
SPEI I
...,,,.-,::1

::0
1"1"1 ...,
1"1"1
::0
1"1"1 :z:
n
1"1"1

~
>­:z:
I:
>­r-

ADIO CORPORATION OF AMERICA. ELECTRONIC DATA PROCESSING

PRIMARY OPERATING SYSTEM (POS)
TAPE OPERATING SYSTEM (TOS)
TAPE-DISC OPERATING SYSTEM (TDOS)

ASSEMBLY SYSTEM
REFERENCE MANUAL

5F1E_' 11llA.. ...
RADIO CORPORATION OF AMERICA • ELECTRONIC DATA PROCESSING

PRIMARY OPERATING SYSTEM (POS)
TAPE OPERATING SYSTEM (TOS)
TAPE·DISC OPERATING SYSTEM (TDOS)

ASSEMBLY SYSTEM
REFERENCE MANUAL

RADIO CORPORATION OF AMERICA
70-00-602

March 1968

The information contained herein is subject to
change without notice. Revisions may be issued
to advise of such changes and/or additions.

First Printing: November, 1965
Reissued: February, 1966

Reissued: March, 1968

FOREWORD • This publication is intended as a reference manual for the programmer
using the assembly language. It contains all information necessary to
program in assembly language when used with the Primary (POS), Tape
(TOS), or Tape/Disc (TDOS) Operating System Reference Manuals.

The information in this publication is stated based on the assumption
the reader knows basic programming concepts and has had programming
experience with computer systems. It is assumed the reader understands
the content of the Spectra 70/35-45-55 Programmers' Training Manual
(70-35-801).

Macro definition language specifications are included in the latter
sections of this Assembly System Reference Manual. RCA supplied macros
are described in the appropriate Operating System Reference Manuals (POS
70-00-605 and TOS/TDOS 70-00-608). Spectra 70/25 Assembly Language
exceptions are summarized in Appendix F.

iii

1. INTRODUCTION
TO SPECTRA 70

ASSEMBLY SYSTEM

2. ASSEMBLY
LANGUAGE
STRUCTURE

CONTENTS

Page

Features ...•.....•.•••..••••..........•.•.... 1-1
Mnemonic Operation Codes . • . • . • • • . . • • • • • • . • 1-1
Symbolic Addressing ..••.•••.........••..•..•. 1-1
Data Representation . • • • • • . . •. 1-1
Program Sectioning and Linkage ...•...••.......•. 1-2
Base Register Calculation • • . • • • • . • • . • .. 1-2
Relocatability . . • • . . • . • • • . • . • • . • . • • . • • . • . • . .. 1-2
Program Listings •.••.•••.•.•.•...•.••.•.••.. 1-2
Error Indications. . • • . • . • • • . . • . . . • . • . • .. 1-2

Minimum Equipment Requirements . • . • • • . • . . • 1-3
POS. . • • . • . . • . • • . • • • • • • . . . • • . . • • .. 1-3
TOS .••.•••••••.•••.••..••••.•••••.•.•.... 1-3
TDOS . • . • • . • • • • • • • • • • • • • . • • • . • • • . • • 1-4

The Coding Form. . . • . . • . . • • . . • . • 2-1
Name Field .•••••.....••.••....••.......... 2-1
Operation Field . • • • • • • • . . • . • • • • • . • . • • • • .. 2-1
Operand Field . • • • • • • • . • . • . . • . • • . • . . • . . • • . . •. 2-1
Comments Field .••••.•.••....•••.•.•. • • . • • •. 2-3
Identification Field .••••...•.•....••.••.•.•... 2-3

The Character Set • • • • . . • . • . . • . . • . • . . • . • • . . . • • . .. 2-3
Terms . . • . . • • • • . • • . . • • • • . . . • • • • • • • • . • • . .. 2-4

Symbol Definition .•.•.••••....•..••.•.•.•.... 2-4
Symbol Table ..•.....•.......•...••.•.... 2-4
Symbol Length Attribute . • • . • • • . • . . • . • . .. 2-5

Self - Defining Terms. . • . • • • • • • . . • • . • • • • . . . • 2-5
Decimal. . . • • • . • • . • . . • . • . • • • 2-6
Hexadecimal. • • • • . • • . • . . • . . • • . • . • . • . • . . •. 2-6
Binary . • • • • • • • . . • • • • . . • • • . • . • • . • .. 2-6
Character •••...•..•••....•.•••••••.•... 2-6

Literals . . • • . • • . • • . • . . • . • • . • . . . •. 2-7
Defining Literals • . • • • . • • • • • • • • • • • • . • .• 2-7
Literal Pool . . • • • • • . . • • • • • • . • • . • • • • • • . • •. 2-8

Location Counter Reference .•••••.••.•••••••.••. 2-8
Expressions • • • • • . • • • • . • • . • • . . • . • . . • • . • • • • • • • •. 2-8

Combining Terms ••.••••••.••......•.••...... 2-9
Absolute Expressions. • . • • • • • • • • . . • • • . • 2-10
Relocatable Expressions. • • • . . • • • . . . • • . • . • 2-10

Addressing. . . . • • . • • • • • • • . . . • • • . • .. 2-11
Base Register Address Calculation. . . . • • . • . . . • • • . .. 2-11
Base Register Considerations .•..•••..•..•....... 2-12
Explicit Addressing • • • • • • . • • • • . • • . • • • • . . • • • . .. 2-12
Implied Addressing ..••••.••...•..•..•..•..... 2-12
Relative. . • • . . • . • . . . • • . .. 2-12
Self-Relative .•.••.••••••.•••••..•••.••.•... 2-13
USING . . • . . . • • • • . . • • • • • . . . • . . • . • • . • . • 2-15
DROP. . • • . • . • • • • • . • • • • . • • . • • • • 2-16
Programming with the USING Instruction .•••..•••.•. 2-17

v

3. BASIC PROGRAM
ELEMENTS

4. PROGRAM
STRUCTURE

CONTENTS
(Cowlt'd)

Assembly of Machine Instructions•........•...
Machine Format ..•.•..•..•........••.......
Alignment and Checking •.....•....•••..•......
Operand Formats ..•.•..•.•.••............•..

Subfields ..•..•..•.•.•...........•.•...

Page
3-1
3-1
3-1
3-2
3-2

Mnemonic Operation Codes . • • . • • . • . . . 3-4
Operand Fields . . • • • . . • 3-4

Extended Mnemonics ••••.•••••...•.•...•••.••... 3-7
Storage Definition .••••••.••••••.•.••.•...•.•... 3-8

DS. • . • . • • • • • • . . • . . • • • • . • . . . 3-8
ORG•....•.••..•.•......••.... 3-11

Contiguous Assignment. . . • . • • • • • • . . . • . . 3-12
Noncontiguous Assignment. . . • • . . . • • . . • . • . • • . 3-12

CNOP. • . . • . . • . . • . . . • . . . • . • • . • • • • • . . • . 3-13
EQU •••••••••.•••••••••••••••••••••••••. 3-15

Constant Definition•..•..................... 3-16
DC - Data Constants. . • . . • . 3-17
Alignment of Constants . . . • • . . • • . . • 3-18
Types of Constants 3-18

Character (C) • . . . • • 3-18
Hexadecimal (X) .•...••......••.••.•.•... 3-19
Binary (B) .•.••.•.....•...•............ 3-19
Decimal (P)••........••....... 3-20
Decimal (Z) .••..•......•..•....•....... 3-20
Fixed Point (F, H)•.......•.•.•...•.. 3-21
Floating-Point (E, D)•....... 3-24

DC - Address Constants . • . . • . . • . . • • . • • 3-27
A - Type ..•.•......••..•.••...•...•... 3-27
Y - Type .•.•....••......•...••........ 3-28
S - Type•............•..... 3-28
V - Type • . • • • . • . • 3-29

Control Sections ...•.••...••...............•...
Control Section Definition•........••..

4-1
4-1

First Control Section .. 4-2
START. • . . • . . . • . • 4-3
END•••••.•••.•••.•................ 4-4
CSECT. • • . • . . • • . . • . . • • . • 4-5
DSECT. . . • • • • 4-7
LTORG•••.....•.•..••••.....•.... 4-10
COM . . . • . . • • • • • . . • . . • • • • • • . • . .. 4-12

Program Linkage Controlling Codes . • • . • • . • 4-14
ENTRY •..•..•.....•..................•.. 4-15
EXTRN ..•.•••..•••.•.•....•....•.•..•... 4-16

vi

5. ADDITIONAL
ASSEMBLY

INSTRUCTIONS

6. INTRODUCTION
TO SPECTRA 70

MACRO LANGUAGE

7. WRITING MACRO
DEFINITIONS

CONTENTS
(Cont'd)

Listing Controls .•••.•...•••.•.•...•••••.•.••..
TIT LE•..•.••.....•.•.............
EJEC To••.•.•.•.••........•....••.•.

Page

5-1
5-1
5-2

SPACE. • • • . • . • • 5-3
PRINT . . • . • • • • • • • . • . • . . • . • . • . . • • . . . • . 5-4
AOPTN ..•...•.•....•.••......•••.•...... 5-6

Program Controls•........••.•...... 0 • • • • • 5-8
ICTL . . • . . . • . • . . • • • . • . . . 5-8
ISEQ • . • . . • • • . . . 5-10
REPRO ..•............................... 5-11
PUNCH ..•.•.....•...........•.....•.•... 5-13
XFR (POS) . • . • • • • . • • . . • . • . . • • . • . . . • . . . 5-14
MCALL . . • . • . • • • . . • . . . • • . . • • • • • • 5-15
MPRTY . . • . • . • • . . • . • . • . . . • 5-17

Macro Definition .
Structure•..•..•......•...............

Types of Macros .•.••.•.•••...•....•.......•...
Positional. • . • • • . • • . • . . • . • •
Keyword .••..•.•••.•.•.•••.....•.•.......

Macro Call Statement ...••.•..•..•.......•.•..••.

6-1
6-2
6-2
6-2
6-3
6-3

Variable Symbols ..•.•••.•.•.•.......•••.•..... 6-3
Types ..••••.•.•••..••....•....•.•....... 6-3
Valid Symbols. . • . • . . . • . • . • . . • • . • • 6-4

Symbolic Parameters. • • • • • • . • • • 6-4
Restrictions for Symbolic Parameters. • . . • . . . • 6-4

Varying the Generation. . • • . • . • . • • • . • • • . • . . . • . • . . . 6-5
Sectioning of Macro Language Information . • . . . • . • • . • . . . 6-5

Macro Definitions Contents .•..••.•......•......••.
MACRO - Header Statement•...•.••..•...•.
MEND - Trailer Statement •..•.......•.•...•...

7-1
7-2
7-3

Positional Prototype Statement•...•........ 7 -4
Model Statements .•.•..••.•.•.....•......... 7-6

Specifications • • 7-6
Combining Symbolic Parameters .•............ 7-9
Comments ..••......................... 7-10

vii

8. MACRO CALL
STATEMENTS

9. SET AND
CONDITIONAL

MACRO COMMANDS

10. SPECIAL
PURPOSE FEATURES

CONTENTS
(Cont'd)

General Description .•.•..•.•...•.•.....•..•.....
Positional Macro Call •.•••.•...•.....••.•.....

Operand Rules and Examples••••..•.•.•.
Continuation Rules ..•••..•..•..•.•..•.••..
Quoted Strings . • . • . • . • • • . • • . . . • . . • • . •
Call Value (eight characters) ...•••••••••.•••.
Null Parameters .••.••••.•.....•.•••.•...

Inner Macro Calls . • • • . • • • • • • . . • • • . • . . . • . • . • •

Page
8-1
8-3
8-4
8-4
8-5
8-5
8-6
8-8

Nested Macros ..•.•..••.•.....•.•.•...•. 8-8

Introduction •••••...•...•••..•.••••.•....••...
Set Variable Symbols . • • • • . . • • . . • . . . • . . • • • • • .

Defining Symbols • • . • • • • • • • • . • . • • • • . . • . • • • . . .
Global Values •••.•••••••••.••.••.•••••••.•.

9-1
9-2
9-2
9-2

Local Values .•••••••••••.••••••••••••..••. 9-3
Uses for Set Symbols . • • • • • . • • . • • • • • • • . • • 9-3
Where Used ..••••••••...••••••.•••••..•••• 9-3

Set Commands. • . • • • . • • • • • • • • • • • • • • • . • • • • • . • • . . 9-4
SE T A - Set Arithmetic . . • • • • • . • • • • • • • . • • • • • • • . 9 -4
SETC - Set Character. • • • • . • • . . . • • • • • • . . • • • • • • 9-7
Sub string N otati on • • • • • • • • . • . • • • • • . • . • • • . • . . . 9 -1 0

Combining Substrings - SETC •••••••••••.•••. 9-11
Combining Substrings - SETA .•••••..•••••••• 9-12
Use of Substrings. • • • • • . • • • . • • • . • . . • • . • . • . 9-12

SETB - Set Binary. • • • • • • • . • • • • • • • . • . • • • . • . . • 9-14
Logical Expressions. • • • • • . • • . • • • • . • • • • • . • • 9-15
Relational Expressions. • • • . • • • • • . • . • . • . • . • . 9-17

Null Parameters • • • • . • • • • • • • • • • • . • • • • • . • • • • • 9 -20
Logical Operator Evaluation ••.•.•.•.•••.•••• 9-21

Conditional Commands . . • • • • • • . • . • • . • • • . • . • • • . 9-22
Sequence Symbols ••••••••••••••.••••••••• 9-22
AIF - Assembly IF. • . • • • . . • • • • • • . . • . • • 9-23
AIFB - Assembly IF Backwards. • . • • • • . . • 9-25
AGO - Assembly GO. • • • • • . . • . • . . • . • . • . . • • . 9-27
AGOB - Assembly GO Backwards .•••••.•.•.•. 9-28
ANOP - Assembly NO Operations. . • • • • • . • . • . • . 9-29

Introduction .••••.••••••••••••.••...•.•.•.•...
Additional Generator Commands .••.•••••••.•••.•...

MEXIT - Macro Definition Exit ..••••••.••••••.•.

10-1
10-2
10-2

MNOTE - Error Message Request •••••••••••.••.. 10-4

viii

10. SPECIAL
PURPOSE FEATURES

(Cont'd)

11. KEYWORD
MACROS

LIST OF APPENDICES

CONTENTS
(Cont'd)

Page

System Variable Symbols .•...•••••••.••.••.•.•..•. 10-6
&SYSNDX - Macro Call Index .••••.•••••••••.••.• 10-6
&SYSECT - Current Control Section • • . • • • . • • • . • . • •. 10-8

Minimum Generation ..••.•.••.•••••••••.••• 10-9
&SYSLIST - Macro Operand Field ••••.••••..••••.• 10-11

Trace Commands ••••••••••••••..•••••••••.•.••. 10-13
MTRAC - Macro Trace. • . • . • • • • • . . • • • . • • • • . . • .• 10-13
NTRAC - No Trace .••••••.•.•••••••.•.•••.••. 10-15

Introduction .••••••••.•...•..•••••••••.•••••.•.
Prototype Statement . • . • • • • • • . • • . • • • • • . . • . • • • . • . . .
Macro Call

11-1
11-2
11-4

Operand Order •..••••••.••••••••••••.••.••.. 11-5
Replacement Rule •.••.•.••••••••.•••••••••... 11-5
Null Parameters • • • . • • • • • • • • • • • . • • • • • • • . • • • •. 11-6

A. Summary of Assembly Input/Output .•..••..••••.•.• A-I
B. Assembly Error Flags . • • • • • • • • • • • . • • • • . • • . • • •• B-1
C. Macro Error Flag & MNOTE • • • • . • • . • . • • • • • . • • . •• C-1
D. Source Program Symbol Limits . • • • . • • • • • • • • • . • • .• D-1
E. 70/35-45-55 Machine Instructions. . • • • • • • • • • • • • • • •• E-1

Instruction Formats .•••.••.••.••.••.•.•••..
Instructions - Alphabetically Listed ..••.••.•...•

F. Summary of 70/25 Exceptions .•.••.••.•...•...•..
G. Source Language Correction (TOS/TDOS) .•.•••••••.•
H. Overlay (Segmentation) Methods .••.••••.•..•.••.•.

POS and 70/25 ..••••••.••....•.•...•.•.•.•
TOS/TDOS••..•.•••••.••••••..•..• 0 •

1. Macro Language Terminology ...•.•.•.•••.•.....•
J. Summary of Macro Definition Operation Codes ..•.••..•
K. Type of Macro Expressions .•••••.••.•..•••.•.•.•
L. Summary of Macro Symbolic Parameters and ..••••

Variable Symbols .•................•........
M. Hexadecimal-Decimal Conversion Chart .••.•••••....
N. Sample Program - TOS Assembly .•.•••.•..•.••.•..

ix

E-2
E-3
F-1
G-1
H-1
H-1
H-16
I-I
J-1
K-1

L-1
M-1
N-1

1. SPECTRA 70
ASSEMBLY

SYSTEM

INTRODUCTION

FEATURES

Mnemonic
Operation Codes

Symbolic Addressing

Data Representation

• The Spectra 70 Assembly System is a machine-oriented, symbolic
programming language which expedites the writing of programs for Spectra
70 Systems. Assembly language programs consist of four basic types of
statements: machine instructions, assembly instructions, macro instruc­
tions, and comments statements.

Machine instruction statements are one-for-one symbolic repre­
sentations of actual machine instructions. The Assembly System produces
an equivalent machine instruction in the object program from each machine
instruction statement in the source program.

Assembly instruction statements provide auxiliary functions that assist
the programmer in checking and documenting his programs, in controlling
the assignment of storage addresses, in program sectioning and linking, in
defining data and storage fields, and in controlling the Assembly System
itself. Assembly instruction statements specify these auxiliary functions
to be performed by the assembly, and, with a few exceptions, do not result
in the generation of any machine language code by the assembly.

Macro instruction statements enable the Assembly System to retrieve
specially coded symbolic routines, modify these routines according to
information supplied in the macro instruction, and insert the resultant
generated source statements into the assembly process for translation
into machine language.

The Assembly System resides on a systems tape and operates under
control of a control system which provides input/output, library, and
other services required in assembling a source program. Device inter­
changeability at assembly time also is provided to permit substitution of
magnetic tape for source input, object program, and program listings.

• Predefined mnemonic codes are provided in the assembly language for
all machine instructions and assembly instructions. Additional extended
mnemonics are provided for the various forms of the Branch-on-Condition
instruction.

• The assembly language provides for the symbolic representation of
addresses, machine components (such as registers), and actual values
required in source statements.

• Decimal, binary, hexadecimal, and character representations of ma­
chine language values can be used by the programmer in writing source
statements. The programmer selects the representation best suited to his
purpose.

1-1

Program Sectioning

and Linkage

Base Register
Calculation

Relocatability

Program Listings

Error Indications

SPectra 70
Assenzbly Systenz

• The assembly provides facilities for generating (optionally) multi­
sectional programs, and for symbolically linking separately assembled
programs or program sections.

The output of the assembly consists of the assembled control sections
and an External Symbol Dictionary. The External Symbol Dictionary con­
tains information that the Linkage Editor requires to complete cross­
referencing between control sections as it combines these sections into a
single object program.

Symbols can be defined in one assembly and referred to in another
assembly, thus providing symbolic linkages between independent assem­
blies. Specifically, these symbols provide linkages between separately
assembled control sections. The assembly places the required linkage
information in the External Symbol Dictionary (ESD) on the basis of the
linkage symbols identified by the ENTRY and EX TRN as sembly instructions.

The ENTRY instruction identifies the symbol, within a given assembly,
that is to be used as the name of the entry point from another program (or
section). Similarly, the program that uses a symbol defined in some other
assembly must identify it by use of the EXTRN instruction, which provides
linkage to the point of the definition.

• The base register addressing scheme requires the designation of a
general register (containing a base address value) and a displacement value
for specifying a storage location. The Assembly System assumes the
clerical burden of calculating storage addresses in these terms for the
symbolic address used by the programmer. The programmer retains
control of general register usage and the values entered therein by means
of the USING and DROP assembly instructions.

• Object programs produced by the Assembler are in a format that
permits them to be relocated from the originally assigned areas to any
other suitable area. It is also possible to produce object programs that
are absolute (not relocatable).

• A listing of the source program statements and the resulting object
program statements may be produced by the Assembly System for each
source program it assembles. The programmer can partly control the
format and content of the listing.

• As a source program is assembled, it is analyzed for actual or potential
errors in the use of the Assembly language. Detected errors are indicated
in the program listing. Up to six error flags are printed for each state­
ment processed that has been found to contain errors.

1-2

MINIMUM
EQUIPMENT

REQUIREMENTS

POS Equipment
Requirements

Notes

TOS Equipment
Requirements

SPectra 70
Assembly System

• The mInImum equipment configurations to operate the Assembly
System under control of the POS, TOS, and TDOS operating systems are
detailed below. In each case, additional memory over the stated minimum
is used to allow more symbols and to process macro expansions more
efficiently. (The maximum number of symbols permitted for each system
is discussed in Appendix D.) In addition, it should be noted that the output
device and listing device required for assembly output may be omitted if
no output is desired. (See AOPTN control message, page 5-6.)

• The Primary Operating System equipment requirements are as follows:

Processor - Model 70/35D, 70/45D, or 70/55E.

Magnetic tape devices - Includes three work tapes (capable of being
(four required) read in reverse direction) and the system

tape. (See Notes 2 and 4.)

Input Device - Card reader or magnetic tape.

Output Device - Card punch or magnetic tape. (See Note 2.)

Listing Device - Printer or magnetic tape.

• 1. If the source input is contained on magnetic tape, it may be batched
in blocks of one to five cards.

2. If UPSI switch 0 is set ON, the assembly uses only two work tapes
(SYSOOI and SYS002). SYSOOO is not used which allows for object
output to tape on a four-tape system.

3. Object programs are batched in blocks of one to five cards and may
be stacked on the output tape.

4. The systems tape may be a seven-level tape.

• The Tape Operating System equipment requirements are as follows:

Processor - Model 70/35E, 70/45E, or 70/55E.

Magnetic tape devices - Includes three work tapes, the Call Library
(five required) Tape (all capable of being read in reverse)

and the nine-channel system tape. (See Note
3.)

Input Device - Magnetic tape or card reader.

Output Device - Magnetic tape or card punch. (See Note 6.)

Listing Device - Printer or magnetic tape.

1-3

Notes

T005 Equipment
Requirements

SPectra 70
Assembly System

• 1. Batched assemblies are permitted by TOS Assembly. That is, be­
tween the END card of program N and the START card of program
N + 1, no Monitor control cards are present. Object coding is batched
in blocks of one to five cards and may be stacked on the output tape.
Linkage Editor and other system utility routines require object
module files to be in ascending sequence by program name.

2. If the source input is contained on magnetic tape, it may be batched
in blocks of one to five cards.

3. If all macros used are submitted with the source program, or if no
macros are used, the Call Library Tape is not required.

4. If the object coding and listing information are assigned to magnetic
tape, they must be assigned to the same device.

5. The optional source language correction and update feature requires
one or two additional tape devices. (See Appendix G.)

6. Generation of the object program may be omitted or it may be gen­
erated on:

a. SYSOPT.

b. SYSUT1 or alternate device.

c. Both a and b above.

If SYSUT1 already contains an object module or is to receive the
object program, it is considered unavailable as a work tape. An
alternate work tape (SYSUT4) can be specified, if available. If an
alternate tape is not specified, the assembly operates with only
two work tapes.

• The Tape/Disc Operating System equipment requirements are as follows:

Processor

Magnetic Tapes
(three required)

- Model 70/35E, 70/45E or 70/55E.

- Work Tapes. Two of these tapes must be nine­
level. If a seven-level tape is used, it must
have the pack/unpack feature.

Disc Storage Unit or - Macro library and System library are on this
Drum Memory Unit device.

Input Device - Magnetic tape or card reader.

Output Device - Magnetic tape or card punch.

Listing Device - Printer or magnetic tape.

1-4

Notes

SPectra 70
Assembly System

• 1. Refer to Notes 1 through 6 under TOS Equipment Requirements.

2. The Macro library (if present) must reside on a random access
device. This may be either the device containing the system library
or a separate device.

3. Input and output devices must be assigned to card devices and/or
magnetic tape devices. The Program Load Library produced by the
Linkage Editor may be transcribed to a random access device or
operated directly from tape.

1-5

2. ASSEMBLY
LANGUAGE
STRUCTURE

THE CODING FORM

Name Field

Operation Field

Operand Field

• The coding associated with a statement line normally occupies columns
1 through 71 and, if needed, columns 16 through 71 of a single continuation
line. A continuation line is designated by entering any nonblank character
in column 72 of the statement line to be continued. Columns to the left of
column 16 on the continuation line must be blank.

Note:

Only ~ continuation line is allowed for as sembly instructions.

Source statements normally occupy columns 1 through 71 of the state­
ment line and 16 through 71 of a continuation line. Therefore, columns 1,
71, and 16 are referred to as the begin, end, and continue columns, re­
spectively. These standards may be altered by the use of the controlling
code, Input Format Control. (See ICTL, page 5-8.)

Statements may consist of from two to four entries in the statement
field. They are, from left-to-right: An 8-character Name entry, a 5-
character Operation entry, and a 56-character Operand and/or Comments
entry.

• The Name entry is an optional symbol created by the programmer to
identify the statement line. The symbol must consist of eight characters
or less, and, if used, must start in the begin column of the statement line.
If the begin column is blank, the Assembler assumes that the statement line
is unnamed. Rules for proper symbol definition are listed on page 2-4.

• The Operation entry is a mandatory entry that begins at least one posi­
tion to the right of the begin column, and specifies the machine mnemonic
or assembly function desired. Valid operation codes consist of five char­
acters or less, and may not contain embedded blanks.

• Depending on the requirements of the instruction specified in the opera­
tion entry, this entry contains coding that identifies and/or describes
storage, masks, storage-area length, or types of data. One or more
Operand entries may be needed to properly specify the instructions.
Operand entries are separated by commas; blanks may not intervene
between the operands and the commas that separate them.

Operand entries may not contain embedded blanks, except when the
Operand entry is used to specify constants, literals, or immediate data,
and the data string contains blanks. The Operand field must start at least
one position to the right of the Operation field. In the absence of a Com­
ments field, the operand field may extend through the "END" column.

Symbols appearing in operand entries must be defined only once in a
program. A symbol is defined when it appears in the name field of a
statement.

2-1

1

1

CHARGE NO.

OATE REQ'O

NAME

2 3 4 5

I

I

I

i

!

2 3 4 5

6 7 8 9

6 7 8 9

OPERATION OPERAND

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

+-

i

I

i

I ,
i

I

I

I

j

i

i
I

I
I

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29 30 31

26 27 28 29 30 31

SPECTRA 70

ASSEMBLY PROGRAM FORM

FLOW CHART REFERENCE _________ _

COMMENTS

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

32 33 34 35 36 37 38 39 <40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

Figure 2-1. RCA Spectra 70 Assembly Program Form

OATE _____ _ PAGE ___ OF __ _

PROGRAM ________________ _

PROGRAMMER

IDENTIFICATION

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

6263 6465 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Comments Field

Identification­
Sequence Field

CHARACTER SET

Assembly Language
Structure

• Comments are descriptive items of information that are to be included
in the program listing. All valid characters, including blanks, can be used
in writing comments. Comment entries may follow the last operand entry.
A blank must separate it from the last operand. Comment entrie s may not
extend beyond the end column, and a blank must be used to separate it from
the operand.

One or more statement lines may be used entirely for comments by
placing an asterisk (*) in the begin column of each statement linea

In statements where an optional Operand entry is omitted and comments
are desired, the missing operand must be indicated by a comma followed
by one or more blanks prior to writing comments.

• An optional entry, when used, specifie s program identification and/or
statement sequence characters. If the entry or a portion of the entry is
used for program identification, the identification is punched by the pro­
grammer in the statement cards, and reproduced by the assembly in the
source program listing.

As an aid in keeping source statements in order, the programmer may
code a sequence of characters in ascending order in this field, or a portion
of this field, which will be checked by use of the input sequence check in­
struction. (See ISEQ, page 5-10.)

• Assembly language statements are written using the following letters,
numeric digits, and special characters:

Letters:

Numeric Digits:

There are 29 characters classified as letters.
The se include the characters @, #, and $ as well
as the alphabetic characters A through Z. The
three additional characters are included so that
the category can accommodate certain languages.

o through 9.

Special Characters: + - , * () , / & BLANK

These letters, digits, and special characters are only 51 of the set of
256 code combinations defined as the Extended Binary-Coded-Decimal
Interchange Code (EBCDIC). Each of the 256 codes (including the 51 char­
acters above) has a different card punch code. Most of the terms used in
assembly language statements are expressed by the letters, digits, and
special characters shown above. However, such ass~mbly language features
as character self-defining terms and character constants permit the use of
any of the 256 EBCDIC codes.

2-3

TERMS

Symbol Definition

Symbol Table

Assembly Language
Structure

• All terms represent a value. This value may be assigned by the Assem­
bly System (symbols, length attributes, Location Counter reference, and
literals) or may be inherent in the term itself (self-defining terms).

• Symbols provide the most commonly used means of addressing instruc­
tions, constants, storage locations, and control sections. Symbols are
normally defined in the Name field of a source statement line. A symbol
that is defined in another assembly is specified as defined elsewhere by
the EXTERN statement. (See EXTERN, page 4-16.) After a symbol has
been defined, it can be referred to by other Operand entries.

The value assigned to the symbol is the address of the leftmost byte of
the instruction, constant, storage location, or control section named by
the symbol. Because the address of these items may change upon program
relocation, the symbols naming them are considered relocatable terms.
The value of a symbol may be equated to an absolute value. (See EQU,
page 3-15.)

• The Assembly System compiles a table containing all the symbols that
appear in the Name field. A specific memory address and a length attribute
are stored in the symbol table. The length attribute of a symbol is the
size, in bytes, of the storage field named by the symbol. References to
symbols cause the Assembly System to interrogate the symbol table for
the address and the size of the field being referred to. This information
is used by the Assembly System for instruction address generation. Correct
symbol definition is dependent on the following rules:

1. A symbol can be a single character or group of characters created
from the standard character set, not exceeding eight characters.

2. A symbol must begin with an alphabetic character other than the
letter 1. The remaining characters may be alphabetic, numeric or
a combination thereof.

3. No special characters or embedded blanks may appear within a
symbol.

4. A symbol may be defined only once in any single assembly. Thus,
two or more control sections assembled together cannot define the
same symbol. (Exception: The Name field of a control section used
in the START, CSECT, or DSECT assembly statements. (See page
4-3.)

5. Symbol values may not exceed a value of 219 -1 (524,287).

6. The maximum number of symbols permitted in an assembly is
dependent on the amount of memory available to the Assembler.
See Appendix D for a complete summary of symbol limits.

7. Operand entries used within the instruction may contain addresses
that are generated from other than symbol table references. These
entries are classified as self-defining terms, literals, constants,
or expressions.

2-4

Valid Symbols

Symbol Length AHribute

Chart 2-1. Use of
Symbol Length AHribute

Self-Defining Terms

Assembly Language
Structure

• The following are examples of valid symbols:

READER

A2345678

N

X4F2

S4

$3

• The length attribute of a symbol may be used as a term. Reference to
the length attribute is made by writing the symbol preceded by the letter L
and a single quotation mark, for example, L 'BE T A. The assembly sub­
stitutes the associated length for the symbol.

Chart 2-1 shows how a programmer might use a symbol length attribute.
Al names a storage location of eight bytes, and B2 names a character
constant that is two bytes in length. The statement line named HIORD
moves the contents of B2 into the leftmost two bytes of storage location
Al. The term (L 'B2) supplies the length specification required by the
machine instruction MVC. Statement line named LOORD moves the contents
of B2 into the rightmost two bytes of Al. The expression Al + L 'AI - L 'B2
results in a value equal to the seventh byte of field Al. Again, (L 'B2)
supplies the length specification needed by the instruction.

• NAME OPERATION OPERAND

Al DS CL8

B2 DC CL2'AB'

HIORD MVC Al(L' B2), B2

LOORD MVC Al + L 'Al- L 'B2(L 'B2),B2

• A self-defining term is one whose value is inherent in the term. The
Assembler program does not assign a value to the term but uses the term
itself as the value to be assembled. All self-defining terms are classified
as being absolute, since the value of the term does not change when the
program in which they appear is relocated.

Self-defining terms are the means of specifying immediate data, masks,
addresses, registers, operand lengths, and I/O information to the Assem­
bler. Self-defining terms differ frOIn constants and literals when used in
instructions in that the value of the term is assembled into the instruction.
By contrast, a data constant or literal has the address of the data assem­
bled into the instruction.

Four types of self-defining terms are available to the programmer:
decimal, binary, hexadecimal, and character.

2-5

Decimal Self-Defining
Terms

Chart 2-2. Example of
Decimal Self-Defining

Terms

Hexadecimal Self­
Defining Terms

Binary Self-Defining
Terms

Character Self-Defining
Terms

As sen~bly Language
Structure

• A decimal self-defining term is an unsigned decimal number written as
a series of decimal digits. Limitations as to the value of the term depends
entirely on its use within the program. Decimal self-defining terms are
assembled as binary equivalents, and must not exceed eight digits (224_1).
(See chart 2-2.)

• NAME OPERATION OPERAND COMMENTS

MVC TO(225),FROM MOVE 225 BYTES

AP SUM(12),ADD(3) ADD THREE BYTES OF
PACKED DECIMAL TO
A 12 - BYTE FIELD

BC 15,COMPUTE UNCONDITIONAL
BRANCH TO COMPUTE

• A hexadecimal self-defining term is an unsigned hexadecimal number
written as a series of hexadecimal digits. The digits must be enclosed in
single quotation marks and be preceded by the letter X. Each hexadecimal
~igit is assembled as a four-bit binary value. The maximum hexadecimal
term is X'FFFFFF '. (See chart 2-3.) The following is a summary of the
hexadecimal bit patterns:

o - 0000

1 - 0001

2 - 0010

3 - 0011

4 - 0100

5 - 0101

6 - 0110

7 - 0111

8 - 1000

9 - 1001

A - 1010

B - 1011

C - 1100

D - 1101

E - 1110

F - 1111

• A binary self-defining term is an unsigned sequence of 0 's and 1 's
enclosed in single quotation marks and preceded by the letter B; for
example, B '1011 '. The maximum binary self-defining term is 24 bits. These
terms are used primarily in designating bit patterns for masks used in
logical instructions. (See chart 2-4.)

• A character self-defining term consists of from one to three characters
enclosed in single quotation marks and may be preceded by the letter C.
All letters, decimal digits, and special characters may be used in this
type of self-defining term. Any of the 256 punch combinations may be used
to indicate the character that will be assembled in 8-bit code. (See chart
2-5.)

Note:

Care must be used when specifying the characters single quotation (')
or ampersand (&) in character self-defining terms or character con­
stants. The assembly itself uses these characters to denote special
functions. When the programmer uses these characters, two quotation
marks or ampersands must be indicated; for example, to specify the
term A '# as a character constant, the programmer would write C 'A "# '.

2-6

Chart 2-3. Example of
Hexadecimal Self-

Defining Terms

Chart 2-4. Example of
Binary Self-Defining

Terms

Chart 2-5. Example of
Character Self-Defining

Terms

Literals

Defining Literals

Assembly Language
Structure

• NAME OPERATION OPERAND COMMENTS

BC X'4',ABLE BRANCH TO ABLE
IF CONDITION CODE
IS 0100 (CONDITION
CODE 1)

• NAME OPERATION OPERAND COMMENTS

TM CODE ,B '10101010'

• NAME OPERATION OPERAND COMMENTS

TM MEM,C'l' THE CHARACTER 1
(11110001) IS USED
AS MASK

MVI SWITCH, '1'

• A literal term is a convenient way of entering data into a program. It
is a constant preceded by an equal sign (=) coded as an. operand in an
instruction; for example: MVC FIELD(l), = C 'A '. The constant itself is
specified in the same manner as in a define constant (DC) statement. (See
DC, page 3-16.)

