation Field

Operand Field

Note

Example

Additional Assembly
Instructions

4 This instruction allows the user to specify which priority groups of
macros, when called, are encoded and placed in memory and/or on a work
tape when sufficient memory does not exist,

The statement may be issuedas oftenas desired to control this process.

€ The format of the MPRTY is as follows:

NAME OPERATION OPERAND

Not used. MPRTY Combination of four 0'sand1's,
4 Not used.
¢ MPRTY,.

¢ Combination of four 0's and 1's, that refer to priority groups 1 to 4,
respectively, from left to right.

¢ The Assembler presets the MPRTY indicator to1100. Macros specified
by MCALL are always encoded regardless of the MPRTY indicator setting
for the macros' priority group.

2 OPERATION OPERAND

MPRTY 1110

If a macro is called which is in priority groups 1, 2, or 3, it is encoded
prior toexpansion, If macro Xinpriority group 4 is called, it is not encoded
but is expanded (in its definition format) from the library, Subsequent calls
for X result in its retrieval and expansion from the library rather than
directly from memory or the work tape.

5-17

6. INTRO -
DUCTION TO
SPECTRA 70

MACRO

LANGUAGE

MACRO DEFINITION

& The Spectra 70 macro language is a facility of the Spectra 70 Assembly
System by which the programmer can generate standardized coding. Some
advantages of the macro language are:

Program coding is simplified;
Functional coding may be standardized;

1.

2

3. Coding errors may be reduced;

4, Macro definitions can be easily maintained;
5

Simple or tailored macros can be written,

Macros are defined, called, and generated (also referred to as "ex-
panded'). The macro definition is written only once, and a single macro
call statement is written each time the programmer wants to generate
the desired sequence of Assembler language statements.

Note:

Macro call statements also are referred to as '"macro call(s)" or
"macro call line(s)" in this manual.

¢ The macro is defined by a series of statements which include:

1. The macro header statement (MACRO) - start of macro definition;

2. The macro prototype statement - gives the mnemonic operation
code (that is, TERMS in chart 6-1) and format in which the macro
call statement will appear (see chart 6-2):

3. The macro model statements - stating the sequence of statements
to be generated when the macro mnemonic (that is, TERMS) is
called;

4. The macro trailer statement (MEND) - end of macro definition,

Macro definitions can be incorporated in a program at assembly time
in two ways:

1. Source deck - Macros are available only in the source program in
which the definition appears;

2, Macro Library - Tape or random access facility of entering macro
definitions (RCA and/or user), which may be used in any source
program (see Utility Manuals), ——

Note:

A macro definition must be available or defined before any call is made
for the macro. (See Section 7 - Writing Macro Definitions.)

6-1

Macro Definition
Structure

TYPES OF MACROS

Positional Macros

Chart 6-1. Example of
a Positional Macro

Notes

Introduction to Spectra 70
Macro Language

4 Every macro definition must contain a minimum of four statements,
They are:

1. A header statement (MACRO);
2. The prototype statement;
3. One or more model statements; and

4. A trailer statement (MEND).

The following command statements are optional for macro generatian:
1, Set and Conditional Commands (Section 9);

2. MEXIT and MNOTE (Section 10);

3. MTRAC and NTRAC (Section 10),

& Spectra 70 macro language permits macros to be written in either
positional or keyword format. Both the macro prototype and its associated
call statements must be of the same format. The only difference between
the keyword and the positional macro is in the format of the prototype
(and associated macro call) statements.

& A positional macro requires that the prototype and call statements be
written in a fixed format.

Parameters in the prototype statement and values in the call line are
said to be ''positionally significant’ and are separated by a comma (,).
Notes:

Omission of a positional value must be indicated by an extra comma (,).
For example:

NAME OPERATION OPERAND

DTYPE DEVICE,,STORE (Macro Call)

The second value has been omitted (signified by ,,). See Sections 7 -
Writing Macro Definitions, and 8 - Macro Call Statements,

¢ NAME OPERATION OPERAND
MACRO (Macro Header)
&NAME TERMS &PROG (Prototype Statement)
&NAME svC 28 \ /
SVC 10 (Model)
/ Statements) \
DC CL6'&« PROG
MEND (Trailer Statement)

¢ 1. "MACRO" signifies the start of any macro definition; "MEND", the
end.

2. "&NAME" is a symbolic parameter; that is, a variable symbol,

6-2

Keyword Macros

Note

MACRO CALL
STATEMENT

Chart 6-2. Example of a

Positional Macro Call
Statement

Note

Chart 6-3. Generated
Statements

VARIABLE SYMBOLS

Types of Variables

Introduction to Spectra 70
Macro Language

€ Keyword macros allow the keyword values to be written in a random
order or omitted, because each value is associated with a keyword.
Standard values, unless overridden by the programmer, may be inserted

automatically. (See Section 11,)

¢ The DTFSR macro is a keyword macro. The lack of a READ = value
will cause FORWARD to be inserted from the prototype. (See Section 11 -
Keyword Macros.)

¢ A macro call is a statement which causes the assembly macro gen-
erator to insert the macro's model statements at the point of the macro
call,

The macro call may exist as a user's source statement or it may be
one of a macro's model statements. The latter is an inner macro call
and is generated when it appears.

2 NAME OPERATION OPERAND

ENTRY TERMS PROGB (Macro Call)

€ See Section 8 - Macro Call Statements,

¢ Assembler results of charts 6-1 and 6-2:

... LOCTN OBJECT CODE.... M SOURCE STATEMENT

ENTRY TERMS PROGB
00000 0A 1C M1 ENTRY SVC 28
00002 O0A 0OA M1 SvC 10
00004 D7DID6CT7C240 M1 DC CL6'PROGB'

¢ A variable symbol is an assembly symbol representing varying values
which may be assigned, changed, or tested at any time during macro
generation, by the programmer and/or the Assembler. Current values
are examined to determine what model statements are to be generated.

& Variable symbols can be:

1. Symbolic parameters;
2, System variable symbols (Section 10); or

3. Set variable symbols (Section 9),

Valid Symbols

Chart 6-4. Examples of
Variable Symbols

Note

SYMBOLIC
PARAMETERS

Examples

Restrictions for
Symbolic Parameters

Examples of Valid
Symbolic Parameters

Introduction to Spectva 70
Macvo Language

¢ A variable symbol is written as a ampersand (&) followed by one to
seven alphabetic and/or numeric characters, the first of which must be
alphabetic. The dollar sign ($), the commercial at sign (@), and the
number sign (#) are considered to be valid alphagetic characters.

¢ VARIABLE SYMBOL TYPE OF SYMBOL
&NAME Symbolic Parameter
&FROM2 Symbolic Parameter
&SYSNDX System Variable
&SYSECT System Variable
&BG2 SETB Symbol
&CG3 SETC Symbol
&AL1 SETA Symbol

€ The types of variable symbols illustrated in chart 6-4 are explained
under the appropriate topic.

€ A symbolic parameter is a type of variable symbol that is assigned
values by the programmer when he writes a macro call statement. (See
Section 8 - Macro Call Statements.)

The programmer may vary statements that are generated for each oc-
curance of a macro call by varying the values assigned to symbolic
parameters,.

* NAME OPERATION OPERAND
&NAME MOVE &FROM,&TO PROTOTYPE
FIRST MOVE FIELD,WORK CALL #1
SECOND MOVE RECORD,STORE CALL #2

In Call #1 above, the symbolic parameters &NAME, &FROM, and &TO
have been given the following values: FIRST, FIELD, and WORK res-
pectively as a result of the positional call line, In Call #2, &NAME is
SECOND, &FROM is RECORD; and &TO is STORE.

€& The programmer cannot use any symbolic parameters that have
&SYS as the first four characters. Further, symbolic parameters in the
form &ALn, &AGn, &BLn, &BGn, and &CGn, where n is from one to five
numeric characters, cannot be used. Symbols of these types are reserved
for internal use. (See Section 9.)

& The following are valid symbolic parameters:

&READER &L.OOP2 &TAG
&A23456 &N &BLC
&X4#F2 &S4 &FROM

6-4

VARYING THE
GENERATION

SECTIONING OF
MACRO LANGUAGE
INFORMATION

Introduction to Spectrva 70
Macvo Language

¢ The same sequence of generated statements is used from the macro
definition in the absence of any Conditional macro generator commands.
Thus, Conditional commands are used, usually in conjunction with Set
commands, to vary the number and structure of the generated statements.

Nole:

See Section 9 - Set and Conditional Macro Commands,

¢ The Spectra 70 macro language portion of this manual is further divided
into the following sections:

TOPIC SECTION
Writing Macro Definitions 7
Macro Call Statements 8
Set and Conditional Commands 9
Special Purpose Features 10
Keyword Macros 11
Summaries and Terminology Appendices I, J, K, and L

7. WRITING
MACRO
DEFINITIONS

MACRO DEFINITION
CONTENTS

Notes

4 To call a macro by means of a macro call statement, the macro must
be previously defined. The programmer defines a macro by writing the

instruction statements in a special macro definition language. This
section discusses this definition language for positional macros. Keyword
macros will be discussed in Section 11,

The programmer makes a macro definition available tomany programs
by placing the definition in the macro library. Macro definitions in the
macro library can be inserted, deleted or replaced according to the needs
of the programmer (see Utility Manuals),

® A macro definition consists of the following types of statements (see
chart 6-1, page 6-2).

HEADERSTATEMENT (MACRO)- This statement indicates the beg-

ginning of a macro definition,

PROTOTYPESTATEMENT - This statement defines the format and
mnemonic operation code of the macro call statement. Because the
parameters defined in prototype statements must be general, the entries
are referred to as symbolic parameters (see Section 6). The format of
the prototype statement is the only difference between a positional macro
definition and a keyword macro definition (see Section 11).

MODEL STATEMENTS - The model statements are comprised of
machine instructions and/or assembly commands. The Operand fields of
the model statements can contain symbols defined in source programs or
symbolic parameters incorporated in the macro definition. The symbolic
entries are, in turn, replaced by the values they represent. The symbolic
entries can be symbolic parameters (see Section 6) or other variable
symbols that are described in Sections 9 and 10,

TRAILER STATEMENT (MEND) -This statement indicates the end

of a macro definition.

¢ 1. In writing all macro definitions, the begin column is column 1, the
end column is column 71, the continue indicator column is column 72,
and the continuation column is column 16,

2. The number of macro definitions transcribed to memory and/or the
work tape during assembly by MCALL statements, source deck
definitions, or by calling and the proper MPRTY switch=1is
limited to 50 in POS, The TOS and TDOS limit is 75,

3. If sequence checking of the source deck is specified, the macro
definition is not included. When the macro definition is terminated,
checking will be resumed if it was in effect before encountering the
macro definition.

7-1

MACRO
Header Statement

General Description

Format

Specifications Rules

Name Field

Operation Field

Operand Field

Note

Wrviting Macvo
Definitions

€ The macro definition header statement indicates to the assembler that
a macro definition follows. It must be the first statement in every posi-
tional or keyword macro definition,

€ The format of the MACRO header statement is as follows:

NAME OPERATION OPERAND
Not used. MACRO See Operand Field (below).
4 Not used.
¢ MACRO.

4 Although not scanned by the Assembler, certain Macro Library Update
utility programs require the following informationto appearin the Operand
field:

VERnnn mm/dd/yy

where:
nnn = version number,
mm = month of version,
dd = day of version,
yy = year of version,

¢ See appropriate Utility Routine reference manual for the Operating
System being used.

7-2

ND
Trailer Statement

General Description

Format

Specification Rules

Nawme Field

Operation Field

Operand Field

Writing Macro
Definitions

¢ This statement signifies to the Assembler that the macro definition
is complete. It must appear as the last coding line of a macro definition,

€ The format for the trailer statement is as follows:

NAME OPERATION OPERAND
A sequence symbol or blank, MEND Not used.

¢ A sequence symbol consists of a period followed by a maximum of
seven alphabetic and/or numeric characters, the first of which must be
alphabetic. Sequence symbols are discussed in detail in Section 9.

¢ MEND,

€ Not used,

7-3

Positional Prototype
Statement

General Description

Format

Specifications Rules

Nawme Field

Operation Field

Writing Macvo
Definitions

€ The positional macro prototype statement must be the second statement
of a macro definition. It specifies the mnemonic operation code and format
of the positional macro operand. The values contained in the macro call
statement will be substituted, on a positional basis, for the symbolic
parameters specified in the prototype statement. The prototype statement
is written in a format similar to other Assembly Language statements,
The Name field, if used, must start in the begin column and must appear
on the same card as the Operation field, and is followed by at least one
blank,

€ The format is as follows:

NAME OPERATION OPERAND
A symbolic parameter A Symbol, Comma (,) or a maximum
or blank. of 49 symbolic parameters,

separated by commas.

& A symbolic parameter or blank. The symbolic parameter is normally
used to produce a label in the generated coding. See Section 6 for discus-
sion of symbolic parameters.

Note:

The parameter associated with the Name field is numbered zero (0).

¢ The symbol in the Operation Field must appear in every macro call
statement referred to this macro definition. The mnemonic operation code
is a maximum of five alphabetic and/or numeric characters, the first of
which must be alphabetic. The symbol must not be the same as the
mnemonic operation code of a machine instruction, Assembler command,
or macro generator command.

Notes:

1. Source deck definitions override identically named macro library
definitions, which, once discarded, cannot be recalled during this
program, but must be redefined if the discarded definition is
needed.

2. The last source deck definition has precedence in case of conflict.

7-4

Operand Field

Examples

Chart 7-1. Positional
Prototype

Chart 7-2. Macro
Header, Prototype,
and Trailer

Writing Macvo
Definitions

¢ The Operand field may contain a maximum of 49 symbolic parameters
that positionally correspond to values submitted by the programmer by
means of the macro call statement, To allow for a maximum of 49 symbolic
parameters, as many continuation cards as required may be used. How-
ever, a line cannot be continued on the next card unless the Operand field
of the line to be continued extends through column 71, with no embedded
spaces, and column 72 does not contain a space.

Notes:

1. The absence of any parameters in the Operand field is indicated by
an initial comma (,) followed by at least one blank, Comments may
then follow. If there are neither symbolic parameters nor comments,
no entry is required,

2. Symbolic parameters in the Operand field are numbered 1-49.
Parameter 0 (Name field) plus 49 parameters (Operand field) gives
a maximum total of 50 parameters for any prototype statement.

€ Chart 7-1 is an example of a macro prototype that contains three
symbolic parameters: one in the Name field and two in the Operand field.
The mnemonic operation code is MOVE.

¢ NAME OPERATION OPERAND
&NAME MOVE &TO,&FROM

Chart 7-2 shows the portion of the MOVE macro definition thus far
discussed,

¢ NAME OPERATION OPERAND
MACRO HEADER
&NAME MOVE &TO,&FROM PROTOTYPE
MEND TRAILER

7-5

Model Statements

General Description

Specification Rules

Nawme Field

Operation Field

Operand Field

Comments

Notes

Writing Macro
Definitions

& Model statements are representations of the statements that replace
the macro call in the object program. A model statement that contains
no symbolic parameters or variable symbols appears in the source pro-
gram in the same format as it appears in the macro definition, If the
model statement contains symbolic parameters or variable symbols, they
are replaced by their values when the model statement is expanded and
inserted into the object program.

Any symbolic parameter appearing ina model statement must be defined
in the prototype of the macro definition.

¢ One or more model statements must follow the macro prototype state-
ment, A model statement consists of from two to four fields (from left-to-
right): Name field, Operation field, Operand field, and Comments field.
These fields are written in standard Spectra 70 Assembly Language format
as defined in Section 2.

¢ Contains a symbol, symbolic parameter, sequence symbol, or blank.
¢ 1. Contains machine or Assembler mnemonic operation code, except
START, END, ISEQ, and ICTL.
2, Contains symbolic parameter (see note 1),

¢ Symbols, symbolic parameters, other variable symbols, and other
combination of characters (see note 2),

¢ Any combination of characters preceded by at least one blank (see
note 3).

¢ 1, Variable symbols cannot be used to generate:
a, macro generator commands;
b. mnemonics which do not begin with a letter;
c. mnemonics larger than five characters;
d. START, END, ISEQ, or ICTL op codes.

2. The Operand field of all model lines (except an inner macro) must
be completed through the "end'" column before a continuation line is
specified. A model statement can be continued on as many cards as
necessary. The maximum number of characters permitted in the
Operand field of a generated model statement is 112, However, if

the model line is an inner macro instruction, the expanded Operand
field may be as large as necessary.

3. Variable symbols appearing in the Comments field, arenot replaced
with their corresponding macro call values,

7-6

Notes

(Cont'd)

Examples

Chart 7-3. Model
Statements within a
Definition

Chart 7-4. A Macro
Call Statement for
MOVE

Writing Macvro
Definitions

4, The card following a REPRO model statement is not scanned by
the macro generator, but merely reproduced.

5. Symbolic parameters used in a model statement must be defined
in the prototype statement.

6. Symbols used in a model statement must be defined in the macro
definition or within the source program.

7. Two ampersand signs (&&) or quotes (') must be used to represent
a single ampersand (&) or quote (') in a character value or self-
defining value. (See chart 7-1, page 7-5, and chart 7-7, page 7-8.)

¢ The following set of charts illustrate the macro definition of MOVE,
the calling of MOVE, and resultant generated assembly statements. The
macro MOVE allows the programmer to move two separate fields, with
associated lengths to one combined area.

In chart 7-3, five symbolic parameters are defined in the macro
prototype statement. The symbol, PRINT, is defined outside the macro
definition, Note that each of the symbolic parameters used in the model
statements appears in the macro instruction prototype statement.

¢ NAME OPERATION OPERAND
MACRO HEADER
&NAME MOVE &FRA,&LNA,&FRB,&LNB PROTOTYPE
&NAME MVC PRINT(&LNA),&FRA MODEL
MVC PRINT+&LNA(&LNB),&FRB MODEL
MEND TRAILER

The values of the call for the positional macro MOVE in chart 7-4
correspond to the symbolic parameters of the positional macro prototype
statement in chart 7-3. Namely, FIRST, NAME, 20, ADDR, and 15 (chart
7-4) correspond to &TAG, &FRA, &LNA, &FRB, and &LNB in chart 7-3.
Any occurrance of the symbolic parameter in the Name, Operation, or
Operand field of a model statement will be replaced by the corresponding
characters; that is, & TAG is replaced with FIRST: &FRA with NAME, etc,

. NAME OPERATION OPERAND
FIRST MOVE NAME,20,ADDR,15 MACRO CALL

If the macro call statement in chart 7-4 were used in the source
program, the Assembly Language statements shown in chart 7-5 would
be generated.

7-7

Chart 7-5. Generated
Assembly Statements

Note

Chart 7-6. Macro Calls
Followed by Their
Generations

Chart 7-7. Use of
Ampersands in Character
and Self-Defining
Values

Writing Macro
Definitions

¢ STMNT M SOURCE STATEMENT

00010 M1 FIRST MVC PRINT(20),NAME

00011 M1 MVC PRINT+20(15),ADDR

¢ The MOVE macro removed from the programmer the clerical burden
of putting the left-hand-end of ADDR in the 21st position (+20) of the
PRINT area. Clerical errors such as transposition are also minimized.
Given chart 7-3 notice the generation when the macro call values change

(chart 7-6).

Each time the programmer uses the macro call statement MOVE in
the same program, the Assembler uses the same macro definition for
interpretation and generation unless superseded by a subsequent definition,
(See chart 7-6.)

¢ STMNT M SOURCE STATEMENT

00050 SECOND MOVE A,50,B,30 MACRO CALL
00051 M1 SECOND MVC PRINT(50),A GENERATED
00052 M1 MVC PRINT+50(30),B STATEMENTS
00100 THIRD MOVE (C,5,D,2 MACRO CALL
00101 M1 THIRD MVC PRINT(5),C GENERATED
00102 M1 MVC PRINT+5(2),D STATEMENTS
00125 FOURTH MOVE E,0,F,80 MACRO CALL
00126 M1 FOURTH MVC PRINT40),E GENERATED
00127 M1 MVC PRINT+40(80),F STATEMENTS
¢ STMNT M SOURCE STATEMENT
01000 &TAG DC C'&&TAGAISANAME' MODEL
STATEMENT
01025 NAME DC C'&&TAGAISANAME' GENERATED

The constant can be seen graphically as follows in the object code:

&TAGAISANAME

7-8

Combining Symbolic
Parameters
(Concatenation)

Examples

Note

Chart 7-8. Combining
Symbolic Parameters

Writing Macvo
Definitions

¢ The characters represented by symbolic parameters in model state-
ments can be combined with symbols, self-defining values, character
values, and other symbolic parameters to produce symbols, self-defining
values, and character values,

In combining symbolic parameters the following points must be
considered:

1. When a symbolic parameter is followed by a left parenthesis, a
period, an alphabetic character, or a numeric character, a period
must separate the symbolic parameter from the character that
follows:

2. When a symbolic parameter isfollowed by a single period, the period
does not appear in the generated output.

¢ In the following examples, assume that &PARAM =A,

EXPRESSION GENERATION
&PARAM.(BC) A(BC)
&PARAM..BC A.BC
&PARAM,BC ABC
&PARAM.2BC A2BC
BC,&PARAM BC,A
B2&PARAM B2A
&PARAM&PARAM AA
&PARAM..& PARAM AA

& The generated value of any expression cannot begin with a single &
(symbolic parameter or other variable symbol).

For example: Assume &TO=&AR and & FROM =EA, Then & TO&FROM
would produce &AREA, which would be flagged. However if &TO=AR
and &FROM = EA, then &TO&FROM would generate AREA properly.

¢ STMT M SOURCE STATEMENT

00101 MACRO DEFINITION
00102 &NM ARITH &OP,&TOT,&TAG

00103 &NM&OP &OP.P &TOT.A,&TAG.A

00104 &OP.P &TOT B,&TAG.B

00105 &OP.P &TOT,C,&TAG.C

00106 MEND

00200 TEST ARITH S, TOTAL,FIELD CALL

00201 M1 TESTS SP TOTALA,FIELDA GENERATION
00202 M1 SP TOTALB,FIELDB

00203 M1 SP TOTALC,FIELDC

7-9

Writing Macro

Definitions
Comments Statements 4 Comments statements can be interspersed in the model statements of
a macro definition. Two types of comments statements are permitted.
The first type has an asterisk (*) in column 1, followed by the comment.
This type is generated when the macro definition is assembled. The
generated statement is identical tothe statement coded by the programmer.
The second type of comments statement has a period-asterisk (.*) in
columns 1 and 2, followed by the comment. This type documents the macro
definition and is not generated when the macro is assembled. See chart
7-9,
Chart7-9. Comments ¢ STMT M SOURCE STATEMENT
00301 MACRO (Definition)
00302 COMNT
00303 *THIS COMMENT WILL NOT GENERATE
00304 *THIS COMMENT WILL GENERATE
00305 MEND
00401 COMNT (Call)
00402 M1 *THIS COMMENT WILL GENERATE (Generated)

7-10

MACRO CALL
STATEMENTS

GENERAL
DESCRIPTION

Example

4 The macro call is a statement written in an Assembly language source
program that calls the series of statements that make up the macro
definition, This single statement is, in turn, replaced in the program by
the variable number of generated statements from the macro definition,
The statements that replace the macro call are called generated state-
ments. A different call is required for each generation of a macro. This
section discusses the positional macro call statement. The keyword
macro call is explained in Section 11.

4 Chart 8-1 contains a part of a sample program utilizing macro calls,
This example shows the macro definitions, macro call statements, and
the generated statements.

The following reference table for chart 8-1givesthe statement numbers
for each macro:

Statement Numbers (STMNT)

Macro Macro Macro Generated
Name Definition Call Statements
GETOD 00002 00426 00427
to and
00006 00428
TERMS 00007 00429 00430
to to
00012 00432

LOCTN

00000

00000
00002

01C8A
01C8C

01C90

01C92
01C94

00000

Macvo Call Statements

Chart 8-1. Macro Definitions, Calls, and Generation

OBJ. CODE...

0A 17
00001 AB4

0A 1C
0A 0A
D7D9D6C7C240

STMNT

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014

00426
00427
00428
00429
00430
00431
00432

00810

M

Mi
M1

M1

M1
M1

8-2

SOURCE

PROG

&TAGA
&TAGA

&TAGB
&TAGB

BEGIN

CALLO1
CALLO1

CALLO2
CALLO2

STATEMENT

START

MACRO

GETOD &TIME

svC 23

DC AL4(&TIME)
MEND

MACRO

TERMS &NAME

svC 28

svC 10

DC CL6' &NAME'
MEND

BALR 3,0

USING *,3

GETOD TIME

sve 23

DC AL4(TIME)
TERMS PROGB

sve 28

svc 10

DC CL6'PROGB!
END BEGIN

Positional Macro Call
Statement

General Description

Format

Specification Rules

Nawme Field

Operation Field

Macvo Call Statements

4 The placement and order of the operand values in a positional macro
call statement are determined by the placement and order of the symbolic
parameters defined in the operand field of the macro prototype statement.
(See Writing the Macro Definition, Section 7.) During generation, each
symbolic parameter in the Name field, Operation field, or Operand field
of a model statement is replaced by the operandvaluesof the macrocalls
that positionally correspond to the symbolic parameters in the macro
prototype statement.

4 The format for the positional macro call is as follows:

NAME OPERATION OPERAND

A symbol or blank, Mnemonic operation Comma (,) or a maximum
code, of 49 operand values,
separated by commas,
in the form described
below,

4 The Name field of a macro call statement may contain a symbol. This
symbol will only be defined if 1) a symbolic parameter appears in the
Name field of the macro prototype statement and; 2) the same parameter
appears in the Name field of a generated model statement,

If the Name field is blank, the symbolic parameter in the macro
definition is considered to be a null parameter, (See NULL Parameter,
page 8-6.) The value associated with the Name field is numbered zero

(0).

Note:

In chart 8-1 the symbol CALLO1 in the call statement will be defined
because the symbolic parameter &TAGA appears in both the prototype
statement and a model statement. CALLO2 is similarly defined.

¢ The mnemonic operation code is the code assigned to the macro
definition. This entry must contain the same operation code that appears
in the Operation field of the prototype statement.

Note:

In chart 8-1 the operation code "GETOD" is used in STMNT 00003
(prototype) and STMNT 00426 (macro call),

8-3

Opervand Field

Operand Rules

Comments

Continuation Rules

Macvo Call Statements

¢ The Operand field may contain a maximum of 49 operand values,
also called operand(s) or value(s), which must be separated by commas.
The placement and order of the values in the macro call is determined
by the placement and order of the symbolic parameters in the operand
field of the macro prototype statement.

Note:

Operand values in the Operand field of the call statement are numbered
1-49, Value 0 (Name field) and 49 values in the Operand field give a
maximum total of 50 operand values for any call statement.

¢ The following are rules for the Operand field of the macro call:

1. The number of operand values must not exceed 49.
2. A comma must follow each value except the last.
MOVE &FRA,&LNA,&FRB,&LNB PROTOTYPE
MOVE A,5,B,10 CALL
3. A single comma (,) followed by at least one blank indicates that
no operand exists,
MOVE , AA CALL WITH NO VALUES
4, The end of the Operand Field is indicated by at least one blank,
MOVE C,2AACALL ENDS WITH 2 VALUES
5. Omitted operands must be indicated by an extra comma (,).
MOVE D,,EAACALL BOTH LENGTHS OMITTED
Note:

The operand field of any macro call statement is not scanned if the
‘Operand field of the associated prototype statement contains no
symbolic parameters,

¢ Comments may: 1) appear after the blank that indicates the end of all
operands, 2) extend through the end column, and 3) be continued on one
additional card.

¢ The following rules apply to continuing a positional call operand:

1.

A line may be continued if the Operand Field to be continued extends
through the end column,

To allow for a maximum of 49 values, as many continuation cards
as required may be used.

Any operand value may be split between cards.

8-4

Chart 8-2. Example of
Continuation for
Positional Call
Operands and
Comments

Quoted Strings

Call Values (Eight
Characters)

Macvo Call Statements

* NAME OPERATION OPERAND
FIRST MOVE OPERA,20,0PERB, 30, 0PERC,5,0P

ERD,15,0PERE, 4,0PERF, 2,0PER

,3,0PERH, 1,0PERI, 20,0PERK, 10
, OPERL, 10AACONT INUEDAOPERAND
S,ACOMMENTS ,A &§ASPLITAVALUESA

€ A quoted string is any series of charactersenclosed in quotation marks,

A quoted string starts with the first quotation mark in the operand value
and ends with the first even numbered quotation mark that is not followed
immediately by a quotation mark.

Subsequent quoted strings start with the first quotation mark after the
quotation mark that ends the previous quoted string.

X'A'X'B!

Thus, 'A' and 'B' are quoted strings.

¢ Any combination of up to eight characters can be used as an operand
value of a macro call if the following rules are observed:
1. Quotation marks must always occur in pairs. (See Quoted Strings.)
X'FF!
2. Two quotation marks must be used to represent a quotation mark
enclosed in paired quotation marks,
'CAN"T 1
3. If a quotation mark is immediately preceded by the letter L and im-

mediately followed by a letter, the quotation mark is not considered
in determining paired quotation marks.

L'MASTER

4. Parentheses must always occur in pairs, left parenthesis then right
parenthesis.

20(15,0)

5. Paired parentheses can be enclosed in paired parentheses.

(A(2),B)

6. A parenthesis that occurs between paired quotation marks is not
considered in determining paired parentheses.

l)'

8-5

Call Values
(Eight Characters)

(Cont'd)

Note

Example

Chart 8-3. Maximum
Length of Call Operands

Null Parameters

Example

Macvo Call Statements

7. An equal sign can occur only as the first character in an operand
or within paired quotation marks or paired parentheses,

=X'FF' 'TO=A" E(F=G)
8. A comma indicates the end of an operand unless placed between
paired parentheses or paired quotation marks,
1,2,3 Three operand values
(1,2),3 Two operand values
9. A blank indicates the end of the operandfield unless placed between
paired quotation marks,

'3AORA4'

10. Ampersand signs must occur in pairs,

'BA&&A4'

® The total length of any call operand value must not exceed eight char-
acters, including enclosed spaces.

¢ Chart 8-3 shows a sample prototype statement and associated call
statement. Each operand value contains the maximum of eight characters.

¢ NAME OPERATION OPERAND
&NAME EXMPA &A,&B,&C, &D (Prototype)
EXMPA PROGRAMA, '1A&&A2', (15,100),X

L'MASTERACALLAWITHA4AVALUESA

® A null parameter is a parameter whose value is not included in the
macro call, but is included in the prototype statement.

If an operand value is omitted from the Operand field of the macro call,
then the comma that would have separated it from the next value must be
present, If the last value(s), is omitted from a macro call, then the com-
ma(s) separating the last value(s) from the previous value may be omitted.

4 The example in chart 8-4 shows a macro prototype followed by several
macro calls with null parameters.

8-6

Chart 8-4. Examples of
Null Parameters

Example

Chart 8-5. A Null
Parameter in a Model
Statement

Macvo Call Statements

& NAME OPERATION OPERAND
&NAME MOVE &FRA,&LNA, &FRB, & LNB (Prototype)

*PARAMETER OR OPERAND VALUE ARE AS FOLLOWS

*&NAME = PARAMETER 0, &FRA=1,&LNA=2,&FRB=3,&FRB=4

MOVE ,AALL PARAMS HAVE NULL VALUES
SECOND MOVE NAME, ,ADDRAAPARAMS 2 & 4 ARE NULL

MOVE ,10, ,5AAPARAMS 0,1 & 3 ARE NULL
FOURTH MOVE ,5,200APARAMS 1, 2, & 3 ARE NULL

¢ If the symbolic parameter that corresponds to a null parameter is
used in a model statement, a null character value replaces the symbolic
parameter in the generated statement. The result will be the same as
though the symbolic parameter did not appear in the statement.

For example, the first statement that follows is a model statement that
contains the symbolic parameter &A. If the operand value that corresponds
to &A were omitted from the macro, the second statement would be gen-
erated from the model statement. (See chart 8-5.)

¢ NAME OPERATION OPERAND
NAME&A MVC WORK&A,FIELD&A (Model)
NAME MVC WORK,FIELD (Generated)

Inner Macro Calls

General Description

Example

Nested Macros

Note

Chart 8-6. ASSGN
Macro on Library

Macvo Call Statements

¢ A macro call may be used as a model statement in a macro definition,
Macro calls used as model statements are called inner macro calls. (See
chart 8-8 and chart 8-9.)

A macro call that is not used as a model statement is referred to as an
outer macro call, (See chart 8-9.)

The rules for writing inner calls and outer calls are the same.

Any symbolic parameters used in an inner macro call are replaced by
the corresponding values of the outer macro call before the inner call is
scanned or generated.

€ In chart 8-9, the symbolic parameter &FILEA is replaced by READER
in STMNTS 00426 and 00430, This value was given in the outer call for
OPEN (STMNT 00425).

€ When a macro definition contains a macro call, the macros are said to
be nested. The maximum depth of nesting is three. The following rules
apply to nesting macros:

1. The outer macro is referred to as a first-level macro. Generation
of the first-level macro is identified by M1 in the "M FIELD" on
the assembled listing. (See Appendix A,)

2, The outer macro can generate as many second-level inner macro
calls as are required. Generation of second-level macros is
identified by M2,

3. Each second-level macro can generate as many third-level inner
macro calls as are required. Third-level macro generation is
identified by M3.

4. A third-level macro cannot generate a macro call.

€ The outer macro and the inner macros can be of the same or different
types, either positional or keyword.

¢ NAME OPERATION OPERAND
MACRO
ASSGN &CCB
CNOP 2,4 ASSGN GENERATION
svC 29
DC A(&CCB)
MEND

8-8

Macvo Call Statements

Chart 8-7. DTYPE Macro on Library

NAME OPERATION OPERAND
MACRO
DTYPE &DEVICE, &R, &AREA
SvVC 6 DTYPE GENERATION
DC CL6'&DEVICE'
DC AL4(&AREA)
MEND

Chart 8-8. OPEN Macro in Source Deck

STMNT M SOURCE STATEMENT
00004 MACRO
00005 &NAME OPEN &FILEA, &FILEB, &FILEC
00006 ASSGN &FILEA (Inner Call)
00007 DTYPE &FILEA, ,STORE (Inner Call)
00008 B &NAME
00009 STORE DS CL1
00010 &NAME CLI STORE, X'06' IS CARD?
00011 *END OF PARTIAL GENERATION
00070 MEND

Chart 8-9. Macro Containing Two Inner Calls (Second-Level)

STMNT M SOURCE STATEMENT

00425 BEGIN OPEN READER,TAPEA (Outer Call)

00426 M1 ASSGN READER (Inner Call)

00427 M2 CNOP 2.4 ASSGN GENERATION
00428 M2 SvVC 29

00429 M2 DC A(READER)

00430 M1 DTYPE READER, ,STORE (Inner Call)

00431 M2 svC 6 DTYPE GENERATION
00432 M2 DC CL6'READER'

00433 M2 DC AIL4(STORE)

00434 M1 B BEGIN

00435 M1 STORE DS CL1

00436 M1 BEGIN CLI STORE, X'06' IS CARD?

00437 M1 *END OF PARTIAL GENERATION

8-9

9. SET AND
CONDITIONAL
COMMANDS

INTRODUCTION

¢ The facilities described in Sections 6, 7, and 8 are sufficient to define
and call a relatively simple macro,

For each of the macro definitions given in the preceding pages, a fixed
series of statements are generated during assembly each time a macro
call is encountered. The only difference in the generated statements of
two or more macro calls for the same macro definition is the specific
values and labels in each statement.

The Set and Conditional commands facilitate the writing of a more
complex macro definition that will produce a tailored set of generated
statements based on the values given in the macro call statement,

The sequence, number, and type of generated model statements can
be based on the presence, absence, or values of: 1) operands in a particular
macro call or, 2) set variable symbols (see below), Thus, the statements
generated for two macro calls for the same macro definition might differ
while the functions performed by the statements are basically the same,

SET VARIABLE
SYMBOLS

Defining Values

Global Values

Set and Conditional
Commands

& Set symbols and symbolic parameters aretwotypes of variable symbols
discussed in Section 6. Set symbols differ from symbolic parameters in
two ways:

1. How they are assigned values;

2. Whether or not values assigned to them can be changed.

Symbolic parameters are assigned values when the programmer writes
a macro call statement, whereas Set symbols are assigned values when the
programmer uses the SETA, SETB, and SETC macro generator commands
(see Defining Values). Each symbolic parameter is assigneda single value
for one use of a macro definition, whereas the values assigned to each
SETA, SETB, and SETC symbol can change during the use of a macro
definition.

® The Set Commands (SETA, SETC, and SETB) assign arithmetic,
character, and logical values, respectively, to Set variable symbols. If
a value is not assigned by the programmer, values are assumed to be as
follows:

1. SETA variable symbols (arithmetic values) have an assumed value
of zero;

2., SETC variable symbols (character values) have a null character
value, zero bytes in length;

3. SETB variable symbols (logical values) have an assumed value of
false (0).

During the generation of a macro, the results of the operations per-
formed by the Set Commands are containedina series of specially provided
areas in core storage referred to by Set variable symbols.

¢ All Set variable symbols can be defined to be global in nature. This
means that after a value has been defined for a particular Set variable
symbol, the value remains in effect for all references to the variable
symbol within the assembly until changed by another Set command.

For example, if a source program contains three macro calls and a
SETA wvariable symbol is defined to have the value 6 in the macro def-
inition called by the first macrocall, the value 6 is used for the occurrence
of the same SETA variable symbol within the macro definitions called by
the other two macro calls unless changed. The programmer can, however,
redefine the SETA variable symbol to have a value that differs from 6.

9-2

Local Values

Notes

Uses for Set Symbols

Where Set Symbols
are Used

Note

Set and Conditional
Commands

4 Two groups of Set variable symbols, SETA and SETB, can be defined to
be local in nature. This means that after a value has been defined for a
particular SETA or SETB variable symbol, the value remains in effect for
all references to the variable symbol within the macro in which it was
defined. After the macro is generated, the value of the SETA or SETB
variable symbol is reset to zero or false.

For example, if a source program consists of two macro calls, and a
SETB variable symbol is assigned a value of true in the macro definition
called by the first macro call, the SETB variable symbol is reset to a
value of false after the called macro is generated.

¢ 1. SETC variable symbols (character) must be defined as global.

2. When many calls are made for the same macro definition, it is
sometimes helpful to use a binary global switch (see SETB) to
generate a subroutine only once. The binary global is false initially.
The macro definition sets the global switch to true after generation,
Since a test of the switch will signal a true condition, the next call
will generate only linkage to the already generated subroutine,

3. When macros are nested (see page 8-8), local SETA and SETB
variable symbols defined in the outer (containing) macro are reset
to zero and false, respectively, immediately before the inner (con-
tained) macro is generated. After the inner macrohas been generated
the local variable symbols are reset to their previous values,

& The Set commands allow arithmetic calculation, character manipulation,
and the setting and testing of binary switches on the basis of logical and
relational expressions,

The Conditional commands enable the programmer to tailor the state-
ments generated by defining, conditionally or unconditionally, the next
statement in the macro definition to be executed or generated. They also
provide the means to generate error messagesifa required condition is not
met.

€ Set variable symbols can be used in model statements, Set commands
and Conditional commands,

Set variable symbols can be used in the Name, Operation, and Operand
fields of macro definition statements with the following restrictions:

1. They cannot be used to generate a sequence symbol, (see page 9-22)
a Set variable symbol, or a symbolic parameter;

2. They cannot appear in a macro prototype statement;

3. The SETC variable symbol can be used in the Operand field of a
SETA statement only if the character string is composed of positive
decimal digits. (See page 9-4.)

4 The functions of the Set and Conditional commands are interrelated,
because the generated output is usually tailored by the use of Conditional
commands based on the results obtained from the values generated by the
Set commands. Their practical use is more clearly shown in the examples
in the Conditional commands section,

9-3

SET COMMANDS

SETA
Set Arithmetic

General Description

Format

Specification Rules

Name Field

Operation Field

Operand Field

Set and Conditional
Commands

4 The SETA command assigns an arithmetic value to a SETA variable
symbol. The programmer can change the value assigned to a SETA
variable symbol by using another SETA command with the same variable
symbol in the Name field.

The arithmetic value defined by a SETA instruction is represented in a
model statement by the SETA variable symbol assigned. When a SETA
variable symbol is detected during macro generation, it is replaced by the
value of the symbol converted to a positive decimal, self-defining value
with leading zeros dropped. (If the arithmetic value is zero, it will be
converted to a single zero.)

4 The format of the SETA instruction is as follows:

NAME OPERATION OPERAND
A SETA variable symbol. SETA An arithmetic expression,

€ 1. The SETA variable symbol defined inthisfieldcan be either local or
global.

2. A global SETA variable symbol has the format &AGn, where n=0 to
15,

3. A local SETA variable symbol has the format &ALn, where n=0
to 15,

4. Therefore, up to 16 global and 16 local variable symbols can be
defined. Each arithmetic value is 24 bits in length and is initially
ZEero,

¢ SETA,
4 1, The expression in the Operand field can consist of a combination of
terms in accordance with the rules given for expressions in Section 2.

2, The terms can be positive decimal self-defining values, symbolic
parameters, or Set variable symbols that represent positive decimal
self-defining values.

3. The arithmetic operators that can be used to combine terms are +
(addition), - (subtraction), * (multiplication), and / (division).

4, An expression cannot contain two terms in succession or two
operators in succession. Anexpression cannot beginwith an operator.

5. Substrings are permitted. (See Substring Notation, page 9-10.)

Invalid Value

Range of Values

Changing Values

Division

Examples

Set and Conditional
Commands

¢ If the operand of a SETA command is invalid or the result is invalid, a
value of zero is assigned to the SETA variable symbol in the Name field.

¢ 1, The final value that can beassignedtoa SETA Variable symbol must
be positive, It can range from 0 to 16,777,215 (224 -1).

2, Intermediate calculation values ran range from -2,147,483,648
(-231) to 2,147,483,647 (231-1),

¢ 1, If the programmer has assigned an arithmetic value to a SETA
variable symbol, he can change the value assigned by using the SETA
variable symbol in the Name field of another SETA statement.

2. If a SETA variable symbol has been used in the Name field of more
than one SETA statement, the value substitutedfor the SETA variable
symbol is the last value assigned to it. (See chart 9-1,)

¢ 1. Division by zero results in a value of zero.
2, In division, only the integer portion of the quotient is retained. For

example, 9 divided by 2 gives the result of 4. The fractional portion
of 1/2 is dropped.

¢ The following are examples of expressions that can be used in the
Operand field of a SETA command.

150 &AL3*2
&AL1+5 &AG4/4
&AG2-10 &LENGTH

In chart 9-1, the MOVE macro has been enlarged to illustrate SETA
commands, changing the same Set variable symbol and ability to Move
three fields.

It is assumed that there will be 10 spaces preceding the first field and
5 spaces after each field. Therefore, &AL1 will contain the number of
spaces; &AL2 will contain the length of the last field moved; and AL3 will
contain the position of the next field to be moved.

In chart 9-2 the call statement and generated statements are given for the
MOVE macro. Prior to each generated statement, the value of each
arithmetic local is shown,

9-5

Chart 9-1. SETA
Commands with
Changing Values

Chart 9-2. SETA
Generation with
Present Values

Set and Conditional
Commands

& NAME OPERATION OPERAND
MACRO
MOVE &FRA,&LNA, &FRB, &LNB, &FRC, & LNC
&AL1 SETA 10 INITIAL SPACING
&AL2 SETA 0 LAST LENGTH
&AL3 SETA &AL3+ &AL1+ &AL NEXT POSITION
MVC PRINT + &AL3(&LNA), &FRA
&AL1 SETA 5
&AL2 SETA &LNA
&AL3 SETA &AL3+&AL2+ &ALl
MVC PRINT + &AL3(&LNB), &FRB
&AL2 SETA &LNB
&AL3 SETA &AL3+&AL2+ &ALL
MVC PRINT+ &AL3(&LNC), &FRC
MEND
& STMNT M SOURCE STATEMENT
00100 MOVE NAME,20,ADDR,15,CITY,25

&AL1=10; &AL2 =0; &AL3=0+10+0 or 10,

00101

M1

MVC PRINT+10(20),NAME

&AL1=5; &AL2=20; &AL3=10+20+5 or 35,

00102

M1

MVC PRINT+35(15),ADDR

&AL1=5; &AL2=15; &AL3=35+15+45 or 55,

00103

M1

9-6

MVC PRINT+55(25),CITY

SETC
Set Character

General Description

Format

Specification Rules

Name Field

Operation Field

Operand Field

Set and Conditional
Commands

¢ The SETC command assigns a character value to a SETC variable
symbol. The programmer can change the character value assigned to a
SETC variable by using another SETC command with the same variable
symbol in the Name field. The characters specified in the Operand field
are assigned to the SETC variable symbol designated in the Name field.

& The format for the SETC instruction is as follows:

NAME OPERATION OPERAND
A SETC variable symbol. SETC Up to eight characters

enclosed by a pair of
single quote marks.

4 1. The SETC variable symbol in the Name field is global in nature. It
has the form &CGn, where n=0-15,

2. The SETC command can define up to 16 different global character
values. Each global character value can vary from zero-to-eight
bytes in size, Each character valueisinitially a null character value
of zero bytes.

3. If a SETC variable symbol has been used in the Name field of more
than one SETC statement, the value substituted for the SETC variable
symbol is the last value assigned to it. (See chart 9-4.)

4, A SETC variable symbol used in the namefield of a SETC statement
can be used in the operand field of SETA, SETB, SETC, AIF, and
AIFB statements,

4 SETC.

€ 1. The characters in the Operand field are assigned to the SETC
variable symbol in the Name field and are substituted for the SETC
variable symbol when it is used. (See chart 9-3.) The operand can
consist of a string of characters, a previously defined Set variable
symbol, symbolic parameters or any combination thereof and must
be enclosed in a pair of single quotation marks.

2. Set variable symbols can be combined with other characters in the
Operand field of a SETC instruction according to the general rules
for combining symbolic parameters with other characters.

3. More than one character value can be combined into a single char-
acter value by placing a period between the termination quotation
mark of one character value and the opening quotation mark of the
next character value. (See chart 9-4.)

9-7

Operand Field
(Cont'd)

Examples

Chart 9-3. SETC
Command, Last Value
Substituted

Chart 9-4. SETC
Command, Combination

Chart 9-5. SETC
Command, Two Quotes

Chart 9-6. SETC
Command, Two
Ampersands

Chart 9-7. SETC
Command, Using
SETA Symbol

Set and Conditional
Commands

4, Two single quotation marks must be used to represent a quotation
mark that is part of a character expression enclosed in quotation
marks, (See chart 9-5,)

5. Two ampersands must be used to represent an ampersand that is
not part of a variable symbol, Both ampersands become part of the
character value assigned by the SETC symbol. (See chart 9-6,)

6. A SETA variable symbol that has been assigned an arithmetic value
by a SETA statement can be used in the Operand field of a SETC
statement. It will be replaced by the value of the SETA variable
symbol converted to a decimal self-defining value with any leading
zeros dropped. (Seechart 9-7.)

¢ Charts 9-3 through 9-7 illustrate the preceding Operand field rules.

¢ NAME OPERATION OPERAND

&CG1 SETC 'NAME' GENERATES NAME

&CG1 SETC 'ADDR' GENERATES ADDR

¢ NAME OPERATION OPERAND

&CG2 SETC '&CG1'.'ONE" GEN. =ADDRONE

¢ NAME OPERATION OPERAND

&CG3 SETC 'L"NAME' GEN, =L'NAME

¢ NAME OPERATION OPERAND

&CG4 SETC 'TWO&& ' GEN, =TWO&&

¢ NAME OPERATION OPERAND

&AL4 SETA 12

&CG5 SETC 'AREA"'&AL4' GEN., =AREA12

9-8

Chart 9-8. MOVE
Macro Using SETC

Chart 9-9. MOVE

Macro With SETC
Generation

¢

NAME OPERATION
MACRO
MOVE
&CG1 SETC
&CG2 SETC
MVC
&CG2 SETC
MVC
MEND
STMNT M
00200
00201 M1
00202 M1

9-9

Set and Conditional
Commands

OPERAND

&FRA,&LNA &FRB,&LNB
'PRINT'

'NAME'
&CG1(&LNA),&CG2
'ADDR'

&CG1+&LNA(&LNB),&CG2

SOURCE STATEMENT

MOVE ,20,,15
MVC PRINT(20), NAME

MVC PRINT +20(15), ADDR

Substring Notation

Format

Specification Rules

Name Field
Operation Field

Operand Field

Notes

Set and Conditional
Commands

¢ The Operand field of a SETC or SETA variable symbol command can
be composed of a substring. Substrings permit the programmer to assign
to a SETC or SETA variable symbol a portion of the value assigned to
another character string.

¢ The format for the SETC and SETA substring is as follows:

NAME OPERATION OPERAND
A set variable symbol. §SETC L 'CC...C'(X,Y)
) SETA

¢ See SETC (page 9-7) or SETA (page 9-4).
& SETC or SETA.

4 1. The Operand field consists of a character string 'CC...C' followed
by two arithmetic expressions (X,Y) enclosed by parentheses and
must be separated by a comma (see 4 below).

2, 'CC...C' may be: (a) other Set variable symbols; (b) symbolic
parameters; (c) self-defining values; or (d) any valid combination
thereof.

3. The calculated character string 'CC...C' to be extracted from an
intermediate string must not exceed eight characters. An intermed-
iate string must not exceed sixteen characters in length at any one
time.

4. X and Y may be any valid arithmetic expressions which are allowed
in the Operand field of a SETA command, where:

X = the position of the first character (LHE) inthe character string
to be assigned to the SETC or SETA symbol in the Name field.

Y = the number of consecutive characterstobe assignedto the SETC

or SETA symbol in the Name field. The characters must be
numeric if SETA,

¢ 1, If 'CC...C'is a SETA variable symbol the leading zeros are ignored
in determining X.

2, The maximum value for X is 16,

3. The maximum value for Y is 8,

9-10

Set and Conditional

Commands
Chart 9-10. SETC and * NAME OPERATION OPERAND GENERATES
SETA Substrings
&CG1 SETC 'ABCDEFGH' ABCDEFGH
&AL1 SETA 4 4
&AL2 SETA 34567 34567
&CG2 SETC '&CG1'(1,3) ABC
&CG3 SETC '&«CG1'(2,&AL1) BCDE
&AL3 SETA '&AL2'(2,4) 4567
Note ¢ The values of &CG2,&CG3, and &ALS3 are generated by valid substring
notations,
Combining Substrings € Substrings can be obtained in the Operand field with other character
SETC values in a SETC command, (Also see Combining Substrings - SETA,
page 9-00.)

1, If a substring follows a character value that is not a substring, the
two can be combined by placing a period between the first character
value and the substring.

Chart 9-11. SETC L 4 NAME OPERATION OPERAND GENERATES
Substring Follows Value
&CGl1 SETC 'ABCDEFGH' ABCDEFGH
&CG2 SETC 'XYZ','&CG1'(2,4) XYZBCDE
&CG3 SETC 'XYZ&CG1'(2,4) YZAB

Notes 4 1. The value of &CG2 illustratesthat only &CG1is substringed, whereas
the value of &CG3 includes the constant XYZ before substringing.

2. If the substring precedes another character value, the two can be
combined by placing the terminating parenthesis of the substring
and the opening quote of the next character value adjacent to one

another,
Chart 9-12. SETC ¢ NAME OPERA TION OPERAND GENERATES
Substring Precedes
Value &CG1 SETC 'ABCDEFGH' ABCDEFGH
&CG2 SETC '&%CG1'(2,4)'XYZ' BCDEXYZ
&CG3 SETC '&CG1'(2,4)'&CG1'(3,4) BCDECDEF

9-11

Combining Substrings
SETA

Chart 9-13. SETA
Substrings

Note

Use of Substrings

Example

Chart 9-14. MOVE
Macro Utilizing
Substrings

Set and Conditional
Commands

¢ Combining substrings in the Operand field of a SETA command requires .
that there cannot be two terms in succession. Thus, only one term may be
present, or each term present must be separated by an operator (+, -, *,

or /).

¢ NAME OPERATION OPERAND GENERATES
&AL1 SETA 2345678 2345678
&AL2 SETA 4 4
&AL3 SETA 2 2
&AL4 SETA '&AL1'(2,4) 3456
&ALS SETA '&AL1Y(&AL2,&AL3) 56
&ALS6 SETA 'QAL2'+'&AL1Y4,2)+5 65
&ALT SETA 12345678 '(&AL2,&AL2) 5678
&ALS SETA '2345678'(2,5) 34567

¢ The values of &AL4 through &AL8 are generated by valid substrings
for SETA commands.

¢ Substrings are useful in assigning a portion of an existing variable
symbol, symbolic parameter, or value to another variable symbol.

4 In chart 9-14 the MOVE macro contains two operand symbolic param-
eters representing four values. The substringtechnique is used to separate
the values. &FROM represents two 4-character NAMES; &LENGTH
represents two 3-character length values.

¢ NAME OPERATION OPERAND

MACRO
&NAME MOVE &FROM,&LENGTH
&CG1 SETC '& FROM '(1,4) FIRST NAME
&AL SETA '« LENGTH'(1,3) FIRST LENGTH
&CG2 SETC '&® FROM '(5 ,4) SECOND NAME
&AL2 SETA '&« LENGTH '(4,3) SECOND LENGTH
&CG3 SETC '"PRINT' CONSTANT PRINT
&NAME MVC &CG3(&AL1), &CG1

MVC &CG3+ &AL1(&AL2), &CG2

MEND

In chart 9-15 the call and generation for the macro definition in chart
9-14 is shown.

9-12

Set and Conditional

Commands
Chart 9-15. Substring 4 STMNT M SOURCE STATEMENT
Macro Generation
00009 FIRST MOVE NAMEADDR, 020015
00010 M1 FIRST MVC PRINT(20),NAME
00011 M1 MVC PRINT+20(15),ADDR
Note 4 Chart 9-15 gives the same generation as did chart 7-5 (page 7-8).

9-13

SETB
Set Binary

General Description

Format

Specification Rules

Nawme Field

Operation Field

Operand Field

Invalid Value

Note

Set and Conditional
Commands

¢ The SETB command assigns the value true or false to a SETB variable
symbol. The programmer can change the value assigned to a SETB
variable symbol by using another SETB command.

The logical expression or relational expression in the Operand field is
evaluated to determine if it is true or false, and the value 1 or 0, res-
pectively, is assigned to the SETB variable symbol appearing in the name
field.

& The format for the SETB instruction is as follows:

NAME OPERATION OPERAND
A SETB variable symbol. SETB AOoral, oralogical or

relational expression en-
closed within parentheses.

¢ 1. The SETB variable symbol in this field canbe either local or global,

2. A global SETB variable symbol has the format &BGn, where
n = 0-127,

3. A local SETB variable symbol hasthe format &BLn, where n = 0-127,

4, There are a maximum of 128 global and 128 local variable symbols
which are initially set to zero (false).

¢ SETB.

4 The Operand field may consist of either a logical expression or a
relational expression enclosed by parentheses. Single-termed logical
expressions 0 or 1 may have the parentheses omitted.

@ If the operand of a SETB isinvalid or the result is invalid, a value of zero
(false) is assigned to the SETB variable symbol in the Name field.

¢ The logical value that has been assigned to a SETB variable symbol is
substituted for the SETB variable symbol when it is used in the Operand
field of a SETB, AIF, or AIFB (see pages 9-23 and 9-25) conditional assem-
bly instruction, If the variable symbol is used in any other assembly
language statement, the logical valueis convertedtoan integer. The logical
value True is converted to the integer 1, and the logical value False is
converted to the integer 0.

9-14

Logical Expressions

Single Term Logical
Expressions

Chart 9-16. Examples of
Single Term Logical SETB

Notes

Set and Conditional
Commands

¢ A logical expression can consist of one of the following:
1. Single term.

2, Two or more terms separated by one of the logical operators NOT,
AND, or OR.

3. One or more sequences of logical expressions enclosed in paren-
theses.
The following procedure is used to evaluate a logical expression in the
operand field of a SETB instruction:

1. Each term (that is, arithmetic relation, character relation, or SETB
symbol) is evaluated and given its logical value (true or false).

2. The logical operations are performed moving from leftto right. The
priority of performing operators is: NOT, AND, and then OR.

3. The computed result is the value assigned to the SETB symbol in
the Name field (see Logical Operator Evaluation, page 9-21),

4. The parenthesized portion or portions of a logical expression are
evaluated before the rest of the terms in the expression are evalu-
ated, If a sequence of parenthesized terms appears within another
parenthesized sequence, the innermost sequence is evaluated first,

¢ If a logical expression consists of a single term, the term must be one
of the following:

1. The value of 0 (false);

2, The value 1 (true);

3. SETB variable symbol;

4. The operator NOT followed by one SETB symbol;

L 4 NAME OPERATION OPERAND GENERATES
&BG1 SETB 1 1 =True
&BL2 SETB 0 0 = False
&BG3 SETB (&BG1) 1 = True
&BL4 SETN (BL2&) 0 = False
&BG5 SETB (NOT &BL2) 1 = True
&BL6 SETB (NOT &BG1) 0 = False

¢ &BG3 and &BL4 take on the same value as the SETB symbol in the
Operand field. & BG5 and &BL6 take on the opposite value because of the
NOT. A symbolic parameter may not be used.

9-15

Two-Tevm Logical
Expression

Note

Multiterm Logical
Expressions

Note

Example

Set and Conditional
Commands

¢ In a logical expression consisting of two terms, the terms must be
SETB variable symbols, separated by at least one operator and enclosed
in parentheses,

4 The following are rules for two-term expressions:
Assume &BL1 =1 (True), and &BG2 = 0 (False).

1. The two terms must be separated by an operator.
&BL3 SETB (&BL1AORA&BG2)

Generates 1 or True

2. Two operators may appear insuccessiononlyifthe pair of operators
are ANDANOT or ORANOT.

&BG4 SETB (&BG1AANDANOTA&BL2)

Generates 1 or true,

3. NOT may begin an expression, whereas AND and OR cannot.
&BL5 SETB (NOTA&BL1AORA&BG2)

Generates 0 or False,

4, The logical operators must be separatedfrom the terms they relate
by at least one blank,

&BG6 SETB (&BL1AANDA&BG2)

Generates 0 or False.

5. The entire logical expression must be enclosed with parentheses.
&BL7 SETB (&BL1AORANOTA&BG2)

Generates 1 or True,

¢ When a logical expression consists of more thantwo terms, three levels
of parentheses and only one continuation card are permitted. The expres-
sion is examined from the innermost parentheses outward.

Within each pair of parentheses the logical operators are performed in
the following order: NOT, AND, OR. Each set of operators are performed
from left to right. (See chart 9-17.)

€ The rules for two-term expression apply to multiterm expressions,

¢ In chart 9-17, two logical expressions, &BG5 and &BG6 have two dif-
ferent values by adding an inner set of parentheses (nested).

9-16

Chart 9-17. Nested
Multiterm Logical
Expressions

Relational Expressions

Example

Chart 9-18. Relational
SETB Expressions

Note

Set and Conditional

Commands

4 NAME OPERATION OPERAND GENERATES
&BG1 SETB 1 1 =True
&BG2 SETB 0 0 = False
&BG3 SETB 1 1 = True
&BG4 SETB 0 0 = False
&BG5 SETB (& BG1AORA&BG2AANDA &BG4) 1 = True
&BG6 SETB ((& BG1AORA&BG2)AANDA&BG4) 0 = False

€ A relational expression can be an arithmetic relation or a character
relation,

A relational expression cannot contain two values in succession, A
relational expression cannot contain two operators in succession. The
relational operators must be separated from the values they relate by at
least one blank.

The relational operators are EQ (equal), NE (not equal), LT (less than),
GT (greater than), LE (lessthanorequalto), and GE (greater than or equal

to).

4 Chart 9-18 illustrates several examples of valid arithmetic and char-
acter relations,

¢ NAME OPERATION OPERAND TYPE OF COMPARISON
&BL1 SETB (&AL4AEQA12) Arithmetic
&BL2 SETB (& LNAALTA256) Arithmetic
&BL3 SETB ('& CG1'ANEA'PRINT") Character
&BlL4 SETB ('&¢FRA'AEQA'NAME") Character

€ The type of expressions in the relation determines the nature of the
comparison that is involved. A logical compare results when all the rela-
tional expressions are considered as character;thatis, all the expressions
are enclosed in single quotes. All other cases result in an arithmetic
(algebraic) comparison.

9-17

Avithmetic Relational
Expressions

Note

Examples

Chart 9-19. SETB
Arithmetic Relational
Expressions

Character Relational
Expressions

Note

Set and Conditional
Commands

€ An arithmetic relation consists of two arithmetic expressions connected
by a relational operator and must be enclosed within parentheses. The
terms are not enclosed by single quotes.

An arithmetic expression can be a SETA variable symbol, a SETC
variable symbol, or any valid operand of a SETA statement. If a SETC
variable symbol is used in an arithmetic relation, the SETC variable
symbol must represent a positive decimal arithmetic value.

An arithmetic or algebraic comparison is made between two arithmetic
expressions by performing a Compare Word (RRformat) instruction on the
values involved,

¢ If any of the terms of a relational expression are not enclosed by single
quotes, the entire expression is considered to be arithmetic.

¢ Chart 9-19 illustrates valid arithmetic relational expressions. Assume
the following values: &AL1=23; &CG1=123; &LNA =10,

¢ NAME OPERATION OPERAND GENERATES
&BL5 SETB (&AL1AGTAS5) True
&BL6 SETB (8AL1AEQA'&CG1'(2,2)) True
&BL7 SETB (&LNA+5AGEA 20) False
&BLS8 SETB AL1+&LNA*2AGTA3*&CG1+4) False

€ A character relation consists of two character values connected by a
relational operator. Each character value must be enclosed by single
quotation marks, A character value can be a SETA variable symbol, a
SETC variable symbol, or any valid operand of a SETC statement, includ-
ing substrings. If a SETA variable symbol is used in a character relation,
the SETA variable symbol is treated as a character value, The maximum
length of any character value used in a character relation is eight char-
acters. If two character values in a character relation are of unequal
length, the longer value is always considered greater, regardless of the
content of the two values.

A logical compare is made by first determining if the expressions are
of equal length; if not, the longer is considered greater and no further
testing is performed. If the expressions are equal in length, the two char-
acter strings are compared and their relationship determined.

@ Unless all of the terms within an expression are enclosed by single
quotes, an arithmetic relation is assumed.

9-18

Set and Conditional
Commands

Examples € Chart 9-20 illustrates valid character relational expressions. Assume
the following values: &CG1=DOG, &CG2=CAT, &CG3=CAGE,

Chart 9-20. SETB ¢ NAME OPERATION OPERAND GENERATES
Character Relational
Expressions &BL9 SETB ("&CG1'AGTA'&CG2") True
&BL10 SETB ('&CG1 'AGTA'&CG3") False
&BL11 SETB ('&CG1'AGTA'&CG3'(1,3)) True
Complex Relational ¢ When the Operand field of a SETB command contains a combination of
Expressions logical and relational expressions, the relational expressions are evaluated

first according to the rules for relational expressions., Similarly, the
logical expressions are then evaluated.

Examples ¢ Chart 9-21 shows two valid complex expressions. Assume the same
values as chart 9-19 and chart 9-20.

Chart 9-21. Complex ¢ NAME OPERATION OPERAND GENERATES
SETB Relational —
Expressions &BL12 SETB (NOTA(&BLSAANDA True
&LNA+5AGEA20))
&BL13 SETB (& BLSAANDA('&CG2'A False

EQA'CAT'AORA&BLSG))

9-19

Set and Conditional
Commands

Testing for Null & The SETB, AIF, and AIFB commands canbe used to test for the presence
Parameters of anull parameter. (See pages 9-23 and 9-25.) This is done by placing the

symbolic parameter to be tested in the Operand field of a AIF, AIFB, or
SETB command and equating (EQ) it to a null character string. A null
character string is represented by two single quote marks. If the parameter
value is present in the macro call, the result is false or 0. If the param-
eter value is not present in the macro call, the result is true or 1, (If NE
is used the results are reversed.)

Chart 9-22. Testing for Null Parameters

NAME OPERATION OPERAND COMMENTS
MACRO

&NAME ADD &FROM]1, &FROM2, &SUM PROTOTYPE

&BG1 SETB ('&FROM1'AEQA™) IS &FROM1 = NULL

&BG2 SETB (' &FROM2'AEQA') IS &FROM2 = NULL

&BG3 SETB ('&FROM1'ANEA'") IS &FROM1 # NULL

&BG4 SETB ('&FROM2'ANEA'") IS & FROM2 # NULL
MEND

FIRST ADD FIELD1, ,FIELD3

*&BG1l = ZERO(0) i.e. FALSE - FROM1 ISN'T NULL

*&BG2 = ONE(1) i.e. TRUE - FROM2 IS NULL

*&BG3 = ONE(1) i.e. TRUE - FROM1 IS NOT NULL

*&BG4 = ZERO(0) i.e. FALSE - FROM2 ISN'T NOT NULL

9-20

Logical Operator
Evaluation

Chart 9-23. Boolean
Logic for Logical
Operators

Set and Conditional

Commands

4 A term(s) in conjunction with a logical operator is (are) evaluated ac-
cording to chart 9-23 of Boolean logic.

4 Operator(s)

First Term

Second Term

Value of Expression

NOT

AND

OR

AND NOT

OR NOT

FALSE
TRUE

TRUE
FALSE
TRUE
FALSE

TRUE
TRUE
FALSE
FALSE

TRUE
TRUE
FALSE
FALSE

TRUE
TRUE
FALSE
FALSE

9-21

TRUE
FALSE
FALSE
TRUE

TRUE
FALSE
TRUE
FALSE

FALSE
TRUE
TRUE
FALSE

TRUE
FALSE
FALSE
TRUE

TRUE
FALSE

TRUE

FALSE
FALSE
FALSE

TRUE
TRUE
TRUE
FALSE

TRUE

FALSE
FALSE
FALSE

TRUE
TRUE
TRUE
FALSE

CONDITIONAL
COMMANDS

Sequence Symbols

Note

Set and Conditional
Commands

¢ The conditional commands enable the programmer toalter the sequence
in which the statements of a macro definition will be generated and thus
executed,

The AGO or AGOB command is similar to an unconditional branch
instruction. It indicates, by means of a sequence symbol, the next statement
to be processed by the macro generator,

The AIF or AIFB command is similartoa conditional branch instruction.
It indicates, by means of the logical value obtained from the operand of a
SETB statement and a sequence symbol, the next statement to be processed
by the macro generator if the condition is true.

To assist the programmer in validating complex macro logic, a trace
mode is available to indicate on the assembly listing nongenerative con-
ditional transfers, (See MTRAC, Section 10.)

The ANOP command is essentially a no-op instruction that is used with
the AGO, AGOB, AIF, and AIFB conditional commands.

& The Name field of a statement may contain a sequence symbol. The
sequence symbol can be used in the Operand field of an AIF, AIFB, AGO,
or AGOB statement to refer to the statement named by the sequence
symbol,

A sequence symbol consists of a period followed by a maximum of
seven alphabetic and/or numeric characters, the first of which must be
alphabetic. All sequence symbols used in a macro definition must be
different. A sequence symbol that appears in the Name field can be
referred to only by AIF, AIFB, AGO, and AGOB commands in the same
macro definition,

The following are valid sequence symbols:

.READER .A23456 AG4
.LOOP2 .X4F2 .SYSTEM
N 4 .BL16

A sequence symbol can be used in the Name field of any model state-
ment within a macro definition that does not require a symbol or Set
variable symbol, except a macro definition header statement (MACRO)
or a macro prototype statement. Sequence symbols can then be used in
the Operand field of an AIF, AIFB, AGO or AGOB command to refer to
the statement named by the sequence symbol. A sequence symbol appear-
ing in the Name field of a model statement does not appear in the generated
statement.

If a sequence symbol appears in the Name field of an inner macro call
in a macro definition, and the corresponding macro prototype contains a
symbolic parameter in the Name field; the sequence symbol does not
replace the symbolic parameter in the model statement.

4 A sequence symbol that is used in the Name field can be referred to
only by AIF, AIFB, AGO, and AGOB in the same definition,

9-22

AlF
Conditional Branch

General Description

Format

Specification Rules

Nawme Field
Operation Field

Opevand Field

Note

Set and Conditional
Commands

4 The AIF command alters conditionally the sequence in which macro
definition statements are executed or generated in the object program.
The sequence symbol in the Operand field must be in the Name field of
any macro definition statement following the AIF command,

€ The format of the AIF command is as follows:

NAME OPERATION OPERAND
A sequence symbol AIF A logical or relational
or blank, expression enclosed in

parentheses followed by
a sequence symbol,

¢ A sequence symbol or blank,
& AIF.

® Any logical or relational expression that can be used in the Operand
field of a SETB command can be used as the expression in the Operand
field of an AIF command including testing for null parameter values. The
logical or relational expression must be enclosed in parentheses. The
sequence symbol in the Operand field must immediately follow the closing
parentheses of the logical or relational expression. The sequence symbol
in the Operand field must be in the Name field of any macro definition
statement following the AIF command,

The logical or relational expression in the Operand field is evaluated
to determine if it is true (1) or false (0). If the expression is true, the
macro definition statement named by the sequence symbol in the Operdnd
field is the next statement processed by the macro generator. If the
expression is false, the next sequential statement is processed by the
macro generator.

The following are examples of valid Operand fields of the AIF command:
(& BG12AANDA&BL10).LOOP
(&ZAL10AEQA&AGSE).LAST

¢ The statement following the REPRO statement is not scanned during
macro generation,

9-23

Example

Chart 9-24. Use of AIF

Command

Chart 9-25. AIF
Changes Generations

Set and Conditional
Commands

4 The example in chart 9-24 illustrates the use of the AIF Conditional
command. It also illustrates the use of global Set variable symbols to
carry values between macro calls in the same assembly. The first time
the macro call appears in an assembly, record area is defined. The
generated instructions of all additional calls of this macro definition in
an assembly use the record area specified in the first appearance of the
macro call.