Literals represent data, not references to where data is stored. The
use of a literal in a statement line directs the Assembly System to place
the value of the literal into a reserved portion of memory called a literal
pool and to substitute this assigned address in place of the literal.

• All types of address constants (except S-type) can be expressed as
literals. A duplication factor of zero is not permitted in a literal.

Chart 2-6 shows the use of a literal as an Operand entry. The statement
named Alpha is an AP instruction with the second Operand field containing
a literal. When assembled, the literal is replaced with an address of the
location in which the assembly has stored the binary value of P '1 '.

Notes:

1. Only one literal may appear in a statement line.

2. Literals may not be combined in expressions.

3. Program instructions cannot alter literals.

4. Literals cannot be receiving fields.

5. Literals may not be used in address constants.

6. Literals are considered to be relocatable terms.

2-7

Literal Pool

Chart 2-6. Use of Literal
as Operand Entry

Location Counter
Reference

EXPRESSIONS

Assembly Language
Structure

• Literals collected by the assembly are placed in a special area called
a literal pool. The positioning of the literal pool, if not controlled by the
programmer, will be the end of the first control section. The programmer
may create multiple literal pools and/or relocate the literal pool under
control of the LTORG assembly instruction. (See page 4-10.)

• NAME

ALPHA

OPERATION

AP

OPERAND

COUNT, =P'1'

• The Spectra 70 Assembly System maintains an internal Location
Counter for each control section under assembly. This counter is similar
to the Program Counter which contains the main memory address of the
next instruction to be executed. The Location Counter in the assembly
assigns storage addresses to program statements. Program statements
for each section are assigned addresses from the Location Counter for
that section.

As each machine instruction or data area is assembled, the Location
Counter is first adjusted to the proper boundary for the item (if adjustment
is nece ssary), and then incremented by the length of the assembled item.
Therefore, the Location Counter always points to the location of the next
available storage location in memory after the instruction has been
assembled.

The programmer may refer to the current setting of the Location Counter
by inserting an asterisk (*) in the Operand field entry. This method of
addressing is the same as assigning a name to the statement line and using
the name as an Operand entry. The leftmost byte address is supplied when
reference to the Location Counter is made within an instruction.

The location counter setting can be controlled by using the START and
ORG Assembler instructions (see pages 4-3 and 3-11). The Counter af­
fected by either of these instructions is the counter for the control section
in which they appear. The maxim urn value of the location counters is 224 -1
on the 70/35-45-55 Processors.

• Operand entries written for the Spectra 70 Assembly System consist of
either a single term or an arithmetic combination of terms and are referred
to as expressions. An expression can be consideredas being either simple
or multiterm. Simple expressions are Operand entries containing symbols,
self-defining terms, Location Counter references, literals, or length
attributes. Multiterm expressions are simple expressions that have been
combined by arithmetic operators for evaluation.

Terms may be combined by use of the following arithmetic operators:

+ Addition; that is, Alpha + 2

e:> Subtraction; that is, Alpha e Beta

* Multiplication; that is, 5 * L 'Beta

/ Division; that is, (Alpha - Beta)/2

2-8

Combining Terms

Assembly Language
Structure

• The following rules describe the method by which terms can be com­
bined; these rules must be followed if expressions are to be evaluated
properly.

1. Terms may be grouped within parentheses to indicate the order in
which they are to be evaluated. The terms within parentheses
(grouped) are evaluated first; this value is then used to reduce the
rest of the expression to another single value.

2. Expressions may not begin with an arithmetic operator, that is,
(+,(3,*,/).

3. Expressions may not contain two terms or two operators in suc­
cession.

4. Expressions may not contain more than three levels of parentheses,
that is, nest of three.

5. Final values of expressions may not exceed a maximum value of
219 -1, or have an intermediate value greater than 231 _1.

6. Multiterm expressions may not contain Literals.

The following are examples of valid expressions:

Simple Expre ssions Multiterm Expressions

FIELD AREA+X'2D'

L'FIELD *+ 32

B'101' N-25

C'ABC' FIELD+ 332

29 «EXIT - ENTRY)/8)

=C'ABC' L'BETA*10

* TEN/TWO

Expressions are evaluated in a definite order. The following rules
define this method of evaluation:

1. Single expressions take on the value of the term involved, that is,
BETA,X'123', *, L'TAG.

2. Multiterm expressions, are scanned from left-to-right, and each
term is assigned a value.

3. The terms within the parentheses are evaluated first, with multi­
plication and division preceding addition and subtraction.

4. Division by zero is valid and produces a zero result.

5. Division yields an integer result; fractions are dropped.

2-9

Absolute Expressions

Note

Relocatable
Expressions

Assembly Language
Structure

• Expressions can be further divided into two additional classifications
namely, absolute and relocatable expressions. An expression is called
absolute if its value is unaffected by program relocation. An absolute ex­
pression may be a single absolute term or an arithmetic combination of
absolute terms. An absolute term may be an absolute symbol, self-defining
term, or length attribute. All arithmetic operators are permitted between
absolute terms.

Paired Terms

An absolute expression may contain two relocatable terms (RT), along
or in combination with an absolute term (AT) provided:

1. The relocatable terms are paired, that is, they must appear within
the same control section and have opposite signs. The paired terms
do not have to be contiguous, for example, RT+AT e RT.

2. No relocatable term may enter into a multiply or divide operation.
Thus, RT - RT*10 is invalid. However, (RT 0 RT)*10 is valid.

The pairing of relocatable terms cancels the effect of relocation.
Therefore, the value represented by the paired terms remains constant,
regardless of program relocation.

The following combinations illustrate absolute expressions:

Rls R2

RIS R2+A

AS Rl+R2

A*A

* SRI

where:

Rl, R2

A

Relocatable Terms from the same control section.

Absolute Terms.

• A reference to the location counter must be paired with another re­
locatable term from the same control section.

• A relocatable expression is one whose value would change by .!! if the
program in which it appears is relocatedJl bytes away from its originally
assigned" storage area. All relocatable expressions must have a positive
value.

Relocation is needed to load the object program (control section) into
storage locations other than those originally assigned by the Assembler.
All addresses using the same base register may be relocated by simply
changing the contents of that base register upon loading.

2-10

Relocatable
Expressions

(Cont'd)

ADDRESSING

Base Register
Calculation

Assembly Language
Structure

A relocatable expression may contain relocatable terms, alone or in
combination with, absolute terms under the following conditions:

1. Relocatable expressions must contain an odd number of relocatable
terms. If a relocatable expression contains three relocatable terms,
two of them must be paired. Pairing is described under Absolute
Expressions, above.

2. A relocatable term may not enter into a multiply or divide operation.

3. A relocatable expression reduces to a single relocatable value. This
value is the value of the odd relocatable term adjusted by the values
represented by the absolute terms and/or paired relocatable terms
associated with it.

For example, in the expression: RT1 e RT2 + RT1, RT1 and RT2 are
relocatable terms from the same control section. If RT1 equals 10 and RT2
equals 5, the value of the expression reduces to 15. However, if the pro­
gram is relocated 100 bytes from its original location, the value of the
expression becomes 115. The paired terms RTI and RT2 remain constant
at 5 regardless of the relocation factor. Thus, the result of the expression
is the value of the unpaired term RT1 adjusted by the value of RT1- RT2.

The following examples are valid relocatable expressions. A is an abso­
lute term, RT1 and RT2 are relocatable terms from the same control
section and Y is a relocatable term from a different control section.

Y - 32*A

RT1- RT1 + RT2

RT1-RT2+*

* (location counter reference)

=X'1234'

A*A+RT1

RT1-RT2+Y

RTI

A reference to the Location Counter in an expression must be paired
to a relocatable term in the same control section as: *-TAG.

• Spectra 70 addresses may range from zero through 219 -1. The final
address is produced by adding the base address value in a general register
and a displacement value. The final address may be produced by adding a
third value (index factor) from another general register in certain instruc­
tions. The Assembler permits the programmer to specify the general
register(s) and the displacement explicitly or to direct the Assembler to
calculate the address from a symbolically stated address. The programmer
can direct the Assembler to perform address calculation by specifying
which general registers are available as base registers and what values
each register is assumed to contain. (See USING, page 2-15.) Whenever
the Assembler encounters a symbolic address in the operand field of an
instruction it determines the base register and displacement value for this
address by subtracting it from the value in each available register. The
register producing the smalle st displacement below 4,095 is selected. If
two or more registers produce the same displacement, the highest numbered
register is used.

2-11

Register
Considerations

Explicit Addressing

Chart 2-7. Example of
Explicit Addressing

Chart 2-8. Example of
Implied Addressing

Implied Addressing

Relative Addressing

Chart 2-9. Relative
Addressing

Assembly Language
Structure

• Certain general registers have special uses in conjunction with the
Operating System, particularly for input output functions. (See pertinent
FCP Reference Manual.)

Values placed in general registers must be word-aligned. They are
automatically aligned when expressed as address constants.

A register designated as containing an absolute value is available only
for absolute addresses. If the absolute value is less than 4,096 and a base
register has not been specified, the Assembler will select register O.

• The programmer may refer to an address explicitly in a given instruc­
tion by coding the base register and displacement as self-defining terms.
(See Section 3 for correct coding options for each instruction class.) Chart
2-7 illustrates an explicitly coded instruction.

• NAME OPERATION OPERAND

BC 15,4(0,8)

• NAME OPERATION OPERAND COMMENT

MVC ABLE,BAKER (IMPLIED LENGTH
AND REGISTER)

• In chart 2-8 it is assumed that the names ABLE and BAKER are assigned
the addresses 3850(10) and 8173(10) in the symbol table and that General
Registers 2 and 3 contain values of 0100(10) and 4195(10)' In interpreting
the Move (MVC) instruction, the Assembly System subtracts the base value
from the address associated with the symbol. The difference is the dis­
placement. The displacement may not be negative and may not exceed 4095.

The resulting machine instruction is:

OP L B1 D1 B2 D2

D2 00 2 3750 3 3978

• Relative addressing is a technique of addressing instructions and data
areas by designating their location as relative to a symbolic location.
The programmer can refer to any location to the right or left of a defined
symbol by indicating a plus (+) or minus (-) value; for example, SYMBOL
± VALUE. The value specified is always in terms of bytes. (See chart
2-9.)

• NAME OPERATION

MVI

OPERAND

PRINT,X '40'

MVC PRINT + 1(131),PRINT

2-12

Self- Relative
Addressing

Chart 2-10. Self-
Relative Addressing

Assembly Language
Structure

• Self-relative addressing allows the programmer to use the current value
of the Location Counter plus or minus a value to refer to locations (in
bytes) of various locations within the program. (See chart 2-10.)

• NAME OPERATION OPERAND

BC 0,*+18 4 BYTES

MVI T ABLE ,X '00' 4 BYTES

MVC TABLE + 1(255),TABLE 6 BYTES

MVI * -13,X'FO' 4 BYTES

MVC RECORD,WORK 6 BYTES

Further details on permissible instruction coding formats are found in
Section 3.

2-13

r
Decimal
e.g.,15

Name Entry

15 a Symbol
which is an

I----

ar

I---

or

-

~
Machine
Instruction

Ordinary
Symbol (RT)

Variable
Symbol

Sequence
Symbol

I
A Symbol
e.g., BETA
(AT or RT)

I
Hexadecimal
e.g.,X'C4'

Operation Entry

15 a Mnemonic
Operation Code

I
Assembler Macro

or
Instruction

or
Instruction

A Self·
defining
Term (AT)

which may be
anyone of
the following

Term

which may be
anyone of
the following

A Location
Counter Refer·
ence i.e., *
(RT)

Binary
e.g.,B'101'

I
A Literal
e.g.,=F'1259'
(RT)

I
Character
e.g.,C'AB9'

Exp

or

Assembly Language
Structure

Operand Entry

One or more
Operands that
are composed
of an

or Exp(Exp)

I
Symbol Length
Attribute Refer·
ence e.g.,
L' Symbol{A T)

AT=Absalute Term
RT=Relocatable Term

Exp=Expression

I
or Exp(Exp, Exp)

Arithmetic
Combination
of Terms

Figure 2-2. Assembler Language Structure - Machine and Assembler Instructions

2-14

USING
Use Base Register

General Description

Format

Specification Rules

Name Field

OPeration Field

Operand Field

Example

Notes

Assembly Language
Structure

• The USING instruction indicates to the Assembler the general register(s)
that are available for use as base registers, and the value(s) that the
register(s) are assumed to contain at object time.

• The format of the USING instruction is as follows:

NAME OPERATION OPERAND

Not Used USING (Expressions of the form:
V, r1, r2, r3, r4, r5 ---, rx)

• Not used.

• USING.

• Contains the base address value and the register(s) to be assigned.
Operand V must be an absolute or relocatable expression. Literals are not
permitted. The value that are assumed in the base registers r1 through
rx will be in the form of V, V+4096, V+8192, V+12288, etc. The expres­
sions used to indicate the registers r1 through rx must be between 1-15.
Any number of registers may be specified in one USING statement.

• (See chart 2-11.)

• 1. The USING instruction may be used as often as needed and at any
point in the program to indicate to the Assembler changes in the
register(s) or their value(s).

2. Since the USING instruction does not actually load the assigned
general registers; it is the user's responsibility to ensure that the
register(s) are loaded with the value(s) specified in the USING
instruction.

3. General register 0 may not be used as a base register.

Chart 2-11. Example of USING Instruction

NAME OPERATION OPERAND COMMENTS

11 2 13 14 51 6 71 8 9 10111112113 1415 1617118 19 20121122 23
1

24 2526 2728 2930 31 J2 3334 35
1
36 37 38 3940 4142 43 44 45 46 4748 4950 5152 5354 5556 5758 59 60 6162 6364 6 5 166 67,68 69 70 71

:

~ I I !
U!S IN G * .18 • 91 I (Llo C A T I o N C 0 U NI T E R • L 0 C A T I ON C 0 U N T E R + 4 9 9 6 W I LI I E E

I I I
I I

I ! IA s! S U M E 0 L o A o E 0 1 I N G E N E R A L R E G I S T E R S 8 AN 0 9 ! , I

I , I I I ' I

I
I ~ I I 1- --- --f- - --- -j

i I I I I I I I I i

I 1 i I I I I I
I

I ' , I I i I I I i I i I I I !
I

: I I I i I

2-15

DROP
Drop Base Register

General Description

Format

Specification Rules

Name Field

OPeration Field

Operand Field

Exa1'nple

Notes

Assembly Language
Structure

• The DROP instruction allows the user to eliminate a general register(s)
previously assigned in a USING statement.

• The format of the DROP instruction is as follows:

NAME OPERATION OPERAND

Not Used DROP Absolute Expression(s) of the form
rl, r2, 43, r4, r5 --- rx

• Not used.

• DROP.

• Contains absolute expressions indicating the register(s) to be dropped.
Any number of registers may be dropped with one DROP instruction.
Only those registers specified will be dropped.

• (See chart 2-12.)

• 1. It is not necessary to DROP a general register before changing its
value with another USING instruction.

2. A dropped register may be made available again through another
USING instruction.

Chart 2-12. Example of DROP Instruction

NAME OPERATION OPERAND COMMENTS

1
1 121 3 14 516 718 910111112113114 15 16117118119 20121122 23 24 25126 2728293031 323334 3;rJ6 37 38 3940 41T42 43T«145 .j6 47 48 49 50151152153 54 55 56 57 585960161 62163164 65166 67 68 69 70 71

I I uls II :N!G ! 'I I I I ! I ! ',I I i(A slsiIi G N I N Gil +~E~G I~stT~dRtsll I ! I : *',31,14' 15' 16

I
•

-I ; ! I '! ! I ! i i: I I ' I I I I I I ' ' I , I I I I I I I I I I I i I I I !

-- '---'- ii I I III
I ~-c--: r~i' - f-,-

c-~ 'T +, T"

'i iIr'
f--'-, i-"h ' , -t- I-+-

I '. , I I I I I I Iii I i
!

D R:O 'P: 3:, 16 1
: I I R 01 p GIl s TI,.J k s i Ai NI'lll i4 AIN DI 15 I (D R E 3 6

I ! ; : ; I I I I :; T II L L I N IE FIF1E ci T) I ! I I I I I
I

I ,

! I I I 1 r, I T T T1 , I I I ! I I ! I I I I I !
I

~--~

2-16

Programming With
the Using Instruction

Loading Register

Expanding Assembly
Addressing

Chart 2-13. Loading a
General Register by way

of BALR Instruction

Assembly Language
Structure

• The USING (and DROP) instructions may be used anywhere in a pro­
gram, as often as needed, to indicate the general registers that are
available for use as base registers and the base address values the
Assembler may assume each contains at execution time. Whenever an
address is specified in a machine-instruction statement, the Assembler
determines whether there is an available register containing a suitable base
address. A register is considered available for a relocatable address if it
was loaded with a relocatable value that is in the same control section as
the address. A register with an absolute value is available only for absolute
addresses. In either case, the base address is considered suitable only if
it is less than or equal to the address of the item to which the reference is
made. The difference between the two addresses may not exceed 4,095
bytes.

If two or more registers can be used to develop an address, the one
yielding the smallest displacement is used. If two or more registers yield
the same displacement, the highest numbered register is used. If an ab­
solute address is lessthan4,096, andifno base register has been specified,
the Assembler will automatically select register O.

• Using the BALR (Branch and Link Register) instruction and the USING
instruction; chart 2-13 shows a possible method for loading a general
register with the addre ss of the first instruction of the program. The
BALR loads General Register 2 with the address that is in the Program (P)
register at object running time. The USING instruction notifies the
Assembly that General Register 2 contains this value. When using this
method, the USING instruction must immediately follow the BALR instruc­
tion and the last program statement line must be within the 4,095-byte
range.

• To expand the addressing capabilities of the assembly beyond 4,095
bytes with the LM (Load Multiple) instruction, the technique in chart 2-14
(on page 2-18) can be used.

In chart 2-14, the BALR instruction initially loads General Register 2
with the current value in the P register and proceeds to the next instruc­
tion. The USING instruction notifies the Assembly System that General
Registers 2, 3, 4, and 5 are available for base addressing and contain the
relocatable value of HERE. Here, being the name of the Load Multiple
statement line, loads General Registers 3,4, and 5 with address constants
of HERE + 4096, 8192, and 12288. By increasing the number of general
registers and constants, the number of addressable bytes can be increased.

• NAME OPERATION OPERAND

BEGIN BALR 2,0

USING *,2

FIRST

2-17

Chart 2-14. Expanding •
the Addressing

Capabilities of the
Assembly System

NAME

BEGIN

HERE

BASEADDR

FIRST

LAST

2-18

OPERATION

BALR

USING

LM

B

DC

DC

DC

END

Assenzbly Language
StYZlctUYe

OPERAND

2,0

HERE,2,3,4,5

3,5,BASEADDR

FIRST

A(HERE +4096)

A(HERE + 8192)

A(HERE + 12288)

BEGIN

3. BASIC
PROGRAM

ELEMENTS

ASSEMBLY OF
MACHINE

INSTRUCTIONS

Machine Format

Instruction Alignment
and Checking

Chart 3-1. Assembly
Statement

• Machine instructions are coded symbolically as assembly language
statements. Instructions that require base-displacement format may be
coded using implied addressing or explicit addressing.

The assembly language coding format varies for each class of machine
instruction: RR, RX, RS, SI, and SS. Further coding variations are permitted
within an instruction class. The assembly coding sequence that represents
a machine instruction is:

1. Mnemonic operation code.

2. Operand operated upon.

3. Additional operand.

Any assembly instruction may be symbolically named such that any
other assembly instruction may reference it by name as an operand. The
symbol refers to the address of the leftmost byte of the instruction. The
symbol is given the length attribute of the instruction being referenced.
This length attribute is:

2 for RR instructions

4 for RX, RS, and SI instructions

6 for SS instructions

• All generated instructions are properly aligned by the Assembler on
half-word boundaries. Instruction alignment may cause the Assembler to
skip bytes. These bytes are filled with hexadecimal zeroes.

Storage addresses are checked for boundary alignment appropriate for
the instruction in which they occur. Similarly, instructions that require an
even-numbered register designation are checked. They are: Multiply or
Divide (word), Double Shift, and all Floating-point instructions.

For example, assume that FIELD is a relocatable symbol that has been
assigned a value of 7400. Assume also that the assembly has been notified
(by a USING instruction) that General Register 8 currently contains a re­
locatable value of 4096 and is available as a base register. The example
in chart 3-1 shows a machine instruction statement as it would be written
in assembly language and chart 3-2 shows the instruction as it would be
assembled. The assembled instruction is presented in decimal.

• NAME

3-1

OPERATION

STM

OPERAND

4,4,FIELD

Basic Progra}n E lemenls

Chart 3-2. Assembled • OP LI L2 B1 D1
Instruction

Operand Formats

Table 3-1. Explicit and
Implied Operand

Formats

Subfields

90 4 4 8 3304

• An address may be specified explicitly as a base register and displace­
ment by the formats shown in the second column of table 3-1. The address
may be specified as an implied address by the formats shown in the third
column.

• Type Explicit Address Implied Address

RX D2(X2,B2) S2(X2)

D2(O,B2) S2

RS D2(B2) S2

SI D1(B1) Sl

SS D1(Ll,B1) Sl(L1)

D1(L,B1) Sl(L)

D2(L2,B2) S2(L2)

• A comma must be written to separate operand entries. Parentheses
must be written to enclose a subfield or subfields, and a comma must be
written to separate two subfields within parenthe se s. When parenthese s
are used to enclose one subfield and the subfield is omitted, the parentheses
must be omitted. When two subfields are separated by a comma and en­
closed by parentheses, the following rules apply:

1. If both subfields are omitted, the separating comma and parentheses
must be omitted.

2. If the first subfield in the sequence is omitted, the comma that sepa­
rates it from the second subfield must not be omitted. The paren­
theses must also be written. (See chart 3-3.)

3. If the second subfield in the sequence is omitted, the comma that
separates it from the first subfield must be omitted. The parentheses
must be written. (See chart 3-4.)

NAME

NAME

INST1

INST2

Chart 3-3. Separation of Operands

OPERATION OPERAND

MVC 32(16,5),FIELD2

MVC BETA(,5),FIELD2 IMPLIED LENGTH

Chart 3-4. Separation of Operands, Omitted Commas

OPERATION

MVC

MVC

3-2

OPERAND

32(16,5) ,FIELD2

FIELD1(16) ,FIELD2 IMPLIED ADDRESS

Subfields
(Cont'd)

Basic Program Elements

Fields and subfields in a symbolic operand are represented either by
absolute or by relocatable expressions, depending on the requirements of
the field. (An expression has been defined as consisting of one term or a
series of arithmetically combined terms.)

Note:

Blanks may not appear in an operand unless provided by a character
self-defining term or a character literal. Thus, blanks may not inter­
vene between fields and the comma separators, between parenthe se s
and fields, etc.

The length field in certain instructions can be explicit or implied. To
imply a length, the programmer omits a length field from the operand.
The omission indicates that the length field is either of the following:

1. The length attribute of the expression specifying the displacement,
if an explicit base and displacement have been written.

2. The length attribute of the expression specifying the effective ad­
dress, if the base and displacement have been implied.

In either item 1 or 2, the length attribute for an expression is the length
of the leftmost term in the expression. By contrast, an explicit length is
written by the programmer in the operand as an absolute expression. The
explicit length overrides any implied length.

Whether the length is explicit or implied, it is always an effective length.
The value inserted into the length fields of the as sembled instruction is one
less than the effective length in the machine instruction statement.

Note:

If a length field of zero is desired, the length may be stated either as a
one or as a zero.

To summarize, the length required in certain instructions can be spec­
ified explicitly by the formats shown in the first column of table 3-2, or
c~n be implied by the formats shown in the second column. Observe that
the two lengths required in one of the instruction formats are pre sented
separately. An implied length is used for one and an explicit length is used
for the other.

Table 3-2. Expressing •
Explicit Length Implied Length

Field Lengths

D1(L1, B1) D1(,B1)

81(L1) 81

D1(L,B1) D1(,B1)

D2(L2,B2) D2(,B2)

82(L2) 82

3-3

Mnemonic Operation
Codes

Operand Fields

Basic Progyanz Ele11zents

• The mnemonic operation codes are constructed so that they indicate the
functions of the machine instruction. A modifier is appended as the last
character to distinguish the function further. For example, the function of
addition is designated by the mnemonic A (fixed-point arithmetic additions).
This is distinguished from other arithmetic additions by appending another
character, for instance:

AP Add Packed-Decimal

AL Add ~ogical

AH Add !!alfword

AE Add Normalized (word) "~xponent "

AU Add !2,nnormalized (word)

AD Add Qouble word (normalized)

AW Add Double word (~nnormalized)

• An operand that represents an address in base-displacement form may
be symbolically coded in implied or explicit form. If expliCitly coded the
Assembler requires the address to be expressed in the sequence D(B) in
contrast to the machine-instruction format. Explicit addresses must be
represented by absolute expressions.

An operand that represents a register may be coded as a self-defining
(absolute) term or a symbol equated to an absolute term. (See EQU J page
3-15.)

Instructions of the RR format, where each operand is expressed as a
single field without subfields, are coded in the form: operation, operand 1,
operand 2. For example:

BALR 14,15

Instructions of the RS format that refer to a base-displacement address
implicitly may also be coded explicitly. For example, either:

LM 3, 5, BASEVALU

or

LM 3, 5, POINTER (2)

or

LM 3, 5, 8 (2)

are acceptable assembly formats. Note that BASEVALU implies the base
register and displacement; POINTER (2) states the base register explicitly,
but implies the displacement; and that 8(2) states both base register and
displacement explicitly. An implied address may be represented by
either a relocatable or absolute expression.

3-4

Operand Fields
(Cont'd)

Basic Program Elements

The Shift instructions (RS) have several coding options. For example:

SLL 5,4(0)

and

SLL 5,4

will use the low-order six bits of the displacement as the shift count, but

SLL 5,0 (4)

will add the value of the displacement to the contents of register 4. The low­
order six bits of the resulting sum will be used for the shift count.

Implied addresses are permitted provided the programmer specifies the
base-register(s) and base value(s) with a USING statement and omits the
base register. Explicit coding of the base register will override implied
addressing. Omitting the base register reference permits the Assembler
to select a suitable base register.

Instructions of the RX format reference an index register as well as the
base register and displacement. Indexing is specified by appending the
designated index register to the implied address. For example:

L 6,TABLE(8)

When no indexing is needed the appendage is omitted and register 0 is
generated for the index register. An instruction which specifie s index
register 0 results in only the base register and displacement being used to
form the effective address. For example:

L 6,VALUE

would generate a hexadecimal 60 in the second byte.

The explicit form may be used to form an address with indexing. For
example:

CL 6,8(7,3)

forms the address of the second operand by adding the index value to the
base and displacement value.

However, note that the explicit operand address has the form D(X,B).
The indexing factor may not be omitted when the operand is coded ex­
plicitly. When the explicit form is used and indexing is not required, index
register zero must be specified. For example:

ST 6,80(0,3)

results in storing the contents of register 6 without indexing.

3-5

Operand Fields
(Cont'd)

Note

Basic Program Elements

A comma must be used to separate the index register from the base
register. Both must be enclosed within parentheses. However, the base
register and the comma may be implied by omitting both.

• The value of a general register may be incremented by the value of
the displacement when the LA (Load Address) instruction is coded ex­
plicitly, such as:

LA 6,100(0,6)

The instruction will take the value in register 6, add the displacement
value 100 to it and then store it back in register 6. Reversing the base and
index registers in the above example produces the same result. Register 0
may not be designated as the first operand for this purpose.

Instructions of the SS format are coded with the length subfield being
implied or explicitly stated as:

MVC SAVE (256), WORK

or

MVC SAVE, WORK

Further, packed decimal instructions with two length factors may be
coded with implied or explicit lengths with either operand as:

SP BALANCE (6), AMOUNT (3)

or

SP BALANCE, AMOUNT

Various combinations other than those above may be used such as:

MVC 48(L'ITEM,BR4),ITEM

Instructions of the SI format are coded as illustrated below.

TM CODE, B'lOlOlOOO'

or

01 DATA+6, X'FO'

or

MVI FIELD-1, '$'

3-6

EXTENDED
MNEMONIC CODES

Table 3-3. Extended
Mnemonic Codes

Basic Program Elements

• For the convenience of the programmer, the Assembly System provides
extended mnemonic codes, which allow conditional branches to be speci­
fied mnemonically as well as through the use of the BC machine instruction.
These extended mnemonic codes specify both the machine branch instruc­
tion and the condition on which the branch is to occur. The codes are not
part of the set of machine instructions, but are translated by the as sem bly
into the corresponding operation and condition combinations. The allowable
extended mnemonic codes are shown in table 3-3.

Extended
Meaning

Extended Machine

Codes Format Instruction

B Branch Unconditional D2(X2,B2) BC 15 ,D2(X2 ,B2)

BR Branch Unconditional R2 BCR 15,R2

NOP No Operation D2(X2,B2) BC O,(X2,B2)

NOPR No Operation (RR Format) R2 BCR O,RR

U sed After Compare Instructions

BH Branch on High D2(X2,B2) BC 2 ,D2(X2 ,B2)

BL Branch on Low D2(X2,B2) BC 4 ,D2(X2 ,B2)

BE Branch on Equal D2(X2,B2) BC 8,D2(X2,B2)

BNH Branch on Not High D2(X2,B2) BC 13,D2(X2,B2)

BNL Branch on Not Low D2(X2,B2) BC 11,D2(X2,B2)

BNE Branch on Not Equal D2(X2,B2) BC 7 ,D2(X2 ,B2)

U sed After Arithmetic Instructions

BO Branch on Overflow D2(X2,B2) BC l,D2(X2,B2)

BP Branch on Plus D2(X2,B2) BC 2,D2(X2,B2)

BM Branch on Minus D2(X2,B2) BC 4 ,D2(X2 ,B2)

BZ Branch on Zero D2(X2,B2) BC 8,D2(X2,B2)

Used After Test Under Mask Instructions

BO Branch if Ones D2(X2,B2) BC 1,D2(X2,B2)

BM Branch if Mixed D2(X2,B2) BC 4,D2(X2,B2)

BZ Branch if Zeros D2(X2,B2) BC 8,D2(X2,B2)

3-7

DEFINING STORAGE

DS
Define Storage

General Description

Format

Specification Rules

Name Field

OPeration Field

Operand Field

Basic Program EleJnents

• The DS instruction allows the programmer to reserve areas of memory
for the storage of data and to assign names to those areas. Input/output
areas and working storage can be classified as contiguous and non­
contiguous storage. The Location Counter, which is used by the assembly
to allocate storage, can be set and reset to any desired value through use
of the ORG instruction. The setting and resetting of the Location Counter
enables the programmer to define and redefine the allocated areas of
memory.

• The DS (Define Storage) instruction reserves working storage and input/
output areas in memory. Names can be assigned to refer to these reserved
areas symbolically.

• The format for the DS instruction is as follows:

NAME OPERATION OPERAND

A symbol or blank. DS DTXn ['constant'] or DT

• Any symbol or blank.

• DS.

• One operand expression in the following format DTXn 'constant' where

D the duplication factor.

T the type of unit to be allocated halfword (H), fullword (F)
double word (D) or byte (C).

Xn the length of the field type to be reserved.

'constant' a nlap of the actual data to be stored. (The data shown is
used by the assembly for size calculation only. The con­
stant shown is not stored in the allocated area.) This sub­
field is optional.

3-8

Chart 3-5. Example of
OS Instruction

H.F.D.
Type OPerands

Notes

Forcing Alignment

• NAME

READIN

AREA

SOC#

OPERATION

DS

DS

DS

Basic Program Elements

OPERAND

80C

CLIOO

C'182243291'

• A DS (define storage) operand may have the format dt, where

d a duplication factor.
t a type code as follows:

TYPE ADDRESS ALIGNMENT IMPLIED LENGTH

H Halfword 2 bytes

F Word 4 bytes

D Double Word 8 bytes

Additional examples of DS are given in chart 3-6.

• 1. The symbol in the Name field is assigned a left-hand byte address
of the area allocated.

2. The length attribute is the length of the data type specified.

3. Skipped locations are not zeroed when proper positioning is
necessary.

4. Packed (P), zoned (Z), character (C), hexadecimal (X), and binary
(B) fields have an implied length of one byte. If more than one byte
is to be reserved, the length modifier must be specified.

5. To reserve areas of storage greater than 256, a duplication factor
must be used.

• The Location Counter can be forced to a double-word, full word, or
halfword boundary by using one of the three special field types shown in
chart 3-7 with a duplication factor of zero.

The zero duplication factor in chart 3-7 can be used to assign a name
to a field without actually reserving storage. Additional DS instructions
can then be used to name the individual fields (see chart 3-8).

3-9

Basic Program Elements

Chart 3-6. Additional Examples of DS Instruction

NAME OPERATION OPERAND COMMENTS

1121314 51 6 71 89 10111112113114 151617118 19 20121122 23 24 25126 2728129 30131 32 33 34 35
1

36 37 38 39 40 4142 43 "45 46 47 48 49 50 51 5253 54 55 56 57 58 5960 6162163 64 65 66 67 <1869 70 71

I I ; I
c! L

I
8 o I 10 N! E 18 0 1 -1 B Y!TI E F II E I ! I I I I ONE D S' ,L D

T IW 0 DI s I ! 8,0 1 c I ' 18 0 11 - BI Y TI E F I EI L D S , ! T I

TIHIR'EE D! s I I I 6 FI I ! Isil X IF V LI L Iw 0 R D sl AI T T R I B V :FIE o F 4 I I

F;olv:R
,

I Dis iii D I I 10 N E ID o vlB LI E wo RI D , IA T T R I B V T. E o FI 8 I

F I:V E
I I

: IFlol v RI HAIL Flw 0 R D sl, AIT T RIIIB u,TIEI 12 1 I I D S, 4 HI o F I I

Chart 3-7. Examples of DS Instruction Using Zero Duplication Factor

NAME OPERATION OPERAND COMMENTS

1 213 4 5 6 7 89 10 11 1213 1415 1617 18 19 20 21 2223 2425 2627 2829 30 31 3233 3435 3637 38 3~ 40 41 4243 44 45 46 47 48 49 50 51 5253 54 55 5657 5859 6061 6263 64 65 6667 <1869 70 71

Iii D 5 II D D 0 U B L E - W o R D A L I G NI fol E N T

I i D 5 II F F U L L - \111 o R D A L r G N M E N T

1 D 5 II H H A L F W 0 R D A L I G N M E N T

:1 D 5 II F

M A:5 ,T E R D 5 8 II C A 5 5 I G N ONE A R E A 8 II B Y T E 5 LI c N (

iii i o R G I
MA 5 T E R R E 5 E T L 0 C A T I o N C T R T 0 L E F T E Y T E C F ~ J1 S T E }

I TIE M 1 DiS C L 1 II R E D E F I N E A L L 0 C A TED 8 II B Y T E A R E A

r TiE 1M 2 : D :S : C L 2 II i
r IT 'E 1M 3: D is I I C'L 1 II I

I !
I O!R IG! I MAS T EIR + 81 II IR E 5 T 0 R E IL 01 C A Tl 110 N ci T R 1 T 0 NT E XI T A v,Alr1L A!BTL,E L ole, •

Chart 3-8. Examples of DS Instruction Naming Fields

NAME OPERATION OPERAND COMMENTS

1 I zl314 516 718 910111112113114 1516171 1819 20121 22 23 24 25 26 27 28 2930 3132 33 34 35
1

36 37 38 39 40 41142 43 " 45 46 47 48 4950 5152 53 54 55'56 57 58 59 60 61 62 63 64 65166 67<18 69 70 71

IREADAI I DI sl I I o cl L 8 0[N AM E AND L E N G TI H A s S I!G N E D , N 0 S T 0 RA G E RE S E RV E DI.

iiTEMl
I ! ! c l L: 2! 0

I
I RIEl A D Ei F J B Y N G! I

I
D s: I D A I N E D THE F 0 L L OWl I T EMS I I

iITEM2 D, S' i I c LI210 I ' i I 1 I i I I i I ' i i
I I I I C L12: 0 ! I I I ! I : I I I T'E M 3 D S I

I T E M 4 D Sl ! i c LI210 I I
I I I

I o RI G~ i
I' TI EI MI4i

I
N Ei i I M 14 i I I I RED E F I T E

S V B I T E M; 1 ! ! I c LI5 i I s V B 1 I I I i I
I i

!
I I C LI5 I !

i i i I I I I i I ! I

i I
i I I I I I I s V B I T E M 2 S V B 2

S V B I T E M 3 c Li 110 I si vi B 3 : i i I I I
I I I I i

i i I I I

r R Ei A! D AI I I i I I I I I I
!