Note that the B and DS statements are not generated for the second
macro call, because when the first macro was generated, &BG100 was set
to 1.

Note:

Although the prototype allows for two fields, & FRB is tested for null,
Thus, the second macro call generates only one MVC statement.

. NAME OPERATION OPERAND

MACRO
MOVE &FRA,&LNA,&FRB,&LNB
AIF (&BG100).GO

&BG100 SETB 1

&CG15 SETC 'RECORD'
B &CG15+150

&CG15 DS CL150

.GO MVC &CG15(&LNA),&FRA
AIF ("¢ FRB'AEQA").END
MVC &CG15+&LNA(&LNB),&FRB

.END MEND

Chart 9-25 shows the macro calls and generation for the definition in
chart 9-24.

¢ STMNT M SOURCE STATEMENT
00020 MOVE NAME,20,ADDR,15 CALL
00021 M1 B RECORD+150
00022 M1 RECORD DS CL150
00023 M1 MVC RECORD(20),NAME
00024 M1 MVC RECORD+20(15),ADDR
00025 MOVE A,50 CALL
00026 M1 MVC RECORD(50),A

9-24

AIFB
Conditional Branch
Backward

General Description

Format

Specification Rules

Name Field

Operation Field

Operand Field

Example

Set and Conditional
Commands

¢ The AIFB command alters conditionally the s€quence in which macro
definition statements are executed or generated inthe object program. The
AIFB command is identical to the AIF command, except that the sequence
symbol in the Operand field must be in the Name field of any macro defi-
nition statement preceding the AIFB command.

€ The format for the AIFB command is as follows:

NAME OPERATION OPERAND
A sequence symbol AIFB A logical or relational
or blank, expression enclosed in

parentheses followed
by a sequence symbol.

¢ The rules for the Name field and Operand field are identical to those
given under AIF on page 9-23, except as noted in the Operand fields.

€ Sequence symbol or blank.

¢ AIFB,

¢ A logical or relational expression followed by a sequence symbol,
which appears in the Name field of any macro definition statement pre-
ceding the AIFB command.

® The example in chart 9-26 illustrates the use of the AIFB command.
The function of the macro definition is to move a specified number of
bytes of information from one location in core storage to another. The
macro mnemonic is MOVER, The first parameter represents the number
of bytes to be moved. The second parameter specifies the first position
of the field to be filled. The third parameter specifies the location of the
first byte to be moved. Note that the value of the local variable symbol
&ALl is initially zero.

9-25

Set and Conditional
Commands

Chart 9-26. AIFB NAME OPERATION OPERAND
Command MACRO
MOVER &NOCHAR,&TO,&FROM
&AL2 SETA &NOCHAR
AIF (&AL2 LE 256).LSTMOV
.LOOP MVC &TO+&AL1.(256),&FROM+&AL1
&AL1 SETA &AL1+256
&AL2 SETA &NOCHAR - &AL1
AIFB (&AL2 GT 256).LOOP
.LSTMOV MVC &TO+&ALL.(&AL2),&FROM+&AL1
MEND

In chart 9-27, the macro calls and generation using the macro definition
in chart 9-26 are shown,

Chart 9-27. AIFB

¢ STMNT M
Generations

SOURCE STATEMENT

00100 MOVER 540,0UT,INPUT CALL 1
00101 M1 MVC OUT+0(256),INPUT+0

00102 M1 MVC OUT+256(256),INPUT+256

00103 M1 MVC OUT+512(28),INPUT+512

00104 MOVER 97,0UT+540,RESULT CALL 2
00105 M1 MVC OUT+540+0(97), RESULT+0

9-26

GO

Unconditional Branch

General Description

Format

Specification Rules

Name Field
Operation Field

Operand Field

Example

Chart 9-28. AGO
Command

Note

Set and Conditional
Commands

¢ The AGO command alters the sequence in which macro definition
statements are executed or generated in the object program. The sequence
symbol in the Operand field must be in the Name field of any macro
definition statement following the AGO command.

€ The format of the AGO instruction is as follows:

NAME OPERATION OPERAND
A sequence symbol or blank, AGO A sequence symbol,

4 A sequence symbol or blank.
¢ AGO,

€ The sequence symbol in the Operand field must be in the Name field of
any macro definition statement following the AGO command. The statement
named by the sequence symbol in the Operand field is the next statement
processed by the macro generator.

& The example in chart 9-28 illustrates the use of the AGO conditional
command. The macro definition in this example is functionally the same
as the macro definition in chart 9-26.

¢ NAME OPERATION OPERAND
MACRO
MOVER &NOCHAR,&TO,&FROM
&AL2 SETA &NOCHAR
AIF (&AL2 GT 256).LOOP
AGO .LSTMOV
.LOOP MVC &TO+&AL1.(256),&FROM+&AL1
&ALl SETA &AL1+256
&AL2 SETA &NOCHAR - &AL1
AIFB (&AL2 GT 256),LOOP
.LSTMOV MVC &TO+&AL1.(&AL2),&FROM+&ALL
MEND

¢ In chart 9-27 the macro calls and generation using the macro definition
in chart 9-28 are shown.

9-27

AGOB
Unconditional
Branch Backward

General Description

Format

Specification Rules

Name Field
Operation Field

Operand Field

Example

Chart 9-29. AGOB
Instruction

Note

Set and Conditional
Commands

¢ The AGOB alters the sequence in which macro definition statements
are executed or generated in the object program. The AGOB command is
identical to the AGO command, except that the sequence symbol in the
Operand field must be in the Name field of any macro definition statement
preceding the AGOB command.

€ The format of the AGOB command is as follows:
NAME OPERATION OPERAND

A sequence symbol or blank, AGOB A sequence symbol.

€ The rules for the Name field and the Operand field are identical to those
given under AGO except as noted in the Operand field.

¢ A sequence symbol or blank.
¢ AGOB,

® Identical to AGO command except the sequence symbol must be in the
Name field of any macrodefinition statement precedingthe AGOB command,

& The example in chart 9-29 illustrates the use of the AGOB conditional
command, The macro definition in this example is functionally the same
as the macro definition in chart 9-26,

* NAME OPERATION OPERAND

MACRO
MOVER &NOCHAR,&TO,&FROM

&AL2 SETA &NOCHAR

.LOOP AIF (&AL2 LE 256),LSTMOV
MVC &TO+&AL1,(256),& FROM+&AL1

&AL1 SETA &AL1+256

&AL2 SETA &NOCHAR - &AL1
AGOB .LOOP

.LSTMOV MVC &TO+&AL1.(&AL2),&FROM+&AL1
MEND

¢ In chart 9-27 the macro calls and generation using the macro definition
in chart 9-29 are shown.,

9-28

ANOP
No Operation

General Description

Format

Specification Rules

Name Field
Operation Field
Operand Field
Example

Chart 9-30. ANOP

Command

Set and Conditional
Commands

¢ The ANOP command facilitates conditional or unconditional branching
to statements that are named by symbols or Set variable symbols in the
Name field. The ANOP statement should be placed before the statement
it is desired to branch to and a branch performed to the ANOP statement.

€ The format for the ANOP command is as follows:
NAME OPERATION

ANOP

OPERAND

A sequence symbol, Not used.

¢ A sequence symbol or blank.
¢ ANOP,
¢ Not used.

€ The example in chart 9-30 illustrates the use of the ANOP command.

This example allows a field of any length to be moved. The source and
destination fields need not be on a fullword boundary. The Name field
contains the symbolic name of the first instruction of the generated
macro. Note that the value of the local variable symbol &ALl is initially
Zero.

L 2 NAME OPERATION OPERAND
MACRO
&NAME MOVER &NOCHAR,&TO,&FROM
&AL2 SETA &NOCHAR
&CG1 SETC '&«NAME'
.LOOP AIF (&AL2 LE 256). LSTMOV
&CG1 MVC &TO+&AL1,(256),&FROM+&ATL1
&AL1 SETA &AL1+256
&AL2 SETA &NOCHAR - &AL1
&CG1 SETC t
AGOB .LOOP
.LSTMOV ANOP
&CGl1 MVC &TO+&AL1,(&AL2),&FROM+&AL1L
MEND

In chart 9-31 the macro call and generation using the macro definition
in chart 9-30 are shown.

9-29

Chart 9-31. ANOP
Generations

STMNT
00200
00201
00202
00203
00204

00205

M

M1

M1

M1

M1

Set and Conditional
Commands

SOURCE STATEMENT

FIRST MOVER

FIRST MVC

MVC

MVC

SEC MOVER

MVC

9-30

540,0UT,INPUT CALL
OUT+0(256),INPUT+0
OUT+256(256),INPUT+256
OUT+512(28),INPUT+512
60,0UTPUT,IN CALL

OUTPUT+0(60),IN+0

10. SPECIAL
PURPOSE
FEATURES

INTRODUCTION

¢ In Sections 7, 8, and 9, the facilities for writing and calling a basic to
medium complex macro have been described.

This section describes the specialized features of the macro language.
The extended features of the macro language allow the programmer to:

1. Terminate processing of a macro definition (see MEXIT);
2. Generate macro error messages (see MNOTE);

3. Use the system variable symbols (see &SYSNDX, &SYSECT, and
& SYSLIST);

4., Assist in validating complex macro logic by utilizing the macro
trace mode to indicate on the assembly listing the values of Set
variable values and branches taken or not taken (see MTRAC and
NTRAC).

10-1

ADDITIONAL
GENERATOR
COMMANDS

MEXIT
Macro Definition Exit

General Description

Format

Specification Rules

Name Field
Operation Field
Opervand Field

Note

Difference Between
MEXIT and MEND

Example

Special Purpose Features

® The MEXIT command indicates to the macro generator that processing
of a macro definition is to be terminated. The MEXIT command is used
in a macro definition when the programmer wishesto execute and generate
only a portion of the definition,

€ The format of the MEXIT command is as follows:

NAME OPERATION OPERAND

A sequence symbol or blank. MEXIT Not used.

€ A sequence symbol or blank,
¢ MEXIT,
4 Not used.

¢ If the macro generator processes a MEXIT statement, the next state-
ment assembled is the statement following the call to the macro being
generated.,

€ The MEXIT command should not be confused with the MEND command.
The MEND command indicates the end of a macro definition to the macro
editor, as well as signifying the end of generation. Every macro definition
must contain a MEND command even if the definition contains one or more
MEXIT commands,

€ Chart 10-1 illustrates the use of the MEXIT command. The macro
definition in this example is functionally the same as the macro definition
in chart 9-26 (page 9-26), MEXIT has been used to show the flexibility
available to the programmer,

10-2

Special Purpose Featuves

Chart10-1. MEXIT * NAME OPERATION OPERAND
Command —
MACRO
MOVER &NOCHAR,&TO,&FROM
&AL2 SETA &NOCHAR
.RETURN AIF (&AL2 GT 256).LOOP
MVC &TO+&AL1.(&AL2),&FROM+&AL1
MEXIT
.LOOP MVC &TO+&AL1.(256),&FROM+&AL1
&ALl SETA &AL1+256
&AL2 SETA &NOCHAR - &ALl
AGOB .RETURN
MEND

In chart 10-2 the macro calls and generation using the macro definition
in chart 10-1 are shown.

Chart 10-2. MOVER ¢ STMNT M SOURCE STATEMENT
Generation With MEXIT

00300 MOVER 540,0UT,INPUT CALL 1
00301 M1 MVC OUT+0(256),INPUT+0

00302 M1 MVC OUT+256(256),INPUT+256

00303 M1 MVC OUT+512(28),INPUT+512

00304 MOVER 97,0UT+540,RESULT CALL 2
00305 M1 MVC OUT+540+0(97), RESULT+0

10-3

MNOTE
Error Message
Request

General Description

Format

Specification Rules

Nawme Field
Operation Field

Operand Field

Example

Special Purpose Features

¢ The MNOTE command produces an error message in the program
listing during generation, If any symbolic parameters or variable symbols
are used in the Operand field, they are replaced by the values they rep-
resent. The MNOTE line will appear as a comment in the program listing
without the quotation marks.

& The format of the MNOTE command is as follows:

NAME OPERATION OPERAND
A sequence symbol MNOTE An error code, followedby a
or blank. comma followed by the desired

error message enclosed with-
in quotation marks.

€ A sequence symbol or blank.
4 MNOTE,

¢ The error code is a decimal digit from 0 to 9. If the error code is
omitted, 0 is assumed. As the error code value increases, the error be-
comes more serious,

€ The example in chart 10-3 illustrates the use of the MNOTE statement.
This macro definition tests for the presence of the three parameters in the
macro call, If any parameter is missing, anappropriate message is printed
and generation of the macro is terminated.

10-4

Special Purvpose Fealures

Chart10-3. MNOTE ¢ NAME OPERATION OPERAND
Command —_—
MACRO
MOVE &NOCHAR,&TO,&FROM
AIF ('&NOCHAR' NE ''").CHKTO
MNOTE 'FIRST PARAMETER OMITTED'
&BL1 SETB 1
.CHKTO AIF ('&TO' NE ''").CHKFR
MNOTE 'SECOND PARAMETER OMITTED'
&BL1 SETB 1
.CHKFR AIF ('&¢FROM' NE '').TESTSW
MNOTE 'THIRD PARAMETER OMITTED'
.TERM MNOTE 3,'GENERATION TERMINATED'
MEXIT
.TESTSW AIFB (&BL1). TERM
&AL2 SETA &NOCHAR
.LOOP AIF (&AL2 LE 256),LSTMOV
MVC &TO+&AL1.(256),&F ROM+&AL1
&AL1 SETA &AL1+256
&AL2 SETA &NOCHAR - &ALl
AGOB .LOOP
.LSTMOV MVC &TO+&ALL,(&AL2),&FROM+&AL1
MEND

10-5

SYSTEM VARIABLE
SYMBOLS

&SYSNDX
Macro Call Index

Note

Example

Chart10-4. &SYSNDX
Variable Symbol

Special Puvpose Features

4 System variable symbols are local variable symbols that are assigned
values during generation by the macro generator. There are three system
variable symbols: &SYSNDX, &SYSECT, and &SYSLIST. They can be used
in the Name field or Operand field of model statements except in the
Name field of Set and Conditional commands. The value substituted for
the variable symbol is the last value that the macro generator has assigned
to the variable symbol., The &SYSLIST system variable symbol cannot be
used with a keyword macro definition.

€ The system variable symbol &SYSNDX can be combined with other
characters to create unique symbols for generated statements, If &SYSNDX
is used in the Name field or Operand field of a statement that is part of a
macro definition, the value substituted for &SYSNDX is the value assigned
to it for the macro call being interpreted.

&SYSNDX is assigned a different value for each outer and inner macro
call that is interpreted by the macro generator. &SYSNDX is assigned the
value 0001 for the first macro call that is interpreted by the macro
generator,

The value assigned to &SYSNDX for any other macro call is one plus
the value assigned to &SYSNDX for the previous macro call. Throughout
one use of a macro definition, the value of &SYSNDX can be considered
a four-digit constant that is independent of any macro call in that defini-
tion. High-order zeros are not suppressed.

€ &SYSNDX can be combined with one to four other characters. The
resulting Name must conform to other Names permitted in the Assembler
(that is, it must begin with an alphabetic character).

4 One use of the &SYSNDX system variable symbolis shown in the macro
definition in chart 10-4. In this example, A&SYSNDX provides a unique
symbol in the Namefield for branchingtoa particular instruction generated
by the macro definition. In the example, the content of a field will not be
moved if the first byte of the field is blank,

. NAME OPERATION OPERAND
MACRO
MOVER &NOCHAR,&TO,&FROM
CLI &FROM,X '40'
BE A&SYSNDX
MVC &TO(&NOCHAR),&FROM
A&SYSNDX EQU *

If the macro calls in chart 10-5 and chart 10-6 were the 106th and the
107th macro calls interpreted by the macro generator, the statements
presented in chart 10-5 and 10-6 would be generated.

10-6

Chart 10-5. Generation

with &SYSNDX
Counter=0106

Chart 10-6. Generation
with &SYSNDX
Counter=0107

STMNT
00500
00501
00502
00503

00504

STMNT
00520
00521
00522
00523

00524

M

M1
M1
M1

M1

M1
M1
M1

M1

10-7

Special Puvpose Features

SOURCE STATEMENT

A0106

A0107

MOVER 20,PRINT ,NAME
CLI NAME,X'40'

BE A0106

MVC PRINT(20), NAME
EQU *

SOURCE STATEMENT

MOVER 15,PRINT,ADDR

CLI ADDR,X'40'

BE A0107

MVC PRINT(15), ADDR
EQU *

&SYSECT
Current Control
Section Name

Example

Chart 10-7. &SYSECT
Variable Symbol

Special Purpose Features

4 The system variable symbol &SYSECT gives the programmer the
ability to generate a separate control section or dummy section during
macro generation,

At the time of each macro call, &SYSECT is assigned a value that is
the name of the CSECT or DSECT which contains the macro call.

It is possible for an inner macro tohave a different value for &SYSECT
from that assigned in the outer macro. This would occur where an outer
macro contained a CSECT or DSECT statement before the inner call.

@ Chart 10-7 and chart 10-8 illustrate outer and inner macro calls
taking on different &SYSECT values. Notice that when the macro call
OUTER is given, the value of &SYSECT is PROGB, whereas when the
macro call INNER is given, the value of &SYSECT is SUBRA. This is
because SUBRAAAACSECT was given prior to INNER,

¢ NAME OPERATION OPERAND
MACRO
OUTER
SUBRA CSECT
DS 100C
DC A(&SYSECT)
INNER SUBRB
&SYSECT CSECT
MEND
MACRO
INNER &ID
&ID CSECT
DS 50C
DC A(&SYSECT)
MEND

10-8

Chart10-8. &SYSECT
Generation with Inner

Call

&SYSECT for Minimum
Generation

Example

Chart 10-9. &SYSECT for
Minimum Generation

Special Puvpose Features

¢ STMNT M SOURCE STATEMENT
01000 PROGA CSECT
01001 DS 200C
01.500 OU:I‘ER OUTER CALL
01501 M1 SUBRA CSECT
01502 M1 DS 100C
01503 M1 DC A(PROGA)
01504 M1 INNER SUBRB INNER CALL
01505 M2 SUBRB CSECT
01506 M2 DS 50C
01507 M2 DC A(SUBRA)
01508 M1 PROGA CSECT

€ The value of &SYSECT can be very useful to generate a subroutine in a
new CSECT and on subsequent macro calls, only the linkage to the already
generated subroutine is generated.

¢ Based on the macro definition in chart 10-9, the first call to MOVEY
generates the entire CSECT and the linkage, whereas the second call and
subsequent calls will generate only the linkage, (Chart 10-10.)

* NAME OPERATION OPERAND

MACRO
MOVEY
AIF (&BG101).LINK

&BG101 SETB 1

MOVEMAC CSECT
NOP
NOP
NOP
NOP
NOP

o O o o o

B 0(10)
&SYSECT CSECT

B AMOVEMAC+4
AMOVEMAC DC A(MOVEMAC)
.LINK L 9,AMOVEMAC

BALR 9,10

MEND

10-9

Chart 10-10. Generation
for Subroutine and
Linkage

¢ STMNT M1

01000

01001

02250

02251

02252

02253

02254

02255

02256

02257

02258

02259

02260

02261

02262

02300

02301

02302

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

SOURCE STATEMENT

PROGA CSECT

DS

MOVEY

MOVEMAC CSECT

NOP

NOP

NOP

NOP

NOP

PROGA CSECT

AMOVEMAC DC

BALR

MOVEY

BALR

10-10

Special Puvpose Features

200C

, FIRST CALL

0(10)

AMOVEMAC +4
A(MOVEMAC)
9,AMOVEMAC

9,10

, SECOND CALL
9,AMOVEMAC

9.10

&SYSLIST
Macro Operand
Field

Note

Examples

Chart 10-11. &SYSLIST
Variable Symbol

Special Purpose Fealtuves

¢ The system variable symbol &SYSLIST provides the programmer with
an alternate way to refer to macro call operand values, &SYSLIST and
symbolic parameters can be used in the same macro definition,

&SYSLIST(n) refers to the nth value of a positional macro call, Symbol
(n) can be an arithmetic expression., The &SYSLIST variable symbol can-
not be used in a keyword macro definition,

€ The operand values in a positional macro call are referenced in the
following manner:

(0)
(1) through (49)

Name field operand value.

Operand field values.

€ The macro definition in chart 10-11 illustrates the &SYSLIST system
variable symbol. Depending on the number of parameters included in the
macro call, two, three, or four fields will be added. The result will be
stored in the last field that is specified in the macro call operand.

Note that if &AL1 = 2, then &SYSLIST (&AL1) would be &SYSLIST(2) or
refer to the 2nd operand value of FICA in chart 10-12, When the value
of &SYSLIST (&AL2) is null, the last value (&SYSLIST(&AL1)) is stored.

¢ NAME OPERATION OPERAND
MACRO
&NAME ADD &F1,&F2,&F3,&4F4,&F5
&NAME ST 2,WORK
L 2,&F1 LOAD 1st VALUE
&AL1 SETA 2
.ADD A 2,&SYSLIST (&AL1) ADD(N) Value
&AL1 SETA &AL1+1 FIRST TIME = 3
&AL2 SETA &AL1+1 FIRST TIME = 4
AIFB ('&SYSLIST(&AL2)"
ANEA "), ADD
ST 2,&SYSLIST(&AL1)
L 2,WORK
MEND

10-11

Chart10-12. Values
Substituted in SYSLIST
Macro

¢ STMNT
02400
02401
02402
02403
02404
02405
02406

02407

02500
02501
02502
02503
02504

02505

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

Special Purpose Features

SOURCE STATEMENT

ADD

ST

ST

ADD

ST

ST

10-12

FTAX,FICA,STAX,BONDS,DEDUCT
2,WORK

2,FTAX

2,FICA

2,STAX

2,BONDS

2,DEDUCT

2,WORK

REGHRS,OTHRS,TOTHRS
2,WORK

2,REGHRS

2,0THRS

2,TOTHRS

2,WORK

TRACE COMMANDS

MTRAC
Macro Trace

General Description

Format

Specification Rules

Nawme Field
Operation Field
Operand Field

Notes

Example

Special Puvpose Features

¢ The MTRAC command is available to assist the programmer in deter-
mining the effective conditional transfers within the macro logic,

Each conditional command (AGO,AGOB, AIF, AIFB, and ANOP) that is
executed is printed on the assembly listing;a "Y' or "N printed in column
80 indicates whether or not the branch was performed. A minus "-"in
column 80 indicates an ANOP command or invalid statement.

Each Set command (SETA, SETB, SETC) which is executed is also printed
on the assembly listing and its current value printed in columns 73-80,

a. SETA Variables: displayed as eight decimal digits incolumns 73-80
and zero filled; negative values are displayed as a character value
(X'D0'=0, does not print; X'D1'=1, prints as 'J';..., X'D9'=9,
prints as 'R").

b. SETB Variables: displayed as a single character in column 80,
'"T'=true or 1 value; 'F'=false or 0 value.

c. SETC Variables: displayed as one to eight characters, beginning in
column 73, and space filled (Null values print as: --NULL--),

& The format of the MTRAC command is as follows:
NAME OPERATION OPERAND

Not used. MTRAC Not used.

& Not used.
& MTRAC.
€ Not used.

4 1. The command assumes that the NOGEN option isnot in force.
2. This command can be used both inside and outside macros.
3. This command affects only macro generations following the MTRAC

statement,

® Chart 10-13 shows the macro definition, macro call, and generation

with the MTRAC command ineffect, Note thatthe MTRAC values are shown
to the right. The actual listing was compressed for printing. Also, see
charts 9-30 and 9-31.

10-13

OBJECT CODE

D2 FF 30EB 3AAC

D2 FF 31E8 3BAC

D2 1B 32E8 3CAC

M

M1
M1
M1
M1
M1
M1
M1
M1
M1
M1
M1
M1
M1
M1
M1
M1
M1
M1

Special Purpose Features

Chart 10-13. Example of MTRAC Output

SOURCE STATEMENT

00000540
ONE
N

00000256

00000284

--NULL--
Y
N

00000512

00000028

--NULL--
Y
Y

MTRAC
MACRO
&NAME MOVER &NOCHAR,&TO,&FROM
* EXAMPLE OF MTRAC COMMAND
&AL2 SETA &NOCHAR
&CG1 SETC '&NAME'
.LOOP AIF (&AL2 LE 256),LSTMOV
&CG1 MVC &TO+&AL1,(256),& FROM + &ALl
&AL1 SETA &AL1+256
&AL2 SETA &NOCHAR - &AL1
&CG1 SETC "
AGOB .LOOP
.LSTMOV ANOP
&CG1 MVC &TO+&AL1,(&AL2),& FROM + &AL1
MEND
ONE MOVER 540,0UT,INPUT
* EXAMPLE OF MTRAC COMMAND
&AL2 SETA &NOCHAR
&CG1 SETC '&NAME'
.LOOP AIF (&AL2 LE 256),LSTMOV
ONE MVC OUT + 0(256),INPUT + 0
&AL1 SETA &AL1+256
&AL2 SETA &NOCHAR - &AL1
&CG1 SETC n
AGOB .LOOP
.LOOP AIF (&AL2 LE 256),LSTMOV
MVC OUT +256(256),INPUT +256
&AL1 SETA &AL1+256
&AL2 SETA &NOCHAR - &AL1
&CG1 SETC "
AGOB .LOOP
.LOOP AIF. (&AL2 LE 256),LSTMOV

.LSTMOV ANOP

MVC OUT +512(28),INPUT +512

10-14

NTRAC

No Trace

General Description

Format

Specification Rules

Name Field
Operation Field
Operand Field

Notes

Special Purpose Features

4 The NTRAC command cancels the MTRAC function described on page
10-00.

& The format of the NTRAC is as follows:
NAME OPERATION OPERAND

Not used, NTRAC Not used.

€ Not used.

¢ NTRAC.

¢ Not used.

¢ 1. The command cancels the MTRAC function described onpage 10-13.
2. The command can be used both inside and outside macros.

3. This command affects only macro generations following the NTRAC
statement,

10-15

1. KEYWORD
MACROS

INTRODUCTION

€ Keyword macro definitions provide the programmer with an alternate
way of preparing macro definitions.

A keyword macro definition enables a programmer to reduce the number
of operand values in each macro call that corresponds to the definition, and
to write the operand values in any order.

The positional macro call, as described in Section 8, required the
operand values to be written in the same order as the corresponding
symbolic parameters in the Operand field of the prototype statement
(Section 7),

In the keyword macro definition, the programmer can assign standard
values to any symbolic parameters that appear in the Operand field of the
prototype statement. The standard value assigned is substituted for the
symbolic parameter, if the programmer does not write anything in the
Operand field of the macro call to correspond to the symbolic parameter.
The maximum length of the standard value is eight characters.

When a keyword macro call is written, the programmer need only write
one operand for each symbolic parameter value he wants to change.

Keyword macro definitions are prepared the same way as positional

macro definitions (Section 7), except that the prototype statement is written
differently, and &SYSLSIT may not be used in the definition.

11-1

KEYWORD MACRO
PROTOTYPE
STATEMENT

General Description

Format

Specification Rules

Name Field
Operation Field

Operand Field

Keyword Macvros

& The keyword macro prototype statement indicates to the assembly the
format and mnemonic operation code of the keyword macro the assembly
is to interpret. It must be the second statement of every macro definition,
This type of prototype statement differs from the positional macro prototype
only in regard to the equal sign (=) requirement and the standard value
option. Otherwise, the specification rules given for the positional prototype
apply also to the keyword prototype.

@ The format is as follows:

NAME OPERATION OPERAND
A symbolic A symbol, Comma(,) or a maximum
parameter or of49 operands, separated
blank, by commas, of the form

described below.

4 See positional macro prototype statement (page 7-4).
& See positional macro prototype statement (page 7-4).

¢ The Operand field may contain a maximum of 49 operands separated by
commas as follows:

1. Each operand must consist of a symbolic parameter, immediately
followed by an equal sign (=) and optionally followed by a standard
value,

&PARAMTR= [STDVALUE] MAXIMUM LENGTH

2. A standard value thatisapartofan operand must immediately follow
the equal sign.

3. All operands, except the last, must be immediately followed by a
comma,

4. Anything that can be used inthe Operandfield of a macro call (except
variable symbols), may be used as a standard value., For a further
discussion of valid operand values see Section 8,

5. The last operand must be followed by a space instead of a comma.,

6. The same symbolic parameter cannot be used more than once as
part of an operand.

11-2

Examples

Note

Example

Chart 11-1. Keyword
Macro Prototype

Keyword Macvos

® The following are valid keyword macro prototype operands:

&TO=
&FROM=NAME
&SPACE=10
&V3T=X'FF'

& The rules for continuation and absence of parameters are discussed in
Section 7.

¢ The sample keyword macro prototype in chart 11-1 contains a symbolic
pdrameter in the Name field and nine operands in the Operand field. The
mnemonic operation code is KEYMV, &INITIAL, &SPACE, and &AREA are
assigned standard values whereas, the remaining six operands are not.

*M SOURCE STATEMENT

MACRO

&NAME KEYMV &INITIAL=10, &SPACE=5, &8AREA=X
PRINT, §FRA=, &LNA=, &FRB=, §LNX
B=, &FRC=, &LNC=

11-3

KEYWORD
MACRO CALL

General Description

Format

Specification Rules

Nawme Field

Operation Field

Opevand Field

Examples

Keyword Macros

& This is the second type of macro call format and it allows the values
specified by each parameter to be used with a predefined keyword. The
presence of the keyword allows the parametersto be specified in any order
in the macro call.

& The format for the keyword macro is as follows:

NAME OPERATION OPERAND
A symbol Mnemonic operation Commaf(,) or a maximum
or blank, code, of 49 operands, separated

by commas, in the form
described below.

& See positional macro call statement (page 8-3).

€ The Operation field of akeyword macrocall contains the same operation
code that appears in the Operation field of the macro prototype.

¢ Each operand must consist of a keyword immediately followed by an
equal sign and an optional value, Anything that can be used as an operand
value in a positional macro call statement can be used as a value in a
keyword macro call statement. The rules for forming valid positional
operand values are detailed in Section 8,

A keyword consists of a maximum of seven letters and digits, the first
of which must be a letter.

The keyword part of each keyword macro call must correspond to one of
the symbolic parameters that appears in the Operand field of the keyword
prototype statement; that is, the keyword portion must be identical to the
characters of the symbolic parameter that follows the ampersand (&).

NAME OPERATION OPERAND
&NAME KEYMV &INITIAL=10,...... PROTOTYPE OPERAND
KEYMV INITIAL=30, CALL OPERAND

@ The following are valid keyword macro call operands:

TO=WORK
FROM=

SPACE=15
V3T=X"'40'

11-4

Operand Order

Replacement Rules

Example

Keyword Macvos

4 The operands in a keyword macro call can be written in any order. If an
operand appeared in a keyword macroprototype statement, a corresponding
operand does not have to appear in the keyword macro call statement.
Because the operands can be written in any order if an operand is omitted,
the comma that would have separated it from the next operand need not be
written,

Operands can appear on separate cards., A comma must follow every
operand except the last, and the continuation column must contain a non-
blank character. Comments can be contained on the separate cards that
contain individual operands.

4 Rules used to replace the symbolic parameters inthe model statements
of a keyword macro definition are as follows:

1. If the symbolic parameter appeared in the Name field of the macro
prototype, and the corresponding characters of the macro call are a
symbol, the symbolic parameter in the Name fieldis replaced by the
symbol, Otherwise, the symbolic parameter in the Name field is
considered to be a null parameter,

2, The value associated with each keyword in the macro prototype
becomes the value of the symbolic parameter unless a value is
associated with each keyword specified in an operand of the macro
call. In this case, the value in the macro call replaces the value
obtained from the prototype for the symbolic parameter.

4 In Chart 11-2 a keyword macro definition is illustrated. This definition
will be used in succeeding charts,

Chart 11-2. Keyword Macro Definition

M SOURCE STATEMENT

&NAME

MACRO
KEYMV

* EXAMPLE OF A

&ALL
&AL2
&AL3
&AL4

&AL2
&AL4
. TRYB

&AL2
&AL4
. TRYC

.END

SETA
SETA
SETA
SETA
AIF
MVC
SETA
SETA
ATF
MVC
SETA
SETA
ATF
MvC
MEND

&INITIAL=10,&SPACE=5, &8AREA=PRINT, &FRA=, &LNA=, &FRB=, &LNB=C

. &FRC=, &§LNC=

KEYWORD MACRO
&INITIAL

0

&SPACE

&ALL
("&FRA'AEQA'') .TRYB
&AREA+§&AL4 (&LNA) , &FRA
&LNA

&ALA+&AL2+&AL3
('"&FRB'AEQA'') .TRYC
&AREA+&AL4 (&LNB) , &FRB
&LNB

&AL4+&AL2+6&AL3
("&FRC'AEQA'') ,END
&AREA+6&AL4 (&LNC) , &FRC

11-5

SET INITIAL
LAST LENGTH
SPACES BETWEEN
NEXT POSITION

Example

Chart11-3. Keyword
Call Using
Standard Values

Example

Chart 11-4. Keyword
Call Replacing
Standard Values

Null Parameters

Keyword Macros

¢ Chart 11-3 illustrates a call and generation for the definition in chart
11-2. Notice two standard values (INITIAL and AREA) are used and FRA
and LNA are given values,

& STMNT M SOURCE STATEMENT
01000 KEYMV FRA=NAME,LNA=20
01001 M1 MVC PRINT+10(20),NAME

4 Chart 11-4 illustrates SPACE used as standard, INITIAL and AREA
changed.

¢ STMNT M SOURCE STATEMENT
01002 KEYMV INITIAL=30,AREA=WOR.K, C
01003 FRB=ADDR, FRC=CITY, C
01004 LNB=15,LLNC=25
01005 M1 MVC WORK+30(15),ADDR
01006 M1 MVC WORK+50(25),CITY

& Null parameters in a keyword macro definition are processed in the
same way as inthe positional macrodefinition. Null parameters are formed
under any of the following conditions:

1. If a symbolic parameter appears inthe Namefield of a macro proto-
type statement and the Name field of a macro call is blank, a null
parameter is formed.

2, If a keyword is specified in the Operand field of a macro call and no
value is associated with the keyword, a null parameter is formed,
regardless of the presence of a standard value in the prototype
statement,

3. If no standard value is associated with a keyword in the Operand
field of a keyword prototype statement, and the keyword and its
associated value are omitted from the Operandfieldof a macro call,
a null parameter is formed.

11-6

Example

Chart11-5. Keyword
Null Parameters

Note

Keywovd Macvros

¢ Using the macro definition in chart 11-2, chart 11-5 illustrates the
creation of null parameters. A null parameter is created for INITIAL,
although it contained a standard value. FRA, LNA, FRB, and LNB have
been created as null parameters by the omission of these keywords.