I
I ! i 11 I I I I

I I o R'G I I I

: R E Ni AMi E T oi IMAIs:TE:R
1 !

lLl-_S _1 E R D S 0' C L 8 0 I Ri E A' D, A

3-10

ORG
Set Location Counter

General Description

Format

Specification Rules

Name Field

OperationField

Operand Field

Chart 3-9. Example of
ORG Instruction

Notes

Basic Program Elements

• The ORG instruction alters the setting of the Location Counter for the
current control section.

• The format of the ORG instruction is as follows:

NAME OPERA TION OPERAND

Not Used ORG A relocatable expression or blank.

• Not used.

• ORG.

• Any relocatable expression composed of previously defined symbols.
The unpaired relocatable symbol must be defined in the same control
section in which the ORG statement appears.

• NAME OPERATION OPERAND

ORG * +500

ORG START

• 1. The Location Counter is set to the value of the expression in the
Operand Field.

2. Omission of an Operand entry causes the Location Counter to be set
one byte higher than the maximum location assigned for the control
section up to this point.

3. An ORG statement must not specify a location below the beginning of
the current control section.

3-11

Contiguous Assignments
in Allocating Storage

Basic Progranl Elenlents

• Contiguous memory, such as input/output areas, may be allocated in
units of bytes (C), halfwords (H), words (F), and double words (D). The
Location Counter is positioned to the proper boundary before the desired
storage area is allocated. The area allocated will not be filled with zeros.

To redefine the areas allocated in chart 3-10, the programmer can,
through use of the ORG instruction, reset the Location Counter to the
lefthand value originally used by INPUT. (See chart 3-11.)

To reset the Location Counter to the next available location for storage
assignment, a relative address of INPUT + 80 is used.

Chart 3-10. Example of • NAME OPERATION OPERAND
Contig uous Area

Assignment
INPUT

NUMB

CODE

TYPE

SIZE

COLOR

AMTI

AMT2

EM

DS 80C

ORG INPUT

DS 10C

DS 10C

DS 10C

DS 10C

DS 10C

DS 10C

DS 10C

DS 10C

Chart 3-11. Redefining • NAME OPERATION OPERAND
Areas Using

ORG Instruction

Noncontiguous
Assignments in

Allocating Storage

Chart 3-12. Examples of
Noncontiguous

Assignments

ORG INPUT

ITEMI DS 40C

ITEM2 DS 40C

• Through the use of the ORG and the unit of assignment options, the
programmer can allocate areas of storage that are not contiguous, but are
allocated separately and positioned on the proper halfword, word or
double-word boundary. (See chart 3-12.)

• NAME OPERATION OPERAND

WORK 1 DS 10C

WORK2 DS 40H

WORK3 DS l5F

ORG WORKI + 100

3-12

CNOP
Conditional No

Operation

General Description

Format

Specification Rules

Name Field

Operation Field

Operand Field

Basic Program Elements

• The CNOP instruction allows the programmer to align an instruction at
a specific word boundary. If any bytes must be skipped to align the instruc­
tion properly, the assembly ensures an unbroken instruction flow by
generating no-operation instructions. This facility is useful in creating
calling sequences consisting of a linkage to a subroutine followed by param­
eters such as channel command words (CCW).

•

•
•
•

The format of the CNOP instruction is as follows:

NAME OPERATION OPERAND

Not Used CNOP Two decimal terms of the form b,w.

Not used.

CNOP.

Two operands in the form of b,w where:

h specifies the byte in a word or double word in which the Location
Counter is to be set. Values of 0,2,4, or 6 may be specified.

~ specifies whether the byte b is a word (four bytes) or double word
(eight bytes). The following pairs are valid combinations:

b,w Specifies

0,4 Be ginning of a word
2,4 Middle of a word
0,8 Beginning of a double word
2,8 Second half word of a double word
4,8 Middle (third half word) of a double word
6,8 Fourth half word of a double word

Assuming that the Location Counter is currently aligned at a double-word
boundary, then the CNOP instruction in sequence given in chart 3-13 has no
effect; it is merely printed in the assembly listing. However, the sequence
given in chart 3-14 causes three branch-on-conditions (no-operations) to
be generated, thus aligning the BALR instruction at the last halfword in a
double word as given in chart 3-15.

3-13

Operand Field
(Cont'd)

Note

Chart 3-13. Effect of
CNOP Sequence

Chart 3-14. Effect of
CNOP Sequence

Chart 3-15. CNOP
Sequence Causing

Branch-on-Condition

Basic Program Elelnents

Double Word

Word Word

Halfword I Halfword Halfword I Halfword

I ,
Byte Byte I Byte Byte Byte Byte I Byte Byte

I I

~ ~ ~ ~
0,4 2,4 0,4 2,4
0,8 2,8 4,8 6,8

Figure 3-1. CNOP Alignment of Double Word Using (0,4,2,4)

After the BALR instruction is generated, the Location Counter is at a
double-word boundary, thereby ensuring an unbroken instruction flow.

• The CNOP instruction ensures the alignment of the Location Counter
setting to a halfword, word, or double-word boundary. If the Location
Counter is already properly aligned, the CNOP instruction has no effect.
If the specified alignment requires the Location Counter to be incremented.
one to three no-operation instructions are generated, each of which uses
two bytes.

• NAME OPERATION OPERAND

CNOP 0,8

BALR 2,14

• NAME OPERATION OPERAND

CNOP 6,8

BALR 2,14

• NAME OPERATION OPERAND

BCR 0,0

BCR 0,0

BCR 0,0

BALR 2,14

3-14

EQU
Equate

General Description

Format

Specification Rules

Name Field

Operation Field

OPerand Field

Note

Basic Program Elements

• The EQU instruction is used to define a symbol by assigning to it the
attributes of an expression specified in the Operand field.

• The format of the EQU instruction is as follows:

NAME

A symbol

• Any valid symbol.

• EQU.

OPERATION

EQU

OPERAND

An expre ssion.

• The expression may be- absolute or relocatable. The symbols used in
the expression must be previously defined.

In chart 3 -16, the programmer chooses to equate General Register 2
to the symbol REG2 and to equate the hexadecimal term X '3F ' to the
symbol TEST. The expression ALPHA e BETA + GAMMA is computed by
the Assembler and the value of the expression is assigned to the symbol
FIELD.

• Both name and operand entries are mandatory. The symbol used in the
Name field is assigned the calculated value of the expression used in the
Operand field and is assigned the length attribute of the leftmost (or only)
term of the expression. The EQU controlling code is the only means of
making a symbol absolute.

Chart 3-16. Example of EQU Instruction

NAME OPERATION OPERAND COMMENTS

1 23 45 67 89 1011 1213 14 15 1617 18 19 20 21 2223 2425 26 27 2829 3031 3233 34 35 36 37 38 39 4041 4243 44 45 4647 48 49 so 51 5253 5455 56 57 58 59 6061 62 63 6465 66 67 6869 7071

RIE G' 2 E Q U 2 :; E N iE R A L R E G I tLE R)

T E S T E Q U x ' 3 F ' M M ED I ~ T E D A T ~ 1

F I E L D E Q U A L P H A - B E TA + G AM M A IJ A L Iu E 101" " IT IF. 0 .w I .L L B E A L P H A + 2

A D D R E S S o F A L P H A ~ A D D R E S S o F B E T A +

I n n 1,,1 .. " I" {) " " A IM'M A IL E N IG T H o F A L P H A I S

AiL ip IH A D C
I

C ' 1 0 o ' (; I V IEIN IT 0 F I E L LlLl

BElT A I D C
[

C , 2 0 ' I i

G:A:M 1M :
!

: i I I i
Ai DC C ' 3 0 ' I

I I I
I ; ; I I

i ' : ! ! i I I I I

!
I I I ! I I : !

I I , I I I II I : Iii I I I I ! , : ! I I I
I I I

3-15

DEFINING
CONSTANTS

Basi c PrograJn E le'fnents

• Data in the form of a character, hexadecimal, binary, decimal, fixed­
point, or floating-point constant can be entered into a program through the
use of the DC (Define Constant) instruction.

The format of the DC instruction is:

NAME OPERATION

DC

OPERAND

Symbol or blank. A single operand describing
a constant or set of constants

These constants are classified as data constants or address constants.
Data constants are enclosed in quote marks while address constants are
enclosed in parentheses. Data constants are described in this section prior
to address constants. Fixed- and floating-point data constants are de scribed
after the Character (C), Hexadecimal (X), Binary (B), and Decimal (P,Z)
constants but before the address constants (A, Y, S, V).

Literals follow the same rules as constants; however, they may not be
used with S-type address constants.

The following chart lists the types of constants that may be defined by
the DC instruction.

CODE

C

X

B

P

Z

F

H

E

D

USED TO GENERATE

Eight-bit code for each CHARACTER.

Four-bit code for each HEXADECIMAL digit.

One or more binary digits (BIT).

PACKED decimal digit, signed.

ZONED decimal digit, unpacked.

Fixed-point binary value, signed 32-bit FULLWORD,
implied.

Fixed-point binary value, signed 16-bit HALFWORD,
implied.

Floating-point, Single precision 24-bit mantissa, 8-bit
EXPONENT.

Floating-point, DOUBLE precision 56-bit mantissa, 8-bit
exponent.

A Binary address, fullword.

Y Binary address, halfword.

S Base-displacement address, halfword.

V External symbol address, fullword reserved.

3-16

DC
Define Constant

General Description

Format

Specification Rules

Name Field

OPeration Field

Operand Filed

Basic Progranl Elements

• The DC (Define Constant) instruction is used to provide constant data
in storage. One or more of a variety of constants may be specified in a
single DC instruction.

• The format of the DC instruction is as follows:

NAME

A symbol
or blank.

OPERATION

DC

OPERAND

[D] [T] [xn] 'constant'

(constant)

'constant, ... , constant

• Contains a symbol or is left blank. If a symbol is used to name the
constant it is assigned the leftmost byte address and the value attribute
of the first, or only constant specified.

• DC.

• Consists of three optional subfields preceding the constant subfield.

CONSTANT - enclosed by quotes or parentheses: 'constant' used with
all data constants; (constant) used only with address constants; 'constant,
... , constant' multiple data constants. The last form may not be used with
C, X, or B type constants.

T = TYPE - specifies type of constant to be generated. If omitted,
Character is assumed.

D = DUPLICATION - when specified, it cause s the constant(s) to be
duplicated D times after the constant has been generated. D must be speci­
fied as an unsigned decimal number.

X = L, S, or E - a Length, Scale, or Exponent modifier followed by a
decimal number where:

Ln = defines explicitly the number of bytes assigned to the constant.

Sn = defines the scaling applicable to F, H, or E, D constants (see
pages 3-22 and 3-25).

En defines the preadjustment to F, H, or E, D constants (see pages
3-24 and 3-26).

3-17

Alignment of
Constants

Types of Constants

Character Constants
(C-Type)

Chart 3-17 Constant
Generation

Chart 3-18. Constant
Generation

Basic Program Elelnents

• All constant types except character (C), hexadecimal (X), binary (B),
packed decimal (P), and zoned decimal (Z), are aligned on the proper
boundary, unless a length modifier is specified. In the presence of a
length modifier, no boundary alignment is performed. If an operand speci­
fies more than one constant, any alignment applies to the first constant
only. Thus, for an operand that provides five fullword constants, the first
would be aligned on a fullword boundary, and the rest would automatically
fall on fullword boundaries.

The total storage requirement of an operand is the product of the length
times the number of constants in the operand times the duplication factor,
plus any bytes skipped for alignment reasons.

• The following description denotes the various types of constants, their
descriptive features, and positioning within the Spectra 70 Assembly
System.

• Any of the 256 punch combinations can be used in defining a character
constant. Character constants may not exceed 256 bytes, are enclosed in
single quotation marks, and are preceded by a letter C. Special attention
should be given to the constant that requires the use of the quotation mark
and ampersand. Only one character constant may be specified per operand,
and no boundary alignment is performed on the assembled bytes. (See
chart 3-17.)

If a length modifier is not specified, the length of the constant is implied
by the constant itself. Each character is converted into an eight-bit byte
and assigned a left-hand byte address to the symbol naming it. If a length
modifier is specified that is less than or exceeds the stated constant,
truncation or padding with blanks is performed starting at the rightJnost
end of the constant generated. (See chart 3-18.)

• NAME OPERATION OPERAND COMMENTS ---
K1 DC C'TITLE PAGE' Generates - TITLE

PAGE

K2 DC 'CREDIT' C- Type Code implied

K3 DC C 'O"CLOCK' Generates - 0 'CLOCK

• NAME OPERATION OPERAND COMMENTS

K4 DC CL5 'TRUNCA TE ' Generates - THUNC

K5 DC CL5 'PAD' Generates -PAD

3-18

Chart 3-19. Defining
Character Constants

Hexadecimal Constants
(X-Type)

Chart 3-20. Defining
Hexadecimal Constants

Binary Constants
(B-Type)

• NAME OPERATION

EOF DC

CONI DC

CON2 DC

CON3 DC

OPERAND

C 'END OF RUN'

3C'ABC'

2CL5 'AD'

3CL4 'ABCDEF '

Basic Program Elements

COMMENTS

Generates - END OF RUN

Generates - ABCABCABC

Generates - AD
AD

Generates -
ABCDABCDABCD

• Hexadecimal constants are normally used in place of the character
constant when one or more of the bytes cannot be expressed by a character
value. Hexadecimal digits 0-9 and A-F are used to denote the constant.
The constant is written as a series of hexadecimal digits, is enclosed in
single quotation marks, and is preceded by an X.

The maximum number of hexadecimal digits may not exceed 512 (256
bytes). The hexadecimal digits, starting at the leftmost end of the
constant are paired and used to generate the byte. If an odd-number of
hexadecimal digits is specified, the leftmost byte has its leftmost bits
filled with a hexadecimal zero and the rightmost byte contains the first
digit. The implied length (if no length modifier is specified) is half the
number of hexadecimal digits in the constant.

Truncation or padding occurs if a length modifier has understated or
over- stated the constant storage area. Truncation and hexadecimal zero
padding start at the leftmost end of the constant. (See chart 3-20.)

• NAME OPERATION OPERAND COMMENTS

TAGA DC X'40206B' Generates - 40206B
LENGTH IS 3

TAGB DC 2XL3 'A6F4E ' Generates - OA6F4EOA6F4E
PADDING

TAGC DC 3XL2 'A6F4E' Generates - 6F4E6F4E6F4E
TRUNCATION

• Binary constants are written using the binary digits 1 and 0, enclosed in
single quotation marks and preceded by a B. The maximum length of a
binary constant is 256 bytes. The length modifier range is, as in all the
constants previously mentioned, summarized in table 3-4. The implied
le.ngth is the number of bytes including padding used to store the constant.
Padding and truncation begins at the leftmos t byte. Padding is with zeros.
(See chart 3-21.)

3-19

Chart 3-21. Defining
Binary Constants

Packed Decimal
Constants (P-Type)

Basic Prograrn Elenzents

• NAME OPERATION OPERAND COMMENTS

BCON DC B'l1011101' Generates - 11011101
LENGTH IS 1

BTRUNC DC BL1'100100011' Generates - 00100011
TRUNCATION

BPAD DC BL1 '101' Generates - 00000101
PADDING

BDUP DC 2BL1'llllllll ' Generates -
1111111111111111

• A decimal constant is written as a signed or unsigned decimal value.
The absence of a sign causes a plus sign to be assumed. The decimal
point may be written or omitted from the constant. The placement of the
decimal point does not affect the assembly of the constant. Decimal point
alignment is not performed by its use within the constant. Proper decimal
point alignment is determined by the programmer before defining the data
or by selecting instructions that will operate on the data properly. Boundary
alignment is not performed. The maximum size of the decimal constant is
31 decimal digits and a sign.

Each pair of decimal digits is translated and stored in one byte. The
rightmost byte contains the rightmost digit and sign. The plus sign is trans­
lated into the hexadecimal C and the minus sign into the hexadecimal D.
(See chart 3-22.) The length attribute of the constant, if length modification
is not specified, will be the number of bytes the constant occupies.

Note • If an even number of packed decimal digits is stated, the leftmost byte
is left unpaired and the unused bits are set to zero. The rightmost byte
combines the last digit with the sign. Truncation or padding occurs when
the length modifier and actual constant values disagree. Truncation or
zero (0016) padding occurs starting at the leftmost byte.

Chart 3-22. Example of
Packed Decimal

Constants

Zoned Decimal
Con sta nts (Z-Type)

• NAME

TAX

OPERATION OPERAND COMMENTS

DC P' + 1.25' Generated CONSTANT 125C
2 BYTES

DC PL4'-0.5 ' Generated CONSTANT -
0000005D 4 BYTES

• In zoned decimal format (Z), each decimal digit is translated into one
full byte (not paired). The rightmost byte contains the sign and the right­
most digit. The remaining rules for zoned decimal are identical to the
packed decimal rules specified above. Padding is done with full bytes of
decimal zeros (F016).

3-20

Zoned Decimal
Constants (Z-Type)

(Contfd)

Chart 3-24.

Fixed-Point Constants
(F-,H-Type)

Format

Basic Program Elements

Chart 3-23. Example of Zoned Decimal Constants

NAME OPERATION OPERAND COMMENTS

PRINT01 DC ZL2'1' Generated Constant - F OC 1

ZEROS DC 132ZL1 '0' Generates 132 bytes,
Length of 1

BLANKS DC ZL132' , Generates 132 bytes,
Length of 132

Some coding illustrations of the previous types of constants used as
literals in instructions are illustrated in chart 3-24.

• NAME OPERATION OPERAND

MVC FIELDX(5),=5C' ,

AP FIELDY(3), = PL3 '1'

CLC FIELDZ(6), =6X'0'

XC BINCODE (1), = B '111 '

PACK MAXIMUM, =5ZL2 '99'

• When the fixed-point arithmetic mode is selected, fixed-point binary
data constants are specified by the F-type or the H-type DC.

A fixed-point constant is written as a decimal number, which may be
followed by a decimal exponent if de sired. The number can be an integer,
a fraction, or a mixed number (that is, one with integral and fractional
portions). The format of the constant is as follows:

• NAME ---
Symbol
or blank

where:

OPERATION

DC

D = the Duplication factor.

OPERAND

[D] T [S±n E±n] 'constant [E±n]'
'series of constants'

T = fullword (F) or halfword (H).
S± = the Scale Modifier.
E± = the Exponent Modifier (preceding) or the Exponent of the constant

(following) .

The number is written as a signed or unsigned decimal value. The
decimal point is placed before, within, or after the number, or it is omitted,
in which case number is assumed to be an integer. A positive sign is
assumed if an unsigned number is specified.

Halfword or fullword alignment is performed unless an explicit length
is specified. A length of two bytes for halfword or four bytes for fullword
is implied unless an explicit length is stated. The explicit length may not
exceed eight bytes.

3-21

Format
(Cont'd)

Chart 3-27.

Scale Modifier

Basic Progranz Ele1nents

The binary number occupies the rightmost portion of the field in which
it is placed. The unoccupied portion (the leftmost bits) is filled with the
sign. That is, the setting of the bit designating the sign is the setting for
the bits in the unused portion of the field. If the value of the number exceeds
the length, the necessary leftmost bits are dropped. A negative number is
generated in 2 's complement binary form as shown in chart 3-25.

NAME

MINUS1

OPERATION

DC

Chart 3-25.

OPERAND

F '-I' generates FFFFFFFF A 16

A mixed number such as 1.5 may be defined using a scale modifier as
shown in chart 3-26.

NAME

MIXS4

Chart 3-26.

OPERATION OPERAND

DC HS4 '1.5' generates 001 A 8
16

When the scale modifier is omitted a binary integer is generated. (See
chart 3-27.)

• NAME OPERATION

DC

OPERAND

H '100' generates 0064 A 16

• The scale modifier specifies the power of 2 by which the constant must
be multiplied after it has been converted to its binary repre sentation.
Just as multiplication of a decimal num'i?er by a power of 10 causes the
decimal point to move, multiplication of a binary number by a power of
two causes the binary point to move. This multiplication has the effect of
moving the binary point away from its assumed position in the binary
field; the assumed position being to the right of the rightmost position.

Thus, the scale modifier indicates either of the following: (1) the number
of binary positions to be occupied by the fractional portion of the binary
number, or (2) the number of binary positions to be deleted from the
integral portion of the binary number.

A positive scale of x shifts the integral portion of the number x binary
positions to the left, thereby reserving the rightmost x binary positions
for the fractional portion. (See chart 3-28.)

3-22

Scale Modifier
(Cont'd)

Basic Program Elements

Chart 3-28.

NAME OPERATION OPERAND

MIXSFI DC HSI '1.5' generates 000000000000001 A1
2

MIXSF4 DC HS4 '1.5' generates 000000000001 AI000
2

MIXSF8 DC HS8 '1.5' generates 00000001 AI0000000
2

A negative scale shifts the integral portion of the nwnber right, thereby
deleting rightmost integral positions. (See chart 3-29.)

NAME

VI

HALFVl

QTRVI

OPERATION

DC

DC

DC

Chart 3-29.

OPERAND

HSO '14' generates OOOF A 16

HS-l '14' generates 0007 A 16

HS-2 '14' generates 0004 A 16

Where positions are lost because of scaling, rounding occurs in the
leftmost bit of the lost portion. The rounding is reflected in the rightmost
position saved.

Note:

If a scale modifier does not accompany a fixed-point constant contain­
ing a fractional part, the fractional part is lost and the closest integer
is generated. (See chart 3-30,)

Chart 3-30.

NAME OPERATION OPERAND

DC F '1.5' generates 00000002 A 16

DC F '1.1' generates 0000000I A 16

To retain the fractional value a scale factor must be specified in the
DC.

The decimal nwnber may be adjusted by a power of ten before it is
converted to binary form. This Exponent of the constant is specified by
appending E with a positive or negative power of ten. (See chart 3-31.)

Chart 3-31.

NAME OPERATION OPERAND

DC H'O.4El' generates 0004 A16

This allows the fraction to be written as such, but generated as an
integer.

3-23

Scale Modifier
(CoJlt'd)

Floating-Point Constants
(E-,D-Type)

Basic Progranz Elernents

The exponent can be in the range -85 to +75. If an unsigned exponent
is specified, a plus sign is assumed.

Maximum and minimum values, exclusive of scaling, for fixed-point
constants are:

LENGTH MAX. MIN.

8 2
63

-1 _2 63

4
31

2 -1 _2 31

2 2
15

-1 _2 15

1
7

2 -1 -2
7

When a series of binary constants are coded the exponent modifier and
scaling option, if stated, apply to all the constants. (See chart 3-32.)

Chart 3-32.

NAME OPERATION OPERAND

DC HS4E1 '1.5 ,2.5 ,3.5 '

would adjust 1.5,2.5 and 3.5 by 101 and then the generated values would
each be moved left four places to represent 15.0,25.0 and 35.0.

The Exponent modifier precedes the constant(s), but the Exponent of
the constant pertains only to the constant it follows.

NAME OPERATION

DC

Chart 3-33.

OPERAND

5 2
FE2 '44E5' means 44x10 x10

• Floating-point constants are specified by the E-type and D-type
constants for floating-point arithmetic.

Machine format for a floating-point number is in two parts: the portion
containing the exponent, called the characteristic, followed by the portion
containing the fraction, called the mantissa. Therefore, the number speci­
fied as a floating-point constant must be converted to a fraction before it
can be translated into the proper format. For example, the constant 27.35 E2
represents the number 27.35 times 102. Represented as a fraction, it would
be .2735 times 104 , the exponent having been adjusted to reflect the shifting
of the decimal point.

3-24

Floating Point Constants
(E-, 0-Type)

(Cont'd)

Format

Chart 3-34.

Scale Modifier

Basic Program Elements

A floating-point constant is written as a decimal number, which is
followed by a decimal exponent, if desired. The number can be an integer,
a fraction, or a mixed number (that is, one with integral and fractional
portions). The format of the constant is as follows:

• NAME

Symbol
or blank.

where:

OPERATION

DC

D the Duplication factor.

OPERAND

D T Sn E ± n 'constant E ± n'
'series of constants'

T E (single word) or D (double word).

Sn = the Scale Modifier.

E±n = the Exponent Modifier (preceding) the Exponent of the constant
(following) .

The number is written as a signed or unsigned decimal value. The
decimal point is placed before, within, or after the number, or it is omit­
ted. If the decimal point is omitted, the number is assumed to be an
integer. A positive sign is assumed if an unsigned number is specified.

• NAME OPERATION

DC

DC

OPERAND

E '0.5' generates 40800000
16

E'5.0' generates 41500000
16

• When the scale modifier is omitted a normalized floating-point number
is generated; that is, the fraction is not preceded by any hexadecimal
zeros. (See chart 3-35.)

NAME OPERATION

DC

Chart 3-35.

OPERAND

E '0.1' generates 4019999A
16

Only a positive scale modifier can be used with a floating-point constant.
This modifier indicates the number of hexadecimal positions that the
fraction is to be shifted to the right. Note that this shift amount is in terms
of hexadecimal positions, each of which is four binary positions. (A positive
scaling actually indicates that the point is to be moved to the left.) The
point is assumed to be at the left of the leftmost position in the field. Be­
cause the point cannot be moved left, the fraction is shifted right and the
exponent is adjusted to retain the correct magnetude. Thus, scaling that
is specified for a floating-point constant provides an assembled fraction
that is unnormalized; that is, contains hexadecimal zeros in the leftmost
positions of the fraction. When hexadecimal positions are lost, rounding
occurs in the leftmost hexadecimal position of the lost portion. The
rounding is in the rightmost hexadecimal position saved.

3-25

Exponent Afodijier

Basic Prograrn E le ments

• This modifier denotes the power of 10 by which the constant is to be
multiplied before its conversion to the proper internal format. The modifier
is written as En where n is a decimal value. The decimal value may be
preceded by a sign; if none is present, a plus sign is assumed. The maxi­
mum values for exponent modifiers are summarized in table 3-4.

NAME OPERATION

DC

Chart 3-36.

OPERAND

DE2 '0.01' generates 4019999999999A

The same value can be obtained by the Exponent Modifier and the
Exponent of the constant being specified as in chart 3-37.

NAME OPERATION

D

Chart 3-37.

OPERAND

DEl '0.01E1'

The exponent modifier is written immediately before the number as En,
where.!!. is an optionally signed decimal value specifying the exponent of
the base 10. The exponent can be in the range -85 to +75. If an unsigned
exponent is specified, a plus sign is assumed.

This modifier is not to be confused with the exponent of the constant
itself. Both are denoted as En. The exponent modifier affects each constant
in the operand, whereas the exponent written as part of the constant only
pertains to that constant. Thus, a constant can be specified with an exponent
of +2, and an exponent modifier of +5 can precede the constant. In effect,
the constant has an exponent of +7.

Note:

There is a maximum value for exponents, both positive and negative,
listed in table 3-4. This applies both to exponent modifier and exponents
specified as part of the constant, or to their sum if both are specified.

Any duplication factor that is present is applied after the constant is
converted to its binary format and assembled into the proper number of
bytes.

A field of three full words is generated from the statement in chart
3-38. The location assigned to CONWRD is the address of the leftmost
byte of the first word, and the length attribute is four, the implied length
for a fullword, fixed-point constant. The expression CONWRD + 4 could
be used to address the second constant (second word) in the field.

NAME

CONWRD

Chart 3-38. F-Type Constant

OPERATION

DC

3-26

OPERAND COMMENTS

3F '658474'

Exponent]dodijier
(Cont'd)

Chart 3-39. H-Type
Constant,Scaled for

Eight Bits

Chart 3-40. H-Type
Constant as a Literal

Address Constants

Format

A-Type Add ress
Constant

Chart 3-41.

Chart 3-42.

Basic Program Elements

In chart 3-39, the next constant (3.50) is multiplied by 10 to the -2
before being converted to its binary format. The scale modifier reserves
eight bits for the fraction portion. The same constant could be speCified
as a literal. (See chart 3-40.)

•

•

NAME

FULLCON

NAME

OPERATION

DC

OPERATION

AH

OPERAND COMMENTS

HS8 '3.50E-2'

OPERAND

7,= HS8 '3.50E 2'

• An address constant is a storage address that is translated into a
constant. Address constants are normally used to initialize base registers
(A-type), represent base-displacement addresses within instructions (S­
type) or provide a means of transferring control between control sections
of a multisection program (V -type). In addition, a y -type address constant
is provided to represent addresses in two bytes, halfword aligned.

• The address constant is enclosed in parentheses with A, Y, S, or V
preceding the left parentheses. There must be a separate statement line
for each address constant. A-type and V -type constants are fullword
aligned. Y - and S-type constants are halfword aligned.

• The A-type address constant provides a storage location (word oriented)
for the assembly to store the value of a simple expression (symbol) or a
calculated complex expression. The maximum value of the expression may
not exceed 231_1 for the 70/35-45-55 Processors.

The implied length of the A-type constant is four bytes and is aligned on
a fullword boundary. If length modifier notation is used, it will override
normal fullword alignment. Length modifier specification depends on the
type of expression generated. If the expression is absolute, a length of
one to four bytes may be specified with the value placed in the rightmost
portion. (See chart 3-41.)

An A-type constant may contain a reference to the Location Counter,
which refers to the leftmost byte of the constant.

When a Location Counter reference occurs in a literal, the value of
the Location Counter is the address of the first byte of the instruction.
(See chart 3-42.)

• NAME OPERATION OPERAND

ADCON1 DC A(STRT)

ADCON2 DC A(8192)

• NAME OPERATION OPERAND

LC DC A(*)

LM 4,4, = A (* +4096)

3-27

V-Type Address
Constant

Conzplex Relocatable
Expressions

s-Type Add ress
Constant

Chart 3-43. Example of
Address Constants,

S- Type

Note

Basic Progranz Elelnents

• The y -type constant provides the storage facilities for a 16-bit address.
The storage location is aligned on a halfword boundary and has an implied
length of two bytes. Length specification may specify one byte or two bytes.
The remaining characteristics of the y -type constant are the same as the
A-type constant mentioned above.

• A complex relocatable expression can only be used to specify A-type or
Y -type address constants. A complex relocatable expression occurs when
two (or three) unpaired relocatable terms are combined. For example, if
the relocatable symbol A is defined in CSECT1 and the relocatable symbol
B is defined in CSECT2, the reference A + B is a complex relocatable
expression.

In contrast to relocatable expressions, complex relocatable expressions
may represent a negative value. The symbols A and B as described above
could be expressed A-B. If B were larger a negative value would occur.

A complex relocatable expression might consist of external symbols
(which cannot be paired) and designate an address in an independent assem­
bly that is to be linked and loaded with the assembly containing the address
constant.

Absolute or paired relocatable terms may be present in the expression
containing unpaired relocatable terms or a negative relocatable term.

• S-Type address constants are used to store an address in base dis­
placement format. S-type constants are assembled as halfword values
and stored on halfword boundaries. The leftmost four bits of the constant
are the register number and the remaining 12 bits are the displacement
value. If length specification is used, only two bytes may be specified.
The constant can be specified as an absolute or relocatable expression, or
the constant expression is stated as two absolute terms, the first term
representing the displacement and the second term representing the base
register. (See chart 3-43.)

• NAME OPERATION OPERAND COMMENTS

ADCON1 DC S(BETA) GEN CON ADDRESS OF BETA

ADCON DC S(400(13)) GEN CON ADDRESS OF 400
AND GR13 IN BASE DISPL IT
FORMAT

• S- Type address constants may not be specified as literals.

If an S-type constant is specified as an EXTRN, a USING statement must
be issued to provide the base register designation. (See EXTRN, page 4-16.)

3-28

V-Type Address
Constants

Chart 3-44. V-Type
External Address

Referencing

Basic Program Elements

• This constant reserves storage for the address of an external symbol
that is used for branching to other programs (separately assembled
control sections).

A V -type constant is aligned to a fullword boundary. The implied length
is four bytes. A length modifier of three or four bytes may be specified,
but boundary alignment does not occur.

The reserved word is set to zeros until the program containing the
named symbol is bound. The symbol is specified as one relocatable symbol.
Specifying a symbol as the operand of a V -type constant does not constitute
a definition of the symbol for this assembly. Whatever symbol is used is
assumed to be an exteTnal symbol because it is supplied in a V -type
constant.

A V -type constant need not be identified by an EXTRN statement.

Note:

The constant cannot be used for external data references.

V-type constants provide a convenient method for linking to a separately
assembled object module or control section. A V-type address constant is
specified with the name of the external symbol as the operand. When control
is to be transferred to the external object module, the constant value is
loaded by the programmer into a general register and a branch to the
control section desired is issued by means of the BALR instruction. (See
chart 3-44.)

• NAME OPERATION OPERAND

MAIN CSECT

BEGIN BALR 2,0

USING *,2

L 3, =V(VECTORX1)

BALR 1,3

END BEGIN

3-29

Basic Prograrn E lelnents

Table 3-4. Summary of Constants

Implied
Length Number of

Exponent Scale
Truncation/

Modifier Modifier Modifier
Type Length Alignment

Range
Specified by Constants

Range Range
Padding

(Bytes)
(Lm)

per Operand
(Em) (Em)

Side

C as needed byte 1 to 256 characters one right

X as needed byte 1 to 256 hexadecimal one left
digits

B as needed byte 1 to 256 binary digits one left

F 4 word 1 to 8 decimal multiple -85 to +75 -187 to +346 left
digits

H 2 half word 1 to 8 decimal multiple -85 to +75 -187 to +346 left
digits

E 4 word 1 to 8 decimal multiple -85 to +75 o to 2L-2 right
digits (1)

D 8 double 1 to 8 decimal multiple -85 to +75 o to 2L-2 right
word digits (1)

P as needed byte 1 to 16 decimal multiple left
digits

Z as needed byte 1 to 16 decimal multiple left
digits

A 4 word 1 to 4 any expression one left

V 4 word 3 or 4 relocatable one left
symbol

S 2 half word 2 only one absolute one left
or relocatable
expression or
two absolute
expressions:
exp (exp)

y 2 half word 1 to 4 any express ion one left

(1) L is length of constant. Negative scaling is not permitted.

3-30

4. PROGRAM
STRUCTURE

CONTROL SECTIONS

Control Section
Definition

• To the Assembly System, there is no such thing as a program; instead,
there is an assembly, which consists of one or more control sections.
(However, the terms assembly and program are often used interchangeably.)
An unsectioned program is treated as a single control section.

For instance, a single control section may be defined by a series of
statements preceded by a START or CSEC T instruction and terminated by
an END instruction. The output of the assembly consists of the assembled
control section and a Control Dictionary.

To the Linkage Editor, there are no programs, only control sections or
object modules that must be fashioned into an object program. The Control
Dictionaries contain information needed by the Linkage Editor to complete
cross-referencing between control sections so that they may be combined
into an object program.

The Linkage Editor can take control sections from various assemblies
and combine them properly with the help of the corresponding Control
Dictionaries. Successful combination of separately assembled control
sections depends on the techniques used by the programmer to provide
symbolic linkages between the control sections.

• The concept of program sectioning is a consideration at coding time,
assembly time, and load time. To the programmer, a program is a logical
unit, which may be divided into sections called control sections. Control
sections are written so that control passes properly from one section to
another regardless of the relative physical position of the sections in
storage. A control section is a block of coding that can be relocated, inde­
pendently of other coding, within the same assembly, without altering or
impairing the operating logic of the program. It is normally identified by
the CSECT assembly instruction. However, if it is desired to specify a
tentative starting location, the START assembly instruction may be used
to identify the first control section.

Sectioning a program is optional, and many programs can best be
written without sectioning. The Assembly System, however, provides
facilities for creating multi sectioned programs, which can be assembled
separately and linked at a later time into an object program.

Whether the programmer writes an unsectioned program, a multi­
sectioned program, or part of a multi sectioned program, eventually these
sections will be entered into storage. Because storage has been defined
symbolically, the exact location of each section may not be shown. There
is no constant relationship between control sections; thus, knowing the
location of one control section doe s not make another control section
addressable by relative addressingtechniques. Sectioning is not synonymous
with segmentation or overlay methods.

4-1

Control Section
Definition

(Cont'd)

First Control Section

PyogyaJJ1 StYZfctzlYe

Note:

The combined number of control sections and dummy sections may not
exceed 32. The combined number of EXTRN and V -type address
constants may not exceed 255.

Two or more control sections as sembled together cannot define the
same symbol. However, the symbol that appears as the name of a START
or CSECT instruction may be used on a subsequent CSECT to designate the
continuation of the CSECT. For instance:

NAME OPERATION OPERAND

PROG START FIRST CONTROL SECTION

DATA CSECT SECOND CONTROL SECTION

PROG CSECT CONTINUATION OF FIRST CSECT

END

Control section contents can be intermixed because the Assembly
System provides a Location Counter for each control section. Locations
are assigned to control sections so that the sections are placed in storage
consecutively in the same order as they first occur in the program. Each
control section after the first control section begins at the next available
double-word boundary. For example. if Control Section 1 starts at loca­
tion 1000 and is 98 bytes long, then the Location Counter for Control
Section 2 is set to 1104. If Control Section 1 is resumed after Control
Section 2, and the resumed part is 102 bytes long, then Control Section 2
will begin at location 1200 instead. Thus, the programmer may code data
and program sequence s as they are required, but still maintain them in
distinctly assembled control sections.

• The first control section of a program has the following special
properties:

1. Its tentative loading location may be specified as an absolute value.

2. It normally contains the literals requested in the program, although
their positions can be altered. This is further explained under the
discussion of the LTORG assembly instruction.

4-2

START
Start Assembly

General Description

Format

Specification Rules

Name Field

OPeration Field

OPerand Field

Chart 4-1. Examples of
START Instruction

Program Structure

• The START instruction is used to specify a tentative starting location
for the program. Only one START instruction is permitted in an assembly.
The START instruction may be preceded by any type of assembly statement
that does not affect or depend upon the setting of the Location Counter.

• The format of the START instruction is as follows:

NAME

A symbol or blank.

OPERATION

START

OPERAND

A self-defining term or blank.

• If a symbol is specified in the Name Field it must be a valid relocatable
symbol. The symbol represents the address of the first byte of the control
section. Its length attribute is one. The control section is considered un­
named if the Name Field is left blank.

Note:

A control section that contains internal or external references must be
named.

• START.

• The assembly uses the self-defining value specified by the operand as
the tentative starting location of the program. This value must reference
a double-word boundary. The operand field may be blank.

• NAME OPERATION OPERAND

START

START 4096

START X'1000'

PROG2 START

PROG2 START 8192

PROG2 START X '2000'

4-3

END
End Assembly

General Description

Format

Specification Rules

Name Field

OPeration Field

Operand Field

Chart 4-2. Example of
END Instruction

Program Structure

• The END instruction terminate s the as sembly of a program. It may
also designate a point in the program to which control may be transferred
after the program is loaded. The END instruction must always be the last
statement in the source program.

• The format of the END instruction is as follows:

NAME OPERA TION OPERAND

Not Used END A relocatable expression or blank.

• Not used.

• END.

• Contains any expression whose value specifies the point to which control
is transferred after loading the object program. If the operand is left
blank, control is transferred to the first byte of the control section .

• NAME OPERATION OPERAND

PRGNAM START

10 DTFSR

ENTRY BALR 4,0

USING *,4

NEXT

END ENTRY

Note • The operand may contain an external symbol, which must be a single-
term, relocatable expression.

4-4

CSECT
Identify Control

Section

General Description

Format

Specification Rules

Name Field

Program Structure

• The CSECT instruction identifies the beginning or the continuation of a
control section. All statements that follow the CSECT instruction are
assembled as part of that control section until another statement that
identifies a different control section is encountered.

• The format of the CSECT instruction is as follows:

NAME OPERATION OPERAND

A symbol or blank. CSECT Not used. Comments allowed.

• The symbol entered in the Name field establishes the name of the
control section. If omitted, the section is considered to be unnamed. The
symbol in the Name field must be a valid relocatable symbol the value of
which represents the address of the first byte of the control section. It
has a length attribute of one.

Several CSECT statements with the same name may appear within a
program. The first statement is considered to identify the beginning of
the control section; the rest identify the resumption of the section. Thus,
statements from different control sections may be interspersed. The
Location Counter for each CSECT instruction is set to the next highest
double-word boundary. However, the START card may be used to identify
the first CSECT, and the START card may specify an initial value for its
Location Counter. CSECT text becomes output in the same physical order
as the input source.

Unnamed Control Section - If neither a named CSECT instruction
nor START instruction appears at the beginning of the program, the
assembly determines that it is to assemble an unnamed control section in
a program. If one unnamed control section is initiated and is then followed
by a named control section, any subsequent unnamed CSECT statements
are considered to resume the unnamed control section.

4-5

Operation Field

Exalnple

Chart 4-3. Example of
CSECT Instruction

Progranl Structure

• CSECT.

• The example in chart 4-3 shows the use of the CSECT instruction in
sectioning a program that consists of two sections. The first section is
oriented to start at the setting 1600. Although the CSECT named BGN
is split. note that the location assigned to NAME is 2400. The CSECT
named SEG2 is assembled at location 4800 and terminates at 6000.

• NAME OPERATION OPERAND

BGN START

I
1600

\
800 BYTES

SEG2 CSECT

I 1200 BYTES , OVER

\

BGN CSECT

NAME
2400 BYTES

END BGN

4-6

DSECT
Identify Dummy

Section

General Description

Format

Specification Rules

Name Field

OPeration Field

Additional Information

Dummy Section
Location Assignment

Program Structure

• A dummy section is a control section that is assembled but is not part
of the object program. A dummy section is a convenient means of des­
cribing the layout of an area of storage without actually reserving the
storage. (It is assumed that the storage is reserved either by some other
part of this assembly or else by another assembly.) The DSECT instruction
identifies the beginning or re sumption of a dummy section. More than one
dummy section may be defined per assembly, but each must be named.

• The format of the DSECT instruction is as follows:

NAME OPERATION OPERAND

A symbol. DSECT Not used. Comments allowed.

• The symbol in the Name field establishes the name of the dummy
control section and must be a valid relocatable symbol which represents
the first byte of the dummy section. A length attribute of one is assigned.

• DSECT.

• Program statements belonging to dummy sections can be interspersed
throughout the program or can be written as a unit. In either use, the
appropriate DSECT instruction should precede each set of statements.
When multiple DSECT instructions with the same name are encountered,
the first instruction is considered to initiate the dummy section and the
re st to continue it.

• A Location Counter determines the relative locations of named pro­
gram elements in a dummy section. The Location Counter is always set
to zero at the beginning of the dummy section. The location values assigned
to symbols that name statements in the dummy section relate to the initial
statement in the section.

4-7

Note

Addressing Dun11ny
Systems

Example

Program Structure

• An address constant may contain a symbol that names a statement in a
dummy section only if the symbol is paired (with the opposite sign) with
another symbol from the same dummy section.

• The programmer may wish to describe the format of an area whose
storage location is not determined until the program is executed. He can
describe the format of the area in a dummy section, and he can use symbols
defined in the dummy section as the operands of machine instructions. To
refer to the storage area, he does the following:

1. Provides a USING statement that specifies a general register,
which the assembly can assign to the machine instructions as a
base register, and that specifie s a value from the dummy section,
which the assembly assumes is contained in the base register.

2. Ensures that the same register is loaded with the actual address
of the storage area.

The values assigned to symbols defined in a dummy section relate to
the initial statement of the section. Thus, all machine instructions that
refer to names defined in the dummy section will, at execution time, refer
to storage locations that relate to the address loaded into the register.

• Assume that two independent assemblies (Assembly 1 and Assembly 2)
are loaded and are to be executed as a single overall program. Assembly
1 is an input routine that places a record in a specified area of storage,
places the address of the input area containing the record in General
Register 3, and branches to Assembly 2. Assembly 2 processes the record.
The coding shown in Chart 4-4 is from Assembly 2.

The input area is described in Assembly 2 by the DSECT control
section named INAREA. Portions of the input area (that is, record) that the
programmer wishes to work with are named in the DSEC T control section
as shown. The Assembly instruction USING INAREA,3 designates General
Register 3 as the base register to be used in addressing the DSECT control
section, and that General Register 3 is assumed to contain the address of
INAREA.

Assembly 1, during execution loads the actual beginning address of the
input area in General Register 3. Because the symbols used in the DSECT
section are defined relative to the initial statement in the section, the
address values they represent, will, at the time of program execution, be
the actual storage locations of the input area.

4-8

Program Structure

Chart 4-4. Example of DSECT Option

NAME OPERATION OPERAND COMMENTS

1 2 34 5 6 7 8 9 1011 1213 1415 1617 1819 20 21 2223 2425 26 27 28 29 3031 3233 :w 35 3637 38 39 40 41 4243 « 45 46 47 48 49 so 51 5253 54 55 56 57 5859 6061 6263 6465 66 67 6869 70 71

A S M B L Y 2 C S E C T

B E GIN BA L R 2 , II

U S I N G * 2

·
·
U S I N G A R EA I N 3 A S S U RES C H 0 ICE o F R E G I S T E R 3

IN Ie lei 0 DIE I N ~ C f.A f FeR D S E e 'I N M E S

B E A T Y P E

i ·
·

AT 'y P E M V C W 0 RKA , N P UTA

MV C W 0 R K B , N Ip u T B

· I
I ·

W 0 R K A D S C L 2 II

W 10 IR K B D S C L 1 8

J
I ·

~~A I N D S E C T

colD E I N D S eLl

N P UTA D S C
L 2 "

N P U T B D S C L 1 8

1
I);' ~l n

4-9

LTORG
Begin Literal Pool

General Description

Format

Specification Rules

Name Field

Operation Field

OPerand Field

Chart 4-5. Example of a
LTORG Statement

Progra1n Structure

• The LTORG instruction causes all literals thus far encountered in
the source program to be assigned at appropriate boundaries starting
at the first double-word boundary following the LTORG statement.
Literals that are not collected by a LTORG statement are placed at the
end of the first control section.

• The format of the LTORG instruction is as follows:

NAME OPERATION OPERAND

Sym bol or blank. L TORG Not used.

• Contains any symbol representing the first byte of the relocated literal
pool. The symbol used to name the field is assigned a length attribute of one.

•
•
•

LTORG.

Not used.

NAME ---

BEGIN

SECT2

OPERATION

START

BALR

USING

CSECT

BALR

USING

L

AP

LTORG

OPERAND

2,0

*,2

3,0

*,3

4, =A(TABLE)

COUNT,=PL1'1'

,NOTE THAT THIS LTORG

*STATEMENT ENSURES THAT THE ABOVE LITERALS ARE

* ASSEMBLED WITH THIS CONTROL SECTION

END BEGIN

4-10

Notes

Program Structure

• 1. Literals are listed and punched in the object program when the
L TORG statement is encountered. Literals not covered by a L TORG
statement are listed and punched when the END card is detected.
In TOS/TDOS, the STMNT field on the listing shows the statement
number which first specified a given literal.

2. Duplicate literals within a pool are punched and listed only once.
However, if a literal is an address constant containing a reference
to the Location Counter, a duplicate literal is generated.

3. If there are no L TORG statements in a program, the programmer
must ensure that the first control section is always addressable.
This means that the base address register for the first control
section should not be changed through use in subsequent control
sections. If the programmer does not wish to reserve a register
for this purpose, he may place a LTORG statement at the end of
each control section thereby ensuring that all literals appearing
in that section are addressable. It is recommended that all programs
using FCP contain a LTORG statement at the end of the user coding
to ensure that all user literals are covered by a base register.

4. A maximum of 32 LTORG instructions may be specified.

4-11

COM
Define Common

Control Section

General Description

Format

Specification Rules

NaJne Field

Operation Field

Operand Field

Notes

Program Structure

• The COM Assembler instruction identifies and reserves a common area
of storage that may be referred to by independent assemblies that have
been linked and loaded for execution as one overall program. The common
area may be broken into subfields through the use of the DC and DS
Assembler instructions. Names of subfields are defined relative to the
beginning of the common section, as in the DSECT control section.

• The format of the COM instruction is as follows:

NAME OPERATION OPERAND

Symbol or blank. COM Not used.

• Symbol or blank.

• COM.

• Not used.

• 1. No instruction or constants appearing in a common control section
are assembled. Data can be placed in a common control section
through execution of the program.

2. \\!hen assembled, common location assignment starts on the next
double-word boundary after the highest tentative location assigned
to the assembly. If more than one common section is defined, the
first is assigned as described above; the second common section
starts on the next double-word boundary after the highest tentative
location assigned to the first common; the third after the second,
and so forth. Common control sections may be split.

4-12

Program Structure

Chart 4-6. Example of NAME OPERATION OPERAND
CO M In struction

MAIN START

BEGIN BALR 12,0

USING *,12

L 13, = A(COMAREA)

USING COMAREA,13

LPOV SECT1

L 15, = A(SECT1)

BALR 14,15

TYPE CODE,80

TERM

EXTRN SECT1

COMAREA COM

DS CL80

END BEGIN

SECT1 START

USING *,15

L 13. = A(COMAREA)

USING COMAREA,13

MVC LETTER,CODE

MVC CON1,ENTRY1

MVC CON2,ENTRY2

MVI ENTRY3,C 'A'

MVC ENTRY3 + 1(28),ENTRY3

BR 14

LETTER DC CL1'C'

CONI DC 5CL5 '12345'

CON2 DC 5CL5 'ABCDE '

DS CL50

COMAREA COM

CODE DS CL1

ENTRY1 DS CL25

ENTRY2 DS CL25

ENTRY3 DS CL29

END

4-13

PROGRAM LINKAGE
CONTROLLING

CODES

Prograrn Structure

• Symbols can be defined in one program and referred to in another, thus
effecting symbolic linkages between independently assembled programs.
The linkages can be effected only if the assembly is able to provide
information about the linkage symbols to the Linkage Editor, which
resolves these linkage references at load time. The assembly places the
nece ssary information in the Control Dictionary on the basis of the linkage
symbols identified by the ENTRY and EXTRN instructions.

Note:

The~e symbolic linkages are described as linkages between inde­
pendent assemblies; more specifically, they are linkages between
independently assembled control sections.

In the program where the linkage symbol is defined (that is, used as a
name), it must also be identified to the assembly by means of the ENTRY
assembly instruction. It is identified as a symbol that names an entry
point, which means that another program will use that symbol to effect a
branch operation or a data reference. The assembly places this informa­
tion in the Control Dictionary.

Similarly, the program that uses a symbol defined in some other
program must identify it by the EXTRN assembly instruction. It is ident­
ified as an externally defined symbol (that is, defined in another program)
that is used to effect linkage to the point of definition. The assembly places
this information in the Control Dictionary.

Another means of obtaining symbolic linkage is by using the V-type
address constant. It is created from an externally defined symbol, but
that symbol need not be identified by an EXTRN statement.

Note • The V -type address constant may be used for effecting branches to
other programs. It may not be used for referring to data in other programs.
For instance:

L 15, =V(symbol)

BALR 14,15

4-14

ENTRY
Identify Entry

Point Symbol

General Description

Format

Specification Rules

Name Field

Operation Fie ld

operand Field

Example

Notes

Program Structure

• The ENTRY instruction identifies a linkage symbol that is defined in
this program but may be used by some other program.

• The format of the ENTRY instruction is as follows:

NAME

Not used.

• Not used.

• ENTRY.

OPERATION

ENTRY

OPERAND

A relocatable symbol that also
appears as a statement name.

• Contains any symbolic name to identify an entry point to the assembly.

• (See chart 4-7.)

• 1. The symbol used in the Operand field may be used by other programs
as operand entries.

2. ENTRY statements may not contain a symbol defined in an un­
named control section or a dummy section.

3. The name of a control section need not be identified by an ENTRY
instruction when another program uses it as an entry point. The
Assembly System will automatically include the section names in
the Control Dictionary.

Chart 4-7. Example of ENTRY Instruction

NAME OPERATION OPERAND COMMENTS

1 23 .5 67 8. 1011 1213 1415 1617 1819 20 21 2223 2425 2627 2829 3031 3233 3435 3637 38 3. 4041 4243 .. ., 4647 S051 5253 5455 5657 5859 6061 6263 6465 6667 6869 7071

~\ II P 0 5 5 I B L E EN TRY P 0 I N T S

,itA I N SilT AI F T 3 II II II

E'N TIFY 5 I N E

EN T F Y COS N E

o P EI'~ M A 5 'r E R , F E E 0 F , P UN C H o T 5 E E F C P D E 5 C R I P T I 0 N 5

·
GET MA S T E R 5 E E F C P D E 5 C R I P :r I 0 N 5

5 I N E T M 5 E N 5 E , X ' F

· · · ·
CO 5 I N E 5 T M 3 , 3 , 5 A V,K

· · ·
WiR I T E PUT MA 5 T E R , W OR K A I 5 E E F C P DE 5 C'R I P T I o N S I

I E N T RI Y WR I T E I I I

MIA IS T E R D'S C L 8 II ONE '8 II - B Y T' E A R E A I

W 0 R K A D 5 4 II C L 2 F 0 R T Y 2 - B Y T E F I. E L D S

5 A V E DC A (II) ONE 4 - B Y T E F ;I: E L D Z E R 0 F I LL E D . .
I I END MA I N I , I I : -

4-15

EXTRN
Identify External

Symbol

General Description

Format

Specification Rules

Name Field

Operation Field

Operand Field

Examples

Notes

Program Structure

• The EXTRN instruction identifies a linkage symbol that is used by
this program but defined in some other program. Each external symbol
must be identified; this includes symbols that name control sections.

• The format of the EXTRN instruction is as follows:

NAME OPERATION OPERAND

Not used. EXTRN A relocatable symbol.

• Not used.

• EXTRN.

• Contains any relocatable symbol defined in some other control section.
It may not appear as the name of a statement in the section containing the
EX TRN statement.

• In chart 4-8, Program A contains two Branch instructions that refer to
a program called Calculation (chart 4-9). Calculation contains two Branch
instructions that refer to Program A. The points of entry between between
Program A and Calculation are described to the assembly by the EXTRN
and ENTRY statements shown in charts 4-8 and 4-9. Program A will
branch to Calculation at points named CALC1 and CALC2. The return
points to Program A will be at points CONT and CONT2.

One method to reference externally defined areas is by using the
EXTRN instruction to identify the external symbol, and by creating an
A-type address constant from the symbol. The generated address constant
is loaded into a base register and used for base register calculation of
addresses.

The example in chart 4-10 shows address calculation for an externally
defined area.

• 1. External symbols, when used in an expression, may not be paired.
The assembly processes them as though they originated from
different control sections.

2. A symbol may be redundantly defined to be external.

3. V -type address constants need not be defined by an EXTRN statement.

4-16

Program Structure

Chart 4-8. Program A • NAME OPERATION OPERAND

BEG START X'OBB8'

ENTRY CONT

EXTRN CALC1

EXTRN CALC2

USING CALC1,4

USING CALC2,5

LM 4,4,EXT

LM 5,5,EXT1

B CALC1

CONT

BAL 6,CALC2

CONT2

EXT DC A(CALC1)

EXT1 DC A(CALC2)

END BEG

Chart 4-9. Calculation • NAME OPERATION OPERAND

SUBRT START

ENTRY CALC1

ENTRY CALC2

EXTRN CONT

CALC1 MVC

USING CONT,5

LM 5,5,ACONT

B CONT

CALC2 AP

BALR 0,6

ACONT DC A(CONT)

END SUBRT

4-17

Progranl Structure

Chart 4-10. Data • NAME OPERATION OPERAND
Reference from External

Control Section MAINPROG CSECT

BEGIN BALR 2,0

USING *,2

EXTRN RATETBL

LM 4,4,RATEADDR

USING RATETBL,4

A 3,RATETBL

RATEADDR DC A(RATETBL)

END BEGIN

4-18

5. ADDITIONAL
ASSEMBLY

INSTRUCTIONS

LISTING CONTROLS

TITLE
Identify Assembly

Output

General Description

Format

Specification Rules

Name Field

OPeration Field

Operand Field

Chart 5-1. Example of
TITLE In struction

Notes

• The TITLE instruction is used to identify an assembly listing and
assembly output cards.

• The format for the TITLE instruction is as follows:

NAME OPERATION

Name or TITLE
Not used.

OPERAND

A sequence of characters, enclosed
in single quotation marks.

• One to four characters, or not used. Used for punching columns 73-76 of
the output cards of the program except cards produced by the REPRO or
PUNCH instructions. Only the first TITLE card of a program should have
a name entry. Name fields on subsequent TITLE cards must be blank.

• TITLE.

• Contains the title of the program to be printed on the assembly listings.
Maximum entry is 100 characters enclosed in single quotation marks.

• NAME

PA01

OPERATION

TITLE

OPERAND

'PAYROLL UPDATE RUN'

• 1. A program may contain more than one TITLE statement. Each
statement provides the heading for the listing of the statements that
follow it until another TITLE card is read.

2. Each TITLE card encountered after the first one causes a page
change before the header is printed.

3. The additional title cards must not contain name entries. The first
title card name will remain the constant value to be punched into the
object cards (columns 73-76), and printed at the top of each assembly
page.

4. In chart 5-1, PA01 is punched in columns 73-76 of all output cards
(except REPRO or PUNCH) and the heading "PAYROLL UPDATE
RUN" appears at the top of each page.

5-1

EJECT
Start New Page

General Description

Format

Specification Rules

Name Field

OPeration Field

Operand Field

Note

Additional Assembly
Instructions

• The EJECT instruction causes the next line of the listing to appear at
the top of a new page. This instruction provides a convenient way to sepa­
rate routines in the program listing.

• The format for the EJECT instruction is as follows:

NAME

Not used.

• Not used.

• EJECT.

• Blank.

OPERATION

EJECT

OPERAND

Not used; should be blank, but
will be treated as a comment.

• If the next line of the listing normally appears at the top of a new page,
the EJECT statement has no effect.

5-2

SPACE
Space Listing

General Description

Format

Specification Rules

Name Field

Operation Field

Operand Fie ld

Chart 5-2. Example

Additional Assembly
Instructions

• The SPACE instruction is used to insert one or more blank lines in the
listing.

• NAME

Blank

• Blank.

• SPACE.

OPERATION

SPACE

OPERAND

A decimal value or Blank.

• Contains a decimal value up to 15 that is used to specify the number of
blank lines to be inserted in the assembly listing. A blank operand causes
one blank line to be inserted. If the value exceeds the number of lines re­
maining on the listing page, the statement will have the same effect as an
EJECT statement.

• NAME

5-3

OPERATION

SPACE

OPERAND

4

PRINT
Print Optional Data

C7eneral Description

Format

Specification Rules

Name Field

OPeration Fie ld

OPerand Field

Additional Assembly
Ins tructions

• The PRINT instruction controls printing of the assembly listing.

• The format of the PRINT instruction is as follows:

NAME

Not used.

OPERATION

PRINT

OPERAND

One to four operands.

• Not used.

• PRINT.

• One or all of the following terms can be used in the operand field:

SINGLE - Text listing is single spaced.

DOUBLE - Text listing is double spaced.

ON - A listing is printed.

OFF - No listing is printed.

GEN - All statements generated by macro instructions are printed.

NOGEN - Statements generated by macro instructions'are not printed.
However, the macro instruction itself and MNOTE mes­
sages will appear in the listing.

DATA - Constants are printed in full in the listing.

NODAT A - Up to 8 bytes (16 hexadecimal digits) of the first constant,
whichever is shorter, of the assembled data is printed on
the listing.

- Resume punching of the object program if object program
output was specified.

NODECK - Inhibit punching of the object program. (Note: in TOS this
will inhibit tape and/or card output.)

NUM - Print the card number of the various object program card
types. The card number is printed as a separate line when
the card is punched. (TOS/TDOS.)

NONUM - Inhibit printing the card number of the various card types.
(TOS/TDOS.)

OPEN

(Note: NUM and NONUM are accepted by the POS Assembler
but do not have any effect on the listing.)

- Cross reference listing is double spaced (TOS/TDOS).

CLOSED - Cross reference listing is single spaced (TOS/TDOS).

Note:

Underlined options are the preset conditions.

5-4

Examples

Chart 5-3.

Chart 5-4.

Chart 5-5.

Chart 5-6.

Additional Assembly
Instructions

• Until the first PRINT statement is encountered, the statement in chart
5-3 is assumed. For example, if the statement in chart 5-4 appears in a
program, 256 bytes of zeros are assembled. If the statement in chart
5-5 is the last PRINT statement to appear before the DC statement, all
256 bytes of zeros are printed in the assembly listing. However, if the
statement in chart 5-6 is the last PRINT statement to appear before the
DC statement, only eight bytes of zeros are printed in the assembly
listing.

• NAME OPERA TION OPERAND

PRINT ON ,NODA T A, GEN ,SINGLE ,DECK,NUM

• NAME OPERA TION OPERAND

DC XL256'OO'

• NAME OPERA TION OPERAND

PRINT DATA

• NAME OPERATION OPERAND

PRINT NODATA

Note • A program can contain any number of PRINT statements. A PRINT
statement controls the printing of the assembly listing until another PRINT
statement is encountered.

5-5

AOPTN
Assembler Option·

General Description

Format

Specification Rules

Name Field

Operation Field

Operand Field

Additional Assembly
Ins tru c tions

• The AOPTN instruction is used to control the normal outputs of the
Assembler.

• The format of the AOPTN instruction is as follows:

NAME OPERATION OPERAND

Not used. AOPTN One or more of the specified
options, separated by commas.

• Not used.

• AOPTN.

• Each of the following options may be specified in separate AOPTN
cards or appear as multiple operands (separated by commas) in a single
card.

NODECK - The object program (ESD, TEXT, and RLD data) will not
be produced on cards or tape. (This does not affect their
appearance on the Listing.)

NOESD

NORLD

- External Symbol Dictionary cards will not be produced
in the object program or on the Listing.

- Relocatable control cards will not appear in the object
program.

NOLIST - Program listing will not be produced; however, statements
containing errors will be listed.

*Valid on POS only. AOPTN functions are performed by Monitor PARAM
me ssage on TOS and TDOS.

5-6

Operand Field
(Conf'd)

Notes

Additional Assembly
Ins tructions

NOERR - Error flags will not be printed on the program listing, but
a statement indicating the number of errors will be listed.

NOSYM - The symbol table will not be listed.

IPL - The IPL loader will be included in the object program
preceding the ESD data (POS only).

LITERAL - This option is ignored, and literals may be used without
specifying the option.

ENTRY - An entry card will be produced following the output card
that is generated for the End statement. This option is
required by the POS Linkage Editor.

• 1. If NOLIST and NOERR are specified there is no need to specify a
listing device.

2. Any number of AOPTN cards may be specified; there is no restriction
as to their order or placement within the source program.

3. AOPTN cards may be used to specify options separately or in
combination.

5-7

PROGRAM
CONTROLS

ICTL
Input Format Control

General Description

Format

Specification Rules

Nalne Field

Operation Field

Operand Field

Additional Assembly
Ins tructions

• The ICTL instruction allows the programmer to alter the normal
format of his source program statements. The ICTL statement may be
used as often as desired. The fields must be in the sequence: Name,
Operation, Operand. Each must be separated by one or more blanks.

• The format of the ICTL instruction is as follows:

NAME

Not used.

• Not used.

• ICTL code.

OPERATION OPERAND

ICTL 1-3 decimal values of
the form b, e, c.

• Contains one to three decimal values in the format b, e, c.

b specifies the begin column of the source statement. This value must
always be used. Operand b must be less than c.

e specifies the end column of the source statement. If omitted, column
71 is assumed to be the end of the statement line. Operand e must be
less than or equal to 80.

c specifies the continuation column of the source statement. If the
continue column is not specified, or if column 80 is specified as the
end column, the assembly assumes no continuation cards (all state­
ments must be contained on a single card). Operand c must be less
than e.

5-8

Example

Chart 5-7. Example of
ICTl Instruction

Notes

Additional Ass embly
Ins lru c lions

• The example in chart 5-7 designates the begin column as column 25. Since
the end column is not specified, it is assumed to be column 71. No continu­
ation cards are recognized because the continue column is not specified.

• NAME OPERATION OPERAND

ICTL 25

• If the ICTL statement is omitted in the source program, the assembly
assumes a statement line is contained in columns 1-71 and that continua­
tion lines begin in column 16. Any number of ICTL statements may be used
in an assembly.

The first ICTL must conform to standard Assembler format as opposed
to the format described by the statement. Succeeding IC TL statements
must conform to the format of the ICTL currently in effect.

5-9

ISEQ
Input Sequence

Checking

General Description

Format

Specification Rules

Name Field

Operation Field

Operand Field

Notes

Additional Assembly
Ins tructions

• The ISEQ instruction checks the sequence of s"ource input cards.

• The format of the ISEQ is as follows:

NAME OPERATION

Not used. ISEQ

• Not used.

• ISEQ code.

OPERAND

Two decimal values of
the form L, R; or blank.

• Contains two decimal values in the form L,R.

L specifies the leftmost column of the input card to be checked.

R specifies the rightmost column of the input card to be checked.

• 1. Sequence checking begins with the first card following the ISEQ
statement. Comparison of adjacent cards make use of the eight-bit
internal collating sequence.

2. Any ISEQ with a blank operand terminates the operation. Checking
can be resumed with another ISEQ statement.

3. Statements generated by macros are not included in the sequence
check. (Source deck macro definitions will be checked.)

4. Operand L must be greater than the end column plus one.

5. Operand R must be equal to or greater than L.

6. The maximum value of R-L is seven; this is a maximum field size
of eight bytes.

5-10

REPRO
Reproduce Following

Card

General Description

Format

Specification Rules

Name Field

Operation Field

OPerand Field

Chart 5-8. Example of
Stacked Assemblies -

Separately Bound
(TOS/TDOS)

Additional Assembly
Instructions

• The REPRO instruction allows the inclusion of Linkage Editor phase
definition cards into the object program deck (module) to eliminate the
necessity of manually inserting them.

• The format of the REPRO instruction is as follows:

NAME

Not used.

• Not used.

• REPRO.

• Blank.

• / / _STARTM

Insert ASSIGNS

// JOB STACK

OPERATION

REPRO

Insert Assembly options (PARAM)

// ASSMBL

REPRO

PROG ASSYI

START

END

REPRO

PROG ASSY2

START

END

/ / LNKEDT

// ENDMON

5-11

OPERAND

Blank or any operand
for comments.

Notes

Additional Asse1nbly
Ins tructions

• 1. REPRO causes a duplicate (80-80 card format) of the card im­
mediately fOllowing.

2. Reproduced cards resulting from REPRO instructions appear at
the same point in the object as they were in the source deck.

3. If a REPRO instruction precedes the START instruction or the
implied START instruction, the cards reproduced will precede the
ESD cards for the assembly.

4. In TOS, MONITOR control cards cannot be reproduced by the
REPRO Statement.

5-12

PUNCH
Punch a Card

General Description

Format

Specification Rules

Name Field

OPeration Field

Operand Field

Chart 5-9. Example of
PUNCH Instruction

Notes

Additional Assernbly
Ins tructions

• The PUNCH assembly instruction may be used to perform the same
functions as the REPRO assembly instruction. The PUNCH assembly
instruction causes the data in the operand to be punched into a card. As
many PUNCH statements may be used as are necessary.

• The format of the PUNCH instruction is as follows:

NAME

Not used.

OPERATION

PUNCH

OPERAND

80-character maximum
self-defining term.

• Not used.

• PUNCH code.

• A character self-defining term of 80 characters maximum enclosed in
single quotation marks.

• NAME OPERATION OPERAND

PUNCH 'ABCDEFG'

• 1. The position immediately to the right of the left quotation mark is
regarded as column one of the card to be punched.

2. The assembly does not process the data in the Operand field other
than to punch it.

3. The punched cards appear at the same point in the assembled text
as they appeared in the source program.

4. The main difference between the PUNCH instruction and the REPRO
instruction is the capability of the macro generator to substitute
values for symbolic parameters or to set variable symbols in the
operand of a punch instruction appearing in a macro definition.
(This allows such things as controlled generation of phase names.)

5. If the PUNCH card precedes the START card, the punched cards
will precede the ESD cards of the assembly.

5-13

XFR
Generate a

Transfer Card·

General Description

Format

Specification Rules

Name Field

Operation Field

OPerand Field

Example

Additional Assembly
Ins tructions

• A transfer card is used by the Loader and Linkage Editor routines to
define the transfer point or entry point of a phase or overlay. The XFR
assembly instruction causes the generation of a transfer card in the
assembled text in the same location that the XFR instruction appeared
in the source program.

• The format of the XFR instruction is as follows:

NAME OPERATION OPERAND

Not used. XFR A relocatable symbol.

• Not used.

• XFR code.

• Any predefined symbol from within the assembly or defined as an
ENTRY or EXTRN point.

• See Appendix.!!.. Overlay Methods.

*Valid on POS only. This card is flagged, but produced on TOS/TDOS.

5-14

MCAll
Macro Call

General Description

Format

Specification Rules

Name Field

OPeration Field

OPerand Fie ld

Notes

Additional Assembly
Ins tructions

• The optional instruction MCALL permits the specifying of any or all
macros required by a program. Inasmuch as macros are normally re­
trieved from the macro library in the order in which they are called, this
feature eliminates access to the Library on an "as needed" basis.

• The format of the MCALL is as follows:

NAME

Not used.

• Not used.

• MCALL.

OPERATION

MCALL

OPERAND

Symbols separated by commas.

• Symbols separated by commas specifying the macros to be called from
the macro library.

• 1. If the macro has been previously specified in a prior MCALL state­
ment, defined as a source-deck macro, or already called, the symbol
is ignored.