4 STMNT M SOURCE STATEMENT
01020 KEYMV INITIAL=, C
01021 FRC=CITY, C
01022 LNC=25
01023 M1 MVC PRINT+0(25),CITY

& In chart 11-5, AREA retains its standard value and SPACE (still 5) is
not used with this macro call,

11-7

APPENDIX A

SUMMARY OF
ASSEMBLY
INPUT/OUTPUT

INPUT

OUTPUT

Object Program
Output

ESD Card (External
Symbol Dictionary)

TXT Card (Generated
Program Text)

RLD Card (Relocation
Dictionary)

XFR Card (Transfer)

END Card

¢ Input to the Assembly System consists of symbolic source language
statements punched as described on page 2-1. These source statements
are normally contained on cards but may be on magnetic tape in card
image format or in blocked format (except 70/25). In addition, source cor-
rections can be applied against a source library tape with the TOS/TDOS
Assembler.

Macro definition statements may be included within the source deck
and macro expansion accomplished without referencing the macro library.

See appropriate Operators' Guide for detailed information on control
cards, device assignments, and deck composition.

¢ The normal Assembly output consists of two major "files'; namely,
the Object Program and the Program Listing, A summary of each output
type is described below.

& Five different types of cards may be produced by the Assembly. A
brief description of each is shown below. For complete format information,
refer to the Spectra 70 Systems Standards Manual,

€ This card specifies the EXTRNSs, ENTRYs, V-CONs, and COMS
defined for a program. ESD cards supply all the necessary information to
link together program sectionstoform anoperatingprogram. For instance,
the ESD card contains all symbols defined in this assembly which are
referred to in another assembly, (ENTRYs) and all symbols referred to by
this section which are defined in some other assembly (EXTRNSs),

¢ The generated machine instructions to be loaded into storage are con-
tained on TXT cards. The address of the instructions or data and the
number of bytes are contained withincard. The TXT cards will be modified
as required by RLD information (see below).

€ The RLD card identifies portions of the TXT card which must be
modified due to relocation (that is, floated). The RLD cards provide the
information necessary to perform the relocation and are intermingled
with the TXT cards. However the TXT card to which the RLD card refers
is always produced first,

¢ The XFR card is only produced by the Assembler at the point in the
text where specified by the XFR Assembler instruction. This card is used
by the Program Loader and Linkage Editor routines to define the transfer
point or entry point of a phase, overlay. (Not produced in TOS/TDOS
assembly.)

€ The END card is always generated by the assembly and indicates the
end of a program section or object module.

A-1

Program Listing
Formats

ESD Listing

Appendix A

& The Assembly System produces three basic listings. These listings
may be eliminated by use of the AOPTN instruction (70/25 and POS) or
by specifying the ASMLST option of the TOS and TDOS monitors. Each
listing type is described below,

€ The ESD listing lists each Control section (CSECT) and Dummy section
(DSECT) that is defined in the program. The ESID number, assembled
origin, and size of the section are also provided. A list of the EXTRNs
and V-CONs is provided with their ESID number. The format of the ESD
listing is shown below.

SAMPLE ASSEMKLY PRUGRAM PUS
SYMBUL TYPE ID ADDR LENGTH EXTERNAL SYMEQL DICTIONARY

BEGIN spb 01 02710 0155¢C
SEqQ2 SD 02 (03C60 O0O0O0A®
SeQS Sb 03 03D08 00030
SEG4 SD 04 03D38 003a8

SYMBOL - contains the name of the control section, EXTRN, V-CON,
or ENTRY assembled. DSECTS are preceded with the word
"dummy' enclosed in parentheses,

Note:

ENTRY symbols are followed by an asterisk when the symbol specified
is undefined, defined in a dummy section, or defined in an unnamed
control section.

TYPE - Contains a two-character code identifying the element as:

1. TYPE SD (Section Definition)

The name, assembled origin, length (adjusted to a double-

word boundary), and ESID number of each control section

(CSECT) or dummy control section (DSECT) are listed.
2. TYPE ER (External)

The name and ESID number of each symbol specified as
an EXTRN.

3. TYPE VC (V-CON)

The name and ESID number of each symbol specified as
a V-CON are listed. This is not produced on the 70/25.

4, TYPE CM (Common)

The name and ESID number of each symbol specified as
COM (valid on TOS/TDOS only).

Symbol Table Listing

SAMPLE ASSEMELY PROGRAM POS

SYMBOL

A
ADDITION
BASE2
CARDIN
CCBTYPER
CHECK1
FINAL
1FACBB
IFAFIN
IFALB
IFAMK1
IFAMSS
1FARGS
IFASTD
IFASTW
IFATWO
IFAZRO
IFBARW
1FBSTT
1FB04
1FCCN1
1FCCWC
IFCCWY
1FCERG
1FCISS
IFCLSE
IFCNTX
IFCP
IFCPOUY
IFCRUN
IFCSKD
1FCSKO
1FCSK4
1FCSQP
IFCTHR
IFCTRL
IFCZER
IFDECY
[FDMVM
IFDP12
1FDP2
1FDP2>
IFDP3>
1FDR24
1FDS1
IFDS2
IFDS9
1FD7LV
IFEMSS
IFERR1
IFFEQA
1FGPEF
1FGP1
IFGP4
1FGP8
IFIBLB

ESD Listing
(Cont'd)

CSECT

VALUE
02 03Cé62
02 03CCa
UNDEF INED
01 02864
01 03BFC
0z 03C80
04 04QC38
01 02A8C
00 00000
01 02A24
00 00020
01 02488
01 o0eB2C
01 O02AQE
01 029cC2
01 02a8a
0C 000FF
01 0283k
01 029DC
01 02a86
01 0280k
01 034438
01 03234
01 0337€
01 03308
01 Q2496
01 03497
ut ono4cC
01 Q2926
31 0334C
01 03493
00 00020
U1 0349k
Ul Q2AF0
Ul 034Ac
Ul 03326
g1 §2308
01 02322
Ul 03460
ud 0000C
J6 00002
Ut 0000e
Jo o 0002y
00 o©Co0D
006 00001
0u 00002
00 00004
Ul 02810
01 0230&
U1 02450
01 03314
01 024r4
yl 0z8748
J1 028R6
Jl 0285¢
Jo 0fdun

L

04
06

0l
65
0é
04
04
01
04
01
01
04
06
06
01
01
02
06
(13
04
02
04
06
06
04
02
01
04
96
01
01
ul
06
01
04
ul
01
04
01
01
01
U1
a1
01
01
01
01
nF
04
04
0é
04
04
04
ul

Appendix A

5. TYPE LD (Entry)

The name, address, and ESID number of each symbol
specified as an ENTRY are listed.

ID - contains a two character ESID number that is assigned to
the element,

ADDR - contains the assembled origin address of the element.

LENGTH - contains the length (hexadecimal) of the sectionassembled.

® The symbol table listing contains all the symbols used (including FCP)
listed alphabetically, four to a line, The ESID number of the control section
in which the symbol is defined, the length, and the address of the symbol
are provided. A sample symbol table listing is reproduced below.

SYMBOL CSECT VALUE L SYMBOL CSECT VALUE L SYMBOL CSECT VALUE L
ADAL 02 03Cccs8 02 ADEB1 02 03cc4 o2 ADC1 02 03CC6 02
B 03 03D0oA 04 BASE 01 03BC8 04 BASE1 UNDEFINED

BASE3J 04 03D44 04 BEGIN 01 02710 01 o} 04 03D3a 04
CARD1 04 Q3EF8 50 CARD2 04 03F48 50 CCBREAD 01 03C2g9 05
CCWREAD 01 03C28 02 CCWTYPER 01 03Co4 02 CDIN 04 03F98 50
END1 04 04094 04 END3 04 040B4 04 EXIT 04 03DAE 04
HALTS 04 03DB2 04 HSKP 01 038DC 04 IFABL1 01 02484 02
1FACCB 0o 00006 01 IFACKP 01 02A2A 04 [FADEV 00 Q000D 01
IFAFNA 0o 00000 O1 1FAlOl 01 02482 02 IFALAB 00 00003 01
IFaLBZ 0o 00000 01 IFALXX 01 029AC 04 IFAMKS 01 02480 01
IFAMK2 0o 00004 01 IFAMK3 01 02830 01 IFAMK4 01 02A%0 o1
IFAMVD 01 02a36 06 IFANWS 01 02aA7C 04 IFAREA 00 00002 01
IFASER 01 02974 04 IFASTA 00 00004 01 IFASTB 01 029DC 06
IFASTO 01 U2A46 06 IFASTT 01 02988 04 IFASTU 01 029C8 04
IFASTY 01 029D6 06 [FATAB 01 02832 01 IFATAP 00 Q0018 01
IFAVE 01 0296C 04 IFAVié4 01 0361C 04 IFAW2 01 02831 01
IFAZZ 00 0000F 01 1FAQ4 00 00004 01 IFBADR 01 0290C 06
IFBLFD 01 Q2EA2 06 IFRLKS 00 00008 01 [FBNSW 01 02827 01
IFBTDV 01 02A1C 04 IFBVLB 01 031D8 04 IFB01 01 02A87 01
IFCBSF 01 03369 06 IFCAESR 01 03356 06 IFCBYT 01 034AB 01
IFCCN2 01 02812 04 IFCCWA 00 00006 01 IFCCWB 01 031DC 06
IFCCWD 01 0348fF 02 IFCCwW4 01 03212 06 IFCCWé 01 03224 04
1FCDP9 0o 00004 01 IFCD10 00 00005 o1 IFCD23 00 00000 01
IFCERP 01 034AC 01 [FCFSF 01 03374 06 IFCFSR 01 0336A 06
IFCKID 01 02828 0C IFCKPA 00 00022 01 IFCLHE 00 0000A 01
IFCMK2 00 00040 01 IFCNTY 01 03474 0D IFCNTT 01 03495 02
IFCOM 01 02A5E 04 IFCONY 01 02851 02 IFCON2 01 02853 02
IFCPA 01 0286C 04 1IFCPIN 01 028F2 04 IFCPOP 00 00000 01
IFCRBA 01 03487 05 IFCREW 01 03398 06 IFCRGC 00 00018 01
IFCRWA 61 03481 02 IFCSKB 01 034a2 01 IFCSKC 00 00008 01
[FCSKE 01 034%a 01 [FCSKM 01 033CC o6 IFCSKN 01 033BC 06
IFCSK1 00 0QO0OFF 01 IFCSK2 01 0349C o1 IFCSK3 01 0349D 01
IFCSKS 01 0349F 01 IFCSK6 01 034a0 01 IFCSk8 01 034A1 01
IFCSPM 01 033B2 06 IFCSPN 01 033A2 06 IFCTDV 01 02AC4 06
IFCTLA g0 0000A 01 IFCTLB 00 0000E 01 IFCTLR 01 03336 06
IFCTWL 01 034AD 01 IFCWTM 01 0338E 06 IFCX!IT 01 03404 06
IFC12 00 0000C o0t 1FC13 00 o0000D o1 IFCL4 00 0000E 01
IFDEC2 01 02823 01 [FDEVA 00 00001 01 IFDEVR 00 0000E 01
IFDPBT 01 03438 06 IFDP10 00 00005 01 IFDPLY 00 0001A 01
IFDP14 00 00010 01 1FDP16 00 00014 01 IFDP19 00 0000E 01
IFDP21 oo QJ001Cc 01 1FDR23 00 0000C o031 1IFDP24 00 Q000D 01
IFppP27 gc 00012 01 1FDP30 00 00010 01 IFDP32 00 00020 01
1FDP39 0o 00019 01 1FDP41 00 00022 01 IFDP8 00 00008 01
1FDSP9 0o 00004 0% IFDSTM 01 02A16 06 IFDSTT 01 029E2 06
IFDS10 60 0000aA 01 1IFDS1t 00 00008 o0t IFDS18 00 00012 01
1FDBS20 00 0000C 01 1FDS24 00 00018 01 1FDS26 00 00014 01
IFDTST 01 03442 06 IFDVST 01 0281E o0t IFDVSW 01 0341a 06
IFECCB 01 02800 05 IFECCHW 01 02B08 02 IFEGTN 01 02B4D 01
IFEM18 g1 0281C OF I[FEQU 01 O02ES5E 04 IFERRC 00 o0001A 01
IFERR6 01 02AFA 04 IFETCH 01 02856 02 IFETWL 01 (02489 01
IFFEOV 01 032F4 D4 IFFFFF 01 02844 02 IFGP 01 (02B46 04
1FGPGO 0t 02864 04 IFGRSL 01 o02C06 04 IFGPWK 01 0Q2FEC 04
1FGP1B 01 02BA6 04 IFGP1C 01 02898 04 IFGP3 01 02872 06
1FGPS 01 02BFE 04 IFGP6 01 02C18 04 IFGP?7 01 p2C20 06
IFGWRC 01 02eEE6 02 IF1A 00 00002 o011 IFiB 00 00003 o011
IFIBLK 0c 00006 G1 IFI1CKL 00 00006 01 IFICOM 00 oo0004 01

Symbol Table Listing
(Cont'd)

TEXT Listing

CSECT -

VALUE -
L -
Note:

Symbols that are
lowing them,

Appendix A

contains the section number in which the symbol was
defined.

contains the address of the symbol.

contains the length attribute assigned to the symbol,

not defined are listed with the word "undefined' fol-

€ The TEXT listing contains the generated machine instructions associated
with each source statement. A sample TEXT listing is shown on the fol-
lowing page. Each field of a TEXT listing is described below.

FLAGS:

LOCTN:

OBJECT CODE:

ADDR1,ADDR2:

STMNT:
(TOS/TDOS)

M Field:

SOURCE
STATEMENT:

Six positions are provided for error flags. The
interpretation of these flags is discussed on page
A-9,

The location counter or appropriate address.
The assembled object code is listed.

These fields show the resolved address of the
operand, where applicable. This facilitates the use
of this listing. For example, if the object code
specifies that operand one uses register 4 as the
base register with a displacement of (100);4, and
the USING statement directed the Assembler to
assume register 4 contained (1000);4, then ADDR1
is listed as (01100)4g.

This field contains a sequential statement number
assigned to each statement. This number is used
as the statement reference for the optional Cross
Reference Listing.

70/25: If this field contains an M, it
specifies that the current line was
generated (expanded) by a macro.

POS/TOS/TDOS: In addition to M, a second char-
acter is appended to indicate the
depth (that is, nesting) of the
macro which generated the line;
for example, M1, M2, or M3,

This field contains the user's source statement (or
the source statement generated by a macro ex-
pansion).

G-V

FLAGS

LOCTN OBJUECT CODF

TxT CARD #

05552
05556
05554
N555F
05562
05566
05564
0556F
05572
05576
05574
0557F
05584

47
41
41
55
47
58
58
55
47
95
47
DS
47

TXT CARD

05588
0558¢€C
05590
05594
05598
0559C
05540
05542
055A6
055A8
05544
0554AC
05580
05582
05586
05588
0558C

a1
41
47
41
50
58
17
48
1D
18
18
41
1C
5A
18
95
47

TXY CARD

055C0
055C6
055CA
055CF
055p2
05506
05504
nsSDE
055&£2
055E6
055EA
055F0
055+ 4

ns
47
41
41
55
47
41
58
95
47
D5
47
41

TxT CARD

055+ 8
055+ C
05600
05602
05606

41
47
18
48
15

80
DD
cc
Do
70
Do
co
ne
80
00
80
0%
80

6532
8006
0001
600¢
6464
6D74
6014
6D78
64B4
nony
6483
400)
6532

1S 0322,

bnoo

1S 0023,

cc
Dn
Fo
co
90
Fo

0004
0006
648E
000¢
6093
6D8C

6014

0Qo0s%
6D6)

Fons
6522

1S 0)24,

05
80
EE
FF
Fo
70
E0
Fo
00
80
05
80
EE

AQ0)
65213
0004
00ns
6D74
64D3
0002
6063
Fo0)
6522
AQ0)
652)
00041

Fooo

Fooo

18 0325,

FF
Fo
CE
50
c5

0006
6502

6014

ADDRY ADDR2 STMNT M

05612
00006
ooQol
050FC
05544
05E54
050F4
05E58
05594

05598
05612

00001
00006
0556E
00001
05E78
0SE6&C

050F4

00006

05E40

05602

05600
00001
00006
0SES4
05588
90000
05E40

05602

05600
00001

00006
055E2

050F4

posol
00502
00503
00504
00505
00506
00507
0n508
00509
00510
00511
00512
00513

00514
00515
00516
00517
00518
00519
00520
00521
ges522
00523
00524
00525
00526
00527
00528
00529
00530

00531
00532
00533
00534
00535
00536
00537
00538
00539
00540
00541
00542
00543

00544
00545
00546
00547
go548

SOURCE STATEMENT

MERGES6

MERGES
MERGEJ3

MERGE?Y

MERGE4LD

MERGES
MERGE9

BE
LA
LA
CL
BNE

CcLC

BNE

L
CLI
BE
CLC
BF
LA

LA
LR

LW
CLR

MERGE4
13,6(13)
12,1(12)
13, GLSCNT
MERGE?
13,GADRREM
12,G#0FSYM
13,6GSL0Y
MERGES
0eL3), 0
MERGEY
0€6,10),0(43)
MERGE4

12,1(12)
13,6(43)
MERGES
12,14
9.65aVES
15, GWORD
14,14
2,G#0FSYM
14,2
15,14
9,14

2'6

14,2

15, GADRNT
14,9
0€15),0
MERGE9

0(6,10),0(15)
MERGES
14,1(14)
15,6(45)

15, GADRREM
MERGE?Y

14,0
15,GADRNY
0€15),0
MERGEY
0€6,10),0¢15%)
MERGES
14,1(14)

15,6(19)
MERGE1U
12,14
5,G#0FSYM
12,5

POINT TO NEXT SLOY
END OF NAME TABLE?

POINT TO FIRSY SLOT IN NEW
AREA
ARE WE BACK TO ORIGINAL SLOTY

EMPTY sLOT?
TAGsCONTENTS OF SLOY?

POINT TO NEXT SLOT

SEY NEW SLOTst

SAVE 9(=SLOT IN PARTIAL TABLE)
LOAD R45 WITH 4 BYTES OF TAG
CLEAR 14 FOR MULTIPLY
R2x#TAGS IN BASIC TABLE
RANDOMIZE TAG YO SLOY IN
PUT REM(=2SLOT) INTO RiK
Re4d4 AND R9 BOTH = SLOT NO
RESTORF R2 10 6

COMPUTE ANDRESS OF SLOY

EMPTY SLOT
(NQ, YES=MERGE9)

TAG «CONTENTS OF sLoTY
POINT TO NEXT SLOT
END OF INITIAL TARLE
POINT YO START OF INITIAL
TABLE

EMPTY SLOY

(NO, YES-MERGES)
TAG=CONTENTS OF SLOY?

POINT TO NEXT SLOT

SET NEW SLOT#sT0 oLD SLOT#
1S SLOT IN NEW ARFA

YOOV

vV UUYvT

ny

00034700
60034800
00034500
00035000
00033100
80035200
00035300
00035400
00035500
00035600
00035700
00035800
00035900

00036000
00036100
00036200
00036300
00036400
00036500
00036600
00036700
00036800
00034900
00037000
00037100
00037200
00037300
00037400
00037500
00037600

00037700
00037800
00037900
00038000
00038400
00038200
00038300
00038400
00038500
00038600
00038700
00038800
00038900

00039000
00039400
00039200
00039300
00039400

v xipuadqy

TEXT Listing
(Cont'd)

PROGRAM CONTROL
INFORMATION
(TOS/TDOS)

CARD NUMBER:
(70/25 and POS)

CARD NUMBER
(TOS/TDOS)

Appendix A

The rightmost columns of this listing specify the
card number of the object card which contains the
TEXT information. The listing does not give a
card number for cards generated by PUNCH, RE-
PRO, XFR, or END, The output cards contain a
card number in columns 77-80, unless these cards
were produced by a PUNCH or REPRO statement.
Cards produced prior to TEXT information (for
example, ESD cards) are not numbered.

The card number of the TXT or END card containing
the generated coding is specified in the OBJECT
CODE column. Printing of the card number is con-
trolled by the NONUM operand of the PRINT
statement,

& The Monitor PARAM message may optionally be used to designate
(or omit) specific input/output files. In order to change the configuration
assumed by the Monitor, the following operand entries are required:

Param Operand

Meaning

TAPE =NO

Indicates that tape output is not to be generated.

CARD=YES

Indicates that card image output is to be written
to SYSOPT.

INPUT =symbolic

Source input device, if other than SYSIPT, (See
Source Language Correction,)

OUTPUT = symbolic

Indicates symbolic device, if other than SYSUTI1,
that is to receive the generated Object Module
File(s).

WORK=YES Indicates assignment of the additional work tape
SYSUT4.
LIBRY =NO Indicates absence of Macro Library.

SOURCE = symbolic

Updated source symbolic device, if other than
SYSUTS5, (See Source Language Correction.)

ERRLST=NO Indicates that a listing of error flags is not to
be printed.

ASMLST =NO Indicates that the program listing is not to be
produced, Statements containing errors, how-
ever, will be printed,

XREF =YES Indicates that a Cross-Reference listing is to
be produced.

MAP=NO Indicates that the Symbol Table listing is not

to be produced.

CROSS REFERENCE
LISTING OPTION

General Description

Notes

Appendix A

® The cross reference option in the TOS/TDOS assembly provides a list

of symbols, defined or referenced in the source listing, and the statement
numbers in which reference or definition took place. The symbols are
listed in the same order as they appear in the symbol table listing. This
option is generated by the XREF=YES entry in the PARAM card. (See
page A-6.)

¢ 1. Each symbol is shown in the left column of the listing.

2. The statement numbers referencing or defining the symbol are
shown to its right.

3. The statement number which defines the symbol is flagged with an
asterisk.

a. If a symbol is multiply defined, each statement defining the
symbol will be flagged with an asterisk.

b. If a symbol is undefined, none of the statement numbers ref-
erencing the symbol will be flagged with an asterisk.

4. Double or single spacing when a new symbol is printed is controlled
by the PRINT instruction, (See page 5-4.)

a. OPEN (preset) - Double spacing,
b. CLOSED - Single spacing.

5, Continuation lines for a given symbol are single spaced, regardless
of PRINT option.

6. If the references to a symbol cause a new page to be printed the
symbol is again printed with the first line of references to it on the
new page.

For example, in the sample Cross Reference Listing shown on page
A- 8, the symbol GRWD is defined in statement number 715 and
referenced in statement numbers 657 and 663. If GRWD had been
undefined in this assembly, no asterisk would appear. If GRWD
had been defined more than once, an asterisk would appear adja-
cent to each defining statement number.

8-V

SYMBOL

GREADPNT
GRHPNT
GRWN
GSAVELL
GSAVESY
GSIZE
GSLOT
GTM
GUNWTM
GWAlT
GwORD
GWRENC
GWRMWPNT
GWRNEWNT
GWRTM
GZERO
G4096

Gé
G#NEWSYM
G#OFSYM
INITIALY
INITIAL2
INITIALS
INITIALSY
INITIALS

JRECEND

REFERENCzS
00418 J0419
00424 104314
00657 I0663
00561 10564
00518 30554
00585 Jn586
00496 ynsos
00435 104590
003914 0721+
00661 10665
00485 10486
003%4 10439
00423 0441
00413 0415
00454 10707
00596 0739w
00402 30404
00414 J0746s
00477 10488
gno12+ 10427
00228 10390+
00393 10396+
00403 3p405«
00466* 10469
00460+% 0464
00578 10632

0D448

00479

00715#
007444+
00747+«
00729«
00738e

00570

00667
00519
00641
00443
10471

00734+

00669

00497

00748

00457

00563

00713»

00714»
00743»
00653
00444

00659

00740s
00807

CROSS

00472 00692«

007024«

00655 006764
00446 00697

00687+

00521 00547

V xpuaddy

APPENDIX B

ERROR FLAGS

Table B-1. Error Flags

Flag

Condition

Invalid Address:

An address expression specifies multiplication or
division of two relocatable operands.

The final value of an address exceeds 219—1.
The intermediate value of an address exceeds 231-1.

The displacement of an explicit address (base,
register, displacement), exceeds 212-1.

An address expression is complex relocatable, but
is not in an A or Y type constant.

Incorrect Control Statement:

Incorrect ICTL statement.
Incorrect ISEQ statement.

START card incorrectly placed in the source deck.

Incorrect Specification:

Operand in START card not set to double-word
boundary.

Ampersand in character string is specified as &
rather than &&.

Incorrect type code in a DC or DS statement.
Invalid register number used in USING statement.
Invalid operand in MCALL statement.

Invalid scaling defined in DC.

Invalid Address:

L Field not correct in DC or DS statement.

Location counter set to odd location when CNOP
instruction executed. Warning only.

S type constant specified in a literal.

Constant string not terminated by a quote in DC or
DS statement.

DC statement does not contain data in constant field or
illegal character present in constant field.

Length specification is incorrect in machine instruction.
Address is not aligned to appropriate boundary.

Source cards not in sequence. (Produced only if ISEQ
specified.)

ERROR FLAGS
(Cont'd)

Appendix B

Table B-1. Error Flags (Cont'd)

Flag Condition
Syntax Error:
® Illegal character in source statement.
® Symbol exceeds eight characters.
® Symbol does not begin with an alphabetic character.
® A required character is not present.
E ® Consecutive arithmetic operators.
® PRINT statement error.
® Expression in machine instruction is too complicated:
(that is, nest of parentheses exceeds three).
® Two literals in one statement.
® Error in AOPTN card.
H ® Location counter exceeds 219—1.
I ® Incorrect immediate data or self-defining term.
® The number of CSECT and DSECT statements exceeds
32.
The number of literal pools exceeds 33.
The number of CSECT, DSECT, EXTRN, and V-CON
L statements exceeds 255.
® The number of ENTRY statements exceeds 100.
Incorrect specification in CSECT or DSECT.
Unpaired DSECT symbol in an A or Y address constant.
Symbol is multiply defined.
Symbol defined in a statement which caused the location
counter to exceed 219-1,
M ® Symbol defined as ENTRY in unnamed CSECT or
DSECT.
® Symbol equated to an incorrect symbol.
® Invalid character in operation code. An HB instruction
is generated which branches to the next instruction
o (that is, HB *+4), (See note 2 on page C-1.)
® Illegal operation code or macro not found in library.
P ® Privileged instruction used. (Not set by 70/25

Assembler.)

B-2

Appendix B

ERROR FLAGS Table B-1. Error Flags (Cont'd)
(Cont'd)
Flag Condition
Q ® An error was detected in an ORG or EQU statement.

® Symbol equated to a relocatable symbol in a different
control section (see page 1-2).

S ® Illegal symbol in the Name field.

Incorrect Macro Translation

All macro errors are noted by a special MNOTE message.
However, the following conditions, which still allow macro
expansion to continue, result in the T flag:

1. Operation code is not legal for generation in a macro.
2. The generated statement is too large.

3. Incorrect format in MNOTE message.
4

A nongenerative statement contains an error or potential
error. Macro processing continues with the statement
treated as an ANOP and the first line of the statement

is listed.
T
The primary error conditions are:
® TFinal character value longer than eight characters.
® Intermediate character string longer than 16 characters.
® *Tllegal operand in arithmetic operation.
® *Qverflow in arithmetic operation.
® Incorrect type operands in boolean expression.
® Syntax error in the statement.
® An illegal or undefined variable symbol contained
within the statement.
(See Note on page C-1.)
U Undefined symbol (in evaluating expressions, the defined
symbol is assumed to be absolute with a value of 0 and a
length attribute of 1).
Y A base register cannot be found to resolve the specified
implied address.
V7 The symbol table is full. See Appendix D for specified

symbol limits.

APPENDIX C

MACRO ERROR
FLAGS

& Theflag field, for errors detected in macro-expansion, other than those
noted by T flags, contains "MAC_ER'. An MNOTE message, displayed in
the source statement field, describes the error.

Any type of error encountered in macro processing effects one assem-
bler generated MNOTE message to be produced for each outer macro
instruction call. The form of the message in the source statement field is:

OPERATION OPERAND

* MNOTE *, CPXG

If any of the letters are not present, then the appropriate field is left
blank.

The letter codes in the Operand field designate the following types of
errors:

C = An error condition, exclusive of a bad prototype statement, pro-
hibits the called macro from being processed and macro expansion

terminates. The error conditions are:

1. calling statement incorrect. (Examples: an operand contains
more than eight characters, keyword misspelled, more than 49
parameter values in call line, etc.)

2. unidentified operation code.
3. nesting greater than 3.

4. more than 50 unique source deck macros have been called
(70/25 and POS). The limit in TOS and TDOS is 75.

5. keyword parameter specified more than once in macro param-
eter. Expansion terminated.

P = The prototype statement of the called macro is in error. Macro
expansion terminates.

X = An invalid sequence symbol or a sequence symbol which does not
exist was specified in an AIF, AIFB, AGO, or AGOB statement.
The macro expansion is terminated.

G = Generated statement is bad, invalid op code, or miscellaneous
arithmetic errors.

Notes:

1. MNOTE, G indicates the macro involved, not the statement, which is
indicated by a "T'" flag.

2. If a model line generates an unidentifiable or syntactically incorrect
operation code, macro expansion is not terminated in the POS, TOS,
or TDOS Assemblies. Instead, three NOPR instructions are gener-
ated. This feature allows a macro to call on other macros not yet
available without aborting its own expansion.

C-1

APPENDIX D

SOURCE
PROGRAM
SYMBOL LIMITS

70/25 SYMBOL
LIMITS

POS, TOS, AND TDOS
SYMBOL LIMITS

Examples

POS

4 The maximum size of a symbol appearinginthe Name field of an assem-

bly statement is eight characters. The maximum number of symbols which
can beprocessedisafunction of the total amount of member available to the
assembly, Since a fixed amount of memory is required for the operating
system components, the macro dictionary, encoded macro definitions, and
certain miscellaneous tables, the memory available for symboltable usage
varies widely.

If the symbol table capacity is exceeded, a Z flag is generated on the
listing opposite the symbol that caused the overflow. All subsequent symbols
from that point will be undefined. In this case, two alternatives exist:

1. Rewrite the program to reduce the number of symbols.

2. Independently assemble various control sections of the program and
then combine into a single program by use of the Linkage Editor.

Presented below are the respective symbol limits for each operating
system under which the assembly runs,

¢ The maximum number of symbols permitted in the 70/25 Processor is
as follows:

70/25C (16K) - 1,024 Symbols

70/25D (32K) - 2,048 Symbols

70/25E (65K) - 4,096 Symbols (upper limit)

€ The number of symbols, N, permitted in the POS, TOS, and TDOS
Assemblers is determined by the following formula:

8

N = or 4,080 whichever is smaller,

where: X is number of bytes available to the Assembly System.

S = 9,000 for POS and 8,000 for TOS/TDOS,

4 For a 32K processor, assume the Supervisor requires 5,768 bytes. The
calculation is as follows:

(32,768 - 5,768) - 9,000
8

= 18’8000 = 2,250 symbols

TOS and TDOS

SYMBOL OVERFLOW
(EXCEPT 70/25)

Appendix D

& The assembly is assigned a minimum of 32,000 bytes when running
under MONITOR. Thus, the maximum number of symbols that can be pro-
cessed with only 32K available is as follows:

_ 32,000 - 8,000 _
8

N 3,000 symbols.

Note, that because of the multiprogramming capability, other con-
currently-operating programs may occupy the remainder of available
memory, Thus, in order to process the upper limit of 4,080 symbols, the
assembly would require availability of 40,768 bytes. The calculation is as
follows:

X - 8,000 Since 4,096 exceeds the limit of
8 4,080 the lower number is used
as the limit,

4,096 =

32,768 = X - 8,000

X = 32,768 + 8,000 = 40,768 bytes.

4 Because memory is the primary means of storage for the symbol table,
encoded macro definitions and the macro dictionary, the first pass of the
Assembly System may not be able toprocessthe maximum number of sym-
bols described above., A certain amount of memory must be reserved; for
example, to store the macro dictionary. In POS it is 1,000 bytes and in
TOS/TDOS it is 2,000 bytes. Thus, if a program has n source statements
and if, after processing X statements, the Pass I symbol table limit has
been exceeded, then Pass IA will be invoked to process the remaining N-X
source statements,

The number of symbols (M) allowed inthe first pass prior to overflow is
7/8 M where M is computed as follows:

POS

_ X - 24,000

M
6

or 2,048, whichever is smaller,

where: X = amount of memory available to the assembly.
(that is, processor size less supervisor memory).

TOS

M=X

or 2,048, whichever is smaller,
where: X = amount of memory available to the assembly.

S = 26,000 if source language correction option is not used or
29,000 if it is used.

D-2

SYMBOL OVERFLOW
(EXCEPT 70/25)
(Cont'd)

Example

Appendix D

As the above formulas imply, more than 2,048 symbols could be pro-
cessed in the first pass on larger processors. In both the POS and TOS
assembly systems, the first pass symbol limitation is controlled by the
value assigned to symbolic location SYMBOL. This field is defined in the
first pass of POS and the root segment of TOS and is preset to 2,048, If it
is determined that the average number of symbols per program of a given
installation will not approach this first pass limit, then the location SYMBOL
could be changed to more accurately reflect actual requirements. An addi-
tional advantage to be gained is that more memory is then available for
macro encoding and storage. Minimal built-in macro storageis 1,000 bytes
in POS and 2,000 bytes in TOS, This minimum area tends to insure that the
entire macro dictionary can be contained in memory.

€ Assume the TOS Assembly system (without source language correction
facility) has 44K of memory available,

M = 44,000 ; 26,000 _ 18’6000 = 3,000 symbols, before overflow.

However, only 2,048 symbols will be processed before PassIA is
initiated. As noted above, this limitation on M allows additional memory
to be used for macro storage. Thus, memory allocation is as follows:

Assembly 26,000
Symbol table 12,288 (2,048 X 6)
Macro storage 5,712

44,000

Note:

The minimum macro storage area of 2,000 bytes is included in the
assembly allocation above, thus the actual macro storageis 7,712 bytes,

If it is determined that a lower Pass I is adequate for an installation's
programs, the symbolic SYMBOL can be changed to reflect this lower
limit. This has the effect of allowing more memory for macro encoding
and storage. Assume 1,000 symbols is new limit (that is, SYMBOL
changed to 1,000). Memory allocation then becomes:

Assembly 26,000
Symbol table 6,000

Macro storage 12,000
44,000

APPENDIX E

70/35-45-55 MACHINE INSTRUCTIONS

LEGEND: (TABLES E-1 AND E-2)

L. = Field length in bytes (1-256)

L1 = Length of first Operand field (1-16)

L2 = Length of second Operand field (1-16)

D1 = Displacement value first Operand (0-4095)

D2 = Displacement value second Operand (0-4095)

Bl = Base (general) register number first Operand (0-15)
B2 = Base (general) register number second Operand (0-15)
R1 = General register or floating—point register number

R2 = General register or floating-point register number

R3 = General register or floating-point register number

General Registers (0-15)
Floating-point registers (0,2,4, 6)

12 = Immediate date value (0-255)
*X2 = Index register number (0-15)
S1 = Absolute or relocatable expression

S2 = Absolute or relocatable expression

*If B2 is coded explicitly in an RX instruction, X2 must be specified. I indexing is not desired, X2
is written as a zero (0).