2. Any number of MCALL statements may be specified and the state­
ment is allowed in a macro definition (that is, as a model line).

3. After the macro definition is retrieved from the library, it is
encoded into a form which requires less memory. The encoded
macro is retained in memory or placed on a work tape if sufficient
memory is not available.

The MCALL verb gives the programmer the capability to accomplish
the following:

a. To specify the macros that should first be placed into HSM if
space exists.

b. To specify the order in which the macros should be placed on the
work tape.

c. To reduce substantially the search time required to fetch macros
from the library tape. Note that each macro is called only once
from the library tape.

5-15

Notes
(Cont'd)

Exa1nple •

Additional Asse1nbly
Ins tructions

4. Macros are retained on the macro library in four priority groups.
The macros which are specified in the MCALL operand field are
retrieved from the tape :n the order in which the macros appear on
the tape, not necessarily in the order they were specified.

OPERATION OPERAND

MCALL P, B,G,X,H,A

Assume macros X and H are in priority group 1; and that P, B, and A
are in priority group 2, and that G is in priority group 3.

The macros are called from the library tape in the following order:

H, X, A, B, P, G. After macro G has been retrieved, tape searching
terminates, since no further priority 3 or any priority 4 macros are
specified.

5-16

MPRTY
Macro Priority

General Description

Format

Specification Rules

Name Field

Operation Field

OPerand Field

Note

Example

Additional Assembly
Ins tructions

• This instruction allows the user to specify which priority groups of
macros. when called, are encoded and placed in memory and/or on a work
tape when sufficient memory does not exist.

The statement may be issued as often as desired to control this process.

• The format of the MPRTY is as follows:

NAME OPERATION OPERAND

Not used. MPRTY Combination of four 0 's and 1 'so

• Not used.

• MPRTY.

• Combination of four 0 's and 1 IS. that refer to priority groups 1 to 4,
respectively. from left to right.

• The Assembler presets the MPRTY indicator to 1100. Macros specified
by MCALL are always encoded regardless of the MPRTY indicator setting
for the macros' priority group.

• OPERATION OPERAND

MPRTY 1110

If a macro is called which is in priority groups 1, 2, or 3, it is encoded
prior to expansion. If macro X in priority group 4 is called, it is not encoded
but is expanded (in its definition format) from the library. Subsequent calls
for X result in its retrieval and expansion from the library rather than
directly from memory or the work tape.

5-17

6. INTRO-
0ucT�oN TO
SPECTRA 70

MACRO
LANGUAGE

MACRO DEFINITION

• The Spectra 70 macro language is a facility of the Spectra 70 Assembly
System by which the programmer can generate standardized coding. Some
advantages of the macro language are:

1. Program coding is simplified;

2. Functional coding may be standardized;

3. Coding errors may be reduced;

4. Macro definitions can be easily maintained;

5. Simple or tailored macros can be written.

Macros are defined, called. and generated (also referred to as "ex­
panded "). The macro definition is written only once, and a single macro
call statement is written each time the programmer wants to generate
the desired sequence of Assembler language statements.

Note:

Macro call statements also are referred to as "macro call(s)" or
"macro call line(s)" in this manual.

• The macro is defined by a series of statements which include:

1. The macro header statement (MACRO) - start of macro definition;

2. The macro prototype statement - gives the mnemonic operation
code (that is, TERMS in chart 6-1) and format in which the macro
call statement will appear (see chart 6-2):

3. The macro model statements - stating the sequence of statements
to be generated when the macro mnemonic (that is, TERMS) is
called;

4. The macro trailer statement (MEND) - end of macro definition.

Macro definitions can be incorporated in a program at assembly time
in two ways:

1. Source deck - Macros are available only in the source program in
which the definition appears;

2. Macro Library - Tape or random access facility of entering macro
definitions (RCA and/or user), which may be used in any source
program (see Utility Manuals).

Note:

A macro definition must be available or defined before any call is made
for the macro. (See Section 7 - Writing Macro Definitions.)

6-1

Macro Definition
Structure

TYPES OF MACROS

Positional Macros

Chart 6-1. Example of
a Positional Macro

Notes

Introduction to SPectra 70
Macro Language

• Every macro definition must contain a minimum of four statements.
They are:

1. A header statement (MACRO);

2. The prototype statement;

3. One or more model statements; and

4. A trailer statement (MEND).

The following command statements are optional for macro generation:

1. Set and Conditional Commands (Section 9);

2. MEXIT and MNOTE (Section 10);

3. MTRAC and NTRAC (Section 10).

• Spectra 70 macro language permits macros to be written in either
positional or keyword format. Both the macro prototype and its associated
call statements must be of the same format. The only difference between
the keyword and the positional macro is in the format of the prototype
(and associated macro call) statements.

• A positional macro requires that the prototype and call statements be
written in a fixed format.

Parameters in the prototype statement and values in the call line are
said to be "positionally significant" and are separated by a comma (,).

Notes:

Omission of a positional value must be indicated by an extra comma (,).
For example:

NAME OPERATION

DTYPE

OPERAND

DEVICE, , STORE (Macro Call)

The second value has been omitted (signified by , ,). See Sections 7 -
Writing Macro Definitions, and 8 - Macro Call Statements.

• NAME

&NAME

&NAME

OPERATION

MACRO

TERMS

SVC

SVC

DC

MEND

OPERAND

&PROG

28

10

CL6'&PROG

(Macro Header)

(Prototype Statement)

~ (Model I
I Statements) \

(Trailer Statement)

• 1. "MACRO" signifies the start of any macro definition; "MEND", the
end.

2. "&NAME" is a symbolic parameter; that is, a variable symbol.

6-2

Keyword Macros

Note

MACRO CALL
STATEMENT

Chart 6-2. Example of a
Positional Macro Call

Statement

Note

Chart 6-3. Generated
Statements

VARIABLE SYMBOLS

Types of Variables

Introduction to SPectra 70
Macro Language

• Keyword macros allow the keyword values to be written in a random
order or omitted, because each value is associated with a keyword.
Standard values, unless overridden by the programmer, may be inserted
automatically. (See Section 11.)

• The DTFSR macro is a keyword macro. The lack of a READ = value
will cause FORWARD to be inserted from the prototype. (See Section 11 -
Keyword Macros.)

• A macro call is a statement which causes the assembly macro gen­
erator to insert the macro's model statements at the point of the macro
call.

The macro call may exist as a user's source statement or it may be
one of a macro's model statements. The latter is an inner macro call
and is generated when it appears.

• NAME OPERATION OPERAND

ENTRY TERMS PROGB (Macro Call)

• See Section 8 - Macro Call Statements.

• Assembler results of charts 6-1 and 6-2:

... LOCTN OBJECT CODE M SOURCE STATEMENT

00000 OA lC

00002 OA OA

00004 D7D9D6C7C240

ENTRY TERMS

Ml ENTRY SVC

Ml SVC

Ml DC

PROGB

28

10

CL6'PROGB'

• A variable symbol is an assembly symbol representing varying values
which may be assigned, changed, or tested at any time during macro
generation, by the programmer and/or the Assembler. Current values
are examined to determine what model statements are to be generated.

• Variable symbols can be:

1. Symbolic parameters;

2. System variable symbols (Section 10); or

3. Set variable symbols (Section 9).

6-3

Valid Symbols

Chart 6-4. Examples of
Variable Symbols

Note

SYMBOLIC
PARAMETERS

Examples

Restrictions for
Symbolic Parameters

Examples of Valid
Symbolic Parameters

Introduction to SPectra 70
Macro Language

• A variable symbol is written as a ampersand (&) followed by one to
seven alphabetic and/or numeric characters, the first of which must be
alphabetic. The dollar sign ($), the commercial at sign (@), and the
number sign (#) are considered to be valid alphagetic characters.

• V ARIABLE SYMBOL TYPE OF SYMBOL

&NAME Symbolic Parameter

&FROM2 Symbolic Parameter

&SYSNDX System Variable

&SYSECT System Variable

&BG2 SETB Symbol

&CG3 SETC Symbol

&AL1 SETA Symbol

• The types of variable symbols illustrated in chart 6-4 are explained
under the appropriate topic.

• A symbolic parameter is a type of variable symbol that is assigned
values by the programmer when he writes a macro call statement. (See
Section 8 - Macro Call Statements.)

The programmer may vary statements that are generated for each oc­
curance of a macro call by varying the values assigned to symbolic
parameters.

• NAME

&NAME

FIRST

SECOND

OPERATION

MOVE

MOVE

MOVE

OPERAND

&FROM,&TO PROTOTYPE

FIELD,WORK CALL #1

RECORD,STORE CALL #2

In Call #1 above, the symbolic parameters &NAME, &FROM, and &TO
have been given the following values: FIRST, FIELD, and WORK res­
pecti vely as a result of the positional call line. In Call #2, &NAME is
SECOND, &FROM is RECORD; and &TO is STORE.

• The programmer cannot use any symbolic parameters that have
&SYS as the first four characters. Further, symbolic parameters in the
form &ALn, &AGn, &BLn, &BGn, and &CGn, where .!!..is from one to five
numeric characters, cannot be used. Symbols of these types are reserved
for internal use. (See Section 9.)

• The following are valid symbolic parameters:

&READER

&A23456

&X4#F2

6-4

&LOOP2

&N

&84

&TAG

&BLC

&FROM

VARYING THE
GENERATION

SECTIONING OF
MACRO LANGUAGE

INFORMATION

Introduction to SPectra 70
Macro Language

• The same sequence of generated statements is used from the macro
definition in the absence of any Conditional macro generator commands.
Thus, Conditional commands are used, usually in conjunction with Set
commands, to vary the number and structure of the generated statements.

Note:

See Section 9 - Set and Conditional Macro Commands.

• The Spectra 70 macro language portion of this manual is further divided
into the following sections:

TOPIC SECTION

Writing Macro Definitions 7

Macro Call Statements 8

Set and Conditional Commands 9

Special Purpose Features 10

Keyword Macros 11

Summaries and Terminology Appendices I, J, K, and L

6-5

7. WRITING
MACRO

DEFINITIONS

MACRO DEFINITION
CONTENTS

Notes

• To call a macro by means of a macro call statement, the macro must
be previously defined. The programmer defines a macro by writing the
instruction statements in a special macro definition language. This
section discusses this definition language for positional macros. Keyword
macros will be discussed in Section 11.

The programmer makes a macro definition available to many programs
by placing the definition in the macro library. Macro definitions in the
macro library can be inserted, deleted or replaced according to the needs
of the programmer (see Utility Manuals).

• A macro definition consists of the following types of statements (see
chart 6-1, page 6-2).

HEADER STATEMENT (MACRO)- This statement indicates the beg­
ginning of a macro definition.

PROTOTYPE STATEMENT - This statement defines the format and
mnemonic operation code of the macro call statement. Because the
parameters defined in prototype statements must be general, the entries
are referred to as symbolic parameters (see Section 6). The format of
the prototype statement is the only difference between a positional macro
definition and a keyword macro definition (see Section 11).

MODEL STAT EM ENTS - The model statements are comprised of
machine instructions and/or assembly commands. The Operand fields of
the model statements can contain symbols defined in source programs or
symbolic parameters incorporated in the macro definition. The symbolic
entries are, in turn, replaced by the values they represent. The symbolic
entries can be symbolic parameters (see Section 6) or other variable
symbols that are described in Sections 9 and 10.

TRAILER STATEMENT (MEND) -This statement indicates the end
of a macro definition.

• 1. In writing all macro definitions, the begin column is column 1, the
end column is column 71, the continue indicator column is column 72,
and the continuation column is column 16.

2. The number of macro definitions transcribed to memory and/or the
work tape during assembly by MCALL statements, source deck
definitions, or by calling and the proper MPRTY switch = 1 is
limited to 50 in POSe The TOS and TDOS limit is 75.

3. If sequence checking of the source deck is specified, the macro
definition is not included. When the macro definition is terminated,
checking will be resumed if it was in effect before encountering the
macrq definition.

7-1

MACRO
Header Statement

General Description

Format

Specifications Rules

Name Field

OPeration Field

Operand Field

Writing Macro
Definitions

• The macro definition header statement indicates to the assembler that
a macro definition follows. It must be the first statement in every posi­
tional or keyword macro definition.

• The format of the MACRO header statement is as follows:

NAME OPERATION OPERAND

Not used. MACRO See Operand Field (below).

• Not used.

• MACRO.

• Although not scanned by the Assembler, certain Macro Library Update
utility programs require the following information to appear in the Operand
field:

VERnnn mml ddlyy

where:

nnn = version number,

mm = month of version,

dd = day of version,

yy = year of version.

Note • See appropriate Utility Routine reference manual for the Operating
System being used.

7-2

MEND
Trailer Statement

General Description

Format

Specification Rules

Name Field

Operation Field

Operand Field

Writing Macro
Dejini tions

• This statement signifies to the Assembler that the macro definition
is complete. It must appear as the last coding line of a macro definition.

• The format for the trailer statement is as follows:

NAME OPERATION OPERAND ---
A sequence symbol or blank. MEND Not used.

• A sequence symbol consists of a period followed by a maximum of
seven alphabetic and/or numeric characters, the first of which must be
alphabetic. Sequence symbols are discussed in detail in Section 9.

• MEND.

• Not used.

7-3

Positional Prototype
Statement

General Description

Format

Specifications Rules

Name Field

OPeration Field

Writing Macro
Defini tions

• The positional macro prototype statement must be the second statement
of a macro definition. It specifies the mnemonic operation code and format
of the positional macro operand. The values contained in the macro call
statement will be substituted, on a positional basis, for the symbolic
parameters specified in the prototype statement. The prototype statement
is written in a format similar to other Assembly Language statements.
The Name field, if used, must start in the begin column and must appear
on the same card as the Operation field, and is followed by at least one
blank.

• The format is as follows:

NAME ---

A symbolic parameter
or blank.

OPERATION

A Symbol.

OPERAND

Comma (,) or a maximum
of 49 symbolic parameters,
separated by commas.

• A symbolic parameter or blank. The symbolic parameter is normally
used to produce a label in the generated coding. See Section 6 for discus­
sion of symbolic parameters.

Note:

The parameter associated with the Name field is numbered zero (0).

• The symbol in the Operation Field must appear in every macro call
statement referred to this macro definition. The mnemonic operation code
is a maximum of five alphabetic and/or numeric characters, the first of
which must be alphabetic. The symbol must not be the same as the
mnemonic operation code of a machine instruction, Assembler command,
or macro generator command.

Notes:

1. Source deck definitions override identically named macro library
definitions, which, once discarded, cannot be recalled during 1hi.§
program, but must be redefined if the discarded definition is
needed.

2. The last source deck definition has precedence in case of conflict.

7-4

Operand Field

Examples

Chart 7 -1. Positional
Prototype

Chart 7 -2. Macro
Header, Prototype,

and Trailer

Writing Macro
Dejini tions

• The Operand field may contain a maximum of 49 symbolic parameters
that positionally correspond to values submitted by the programmer by
means of the macro call statement. To allow for a maximum of 49 symbolic
parameters, as many continuation cards as required may be used. How­
ever, a line cannot be continued on the next card unless the Operand field
of the line to be continued extends through column 71, with no embedded
spaces, and column 72 does not contain a space.

Notes:

1. The absence of any parameters in the Operand field is indicated by
an initial comma (,) followed by at least one blank. Comments may
then follow. If there are neither symbolic parameters nor comments,
no entry is required.

2. Symbolic parameters in the Operand field are numbered 1-49.
Parameter 0 (Name field) plus 49 parameters (Operand field) gives
a maximum total of 50 parameters for any prototype statement.

• Chart 7-1 is an example of a macro prototype that contains three
sym bolic parameters: one in the Name field and two in the Operand field.
The mnemonic operation code is MOVE.

• NAME OPERATION OPERAND

&NAME MOVE &TO,&FROM

Chart 7-2 shows the portion of the MOVE macro definition thus far
discussed.

• NAME

&NAME

OPERATION

MACRO

MOVE

MEND

7-5

OPERAND

&TO,&FROM

HEADER

PROTOTYPE

TRAILER

Model Statements

General Description

Specification Rules

Name Field

OPeration Field

Operand Field

Comments

Notes

Writing Macro
Definitions

• Model statements are representations of the statements that replace
the macro call in the object program. A model statement that contains
no symbolic parameters or variable symbols appears in the source pro­
gram in the same format as it appears in the macro definition. If the
model statement contains symbolic parameters or variable symbols, they
are replaced by their values when the model statement is expanded and
inserted into the object program.

Any symbolic parameter appearing in a model statement must be defined
in the prototype of the macro definition.

• One or more model statements must follow the macro prototype state­
ment. A model statement consists of from two to four fields (from left-to­
right): Name field, Operation field, Operand field, and Comments field.
These fields are written in standard Spectra 70 Assembly Language format
as defined in Section 2.

• Contains a symbol, symbolic parameter, sequence symbol, or blank.

• 1. Contains machine or Assembler mnemonic operation code, except
START, END, ISEQ, and ICTL.

2. Contains symbolic parameter (see note 1).

• Symbols, symbolic parameters, other variable symbols, and other
combination of characters (see note 2).

• Any combination of characters preceded by at least one blank (see
note 3) •

• 1. Variable symbols cannot be used to generate:

a. macro generator commands;

b. mnemonics which do not begin with a letter;

c. mnemonics larger than five characters;

d. START, END, ISEQ, or ICTL op codes.

2. The Operand field of all model lines (except an inner macro) must
be completed through the "end" column before a continuation line is
specified. A model statement can be continued on as many cards as
necessary. The maximum number of characters permitted in the
Operand field of a generated model statement is 112. However, if
the model line is an inner macro instruction, the expanded Operand
field may be as large as necessary.

3. Variable symbols appearing in the Comments field, are not replaced
with their corresponding macro call values.

7-6

Notes
(Conl'd)

Examples

Chart 7 -3. Model
Statements within a

Definition

Chart 7 -4. A Macro
Call Statement for

MOVE

Writing Macro
Definitions

4. The card following a REPRO model statement is not scanned by
the macro generator, but merely reproduced.

5. Symbolic parameters used in a model statement must be defined
in the prototype statement.

6. Symbols used in a model statement must be defined in the macro
definition or within the source program.

7. Two ampersand signs (&&) or quotes (") must be used to represent
a single ampersand (&) or quote (') in a character value or self­
defining value. (See chart 7-1, page 7-5, and chart 7-7, page 7-8.)

• The following set of charts illustrate the macro definition of MOVE,
the calling of MOVE, and resultant generated assembly statements. The
macro MOVE allows the programmer to move two separate fields, with
associated lengths to one combined area.

In chart 7-3, five symbolic parameters are defined in the macro
prototype statement. The symbol, PRINT, is defined outside the macro
definition. Note that each of the symbolic parameters used in the model
statements appears in the macro instruction prototype statement.

• NAME OPERATION OPERAND

MACRO HEADER

&NAME MOVE &FRA,&LNA,&FRB,&LNB PROTOTYPE

&NAME MVC PRINT(&LNA),& FRA MODEL

MVC PRINT+&LNA(&LNB) ,&FRB MODEL

MEND TRAILER

The values of the call for the positional macro MOVE in chart 7-4
correspond to the symbolic parameters of the positional macro prototype
statement in chart 7-3. Namely, FIRST, NAME, 20, ADDR, and 15 (chart
7-4) correspond to &TAG, &FRA, &LNA, &FRB, and &LNB in chart 7-3.
Any occurrance of the symbolic parameter in the Name, Operation, or
Operand field of a model statement will be replaced by the corresponding
characters; that is, &TAG is replaced with FIRST: &FRA with NAME, etc.

• NAME OPERATION OPERAND

FIRST MOVE NAME,20,ADDR,15 MACRO CALL

If the macro call statement in chart 7-4 were used in the source
program, the Assembly Language statements shown in chart 7-5 would
be generated.

7-7

Chart 7 -5. Generated
Assembly Statements

Writing Macro
Definitions

• STMNT M SOURCE STATEMENT

00010 M1 FIRST MVC PRINT(20) ,NAME

00011 M1 MVC PRINT+20(15) ,ADDR

Note • The MOVE macro removed from the programmer the clerical burden

Chart 7 -6. Macro Calls
Followed by Their

Generations

Chart 7 -7. Use of
Ampersands in Character

and Self-Defining
Values

of putting the left-hand-end of ADDR in the 21st position (+20) of the
PRINT area. Clerical errors such as transposition are also minimized.
Given chart 7-3 notice the generation when the macro call values change
(chart 7-6).

Each time the programmer uses the macro call statement MOVE in
the same program, the Assembler uses the same macro definition for
interpretation and generation unless superseded by a subsequent definition.
(See chart 7-6.)

• STMNT M SOURCE STATEMENT

00050 SECOND MOVE A,50,B,30 MACRO CALL

00051 M1 SECOND MVC PRINT(5 O),A GENERATED

00052 M1 MVC PRINT+50(30),B STATEMENTS

00100 THIRD MOVE C,5,D,2 MACRO CALL

00101 M1 THIRD MVC PRINT(5),C GENERATED

00102 M1 MVC PRINT+5(2),D STATEMENTS

00125 FOURTH MOVE E,40,F ,80 MACRO CALL

00126 M1 FOURTH MVC PRINT(4 0), E GENERATED

00127 M1 MVC PRINT+40(80) ,F STATEMENTS

• STMNT M SOURCE STATEMENT

01000 &TAG DC C '&&TAGi\IS~NAME ' MODEL
STATEMENT

01025 NAME DC C '&&TAGAISl,\NAME' GENERATED

The constant can be seen graphically as follows in the object code:

&T AGllIS~N AME

7-8

Combining Symbolic
Parameters

(Concatenation)

Examples

Note

Chart 7 -8. Combining
Symbolic Parameters

Writing Macro
Definitions

• The characters represented by symbolic parameters in model state­
ments can be combined with symbols, self-defining values, character
values, and other symbolic parameters to produce symbols, self-defining
values, and character values.

In combining symbolic parameters the following points must be
considered:

1. When a symbolic parameter is followed by a left parenthesis, a
period, an alphabetic character, or a numeric character, a period
must separate the symbolic parameter from the character that
follows:

2. When a symbolic parameter is followed by a single period, the period
does not appear in the generated output.

• In the following examples, assume that &PARAM =A.

EXPRESSION GENERATION

&PARAM.(BC) A(BC)

&PARAM .. BC A.BC

&PARAM.BC ABC

&PARAM.2BC A2BC

BC,&PARAM BC,A

B2&PARAM B2A

&PARAM&PARAM AA

&PARAM .. &PARAM A.A

• The generated value of any expression cannot begin with a single &
(symbolic parameter0rother variable symbol).

For example: Assume &TO = &AR and &FROM = EA. Then &TO&FROM
would produce &AREA, which would be flagged. However if &TO = AR
and &FROM = EA, then &TO&FROM would generate AREA properly.

• STMT M SOURCE STATEMENT

00101 MACRO DEFINITION

00102 &NM ARITH &OP,&TOT,&TAG

00103 &NM&OP &OP.p &TOT.A,&TAG.A

00104 &OP.p &TOT .B,&TAG.B

00105 &OP.P &TOT.C,&TAG.C

00106 MEND

00200 TEST ARITH S, TOTAL ,FIELD CALL

00201 M1 TESTS SP TOTALA,FIELDA GENERATION

00202 M1 SP TOTALB,FIELDB

00203 M1 SP TOTALC ,FIELDC

7-9

Comments Statements

Chart 7 -9. Comments

Writing Macro
Definitions

• Comments statements can be interspersed in the model statements of
a macro definition. Two types of comments statements are permitted.
The first type has an asterisk (*) in column 1, followed by the comment.
This type is generated when the macro definition is assembled. The
generated statement is identical to the statement coded by the programmer.
The second type of comments statement has a period-asterisk (. *) in
columns 1 and 2, followed by the comment. This type documents the macro
definition and is not generated when the macro is assembled. See chart
7-9.

• STMT M SOURCE STATEMENT

00301 MACRO (Definition)

00302 COMNT

00303 *THIS COMMENT WILL NOT GENERATE

00304 *THIS COMMENT WILL GENERATE

00305 MEND

00401 COMNT (Call)

00402 M1 *THIS COMMENT WILL GENERATE (Generated)

7-10

8. MACRO CALL
STATEMENTS

GENERAL
DESCRIPTION

Example

• The macro call is a statement written in an Assembly language source
program that calls the series of statements that make up the macro
definition. This single statement is, in turn, replaced in the program by
the variable number of generated statements from the macro definition.
The statements that replace the macro call are called generated state­
ments. A different call is required for each generation of a macro. This
section discusses the positional macro call statement. The keyword
macro call is explained in Section 11.

• Chart 8-1 contains a part of a sample program utilizing macro calls.
This example shows the macro definitions, macro call statements, and
the generated statements.

The following reference table for chart 8-1 gives the statement numbers
for each macro:

Statement Numbers (STMNT)

Macro Macro Macro Generated
Name Definition Call Statements

GETOD 00002 00426 00427

to and

00006 00428

TERMS 00007 00429 00430

to to

00012 00432

8-1

M aero Call Staternents

Chart 8-1. Macro Definitions, Calls, and Generation

LOCTN OBJ. CODE ... STMNT M SOURCE STATEMENT

00000 00001 PROG START

00002 MACRO

00003 &TAGA GETOD &TIME

00004 &TAGA SVC 23

00005 DC AL4(&TIME)

00006 MEND

00007 MACRO

00008 &TAGB TERMS &NAME

00009 &TAGB SVC 28

00010 SVC 10

00011 DC CL6'&NAME'

00012 MEND

00000 00013 BEGIN BALR 3,0

00002 00014 USING *,3

00426 CALL01 GETOD TIME

01C8A OA 17 00427 M1 CALL01 SVC 23

01C8C 00001AB4 00428 M1 DC AL4(TIME)

00429 CALL02 TERMS PROGB

01C90 OA 1C 00430 M1 CALL02 SVC 28

01C92 OA OA 00431 Ml SVC 10

01C94 D7D9D6C7C240 00432 M1 DC CL6'PROGB'

00000 00810 END BEGIN

8-2

Positional Macro Call
Statement

General Description

Format

Specification Rules

Name Field

OPeration Field

Macro Call Statements

• The placement and order of the operand values in a positional macro
call statement are determined by the placement and order of the symbolic
parameters defined in the operand field of the macro prototype statement.
(See Writing the Macro Definition, Section 7.) During generation, each
symbolic parameter in the Name field, Operation field, or Operand field
of a model statement is replaced by the operand values of the macro calls
that positionally correspond to the symbolic parameters in the macro
prototype statement.

• The format for the positional macro call is as follows:

NAME

A symbol or blank.

OPERATION

Mnemonic operation
code.

OPERAND

Comma (,) or a maximum
of 49 operand values,
separated by commas,
in the form described
below.

• The Name field of a macro call statement may contain a symbol. This
symbol will only be defined if 1) a symbolic parameter appears in the
Name field of the macro prototype statement and; 2) the ~ parameter
appears in the Name field of a generated model statement.

If the Name field is blank, the symbolic parameter in the macro
definition is considered to be a null parameter. (See NULL Parameter,
page 8-6.) The value associated with the Name field is numbered zero
(0).

Note:

In chart 8-1 the symbol CALL01 in the call statement will be defined
because the symbolic parameter &TAGA appears in both the prototype
statement and a model statement. CALL02 is similarly defined.

• The mnemonic operation code is the code assigned to the macro
definition. This entry must contain the same operation code that appears
in the Operation field of the prototype statement.

Note:

In chart 8-1 the operation code "GETOD" is used in STMNT 00003
(prototype) and STMNT 00426 (macro call).

8-3

Operand Field

Operand Rules

Comments

Continuation Rules

forfacro Call Statenlents

• The Operand field may contain a maximum of 49 operand values,
also called operand(s) or value(s), which must be separated by commas.
The placement and order of the values in the macro call is determined
by the placement and order of the symbolic parameters in the operand
field of the macro prototype statement.

Note:

Operand values in the Operand field of the call statement are numbered
1-49. Value 0 (Name field) and 49 values in the Operand field give a
maximum total of 50 operand values for any call statement.

• The following are rules for the Operand field of the macro call:

1. The number of operand values must not exceed 49.

2. A comma must follow each value except the last.

MOVE &FRA,&LNA,&FRB,&LNB

MOVE A,5,B,10

PROTOTYPE

CALL

3. A single comma (,) followed by at least one blank indicates that
no operand exists.

MOVE ,!\L\ CALL WITH NO VALUES

4. The end of the Operand Field is indicated by at least one blank.

MOVE C,2L\L\CALL ENDS WITH 2 VALUES

5. Omitted operands must be indicated by an extra comma (,).

MOVE D"EL\L\CALL BOTH LENGTHS OMITTED

Note:

The operand field of any macro call statement is not scanned if the
Operand field of the associated prototype statement contains no
symbolic parameters.

• Comments may: 1) appear after the blank that indicates the end of all
operands, 2) extend through the end column, and 3) be continued on 2.!!§

additional card.

• The following rules apply to continuing a positional call operand:

1. A line may be continued if the Operand Field to be continued extends
through the end column.

2. To allow for a maximum of 49 values, as many continuation cards
as required may be used.

3. Any operand value may be split between cards.

8-4

Chart 8-2. Example of
Continuation for

Positional Call
Operands and

Comments

Quoted Strings

Call Values {Eight
Characters}

• NAME

FIRST

M aero Call Statements

OPERATION OPERAND

MOVE OPERA,20,OPERB,30,OPERC,5,OP
ERD,15,OPERE,4,OPERF,2,OPER
,3,OPERH,1,OPERI,20,OPERK,lO
,OPERL,lO~ACONTINUED~OPERAND

S,!\COMMENTS,!\&L\SPLIT~VALUES~

• A quoted string is any series of characters enclosed in quotation marks.

A quoted string starts with the first quotation mark in the operand value
and ends with the first even numbered quotation mark that is not followed
immediately by a quotation mark.

Subsequent quoted strings start with the first quotation mark after the
quotation mark that ends the previous quoted string.

X'A'X'B'

Thus, 'A' and 'B' are quoted strings.

• Any combination of up to eight characters can be used as an operand
value of a macro call if the following rules are observed:

1. Quotation marks must always occur in pairs. (See Quoted Strings.)

X'FF'

2. Two quotation marks must be used to represent a quotation mark
enclosed in paired quotation marks.

'CAN"T'

3. If a quotation mark is immediately preceded by the letter L and im­
mediately followed by a letter, the quotation mark is not considered
in determining paired quotation marks.

L'MASTER

4. Parentheses must always occur in pairs, left parenthesis then right
parenthesis.

20(15,0)

5. Paired parentheses can be enclosed in paired parentheses.

(A(2) ,B)

6. A parenthesis that occurs between paired quotation marks is not
considered in determining paired parentheses.

') ,

8-5

Call Values
{Eight Characters}

(Cont'd)

Note

Example

Chart 8-3. Maximum
Length of Call Operands

Null Parameters

Example

Macro Call Statements

7. An equal sign can occur only as the first character in an operand
or within paired quotation marks or paired parentheses.

=X'FF' 'TO=A' E(F = G)

8. A comma indicates the end of an operand unless placed between
paired parentheses or paired quotation marks.

1,2,3

(1,2),3

Three operand values

Two operand values

9. A blank indicates the end of the operand field unless placed between
paired quotation marks.

'3ll0R~4 '

10. Ampersand signs must occur in pairs.

'3ll&&ll 4 '

• The total length of any call operand value must not exceed eight char­
acters, including enclosed spaces.

• Chart 8-3 shows a sample prototype statement and associated call
statement. Each operand value contains the maximum of eight characters.

• NAME OPERATION OPERAND

& NAME EXMPA &A,&B,&C,&D (Prototype)

EXMPA PROGRAMA,'1~&&~2', (15,lOO),X

L'MASTER~CALL~WITHll4llVALUESll

• A null parameter is a parameter whose value is not included in the
macro call, but is included in the prototype statement.

If an operand value is omitted from the Operand field of the macro call,
then the comma that would have separated it from the next value must be
present. If the last value(s), is omitted from a macro call, then the com­
ma(s) separating the last value(s) from the previous value may be omitted.

• The example in chart 8-4 shows a macro prototype followed by several
macro calls with null parameters.

8-6

Chart 8-4. Examples of
Null Parameters

Example

Chart 8-5. A Null
Parameter in a Model

Statement

Macro Call Statements

• NAME OPERATION OPERAND

&NAME MOVE &FRA,&LNA,&FRB,&LNB (Prototype)

*PARAMETER OR OPERAND VALUE ARE AS FOLLOWS

*&NAME=PARAMETER 0, &FRA=1,&LNA=2,&FRB=3,&FRB=4

MOVE ,~ALL PARAMS HAVE NULL VALUES

SECOND MOVE NAME, ,ADDRMPARAMS 2 & 4 ARE NULL

MOVE ,10, ,5MPARAMS 0,1 & 3 ARE NULL

FOURTH MOVE ",20MPARAMS 1, 2, & 3 ARE NULL

• If the symbolic parameter that corresponds to a null parameter is
used in a model statement, a null character value replaces the symbolic
parameter in the generated statement. The result will be the same as
though the symbolic parameter did not appear in the statement.

For example, the first statement that follows is a model statement that
contains the symbolic parameter &A. If the operand value that corresponds
to &A were omitted from the macro, the second statement would be gen­
erated from the model statement. (See chart 8-5.)

• NAME OPERATION OPERAND

NAME&A MVC WORK&A,FIELD&A (Model)

NAME MVC WORK,FIELD (Generated)

8-7

Inner Macro Calls

General Description

Example

Nested Macros

Alacro Call Statenzents

• A macro call may be used as a model statement in a macro definition.
Macro calls used as model statements are called inner macro calls. (See
chart 8-8 and chart 8-9.)

A macro call that is not used as a model statement is referred to as an
outer ~ call. (See chart 8-9.)

The rules for writing inner calls and outer calls are the same.

Any symbolic parameters used in an inner macro call are replaced by
the corresponding values of the outer macro call before the inner call is
scanned or generated.

• In chart 8-9, the symbolic parameter &FILEA is replaced by READER
in STMNTS 00426 and 00430. This value was given in the outer call for
OPEN (STMNT 00425).

• When a macro definition contains a macro call, the macros are said to
be nested. The maximum depth of nesting is three. The following rules
apply to nesting macros:

1. The outer macro is referred to as a first-level macro. Generation
of the first-level macro is identified by Ml in the "M FIELD" on
the assembled listing. (See Appendix A.)

2. The outer macro can generate as many second-level inner macro
calls as are required. Generation of second-level macros is
identified by M2.

3. Each second-level macro can generate as many third-level inner
macro calls as are required. Third-level macro generation is
identified by M3.

4. A third-level macro cannot generate a macro call.

Note • The outer macro and the inner macros can be of the same or different
types, either positional or keyword.

Chart 8-6. ASSGN
Macro on library

• NAME OPERATION

MACRO

ASSGN

CNOP

SVC

DC

MEND

8-8

OPERAND

&CCB

2,4

29

A(&CCB)

ASSGN GENERATION

Macro Call Statements

Chart 8-7. DTYPE Macro on Library

NAME OPERAND

&DEVICE, &R, &AREA

OPERATION

MACRO
DTYPE
SVC 6 DTYPE GENERATION
DC CL6' &DEVICE'
DC AL4(&AREA)
MEND

Chart 8-8. OPEN Macro in Source Deck

STMNT M SOURCE STATEMENT

00004 MACRO
00005 &NAME OPEN &FILEA,&FILEB,&FILEC
00006 ASSGN &FILEA (Inner Call)
00007 DTYPE &FILEA, , STORE (Inner Call)
00008 B &NAME
00009 STORE DS CL1
00010 &NAME CLI STORE, X' 06' IS CARD?
00011 *END OF PARTIAL GENERATION
00070 MEND

Chart 8-9. Macro Containing Two Inner Calls (Second-Level)

STMNT M SOURCE STATEMENT

00425 BEGIN OPEN READER, TAPEA (Outer Call)
00426 M1 ASSGN READER (Inner Call)
00427 M2 CNOP 2~4 ASSGN GENERATION
00428 M2 SVC 29
00429 M2 DC A(READER)
00430 M1 DTYPE READER, , STORE (Inner Call)
00431 M2 SVC 6 DTYPE GENERATION
00432 M2 DC CL6'READER'
00433 M2 DC AL4(STORE)
00434 M1 B BEGIN
00435 M1 STORE DS CL1
00436 M1 BEGIN CLI STORE, X' 06' IS CARD?
00437 M1 *END OF PARTIAL GENERATION

8-9

9. SET AND
CONDITIONAL

COMMANDS

INTRODUCTION • The facilities described in Sections 6, 7, and 8 are sufficient to define
and call a relatively simple macro.

For each of the macro definitions given in the preceding pages, a fixed
series of statements are generated during assembly each time a macro
call is encountered. The only difference in the generated statements of
two or more macro calls for the same macro definition is the specific
values and labels in each statement.

The Set and Conditional commands facilitate the writing of a more
complex macro definition that will produce a tailored set of generated
statements based on the values given in the macro call statement.

The sequence, number, and type of generated model statements can
be based on the presence, absence, or values of: 1) operands in a particular
macro call or, 2) set variable symbols (see below). Thus, the statements
generated for two macro calls for the same macro definition might differ
while the functions performed by the statements are basically the same.

9-1

SET VARIABLE
SYMBOLS

Defining Values

Global Values

Set and Conditional
Commands

• Set symbols and symbolic parameters are two types of variable symbols
discussed in Section 6. Set symbols differ from symbolic parameters in
two ways:

1. How they are assigned values;

2. Whether or not values assigned to them can be changed.

Symbolic parameters are assigned values when the programmer writes
a macro call statement, whereas Set symbols are assigned values when the
programmer uses the SETA, SETB, and SETC macro generator commands
(see Defining Values). Each symbolic parameter is assigned a single value
for one use of a macro definition, whereas the values assigned to each
SETA, SETB, and SETC symbol can change during the use of a macro
definition.

• The Set Commands (SETA, SETC, and SETB) assign arithmetic,
character, and logical values, respectively, to Set variable symbols. If
a value is not assigned by the programmer, values are assumed to be as
follows:

1. SETA variable symbols (arithmetic values) have an assumed value
of zero;

2. SETC variable symbols (character values) have a null character
value, zero bytes in length;

3. SETB variable symbols (logical values) have an assumed value of
false (0).

During the generation of a macro, the results of the operations per­
formed by the Set Commands are contained in a series of specially provided
areas in core storage referred to by Set variable symbols.

• All Set variable symbols can be defined to be global in nature. This
means that after a value has been defined for a particular Set variable
symbol, the value remains in effect for all references to the variable
symbol within the assembly until changed by another Set command.

F or example, if a source program contains three macro calls and a
SETA variable symbol is defined to have the value 6 in the macro def­
inition called by the first macro call, the value 6 is used for the occurrence
of the same SETA variable symbol within the macro definitions called by
the other two macro calls unless changed. The programmer can, however,
redefine the SETA variable symbol to have a value that differs from 6.

9-2

local Values

Notes

Uses for Set Symbols

Where Set Symbols
are Used

Set and Conditional
Commands

• Two groups of Set variable symbols, SETA and SETB, can be defined to
be local in nature. This means that after a value has been defined for a
particular SETA or SETB variable symbol, the value remains in effect for
all reference s to the variable symbol within the macro in which it was
defined. After the macro is generated, the value of the SETA or SETB
variable symbol is reset to zero or false.

For example, if a source program consists of two macro calls, and a
SETB variable symbol is assigned a value of true in the macro definition
called by the first macro call, the SETB variable symbol is reset to a
value of false after the called macro is generated.

• 1. SETC variable symbols (character) must be defined as global.

2. When many calls are made for the same macro definition, it is
sometimes helpful to use a binary global switch (see SETB) to
generate a subroutine only once. The binary global is false initially.
The macro definition sets the global switch to true after generation.
Since a test of the switch will signal a true condition, the next call
will generate only linkage to the already generated subroutine.

3. When macros are nested (see page 8-8), local SETA and SETB
variable symbols defined in the outer (containing) macro are reset
to zero and false, respectively, immediately before the inner (con­
tained) macro is generated. After the inner macro has been generated
the local variable symbols are reset to their previous values.

• The Set commands allow arithmetic calculation, character manipulation,
and the setting and testing of binary switches on the basis of logical and
relational expressions.

The Conditional commands enable the programmer to tailor the state­
ments generated by defining, conditionally or unconditionally, the next
statement in the macro definition to be executed or generated. They also
provide the means to generate error messages if a required condition is not
met.

• Set variable symbols can be used in model statements, Set commands
and Conditional commands.

Set variable symbols can be used in the Name, Operation, and Operand
fields of macro definition statements with thetollowing restrictions:

1. They cannot be used to generate a sequence symbol, (see page 9-22)
a Set variable symbol, or a symbolic parameter;

2. They cannot appear in a macro prototype statement;

3. The SETC variable symbol can be used in the Operand field of a
SETA statement only if the character string is composed of positive
decimal digits. (See page 9-4.)

Note • The functions of the Set and Conditional commands are interrelated,
because the generated output is usually tailored by the use of Conditional
commands based on the re sults obtained from the values generated by the
Set commands. Their practical use is more clearly shown in the examples
in the Conditional commands section.

9-3

SET COMMANDS

SETA
Set Arith metic

General Description

Format

Specification Rules

Name Field

OPeration Field

Operand Field

Set and Conditional
COlnmands

• The SETA command assigns an arithmetic value to a SETA variable
symbol. The programmer can change the value assigned to a SETA
variable symbol by using another SETA command with the same variable
symbol in the Name field.

The arithmetic value defined by a SETA instruction is represented in a
model statement by the SETA variable symbol assigned. When a SETA
variable symbol is detected during macro generation, it is replaced by the
value of the symbol converted to a positive decimal, self-defining value
with leading zeros dropped. (If the arithmetic value is zero, it will be
converted to a single zero.)

• The format of the SETA instruction is as follows:

NAME

A SETA variable symbol.

OPERATION

SETA

OPERAND

An arithmetic expression.

• 1. The SETA variable symbol defined in this field can be either local or
global.

2. A global SETA variable symbol has the format &AGn, where n = 0 to
15.

3. A local SETA variable symbol has the format &ALn, where n = 0
to 15.

4. Therefore, up to 16 global and 16 local variable symbols can be
defined. Each arithmetic value is 24 bits in length and is initially
zero.

• SETA.

• 1. The expression in the Operand field can consist of a combination of
terms in accordance with the rules given for expressions in Section 2.

2. The terms can be positive decimal self-defining values, symbolic
parameters, or Set variable symbols that represent positi ve decimal
self-defining values.

3. The arithmetic operators that can be used to combine terms are +
(addition), - (subtraction), * (multiplication), and / (division).

4. An expression cannot contain two terms in succession or two
operators in succession. An expression cannot begin with an operator.

5. Substrings are permitted. (See Substring Notation, page 9-10.)

9-4

Invalid Value

Range of Values

Changing Values

Division

Examples

Set and Conditional
Commands

• If the operand of a SETA command is invalid or the result is invalid, a
value of zero is assigned to the SETA variable symbol in the Name field.

• 1. The final value that can be assigned to a SETA Variable symbol must
be positive. It can range from 0 to 16,777,215 (224 -1).

2. Intermediate calculation values ran range from -2,147,483,648
(_2 31) to 2,147,483,647 (2 31_1).

• 1. If the programmer has assigned an arithmetic value to a SETA
variable symbol, he can change the value assigned by using the SETA
variable symbol in the Name field of another SETA statement.

2. If a SETA variable symbol has been used in the Name field of more
than one SETA statement, the value substituted for the SETA variable
symbol is the last value assigned to it. (See chart 9-1.)

• 1. Division by zero results in a value of zero.

2. In division, only the integer portion of the quotient is retained. For
example, 9 divided by 2 gives the result of 4. The fractional portion
of 1/2 is dropped.

• The following are examples of expressions that can be used in the
Operand field of a SETA command.

150

&AL1+5

&AG2 -10

&AL3*2

&AG4/4

&LENGTH

In chart 9-1, the MOVE macro has been enlarged to illustrate SETA
commands, changing the same Set variable symbol and ability to Move
three fields.

It is assumed that there will be 10 spaces preceding the first field and
5 spaces after each field. Therefore, &AL1 will contain the number of
spaces; &AL2 will contain the length of the last field moved; and AL3 will
contain the position of the next field to be moved.

In chart 9-2 the call statement and generated statements are given for the
MOVE macro. Prior to each generated statement, the value of each
arithmetic local is shown.

9-5

Chart 9-1. SETA
Commands with

Changing Values

Chart 9-2. SETA
Generation with
Present Values

• NAME

&AL1

&AL2

&AL3

&AL1

&AL2

&AL3

&AL2

&AL3

• STMNT

00100

OPERATION

MACRO

MOVE

SETA

SETA

SETA

MVC

SETA

SETA

SETA

MVC

SETA

SETA

MVC

MEND

M

Set and Conditional
Commands

OPERAND

&FRA,&LNA,&FRB,&LNB,&FRC,&LNC

10

o

&AL3+ &AL1 + &AL2

INITIAL SPACING

LAST LENGTH

NEXT POSITION

PRINT + &AL3(&LNA) , &FRA

5

&LNA

&AL3 + &AL2 + &AL1

PRINT+ &AL3(&LNB), &FRB

&LNB

&AL3 + &AL2 + &AL1

PRINT + &AL3(&LNC) , &FRC

SOURCE STATEMENT

MOVE NAME,20,ADDR,15,CITY,25

&AL1 = 10; &AL2 = 0; &AL3 = 0+10+0 or 10.

00101 M1 MVC PRINT+10(20) ,NAME

&AL1=5; &AL2=20; &AL3=10+20+5 or 35.

00102 M1 MVC PRINT+35 (15) ,ADDR

&AL1=5; &AL2=15; &AL3=35+15+5 or 55.

00103 M1 MVC PRINT+55 (25) ,CITY

9-6

SETC
Set Character

General Description

Format

Specification Rules

Name Field

OPeration Field

Operand Field

Set and Conditional
Commands

• The SETC command assigns a character value to a SETC variable
symbol. The programmer can change the character value assigned to a
SETC variable by using another SETC command with the same variable
symbol in the Name field. The characters specified in the Operand field
are assigned to the SETC variable symbol designated in the Name field.

• The format for the SETC instruction is as follows:

NAME

A SETC variable symbol.

OPERATION

SETC

OPERAND

Up to eight characters
enclosed by a pair of
single quote marks.

• 1. The SETC variable symbol in the Name field is global in nature. It
has the form &CGn, where n = 0-15.

2. The SETC command can define up to 16 different global character
values. Each global character value can vary from zero-to-eight
bytes in size. Each character value is initially a null character value
of zero bytes.

3. If a SETC variable symbol has been used in the Name field of more
than one SETC statement, the value substituted for the SETC variable
symbol is the last value assigned to it. (See chart 9-4.)

4. A SETC variable symbol used in the name field of a SETC statement
can be used in the operand field of SETA, SETB, SETC, AIF, and
AIFB statements.

• SETC.

• 1. The characters in the Operand field are assigned to the SETC
variable symbol in the Name field and are substituted for the SETC
variable symbol when it is used. (See chart 9-3.) The operand can
consist of a string of characters, a previously defined Set variable
symbol, symbolic parameters or any combination thereof and must
be enclosed in a pair of single quotation marks.

2. Set variable symbols can be combined with other characters in the
Operand field of a SE TC instruction according to the general rules
for combining symbolic parameters with other characters.

3. More than one character value can be combined into a single char­
acter value by placing a period between the termination quotation
mark of one character value and the opening quotation mark of the
next character value. (See chart 9-4.)

9-7

Operand Field
(Cont'd)

Examples

Chart 9-3. SETC
Command, Last Value

Substituted

Chart 9-4. SETC
Command, Combination

Chart 9-5. SETC
Command, Two Quotes

Chart 9-6. SETC
Command, Two

Ampersands

Chart 9-7. SETC
Command, Using

SETA Symbol

Set and Conditional
Commands

4. Two single quotation marks must be used to represent a quotation
mark that is part of a character expression enclosed in quotation
marks. (See chart 9-5.)

5. Two ampersands must be used to represent an ampersand that is
not part of a variable symbol. Both ampersands become part of the
character value assigned by the SETC symbol. (See chart 9-6.)

6. A SETA variable symbol that has been assigned an arithmetic value
by a SETA statement can be used in the Operand field of a SETC
statement. It will be replaced by the value of the SETA variable
symbol converted to a decimal self-defining value with any leading
zeros dropped. (See chart 9-7.)

+ Charts 9-3 through 9-7 illustrate the preceding Operand field rules.

+ NAME OPERATION OPERAND

&CG1 SETC 'NAME' GENERATES NAME

&CG1 SETC 'ADDR' GENERATES ADDR

+ NAME OPERATION OPERAND

&CG2 SETC '&CG1 '. 'ONE' GEN.=ADDRONE

+ NAME OPERATION OPERAND

&CG3 SETC 'L"NAME' GEN. =L'NAME

+ NAME OPERATION OPERAND

&CG4 SETC 'TWO&&' GEN. =TWO&&

+ NAME OPERATION OPERAND

&AL4 SETA 12

&CG5 SETC 'AREA '. '&AL4' GEN. =AREA12

9-8

Chart 9-8. MOVE
Macro Using SETC

Chart 9-9. MOVE
Macro With SETC

Generation

•

•

Set and Conditional
Commands

NAME OPERATION OPERAND

MACRO

MOVE &FRA,&LNA &FRB,&LNB

&CG1 SETC 'PRINT'

&CG2 SETC 'NAME'

MVC &CG1(&LNA),&CG2

&CG2 SETC 'ADDR'

MVC &CG1 + &LNA(&LNB),&CG2

MEND

STMNT M SOURCE STATEMENT

00200 MOVE ,20" 15

00201 M1 MVC PRINT(20) ,NAME

00202 M1 MVC PRINT + 20(15), ADDR

9-9

Substring Notation

Format

Specification Rules

Name Field

OPeration Field

Operand Field

Notes

Set and Conditional
Cornrnands

• The Operand field of a SETC or SETA variable symbol command can
be composed of a substring. Substrings permit the programmer to assign
to a SETC or SETA variable symbol a portion of the value assigned to
another character string .

• The format for the SETC and SETA substring is as follows:

NAME OPERATION OPERAND

~ SETC 1.

)
\, or

SETA~

A set variable symbol. ICC ... CI(X, Y)

• See SETC (page 9-7) or SETA (page 9-4).

• SETC or SETA.

• 1. The Operand field consists of a character string ICC •.• C I followed
by two arithmetic expressions (X,Y) enclosed by parentheses and
must be separated by a comma (see 4 below).

2. ICC ..• C I may be: (a) other Set variable symbols; (b) symbolic
parameters; (c) self-defining values; or (d) any valid combination
thereof.

3. The calculated character string ICC ... C I to be extracted from an
intermediate string must not exceed eight characters. An intermed­
iate string must not exceed sixteen characters in length at anyone
time.

4. X and Y may be any valid arithmetic expressions which are allowed
in the Operand field of a SETA command, where:

X = the position of the first character (LHE) in the character string
to be assigned to the SETC or SETA symbol in the Name field.

Y the number of consecutive characters to be assigned to the SETC
or SET A symbol in the Name field. The characters must be
numeric if SETA.

• 1. If ICC ... C I is a SETA variable symbol the leading zeros are ignored
in determining X.

2. The maximum value for X is 16.

3. The maximum value for Y is 8.

9-10

Chart 9-10. SETC and
SET A Substrings

Note

Combining Substrings
SETC

Chart 9-11. SETC
Substring Follows Value

Notes

Chart 9-12. SETC
Substring Precedes

Value

• NAME OPERATION

&CG1 SETC

&AL1 SETA

&AL2 SETA

&CG2 SETC

&CG3 SETC

&AL3 SETA

OPERAND

'ABCDEFGH'

4

34567

'&CG1 '(1,3)

'&CG1 '(2,&AL1)

'&AL2 '(2,4)

Set and Conditional
COlnmands

GENERATES

ABCDEFGH

4

34567

ABC

BCDE

4567

• The values of &CG2,&CG3, and &AL3 are generated by valid substring
notations.

• Substrings can be obtained in the Operand field with other character
values in a SETC command. (Also see Combining Substrings - SETA,
page 9-00.)

•

1. If a substring follows a character value that is not a substring, the
two can be combined by placing a period between the first character
value and the substring.

NAME OPERATION OPERAND GENERATES

&CG1 SETC ~BCDEFGH' ABCDEFGH

&CG2 SETC 'XYZ '. '&CG1 '(2,4) XYZBCDE

&CG3 SETC 'XYZ&CG1 '(2 ,4) YZAB

• 1. The value of &CG2 illustrates that only &CG1 is substringed, whereas
the value of &CG3 includes the constant XYZ before substringing.

•

2. If the substring precedes another character value, the two can be
combined by placing the terminating parenthesis of the substring
and the opening quote of the next character value adjacent to one
another.

NAME OPERATION OPERAND GENERATES

&CG1 SETC 'ABCDEFGH' ABCDEFGH

&CG2 SETC '&CG1 '(2,4) 'XYZ' BCDEXYZ

&CG3 SETC '&CG1 '(2,4) '&CG1 '(3,4) BCDECDEF

9-11

Combining Substrings
SETA

Chart 9-13. SETA
Substrings

Note

Use of Substrings

Example

Chart 9-14. MOVE
Macro Utilizing

Substrings

Set and Conditional
Cornnzands

• Combining substrings in the Operand field of a SETA command requires
that there cannot be two terms in succession. Thus, only one term may be
present, or each term present must be separated by an operator (+, -, *,
or I).

• NAME OPERATION OPERAND GENERATES

&AL1 SETA 2345678 2345678

&AL2 SETA 4 4

&AL3 SETA 2 2

&AL4 SETA '&AL1 '(2,4) 3456

&AL5 SETA '&AL1 '(&AL2 ,&AL3) 56

&AL6 SETA '&AL2 '+ '&AL1 '(4,2)+5 65

&AL7 SETA '2345678 '(&AL2 ,&AL2) 5678

&AL8 SETA '2345678' (2,5) 34567

• The values of &AL4 through &AL8 are generated by valid substrings
for SETA commands.

• Substrings are useful in assigning a portion of an existing variable
symbol, symbolic parameter, or value to another variable symbol.

• In chart 9-14 the MOVE macro contains two operand symbolic param­
eters representing four values. The substring technique is used to separate
the values. &FROM represents two 4-character NAMES; &LENGTH
represents two 3-character length values.

• NAME OPERATION OPERAND

MACRO

&NAME MOVE &FROM,&LENGTH

&CG1 SETC '&FROM '(1,4) FIRST NAME

&AL1 SETA '&LENGTH '(1,3) FIRST LENGTH

&CG2 SETC '&FROM '(5 ,4) SECOND NAME

&AL2 SETA '&LENGTH '(4,3) SECOND LENGTH

&CG3 SETC 'PRINT' CONST ANT PRINT

&NAME MVC &CG3(&AL1), &CG1

MVC &CG3+ &AL1(&AL2), &CG2

MEND

In chart 9-15 the call and generation for the macro definition in chart
9-14 is shown.

9-12

Chart 9-15. Substring
Macro Generation

• STMNT

00009

00010

00011

M

M1

M1

Set and Conditional
Commands

SOURCE STATEMENT

FIRST MOVE NAMEADDR,020015

FIRST MVC PRINT(20) ,NAME

MVC PRINT+20(15) ,ADDR

Note • Chart 9-15 gives the same generation as did chart 7-5 (page 7-8).

9-13

SETB
Set Binary

General Description

Format

Specification Rules

Name Field

OPeration Field

Operand Field

Invalid Value

Note

Set and Conditional
Commands

• The SETB command assigns the value true or false to a SETB variable
symbol. The programmer can change the value assigned to a SETB
variable symbol by using another SETB command.

The logical expression or relational expression in the Operand field is
evaluated to determine if it is true or false, and the value 1 or 0, res­
pectively, is assigned to the SETB variable symbol appearing in the name
field.

• The format for the SETB instruction is as follows:

NAME

A SETB variable symbol.

OPERATION OPERAND

SETB A 0 or aI, or a logical or
relational expression en­
closed within parentheses.

• 1. The SETB variable symbol in this field can be either local or global.

2. A global SETB variable symbol has the format &BGn, where
n = 0-127.

3. A local SETB variable symbol has the format &BLn, where n = 0-127.

4. There are a maximum of 128 global and 128 local variable symbols
which are initially set to zero (false).

• SETB.

• The Operand field may consist of either a logical expression or a
relational expression enclosed by parentheses. Single-termed logical
expressions 0 or 1 may have the parentheses omitted.

• If the operand of aSETB is invalid or the result is invalid, a value of zero
(false) is assigned to the SETB variable symbol in the Name field.

• The logical value that has been assigned to a SETB variable symbol is
substituted for the SETB variable symbol when it is used in the Operand
field of a SETB, AIF, or AIFB (see pages 9-23 and 9-25) conditional assem­
bly instruction. If the variable symbol is used in any other assembly
language statement, the logical value is converted to an integer. The logical
value True is converted to the integer I, and the logical value False is
converted to the integer O.

9-14

Logical Expressions

Single Term Logical
Expres sions

Chart 9-16. Examples of
Single Term Logical SETB

Notes

Set and Conditional
Commands

• A logical expression can consist of one of the following:

1. Single term.

2. Two or more terms separated by one of the logical operators NOT,
AND, or OR.

3. One or more sequences of logical expressions enclosed in paren­
theses.

The following procedure is used to evaluate a logical expression in the
operand field of a SETB instruction:

1. Each term (that is, arithmetic relation, character relation, or SETB
symbol) is evaluated and given its logical value (true or false).

2. The logical operations are performed moving from left to right. The
priority of performing operators is: NOT, AND, and then OR.

3. The computed result is the value assigned to the SETB symbol in
the Name field (see Logical Operator Evaluation, page 9-21).

4. The parenthesized portion or portions of a logical expression are
evaluated before the rest of the terms in the expression are evalu­
ated. If a sequence of parenthesized terms appears within another
parenthesized sequence, the innermost sequence is evaluated first.

• If a logical expression consists of a single term, the term must be one
of the following:

1. The value of 0 (false);

2. The value 1 (true);

3. SETB variable symbol;

4. The operator NOT followed by one SETB symbol;

• NAME OPERATION OPERAND GENERATES

&BG1 SETB 1 1 = True

&BL2 SETB 0 o = False

&BG3 SETB (&BG1) 1 = True

&BL4 SETN (BL2&) o = False

&BG5 SETB (NOT &BL2) 1 = True

&BL6 SETB (NOT &BG1) o = False

• &BG3 and &BL4 take on the same value as the SETB symbol in the
Operand field. &BG5 and &BL6 take on the opposite value because of the
NOT. A symbolic parameter may not be used.

9-15

Two-Term Logical
Expression

Set and Conditional
Comlnands

• In a logical expression consisting of two terms, the terms must be
SETB variable symbols, separated by at least one operator and enclosed
in parentheses.

Note • The following are rules for two-term expressions:

Multiterm Logical
Expressions

Note

Example

Assume &BL1 = 1 (True), and &BG2 = 0 (False).

1. The two terms must be separated by an operator.

&BL3 SETB (&BL1~OR~&BG2)

Generates 1 or True

2. Two operators may appear in succession only if the pair of operators
are AND~NOT or OR~NOT.

&BG4 SETB (&BG1~AND~NOT ~&BL2)

Generates 1 or true.

3. NOT may begin an expression, whereas AND and OR cannot.

&BL5 SETB (NOT ~&BL1~OR~&BG2)

Generates 0 or False.

4. The logical operators must be separated from the terms they relate
by at least one blank.

&BG6 SETB (&BL1~AND~&BG2)

Generates 0 or False.

5. The entire logical expression must be enclosed with parentheses.

&BL7 SETB (&BL1~OR~NOT~&BG2)

Generates 1 or True.

• When a logical expression consists of more than two terms, three levels
of parentheses and only one continuation card are permitted. The expres­
sion is examined from the innermost parentheses outward.

Within each pair of parentheses the logical operators are performed in
the following order: NOT, AND, OR. Each set of operators are performed
from left to right. (See chart 9-17.)

• The rules for two-term expression apply to multiterm expressions.

• In chart 9-17, two logical expressions, &BG5 and &BG6 have two dif­
ferent values by adding an inner set of parentheses (nested).

9-16

Chart 9-17. Nested
Multiterm Logical

Expressions

Relational Expressions

Example

Chart 9-18. Relational
SETB Expressions

• NAME OPERATION

&BG1 SETB

&BG2 SETB

&BG3 SETB

&BG4 SETB

&BG5 SETB

&BG6 SETB

Set and Conditional
Commands

OPERAND GENERATES

1 1 = True

0 o = False

1 1 = True

0 o = False

(&BG1~OR~&BG2~AND~&BG4) 1 = True

((&BG1~OR~&BG2)~AND~&BG4) o = False

• A relational expression can be an arithmetic relation or a character
relation.

A relational expression cannot contain two values in succession. A
relational expression cannot contain two operators in succession. The
relational operators must be separated from the values they relate by at
least one blank.

The relational operators are EQ (equal), NE (not equal), LT (less than),
GT (greater than), LE (less than or equal to), and GE (greater than or equal
to).

• Chart 9-18 illustrates several examples of valid arithmetic and char­
acter relations.

• NAME OPERATION OPERAND TYPE OF COMPARISON

&BL1 SETB (&AL4~EQ~12) Arithmetic

&BL2 SETB (&LNMLT~256) Arithmetic

&BL3 SETB ('&CG1 '~NE ~'PRINT ') Character

&BL4 SETB ('&FRA '~EQ~'NAME ') Character

Note • The type of expressions in the relation determines the nature of the
comparison that is involved. A logical compare results when all the rela­
tional expressions are considered as character; that is, all the expressions
are enclosed in single quotes. All other cases result in an arithmetic
(algebraic) comparison.

9-17

Arithmetic Relational
Expressions

Note

Examples

Chart 9-19. SETB
Arithmetic Relational

Expressions

Character Relational
Expressions

Set and Conditional
COlnlnands

• An arithmetic relation consists of two arithmetic expressions connected
by a relational operator and must be enclosed within parentheses. The
terms are not enclosed by single quotes.

An arithmetic expression can be a SETA variable symbol, a SETC
variable symbol, or any valid operand of a SETA statement. If a SETC
variable symbol is used in an arithmetic relation, the SETC variable
symbol must represent a positive decimal arithmetic value.

An arithmetic or algebraic comparison is made between two arithmetic
expressions by performing a Compare Word (RRformat) instruction on the
values involved.

• If any of the terms of a relational expression are not enclosed by single
quotes, the entire expression is considered to be arithmetic.

• Chart 9-19 illustrates valid arithmetic relational expressions. Assume
the following values: &AL1 = 23; &CG1 = 123; &LNA = 10.

• NAME OPERATION OPERAND GENERATES

&BL5 SETB (&AL1~GT~5) True

&BL6 SETB (&AL1~EQ~ '&CG1 '(2,2)) True

&BL7 SETB (&LNA+5~GE~20) False

&BL8 SETB ALl +&LN A*2~GT ~3*&CG1 +4) False

• A character relation consists of two character values connected by a
relational operator. Each character value must be enclosed by single
quotation marks. A character value can be a SET A variable symbol, a
SETC variable symbol, or any valid operand of a SETC statement, includ­
ing substrings. If a SETA variable symbol is used in a character relation,
the SET A variable symbol is treated as a character value. The maximum
length of any character value used in a character relation is eight char­
acters. If two character values in a character relation are of unequal
length, the longer value is always considered greater, regardless of the
content of the two values.

A logical compare is made by first determining if the expressions are
of equal length; if not, the longer is considered greater and no further
testing is performed. If the expressions are equal in length, the two char­
acter strings are compared and their relationship determined.

Note • Unless all of the terms within an expression are enclosed by single
quotes, an arithmetic relation is assumed.

9-18

Examples

Chart 9-20. SETB
Character Relational

Expressions

Complex Relational
Expressions

Examples

Chart 9-21. Complex
SETB Relational

Expressions

Set and Conditional
Commands

• Chart 9-20 illustrates valid character relational expressions. Assume
the following values: &CG 1 = DOG, &CG2 = CAT, &CG3 = CAGE.

• NAME OPERATION OPERAND GENERATES

&BL9 SETB ('&CG1 'LlGT Ll '&CG2 ') True

&BL10 SETB (' &CGI 'LlGT Ll '&CG3 ') False

&BL11 SETB ('&CGl 'LlGT Ll '&CG3 '(1,3)) True

• When the Operand field of a SETB command contains a combination of
logical and relational expressions, the relational expressions are evaluated
first according to the rules for relational expressions. Similarly, the
logical expressions are then evaluated.

• Chart 9-21 shows two valid complex expressions. Assume the same
values as chart 9-19 and chart 9-20.

• NAME OPERATION OPERAND GENERATES

&BL12 SETB (NOTLl(&BL8LlANDLl True
&LNA+5LlGELl20))

&BL13 SETB (&BL8LlANDLl('&CG2 'Ll False
EQLl 'CAT 'LlORLl&BL6))

9-19

Set and Conditional
Commands

T esti n9 for Null
Parameters

• The SETB, AIF, andAIFB commands can be used to test for the presence
of a null parameter. (See pages 9-23 and 9-25.) This is done by placing the
symbolic parameter to be tested in the Operand field of a AIF, AIFB, or
SETB command and equating (EQ) it to a null character string. A null
character string is represented by two single quote marks. If the parameter
value is present in the macro call, the result is false or O. If the param­
eter value is not present in the macro call, the result is true or 1. (If NE
is used the results are reversed.)

Chart 9-22. Testing for Null Parameters

NAME OPERATION OPERAND COMMENTS

MACRO

&NAME ADD &FROMl, &FROM2, &SUM PROTOTYPE

&BGl SETB (' &FROMl'6E~") IS &FROMl = NUL L

&BG2 SETB (' &FROM2' 6EQ6") IS &FROM2 = NULL

&BG3 SETB (' &FROMl'6NE6") IS &FROMl =f NULL

&BG4 SETB (' &FROM2'6NE6") IS &FROM2 =f NULL

MEND

FIRST ADD FIELDl, ,FIELD3

*&BGl ZERO(O) L e. FALSE FROMl ISN'T NULL

*&BG2 ONE(l) L e. TRUE FROM2 IS NULL

*&BG3 = ONE(l) L e. TRUE FROMl IS NOT NULL

*&BG4 = ZERO(O) Le. FALSE - FROM2 ISN'T NOT NULL

9-20

Logical Operator
Evaluation

Chart 9-23. Boolean
Logic for Logical

Operators

Set and Conditional
Commands

• A term(s) in conjunction with a logical operator is (are) evaluated ac­
cording to chart 9-23 of Boolean logic.

• Operator(s) First Term Second Term Value of Expression

NOT FALSE TRUE

TRUE FALSE

AND TRUE TRUE TRUE

FALSE FALSE FALSE

TRUE FALSE FALSE

FALSE TRUE FALSE

OR TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

AND NOT TRUE FALSE TRUE

TRUE TRUE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

OR NOT TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE FALSE TRUE

FALSE TRUE FALSE

9-21

CONDITIONAL
COMMANDS

Sequence Symbols

Set and Conditional
Commands

• The conditional commands enable the programmer to alter the sequence
in which the statements of a macro definition will be generated and thus
executed.

The AGO or AGOB command is similar to an unconditional branch
instruction. It indicates, by means of a sequence symbol, the next statement
to be processed by the macro generator.

The AIF or AIFB command is similar to a conditional branch instruction.
It indicates, by means of the logical value obtained from the operand of a
SETB statement and a sequence symbol, the next statement to be processed
by the macro generator if the condition is true.

To assist the programmer in validating complex macro logic, a trace
mode is available to indicate on the assembly listing nongenerative con­
ditional transfers. (See MTRAC, Section 10.)

The ANOP command is essentially a no-op instruction that is used with
the AGO, AGOB, AIF, and AIFB conditional commands.

• The Name field of a statement may contain a sequence symbol. The
sequence symbol can be used in the Operand field of an AIF, AIFB, AGO,
or AGOB statement to refer to the statement named by the sequence
symbol.

A sequence symbol consists of a period followed by a maximum of
seven alphabetic and/or numeric characters, the first of which must be
alphabetic. All sequence symbols used in a macro definition must be
different. A sequence symbol that appears in the Name field can be
referred to only by AIF, AIFB, AGO, and AGOB commands in the same
macro definition.

The following are valid sequence symbols:

.READER

.LOOP2

.N

.A23456

.X4F2

.84

.AG4

.SYSTEM

.BL16

A sequence symbol can be used in the Name field of any model state­
ment within a macro definition that does not require a symbol or Set
variable symbol, except a macro definition header statement (MACRO)
or a macro prototype statement. Sequence symbols can then be used in
the Operand field of an AIF, AIFB, AGO or AGOB command to refer to
the statement named by the sequence symbol. A sequence symbol appear­
ing in the Name field of a model statement doe s not appear in the generated
statement.

If a sequence symbol appears in the Name field of an inner macro call
in a macro definition, and the corresponding macro prototype contains a
symbolic parameter in the Name field; the sequence symbol does not
replace the symbolic parameter in the model statement.

Note • A sequence symbol that is used in the Name field can be referred to
only by AIF, AIFB, AGO, and AGOB in the same definition.

9-22

AIF
Conditional Branch

General Description

Format

Specification Rules

Name Field

OPeration Field

Operand Field

Set and Conditional
Commands

• The AIF command alters conditionally the sequence in which macro
definition statements are executed or generated in the object program.
The sequence symbol in the Operand field must be in the Name field of
any macro definition statement following the AIF command.

• The format of the AIF command is as follows:

NAME

A sequence symbol
or blank.

OPERA TION OPERAND

AIF A logical or relational
expression enclosed in
parentheses followed by
a sequence symbol.

• A sequence symbol or blank.

• AIF.

• Any logical or relational expression that can be used in the Operand
field of a SETB command can be used as the expression in the Operand
field of an AIF command including testing for null parameter values. The
logical or relational expression must be enclosed in parentheses. The
sequence symbol in the Operand field must immediately follow the closing
parentheses of the logical or relational expression. The sequence symbol
in the Operand field must be in the Name field of any macro definition
statement following the AIF command.

The logical or relational expression in the Operand field is evaluated
to determine if it is true (1) or false (0). If the expression is true, the
macro definition statement named by the sequence symbol in the Operand
field is the next statement processed by the macro generator. If the
expression is false, the next sequential statement is processed by the
macro generator.

The following are examples of valid Operand fields of the AIF command:

(&BG12~AND~&BL10).LOOP

(&AL10~EQ~&AG6).LAST

Note • The statement following the REPRO statement is not scanned during
macro generation.

9-23

Example

Chart 9-24. Use of AIF
Command

Chart 9-25. AIF
Changes Generations

Se t and Conditional
Co In}}Z ands

• The example in chart 9-24 illustrates the use of the AIF Conditional
command. It also illustrates the use of global Set variable symbols to
carry values between macro calls in the same assembly. The first time
the macro call appears in an assembly, record area is defined. The
generated instructions of all additional calls of this macro definition in
an assembly use the record area specified in the first appearance of the
macro call.