Appendix E

Table E-1. 70/35-45-55 Instruction Formats

Applicable Instruction Machine Format

8 41 4 4 12 4 12

AP, CP, DP, MP, MVO, PACK, op |L1|12|B1 b1 B2 Do

SP, UNPK, ZAP.

SS FORMAT (1)

CLC, ED, EDMK, LSP, MVC, 8 8| 4 12| 4 12
MVN, MVZ, NC, OC, SSP, TR, OP L B1 D1 B2 D2

TRT, XC. SS FORMAT (2)

CKC, CLI, DIG, HDV, IDL, MVI, 8 8 4 12
NI, OI, PC, RDD, SDV, TDV, TM, oP 12 | B1 D1
WRD, XI. SI FORMAT
LM, SLA, SLDA, SLDL, SLL, SRA, 8| 4| 4] 4 12
SRDA, SRDL, SRL, STM, BXH, oP |Ri1|Rs3| B2 D2
BXLE.

RS FORMAT

A, AD, AE, AH, AL, AU, AW, BAL,
BC, BCT, C, CD, CE, CH, CL, 8| 4| 4| 4 12
CVB, CVD, D, DD, DE, EX, IC, L, or |r1lx2| B2 D2
LA, LD, LE, LH, M, MD, ME, MH,

N, O, S, SD, SE, SH, SL, ST, STC, RX FORMAT
STD, STE, STH, SU, SW, X.

ADR, AER, ALR, AR, AUR, AWR,
BALR, BCR, BCTR, CDR, CER,

CLR, CR, DDR, DER, DR, HDR, 8| 4| 4
HER, ISK, LCDR, LCER, LCR, or |Rr1 g2
LDR, LER, LNDR, LNER, LPDR,
LPER, LPR, LR, LTDR, LTER, RR FORMAT
LTR, MDR, MER, MR, NR, OR,
SDR, SER, SLR, SPM, SR, SSK,

SUR, SVC, SWR, XR, LNR.

Note:

Variations in the above instruction types are reflected in the assembly operand format (see
table E-2). The fields not written in the symbolic operand will be assembled as binary zeros.

MNEM
ONTC

AD
ADR
AE
AER
AH
AL
ALR
AP
AR
AU
AUR
AW
AWR

RAI
RAIR
RC
RCR
RCT
RCTR
RE
RH
BL
BM
BNE
BRNK
BNI
RO
RP
RR
RXH
RXI E
RZ

c

ch
chp
CE
CER
CH
CKr
CL
cLe
CL?7
CLR

CR
CVR
cvn

Table E-2. 70/35-45-55 Instructions

INSTRUCTTON
NAMF

WORD

NORMALIZED LONG
NORMAL [ZED LONG
NORMALIZED SHORT
NORMALITZED SHORT
HALFWORD
LoGIcAL
LOGICAL
DECIMAL

WORD
UNNORMAL 1ZED
UNNORMALIZED
ADD UNNORMALIZED
ALD UNNORMALIZED
BRANCH
BRANCH
BRRANCH
BRANCH ON
BRANCH ON
BRANCH ON
BRANCH ON
BRANCH ON
BRANCH ON
BRANCH ON
BRANCH ON
BRANCH ON
BRANCH ON
BRANCH ON NOT LoW

BRANCH ON OVERFLOW

BRANCH ON PLUS

BRANCH UNCONDITIONA}

BRAMCH 0N INDEX HIGH

BRANCH ON INDEX LOW OR EQUA]
BRANCH ON ZERO
CCMPARE wORD
COMPARE | UNG
CeMPARE 1| ONG
COMpARE SHORT
COMPARE SHORT
COMPARE HALFWORD
CHECK cHWANNEL
COMpARE LOGICAL
COMPARE LOGICAL
COMPARE LOGICAL
CoMPARE 1_0GICAL
COMpARE NECIMAL
COMPARE WORD
CCNVERT TO BINARY
CoNVERT To DECIMAL
DIVIDE

ADD
ACD
ADD
ADD
ADD
ALD
ACN
ACD
AND
ADD
ADD
ALD

SHT
SHT
LNG
LNG
UNCANDITIgNAY
AND [INK

AND LINK
CONDITION
CONDITION
COUNT
COUNT
EQUAL

HIGH

LOW

MINUS

NOT EQUAL
NOT HIGH

PRIVIL

PROCESSOR
MANUAL
PAGE

118
193
193
193
193
119
120
120
142
118
195
19°
195
195

179
179
178
178
180
180

181
182

124
198
198
198
198
125

99
157
157
157
157
148
124
129
130
128

Appendix E

MACH FORMAT

COCE TYPE
SA RX
6A RX
2A RR
7A RX
3A RR
4A RX
5€ RX
i1k RR
FA SS1
14 RR
7E RX
3E RR
6E RX
2E RR
EX1
45 RX
05 RR
47 RX
07 RR
46 RX
06 RR
EX1
EX1
EX1
EX1
EX1
EX1
EX1
EX1
EX1
EX2
86 RS
87 RS
EX1
59 RX
69 R X
29 RR
79 R X
39 RR
49 RX
SF S1
55 RX
DK §S§2
95 S!
15 RR
F9 SS1
19 RR
4F RX
4E RX
5D R X

MNFM
ONIC

Db
NDR
DE
NER
NIG
nr
DR
ED
FDMK
EX
HDR
HDY
HFR
IC
INL
ISK

LA
LCDR
LCER
LLCR
LD
LDR
LE
LER
LH
LM
LNDR
LNER
LNR
LPDR
LPER
LpR
LR
LSP
LTDR
LTER
LTR

MD
MDR
ME
MER
MH
MP
MR
My C
MV 1
MVN
My 0
MVZ

Table E-2. 70/35-45-55 Instructions (Cont 'd)

INSTRUCTION
NAME

DIVIDE LONG

DIVIDE LONG

DIVIDE gHORT

DIVIDE SHORT

DIAGNOSE

DIVIDE DECIMAL

DIVIDE

EDIT

EDIT AND MARK

EXECUTE

HALVE LoNG

HALT DevICE

HALVE SHORTY

INSERT CHARACTER

1DL

INSERT STORAGF KEYy
LOAD WORD

LOAD ADDRESS

LOAD COMPLEMENT LONG
LOAD COMPLEMENT SHORT
LogAD CoMPLEMENT

LOAD LONG
LOAD LONG
LOAD SHORTY
LOAD SHORT
LOAD HALFWORD
LOAD MULTIPLE
LoAD NEGAT]VE
LOAD NEGATIVE
LOAD NEGATIVE
LOAD POSITIVE
LoAD PgsSITIVE
LOAD pOSITIVE
LOAD WORD
LOAD SCRATCH PAD
LOAD AND TEST LANG
LoAD AND TEQT SQHQRT
LOAD AND TEXT
MULTIPLY WORD
MULTIPLY LONG
MULTIPLY LonG

PRIVIL

pRIVIL

PRIVIL
pRIVIL

LAaNG
SHORT

LONG
SHQRT

PRIV

MULTIpLy
MULTIPLY
MULTIPLY
MULTIPLY
MULTIpLY
MOVE

MOVE

SHNART
SHORT
HALFWORD
NEc I MAL
WORD

MoVE NUMERICS
MOVE WITH OffSET
MOVE ZONES

PROCESSOR
MANUAL
PAGE

202
202
202
202

94
147
128
167
170
18%
199

98
199
162

90
100
114
164
190
190
114
188
188
188
188
112
117
192
192
116
1919
1914
118
111

86
189
189
113
126
201
2014
201
201
127
144
126
154
154
158
150
156

MACH FORMAT

CODE TYPRE
6D RX
2D RR
7D RX
3D RR
83 S1
FD §$S1
1D RR
DE SSs2
DF S$S2
44 RX
24 RR
9F S1
34 RR
43 RX
80 S1
09 RR
58 RX
41 RX
23 RR
33 RR
13 RR
68 RX
28 RR
78 RX
38 RR
48 R X
98 RS
21 RR
31 RR
11 RR
20 RR
30 RR
10 RR
18 RR
D8 SS2
22 RR
32 RR
12 RR
5C RX
6C RX
2¢c RR
7C R¥
3C RR
4C RX
Fc ssl
1C RR
na2 Ss2
92 S1
D1 ss2
Fl SSt
D3 SS2

Appendix E

MNEM
ONTYC

NC
N
\Dp
NOPR
NR

ocC
01
OR
PACK
PC
RNON

<n
SnR
gnv
Sk
SFR
SH
S
SLA
SIrA
SILpL
SII
QLR
Sp
Spwv
SR

LR K)

Table E-2. 70/35-45-55 Instructions (Cont 'd)

INSTRUCTION
NAME

AND

AND

AND

NO NpFRATION

NC NPEFRATION
AND

oF

OR

OR

OR

PACK

PROGRAM CONTROL
RFEAD DJRFCT
SURTRACT WQRD
SURTRACT NORMALIZED SHORT
SURTRACT NNRMALIZED LONG
gTART NEVICE
SURTRAGT NORMALIZED SHORT
SURTRANT NORMALIZED SHORT
SURTRACT HALFWORD
SURTRACT LNGICAL

SHIFT LEFT SINGLE

SKIET LEFT DOUBLFE

SKIFT LEFT DOUBLE LNGICAL
SEIFT EFT SINGLE LNGICAL
QURTRART LaGCAL

SLRTRACT DECIMAL

SET PROGRAM MASK

SURTRACT WORD

AcgFMRLY FORMATg

R1,F2

R1.93,ﬂ2(82)
R1.N2(x2,B2)
n1(r1y,12

N1 1,p1y,D2(L2,B2)
N1 ¢l »R1Y,D2(B2)
D2(¥2,R2)

R?

PRIVIL
PRIVIL

PRIVIL

PROCESSOR
MANUAL
PAGE

158
158
158

158
159
159
159
159
148

88
103
121
196
196

92
196
196
122
123
134
136
174
172
123
143
106
121

Appendix E

MACH FORMAT

COCE TYPE
54 RX
D4 SS2
94 S
EX1
EX2
14 RR
56 RX
96 S1
Dé SS2
16 RR
F2 SS1
82 Sl
85 Sl
58 R X
6B RX
28 RR
9C Sl
7B RX
3B RR
4B RX
5F RX
88 RS
8f RS
8D RS
89 RS
iF RR
rB SS1
04 RR
18 RR
*4a
RR
RS
R X
S1I
SS1
§S2
EX1
EX2

MNEM
ONIC

SRA
SRDA
SRDL
SRL
SSK
SSP
ST
STC
STD
STE
STH
STM
SUR
SyC
SW
SWR
sy
Tov
™

TRT
UNPK
WRD

XC
X1
XR
ZAP

Table E-2. 70/35-45-55 Instructions (Cont 'd)

INSTRUCTION
NAME

SHIFT SINGLE RIGHT
SHIFT RIGHT DOUBLE

SHIFT RIGHT DAUBLE LoGICAL
SHIFT RIGHT SINGLE LOGICAL

SET STORAGE KFY PRIVIL
STORE SCRATCH PAD PRIVIL
STQRE WQRD

STORE CHARACTER

STORE LONG

STORE SHORT

STORE HALFWORD

STORE MULTIPLF

SUBTRACT UNNQRMALIZED SHQRT
SUpERVISOR CALL

SUBTRACT UNNORMALIZED LONG

SUBTRACT UNNORMALIZED LONS

SUBTRACT UNNQRMALIZED gHQRT
TEST DEyICE pRIVIL
TEST UNDER MASK

TRANSLATE

TRANSLATE AND TEST

UNPACK

WRITE DIRECTY pPRIVIL
EXCLUSIVE OR

EXCLUSIVE OR

EXCLUSIVE pR

EXCLUSIyE OR

ZERO AND ADD DECIMAL

PROCFSSOR
MANUAL
PAGE

135
137
178
173
1014

87
134
163
200
200
132
133
197
108
197
197
197

97
164
168
166
149
102
160
160
160
160
144

Appendix E

MACH FORMAT

CODE TYPE
8A RS
8E RS
8c Rs
as RS
08 RR
Do s$Ss2
50 RX
42 R X
60 R¥
70 RX
40 RX
90 RS
3F RR
0A RR
6F RX
2F RR
7F RX
9D S1
91 SI
DC $s2
DD SS2
F3 $S1
84 S
57 RX
D7 §$S2
97 sI
17 RR
F8 SS1

APPENDIX F

SUMMARY OF
70/25
EXCEPTIONS

¢ The 70/25 Assembler is a subset of the POS/TOS/TDOS Assembly
System language. The following alphabetically arranged list delineates the
exceptions or restrictions of the 70/25 Assembler from the other Spectra

Assemblers.

Address Constant

AOPTN

CNOP

COM

DC

DS

Explicit Format

Extended Mnemonics

Maximum value of the calculated expression
of an A-type constant is 224-1 on the 70/25.

(See page 5-6.) AOPTN functions of POS are
applicable to 70/25.

Not available on 70/25.

Not available on 70/25.

F-, H-, E-, D-type constants and related
Scale and Exponent modifiers are not avail-
able on 70/25.

F-, H-, E-, D-type operand entries are
permitted to obtain appropriate boundary

alignments.

70/35-45-55 Compatibility can be maintained
by specifying D2 (0, B2).

BR, NOPR not permitted. All others are
acceptable.

Equipment Requirements: 70/25 Assembly System

Processor (one, 16K bytes)

Magnetic tapes (three work tapes with reverse read; one 9-channel

system tape)

Input - card reader or magnetic tape

Listing - card punch or magnetic tape

Output - card punch or magnetic tape

Listing device - printer or magnetic tape

Literals

Location Counter

Macro Call

A duplicate literal is not generated for an
address constant that contains a referenceto
the Location Counter.

19
Maximum value is 2"~ -1 on the 70/25.

An inner macro call may contain up to 112
characters in the operand field on the 70/25.

SUMMARY OF
70/25

EXCEPTIONS
(Cont'd)

Macro Format

Macro Model Line

MCALL
MPRTY
MTRAC
NTRAC

Operand Field

Stacked Assembly

Symbol Limits

XFR

Appendix F

The format of the macro definition can be
altered by the ICTL instruction, if included
in the calling programs source deck.

A model line may be continued on as many
lines as necessary.

Not available on 70/25.
Not available on 70/25.
Not available on 70/25.
Not available on 70/25.

The Operand Field may not extend through
the "END" column. A blank "END'" column
must terminate the operand.

Not permitted with a 16K assembly when
SYS000 (worktape) and SYSOPT (generated
output tape) are assigned to the same tape
device,

1,024, 2,048, or 4,096 symbols are per-
mitted with a 16K, 32K, or 65K assembly
respectively.

See page 5-14. The XFR function of POS is
applicable to 70/25. See also POS overlay
methods, Appendix H.

APPENDIX G

SOURCE
LANGUAGE
MAINTENANCE

INTRODUCTION

SOURCE LIBRARY
TAPE

& Source language maintenance is an extension of the TOS and TDOS
Assemblers that provides the programmer with the capability to store
and maintain Assembler language source programs on magnetic tape,

Depending on the options chosen, source language maintenance requires
one or two additional tapes, which cannot be the devices assigned to the
Assembly System (SYSUT1-3).

Additional maintenance facilities for programs stored on magnetic tape
are provided by the Source Library Update, This utility routine is discussed
in the Spectra 70 TOS Utility Routine manual, 35-302.

4 The source library tape may contain a single program or multiple pro-
grams in any order, butis confinedtoa single reel. Each program consists
of a number of blocks containing five 80-column source statement images,
preceded by an 80-column *STARTC image and followed by a tape mark,
The last program on the tape is followed by a double tape mark. Labels
are not required on the input but if they are present they must be in standard
format. Standard labels are written to the output tape.

To permit stacking of source coding for multiple assemblies neither
tape is rewound unless rewindingis called for by a *STARTC Control State-
ment, Whenever output is written on magnetic tape, the Assembler writes
two tape marks and backspaces one tape mark in anticipation of multiple
assemblies,

Whenever a source statement is replaced the new statement and the
first 38 bytes of the old statement are listed on SYSLST immediately pre-
ceding the Ex*zrnal Symbol Dictionary of the assembly listing,

.

Maintenance Control
Statement

Format

Operation Field

Operand Field

Progname

Option

Appendix G

¢ When source language maintenance is desired, a control statement, of
the format below, must be the first statement read from SYSIPT, This
statement cannot be continued.

¢ OPERATION OPERAND
*STARTC Progname, [option], [SEQ], [number] , [size], [ID]
4 Columns 1-7 must contain *STARTC.

4 All operands except Progname are optional. A comma must be used to
denote a missing operand unless no operands follow.

The program named in the *STARTC card is always assembled, and the
*STARTC card from SYSIPT always replaces the *STARTC card image on
the output tape. The program ID may be updated by placing a version number
after the last optional operand,

¢ The program name must be preceded by at least one space and can be
any combination of characters except space and comma, Maximum length is
eight characters.

After the program is on magnetic tape the program name may be changed
by placing the new name in cols, 73-80 of the *STARTC card.

€ This operand may be unspecified or one of the five options listed below
can be chosen.

1. Unspecified: The source program, which must be in SYSIPT, is
assembled and written to the output tape. This option is used for
initial creation of the source library tape.

2. ADD: All programs on the input tape are copied to the output tape,
then the program tobe added, which mustbe in SYSIPT, is assembled
and appended to the output tape. Correction may not be applied, If
more than one program is to be added, the succeeding programs
must use option 1,

3. ASSEMBLE: The choice of this option causes the specified program
on the input tape to be assembled with no corrections, An output tape
is not produced and the *ENDC card must be omitted.

4. CORRECT: The source program from the input tape is updated with
corrections from SYSIPT and assembled. An output tape is not
produced.

5. COPY: The source program from the input tape is updated with
corrections from SYSIPT, assembled, and written to the output tape.
No other programs from the input tape are processed.

6. COPYALL: This function is identical to COPY, except that all pro-

grams on the source library input prior to the one to be assembled/
corrected are first copied to the source output,

G-2

SEQ

Number

Size

Identification

Tape Positioning

Source Input

Source Output

Appendix G

& This operand is optional, If present, it instructs the assembly to insert
sequence numbers in the updated source program. If this operand is blank,
the contents of columns 73-80 of the source cards, or correction cards,
are retained.

& This operand is optional and should be used only in conjunction with
the SEQ operand, above., If SEQ is not used, the number operand is
ignored when present.

This operand specifies the first sequence number to be assigned; if
the field is omitted, zeros are assumed. In any case, sequence numbers
are incremented by 100 for each statement.

€ This optional field specifies the size of the sequence number and must

be from four to eight digits in length. For example, if 4 is specified, the
sequence number is placed in columns 77-80, If the field is not specified,
an eight-character field (that is, columns 73-80) is assumed.

If the number of digits specified in the number field exceeds that speci-
fied by the size field or the implied size field, the rightmost digits of the
number field are used.

¢ This operand is ignored if the SEQ operand is omitted. This operand
specifies an identification field that will be reproduced into all source
statements beginning in column 73, If SEQ is used, the ID field length is
the difference between the maximum (8) less the number of characters
specified in the SIZE operand.

& Columns 71 and 72 of the *STARTC message may be used to control
positioning of the source input and source output tapes. The acceptable
characters and their effect onthe input and/or output tapes are summarized
below.

¢ If column 71 specifies repositioning of source input tape, the tape will be
rewound and positioned following the first tape mark if the tape contains a
Volume and Header label. If no labels are present, it will be positioned at
BOT, If no repositioning is specified, the tape will not be rewound.

It should be noted that initial creationof a source library tape, using the
"unspecified" option of the *STARTC card, will include a dummy Volume
(VOL) and Header (HDR) label.

@ If column 72 specifies repositioning of the source output tape (SOURCE),
the tape will be rewound and positioned according to the following rules:

1. If a Volume (VOL) label is not found as the first record on tape, a
dummy label set (VOL, HDR, TM) will be written out,

2. If a Volume label is found, a search is made for a HDR label. The
expiration date is checked and if found to be purgable, a dummy
Header label and TM will be written out, If the purge check fails, the
operator has the choice to continue or tomount a new tape and retry.

Source Output
(Cont'd)

Correction Statements

Appendix G

The purge control characters and their meanings are as follows:

COLUMN CHARACTER

71 Y

71 N

71 Other than
YorN

72 N

72 Other than
N

MEANING

Position source
input tape regard-
less of whether or
not it has been
positioned.

Do not position
the source input
tape; even if it
has never been
positioned.

Position source
input if not yet
positioned.

Do not position
the source output
tape - even if it
has never been
positioned.

Position if not
yet positioned.
Do not purge if
already
positioned.

SIGNIFICANCE

Because source correc-
tion only searches tapes
forward, this permits
assembly of a program
previously read from
the tape.

This provides a conven-
ient method of utilizing
multiple inputs (switched
about by ASSGN cards).

This is the standard
TOS mode of operation.

This provides a conven-
ient way to switch output
units and control
positioning.

This is the standard
TOS mode of
operation.

& Correction statements are identified by exception;thatis, if a statement
does not begin with *STARTC, *DELETE, OR *ENDC it is processed as a
correction, Correction statements must be in SYSIPT in ascending order
by sequence number (columns 73-80).

Correction statements fall into two categories: replacement and inser-
tion, If the sequence field of a correction statement is equal to the sequence
number of a source library statement, thenthe source library statement is
replaced by the correction statement. If a correction statement has a
sequence number that is not equal tothe sequence number of any statement
on the tape, then the statement is inserted in proper numerical order. If a
correction statement has a blank in column 80 it is considered to be an
insertion and is inserted immediately. Thus, by utilizing dummy replace-
ments or insertions to position the input tape, large sections of new coding
may be inserted.

Delete Statement

Format

Operation Field

Operand Field

End Statement

Format

Operation Field

Operand Field

Appendix G

4 Whenever deletion of one or more cards is desired, a delete statement
of the format shown below is required.

* OPERATION OPERAND

*DELETE [,] d [9,]

¢ *DELETE is punched in columns 1-7 to identify the delete statement.

An optional comma may appear in column 8,

® d; specifies the sequence number of the first card to be deleted and
begins in column 9,

dg specifies the sequence number of the last card to be deleted and must
be equal to or greater than d;.

di and dy are any combination of characters except blank or comma.
If the field is greater than eight characters, the rightmost eight characters
are used. If the field is less than eight characters, the sequence field is
right-justified, and space-filled to the left. If dy is omitted, then it is set
equal to dy.

The comma in column 8 isoptional, If present, the next eight characters
regardless of value, are considered as the d; operand. This option allows
correction of individual statements that contain invalid characters in the
sequence number field. In order to properly position the source tape, a
"dummy" correction should be given to the last preceding statement con-
taining a valid sequence number.

€ The final statement for all programs being corrected must be the *ENDC
statement unless the ASSEMBLE option is used. If corrections are present
this statement must follow the last correction statement, however if no
corrections are present, it must follow the *STARTC statement.

¢ OPERATION OPERAND

*ENDC [copy]
¢ *ENDC is punched in columns 1-5,
¢ The COPY operand is optional. If present, it directs the assembly to
copy the remaining programs on the source library input to the updated
source output. This copy option is allowed even if the program being
assembled was on SYSIPT (that is, the *STARTC operand was ADD or
blank),

If the *STARTC card specifies the CORRECT option, and the COPY
operand is present in *ENDC, the COPY is ignored.

Error Messages

Example

Appendix G

Message Meaning Action
ERROR 1. d; greater than d2 dg is set equal to
in *DELETE card. dj.
2, Option operand in Blank operand.
*STARTC card Assumed-rest
invalid. of card ignored.
*ERROR*FATAL Program to be corrected If COPY ALL is
cannot be located on used in *STARTC
source library input. the source input
is copied to source
output.
NO *ENDC 1. No *ENDC card to Correct and
CARD READ terminate deck. restart,

2, Correction cards out
of sequence.

¢ // STARTM

// ASSGN SYSLST,L1
// ASSGN SYSUT1,01
// ASSGN SYSUT2,02
// ASSGN SYSUTS3,03
// ASSGN SYSLIB,04

// JOB

// PARAM INPUT =SYSUT6
// ASSGN SYSUTS5,05
// ASSGN SYSUTS6,06

// ASSMBL

*STARTC PROG1,ADD,SEQ,01000,5,PG1

MAIN START

BALR 2,0
USING *,2

END
*ENDC

APPENDIX H

OVERLAY
(SEGMENTA-

TION) METHODS

POS OVERLAY
METHODS

& Many programmers find themselves faced with the situation where
available memory is not adequate for the entire program. They then must
make the choice of reducing program size or developing a scheme where
memory is overlaid when a particular segment of coding is needed.

This section describes the various methods of program overlays
(segmentation) available to the POS and TOS/TDOS programmer. The
design philosophy of the POS and TOS/TDOS systems requires that overlay
planning be considered during program design and coding. The methods
described herein are written at the source language level. The generated
coding produced from these methods permits production of loadable object
modules in the desired segmentation format,

Each logical coding entity is known as a segment. Reference to data and
transfer of control between the modules within segments are accomplished
by use of external referencing techniques. (See EXTRN and ENTRY, pages
4-16 and 4-15.)

A given program may contain multiple segments.

Overlay points within a program are known as 'node' points. In the
following diagram we show a single node point structure. Segment X is
the root segment. Segments Y and Z share a common overlay point (node
A). The housekeeping coding in X startingat node point A may be overlayed
by either segment Y or Z,

NODE

POINT X
A \

Y Z

Because there are differences in the POS and TOS/TDOS systems
implementation, a separate discussion of overlay methods is presented
for each system.

¢ In POS a single assembly may create overlays. All overlays except the
last must end with an XFR card. The last overlay ends with the normal
END card,

To guarantee that an overlay is loaded in the desired address an ORG
statement should be the first line of coding in the overlay.

POS OVERLAY
METHODS
(Cont'd)

SAMPLE PROGRAM

Introduction

Appendix H

Overlays are called into memory by use of the FETCH or LOAD macros
(see POS FCP and Supervisor Communication Manual, No, 70-00-605),

Multiple assemblies may be combined into a program through use of
the Linkage Editor,

An example of an overlay follows, This example is oriented toward the
70/25, however, the usage is applicable to POS also.

On page H-8, the DTFEN on line 0456 is coded with an OVLAY param-
eter. This parameter is applicable to the 70/25 only and causes the Open
routine to be coded in line so that the Open may be overlaid with problem
coding,

At object time the Loader reads the object cards until it encounters the
XFR card. Atthispoint (line 0490) controlis transferred to the open routine
at OPENRT, At the end of the open routine the FETCH macro (line 0480) is
executed which overlays the open routine with the remainder of the object
deck. At the end of this overlay the END (line 1870) transfers control to
MAIN (0530) and the rest of the program is executed.

¢ This program has been included in this manual, not as an exercise in
programming, but as a review of some of the assembly features previously
discussed herein and contained in the related publication '"POS File
Control Processor and Supervisor Communication Macros Reference
Manual," (No.70-00-605).

The sample program illustratesthe order in whichthe following features
might be used to solve a problem.
Job-Control cards used to assemble.
Logical and physical FCP inclusion,
Possible overlaying techniques,
Some assembly controlling codes.
Basic assembly formats.

Literals, constants and working storage.

9 O G o W N

Supervisor calls.

This program shows only the coding necessary for assembling a 70/25
object program,

€-H

70/25 SAMPLE PROGRAM (POS)

T<M

EOR
0. 55.
- OPEN FILES
s1. [mve 56. | MVC ..
SET 55> SET 50>
59 59
sa2. s7. [mvc
MVC H .
€'999999'> €'999999'>
MACCT TACCT 3 (ot
"ENTER DATE"
58.
S3. (“GET
CARDIN
4. | GET
READ DATE
54.
B
ADDITION %9. [cLose ..
FILES
60.
EO0J .
(MACRO) N GET
CARDIN
(ADDITION) >u T e
l TACCT:!MACCT
17. MVC
MASTER >
MSTORE TCODE#D cLe
T [TCODE: D
1. | pack =
s ng,, > TAMT > TAMT o [Mwve
MASTER SET EXIT
T | TO REF 5
12. | ap
19. P
ﬁ:\::\r> TAMT > o
MBALANCE MBALANCE . s
l I PDELETE
13. | mve
20.
M»"/:cnus> wgﬂsg
M
MDATE
I 14
21. | mve AP
ONE >
CML$Q§N> MTRANS
22. [mvc 15. | Mve
SET SWITCH SET EXIT>
> RESET REF 6
23. [Tuve 16. A
SETRE:'J PCHANGE
24.
8
PADDED

25.

26.

27.

28.

29.

30.

32.

MvC
RESET SWITCH
> REF 27

MVC
RESET SWITCH
> REF 27

MVC
MSTORE >
MPRC

PCHANGE RT

{WTRM)

{SWITCH)

{RESET)

33.

34.

35,

36.

37.

38.

39.

40.

41.

42.

MVC
CLEAR >
LIsT

MVC
MACCT >
LACCT

MVvC
MASK1 >
LAMT

MVC
MASK1 >
LBALANCE

1
ED

TAMT >
LAMT

ED
MBALANCE >
LBALANCE

PUT
PRINT

PRTOV
{MACRO)

{EXIT)

43.

44,

45,

46.

a7,

{PDELETE)

MVC
KDELETE >
LDELETE

MVC
MACCT >
LACCT

]
PRINT-
ouT

(ADDITION)

MVC
SPACES >
LIST

MVvC

KADD >
LADDED

H xipuaddy

pave__2/68 eace__1 ofF _12

SPECTRA 70
ASSEMBLY PROGRAM FORM

CHARGE NO.

Sample Pro

PROGRAM

OATE REQ'D

FLOW CHART REFERENCE

IDENTIFICATION

COMMENTS

2345|617 |89 0[N 12p1311415[16 1711811920 {21]22(23)24}25]26(27[28[29]30|31 |32{33 (343536 (37|38] 39] 4041 |42)43 [44]45]46|47[48 49|50 51]52]|53]54]55| 56|57 |58}59|60 (61 |62|63|64|65]66 67686970 {71]72|73|74|75(76|77|78]|79]80]

o~ o~ o~ — ~ -
o & B %] A 2
P R S R
MRNRRE
o] ©] o] o} o} ©] I S N
o o o o o~ o~ o
= B T A |
2 gl B B . [
e | »e| =] | | =
o - - - -| - -
|
@ | ol A~ el el = |
= o ol o Ay -9 w el
3] o| o of = o A »n
-
1%] w w 1%} 1] 1] (%] L}
» S| 3| > > > > »n ~
< 12} wn (%] (2] w w o (=]
z z| = = = = = 2) B
2 ol ol o] o o of @ m o T T 1
m_ m O] »n B) n » oz @ B yllﬁ RN G+
o ol o] w wnl w wu w wu < o x | Lol
° Sl o <] < <] <l <[< Ao wm
||
3
z . 4 | Il[‘.llrg
~| =~ S~ ~ /I SO ~ e B IXV’\T} . lﬁ\ |
- S~ ~ ~ ~ e S~ N~

112134 (5]6 7]! 9 |1o]n h2ap3figa]rsfisjiz(1e wlzo 2 ZZFS 24|25|26 (27]2829|30]31 323334]35|36 37| 38{39 [40 | 41| 42| 43[{44}45 |46 |47 |48 |49 SOIS! 52|53 | 545556 | 57| 58{59160 |61 62!63 6465|6667 |68[69 (707172 ﬂ“ 75{76 77|78} 79| 80

Vi

L8e00

Appendix H

Appendix H

8l o] o of of of o W— ol o o ol o o 13
3 & R N o] 4]] o ~ o o] O A ~] = [S
N D 2| o o] of o o of o] of o] A A A ~ =
. v ~ O O of o 0] o o o] o o o ol o =
'y
o e 2 e
E 5 | = 2
@ a % =
~| s = X N
oo = R
] byl N o] o] o ol o] ol o] ol Y Ol vl © N
o o S ~
~ S 2
@ 3 %
g] 2
| [+ 4 ~ ~
~ H o <
z 3 3 3
e gl L 3
< @ o “ “
o o o o) Y
] 0
S 3
S 3
2 3
L] 2
2] 3
5| N 5
Rl 2
:54 O “
S S
2l a
2 ®
G| = 5
» - - 1
g [g] = z
A ?
= 2| m <
g 52 0
$| ~ 2
z S o~ N <
2 3 3
a | > =
o ~ -
Rz =T 3 =
<& g <
£8 . = E
va Y S = <
w
o > @ S| m 2
2 m 2] » 3
g . 5| @ 5
< =z s« 3
x w "y
v o 4
x 3| = S
2 g = o
S oA S
| = =
M A -~ - - m
2] »| o — A A IR 2
& o o - [o~ a & H E]
N o o A H| 4 = = Al o] o[B
3 0| - o ml al &l A o« w4 < o~ <
a a > o] = am = H Al < <] <] 1] = ~
z 3 ®n| | »n < @ M8 & =] = = Kl A @ 3
w8 W0 0] &) 0]] | 0] 0| & | i| @ 2
o
5] o W w@| e 0| e 0| 0| <2l) o] = om| >]
~ A N A @ Al = A < < = | A 1] =
s of <| = Al O] A & af @ @ 1| of m[< 2
> ol H| wl <| H| < O < & & A & & M >
o of = M| > | ® oM A <] < <] O] &l © - @
~ ol Al Al | m| o « = o o w| m| > © =
e Al <] a al A & wm w A A4 A4 &2 /] = <
n -
z | B & hd
3 _] 4 .
E L2l & ol | . . - B 2
M T N R o
w -
o =8 Ul ! R A N I S O S . =
°© el al @A [E
o 1 o
w o T ©
(I S | L — e
~ 5] 1 ~
i - [1 ©
I S N S R S Y SR e
\ o w
g o T |0 =20 -
w o z [2| A < | | o I N SR S hi
m _m Lol o = L | 2
5 & o oml 4 , —
- @A A L k &

3 oF 12

PAGE

2/68

DATE

SPECTRA 70
ASSEMBLY PROGRAM FORM

CHARGE NO.