Note that the Band DS statements are not generated for the second
macro call, because when the first macro was generated, &BG100 was' set
to 1.

•

Note:

Although the prototype allows for two fields, &FRB is tested for null.
Thus, the second macro call generates only one MVC statement.

NAME

&BG100

&CG15

&CG15

.GO

.END

OPERATION

MACRO

MOVE

AIF

SETB

SETC

B

DS

MVC

AIF

MVC

MEND

OPERAND

&FRA,&LNA,&FRB,&LNB

(&BG100).GO

1

'RECORD'

&CG15+150

CL150

&CG15(&LNA) ,&FRA

('&FRB '~EQ~ ").END

&CG15+&LNA(&LNB) ,&FRB

Chart 9-25 shows the macro calls and generation for the definition in
chart 9-24.

• STMNT M SOURCE STATEMENT

00020 MOVE NAME ,20,ADDR, 15 CALL

00021 M1 B RECORD+150

00022 M1 RECORD DS CL150

00023 M1 MVC RECORD(20) ,NAME

00024 M1 MVC RECORD+2 O(15) ,ADDR

00025 MOVE A,50 CALL

00026 M1 MVC RECORD(50),A

9-24

AIFB
Conditional Branch

Backward

General Description

Format

Specification Rules

Name Field

Operation Field

Operand Field

Example

Set and Conditional
Commands

• The AIFB command alters conditionally the sequence in which macro
definition statements are executed or generated in the object program. The
AIFB command is identical to the AIF command, except that the sequence
symbol in the Operand field must be in the Name field of any macro defi­
nition statement preceding the AIF B command.

• The format for the AIFB command is as follows:

NAME

A sequence symbol
or blank.

OPERA TION OPERAND

AIF B A logical or relational
expression enclosed in
parentheses followed
by a sequence symbol.

• The rules for the Name field and Operand field are identical to those
given under AIF on page 9-23, except as noted in the Operand fields.

• Sequence symbol or blank.

• AIFB.

• A logical or relational expression followed by a sequence symbol,
which appears in the Name field of any macro definition statement pre­
ceding the AIF B command.

• The example in chart 9-26 illustrates the use of the AIFB command.
The function of the macro definition is to move a speCified number of
bytes of information from one location in core storage to another. The
macro mnemonic is MOVER. The first parameter represents the number
of bytes to be moved. The second parameter speCifies the first position
of the field to be filled. The third parameter specifies the location of the
first byte to be moved. Note that the value of the local variable symbol
&ALl is initially zero.

9-25

Chart 9-26. AIFB
Command

Chart 9-27. AIFB
Generations

• NAME

&AL2

.LOOP

&AL1

&AL2

.LSTMOV

OPERATION

MACRO

MOVER

SETA

Set and Conditional
Commands

OPERAND

&NOCHAR,&TO,&FROM

&NOCHAR

AIF (&AL2 LE 256).LSTMOV

MVC

SETA

SETA

&TO+&AL1.(256),&FROM+&AL1

&AL1+256

&NOCHAR-&AL1

AIFB (&AL2 GT 256).LOOP

MVC

MEND

&TO+&ALl. (&AL2) ,&FROM +&AL1

In chart 9-27, the macro calls and generation using the macro definition
in chart 9-26 are shown.

• STMNT M SOURCE STATEMENT

00100 MOVER 540,OUT ,INPUT CALL 1

00101 M1 MVC OUT+O(256) ,INPUT+O

00102 M1 MVC OUT+256(256) ,INPUT+256

00103 M1 MVC OUT+512(28) ,INPUT+512

00104 MOVER 97,OUT+540,RESULT CALL 2

00105 M1 MVC OUT+540+0(97) ,RESULT+O

9-26

AGO
Unconditional Branch

General Description

Format

Specification Rules

Name Field

OPeration Field

Operand Field

Example

Chart 9-28. AGO
Command

Se t and Conditional
Commands

• The AGO command alters the sequence in which macro definition
statements are executed or generated in the object program o The sequence
symbol in the Operand field must be in the Name field of any macro
definition statement following the AGO command •

• The format of the AGO instruction is as follows:

NAME OPERATION OPERAND

A sequence symbol or blank. AGO A sequence symbol.

• A sequence symbol or blank.

• AGO.

• The sequence symbol in the Operand field must be in the Name field of
any macro definition statement following the AGO command. The statement
named by the sequence symbol in the Operand field is the next statement
processed by the macro generator.

• The example in chart 9-28 illustrates the use of the AGO conditional
command. The macro definition in this example is functionally the same
as the macro definition in chart 9-26.

• NAME

&AL2

.LOOP

&ALl

&AL2

.LSTMOV

OPERATION OPERAND

MACRO

MOVER

SETA

&NOCHAR,&TO,&FROM

&NOCHAR

AIF (&AL2 GT 256).LOOP

AGO .LSTMOV

MVC

SETA

SETA

AIFB

MVC

MEND

&TO+&ALl. (256) ,&FROM+&ALl

&AL1+256

&NOCHAR - &ALl

(&AL2 GT 256).LOOP

&TO+&ALl.(&AL2),&FROM+&ALl

Note • In chart 9-27 the macro calls and generation using the macro definition
in chart 9-28 are shown.

9-27

AGOB
Unconditional

Branch Backward

General Description

Format

Specification Rules

Name Field

OPeration Field

Operand Field

Example

Chart 9-29. AGOB
Instruction

Set and Conditional
Commands

• The AGOB alters the sequence in which macro definition statements
are executed or generated in the object program. The AGOB command is
identical to the AGO command, except that the sequence symbol in the
Operand field must be in the Name field of any macro definition statement
preceding the AGOB command.

• The format of the AGOB command is as follows:

NAME OPERATION OPERAND

A sequence symbol or blank. AGOB A sequence symbol.

• The rules for the Name field and the Operand field are identical to those
given under AGO except as noted in the Operand field.

• A sequence symbol or blank.

• AGOB.

• Identical to AGO command except the sequence symbol must be in the
N arne field of any macro definition statement preceding the AGOB command.

• The example in chart 9-29 illustrates the use of the AGOB conditional
command. The macro definition in this example is functionally the same
as the macro definition in chart 9-26.

• NAME

&AL2

.LOOP

&ALI

&AL2

.LSTMOV

OPERATION

MACRO

MOVER

SETA

AIF

OPERAND

&NOCHAR,&TO,&FROM

&NOCHAR

(&AL2 LE 256),LSTMOV

MVC &TO+&AL1.(256),&FROM+&ALI

SETA

SETA

AGOB

MVC

MEND

&ALl+256

&NOCHAR-&ALI

.LOOP

&TO+&ALl.(&AL2),&FROM+&ALl

Note • In chart 9-27 the macro calls and generation using the macro definition
in chart 9 - 2 9 are shown.

9-28

ANOP
No Operation

General Description

Format

Specification Rules

Name Field

OPeration Field

OPerand Field

Example

Chart 9-30. ANOP
Command

Set and Conditional
Commands

• The ANOP command facilitates conditional or unconditional branching
to statements that are named by symbols or Set variable symbols in the
Name field. The ANOP statement should be placed before the statement
it is desired to branch to and a branch performed to the ANOP statement.

• The format for the ANOP command is as follows:

NAME

A sequence symbol.

• A sequence symbol or blank.

• ANOP.

• Not used.

OPERATION

ANOP

OPERAND

Not used.

• The example in chart 9-30 illustrates the use of the ANOP command.
This example allows a field of any length to be moved. The source and
destination fields need not be on a fullword boundary. The Name field
contains the symbolic name of the first instruction of the generated
macro. Note that the value of the local variable symbol &AL1 is initially
zero.

• NAME OPERATION OPERAND

MACRO

&NAME MOVER &NOCHAR,&TO,&FROM

&AL2 SETA &NOCHAR

&CG1 SETC '&NAME'

.LOOP AIF (&AL2 LE 256). LSTMOV

&CG1 MVC & TO+&AL 1. (256), &F ROM +&AL 1

&AL1 SETA &AL1+256

&AL2 SETA &NOCHAR-&AL1

&CG1 SETC ' ,
AGOB .LOOP

.LSTMOV ANOP

&CG1 MVC &TO+&AL1.(&AL2),&FROM+&AL1

MEND

In chart 9-31 the macro call and generation using the macro definition
in chart 9- 30 are shown.

9-29

Set and Conditional
Cornlnands

Chart 9-31. ANOP • STMNT M SOURCE STATEMENT
Generations

00200 FIRST MOVER 540,OUT ,INPUT CALL

00201 M1 FIRST MVC OUT+0(256) ,INPUT+O

00202 M1 MVC OUT+256(256),INPUT+256

00203 M1 MVC OUT+512(28) ,INPUT+512

00204 SEC MOVER 60,OUTPUT ,IN CALL

00205 M1 MVC OUTPUT+0(60) ,IN+O

9-30

10. SPECIAL
PURPOSE
FEATURES

INTRODUCTION • In Sections 7, 8, and 9, the facilities for writing and calling a basic to
medium complex macro have been described.

This section describes the specialized features of the macro language.
The extended features of the macro language allow the programmer to:

1. Terminate processing of a macro definition (see MEXIT);

2. Generate macro error messages (see MNOTE);

3. Use the system variable symbols (see &SYSNDX, &SYSECT, and
&SYSLIST);

4. Assist in validating complex macro logic by utilizing the macro
trace mode to indicate on the assembly listing the values of Set
variable values and branches taken or not taken (see MTRAC and
NTRAC).

10-1

ADDITIONAL
GENERATOR
COMMANDS

MEXIT
Macro Definition Exit

General Description

Format

Specification Rules

Name Field

Operation Field

OPerand Field

Note

Difference Between
MEXIT and MEND

Example

Special Purpose Features

• The MEXIT command indicates to the macro generator that processing
of a macro definition is to be terminated. The MEXIT command is used
in a macro definition when the programmer wishes to execute and generate
only a portion of the definition.

• The format of the MEXIT command is as follows:

NAME

A sequence symbol or blank.

• A sequence symbol or blank.

• MEXIT.

• Not used.

OPERATION

MEXIT

OPERAND

Not used.

• If the macro generator processes a MEXIT statement, the next state­
ment assembled is the statement following the call to the macro being
generated.

• The MEXIT command should not be confused with the MEND command.
The MEND command indicates the end of a macro definition to the macro
editor, as well as signifying the end of generation. Every macro definition
must contain a MEND command even if the definition contains one or more
MEXIT commands.

• Chart 10-1 illustrates the use of the MEXIT command. The macro
definition in this example is functionally the same as the macro definition
in chart 9-26 (page 9-26). MEXIT has been used to show the flexibility
a vailable to the programmer.

10-2

SPecial Purpose Features

Chart 10-1. MEXIT • NAME OPERATION OPERAND
Command

MACRO

MOVER &NOCHAR,&TO,&FROM

&AL2 SETA &NOCHAR

.RETURN AIF (&AL2 GT 256).LOOP

MVC &TO+&ALl. (&AL2) ,&FROM+&AL 1

MEXIT

.LOOP MVC &TO+&AL1. (256) ,&FROM +&AL1

&AL1 SETA &AL1+256

&AL2 SETA &NOCHAR - &AL1

AGOB .RETURN

MEND

In chart 10-2 the macro calls and generation using the macro definition
in chart 10-1 are shown.

Chart 10-2. MOVER • STMNT M SOURCE STATEMENT
Generation With MEXIT

00300 MOVER 540,OUT,INPUT CALL 1

00301 M1 MVC OUT+0(256) ,INPUT+O

00302 M1 MVC OUT+256(256),INPUT+256

00303 M1 MVC OUT+512 (28) ,INPUT+512

00304 MOVER 97,OUT+540,RESULT CALL 2

00305 M1 MVC OUT+540+0(97) ,RESULT+O

10-3

MNOTE
Error Message

Request

General Description

Format

Specification Rules

Narne Field

Operation Field

Operand Field

Example

SPecial Purpose Features

• The MNOTE command produces an error message in the program
listing during generation. If any symbolic parameters or variable symbols
are used in the Operand field, they are replaced by the values they rep­
resent. The MNOTE line will appear as a comment in the program listing
without the quotation marks.

• The format of the MNOTE command is as follows:

NAME

A sequence symbol
or blank.

OPERATION

MNOTE

• A sequence symbol or blank.

• MNOTE.

OPERAND

An error code, followed by a
comma followed by the desired
error message enclosed with­
in quotation marks.

• The error code is a decimal digit from 0 to 9. If the error code is
omitted, 0 is assumed. As the error code value increases, the error be­
comes more serious.

• The example in chart 10-3 illustrates the use of the MNOTE statement.
This macro definition tests for the presence of the three parameters in the
macro call. If any parameter is missing, an appropriate message is printed
and generation of the macro is terminated.

10-4

Special Purpose Features

Chart 10-3. MNOTE • NAME OPERATION OPERAND
Command

MACRO

MOVE &NOCHAR,&TO,&FROM

AIF ('&NOCHAR' NE ").CHKTO

MNOTE 'FIRST PARAMETER OMITTED'

&BL1 SETB 1

.CHKTO AIF ('&TO' NE ' ').CHKFR

MNOTE 'SECOND PARAMETER OMITTED'

&BL1 SETB 1

.CHKFR AIF ('&FROM' NE ' ').TESTSW

MNOTE 'THIRD PARAMETER OMITTED'

.TERM MNOTE 3,'GENERATION TERMINATED'

MEXIT

.TESTSW AIFB (&BL1). TERM

&AL2 SETA &NOCHAR

.LOOP AIF (&AL2 LE 256).LSTMOV

MVC & TO+&AL 1. (256) , &F ROM +&AL 1

&AL1 SETA &AL1+256

&AL2 SETA &NOCHAR-&AL1

AGOB .LOOP

.LSTMOV MVC &TO+&AL1. (&AL2) ,&FROM+&AL1

MEND

10-5

SYSTEM VARIABLE
SYMBOLS

&SYSNDX
Macro Call Index

Special Purpose Features

• System variable symbols are local variable symbols that are assigned
values during generation by the macro generator. There are three system
variable symbols: &SYSNDX, &SYSECT, and &SYSLIST. They can be used
in the Name field or Operand field of model statements except in the
Name field of Set and Conditional commands. The value substituted for
the variable symbol is the last value that the macro generator has assigned
to the variable symbol. The &SYSLIST system variable symbol cannot be
used with a keyword macro definition.

• The system variable symbol &SYSNDX can be combined with other
characters to create unique symbols for generated statements. If &SYSNDX
is used in the Name field or Operand field of a statement that is part of a
macro definition, the value substituted for &SYSNDX is the value assigned
to it for the macro call being interpreted.

&SYSNDX is assigned a different value for each outer and inner macro
call that is interpreted by the macro generator. &SYSNDX is assigned the
value 0001 for the first macro call that is interpreted by the macro
generator.

The value assigned to &SYSNDX for any other macro call is one plus
the value assigned to &SYSNDX for the previous macro call. Throughout
one use of a macro definition, the value of &SYSNDX can be considered
a four-digit constant that is independent of any macro call in that defini­
tion. High-order zeros are not suppressed.

Note • &SYSNDX can be combined with one to four other characters. The
resulting Name must conform to other Names permitted in the Assembler
(that is, it must begin with an alphabetic character).

Example

Chart 10-4. &SYSNDX
Variable Symbol

• One use of the &SYSNDX system variable symbol is shown in the macro
definition in chart 10-4. In this example, A&SYSNDX provides a unique
symbol in the Name field for branching to a particular instruction generated
by the macro definition. In the example, the content of a field will not be
moved if the first byte of the field is blank .

• NAME OPERATION OPERAND

MACRO

MOVER &NOCHAR,&TO,&FROM

CLI &FROM,X '40'

BE A&SYSNDX

MVC &TO(&NOCHAR) ,&FROM

A&SYSNDX EQU *

If the macro calls in chart 10-5 and chart 10-6 were the 106th and the
107th macro calls interpreted by the macro generator, the statements
presented in chart 10-5 and 10-6 would be generated.

10-6

SPecial Purpose Features

Chart 10-5. Generation • STMNT M SOURCE STATEMENT

with &SYSNDX
Counter=0106 00500 MOVER 20,PRINT ,NAME

00501 M1 CLI NAME,X'40'

00502 M1 BE A0106

00503 M1 MVC PRINT(20) ,N AME

00504 M1 A0106 EQU *

Chart 10-6. Generation • STMNT M SOURCE STATEMENT
with &SYSNDX
Counter=0107 00520 MOVER 15 ,PRINT ,ADDR

00521 M1 CLI ADDR,X'40'

00522 M1 BE A0107

00523 M1 MVC PRINT(15), ADDR

00524 M1 A0107 EQU *

10-7

&SYSECT
Current Control

Section Name

Example

Chart 10-7. &SYSECT
Variable Symbol

SPecial Purpose Features

• The system variable symbol &SYSECT gives the programmer the
ability to generate a separate control section or dummy section during
macro generation.

At the time of each macro call, &SYSECT is assigned a value that is
the name of the CSECT or DSECT which contains the macro call.

It is possible for an inner macro to have a different value for &SYSECT
from that assigned in the outer macro. This would occur where an outer
macro contained a CSECT or DSECT statement before the inner call.

• Chart 10-7 and chart 10-8 illustrate outer and inner macro calls
taking on different &SYSECT values. Notice that when the macro call
OUTER is given, the value of &SYSECT is PROGB, whereas when the
macro call INNER is given, the value of &SYSECT is SUBRA. This is
because SUBRAL\L\L\CSECT was given prior to INNER .

• NAME

SUBRA

&SYSECT

&ID

10-8

OPERATION

MACRO

OUTER

CSECT

DS

DC

INNER

CSECT

MEND

MACRO

INNER

CSECT

DS

DC

MEND

OPERAND

100C

A(&SYSECT)

SUBRB

&ID

50C

A(&SYSECT)

Chart 10-8. &SYSECT
Generation with Inner

Call

&SYSECT for Minimum
Generation

Example

Chart 10-9. &SYSECT for
Minimum Generation

• STMNT

01000

01001

01500

01501

01502

01503

01504

01505

01506

01507

01508

M

PROGA

M1 SUBRA

M1

M1

M1

M2 SUBRB

M2

M2

M1 PROGA

Special Purpose Features

SOURCE STATEMENT

CSECT

DS 200C

OUTER OUTER CALL

CSECT

DS 100C

DC A(PROGA)

INNER SUBRB INNER CALL

CSECT

DS 50C

DC A(SUBRA)

CSECT

• The value of &SYSECT can be very useful to generate a subroutine in a
new CSECT and on subsequent macro calls, only the linkage to the already
generated subroutine is generated.

• Based on the macro definition in chart 10-9, the first call to MOVEY
generates the entire CSECT and the linkage, whereas the second call and
subsequent calls will generate only the linkage. (Chart 10-10.)

• NAME

&BG101

MOVEMAC

&SYSECT

AMOVEMAC

.LINK

10-9

OPERATION

MACRO

MOVEY

AIF

SETB

CSECT

NOP

NOP

NOP

NOP

NOP

B

CSECT

B

DC

L

BALR

MEND

OPERAND

(&BG101).LINK

1

o

o

o

o

o

0(10)

AMOVEMAC+4

A(MOVEMAC)

9,AMOVEMAC

9,10

Chart 10-10. Generation
for Subroutine and

Linkage

• STMNT M1

01000

01001

02250

02251 M1

02252 M1

02253 M1

02254 M1

02255 M1

02256 M1

02257 M1

02258 M1

02259 M1

02260 M1

02261 M1

02262 M1

02300

02301 M1

02302 M1

Special Purpose Features

SOURCE STATEMENT

PROGA CSECT

DS 200C

MOVEY , FIRST CALL

MOVEMAC CSECT

NOP 0

NOP 0

NOP 0

NOP 0

NOP 0

B 0(10)

PROGA CSECT

B AMOVEMAC+4

AMOVEMAC DC A(MOVEMAC)

L 9,AMOVEMAC

BALR 9,10

MOVEY , SECOND CALL

L 9,AMOVEMAC

BALR 9.10

10-10

&SYSLIST
Macro Operand

Field

SPecial Purpose Features

• The system variable symbol &SYSLIST provides the programmer with
an alternate way to refer to macro call operand values. &SYSLIST and
sym bolic parameters can be used in the same macro definition.

&SYSLIST(n) refers to the nth value of a positional macro call. Symbol
(n) can be an arithmetic expression. The &SYSLIST variable symbol can­
not be used in a keyword macro definition.

Note • The operand values in a positional macro call are referenced in the
following manner:

Examples

Chart 10-11. &SYSLIST
Variable Symbol

(0)

(1) through (49)

Name field operand value.

Operand field values.

• The macro definition in chart 10-11 illustrates the &SYSLIST system
variable symbol. Depending on the number of parameters included in the
macro call, two, three, or four fields will be added. The result will be
stored in the last field that is specified in the macro call operand.

Note that if &AL1 = 2, then &SYSLIST (&AL1) would be &SYSLIST(2) or
refer to the 2nd operand value of FICA in chart 10-12. When the value
of &SYSLIST (&AL2) is null, the last value (&SYSLIST(&AL1)) is stored.

• NAME OPERATION OPERAND

MACRO

&NAME ADD &Fl,&F2,&F3,&F4,&F5

&NAME ST 2,WORK

L 2,&F1 LOAD 1st VALUE

&AL1 SETA 2

.ADD A 2,&SYSLIST (&AL1) ADD(N) Value

&AL1 SETA &AL1+1 FIRST TIME = 3

&AL2 SETA &AL1+1 FIRST TIME = 4

AIFB ('&SYSLIST(&AL2) ,
Ll NE Ll "). ADD

ST 2,&SYSLIST(&AL1)

L 2,WORK

MEND

10-11

SPecial Purpose Features

Chart 10-12. Values • STMNT M SOURCE STATEMENT
Substituted in SYSLIST

Macro 02400 ADD FT AX, FICA ,STAX,BONDS,DEDUCT

02401 M1 ST 2,WORK

02402 M1 L 2,FTAX

02403 M1 A 2,FICA

02404 M1 A 2,STAX

02405 M1 A 2,BONDS

02406 M1 ST 2,DEDUCT

02407 M1 L 2,WORK

02500 ADD REGHRS,OTHRS,TOTHRS

02501 M1 ST 2,WORK

02502 M1 L 2,REGHRS

02503 M1 A 2,OTHRS

02504 M1 ST 2,TOTHRS

02505 M1 L 2,WORK

10-12

TRACE COMMANDS

MTRAC
Macro Trace

General Description

Format

Specification Rules

Name Field

OPeration Fie ld

Operand Fie ld

Notes

Example

SPecial Purpose Features

• The MTRAC command is available to assist the programmer in deter­
mining the effective conditional transfers within the macro logic.

Each conditional command (AGO,AGOB, AIF, AIFB, and ANOP) that is
executed is printed on the assembly listing; a ''Y'' or "N" printed in column
80 indicates whether or not the branch was performed. A minus "- " in
column 80 indicates an ANOP command or invalid statement.

Each Set command (SETA, SETB, SETC) which is executed is also printed
on the assembly listing and its current value printed in columns 73-80.

a. SETA Variables: displayed as eight decimal digits in columns 73-80
and zero filled; negative values are displayed as a character value
(X 'DO' = 0, does not print; X'DI '= 1, prints as 'J'; ... , X 'D9' =9,
prints as 'R ').

b. SETB Variables: displayed as a single character in column 80,
'T' =true or 1 value; 'F' =false or 0 value.

c. SETC Variables: displayed as one to eight characters, beginning in
column 73, and space filled (Null values print as: --NULL--).

• The format of the MTRAC command is as follows:

NAME

Not used.

• Not used.

• MTRAC.

• Not used.

OPERATION

MTRAC

OPERAND

Not used.

• 1. The command assumes that the NOGEN option is not in force.

2. This command can be used both inside and outside macros.

3. This command affects only macro generations following the MTRAC
statement. --

• Chart 10-13 shows the macro definition, macro call, and generation
with the MTRAC command in effect. Note that the MTRAC values are shown
to the right. The actual listing was compressed for printing. Also, see
charts 9-30 and 9-31.

10-13

Special Purpose Features

Chart 10-13. Example of MTRAC Output

OBJECT CODE M SOURCE STATEMENT

MTRAC

MACRO

&NAME MOVER &NOCHAR,&TO,&FROM

* EXAMPLE OF MTRAC COMMAND

&AL2 SETA &NOCHAR

&CG1 SETC I&NAMEI

.LOOP AlF (&AL2 LE 256),LSTMOV

&CG1 MVC &TO+ &ALl,(256),&FROM + &AL1

&AL1 SETA &AL1+256

&AL2 SETA &NOCHAR-&AL1

&CG1 SETC II

AGOB .LOOP

.LSTMOV ANOP

&CG1 MVC &TO+ &ALl,(&AL2),&FROM + &AL1

MEND

ONE MOVER 540,OUT,lNPUT

M1 * EXAMPLE OF MTRAC COMMAND

M1 &AL2 SETA &NOCHAR 00000540

M1 &CG1 SETC I&NAME' ONE

M1 .LOOP AlF (&AL2 LE 256),LSTMOV N

D2 FF 30EB 3AAC M1 ONE MVC OUT+ 0(256),lNPUT+ 0

M1 &AL1 SETA &AL1+256 00000256

M1 &AL2 SETA &NOCHAR-&AL1 00000284

M1 &CG1 SETC " --NULL--

M1 AGOB .LOOP y

M1 .LOOP AlP (&AL2 LE 256).LSTMOV N

D2 FF 31E8 3BAC M1 MVC OUT + 256(256),lNPUT + 256

M1 &AL1 SETA &AL1 +256 00000512

M1 &AL2 SETA &NOCHAR-&AL1 00000028

M1 &CG1 SETC " --NULL--

M1 AGOB .LOOP Y

M1 .LOOP AlF· (&AL2 LE 256),LSTMOV y

M1 .LSTMOV ANOP

D2 1B 32E8 3CAC M1 MVC OUT + 512(28) ,INPUT + 512

10-14

NTRAC
No Trace

General Description

Format

Specification Rules

Name Field

Operation Field

Operand Fie ld

Notes

SPecial Purpose Features

• The NTRAC command cancels the MTRAC function described on page
10-00.

• The format of the NTRAC is as follows:

NAME OPERATION OPERAND

Not used. NTRAC Not used.

• Not used.

• NTRAC.

• Not used .

• 1. The command cancels the MTRAC function described onpage 10-13.

2. The command can be used both inside and outside macros.

3. This command affects only macro generations following the NTRAC
statement. --

10-15

11. KEYWORD
MACROS

INTRODUCTION • Keyword macro definitions provide the programmer with an alternate
way of preparing macro definitions.

A keyword macro definition enables a programmer to reduce the number
of operand values in each macro call that corresponds to the definition, and
to write the operand values in any order.

The positional macro call, as described in Section 8, required the
operand values to be written in the same order as the corresponding
symbolic parameters in the Operand field of the prototype statement
(Section 7).

In the keyword macro definition, the programmer can assign standard
values to any symbolic parameters that appear in the Operand field of the
prototype statement. The standard value assigned is substituted for the
symbolic parameter, if the programmer does not write anything in the
Operand field of the macro call to correspond to the symbolic parameter.
The maximum length of the standard value is eight characters.

When a keyword macro call is written, the programmer need only write
one operand for each symbolic parameter value he wants to change.

Keyword macro definitions are prepared the same way as positional
macro definitions (Section 7), except that the prototype statement is written
differently, and &SYSLSIT may not be used in the definition.

11-1

KEYWORD MACRO
PROTOTYPE
STATEMENT

General Description

Format

Specification Rules

Name Field

OPeration Field

Operand Field

Keyword Macros

• The keyword macro prototype statement indicates to the assembly the
format and mnemonic operation code of the keyword macro the assembly
is to interpret. It must be the second statement of every macro definition.
This type of prototype statement differs from the positional macro prototype
only in regard to the equal sign (=) requirement and the standard value
option. Otherwise, the specification rule s given for the positional prototype
apply also to the keyword prototype.

• The format is as follows:

NAME ---

A symbolic
parameter or
blank.

OPERATION

A symbol.

OPERAND

Comma(,) or a maximum
of 49 operands, separated
by commas, of the form
described below.

• See positional macro prototype statement (page 7-4).

• See positional macro prototype statement (page 7-4).

• The Operand field may contain a maximum of 49 operands separated by
commas as follows:

1. Each operand must consist of a symbolic parameter, immediately
followed by an equal sign (=) and optionally followed by a standard
value.

&PARAMTR= [STDVALUE] MAXIMUM LENGTH

2. A standard value that is a part of an operand must immediately follow
the equal sign.

3. All operands, except the last, must be immediately followed by a
comma.

4. Anything that can be usedintheOperandfield of a macro call (except
variable symbols), may be used as a standard value. For a further
discussion of valid operand values see Section 8.

5. The last operand must be followed by a space instead of a comma.

6. The same symbolic parameter cannot be used more than once as
part of an operand.

11-2

Examples

Note

Example

Chart 11-1. Keyword
Macro Prototype

Keyword Macros

• The following are valid keyword macro prototype operands:

&TO=

&FROM=NAME

&SPACE=10

&V3T=X'FF'

• The rules for continuation and absence of parameters are discussed in
Section 7.

• The sample keyword macro prototype in chart 11-1 contains a symbolic
parameter in the Name field and nine operands in the Operand field. The
mnemonic operation code is KEYMV. &INITIAL, &SPACE, and&AREA are
assigned standard values whereas, the remaining six operands are not.

.M SOURCE STATEMENT

MACRO

& NAME KEYMV

11-3

&INITIAL=lO,&SPACE=5,&AREA=X
PRINT,&FRA=,&LNA=,&FRB=,&LNX
B=,&FRC=,&LNC=

KEYWORD
MACRO CALL

General Description

Format

Specification Rules

Name Field

Operation Field

OPerand Field

Exafnples

Keyword Macros

• This is the second type of macro call format and it allows the values
specified by each parameter to be used with a predefined keyword. The
pre sence of the keyword allows the parameters to be specified in any order
in the macro call.

• The format for the keyword macro is as follows:

NAME

A symbol
or blank.

OPERATION

Mnemonic operation
code.

OPERAND

Comma(,) or a maximum
of 49 operands, separated
by commas, in the form
de scribed below.

• See positional macro call statement (page 8-3).

• The Operation field of a keyword macro call contains the same operation
code that appears in the Operation field of the macro prototype.

• Each operand must consist of a keyword immediately followed by an
equal sign and an optional value. Anything that can be used as an operand
value in a positional macro call statement can be used as a value in a
keyword macro call statement. The rules for forming valid positional
operand values are detailed in Section 8.

A keyword consists of a maximum of seven letters and digits, the first
of which must be a letter.

The keyword part of each keyword macro call must correspond to one of
the symbolic parameters that appears in the Operand field of the keyword
prototype statement; that is, the keyword portion must be identical to the
characters of the symbolic parameter that follows the ampersand (&).

NAME OPERATION OPERAND

&NAME KEYMV &INITIAL=10, PROTOTYPE OPERAND

KEYMV INITIAL=30, CALL OPERAND

• The following are valid keyword macro call operands:

TO=WORK

FROM=

SPACE=15

V3T=X'40'

11-4

Operand Order

Replacement Rules

Example

Keyword Macros

• The operands in a keyword macro call can be written in any order. If an
operand appeared in a keyword macro prototype statement, a corresponding
operand does not have to appear in the keyword macro call statement.
Because the operands can be written in any order if an operand is omitted,
the comma that would have separated it from the next operand need not be
written.

Operands can appear on separate cards. A comma must follow every
operand except the last, and the continuation column must contain a non­
blank character. Comments can be contained on the separate cards that
contain individual operands.

• Rules used to replace the symbolic parameters in the model statements
of a keyword macro definition are as follows:

1. If the symbolic parameter appeared in the Name field of the macro
prototype, and the corresponding characters of the macro call are a
symbol, the symbolic parameter in the Name field is replaced by the
symbol. Otherwise, the symbolic parameter in the Name field is
considered to be a null parameter.

2. The value associated with each keyword in the macro prototype
becomes the value of the symbolic parameter unless a value is
associated with each keyword specified in an operand of the macro
call. In this case, the value in the macro call replaces the value
obtained from the prototype for the symbolic parameter.

• In Chart 11-2 a keyword macro definition is illustrated. This definition
will be used in succeeding charts.

Chart 11-2. Keyword Macro Definition

M SOURCE STATEMENT

MACRO
&NAME KEYMV

* EXAMPLE OF A
&ALl. SETA
&AL2 SETA
&AL3 SETA
&AL4 SETA

AIF
MVC

&AL2 SETA
&AL4 SETA
.TRYB AIF

MVC
&AL2 SETA
&AL4 SETA
.TRYC AIF

MVC
.END MEND

&INITIAL=lO,&SPACE=5,&AREA=PRINT,&FRA=,&LNA=,&FRB=,&LNB=C
,&FRC=,&LNC=
KEY\'vORD MACRO
&INITIAL
o
&SPACE
&ALl
(I &FRA '~EQ~' I) • TRYB
&AREA+&AL4(&LNA) ,&FRA
&LNA
&AL4+&AL2+&AL3
(I &FRB 'L\EQL\' I) .TRYC
&AREA+&AL4(&LNB) ,&FRB
&LNB
&AL4+&AL2+&AL3
('&FRC'~EQL\' ').END
&AREA+&AL4(&LNC) ,&FRC

11-5

SET INITIAL
LAST LENGTH
SPACES BETI"1EEN
NEXT POSITION

Exalnple

Chart 11-3. Keyword
Call Using

Standard Values

Example

Chart 11-4. Keyword
Call Replacing

Standard Values

Null Parameters

Keyword Macros

• Chart 11-3 illustrates a call and generation for the definition in chart
11-2. Notice two standard values (INITIAL and AREA) are used and FRA
and LNA are given values.

• STMNT M SOURCE STATEMENT

01000 KEYMV FRA=NAME ,LNA=20

01001 M1 MVC PRINT+10(20) ,NAME

• Chart 11-4 illustrates SPACE used as standard, INITIAL and AREA
changed.

• STMNT M SOURCE STATEMENT

01002 KEYMV INITIAL=30 ,AREA=WORK, C

01003 FRB=ADDR, FRC=CITY, C

01004 LNB=15,LNC=25

01005 M1 MVC WORK+30(15) ,ADDR

01006 M1 MVC WORK+5 0(25) ,CITY

• Null parameters in a keyword macro definition are processed in the
same way as in the positional macro definition. Null parameters are formed
under any of the following conditions:

1. If a symbolic parameter appears in the Name field of a macro proto­
type statement and the Name field of a macro call is blank, a null
parameter is formed.

2. If a keyword is specified in the Operand field of a macro call and no
value is associated with the keyword, a null parameter is formed,
regardless of the presence of a standard value in the prototype
statement.

3. If no standard value is associated with a keyword in the Operand
field of a keyword prototype statement, and the keyword and its
associated value are omitted from the Operand field of a macro call,
a null parameter is formed.

11-6

Example

Chart 11-5. Keyword
Null Parameters

Note

Keyword Macros

• Using the macro definition in chart 11-2, chart 11-5 illustrates the
creation of null parameters. A null parameter is created for INITIAL,
although it contained a standard value. FRA, LNA, FRB, and LNB have
been created as null parameters by the omission of these keywords.

• STMNT M SOURCE STATEMENT

01020 KEYMV INITIAL=, C

01021 FRC=CITY, C

01022 LNC=25

01023 Ml MVC PRINT+0(25) ,CITY

• In chart 11-5, AREA retains its standard value and SPACE (still 5) is
not used with this macro call.