Sample Program

PROGRAM

DATE REQ'D

PROGRAMMER

FLOW CHART REFERENCE

g o] o] of o] o] o] ol o] o] © o1
2
W [n| | r~| - N M T n O S __
~ i
- = — - —N ~] NN N ~ El
= 2
3] R o ol o] of ol o o o o] o =
'S
£ R 2
& |2 2
o < — - <
8 N <
S 2
~ Q O o Q] O o (%] [SIER] N
= =
2 3
>
3 =
$
3 3
S ~
N 3
3 3
2 o
Py o
3 0
3
S =
3
P ~
= 3
> S
5 =3
=2 o
>
2 o
2
n @
2
3 5
L 3
=
2 =
F
3 X
b Ll
l w
S — B
=
2
“ o
= = EY
= o
o i 2
(v ~ ~
3 5
hd 2
2 2
A 3
=
~ <
~
~ <
3 =
2
hd S
o
3 >
kS
8 3
5 5
3 2
] 3
3 B
8)
3
S S
8
s A 5
w - - - By o w
[o~ [l M| H %
2 © o R F)
R| o o - A B ™ Ry
S| »| + wn| @l - &6 &6 % = =
2
a al ™ of > al A] D] B H] D w
2
z I @] N »| < =] O] O | O] » 3
o
w [RT AW W[el @ Wi e @
o S W) om0 o N =] my h]
S| M N Al |} oA < @ A ~
2| <| A A O] m] @ @ o] & < S
2
o F| A €| H| <| ™ & = 4 = -
2 R X > > A < < O] A & ©
=~ Al Al m| @] =] o o || = o =
o <’ A A W H Hl M B = ©
- =
z > ™ =
m ERE) =
2 [= =
v lz] = -
o © a =
L o
| o w
~ 13 ~
© w0 ©
$ [l = -
z x| = -
- [~
~ [o~
-~ © -

28-00-1139

Appendix H

Appendix H

BEREEREEEEE IR 3
o ©
— E [l oo ool siaas e ~
S R[o[ol olo|o| ojolojao R
w & >
c .Fl.n =
z [@ R
8 —= N
4m a I ﬂ
v ° ad
o = o
mo NERIEREEEIEEEE =
Py = N
] e R
— W >
Qu 3 2
@
o § 3 =
ool . 5
i w 5 2
o E)
z = 3 3
< < w
o o w -]
w o o) -
S8 2 3 2
a & a - 2
il ~
S S
S
— S
S
S S
S
2 3
= 2
]
r. 5
5
2 R
"y
= 3
3
3
~ 3
3
= 3
w =
= B
b
— Iy
»n =3
2 g l
z o
w g =
= =
2 |2 =
Q = ~
Cﬂ -
) 2
b3 < 3
S 3 L]
w = 2
2 2
.o/m S S
< =
22 4 2 3
<
KPW < S
o
o % 3 3
Yo w] 3
3
z 5
W ~ had
%3 -
b 3
< « 3 3
32 ry 2
S o
= < 3
g : 2
i 3 by
= S
S
- o
=
2 - " 3
Q | - o AN M| e m
5] Al ~ 1 = = = =
R | B] o Al a ol b =
o
L | oW O A ™ X M~ L
-
o [Rlo|>| <l m| &5 < < H| = =
2 I
BA“"uSSEAECCF.lS =
=
[I T N "1 A= R T Y A T ™ =
~
O |8 imim| U}] s o =] m] > L)
sin|alals] al < <] =] gl 8
S
lH|Aa|lvim| a @ m o m o« S
o
2l <| HiA| < M K] B "] M
2IM| > > H| | @ <l o =
Elalm| mlal of ol o]l m| »| © ~
<
DR =W = = S - A -
P~ B
= =
WIR -
= | ™ —
- L=l wn o~
g %l e =
w =
o | =] & =
°© =1a 2
S
o
)
w ||
[T [- ~
~
°
o] =
s 0 w bl
o -
zZ o M ol Bl ~
W z 1 A
o 7 nle
o W o | 2
L T =3
U o B 4 3
-] o -2

8-H

2/68 pacE_ S5 oF _12

CHARGE NO. SPECTRA 70 DATE

DATE REQ'D ASSEMBLY PROGRAM FORM PROGRAM __ Sample Program
FLOWCHARTREFERENCE __ PROGRAMMER

NAME OPERATION OPERAND COMMENTS IDENTIFICATION
1213 |45 wlnzpsjie 1711819120 f 2122 | 23] 24|25 7 33(34{35]36 37| 38| 39] 40 |41 42|43 | 44| 45|46 |47]48 |49]50{51 |52 53]|54|55| 56|57 |58]59|60{61 |62|63]64|65]66 |67]68]69|70 [71172|73]|74|75|76|77]78]79] 80
P|R|I|N|T D|T|F|S|R| |B|LIK|S|1|ZzE|=|1|3]2], c 0/3]8/0
clo|N|T|R|O|L|=|Y|E|S], c 0{3]9|0
D|E|V|A| D/D|R|=[S|Y|S|L [0/4l0]0
D|E|V|I|C|E|=|P|R|I|N|T c 0l4]1]0
1{o|A|R|E[A|L|=|L|I|S|T C 0]4]2]0
BP|R|I|N|T|0|V|=|Y|E[S]|, c 0l4[3]0
R|E|[C|F|O|RM|=|F|I|X|U c 0l4la]0
T|Y|P|E/ F|L|E|=|0|U 014]5]0
D|T|F|E|N V|L 0l4]6]5
1{2|3 |4} 1w 1213f4 17|18 22 23| 24|25 27 33134 |35]36|37]| 38|39 |40 | 41| 42| 43| 44| 45146 |47 |48 |49 | 50|51 | 52|53 54{55]|56 |57]}58|59|60)61]162|63|64|65166|67 |68|69]|70[71]|72]73|74}75]76]|77]|78) 79|80

28-00-119

H x1puadqdy

6 oF

PAGE

2/68

DATE

SPECTRA 70
ASSEMBLY PROGRAM FORM

CHARGE NO.

Sample Program

PROGRAM

DATE REQ'D

PROGRAMMER

FLOW CHART REF

Appendix H

2l ol o ol o ol of o o] o o o ol o| of o o o o o o o ol of o8
W el <[o ol o H N o | n o ~ o o] of ~| & W @] N o ~N o | of R
m S] & <[wn|] v n] v v n] on]]] o o o] o] o] Y v v o] o] ~[R
v R| o] © Ol 9 ol o]l o] o]l o] of olo| o]l o]l ol o]l ol o] o o] o o o o|~
E[2 =
g |8 R
mﬂ >
o R
= X
= ~
e R
% 3
3 2
S S
2 3
2 S
3 3
2 3
9 3
% S
2 S
% S
= []
5 o]
2 3] R
a [2
2 v (2] b
2 — = a
o © 2z =] < 2
5 ElEE < | =
mw %] & & o] « 2
u) < 7 | o< & E
W F] ElY z Z 2
5 < o m| & < 5
3 | =) o| = = 2
A [] Z| - (%] F
3] = zZ| < ~ <| ~ B 3
2~ m o= 3] LY (=4 <
] = [T P [[3) <
5| A [2] 4 <
S| " Al o~ - w < - g
S| = < « [} O] m 5] 2
RG] o &= =] < A < 3
5| A Al w»]) a 5
3| ~ 3
n| < o
IS S
2 - a
ERICS S
= B o ey
8| « Ml o+ 8
&l <] &
& = i ool B =1 B 5l
R & ~ [o] & > <[©]
FER=] ~ O ™| | m H| Al & s
a o | © - ol o N o] A © | M| <]
z SR © o Al] o T <« - A b
x] = A & Il o A | |] B[&] [SREZ] 2
S 8 = n| @0] +] 4| A w W @A el x| al aly
| & [N [< al ol a] A] x| &] A0 <] w| <] <]
gl ©] [I m < < <] <] = S > > o Al e m] m]g
ol < =z z z - ~ M O] ol of O 2| B H] & H X =z | |2
@ 5| -~ =1 W] of eof ~[XM QA a3 A «a = «af a] A <] @\ | M| ®
~ = | < By | A A s o M o o | E] R O] O] O M M - O ofr
o H| = o Of of ¥ 2| T « <] <] <] aa| A] Of O] a]] [O] O] Of 2
o o
z | = = S [3 5
muNc o = ~ MG IR
=8 |2 W & o o =] O] A H H| OO H Al = O H|
o = m| m] W -) < w = Oof o] of of z|] % < ol o] o X[«|=
° e[o[= <[w@ < o] @ o A @ A a A Al o] = =] = a o] o] Al @] z[=
- = o
- = A w
~ = B o ~
o | =) < Al o ~ <
M ol = < 1 a >l > ml E «
3 [= = Z| a o ~ tl e B = <
o] m [| < % o [l mi o= o< A =l
~ | o < o < (%) > of O A © ZM
1 o A A 1T = [ol o ¥ ~ — 5

Appendix H

E o| ol ol o o] o o o] o o o o o o| o o o o o o o8

zZ 2] A ~ o < n o] N o o of Al ~f » | | o ~ o o of A[&

o m 2 N~~~ ~ ~ ~N ~] ~[o ol o o« w| o o | o o of xR

" ! m R o] o o o o o o o o o o of o o] of o o] o o o o|RrR

° E L2 ! 2

i —.—Nu ” ! . ”

~ gl e |z =

o 2 2

g% T =

iy g S

0 2 R

al 2 3

3 & 3 3

NEE- 5 3

3 3 3 3

® o n ™y

G-I 5 =

s8¢ 2 3

S 2

3 S

S S

S S

2 o =

2 5 Y 2

3 H = 5

b3 < 0 b

2 ~ H oo o B E

3 & 4 9 H e o=z om 3

] = g3 = =l O 2

o8] [l g « O B O = X

@ a © 25 A H o al o« 3

e [z EREELE < < = 2

w % Z g & a o o o O)

M < 1= o o B Hom EEEE

o) 2] Z o =] J g J o = H H&

E) [= o A [H & A H o= A &%

z E] [Sl H R 3 R

Q 3 O H ®| = 9d H H = M x| H HJI

=

e3 m = w O = X[« « H A m o SSu

= g 2z H o« < B A u o o]l o EIEE

=8 = 5 a 4 o« A ~ = d o o o d o=

UNM 5 o A = Z a & o 4 = o =z = 9 9%

- 5 CEEEREEEE oM < o & = s

Smm 3 (& o) ~ = o J = = o EIE]

u = 5 < O o & X o = o al o M AlH

Mm) G IR] = z M >3

5 3 B £ O A 5 A & « H g

z 3 o T x| 8 o™ B o < A 9 A w = 3

2 a < O] O] <« J m| o M ol = | w103

S n =z = A =m0 o= S

= + = o< < = o« < - -

2 el O x| o~ ol o~ 4 o S

% al & J @ m| O] @ A m ~| &= —)

& <| < o < H| = - =]

& = QA o A = < o A R

2 AR A= e - < <| B @®| 4 < 2

o | & = A = = o a B HIERIEE 3

32 = ol @ 4 al 9 - =] T4l e A ~ =

m 2 o = o Ol @ =) ~ ~| w A ~ o g

© S o< SR> il ~ n| ol X 4 M = MR

Sl N A/ = = 1 - N o N e ~MoEl 4 on o & O9E

Q| & o] = w H| B = W e | m Hl < ®m o= 4 o= A m g

o = 3| A < Al O A =5 A « =] < e i S

2] A] =] © = &M O Al &1 o A H m < <] | A oM om A O

Sl ol > Al A Z a|l « Al M o & x| A [=V S I S s M B

2, M ol @ o (ol RS N) O =1 O) =) <] =) 2| sl sl sl om0 w2

2 2

z = =

m 2 X o

= o al = H B © O m| © [®) o) o

s = o] O w BEEIEEEIEES <] >l oo > ol o =

° 2| m| O] U a O Ol U m|l m Y m = m sl wl =l o<l =l ol A a2

o o

® =

~ al A ~

° <l < B Nl o™ —. =) °

g 2 M " @) ml m B X e »

ﬁ“ z 2| x| M B Zp A O <] e
o w hd m = < o] m a @l ol
5 3 fal ol ol Al | o o = . a a al~|:
- ol o = | o] o = <! «|—]¢

H-10

Appendix H

2] o 000000_05 o of of o] 9 ol o] o o] o ofg

o W e ~ ol] n] o N o o o o A & » F | Tn| o ~ o o of&

E 2] o o o o o o o o o ol o o ol o o| o] o ol of AR

v m .-HO ol ol o o o o o o N o] e N o=~ | = -~

c ._l..n. 2 2

e R

| g e = X

g R 2

g o = =

HW.._ = IS

[R 2

3 B :

| & 3 3

NI 5 5

N 3 3 3
< < o

(58 B :

3 &g = =

3 S

9 L S

% S

“ “

) 2 &

3 g = 2

3 « —~ 5

R -5 b

3 = b 3

3 o 9 = 3

B M| H R S 2

o o Q x o 3

w w0 O v K Mm e O = @

Mm o = < o O = H & o e B

u s o S d & = Y o4 = H ol ™ <

F 2! o o = TTM £ < 2 « © 2

8 5 A = o o o H H 9 = & w = m 3

2 A s B B = x M % . =] 2

z 2] « o o = w m H < ™ = g Al o 2

° 3 ml v = @ v H =5 9~ ©° M) 3

23 2] & o = o o = w A B s - o o 3

< Z Sl = - e < o O & S

g S| o< <| o = o @ M o < wy 3 o o= = e S

Ca @ mT =oel o« o N oM o= G M M » = g

me 3] o =l] B = = & [9) 3

2 L 8] = wm| m M @\ owm = e - w @ o=z 3

g5 5] ol >l o o 5] o] B & " H e A = W > < 5

Am 3] ol o of «| o o m wm = H H < @ m Q| M 3

3 2 sl sl a5l s v) A EEEE o = @ a

x B EIERG 2

@ E] -) = z 2

o o) [=) =) S

= - = o o -1

3 of - = - - 8

) of X —~] © > b &

] E G ol 1| m = | ol [&

8 H = o A4 A « 4 a2 4 &

3 O A <« W\ o -~ < [V B - P e — = ol H 3

o 2 X O = & ~] =] <« m sl ml =~ ~ = g 9 -2

2 = Al A A < x| — = S J o PEERSIE

w Q| Sl ~ ml al] <] «~ o g m o~ —~_ & < w8’

b S| = J ol o = 4 4] < B ol @] F +| @ u = <8

= = w| o =z 4 o« z « A w4 e oz = o B o~ M 1T =S

s| H &~ < m| &z o + m <l | u o = q | ~ EERE:

| © Sl O A ml <« w = & =~ «f =] o H 2| o = M R

o o B oM < < M R H] oA TOMIE —H oW w O =2

~ w| A oM Al e =2 X < o | = 2 o= = el T - < <=

] © = = =2 =5 =2 o] m oA o x| ~=| w o v = o = e

= =

z = =

g = I] =

FRIE ol o] v O o ol o [=)o N ol © o O o=

e =] o > 5 < > =l 5] > o o mi > > > g

° [=[Aa =l = o =5 =5 =] = m ol ol of sl o s sl o REEE

o o

@ 2z il

! - T 1o l ,\ T T =5 ~

.D, E||61 = B b | = - O ©

g 5 3 L & o £ = -

w S ! M [T e . _ _ _ ‘MT\T I 3] i — < ~

v a bl - - - \Rw« = L 5] bl

-1 < < = w B P il

H-11

Appendix H

2 o] o o o o ol o ol of o o o N o ol o o ol o o o o [
z 2] A o mf 9 n 0] ~ o oo o A o o o I n| © ~| o o o] H [
1 Rl = A A A A] A N | B | | e I I I e e R
s = 2 °
- ~
E Iz -
w ~ ~
o g o X X
Y o R
w
o N =
<% =)
o A = [
it 2 g
3 3
* ©
o ©n] 2
© [~ ~
~ _W_ 1y .
o~ o o
Mm o O
@ @ “ "y
w o o o ©
= O O - -
< @ x o <
o & o = =
hd ©
o T ~
bl O
e S
3 o
2 ©
3 & 2
2 =~ =]
P = = H]
R o o =2 o R
a = o —H oA a
3 o = A v m ~ 3
3 HoH <« z = [P 2
o mOx Qg o o o 2 T E]
= ~ m| o =z = (e [- &
m 2 =)] [= 2
w % > B H a 4 ~ =z o o <
3 LS o = w2 e IR Yy 2
s il Bl = w e B
2 o] el M - m d o O » Z 9 2
z < = L e I =) A d & < =z H e 2
o 3 Fy A 0 m)| MO A b
o x 3 | °© a - wn| O o 2
~
Am S o o A N [3) 2l SS) R
n%_.. z o = « ° w| @ = w wl oz o= s
] .3 1
va @ < z =i > N > >« e B B 2
- 3 a o] = = ol o = o] of ~ o 3
va g 3 ZIRIE ¥ = = & m]
= L 3 = 5 m 2
8= 5 — 5
Am 3 N 2
5 5 o 3
H 3 N s
@ 3 o E
o] ~ E}
- L) © m =] =
2 = o 2] E}
& < [=) o] Y
FRIE =] N =] =
& » < o [5] 5
2 < @ - o~ Al = wl A =
o | & Bl @ = n - o ~| O o B 2
Z TN = - =) a ~ Ao < < S
I Q] @l gl wl o~ - @l -] mf - al gl = ol ~ 2
S o] o] = © - > = al ol wn al = o AR =)
= Z| = = B A w w o ~ = o O ¥ A [=
?] < N = &5 an on SR~ BN I Q| = & o P P P
el Al &= A =] & B &=] wl Al o] ~ - O] = o H oAl =z « @
w| | = < H| oH A A = ap <« | + f==F B3 0 BEN & 3 IR < w A —H = ®
~| m| < m X & < < zZ| = - -] - - = A« A a =l o« X o =
o Al A A & & = = <] o O Of X A < 2] Al A e e Y 2
2 = A = 2
z = > %) o =
m 2 o Z B - o
- ol o [o zZi 0| o o O O o
w o al e o) ol w o O o o] = | > ol & o o =
© o] = m| m o & m = a A a al al x| = = = = = & m B
o = [Z o
@ [< (e} @
~ =] o] W) m — ~
° o Q = | = = ©
c @ w " =] n =) w — W W — "
zZ o M
w 9 -] - z e e o A Al M | Al 2 a -
mu - [S o [Tw al v o w m A ol
5 3 ~ I x| < Al < «| || Al A < ~3
- ay W m * MEIRARGIEIR * -|%

H-12

10 of 12

PAGE

2/68
PROGRAM __Sample Program

PROGRAMMER

DATE

SPECTRA 70
ASSEMBLY PROGRAM 'FORM

CHARGE NO.

DATE REQ'D

FLOW CHART REFERENCE

Appendix H

g o] of of of o] © o] o] o] o] » o ol ol o] o o o o o =) 2
- [el o o of of T 4 e I S I | = & |] & A F| | n n (3
rM [N — — - — | —t - - - - — - — 4 - — — - - — — - ~
™ - o
" ~ ~
z (= =
] x 3
2 R
R N
[[
g 1 S
2 3
2 2
5 5
3 3
m -
S S
- -
0 ©
= =
0 o
z z
0 0
S S
=3 o
0 o
3 &
2 2
5 5
b]
- -
3 E
= = b
Q = 3
P a
v L= A &
I R o~]
=z
w o = o
X = S
5 | 5
<] [~ z| =)
9 | e © H - <
3 wnjunl~ = al A I
<[<= o[© 2
3|~ HIEE] 3
S| = %) [T | 5
g v | < < = S o <
E ol of = [= m] e Ey
2] <« B B o a 2
51 = = 3 o =] © 5
8| =] o o %) < z| = 3
= = Z =z A o o & a
3 Ol | = fx 3
a| ™ - o o <| < 2
ol o <| < a [e] | o S
=] & A W =] z [| 5
8 Xl % o =] o <| <« 8
| @« < | m — - %] &
| < [3 < = B 2
K] m H]] < < =) o] o R
9 ~ = [=] Q ~ ol oA 2
-] Q< IR w Q < z| = 2
= B Z| z| o) = | o I
w Rl = H| | = [$)) 3] Q2
o q] O < < (4] :
s < [< =
] -1 o o (=} I
2| © o o] v ~ ol of © o| o] © < 2
2| B nlnf Al ol & n|] nl 2| n| n| w| o A o ~ o] ~ n =
Ela w Al gl o] Al Al Al Al Al @l Al Al e & a] Q] o] Al Al 4] = - =
2 o] Ol 0|l o]] V] O] V]l V| Y] o] ol | V] o] © v o © © 2
o] [2
z x| © o *
=3 = =
> = o
g [=l= = s
w ~ | o - %) =
g =1 “nl v v n o nl ol v o o v o O n vl v n B B n o« =
cllH wml alanalalo ala el aa + a alal al a al a & /2 2
- | & B =
w| <« m < w©
~] © o o ~
| © =z n| @ <} had
M w| A o« | m| < w =zl o A | elm E e -
zZ [~ " Hop ol o] sl oAl s o« | al al =zl o = & a = b
n| < 9l un ol <l «| «| o8] Al Bl g < | @) | = o] < = o < Ll
~l <| «| | | =l | Al 1 9 ol o <] «| al «| =] «| o) ~g
ol B = sl =l ==l =] = = = of of x o| o o & =] =l e = [-]s

H-13

Appendix H

S
© @
o O 8
2 = o - e
o o] o] © S ° - :
o of o o[ore = :
— R ® - :
o] o o[© o = 6
2 =)
of o o © s l |
3 o B B o S :
= RIS = & o 7
- | N o 4
g L2 | T A N B 7
wls L B I | 3
3 M - o~ 7
= 3 Ao n
[l s |
'y Lo 7
° _m” .o/
w
e |z w
49 : “
=
Em.e = n
E = u
o o E s
[S 6
— = 4
6 o
g : |
HE s |
~ w = |
o~ = S 6
3 3 3 o
3z % |
v g s 2 |
s8¢ 2 n
ﬂ 5
u 3
w 3
w 3
n 2
ﬂ 3
| o
u.. 2
: <
| <
| k3
| <
e [u
& = |
Mu u
g u
| <
u <
2 o n
2 5 u
~ 1 7
Rz G 3
28 <1z s
aow S 3
CPm : u.
a .Il_lm
P”ﬂ = H
SMR ~ | H 2
R T =] |
v - S 3
* 3 | &~ |
x P 3
| =
Ed uR _E |
S 2 : n
w no A | .-U
[
5 : | |
8 O N |
=1 » |
& : I |
2| < 3
] : T |
8| = |
2 R 0 |
w] < : o
a | & : : : E R |
2 [= : 1 : w
dcE + + _ :
W~ : : N |
PZG 2] 5] ° :
o 8 L S A U |
s < [S - e M i : w
o ~ o ® o i B o . s
: " O~ e s w :
= v ~ ol o En 4
- . [=
l o o] A © - - 1
o =] . 3
: E ol © z : :
[T}
= ol M| o] 2 u
.o =
° N D 1
= = - w| ©n 2
.| - o o =
5 X »n a2 :
= | = «» = o -
wn - A el a Al O A -
TzN x wn| » e -
g = o » o @ : 7
: = a [=1=] T
512 al /A Al 9 - C ; 6
R : E o : =
| & ~ M O = = : = T :
SE: = w = a B - -]
[3) ol o <] 5 : |
~ = : : A M
o O & o x S h.a
6L o S 5 * |
: a w |, <| & ACPMPA < o) z
2 g WAL <[= PASASB : :
: = o 3 Al Al 4
3 a3 =2
- = ol =
5 3 =1

H-14

oaTe __2/68 pace__ 12 of 12

S1-H

CHARGE NO. SPECTRA 70
DATE REQ'D ASSEMBLY PROGRAM FORM PrROGRAM _Sample Program
FLOW CHART REFERENCE PROGRAMMER
NAME OPERATION OPERAND COMMENTS IDENTIFICATION
12|3[4 S |67 8910111213114 1516|1718 (19]20 | 21|22 23| 24|25| 26 |27]28|29 30|31 132]33 34|35 (36 37|38 39| 40{41 |42)43 |44|45|46147]|48 [49(50 5152|5354 |55] 56|57 {58[59 |60 (61 |62|63|64]65(66 167 (68169]|70 [71472|73]|74{75|76 [77|78]79
P/ADDI|ED M|V |C LII|S|T|,{K|S{P|A|C|E 1]17(2}0
: MiV.C LIA|D E|D{, K|A|D|D 1/7]3|0
a! 1 plulT P|R T 1/7]4l0
} B’ P|C|H|A|N|G|E 1|7 0
! |
+ + 4
C
EN|D'L B:C X{"{0]l", FII|INJAIL E [N |D O|F INMIAISITIE|R FII|LIE 117/6|0
i}‘ M|V|C E{N[D|3|+1[(|1]),|=|X|'|FlO|" 1/7|7]0
; M|V |C M ciclt!,|=|X|'|F|F|F|F F|F|F|F|F|F F F|F F F ! 1,7/8|0
‘* G|E|T ClA|R|D|I|N|,|C|D|I|N 1]7/9]0
‘ B ADID|I|T I|0N 118/0]0
I
R
ENDI3 B X['"|0[0|'|,|FII|INJA|L E[N|D O|F C|AIR|D|I|N FII|L E 1i8]1|0
M|V |C E DIL|+|1IC1)|, =|Xx/"|F|lO]" 1(8]2|0
“ M|V C T|A|C|C|T|, =|X|"|F|F|F F|F|F|F|F F/FF| F|F F FF ' 1/8{3|0
‘ B W|R[T M 1/8/4|0
FiINAIL CIL0|S|E INMAISITIER OUTMIASIT|R/, CIAR|D XN ,PRINT 118|5
E 0 1 1/8{6
" E N D M I N 118{7
|
V123 |4f5]|6|7]|8F9 10|11 12113[14]15]1617]18]19]20 |21 |22123|24]|25]|26 |27|28|29 |30{31[32|33|3435}36[37| 38|39 [40 | 41| 42| 43|44]45 (46 |47|48 |49}50{51 [52153|54|55|56 |57)58|59|60 |61 |62|63)64|65|66 |67 [68}69|70]|71)72]| 73|74|75|76| 77| 78| 79

H xipuadqy

28-00-118

TOS/TDOS OVERLAY
METHODS

Appendix H

¢ TOS overlays are created from separately assembled object modules
by the Linkage Editor.

Overlay segments in the program can be loaded when desired by using
the LPOV macro (described in the TOS/TDOS FCP Manual, No, 70-00-608)
or either the CALL or SEGLD macro described below, The latter two
methods require the Linkage Editor to produce an Overlay Control Module
and two tables (SEGTAB and ENTAB) and bind them into the user's pro-
gram. This overlay control module accesses tables that reflect the status
of segments presently in memory and of the overlay structure of the
program. These tables provide the facility for a single overlay macro
call by the user to bringa particular segment and all segments in the same
path between it and the root segment into memory. The facility is also
available for an overlay call to become a branching action when the re-
quested load is already in memory.

It is recommended that the LPOV macro not be used in a program that
also uses either CALL or SEGLD, The LPOV macro interfaces directly
with the TOS Executive and thus does not update the overlay status tables.
Since this status information is required by the CALL macro, which loads
a segment only if the segment is not already in memory, invalid results
could occur.

Furthermore, if either CALL or SEGLD is used, the NOCTL parameter
must not be specified to Linkage Editor

H-16

Appendix H

CALL
Call Segment

General Description ¢ The CALL macro is used to effect a transfer of control between seg-
ments, When CALL is issued the Linkage Editor tables are checked to
determine if the requested segment is already in memory. If the segment
is in memory, a branch is performed to the symbol specified. If the seg-
ment is not in memory, an overlay request is issued which causes the
requested segment and any other segments in its path to be brought into
memory. Then the branch is performed.

Format € The format is as follows:
NAME OPERATION OPERAND
Symbol or Blank. CALL Symbol.

Specification Rules

Name ¢ Symbol or blank,
Operation ¢ CALL.

Operand 4 Symbolic name of the entry point within the called segment to which
control is transferred. This symbolic name must appear as an ENTRY
in the segment to be loaded.

Register 15 is used by this macro and its previous contents will be
destroyed.

H-17

SEGLD
Segment Load

General Description

Format

Specification Rules

Name
Operation

Operand

Appendix H

¢ The SEGLD macro causes loading of the segment containing the ref-
erenced entry point (SYMBOL1) including all segments within its path,
The requested segment is loaded unless it is higher in the path than the
requesting segment,

€ The format is as follows:

NAME OPERATION OPERAND

Symbol or Blank, SEGLD Symbol 1, [Symbol 2]

¢ Symbol or blank,

¢ SEGLD,
4 SYMBOL1 - Names an entry point within the segment to be loaded.
SYMBOL2 - Specifies the instruction that is to be executed upon

(OPTIONAL) completion of the loading process. If no symbol specified,
control goes to next sequential instruction,

1. If SYMBOL?2 is an external reference, it is the user's responsibility
to establish the appropriate ENTRY and EXTRN statements and to
ensure that the module that contains SYMBOL2 is in memory upon
completion of the loading process.

2, Register 15 is used by this macro and its previous contents will be
destroyed.

H-18

PROGRAM EXAMPLE

Appendix H

¢ The following example is intended to represent a program structure
of numerous object modules. Each object module was assembled separately
and bound by the Linkage Editor into the logical structure as shown. All
module to module references were made by use of CALL or SEGLD
macros.

A

T
R ROO

The following names were available in the indicated modules.

1. In program A the following statement caused only a branch to
TESTER because it is contained in the root load.

NAME OPERATION OPERAND
CALL TESTER

2. In Program B the statement
NAME OPERATION OPERAND
RHOM CALL NET

caused segments L,E, and C to be called into memory giving
the following use of memory with control transferred to NET.

Entry Points

A HOME ROOT
NT
TESTER SEGME
B RHOM
MODULE -
NAMES __
E TREAT
L NET

H-19

PROGRAM EXAMPLE
(Cont'd)

3. In program L, the following statement

NAME OPERATION

REINT SEGLD

Appendix H

OPERAND

TREAT

caused segments E and C to be called into memory again and control
transferred to the next sequential instruction,

In Program L, the statement
NAME OPERATION

SEGLD

OPERAND

WKLY, GROSS

caused segments J and D to be called into memory and control
transferred to GROSS which is a tag in segment D.

HOME
A
B TESTER ROOT
RHOM SEGMENT
D GROSS
dJ WKLY

H-20

APPENDIX |

MACRO
LANGUAGE
TERMINOLOGY

Call Line

Character String

Conditional
Commands

Expressions

Global Symbols

Header Statement

Inner Macro Call
Statement

Keyword Macros

Local Symbols

Logical Expressions

€ See Macro Call Statement.

€ A sequence of character values that are combined at generation time
into a final character value. (See Substring.)

4 The conditional commands permit the programmer to control the
sequence of the executed or generated statements based on values present
in the macro call.

¢ See Logical or Relational Expressions.

¢ Assigned values of SETA, SETB, and SETC variable symbols which
remain in effect for all references to the variable symbol throughout the
assembly unless changed. SETC variable symbols must be global.

¢ The first statement of a macro definition, Indicates the beginning of a
macro definition.

¢ Name given to a macro call that is contained within a macro definition,
The type of inner macro call (thatis, positional or keyword) is independent
of the type of the containing macro definition,

@ Values to be substituted (generated) are paired with keywords in the
macro definition so that if a required valueis omitted from the macro call

‘line, the keyword associated with that value will be substituted. Param-

eters may appear in random order within the macro call. (See also
Positional Macros,)

¢ Assigned values of SETA and SETB variable symbols which remain in
effect for all references to the variable symbol within the macro in which
the variable symbol is defined unless changed by a SET command, SETC
variable symbols cannot be local, After the macrois generated, the values
are reset to zero or false,

€ A series of terms connected with one or more logical operators (AND,

OR, and NOT) that controls the combining of the component terms into a
final value. Each expression is enclosed in parentheses, and no more
than three levels of parentheses are allowed. Logical Expressions are
only used with the SETB, AIF, and AIFB macro commands.

I-1

Macro Definition

Macro Expansion

Macro Call Statement

Model Statements

Null Parameter

Operand Values

Positional Macros

Prototype Statement

Relational
Expressions

Set Macro Commands

Sequence Symbols

Set Variable Symbols

Substring

Appendix I

& The series of statements that comprise the macro. The definition con-
sists of a Header Statement, a Prototype Statement, Model Statements, and
a Trailer Statement.

4 The substitution of variable symbol values in the model statements
during their generation in place of the macro call statement.

& The line(s) of coding that contains the parameters that are substituted
within the generated model statements. Also referred to as: Call Line,
Macro Call, and Macro Instruction.

¢ Statements that make up the macro definition which are executed or
generated. The Name, Operation, and Operand fields can contain symbols
defined in the macro call or variable symbols used in the macro definition.
The variable symbols are, in turn, replaced by the values they represent.

4 A parameter that is not included in the macro call when a symbolic
parameter has been included in a prototype statement,

& See Values,
® One of the two types of macros (see Keyword Macros)., Values to be

substituted for symbolic parameters in the Prototype statement must
appear in a prescribed order in the macro call.

@ Defines the format and the mnemonic operation code of the macro call.
The Operand field contains symbolic parameters used during generation
of model statements, This statement must appear as the second statement
in the macro definition,

Consist of two terms connected by a relational operator (EQ, NE, LT,
GT, LE, GE). Each expression is enclosed within parentheses, and no more
than three levels of parentheses are allowed. Used only with the SETB,
AIF, and AIFB macro commands.

¢ Allow character manipulation, arithmetic calculation., and the setting
and testing of binary switches on the basis of logical and relational ex-
pressions. The Set commands are: SETA, SETC, and SETB, which assign
arithmetic, character and binary values, respectively, to Set variable
symbols,

& Identifies a model statement as the destination of a conditional or
unconditional macro branch command (AIF, AIFB, AGO, or AGOB).

¢ Symbols that are associated with the Set commands. Character, arith-
metic, and binary values are assigned to them and may be altered by the

programmer at any time using the Set commands.

4 Used in the SETC or SETA statements to obtain a portion of a value.

I-2

Symbolic Parameters

System Variable
Symbols

Trailer Statement

Values

Variable Symbols

Appendix I

€ Name given to the generalized parameters defined in the prototype
statement. Values contained in the macro call that correspond to the
prototype's symbolic parameters (either positionally or by keyword) are
substituted for the identical symbolic parameters in the model statements
at generation time,

€ Local variable symbols that are assigned values by the Assembler
at generation time. They can be used in the Name field or Operand field
of macro definition statements, The system variable symbols are &SYSNDX,
&SYSECT, and &SYSLST,

¢ Signifies the end of a macro definition, Must be the last statement of
a macro definition,

4 The character string of up to eight characters which is assigned by

either a Set macro command or a macro call statement to a variable
symbol. Each call value must have been represented in the prototype
statement as a symbolic parameter.

4 Symbols representing varying values, which may be assigned, changed,
or tested at any time during macro generation, by the programmer and/or
the assembler, Current values are examined to determine what model
statements are to be generated. Variable symbols can either be: 1)
symbolic parameters, 2) System variable symbols, or 3) Set variable
symbols,

I-3

APPENDIX J

SUMMARY OF MACRO DEFINITION OPERATION CODES

Operation Codes

Name Field

Operand Field

AGO

AGOB

AIF

AIFB

ANOP

MACRO

MEND

MEXIT

MNOTE

SETA

SETB

SETC

A sequence symbol or blank.

A sequence symbol or blank.

A sequence symbol or blank.

A sequence symbol or blank.

A sequence symbol.

Not used.

A sequence symbol or blank.
A sequence symbol or blank.

A sequence symbol or blank.

&AGn or &ALn, where n is
0 - 15.

&BGn, or &BLn, where n is
0 - 127.

&CGn, where n is 0 - 15,

A sequence symbol of a statement
following the AGO.

A sequence symbol of a statement
preceding the AGOB.

A logical or relational expression
enclosed within parentheses,
immediately followed by a se-
quence symbol of a statement
following the AIF.

A logical or relational expression
enclosed within parentheses,
immediately followed by a se-
quence symbol of a statement
preceding the AIFB.

Not used.
See page 7-2,
Not used.
Not used.

An optional error code followed
by a combination of characters
enclosed within quotation marks.

An arithmetic expression.

A logical expression or a
relational expression enclosed
within parentheses.

Up to eight characters enclosed
within a pair of single quote
marks with substrings allowed.
Concatenaticn of enclosed terms
allowed to form the final eight
characters.

J-1

Appendix J

SUMMARY OF MACRO DEFINITION OPERATION CODES (conrd)

Operation Codes

Name Field

Operand Field

Model Statement (any
assembly mnemonic
operation code, symbolic
parameter, or assembly
command except END,
ICTL, ISEQ, START,
and sequence symbols).

Prototype Statement

Macro Call Statement

A symbol parameter, a symbol,
a variable symbol, a sequence
symbol, or a combination of
variable symbols and other
characters that are equivalent
to a symbol.

Mnemonic operation code.

A valid mnemonic operation
code.

Any combination of characters
(including symbolic parameters
and variable symbols).

Comma(,) or a maximum of 49
symbolic parameters, sepa-
rated by commas.

Comma(,) or a maximum of
49 operands, separated by
commas.

APPENDIX K

SUMMARY OF MACRO EXPRESSIONS

Comment Arithmetic Character Logical Relational
Can Contain: | 1. Positive decimal | 1. Up to eight char- 1.0, 1, or SETB | 1. Twoarithmetic
self-defining acters enclosed variable expressions.
terms. by a pair of single symbols.
quote marks,

2. SETA and SETB | 2. Any SET variable | 2. NOT &BLn or | 2. Two character
variable symbol or pre- NOT &BGn expressions.
symbols. viously defined where

symbolic param- n=0-127.
eter enclosed by
a pair of single
quotes.
3. SETC variable 3. A combination 3. Two or more

symbols if the
value assigned
is a positive-

decimal, self-
defining term.

4. Symbolic param-
eters if the
corresponding
operand is a
positive decimal
self-defining
term.

5. &SYSLIST(n) if
the correspond-
ing operand is a
positive-decimal,
self-defining
term.

6. &SYSNDX.

(concatenation) of
variable symbols,
symbolic param-
eters, and other
characters en-
closed by a pair of
single quotes with
substrings allowed
to form the final 8
characters (16
intermediate
characters).

SETB variable
symbols and
the associated
logical
operators.

0 and 1 can
be used

only in
single-term
expressions.

Combination
of logical and/
or relational
expressions
enclosed in
parentheses
and nested to
a maximum of
three levels.

Appendix K

SUMMARY OF MACRO EXPRESSIONS (conrd)

Comment Arithmetic Character Logical Relational
Operators +,-,%,and/. Concatenation with AND, OR, and EQ, NE, LT, GT,
Are: a period (.). NOT. LE, and GE.

4
Range of 0 to 22 -1. Zero to eight O(false) or O(false) or
Values Are: characters. 1(true). 1(true).
Can Be 1. SETA operands. 1.SETC operands. 1. SETB 1. SETB
Used In: operands. operands.

2. Relational
expressions.

3. SETC operands.

2. Relational
expressions.

3. SETA operands
if the assigned
value is a posi-
tive-decimal,
self-defining
term.

2. AIF operands.

3. AIFB
operands.

2. AIF operands.

3. AIFB
operands.

APPENDIX L

SUMMARY OF MACRO SYMBOLIC PARAMETERS

AND VARIABLE SYMBOLS

Symbol

Defined By

Initialized or Set To

Value Changed By

Can Be Used

Symbolic
parameter.

Prototype
statement.

Corresponding
macro call
operand value.

Constant throughout
definition.

1. Arithmetic expres-
sions if operand is
self-defining,
positive-decimal
term.

2. Character
expressions.

Model statements.

4. Relational
expressions.

o
.

SETA

Predefined.

SETA command.

1. Arithmetic
expressions.

2. Character
expressions.

3. Model statements.

4. Relational
expressions.

SETB

Predefined.

SETB command.

Arithmetic
expressions.

oy

Character
expressions.

[\

3. Logical
expressions.

S

Relational
expressions.

5. Model statements.

Appendix L

SUMMARY OF MACRO SYMBOLIC PARAMETERS

AND VARIABLE SYMBOLS (contd)

Symbol

Defined By

Initialized or Set To

Value Changed By

Can Be Used

SETC

Predefined.

Null character
value.

SETC command.

[\

. Arithmetic expres-

. Model statements.

. Relational

sions if operand is
self-defining
positive-decimal
term.

Character
expressions.

expressions.

&SYSNDX

The
assembly.

Macro instruc-
tion index.

Constant throughout
definition; different
for each macro
call.

. Arithmetic

. Character

. Model statements.

. Relational

expressions.

expressions.

expressions.

&SYSECT

The
assembly.

Control section
in which macro
call appears.

Constant throughout
definition; set by
CSECT, DSECT,
and START.

. Model statements.

. Relational

Character
expressions.

expressions.

&SYSLIST(n)
Where n

is an
arithmetic
expression.

The
assembly.

Corresponding
macro call
operand value.

Constant throughout
definition for a
given value of n.

. Character

. Model statements.

. Relational

Arithmetic
expressions if
operand is self-
defining, positive-
decimal term.

expressions.

expressions.

APPENDIX M

HEXADECIMAL-DECIMAL CONVERSION TABLE

General

Hexadecimal-
Decimal Number
Conversion Table

& The table provides for direct conversion of hexadecimal and decimal
numbers in these ranges:

Hexadecimal Decimal

000 to FFF 0000 to 4095

& In the table, the decimal value appears at the intersection of the row
representing the most significant hexadecimal digits (16* and 16') and
the column representing the least significant hexadecimal digit (16°).

Example: @}16 = 3105,
HE'\X\—’PI 2

CoO 3072 3073 3074
Cl1 3088 3089 3090
c2 3104 (3105 3106
Cc3 3120 3121 3122

For numbers outside the range of the table, add the following values to
the table figures:

Hexadecimal Decimal Hexadecimal Decimal
1000 4,096 C000 49,152
2000 8,192 D000 53,248
3000 12,288 E000 57,344
4000 16,384 F000 61,440
5000 20,480 10000 65,536
6000 24,576 20000 131,072
7000 28,672 30000 196,608
8000 32,768 40000 262,144
9000 36,864 50000 327,680

A000 40,960 60000 393,216
B000 45,056 70000 458,752
Example: 1C21,, = 72015,
Hexadecimal Decimal
C21 3105
41000 +-4096
1C21 7201

HEXADECIMAL-DECIMAL CONVERSION TABLE (cont'd)

0

0000
0016
0032
0048
0064
0080
0096
0112
0128
0144
0160
0176
0192
0208
0224
0240

0256
0272
0288
0304
0320
0336
0352
0368
0384
0400
0416
0432
0448
0464
0480
0496

0512
0528
0544
0560
0576
0592
0608
0624
0640
0656
0672
0688
0704
0720
0736
0752

U768
0784
0800
0816
G832
0848
0864
0880
0896
0912
0928
0944
0960
0976
0992
1008

1

0001
0017
0033
0049
0065
0081
0097
0113
0129
0145
0161
0177
0193
0209
0225
0241

0257
0273
0289
0305
0321
0337
0353
0369
0385
0401
0417
0433
0449
0465
0481
0497

0513
0529
0545
0561
0577
0593
0609

0625
0641

0657
0673
0689
0705
0721
0737
0753

0769
0785
0801
0817
0833
0849
0865
0881
0897
0913
0929
0945
0961
0977
0993
1009

2

0002
0018
0034
0050
0066
0082
0098
0114
0130
0146
0162
0178
0194
0210
0226
0242

0258
0274
0290
0306
0322
0338
0354
0370
0386
0402
0418
0434
0450
0466
0482
0498

0514
0530
0546
0562
0578
0594
0610
0626
0642
0658
0674
0690
0706
0722
0738
0754

0770
0786
0802
0818
0834
0850
0866
0882
0898
0914
0930
0946
0962
0978
0994
1010

3

0003
0019
0035
0051
0067
0083
0099
0115
0131
0147
0163
0179
0195
0211
0227
0243

0259
0275
0291
0307
0323
0339
0355
0371
0387
0403
0419
0435
0451
0467
0483
0499

0515
0531
0547
0563
0579
0595
0611

0627
0643

0659
0675
0691
0707
0723
0739
0755

0771
0787
0803
0819
0835
0851
0867
0883
0899
0915
0931
0947
0963
0979
0995
1011

4

0004
0020
0036
0052
0068
0084
0100
0116
0132
0148
0164
0180
0196
0212
0228
0244

0260
0276
0292
0308
0324
0340
0356
0372
0388
0404
0420
0436
0452
0468
0484
0500

0516
0532
0548
0564
0580
0596
0612
0628
0644
0660
0676
0692
0708
0724
0740
0756

0772
0788
0804
0820
0836
0852
0868
0884
0900
0916
0932
0948
0964
0980
0996
1012

5

0005
0021
0037
0053
0069
0085
0101
0117
0133
0149
0165
0181
0197
0213
0229
0245

0261
0277
0293
0309
0325
0341
0357
0373
0389
0405
0421
0437
0453
0469
0485
0501

0517
0533
0549
0565
0581
0597
0613
0629
0645
0661
0677
0693
0709
0725
0741
0757

0773
0789
0805
0821
0837
0853
0869
0885
0901
0917
0933
0949
0965
0981
0997
1013

6

0006
0022
0038
0054
0070
0086
0102
0118
0134
0150
0166
0182
0198
0214
0230
0246

0262
0278
0294
0310
0326
0342
0358
0374
0390
0406
0422
0438
0454
0470
0486
0502

0518
0534
0550
0566
0582
0598
0614
0630
0646
0662
0678
0694
0710
0726
0742
0758

0774
0790
0806
0822
0838
0854
0870
0886
0902
0918
0934
0950
0966
0982
0998
1014

7

0007
0023
0039
0055
0071
0087
0103
0119
0135
0151
0167
0183
0199
0215
0231
0247

0263
0279
0295
0311
0327
0343
0359
0375
0391
0407
0423
0439
0455
0471
0487
0503

0775
0791
0807
0823
0839
0855
0871
0887
0903
0919
0935
0951
0967
0983
0999
1015

8

0008
0024
0040
0056
0072
0088
0104
0120
0136
0152
0168
0184
0200
0216
0232
0248

0264
0280
0296
0312
0328
0344
0360
0376
0392
0408
0424
0440
0456
0472
0488
0504

0520
0536
0552
0568
0584
0600
0616
0632
0648
0664
0680
0696
0712
0728
0744
0760

0776
0792
0808
0824
0840
0856
0872
0888
0904
0920
0936
0952
0968
0984
1000
1016

9

0009
0025
0041
0057
0073
0089
0105
0121
0137
0153
0169
0185
0201
0217
0233
0249

0265
0281
0297
0313
0329
0345
0361
0377
0393
0409
0425
0441
0457
0473
0489
0505

0521
0537
0553
0569
0585
0601
0617
0633
0649
0665
0681
0697
0713
0729
0745
0761

0777
0793
0809
0825
0841
0857
0873
0889
0905
0921
0937
0953
0969
0985
1001
1017

A

0010
0026
0042
0058
0074
0090
0106
0122
0138
0154
0170
0186
0202
0218
0234
0250

0266
0282
0298
0314
0330
0346
0362
0378
0394
0410
0426
0442
0458
C474
0490
0506

0522
0538
0554
0570
0586
0602
0618
0634
0650
0666
0682
0698
0714
0730
0746
0762

0778
0794
0810
0826
0842
0858
0874
0890
0906
0922
0938
0954
0970
0986
1002
1018

B

0011
0027
0043
0059
0075
0091
0107
0123
0139
0155
0171
0187
0203
0219
0235
0251

0267
0283
0299
0315
0331
0347
0363
0379
0395
0411
0427
0443
0459
0475
0491
0507

0523
0539
0555
0571
0587
0603
0619
0635
0651
0667
0683
0699
0715
0731
0747
0763

0779
0795
0811
0827
0843
0859
0875
0891
0907
0923
0939
0955
0971
0987
1003
1019

C

0012
0028
0044
0060
0376
0092
0108
0124
0140
0156
0172
0188
0204
0220
0236
0252

0268
0284
0300
0316
0332
0348
0364
0380
0396
0412
0428
044t
0460
0476
0492
0508

0524
0540
0556
0572
0588
0604
0620
0636
0652
0668
0684
0700
0716
0732
0748
0764

0780
0796
0812
0828
0844
0860
0876
0892
0908
0924
0940
0956
0972
0988
1004
1020

Appendix M

D

0013
0029
0045
0061
0077
0093
0109
0125
0141
0157
0173
0189
0205
0221
0237
0253

0269
0285
0301
0317
0333
0349
0365
0381
0397
0413
0429
0445
0461
0477
0493
0509

0525
0541
0557
0573
0589
0605
0621
0637
0653
0669
0685
0701
0717
0733
0749
0765

0781
0797
0813
0829
0845
0861
0877
0893
0909
0925
0941
0957
0973
0989
1005
1021

E

0014
0030
0046
0062
0078
0094
0110
0126
0142
0158
0174
0190
0206
0222
0238
0254

0270
0286
0302
0318
0334
0350
0366

0382
0398

0414
0430
0446
0462
0478
0494
0510

0526
0542
0558
0574
0590
0606
0622
0638
0654
0670
0686
0702
0718
0734
0750
0766

0782
0798
0814
0830
0846
0862
0878
0894
0910
0926
0942
0958
0974
0990
1006
1022

F

0015
0031
0047
0063
0079
0095
0111
0127
0143
0159
0175
0191
0267
0223
0239
0255

0271
0287
0303
0319
06335
0351
0367

0383
0399

0415
G431
0447
0463
0479
0495
0511

0527
0543
0559
0575
0591
0607
0623
0639
0655
0671
0687
0703
0719
0735
0751
0767

0783
0799
0815
0831
0847
0863
0879
0895
0911
0927
0943
0959
0975
0991
1007
1023

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

70

72
73

74
75

77
78

7A
7B
7C

7E
7F

HEXADECIMAL-DECIMAL CONVERSION TABLE (contd)

1024
1040
1056
1072
1088
1104
1120
1136
1152
1168
1184
1200
1216
1232
1248
1264

1280
1296
1312
1328
1344
1360
1376
1392
1408
1424
1440
1456
1472
1488
1504
1520

1536
1552
1568
1584
1600
1616
1632
1648
1664
1680
1696
1712
1728
1744
1760
1776

1792
1808
1824
1840
1856
1872
1888
1904
1920
1936
1952
1968
1984
2000
2016
2032

1025
1041
1057
1073
1089
1105
1121
1137
1153
1169
1185
1201
1217
1233
1249
1265

1281
1297
1313
1329
1345
1361
1377
1393
1409
1425
1441
1457
1473
1489
1505
1521

1537
1553
1569
1585
1601
1617
1633
1649
1665
1681
1697
1713
1729
1745
1761
1777

1793
1809
1825
1841
1857
1873
1889
1905
1921
1937
1953
1969
1985
2001
2017
2033

1026
1042
1058
1074
1090
1106
1122
1138
1154
1170
1186
1202
1218
1234
1250
1266

1282
1298
1314
1330
1346
1362
1378
1394
1410
1426
1442
1458
1474
1490
1506
1522

1538
1554
1570
1586
1602
1618
1634
1650
1666
1682
1698
1714
1730
1746
1762
1778

1794
1810
1826
1842
1858
1874
1890
1906
1922
1938
1954
1970
1985
2002
2018
2034

1027
1043
1059
1075
1091
1107
1123
1139
1155
1171
1187
1203
1219
1235
1251
1267

1283
1299
1315
1331
1347
1363
1379
1395
1411
1427
1443
1459
1475
1491
1507
1523

1539
1555
1571
1587
1603
1619
1635
1651
1667
1683
1699
1715
1731
1747
1763
1779

1795
1811
1827
1843
1859
1875
1891
1907
1923
1939
1955
1971
1987
2003
2019
2035

1028
1044
1060
1076
1092
1108
1124
1140
1156
1172
1188
1204
1220
1236
1252
1268

1284
1300
1316
1332
1348
1364
1380
1396
1412
1428
1444
1460
1476
1492
1508
1524

1540
1556
1572
1588
1604
1620
1636
1652
1668
1684
1700
1716
1732
1748
1764
1780

1796
1812
1828
1844
1860
1876
1892
1908
1924
1940
1956
1972
1988
2004
2020
2036

1029
1045
1061
1077
1093
1109
1125
1141
1157
1173
1189
1205
1221
1237
1253
1269

1285
1301
1317
1333
1349
1365
1381
1397
1413
1429
1445
1461
1477
1493
1509
1525

1541
1557
1573
1589
1605
1621
1637
1653
1669
1685
1701
1717
1733
1749
1765
1781

1797
1813
1829
1845
1861
1877
1893
1909
1925
1941
1957
1973
1989
2005

2021

2037

1030
1046
1062
1078
1094
1110
1126
1142
1158
1174
1190
1206
1222
1238
1254
1270

1286
1302
1318
1334
1350
1366
1382
1398
1414
1430
1446
1462
1478
1494
1510
1526

1542
1558
1574
1590
1606
1622
1638
1654
1670
1686
1702
1718
1734
1750
1766
1782

1798
1814
1830
1846
1862
1878
1894
1910
1926
1942
1958
1974
1990
2006
2022
2038

1031
1047
1063
1079
1095
1111
1127
1143
1159
1175
1191
1207
1223
1239
1255
1271

1287
1303
1319
1335
1351
1367
1383
1399
1415
1431
1447
1463
1479
1495
1511
1527

1543
1559
1575
1591
1607
1623
1639
1655
1671
1687
1703
1719
1735
1751
1767
1783

1799
1815
1831
1847
1863
1879
1895
1911
1927
1943
1959
1975
1991
2007
2023
2039

1032
1048
1064
1080
1096
1112
1128
1144
1160
1176
1192
1208
1224
1240
1256
1272

1288
1304
1320
1336
1352
1368
1384
1400
1416
1432
1448
1464
1480
1496
1512
1528

1544
1560
1576
1592
1608
1624
1640
1656
1672
1688
1704
1720
1736
1752
1768
1784

1800
1816
1832
1848
1864
1880
1896
1912
1628
1944
1960
1976
1992
2008
2024
2040

1033
1049
1065
1081
1097
1113
1129
1145
1161
1177
1193
1209
1225
1241
1257
1273

1289
1305
1321
1337
1353
1369
1385
1401
1417
1433
1449
1465
1481
1497
1513
1529

1545
1561
1577
1593
1609
1625
1641
1657
1673
1689
1705
1721
1737
1753
1769
1785

1801
1817
1833
1849
1865
1881
1897
1913
1929
1945
1961
1977
1993
2009
2025
2041

1034
1050
1066
1082
1098
1114
1130
1146
1162
1178
1194
1210
1226
1242
1258
1274

1290
1306
1322
1338
1354
1370
1386
1402
1418
1434
1450
1466
1482
1498
1514
1530

1546
1562
1578
1594
1610
1626
1642
1658
1674
1690
1706
1722
1738
1754
1770
1786

1802
1818
1834
1850
1866
1882
1898
1914
1930
1946
1962
1978
1994
2010
2026
2042

1035
1051
1067
1083
1099
1115
1131
1147
1163
1179
1195
1211
1227
1243
1259
1275

1291
1307
1323
1339
1355
1371
1387
1403
1419
1435
1451
1467
1483
1499
1515
1531

1547
1563
1579
1595
1611
1627
1643
1659
1675
1691
1707
1723
1739
1755
1771
1787

1803
1819
1835
1851
1867
1883
1899
1915
1931
1947
1963
1979
1995
2011
2027
2043

1036
1052
1068
1084
1100
1116
1132
1148
1164
1180
1196
1212
1228
1244
1260
1276

1292
1308
1324
1340
1356
1372
1388
1404
1420
1436
1452
1468
1484
1500
1516
1532

1548
1564
1580
1596
1612
1628
1644
1660
1676
1692
1708
1724
1740
1756
1772
1788

1804
1820
1836
1852
1868
1884
1900
1916
1932
1948
1964
1980
1996
2012
2028
2044

Appendix M

D

1037
1053
1069
1085
1101
1117
1133
1149
1165
1181
1197
1213
1229
1245
1261
1277

1293
1309
1325
1341
1357
1373
1389
1405
1421
1437
1453
1469
1485
1501
1517
1533

1549
1565
1581
1597
1613
1629
1645
1661
1677
1693
1769
1725
1741
1757
1773
1789

1805
1821
1837
1853
1869
1885
1901
1917
1933
1949
1965
1981
1997
2013
2029
2045

E

1038
1054
1070
1085
1102
1118
1134
1150
1166
1182

214
1230
1246
1262
1278

1294
1310
1326
1342
1358
1374
1390
1406
1422
1438
1454
1470
1486
1502
1518
1534

1550
1566
1582
1598
1614
1630
1646
1662
1678
1694
1710
1726
1742
1758
1774
1790

1806
1822
1838
1854
1870
1886
1902
1918
1934
1950
1966
1982
1998
2014
2030
2046

1039
1055
1071
1087
1103
1119
1135
1151
1167
1183
1199
1215
1231
1247
1263
1279

1295
1311
1327
1343
1359
1375
1391
1407
1423
1439
1455
1471
1487
1503
1519
1535

1551
1567
1583
1599
1615
1631
1647
1663
1679
1695
1711
1727
1743
1759
1775
1791

1807
1823
1839
1855
1871
1887
1903
1919
1935
1951
1967
1983
1999
2015
2031
2047

90
91
92

94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

BO
Bl
B2
B3
B4
B5
B6
B7
B8
B9
BA

BC
BD
BE
BF

Appendix M

HEXADECIMAL-DECIMAL CONVERSION TABLE (conrd)

0

2048
2064
2080
2096
2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272
2288

2304
2320
2336
2352
2368
2384
2400
2416
2432
2448
2464
2480
2496
2512
2528
2544

2560
2576
2592
2608
2624
2640
2656
2672
2688
2704
2720
2736
2752
2768
2784
2800

2816
2832
2848
2864
2880
2896
2912
2928
2944
2960
2976
2992
3008
3024
3040
3056

1

2049
2065
2081
2097
2113
2129
2145
2161
2177
2193
2209
2225
2241
2257
2273
2289

2305
2321
2337
2353
2369
2385
2401
2417
2433
2449
2465
2481
2497
2513
2529
2545

2561
2577
2593
2609
2625
2641
2657
2673
2689
2705
2721
2737
2753
2769
2785
2801

2817
2833
2849
2865
2881
2897
2913
2929
2945
2961
2977
2993
3009
3025
3041
3057

2

2050
2066
2082
2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274
2290

2306
2322
2338
2354
2370
2386
2402
2418
2434
2450
2466
2482
2498
2514
2530
2546

2562
2578
2594
2610
2626
2642
2658
2674
2690
2706
2722
2738
2754
2770
2786
2802

2818
2834
2850
2866
2882
2898
2914
2930
2946
2962
2978
2994
3010
3026
3042
3058

3

2051
2067
2083
2099
2115
2131
2147
2163
2179
2195
2211
2227
2243
2259
2275
2291

2307
2323
2339
2355
2371
2387
2403
2419
2435
2451
2467
2483
2499
2515
2531
2547

2563
2579
2595
2611
2627
2643
2659
2675
2691
2707
2723
2739
2755
2771
2787
2803

2819
2835
2851
2867
2883
2899
2915
2931
2947
2963
2979
2995
3011
3027
3043
3059

4

2052
2068
2084
2100
2116
2132
2148
2164
2180
2196
2212
2228
2244
2260
2276
2292

2308
2324
2340
2356
2372
2388
2404
2420
2436
2452
2468
2484
2500
2516
2532
2548

2564
2580
2596
2612
2628
2644
2660
2676
2692
2708
2724
2740
2756
2772
2788
2804

2820
2836
2852
2868
2884
2900
2916
2932
2948
2964
2980
2996
3012
3028
3044
3060

5

2053
2069
2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277
2293

2309
2325
2341
2357
2373
2389
2405
2421
2437
2453
2469
2485
2501
2517
2533
2549

2565
2581
2597
2613
2629
2645
2661
2677
2693
2709
2725
2741
2757
2773
2789
2805

2821
2837
2853
2869
2885
2901
2917
2933
2949
2965
2981
2997
3013
3029
3045
3061

2054
2070
2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262
2278
2294

2310
2326
2342
2358
2374
2390
2406
2422
2438
2454
2470
2486
2502
2518
2534
2550

2566
2582
2598
2614
2630
2646
2662
2678
2694
2710
2726
2742
2758
2774
2790
2806

2822
2838
2854
2870
2886
2902
2918
2934
2950
2966
2982
2998
3014
3030
3046
3062

2055
2071
2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263
2279
2295

2311
2327
2343
2359
2375
2391
2407
2423
2439
2455
2471
2487
2503
2519
2535
2551

2567
2583
2599
2615
2631
2647
2663
2679
2695
2711
2727
2743
2759
2775
2791
2807

2823
2839
2855
2871
2887
2903
2919
2935
2951
2967
2983
2999
3015
3031
3047
3063

8

2056
2072
2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248
2264
2280
2296

2312
2328
2344
2360
2376
2392
2408
2424
2440
2456
2472
2488
2504
2520
2536
2552

2568
2584
2600
2616
2632
2648
2664
2680
2696
2712
2728
2744
2760
2776
2792
2808

2824
2840
2856
2872
2888
2904
2920
2936
2952
2968
2984
3000
3016
3032
3048
3064

9

2057
2073
2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281
2297

2313
2329
2345
2361
2377
2393
2409
2425
2441
2457
2473
2489
2505
2521
2537
2553

2569
2585
2601
2617
2633
2649
2665
2681
2697
2713
2729
2745
2761
2777
2793
2809

2825
2841
2857
2873
2889
2905
2921
2937
2953
2969
2985
3001
3017
3033
3049
3065

A

2058
2074
2090
2106
2122
2138
2154
2170
2186
2202
2218
2234
2250
2266
2282
2298

2314
2330
2346
2362
2378
2394
2410
2426
2442
2458
2474
2490
2506
2522
2538
2554

2570
2586
2602
2618
2634
2650
2666
2682
2698
2714
2730
2746
2762
2778
2794
2810

2826
2842
2858
2874
2890
2906
2922
2938
2954
2970
2986
3002
3018
3034
3050
3066

B

2059
2075
2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251
2267
2283
2299

2315
2331
2347
2363
2379
2395
2411
2427
2443
2459
2475
2491
2507
2523
2539
2555

2571
2587
2603
2619
2635
2651
2667
2683
2699
2715
2731
2747
2763
2779
2795
2811

2827
2843
2859
2875
2891
2907
2923
2939
2955
2971
2987
3003
3019
3035
3051
3067

C

2060
2076
2092
2108
2124
2140
2156
2172
2188
2204
2220
2236
2252
2268
2284
2300

2316
2332
2348
2364
2380
2396
2412
2428
2444
2460
2476
2492
2508
2524
2540
2556

2572
2588
2604
2620
2636
2652
2668
2684
2700
2716
2732
2748
2764
2780
2796
2812

2828
2844
2860
2876
2892
2908
2924
2940
2956
2972
2988
3004
3020
3036
3052
3068

D

2061
2077
2093
2109
2125
2141
2157
2173
2189
2205
2221
2237
2253
2269
2285
2301

2317
2333
2349
2365
2381
2397
2413
2429
2445
2461
2477
2493
2509
2525
2541
2557

2573
2589
2605
2621
2637
2653
2669
2685
2701
2717
2733
2749
2765
2781
2797
2813

2829
2845
2861
2877
2893
2909
2925
2941
2957
2973
2989
3005
3021
3037
3053
3069

E

2062
2078
2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2302

2318
2334
2350
2366
2382
2398
2414
2430
2446
2462
2478
2494
2510
2526
2542
2558

2574
2590
2606
2622
2638
2654
2670
2686
2702
2718
2734
2750
2766
2782
2798
2814

2830
2846
2862
2878
2894
2910
2926
2942
2958
2974
2990
3006
3022
3038
3054
3070

F

2063
2079
2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287
2303

2319
2335
2351
2367
2383
2399
2415
2431
2447
2463
2479
2495
2511
2527
2543
2559

2575
2591
2607
2623
2639
2655
2671
2687
2703
2719
2735
2751
2767
2783
2799
2815

2831
2847
2863
2879
2895
2911
2927
2943
2959
2975
2991
3007
3023
3039
3055
3071

DO
D1
D2
D3
D4
D5
D6
D7
D8
D%
DA
DB
DC
DD
DE
DF

EOQ
El
E2
E3
E4
E5
E6

E8
E9
EA
EB
EC
ED
EE
EF

HEXADECIMAL-DECIMAL CONVERSION TABLE (conrd)

0

3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3280
3296
3312

3328
3344
3360
3376
3392
3408
3424
3440
3456
3472
3488
3504
3520
3536
3552
3568

3584
36060
3616
3632
3648
3664
3680
3696
3712
3728
3744
3760
3776
3792
3808
3824

3840
3856
3872
3888
3904
3920
3936
3952
3968
3984
4000
4016
4032
4048
4064
4080

1

3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265
3281
3297
3313

3329
3345
3361
3377
3393
3409
3425
3441
3457
3473
3489
3505
3521
3537
3553
3569

3585
3601
3617
3633
3649
3665
3681
3697
3713
3729
3745
3761
3777
3793
3809
3825

3841
3857
3873
3889
3905
3921
3937
3953
3969
3985
4001
4017
4033
4049
4065
4081

2

3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282
3298
3314

3330
3346
3362
3378
3394
3410
3426
3442
3458
3474
3490
3506
3522
3538
3554
3570

3586
3602
3618
3634
3650
3666
3682
3698
3714
3730
3746
3762
3778
3794
3810
3826

3842
3858
3874
3890
3906
3922
3938
3954
3970
3986
4002
4018
4034
4050
4066
4082

3

3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283
3299
3315

3331
3347
3363
3379
3395
3411
3427
3443
3459
3475
3491
3507
3523
3539
3555
3571

3587
3603
3619
3635
3651
3667
3683
3699
3715
3731
3747
3763
3779
3795
3811
3827

3843
3859
3875
3891
3907
3923
3939
3955
3971
3987
4003
4019
4035
4051
4067
4083

4

3076
3092
3108
3124
3140
3156
3172
3188
3204
3220
3236
3252
3268
3284
3300
3316

3332
3348
3364
3380
3396
3412
3428
3444
3460
3476
3492
3508
3524
3540
3556
3572

3588
3604
3620
3636
3652
3668
3684
3700
3716
3732
3748
3764
3780
3796
3812
3828

3844
3860
3876
3892
3908
3924
3940
3956
3972
3988
4004
4020
4036
4052
4068
4084

5

3077
3093
3109
3125
3141
3157
3173
3189
3205
3221
3237
3253
3269
3285
3301
3317

3333
3349
3365
3381
3397
3413
3429
3445
3461
3477
3493
3509
3525
3541
3557
3573

3589
3605
3621
3637
3653
3669
3685
3701
3717
3733
3749
3765
3781
3797
3813
3829

3845
3861
3877
3893
3909
3925
3941
3957
3973
3989
4005
4021
4037
4053
4069
4085

6

3078
3094
3110
3126
3142
3158
3174
3190
3206
3222
3238
3254
3270
3286
3302
3318

3334
3350
3366
3382
3398
3414
3430
3446
3462
3478
3494
3510
3526
3542
3558
3574

3590
3606
3622
3638
3654
3670
3686
3702
3718
3734
3750
3766
3782
3798
3814
3830

3846
3862
3878
3894
3910
3926
3942
3958
3974
3990
4006
4022
4038
4054
4070
4086

7

3079
3095
3111
3127
3143
3159
3175
3191
3207
3223
3239
3255
3271
3287
3303
3319

3335
3351
3367
3383
3399
3415
3431
3447
3463
3479
3495
3511
3527
3543
3559
3575

3591
3607
3623
3639
3655
3671
3687
3703
3719
3735
3751
3767
3783
3799
3815
3831

3847
3863
3879
3895
3911
3927
3943
3959
3975
3991
4007
4023
4039
4055
4071
4087

8

3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272
3288
3304
3320

3336
3352
3368
3384
3400
3416
3432
3448
3464
3480
3496
3512
3528
3544
3560
3576

3592
3608
3624
3640
3656
3672
3688
3704
3720
3736
3752
3768
3784
3800
3816
3832

3848
3864
3880
3896
3912
3928
3944
3960
3976
3992
4008
4024
4040
4056
4072
4088

9

3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273
3289
3305
3321

3337
3353
3369
3385
3401
3417
3433
3449
3465
3481
3497
3513
3529
3545
3561

3577

3593
3609
3625
3641
3657
3673
3689
3705
3721
3737
3753
3769
3785
3801
3817
3833

3849
3865
3881
3897
3913
3929
3945
3961
3977
3993
4009
4025
4041
4057
4073
4089

A

3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274
3290
3306
3322

3338
3354
3370
3386
3402
3418
3434
3450
3466
3482
3498
3514
3530
3546
3562

3578

3594
3610
3626
3642
3658
3674
3690
3706
3722
3738
3754
3770
3786
3802
3818
3834

3850
3866
3882
3898
3914
3930
3946
3962
3978
3994
4010
4026
4042
4058
4074
4090

B

3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275
3291
3307
3323

3339
3355
3371
3387
3403
3419
3435
3451
3467
3483
3499
3515
3531
3547
3563

3579

3595
3611
3627
3643
3659
3675
3691
3707
3723
3739
3755
3771
3787
3803
3819
3835

3851
3867
3883
3899
3915
3931
3947
3963
3979
3995
4011
4027
4043
4059
4075
4091

c

3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276
3292
3308
3324

3340
3356
3372
3388
3404
3420
3436
3452
3468
3484
3500
3516
3532
3548
3564

3580

3596
3612
3628
3644
3660
3676
3692
3708
3724
3740
3756
3772
3788
3804
3820
3836

3852
3868
3884
3900
3916
3932
3948
3964
3980
3996
4012
4028
4044
4060
4076
4092

Appendix M

D

3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277
3293
3309
3325

3341
3357
3373
3389
3405
3421
3437
3453
3469
3485
3501
3517
3533
3549
3565

3581

3597
3613
3629
3645
3661
3677
3693
3709
3725
3741
3757
3773
3789
3805
3821
3837

3853
3869
3885
3901
3917
3933
3949
3965
3981
3997
4013
4029
4045
4061
4077
4093

E

3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278
3294
3310
3326

3342
3358
3374
3390
3406
3422
3438
3454
3470
3486
3502
3518
3534
3550
3566

3582

3598
3614
3630
3646
3662
3678
3694
3710
3726
3742
3758
3774
3790
3806
3822
3838

3854
3870
3886
3902
3918
3934
3950
3966
3982
3998
4014
4030
4046
4062
4078
4094

F

3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295
3311
3327

3343
3359
3375
3391
3407
3423
3439
3455
3471
3487
3503
3519
3535
3551
3567

3583

3599
3615
3631
3647
3663
3679
3695
3711
3727
3743
3759
3775
3791
3807
3823
3839

3855
3871
3887
3903
3919
3935
3951
3967
3983
3999
4015
4031
4047
4063
4079
4095

APPENDIX N

SAMPLE
PROGRAM

INTRODUCTION

€ This sample program is included in the manual to illustrate the TOS
Monitor job stream necessary to assemble a source program and bind the
output using Linkage Editor. The loadable module is then executed without
the use of Monitor.

The card deck composition to accomplish this is as follows:

//ASTARTM
//AASSGN SYSLST, L1
//AASSGN SYSUT1,01
//A ASSGN SYSUTZ2, 02
//A ASSGN SYSUT3, 03
//AASSGN SYSLIB, 04
//AJOB TOS MONITOR
//APARAM XREF=YES

//AASSMBL
(Optional Assembly Codes)
ASTART Assembly
(Reader and printer DTFSR's) Source
Program

(User source deck macro)
(Remainder of source)
AEND
//ALNKEDT
(Various // COMM cards - optional)
//AENDMON
//AASSGN SYS001,R1 Run-time parameters for
//AASSGN SYS002, L1 reader and printer not
//AEND shown on listing.
(Data cards)
/*

Appendix N

INTRODUCTION The following computer output from these runs are shown on the suc~
(Cont'd) ceeding pages:

Listing of Monitor control statements;

Assembler listing (see note);

Linkage Editor map;

. Sample output from program execution;

g W N

. Console typewriter sheet.

Note ¢ Only a small portion of the cross reference listing has been in-
cluded (XREF=YES). The user macro MOVE has been allowed to expand
(PRINT=GEN), while all other macro expansions have been suppressed
(PRINT=NOGEN).

€-N

T0S MONITOR

©/ ASSGN SYSLST,il

// ASSGH SYSUTL,01

// ASSGri SYSUTZ2,02

/[ASSGiv SYSUT3,03

7/ ASSGN SYSLIR,04

N Xpuadqy

7N

// JOB TOS MUNITOR
// PARAM XREF=YES

// ASSMBL

N x1puaddy

¢-N

TS ASSFEMBLY PRAGRAM

(DUMMY)

SYMBOL

SAMPL
I0UMMY

IN

INB
aur
ouTs
IFCP
IFCPOV

TYPE 1D
SO 0l
SO FF
LD 01
LD 0l
LU o0l
LD Q1
Lo o1
LD o1l

ADDR

00000
00000

00000
0005C
000C¢0
0011¢
00188
00918

LENGTH

0loCs8
00198

EXTERNAL SYMBOL DICTIONARY

PAGE 0001

N xpuaddy

9-N

TOS ASSFMBLY PRNOGKAM
SYMBUL CSECT VALUE
BEGIN 01 OOEtFr8
1AFTER FF 00070
1BUFFER FF 00080
IB2STAT FF 00088
ICCBAF] FF 00024
ICCBCCR1 FF 00018
ICCBEXF FF 00023
ICCWl FF 00028
ICCW15 FF 00148
1CCw19 FF 00110
1CCwz2 FF 00128
ICCwW26 FF 00148
1CCwW3 FF 00108
ICCw35 FF 00180
1CCwW7 FF 00118
ICKPTREC FF 00088
ICRDERR FF 00070
IDASTOR fF 000DO
JEOVIPT 01 00206
1ERR(URB FF 0003B
IFEDV 01 OO02tE
IFEQVRPT 0l 002F8
IFIRSTIM FF 0003F
IFPSwA FF 00094
[FPSWLB FF 000A%
IGET 01 00394
rroeoc FF 000AO
1 IDAREAZ FF 00074
IKEYARG FF 0009C
ILABNAME FF 00044
ILPAFINL 01 005F0
[LPBAVA 01 00592
ILPCCuWW 01 0070C
[LPCOCCW 0l 0060C
[LPEXECA 01 00702
ILPGETLA 0l 0053a
ILPLHEX 0l 00602
ILPPBLK 01 0o7cC
ILPPOPUT 0L 007C4
ILPPRIN 0l 004DE
ILPPRIZ 01 00532
ILPPRSHW 01 00BbHE
ILPPUSER 01 007AA
ILPRET 01 0075E
ILPREVA 01 00754
ILPSKNV 01 0051A
1LPSUBR2 01 O006BE
ILPTERMA 01 0048BE
ILPTERML 01 00306
ILPTRSAV 01 0071C
ILPTUSE 01 00446
ILPTWLP 01 00442

SYMBOL

CTR
IAFTERID
IBUFFER])
ICAPREC
1CCBAH
I1CCBCCR?
1¢(CBS8B
1CCwW12
ICCW16
1CCwW2
1CCwW23
1CCw27
ICCwW32
1CCW36
ICCWR
ICLOSE
ICTLCHR
IDTFTYPE
TEOVREV
TEXPAND
IFEOVCAL
IFILABL
IFPINDL
1FPSWB
I1FPSWRD
TIAFTIND
I1LENAMB
1IDREG
IKEYLEN
ILHECON
ILPAFT
ILPBLOCK
ILPCHECK
ILPETWOT
ILPFINI
ILPHDO
ILPMONEF
ILPPCNTR
ILPPRET
ILPPRINT
ILPPRNON
ILPPRSWP
ILPREGS
ILPRETA
ILPRINV
ILPsaUT
ILPTCCWB
ILPTERME
ILPTERRE
ILPTSK
ILPTUSER
ILPTWLV

CSECT

0l
FE
FF
FF
FF
FF
<F
FF
F
FF
FF
FF
FF
FF
FF
01
FF
FF
01
FF
01
FF
Ff

VALUE

OOFEE
00074
000B4
00088
0000E
00014
00020
0ol30
0ol50
00030
0o0l30
00i50
00168
00188
00120
00224
00088
0003E
002E6
00060
0032A
00034
000AC
00098
0008C
000AF
0005¢C
000AC
00089
00080
00402
00654
00686
00570
005E8
00548
00834
007B6
007EZ
0083E
00526
00864
0054A
0076E
008C2
006AC
003E0
00506
003DA
0047E
0046C
00434

02
04
04
01
02
04
03
08
08
08
08
08
08
08
08
ol
0l
01
04
02
04
01
ol
04
D4
01
04
0l
01
0l
04
04
06
04
04
04
04
04
04
04
04
04
02
06
06
04
04
04
04
04
04
0l

SYMROL

EF
IALTTAPE
IBYTCNT
IC&RDS
[CCBASR
ICCBCCW
1CCBSDN
1CCwW13
Jccwl7
1CCW20
1CCW24
1CLwW28
1CCW33
1CCw37
1CCW9
ICLOSELB
IDATOA
TDUMMY
1ERRBYTF
IF(P
IFEOVILP
IFILL
IFPIND2
1IFPSWC
IFFSWTR
IIDALEN
IILENAME
[ISRKEY
ILABADDR
ILFABT
ILPAH
ILPBOUT
ILPCKPTR
ILPEXBLK
ILPFPUT
[LPHDL
ILPOR
ILPPFIX
ILPPRIAD
ILPPRIRE
[LPPRSEN
ILPPRVAA
[LPRES
[LPRETB
ILPROUT
ILPSUBR
ILPTERES
ILPTERMN
JLPTEX
ILPTSKIP
ILPTWLFB
ILPUNFRP

CSECT

ol
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
0l
FF
FF
FF
ol
ol
FF
FF
FF
FF
FF
FF
FF
FF
0l
0l
ol
0l
ol
ol
ol
0l
ol
0l
ol
0l
0l
o0l
ol
0l
0l
01
ol
0l
a1
0l
01

VALUE

00FDO
00062
00038
000C0O
0001C
00008
00000
00138
00158
ool18
00138
00158
00170
00190
00128
0022A
000C0
00000
000A8
00188
00344
00070
00CAD
0009C
00048
0008A
0004C
00053
00040
203F8
00610
00746
003F8
0068C
0074A
00584
00788
00810
00852
00882
004E6
00886
00618
00778
00750
70642
00500
00550
00430
00494
004AA
0072E

04
06
02
04
04
06
06
08
08
08
08
08
08
08

04
04
01
04
40
04
02
01
04
04
02
07
01
04
04
04
04
04
04
02
04
06
06
04
02
04
04
04
04
04
D&
04
04
04
06
04
04

SYMBOL

IAFINAL
IBLKSIZE
181STAY
Icce
ICCBCAR
1cceoT
ICCBUF
ICCW14
1CCW18
ICCwW21
ICCW25
1CCW29
1CCW34
ICCWo
ICHECKPT
ICONTROL
IDARESER
1EQOFADDR
1ERROPT
IFCPOV
IFEQVIPT
IFILSTAT
IFPIND3
IFPSWD
IFPSWWR
ITOLER
110AREAL
TISRSEEK
ILABELRW
ILPAFIN
ILPBATCH
ILPCARDR
ILPCNTS
ILPEXEC
ILPFTERM
ILPHD2
ILPOTEST
ILPPIOR
ILPPRICC
ILPPRISA
ILPPRSEX
ILPPRVAB
ILPREST
ILPRETC
ILPSETSW
ILPSUBR1]
ILPTERM
ILPTERMW
ILPTMSGL
ILPTUN
ILPTWLFR
ILPUPLHE

CSECT

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
o1
0l
FF
FF
FF
FF
FF
FF
FF
FF
ol
o1
ol
ol
0l
0l
01
ol
ol
01
01
0l
ol
ol
ol
0l
ol
o1
0l
ol
ol
ol
01

PAGE 0002

VALUE

00084
00078
0008A
00000
20010
00006
00007
00140
00108
00120
00140
00160
00178
00110
00088
0008¢C
00090
00070
000€0
00918
00338
00034
000AE
00040
00090
00054
00048
000¢C
00070
00690
00720
00826
00738
00704
00664
005¢6
0040¢
007FC
008A4
00714
0050C
00892
0048¢C
00766
00540
006D6
003E4
003F4
0048C
005E0
00438
00798

04
04
Ql
28
04
ol
ol
08
08
08
08
08
08
[o]:]

04
04
0l
01
08
04
0l
01
04
04
04
04
04
01
04
04
04
06
02
04
04
04
04
04
08
04
04
04
04
04
04
01
04
02
04
02
0l

N x1puaddy

L-N

TOS ASSEMBLY PROGRAM

SYMBOL

ILPUSEBY
JLPWAITX
ILPYSREG
ILSTNTRY
INB
10PEN
IOVRTGR
I0VRT1Al
IREAD
IRECSTZE
IRESERV
ISSAFTER
ITESTISW3
ITESISW?
I TPMARK
[TRUNCL
TUNUSED2
IVAL1B
IVALLJ
IVBLKCNT
[WRITEID
MAX

ouTs
WRITE

CSECT

01
01
0l
FF
01
01
01
01
FF
FF
FF
FF
FE
Fr
33
01
FF
01
0l
FF
FF
01
01
01

VALUE

007BC
006F2
00794
00088
0005C
00222
00384
00368
00088
0007C
GO0 3F
00073
00089
20089
00088
003A8
00089
0023C
00286
00062
00080
00FEC
oo11cC
00F94

04
04
04
04

01
04

0l
04
01
0l
01
01
N1
n2
01
04
04

04
02
04
04

SYMBOL

ILPVAREX
ILPWAITZ
ILPZERD
ILSTRLTR
INONEED
TUPENLA
TUVRTN
IUVRTLB
IREADID
TRELLADOR
TREWIND
[TESTSWC
I[TESTSW4
ITLEOV

[TRANS

I TRUNC4
TUNUSED3
IVALLD
IVALLL
TWHATSIT
IWRITEKY
NFLOwW
PRINTC

CSECT

01
01
01
FF
FE
01
FF
0l
FF
FF
£F
FF
FF
01
FF
01
FF
01
01
FF
FF
01
01

VALUE

00808
ONGEE
00742
0008C
000C4
00222
00058
00376
00094
00088
0003F
00089
00089
00296
00080
003C8
000AC
0027E
0028E
00068
00084
00FCO
0O0FF3

04
04
01
03
04
04
04
24
04
ol
01
01
01
04
01
04
01
04
04
08
04
04
01

SYMBOL

ILPWAIT
ILPWORT
ILSAV1G
IMRKCTR
INPUT
10VERFLD
I0OVRTT1
IPRINTOV
IREADKY
IRELSE
ISEEKADR
ITESTSWI
ITESTSWS
ITLEOVRT
ITRUNC
ITYPEFLE
TUNUSED9
IVALLE
IVALLM
IWLRERR
LIST

ONE
RESET

CSECT

0l
0l
ol
FF
0l
FF
0l
FF
FF
0l
FF
FF
FF
ol
0l
FF
FF
ol
ol
FF
ol
ol
ol

VALUE

DO6ES6
004BC
Q04A6
0003¢C
01078
00088
00388
00072
00098
0081A
000A4
00089
00089
502CA
3039¢
0003A
00088
00260
0026E
000Ca
Q0FF4
OOFFO
00FF1

SYMBOL

ILPWAITT
ILPY
ILSTBLK
IN
IONTROLP
IOVLYNAM
IOVRT1A
IPuT
IRECFORM
IRELSEL
ISRCHM
ITESTSW2
ITESTSWé
ITLEOV1A
ITRYNCEX
IUNUSED1

IVALLA

IVALLlG
IVARBLD
IWORKA

Looe

auT
SAMPL

CSECT

01

PAGE 0003

VALUE

006FE
00844A
00080
00000
0008F
0021C
00352
0038(C
00088
0081E
00088
00089
00089
002AA
J03p2
00088
0022k
0034C
00QC4
00088
00F3C
000CO
00000

04
04
04
06
0l
06
04
04
0l
06
0l

01
04
04
0l
04
04
04
ol
04
06
0l

N ¥1puadqy

8-N

TOS ASSFMBLY PROGRAM

SYMBOL

BEGIN
CTR

EF
[AFINAL
TAFTER
IAFTER]ID

TALTTAPE

IWRITEKY

LIST

LooP
MAX
OFLOW
ONE
aui
guTe
PRINTC
RESET
SAMPL

WRITE

CROSS

REFERENCE

LISTING

4___--""——_—-—>

PEFERENCES

00812% 00890

00852 00863 00869 008B4x

00052 00873

00197+ 00576 00611 00698 00717
oolag=

00192*

00198x%

00822 00823 00823 00843 00844
00888%

00835% 00866

00852 00883x%

00853 00868%*

00863 00885%

00079 00082% 00821 00832 00862
00UB0 00108%

00089 00103 onlls 0olls 00119
00869 00886%

00005% 00291

00857% 00870

00845

00878

00824

00846

00854

00847

00868

00848

00887

00849

00850

00864

PAGE 0004

—

00865

00865

N Xipuadqy

6-N

TOS ASSEMBLY PROGRAM
FLAGS LDCTN OBJECT CODE

00000

ADDR]1 ADDR2 STMNT M

00001
00002
00003
Q0004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015

00074
00075
00076
00077
00078
00144

PAGE 0016

SDURCE STATEMENT
ISEQ 76,80 T0S00000
PRINT NOGEN TOS00010
MCALL DTFSR,DTFEN,OPEN,CLOSE,GET2PUT,TERM T0S00020
TITLE 'TOS ASSEMBLY PROGRAM! TOS01000
SAMPL START T0S01010
* 705801020
* THIS SAMPLE PRDGRAM ILLUSTRATES AN EDIT RUN FROM CARDS TD PRINTER T0S01030
* USING STANDARD FCP AND ONE SOURCE DECK MACRQO» WHICH IS INCLUDED TQ T0S01040
* SHOW HOW A USER MACRO CAN BE INCLUDED IN THE SOURCE DECK. T0S01050
* 70501060
* 70501070
IN DTFSR DEVADDR=SYSOQl,DEVICE=READER, ¢710501080
TYPEFLE=INPUT,RECFORM=FIXUNB, €T0S01090
IDAREA1=INPUT,BLKSIZE=80, CT0S01100
EOFADDR=EF READER ~ KEYWORD MACRO CALL TOSOL110
oyT DTFSR DEVADDR=SYS002,DEVICE=PRINTER, CTOSO01130
TYPEFLE=0OUTPUT,RECFORM=F I XUNB, CT0S01140
IDAREAL=PRINTC,BLKSIZE=133, cTOso1150
CTLCHR=YES, CTDS01160
ALTDEV=TAPE PRINTER - KEYWORD MACRO CALL TOSO1170
DTFEN 70501180

N x1puaddy

01-N

TOS ASSFMBLY PRMOGRAM

FLAGS

LOCTN OBJECT CODE

ADDR1 ADDR2 STMNT M

00778
00779
00780
00781
00782
00783
00784
00785
00786
00787
00788
00789
00790
00791
00792
00793
00794
00795
00796
00797
00798
00799
00800
00801
00802
00803
00804
00805
00806
00807
[o0):10:]

PAGE 0017

SODURCE STATEMENT

#* % 3 ¥ H

o
z
>
=
m

eALl
EAL2
£CGl
.1.0ooP
£CGl
6CG1
ALl
EAL2

«END
«MVCBO
ENAME

- ONEMY
ENAME

+ERROR

THIS 1S THE MOVE MACRO DEFINITION, WHICH MOVES UP TO 80 BYTES(&LN),
FROM ONE AREA(ELFR) TO ANDTHER AREA(&TO), IN GROUP SIZES(E&GP) FROM
7 70 80. FIVE SPACES ARE GIVEN BETWEEN EACH GROUP,

MACRD MACRO HEADER

MOVE &FR,E&TOsGLN, &GP POSITIONAL PROTOTYPE

AlF ('&UN' EQ '').MV(C8BO NO LENGTH? - MOVE 80

AlF (LGP LT 7).ERROR GRQUPING LESS THAN 7?2 -~ ERROR
ALF (Y&GP' EQ '').ONEMV GROUPING NOT DESIRED? =~ 1 MOVE
ATF (6LN GT 80).ERROR INPUT LENGTH GREATER 80 - ERRDOR
SETA 0 QUTPUT POSITION FOR NEXT GROUP
SETA 0 INPUT POSITION TO BE MOVED

SETC vENAME! NAME FOR FIRST MOVE

ANDP ENTRY POINT FOR EACH MDVE

MV &TO+EALY(EGP),EFR+EAL2 GENERATED MOVE INSTRUCTION
1

SETC REMOVE NAME ON SUBSEQUENT MOVES

SETA GAL1+EGP+5 UPDATE NEXT QUTPUT POSITION

SETA EAL2+EGP UPDATE NEXT INPUT POSITION

AIFB (&LN-£AL2 GE £GP),LOOP CAN ANOTHER FULL GROUP BE MOVED?
AIF (ELN-EAL2 EQ 0).END DID GROUPINGS COME OUT EVEN?

MVC ETO+EALL(ELN-EAL2)sEFR+EAL2 GEN, MOVE - LESS THAN GRP
MEXIT

ANDOP

MVC ETO(80),&FR GENERATED MDVE OF 80

MEXIT

ANDP

MVC &TO(ELN),EFR GENERATED MOVE OF ACTUAL LENGTH

MEXIT

MNOTE 6,'SPECIFILATIONS EXCEEDED - NO GENERATION'

MEND MACRD TRAILER

705802000
T0502016G
70502020
70502030
70502040
T0S02050
10502060
T0S02070
10502080
70502090
T0s0210C
TOSQ2110
10502120
70502130
10502140
10502150
T0S02160
70502170
70502180
70502190
10502200
T0S02210
70502220
70502230
70502240
70502250
70502260
70502270
70502280
10502290
70502300

N X1puadqy

TT-N

TOS ASSEMBLY

FLAGS LOCTN

OCQEF8
OQEFA

00F1l4
0OF18
O00F1E

00F54
00F5A
00F60
00F66
00F6C
00F72
00F78
00F7E

00F84

TXT CARD

00F8A
OOFBE

00FAC
00FB2
00FB6
00FBC

TXT CARD

00FCoO
00FCa4
00FCA

00FEC
O0FEE
00FFO
00FF1

PROGRAM

0BJECT CODE

05 50

92 40
D2 82
92 C1

50FA
50F8B
50F9

50FA

b2 09
D2 09
D2 09
D2 09
D2 09
D2 09
D2 09
D2 09

50FA
5109
5118
5127
5136
5145
5154
5163

517€
5188
5192
519C
51A6
5180
518A
51C4
FS 11 50F2 50F4
1S 0082.
47 80 50C6

92 01 50F9

Fa 10
92 40
D2 82
47 FO

50F4 50F6
50FA
S50FB8 50FA
5042

¥ IS 0053,
92 C1 50F9

D2 01 50F4 50F7
47 Fo 509A

060C
000C
1C

000C

TXT CARD # IS 0054.

OQFF3
00FF4
01078
0QEF8

FLAGS IN 0OCOQ0O0 STMNTS,

// ULNKEUT

ADDR1

00FF4
0OFF5
00FF3

00FF4
01003
01012
01021
01030
0103F
0104E
0105D

OOFEC

00FCO
O0OFF3

OOFEE
00FFé&
00OFF5
00F3C

00FF3
OOFEE
00F9%94

ADDR2

00FF4

01078
olo82
0108¢C
01096
010A0
010AA
01084
010BE

OOFEE

00FFO
O00FF4&

00FF1

STMNT

00810
o081l
00812
00813
00814
00822
00823
00824
00825
00833
00841
00842
00843
00844
00845
00846
Q0847
00848
Q0849
00850
00851
00852

00853
00854
00855
00863
00864
00865
00866
00867

00868
00869
00870
00871
00879
00882
Q0883
00884
00885
00886

00887
oosss
00889
00890

M

M1
M1
M1
M1
M1
M1
M1
M1

VERSION NUMBER IS V009,

(

PAGE 0018

SOURCE STATEMENT
* MAIN ROUTINE 70503000
* T0S03010
BEGIN BALR 5,0 REGISTER 5 COVERS CODING 10503020

USING *,5 70503030

OPEN IN,OUT DPEN FILES TDS03040

MV LIST,Xx'40" CLEAR PRINT AREA T0S03050

MVC LIST+#1(131),LIST T0S03060

MV] PRINTC,X'C1! ADVANCE 70 TOP OF FORM T0S03070

PUT puTt T0S03080
LooP GET IN READ CARD TDS03090

PRINT GEN 70503100

MOVE INPUT,LIST,80,10 CALL TO MOVE 8 GROUPS DOF 10 EACH TDS03110

MVC LIST+0(10), INPUT+0 GENERATED MDVE INSTRUCTION

MVC LIST+15(10)» INPUT+10 GENERATED MOVE INSTRUCTIDON

MV(C LIST+30(10),INPUT+20 GENERATED MOVE INSTRUCTION

MVC LIST+45(10)5 INPUT+30 GENERATED MOVE INSTRUCTION

MVC LIST+60(10)5 INPUT+40 GENERATED MOVE INSTRUCTION

MVC LIST+75(10)s INPUT+50 GENERATED MOVE INSTRUCTION

MVC LIST+90(10), INPUT+60 GENERATED MOVE INSTRUCTION

MVC LIST+105(10),»INPUT+70 GENERATED MOVE INSTRUCTION

PRINT NDGEN T0S03120

cP MAXs»CTR TEST FOR OVERFLOW TOS03130

BE DFLOW 70503140

MV PRINTCsX'OL! SINGLE SPACE CHARACTER T0S03150
WRITE PUT ouT PRINT LINE T0S03160

AP CTR,ONE ADD 1 TD COUNTER TOS03170

MV LIST,X'40! CLEAR PRINT AREA T0S03180

MVC LIST+1(131),LIST T0S03190

B LooP T0S03200
* OVERFLOW AND CLOSE ROUTINES 70503210
OFLOW MV PRINTC,X'C1! PAGE CHANGF T0S03220

MVC CTR(2)sRESET T0S03230

B WRITE T0S03240
EF CLOSE IN,OUT T0S03250

TERM T0S03260
% CONSTANTS,COUNTERS,AND I1/0 AREAS 70504010
MAX DC x1060C! MAXIMUM PAGE SIZE T0S04030
CTR DC X1000C! LINE COUNTER T0S04040
DNE ne P+l SINGLE SPACE VALUE 70504050
RESET pnc X'Qo¢C! ZERD FOR CLEARING LINE COUNTER T0S04060
PRINTC DS cLl PRINT CONTROL CHARACTER 70504070
LIST DS cL132 PRINT AREA T0S04080
INPUT DS cL8o CARD INPUT AREA TO0S04090

END BEGIN T0S99959
T0S)

N xwpuaqqy

¢I-N

PROGRAM

NAME QF PRUGRAM

SELMEN

MAME OF SEGMENT

MODULES

*$FEND (NKEDT

// COMM QOBJECT MODULE IS

// COMM THIS OBJECT MOD.

// COMM E LOD SAMPL,02,,R]

// ENDMON

LINKAGE EDITOR =--=- PROGRAM MAP

SAMP|

(ROOT) NUMBER 001

NAME OF LOAD
MODULE ADDRESS

SAMPL 000000

ON SYSUT2, NAMED SAMPL.

COMPUTED LENGIH

NUMBER OF REGIDONS
NUMBER OF SEGMENTS
NUMBER UF MOUDULES
BLANK CUMMON LENGTH

SEGMENT LENGTH

SYMBOLIC OVERLAY POINT

NEXT SEGMENT IN PATH

MODULE NU
LENGTH E
00004296

MAY BE LOADED AND RUN UNDER EXEC., BY TYPING

00004296

ool
001
ool
00000000

00004296
tROOT)
(ROQOT)

MBER OF
NTRYS

PAGE 1

MAXIMUM LENGTH 00004296
NUMBER OF DVERLAY PODINTS 000
NUMBER OF ENTRY PDINTS 00007

STARTING EXECUTION ADDR, OOOQOEFB
BLANK COMMON LDAD ADDR, 000000

STARTING ADDRESS 000000
REGION NUMBER 001
NUMBER QOF MODULES IN SEGMENT 001

METHOD USED TO
BIND MOOULES

EXPLICIT

N xipuadqdy

€I-N

LISTING
FIELD]
1 70 10

0000000001
1234567890

X
XX
XXX
XXXX
XXX XX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXX XX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXX XXX
XXXXX
XXXX
XXX
XX
X
X
XX
XXX
XX XX
XXX XX
XXXXXX
XXXX XXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXX XX
XXXX
XXX
XX
X
XXXXXXXXXX
XXXXXXXX
XXXXXX
XXXX
XX
XX
XX XX
XXXXXX
XXXXXXXX
XXXXXXXX XX

QF
FIELD2
11 70 20

1111111112
1234567890

x
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXX XX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXX XXX
XXXXX
XXXX
XXX
XX
X
X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXX X
XXX
XX
X
XXXXXXXXXX
XXXXXXXX
XXXXXX
XXXX

XXXXXX
XXXXXXXX
XXXXXXXXXX

SAMPLE
FIELD3
21 TD 30

2222222223
1234567890

X
XX
XXX
XXX X
XXXXX
AXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X
X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
AXXXXXXXX
KXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X
XXXXXXXXXX
XXXXXXXX
XXXXXX
XXXX
XX
XX
XXXX
XXXXXX
XXXXXXXX
XXXXXXXXXX

DATA
FIELDA4
31 70 40

3333333334
1234567890

X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXX XXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XX XX
XXX
XX
X
X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X
XXXXXXXXXX
XXXXXXXX
XXXXXX
XXXX

XXXXXX
XXXXXXXX
XXXXXYXXXX

CARDS
FIELDS
41 T0 50

4444444445
1234567890

X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X
X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XAXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X
XXUXXXX XXX
XXXXXXXX
XXXXXX
XXXX
XX
XX
XX XX
XXX XXX
XXXXXXXX
XAXAXXX XXX

FIELDG
51 70 60

5555555556
1234567890

X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X
X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XX XXX
XXXX
XXX
XX
X
XXXXXXXXXX
XXXXXXXX
XXXXXX
XXXX

XXXXXX
XXXXXXXX
XXXXXXXXXX

FIELD?
61 70 70

6666666667
1234567890

X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X
X
XX
XXX
XX XX
XXXXX
XXX XXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXX XXX XXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XX XX
XXX
XX
X
XXXXXXXXXX
XXXXXXXX
XXXXXX
XXX X

XXXXXX
XXXAXXXX
XXXXXXXXXX

FIELDS
71 70 80

7777777778
1234567890

X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X
X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
AXXXXXXXX
XXXXXXXXXX
XXXXXXX XXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X
XXXXXXXXXX
XXXXXXXX
XXXXXX
XXXX

XXXXXX
XXXXXXXX
XXXXXXXXXX

N x1pu2dqdy

7I-N

LISTING
FIELD1
1 70 10

no00000CN1
1234567890

XXXXXXX XXX
XXXXXXXx
XXXXXX
XX XX

XXXXXX
XXXXXXXX
XXXXXXX XXX

"
XX
XXX
XX XX
XX XXX
XXXXXX
XXXXXXX
XXXXXXXX
XXX XXX XX X
XXXXXXX XXX
XXX XXXXX XX
XXXXXXXX X
XXXXXXXX
XXX XXXX
XXX XXX
XXXXX
X XXX
XXX
XX
X
X
XX
AXX
XXXX
XXX XX
XXX XXX
XXXXXXX
XXX XX XXX
XXXXXXXXX
XXXXXXX XXX
XXXXXXXXXX
XXXXXXXXX
XXX XXX XX
XXX X XXX
XXX XXX
XX XXX
XXX X
XXX
XX
X

i
FIFILDZ
11 10 20

1111111112
1234567890

XXX AXXXX XX
XX XXX XX X
XY XXXX
XXX
XX
X X
¥ X KX
XXX XXX
XX XX LXX
XXX £ XXX X XX

X
XX
X X X
XXXX
XXX %X
XXX X XX
XX XX XXX
AXXXXXXX
X XXX XXXXX
XXX XXRXXX
XXXKXXXX XX
XXXXXX XXX
FXXHXXXX
AXXX XXX
XXX XXX
¥ XXXX
X XXX
XXX
XX
X
X
XX
XXX
X XXX
XAXXX
XXX XXX
AXXXXXX
XXXXXXXX
XXX XXXXXX
XXXXXXAXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
AXXRXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X

SAMPLE
FIELD3
¢l 10 30

2222222223
1234567890

¥ XXX XXX XX
EXXXXX XX
XXX XXX
XX XX
X X
X X
XX XX
XXX XXX
XX XXX XX
TRXXXAXXX Y

X
X X
X X X
*XXX
XXX XX
Y XX XXX
XX XX XX
XXX XXX XX
XAXXXX XXX
¥ X XXX XXXX
XX XXXXXXXX
NAXXXXXXX
XXX XXX XX
XXXXXXX
XXX XXX
XXXXX
X XXX
XXX
XX
X
X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XX XXX XXX X
XAXXXXXXXX
XXX XXX XXX X
XXXXXXXXX
XXXXXXXX
XX XX XXX
XXXXXX
XXXXX
XXXX
XXX
XX
X

DATA
FIELD4
31 70 40

3333333334
1234567890

EXXXXXXXXX
XXXXXXXX
XXXXXX
XXXX
XX
XX
XXXX
XXXXXX
AXXXX XXX
XXXXXX XX XX

X
XX
XXX
XXXX
XXXXX
XAXXXX
XXXXXXX
XXXXXXXX
XX XX XX XXX
XXXXXXXXXX
AXXXXXXXXX
KXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X
X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXX XXX
XXXXX
XXXX
XXX
XX
X

CARDS
FIELDS
41 T0 50

46446444645
1234567890

XXXXXXXXXX
XXXXXXXX
XXXXXX
XXXX
XX
XX
XXXX
XXXXXX
XXXXXXXX
XXXXXXXXXX

X

XX
XXX
XX XX
XXX XX
XXXXXX
XX XX XXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXX XXX
XX XXX
XXXX
XXX
XX
X
X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X

FIELD®6
51 T0 60

5555555556
1234567890

XXXXKXXXXX
XXXXXXXX
XXXXXX
XXXX
XX
XX
XXXX
XXXXXX
XXXXXXXX
XXXXXXXXXX

X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X
X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X

FIELD7
61 TO 70

6666666667
1234567890

XXXXXXXXXX
XXXXXXXX
XXX XXX
XXXX
XX
XX
XXXX
XXXXXX
XXXXXXXX
XXXXXXX XXX

X
XX
XXX
XXXX
XX XXX
XXXXXX
XX XXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X
X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
AXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
. XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X

FIELDS8
71 10 80

7777777778
1234567890

XXXXXXXXXX
XXXXXXXX
XXXXXX
X XXX
XX
XX
XXXX
XXXXXX
XXXXXXXX
XXXXXXXXXX

X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXX XXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X
X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X

N x1puaddy

LOD MON, ,,R1l,,4950¢0

MON

MON

MON

ASSMBL

ASSMBL

LNKEDT

LNKEDT

LNKEDT

MON

MON

MON

MON

MON

LOD SA

SAMPL

SAMPL

SAMPL

SAMPL

g2L6 @@P2@52

@3RT gP:01:26
g@:21:98 JOB TOS MONITOR
g2L.6 @g@g2116

#399

g2L6 @@P2715

@899 ***END LNKEDT

#399

OBJECT MODULE IS ON SYSUT

THIS OBJECT MOD. MAY BE LOADED AND RUN UNDER EXEC.

E LOD SAaMPL,#2,,R1
P3RT @P:06:50
g2NH gp28gg

MPL, @2, ,R1
g2L6 PP2824
5086 1IN R1 gg@P355
5§86 OUT L1 gPpP3s5e6

@2NH 992949 @g@@121

2, NAMED SAMPL.

Appendix N

BY TYPING

Spectra 70 70-00-602
POS/TOS/TDOS Assembly

System Reference Manual

Your comments, accompanied by answers to the following questions help us produce better pub-
lications, If your answer to a question is '"no," or requires qualification, please explain on a

separate sheet of paper. Please give specific page and line references with comments when
appropriate. If you desire a reply, be sure to include your name and address.

YES NO

Does this publication meet your needs?

Did you find the material:

Easy to read and understand?

Organized for convenient use?

Complete?
Well illustrated?

Written for your technical level?

Whatis your occupation?

STAPLE STAPLE

FIRST CLASS
PERMIT No. 16

CAMDEN, NEW JERSEY

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY—

RADIO CORPORATION OF AMERICA
ELECTRONIC DATA PROCESSING
CAMDEN, NEW JERSEY 08101

ATTN: Manager, Systems Software Services
Cherry Hill
Building 204-2

..

CUT ALONG LINE

	000
	001
	002
	003
	005
	006
	007
	008
	009
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	06-01
	06-02
	06-03
	06-04
	06-05
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	C-01
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	F-01
	F-02
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	I-01
	I-02
	I-03
	J-01
	J-02
	K-01
	K-02
	L-01
	L-02
	M-01
	M-02
	M-03
	M-04
	M-05
	N-01
	N-02
	N-03
	N-04
	N-05
	N-06
	N-07
	N-08
	N-09
	N-10
	N-11
	N-12
	N-13
	N-14
	N-15
	replyA
	replyB