11-7

APPENDIX A

SUMMARY OF
ASSEMBLY

INPUT /OUTPUT

INPUT

OUTPUT

Obiect Program
Output

ESD Card {External
Symbol Dictionary}

TXT Card {Generated
Program Text}

RLD Card' {Relocation
Dictionary}

XFR Card {Transfer}

END Card

• Input to the Assembly System consists of symbolic source language
statements punched as described on page 2-1. These source statements
are normally contained on cards but may be on magnetic tape in card
image format or in blocked format (except 70/25). In addition, source cor­
rections can be applied against a source library tape with the TOS/TDOS
Assembler.

Macro definition statements may be included within the source deck
and macro expansion accomplished without referenCing the macro library.

See appropriate Operators' Guide for detailed information on control
cards, device assignments, and deck composition.

• The normal Assembly output consists of two major "files "; namely,
the Object Program and the Program Listing. A summary of each output
type is described below.

• Five different types of cards may be produced by the Assembly. A
brief description of each is shown below. For complete format information,
refer to the Spectra 70 Systems Standards Manual.

• This card specifies the EXTRNSs, ENTRYs, V-CONs, and COMS
defined for a program. ESD cards supply all the necessary information to
link together program sections to form an operating program. For instance,
the ESD card contains all symbols defined in this assembly which are
referred to in another assembly, (ENTRY s) and all symbols referred to by
this section which are defined in some other assembly (EXTRNs).

• The generated machine instructions to be loaded into storage are con­
tained on TXT cards. The address of the instructions or data and the
number of bytes are contained within card. The TXT cards will be modified
as required by RLD information (see below).

• The RLD card identifies portions of the TXT card which must be
modified due to relocation (that is, floated). The RLD cards provide the
information necessary to perform the relocation and are intermingled
with the TXT cards. However the TXT card to which the RLD card refers
is always produced first.

• The XFR card is only produced by the Assembler at the point in the
text where specified by the XFR Assembler instruction. This card is used
by the Program Loader and Linkage Editor routines to define the transfer
point or entry point of a phase, overlay. (Not produced in TOS/TDOS
assembly.)

• The END card is always generated by the assembly and indicates the
end of a program section or object module.

A-l

Program Listing
Formats

ESD Listing

Appendix A

• The Assembly System produces three basic listings. These listings
may be eliminated by use of the AOPTN instruction (70/25 and paS) or
by specifying the ASMLST option of the TOS and TDOS monitors. Each
listing type is described below.

• The ESD listing lists each Control section (CSECT) and Dummy section
(DSECT) that is defined in the program. The ESID number, assembled
origin, and size of the section are also provided. A list of the EXTRNs
and V-CONs is provided with their ESID number. The format of the ESD
listing is shown below.

SAMPL~ A~StMkLY PRUSRAM pus

SYM8UL TYP~ ID ADOR LENGTH EXT~RNAL SY~80L DICTIONARY

BtSIN SO 01 02710 01550
S~Q2 SO 02 03CbO OOOA8
S~QS SO OJ 03008 00030
SEQ4 SO 04 03038 003A8

SYMBOL - contains the name of the control section, EXTRN, V-CON,
or ENTRY assembled. DSECTS are preceded with the word
"dummy" enclosed in parentheses.

Note:
ENTRY symbols are followed by an asterisk when the symbol specified
is undefined, defined in a dummy section, or defined in an unnamed
control section.

TYPE - Contains a two-character code identifying the element as:

1. TYPE SD (Section Definition)

The name, assembled origin, length (adjusted to a double­
word boundary), and ESID number of each control section
(CSECT) or dummy control section (DSEC T) are listed.

2. TYPE ER (External)

The name and ESID number of each symbol specified as
an EXTRN.

3. TYPE VC (V-CON)

The name and ESID number of each symbol specified as
a V -CON are listed. This is not produced on the 70/25.

4. TYPE CM (Common)

The name and ESID number of each symbol specified as
COM (valid on TOS/TDOS only).

A-2

Appendix A

ESD Listing 5. TYPE LD (Entry)
(Conl'd)

The name, address, and ESID number of each symbol
specified as an ENTRY are listed.

ID - contains a two character ESID number that is assigned to
the element.

ADDR - contains the assembled origin address of the element.

LENGTH - contains the length (hexadecimal) of the section assembled.

Symbol Table Listing • The symbol table listing contains all the symbols used (including FCP)
listed alphabetically, four to a line. The ESID number of the control section
in which the symbol is defined, the length, and the address of the symbol
are provided. A sample symbol table listing is reproduced below.

SAMPLE ASSE:ME<lY PROGRAM POS

SYMBOL C~ECT VAlUI:: L SYMBOL CSECT VALUE SYMBOL CSECT VALUE L SYMBOL CSECT VALUE L

A 02 03C62 04 ADAl 02 03CC8 02 AD81 02 03CC4 02 ADCl 02 03CC6 02
ADDITION 02 03CCA 06 B 03 03DOA 04 BASIi: 01 03BC8 04 BASEl UNDEFINED
BASE2 UiliDEF'INED 8ASE3 04 03D44 04 BEGIN 01 02710 01 C 04 0303A 04
CARDIN 01 02864 01 CAROl 04 03EF'8 50 CARD2 04 03F48 50 CCBREAD 01 03C20 05
CCBTYPER 01 03BFC 05 CCWREAO 01 03C28 02 CCWTYPER 01 03C04 02 COIN 04 03F98 50
CHECKl 02 03C80 06 ENOl 04 04094 04 Er.J03 04 04084 04 EXIT 04 030AE 04
FINAL 04 040Ct! 04 HALT5 04 03082 04 hSKP 01 03BDC 04 IFABLl 01 02A84 02
IFACBB 01 02A8C 04 IFACCB 00 00006 01 IFACKP 01 02A2A 04 IFAOEV 00 00000 01
IFAF-"lN 00 00000 01 IFAFNA 00 00000 01 IFAIOl 01 02A82 02 IFALAB 00 00003 01
IFALB 01 02A24 04 IFAl8Z 00 00000 01 I-ALXX 01 029AC 04 IFAMKS 01 02A80 01
IFAMK1 00 00020 01 IFAMK2 00 00004 01 IFAMK3 01 02B30 01 IFAMK4 01 02A90 01
IFAMS!:) 01 02A88 01 IFAMVD 01 02A36 06 IFANwS 01 02A7C 04 I_AREA 00 00002 01
IFARG!:) 01 0282C 04 IFASER 01 02974 04 IF'ASTA 00 00004 01 IFAST8 01 029DC 06
IFASTD 01 02AOl:: 06 IFASTO 01 U 2-A.4 6 06 IF'ASTT 01 02988 04 IFASTU 01 029C8 04
IFASTW 01 029C2 06 IFASTY 01 02906 06 TFATA8 01 02832 01 I FAT AP 00 00018 01
IFATWU 01 02A8A 01 IFAVE 01 0296C 04 IFAV14 01 0361C 04 IFAW2 01 02831 01
IFAZRO 00 OOOFF' 01 IF'AZZ 00 OOOOF 01 IFA04 00 00004 01 IF8AOR 01 0290C 06
IF8ARW D1 02B3t: D2 IFBLFD 01 02EA2 06 IF'BLKS 00 00008 01 IFBNSW 01 02827 01
I FBSTT D1 D29DC 06 IFBTDV 01 02A1C 04 IF'BVLB 01 03108 04 IFBOl 01 02A87 01
IFB04 01 02A86 D1 IFCBSF 01 03360 D6 IFCc3SR 01 03356 06 I FC8YT 01 034AB 01
IF'CCNl 01 0280t: 04 IFCCN2 01 02812 04 IF'CCWA 00 00006 01 IFCCW8 01 031DC D6
IF'CCWC 01 034A.5 02 IFCCWD 01 0348F' 02 IFCCW4 01 03212 06 IFCcw6 01 03224 04
IFCCW'1 01 03234 04 IF'CDP9 00 00004 01 IFCD10 00 00005 01 IfC023 00 00000 01
IFCERG 01 03371: 06 IFCERP 01 034AC 01 IFCFSF 01 03374 06 IFCFSR 01 0336A 06
IF'CIS!:) 01 033Dt! 06 IFCKIO 01 02828 DC IFCt'(PA 00 00022 01 IF'CL~E 00 OOOOA 01
IFCLSI:: 01 02A96 04 IF'CMK2 00 00040 01 IFCNT 01 03474 00 IF'CNTT 01 03495 02
IFCNTX 1)1 03497 o~ IFCOM 01 02A5E 04 IF'CQN1 01 02B51 02 IF'CON2 01 02B53 02
IFCP uC on04C 01 IFCPA 01 0286C 04 IF'CPIN 01 028F2 04 IF'CPOP 00 00000 01
IFCPOU 01 02920 04 IFCR8A 01 03487 05 IFC~EW 01 03398 06 IF'CRGC 00 00018 01
IFCRuN t.ll o :~34C 06 IFCRwA 01 03481 02 IF'CSK8 01 034A2 01 IF'CSKC 00 00008 01
I F'CSKU 01 034<,18 01 IF'CSKE 01 0349A 01 IF'CSt(M 01 033CC 06 IF'CSKN 01 0338C 06
IFCSKO OC 00020 01 IFCSKl 00 OOOH 01 IF'CSK2 01 0349C 01 IF'CSK3 01 03490 01
IFCSK4 LJ1 03491= ul IFCSK5 01 0349F' 01 IF'CSK6 01 034AO 01 IFCSK8 01 034A1 01
IF'CSOP U1 Q2AF'D 06 IFCSPM 01 033B2 06 IF'CSPN 01 03342 06 IF'CTDV 01 02AC4 06
IFCTHR wi Q3Ht: 01 IFCTLA 00 OOOOA 01 IF'CTL8 00 OOOOE 01 IF'CTLa 01 03336 06
IFCTRL 01 03326 04 I FCTwl 01 034AO 01 IFCWTM 01 03381: 06 IF'CXIT 01 03404 06
IFCZER 01 02~08 u1 IF'C12 00 OOOOC 01 I1='C13 00 00000 01 IF'C1. 00 OOOOE 01
IFDI:C1 01 02822 01 IF'DEC2 01 02823 01 IFDt:VA 00 00001 01 IF'OEVR 00 OOOOE 01
IFDMVM Ll1 03460 04 IFDPBT 01 03438 06 IFDP10 00 00005 01 IF'OF'l1 00 OOOlA 01
IFDP12 uO ooooe 01 IFOP14 00 00010 01 IFDP16 00 00014 01 IF'Dp19 00 OOOOE 01
IFDP2 iJG 00002 01 IF'DP21 00 0001C 01 IFDP23 00 OOOOC 01 IFOP24 00 00000 01
IF'DP2~ OOuOt: 1)1 IFDP27 00 00012 01 IFDP30 00 00010 01 IF'OP32 00 00020 01
IFDP3~ JIJ 0002U III IFD?39 00 00019 01 IFDP41 00 00022 01 IFDP8 00 00008 01
IFDR24 OU OOQ[1lJ Q1 IFDSP9 00 00004 01 IFDSTM 01 02A16 06 IF'OSTT 01 029E2 06
IFDS1 o li 00001 Dl IF'D510 00 OoOoA 01 I FDSll 00 OOOOB 01 IF'DS18 00 00012 01
IFOS2 Ql; 00002 01 IF'D520 00 OOOOC 01 IF[lS24 00 00018 01 IF'DS26 00 00014 01
IFDS9 [JC 00004 01 IF'OTST 01 03442 06 IFUV5T 01 0281E 01 IF'OVSW 01 03414 06
IFOlLV lJl [J281lJ 01 IFECCB 01 02800 05 IF~CCW 01 02B08 02 IF'EGTN 01 02840 01
IFI::MS~ 01 o;;"ot: OF IF'EM18 01 0281C DF IFE;UJ 01 02E5E 04 IFERRC 00 0001A 01
IFERRl Li1 02A,)0 04 IFERR6 01 02AFA 04 IFE:TCH 01 02856 02 IFETWL 01 02A89 01
IFFEOA 01 O~31A 04 IFFEOV 01 032F 4 04 r.FFFF 01 02844 02 IFGP 01 02B46 04
IFGPEF' 01 02':!F4 [J4 IFGPGO 01 02c364 04 I.GP51 01 O2C06 04 IF'GPWK 01 02FEC 04
IFGPl lJl 0287d 04 IF'GP1B 01 028A6 04 IFGP1C 01 02B98 04 IF'Gp3 01 02B72 06
IFGp4 J1 O?8H6 04 IFGP5 01 02BFE 04 IFGP6 01 02C18 04 IFGP7 01 02C20 06
IF'GP8 ul n;.;.j?c 04 IF'GWRC 01 02eE6 02 I"lA 00 00002 01 IFIS 00 00003 01
IFIBLB 00 i.J ~ IJ u") U1 IF'IBLK DO 00006 01 IFICKL 00 00006 01 IFICOr-. 00 00U04 01

A-3

Symbol Table Listing
(Cont'd)

TEXT Listing

CSECT

VALUE

L

Note:

Appendix A

- contains the section number in which the symbol was
defined.

- contains the address of the symbol.

- contains the length attribute assigned to the symbol.

Symbols that are not defined are listed with the word "undefined" fol­
lowing them.

• The TEXT listing contains the generated machine instructions associated
with each source statement. A sample TEXT listing is shown on the fol­
lowing page. Each field of a TEXT listing is described below.

FLAGS: Six positions are provided for error flags. The
interpretation of these flags is discussed on page
A-g.

LOCTN: The location counter or appropriate address.

OBJECT CODE: The assembled object code is listed.

ADDR1,ADDR2: These fields show the resolved address of the
operand, where applicable. This facilitates the use
of this listing. For example, if the object code
specifies that operand one uses register 4 as the
base register with a displacement of (100)16' and
the USING statement directed the Assembler to
assume register 4 contained (1000)16' then ADDR1
is listed as (01100) 16.

STMNT:
(TOS/TDOS)

M Field:

SOURCE
STATEMENT:

This field contains a sequential statement number
assigned to each statement. This number is used
as the statement reference for the optional Cross
Reference Listing.

70/25: If this field contains an M, it
specifies that the current line was
generated (expanded) by a macro.

POS/TOS/TOOS: In addition to M, a second char-
acter is appended to indicate the
depth (that is, nesting) of the
macro which generated the line;
for example, M1, M2, or M3.

This field contains the user's source statement (or
the source statement generated by a macro ex­
pansion).

A-4

flAGS lQCTN n~JECT COOF AnOR1,AODJ:l2 STMNT M SOUROE STATEf004ENT

TxT CARD II IS OJ22.
05552 <47 80 6532 05612 00501 BE MIRr;E4 C 1'101'13411'10
05556 41 OD 0006 00006 00502 loA 1;',6(13) P~INT TO NE~T SLOT p nOI'l:ueoo
0555A 41 CC 0001 01'1001 00503 LA 1~,1(12) 00034900
0555F 55 DO 600C 050F.C 00504 CL 13,GL9CNT END or NAME TABLE? DV 00035000
05562 47 70 64114 05544 00505 BNE MJRGE? c: 00l'l3 1HOO
05566 58 DO 607.- 05E54 01'1506 I. 13,GA~RREM POINT TO F'IRST ~l.nT IN NEW P OO1'l3~200
0556A 58 CO 6014 050F4 00501 L. If,G.nIlSYM AReA e 00035300
0556F 55 DO 6078 05E58 0051'18 MERGE6 CL l~,GSlOT AFtE wE' BAeK TO ORIGINAl. SLOT ON 001'13541'10
05572 47 80 6494 05594 00509 BE MERGEIj e 00035500
05576 95 00 nonJ 01'1510 CLl o t 13), U Ef004PTY SLO'r7 ON 0003!5600
0557A 47 80 6483 05598 00511 BE MERGE~ e 1'101'13511'10
0557F D5 05 AOO~ nnol'l 01'1512 CLC Ot6.10)~Ot13) TAG-CONTENTS Of SLOT? ON 00035800
05584 47 80 6532 05612 00513 BE MERGE~ C 1'10035900
TXT CARD * IS 0023.
05'588 41 CC 0001 00001 00514 LA 12,1(1~) OOOJ~OOO
0558C 41 DO 0006 00006 01'1515 LA 13,6(!3) POINT TO NE~T SLOT P 00n3&1 CO
05590 47 ,0 648E 0556E 00516 B Mf!RGE6 B 001'13&200
05594 41 CO 0001 00001 01'1517 MERGF5 LA 12,1 SET NFW SLOT.! P C003~JOO
05598 150 90 6D9!3 05E18 00518 MERGE3 Sf 9,GSAVE9 SAVE 9(cSLOT IN PART!AL TABLE) I' 00(136400
0559C '58 fO 6D8C 05E~C 00519 L 15,GW(,!~D LOAD Rt5 WITW 4 BVTES ('!F TAG P 1'1003&'1'10
055AO 17 EJ:: 00520 XR 14,14 eL~AR 14 FOR MULTIPLV 00036600

>- 055A~ 48 20 6014 OlSor4 01'1521 L~ 2.G*orSVM R?.TAGS IN BASIC TABLE p 001'13,,00
I 05!:iA6 10 E2 01'1522 DR 14,2 RANDOMIZE TAG TO SLOT IN P 00036800

01 055A8 18 n= 00523 LR 15,14 PUT REM t .SLOT) !NTO RtK P 0003~900
055AA 18 9E 00524 LR 9.14 R14 AND R9 BOTH: SLOT NO P 0003'01'10
055AC 41 20 oOO!> ooon6 01'1525 LA 2.6 RESTORF R2 TO #) 0003'1100
05580 1C E2 00526 MR 14,t? oon3'200
05582 5A FO 606) 0~E40 00527 A 15. GAr'~NT COMPUTe:: AnDRESS or ~LOT p 1'1003'300
05586 18 E9 00528 loR 14,9 00n3'1.00
05'588 95 00 Faa) 00529 ME"Ge7 eLI o t15', u EMPTY SL.OT D 001'13"00
0558C 47 8n 6522 0561'12 00530 BE MeRGE9 (NO,YES-MERGE9) C 0003'600
TXT CARD * IS 0)24,
055CO n5 0'5 Aon) fOOO 00531 CLC 0(6,10),0(15) TAG .CONTENTS or ~L"T DN 00"31700
055C6 47 80 652J 056"0 00532 BE MFRGE8 e OOt.!:J'1800
055CA 41 EE OOtH 00001 00533 LA 14d,.(14) POINT TO NE~T SLOT P nOO3'1900
055CF. 41 FV oon!> 00006 0053. loA 15,6(1) nOI'l3~OOO
05502 55 fO 6074 05E54 00535 Cl 15, GA O~REM END or INITIAL TARLE DY 00038100
05506 47 70 64D~ 05588 01'1536 8NE MeRGE1 e 0003A200
0550A 4l, EO 000) !lOOOO 00537 LA 14,0 POINT TO START Of INITIAL P 00038300
n55DF 1:)8 fO 606) 05E40 01'1538 I. 15,GAOiolNT TABLE C 1'10038400
055E2 95 on FOO) 00539 MERGP:1n eLl Of 15), U EMPTY SLOT D 0OO3~500
OS5E/') 47 80 6522 05602 01'1540 BE M!!RGE9 (NO.VFS ... MERGE9) C 00038600
055EA D5 05 AOO) roon 00541 CLC 0(6.10);Of15) TAG=CONTENTS Of SLOT? D~! 00036700
055FO 47 80 652) 05600 01'1542 8F MERGE8 e 001'l3R800
n55~4 <41 EE 0001 00001 00543 loA 14,1(14)> POINT TO NE~T SLOT P 00038900
TxT CARD # IS 0~?'5. ~
055~8 4l, FF" 00('16 00006 00544 LA 1'!;,6(i;' 1'10039000 "\:}
D55~C 47 ro 651'12 055E2 00545 B MERGEtU B 001'139100 "\:}

('\)
05600 18 CE 00546 t-IERGEa LR 12,14 seT NEw SLOT.-TO "LD SLOU 0003921'10 ~
0560(1 48 50 6014 050F'4 00547 MERGE9 L~ 5,GjO,SVM IS SLnT IN NEW AREA ['IV 0003'300 ~

~. 056QfI 15 C, 00548 CLR 1~,5 1'10039400 ~

~

TEXT Listing
(Conf'd)

PROGRAM CONTROL
INFORMATION

(TOS/TDOS)

CARD NUMBER:
(70/25 and POS)

CARD NUMBER
(TOS/TDOS)

Appendix A

The rightmost columns of this listing specify the
card number of the object card which contains the
TEXT information. The listing does not give a
card number for cards generated by PUNCH, RE­
PRO, XFR, or END. The output cards contain a
card number in columns 77-80, unless these cards
were produced by a PUNCH or REPRO statement.
Cards produced prior to TEXT information (for
example, ESD cards) are not numbered.

The card number of the TXT or END card containing
the generated coding is specified in the OBJECT
CODE column. Printing of the card number is con­
trolled by the NONUM operand of the PRINT
statement .

• The Monitor PARAM message may optionally be used to deSignate
(or omit) specific input/output files. In order to change the configuration
assumed by the Monitor, the following operand entries are required:

Param Operand Meaning

TAPE=NO Indicates that tape output is not to be generated.

CARD=YES Indicates that card image output is to be written
to SYSOPT.

INPUT = symbolic Source input device, if other than SYSIPT. (See
Source Language Correction.)

OU TPUT = symbolic Indicates symbolic device, if other than SYSUT1,
that is to receive the generated Object Module
File(s).

WORK=YES Indicates assignment of the additional work tape
SYSUT4.

LIBRY =NO Indicates absence of Macro Library.

SOURC E = symbolic Updated source symbolic device, if other than
SYSUT5. (See Source Language Correction.)

ERRLST=NO Indicates that a listing of error flags is not to
be printed.

ASMLST=NO Indicates that the program listing is not to be
produced. Statements containing errors, how-
ever, will be printed.

XREF =YES Indicates that a Cross-Reference listing is to
be produced.

MAP=NO Indicates that the Symbol Table listing is not
to be produced.

A-6

CROSS REFERENCE
LISTING OPTION

General Description

Notes

Appendix A

• The cross reference option in the TOS/TDOS assembly provides a list
of symbols, defined or referenced in the source listing, and the statement
numbers in which reference or definition took place. The symbols are
listed in the same order as they appear in the symbol table listing. This
option is generated by the XRE F = YES entry in the PARAM card. (See
page A-6.)

• 1. Each symbol is shown in the left column of the listing.

2. The statement numbers referencing or defining the symbol are
shown to its right.

3. The statement number which defines the symbol is flagged with an
asterisk.

a. If a symbol is multiply defined, ~ statement defining the
symbol will be flagged with an asterisk.

b. If a symbol is undefined, none of the statement numbers ref­
erencing the symbol will be flagged with an asterisk.

4. Double or single spacing when a new symbol is printed is controlled
by the PRINT instruction. (See page 5-4.)

a. OPEN (preset) - Double spacing.

b. CLOSED - Single spacing.

5. Continuation lines for a given symbol are single spaced, regardless
of PRINT option.

6. If the references to a symbol cause a new page to be printed the
symbol is again printed with the first line of references to if on the
new page.

For example, in the sample <;;ross Reference Listing shown on page
A- 8, the symbol GRWD is defined in statement number 715 and
referenced in statement numbers 657 and 663. If GRWD had been
undefined in this assembly, no asterisk would appear. If GRWD
had been defined more than once, an asterisk would appear adja­
cent to each defining statement number.

A-7

SVMAOL RFF'F,RENC;S CRt'lSS REF'ERENCE LISTING

GREADPNT 00418)0419 00448 00457 00412 00692·

GRfoiPNT 00424 l0431 00479 00563 00702-

GRWI') 00657 J066J 00715-

GSAVel1 U0561)0564 00744.

GSAVE9 00518 J0554 00747.

GSIZE 00585)n586 00729.

GSl.OT 00496)0508 00738-

GTM 0('1435)0450 00570 00713.

GlINWTM 00391)07211"

GwAIT 00661)0665 00667 00714.

GwORD 004A5)0486 00519 00743-

> GW~FNC 00394)n4~9 00641 00653 00655 006'6·
I

00
GWR~PNT 00423)0441 00443 00444 00446 006Q7·

GWRNEwNT 00413 JD415 004'71 00659 00687.

GI<IRTM 00454 J0707.

GIERQ 00596 J0739-

G4096 00402)0404 00734-

G~ 0041.1)0746-

G*NEWSVM 00477 Jn4B8 00669 00740-

G*OFSV/>1 00012·)0427 (10497 00507 00521 00547 006'0 00671

INITIAL1 on228)0390-

INITIAL2 00393 J0396·

INITIAL3 00403)0405·
~

INITIAL4 00466·)0469 \j-
\j-

INITIALS 00460-)0464
<'i:l
~
~

JRECeND 00578)0632 00748-
~.

~

~

APPENDIX B

ERROR FLAGS Table 8-1. Error Flags

Flag Condition

Invalid Address:

• An address expression specifies multiplication or
division of two relocatable operands.

• The final value of an address exceeds 219_l.

A • The intermediate value of an address exceeds 231 _l.

• The displacement of an explicit address (base,
register, displacement), exceeds 212-1.

• An address expression is complex relocatable, but
is not in an A or y type constant.

Incorrect Control Statement:

• Incorrect ICTL statement.

B • Incorrect ISEQ statement.

• START card incorrectly placed in the source deck.

Incorrect Specification:

• Operand in START card not set to double-word
boundary.

• Ampersand in character string is specified as &
rather than &&.

• Incorrect type code in a DC or DS statement.

• Invalid register number used in USING statement.

• Invalid operand in MCALL statement.

• Invalid scaling defined in DC.

Invalid Address:

D • L Field not correct in DC or DS statement.

• Location counter set to odd location when CNOP
instruction executed. Warning only.

• S type constant specified in a literal.

• Constant string not terminated by a quote in DC or
DS statement.

• DC statement does not contain data in constant field or
illegal character present in constant field.

• Length specification is incorrect in machine instruction.

• Address is not aligned to appropriate boundary.

• Source cards not in sequence. (Produced only if ISEQ
specified.)

B-1

ERROR FLAGS
(Cont'd)

Appendix B

Table B-1. Error Flags (Cont'd)

Flag Condition

Syntax Error:

• illegal character in source statement.

• Symbol exceeds eight characters.

• Symbol does not begin with an alphabetic character.

• A required character is not present.

E • Consecutive arithmetic operators.

• PRINT statement error.

• Expression in machine instruction is too complicated:
(that is, nest of parentheses exceeds three).

• Two literals in one statement.

• Error in AOPTN card.

H • Location counter exceeds 2
19

-1.

I • Incorrect immediate data or self -defining term.

L

M

• The number of CSECT and DSECT statements exceeds
32.

• The number of literal pools exceeds 33.

• The number of CSECT, DSECT, EXTRN, and V -CON
statements exceeds 255.

• The number of ENTRY statements exceeds 100.

• Incorrect specification in CSECT or DSECT.

• Unpaired DSECT symbol in an A or Y address constant.

• Symbol is multiply defined.

• Symbol defined in a statement which caused the location
counter to exceed 219 _1.

• Symbol defined as ENTRY in unnamed CSECT or
DSECT.

• Symbol equated to an incorrect symbol.

• Invalid character in operation code. An HB instruction
is generated which branches to the next instruction

o (that is, HB *+4). (See note 2 on page C-1.)

• illegal operation code or macro not found in library.

P • Privileged instruction used. (Not set by 70/25
Assembler.)

B-2

ERROR FLAGS
(Cont'd)

Flag

Q

Appendix B

Table B-1. Error Flags (Cant'd)

Condition

• An error was detected in an ORG or EQU statement.

• Symbol equated to a relocatable symbol in a different
control section (see page 1-2).

S • Illegal symbol in the Name field.

T

Incorrect Macro Translation

All macro errors are noted by a special MNOTE message.
However, the following conditions, which still allow macro
expansion to continue, result in the T flag:

1. Operation code is not legal for generation in a macro.

2. The generated statement is too large.

3. Incorrect format in MNOTE message.

4. A nongenerative statement contains an error or potential
error. Macro processing continues with the statement
treated as an ANOP and the first line of the statement
is listed.

The primary error conditions are:

• Final character value longer than eight characters.

• Intermediate character string longer than 16 characters.

• *Illegal operand in arithmetic operation.

• *Overflow in arithmetic operation.

• Incorrect type operands in boolean expression.

• Syntax error in the statement.

• An illegal or undefined variable symbol contained
within the statement.

(See Note on page C-l.)

U Undefined symbol (in evaluating expressions, the defined
symbol is assumed to be absolute with a value of 0 and a
length attribute of 1).

Y A base register cannot be found to resolve the specified
im plied addre s s .

Z The symbol table is full. See Appendix D for specified
symbol limits.

B-3

APPENDIX C

MACRO ERROR
FLAGS

• The flag field, for errors detected in macro-expansion, other than those
noted by T flags, contains "MAC _ ER". An MNOTE message, displayed in
the source statement field, describes the error.

Any type of error encountered in macro processing effects one assem­
bIer generated MNOTE message to be produced for each outer macro
instruction call. The form of the message in the source statement field is:

OPERATION OPERAND

* MNOTE *,CPXG

If any of the letters are not present, then the appropriate field is left
blank.

The letter codes in the Operand field designate the following types of
errors:

C = An error condition, exclusive of a bad prototype statement, pro­
hibits the called macro from being processed and macro expansion
terminates. The error conditions are:

1. calling statement incorrect. (Examples: an operand contains
more than eight characters, keyword misspelled, more than 49
parameter values in call line, etc.)

2. unidentified operation code.

3. nesting greater than 3.

4. more than 50 unique source deck macros have been called
(70/25 and POS). The limit in TOS and TDOS is 75.

5. keyword parameter specified more than once in macro param­
eter. Expansion terminated.

P The prototype statement of the called macro is in error. l\1:acro
expansion terminates.

X An invalid sequence symbol or a sequence symbol which does not
exist was specified in an AIF, AIFB, AGO, or AGOB statement.
The macro expansion is terminated.

G = Generated statement is bad, invalid op code, or miscellaneous
arithmetic errors.

Notes:

1. MNOTE, G indicates the macro involved, not the statement, which is
indicated by a "T" flag.

2. If a model line generates an unidentifiable or syntactically incorrect
operation code, macro expansion is not terminated in the POS, TOS,
or TDOS Assemblies. Instead, three NOPR instructions are gener­
ated. This feature allows a macro to call on other macros not yet
available without aborting its own expansion.

C-l

APPENDIX 0

SOURCE
PROGRAM

SYMBOL LIMITS

70/25 SYMBOL
LIMITS

POS, TOS, AN 0 TOOS
SYMBOL LIMITS

Examples

• The maximum size of a symbol appearing in the Name field of an assem­
bly statement is eight characters. The maximum number of symbols which
can be processed is a function of the total amount of member available to the
assembly. Since a fixed amount of memory is required for the operating
system components, the macro dictionary, encoded macro definitions, and
certain miscellaneous tables, the memory available for symbol table usage
varies widely.

If the symbol table capacity is exceeded, a Z flag is generated on the
listing opposite the symbol that caused the overflow. All subsequent symbols
from that point will be undefined. In this case, two alternatives exist:

1. Rewrite the program to reduce the number of symbols.

2. Independently assemble various control sections of the program and
then combine into a single program by use of the Linkage Editor.

Presented below are the respective symbol limits for each operating
system under which the assembly runs.

• The maximum number of symbols permitted in the 70/25 Processor is
as follows:

70/25C (16K) - 1,024 Symbols

70/25D (32K) - 2,048 Symbols

70/25E (65K) - 4,096 Symbols (upper limit)

• The number of symbols, N, permitted in the POS, TOS, and TDOS
Assemblers is determined by the following formula:

N = X ~ S or 4,080 whichever is smaller.

where: X is number of bytes available to the Assembly System.

S = 9,000 for PO'S and 8,000 for TOS/TDOS.

POS • For a 32K processor, assume the Supervisor requires 5,768 bytes. The
calculation is as follows:

N

N

(32,768 - 5,768) - 9,000
8

18,000
-8- = 2,250 symbols

D-l

TOS and TOOS

SYMBOL OVERFLOW
(EXCEPT 70/25)

Appendix D

• The assembly is assigned a millimum of 32,000 bytes when running
under MONITOR. Thus, the maximum number of symbols that can be pro­
cessed with only 32K available is as follows:

32,000 - 8,000
N = 8 = 3,000 symbols.

Note, that because of the multiprogramming capability, other con­
currently-operating programs may occupy the remainder of available
memory. Thus, in order to process the upper limit of 4,080 symbols, the
assembly would require availability of 40,768 bytes. The calculation is as
follows:

4,096 = X - 8,000
8

32,768 = X - 8,000

x = 32,768 + 8,000 = 40,768 bytes.

Since 4,096 exceeds the limit of
4,080 the lower number is used
as the limit.

• Because memory is the primary means of storage for the symbol table,
encoded macro definitions and the macro dictionary, the first pass of the
Assembly System may not be able toprocess the maximum number of sym­
bols described above. A certain amount of memory must be reserved; for
example, to store the macro dictionary. In POS it is 1,000 bytes and in
Tos/TDOS it is 2,000 bytes. Thus, if a program has n source statements
and if, after processing X statements, the Pass I symbol table limit has
been exceeded, then Pass IA will be invoked to process the remaining N-X
source statements.

The number of symbols (M) allowed in the first pass prior to overflow is
718 M where M is computed as follows:

M = X - 24, 000 2 04 8 h' h . 11 6 or, , w lC ever IS sma er.

where: X amount of memory available to the assembly.
(that is, processor size less supervisor memory).

TOS

X - S
M = --- or 2,048, whichever is smaller.

6

where: X = amount of memory available to the assembly.

S = 26,000 if source language correction option is not used or
29,000 if it is used.

D-2

SYMBOL OVERFLOW
(EXCEPT 70/25)

(Cont'd)

Example

Appendix D

As the above formulas imply, more than 2,048 symbols could be pro­
cessed in the first pass on larger processors. In both the POS and TOS
assembly systems, the first pass symbol limitation is controlled by the
value assigned to symbolic location SYMBOL. This field is defined in the
first pass of POS and the root segment of TOS and is preset to 2,048. If it
is determined that the average number of symbols per program of a given
installation will not approach this first pass limit, then the location SYMBOL
could be changed to more accurately reflect actual requirements. An addi­
tional advantage to be gained is that more memory is then available for
macro encoding and storage. Minimal built-in macro storage is 1,000 bytes
in POS and 2,000 bytes in TOS. This minimum area tends to insure that the
entire macro dictionary can be contained in memory.

• Assume the TOS Assembly system (without source language correction
facility) has 44K of memory available.

M = 44,000 - 26,000
6

18,000
6 = 3,000 symbols, before overflow.

However, only 2,048 symbols will be processed before Pass IA is
initiated. As noted above, this limitation on M allows additional memory
to be used for macro storage. Thus, memory allocation is as follows:

Assembly 26,000

Symbol table 12,288 (2,048 X 6)

Macro storage 5,712

44,000

Note:

The minimum macro storage area of 2,000 bytes is included in the
assembly allocation above, thus the actual macro storage is 7,712 bytes.

If it is determined that a lower Pass I is adequate for an installation's
programs, the symbolic SYMBOL can be changed to reflect this lower
limit. This has the effect of allowing more memory for macro encoding
and storage. Assume 1,000 symbols is new limit (that is, SYMBOL
changed to 1,000). Memory allocation then becomes:

Assembly

Symbol table

26,000

6,000

Macro storage 12,000

44,000

D-3

APPENDIX E

70/35-45-55 MACHINE INSTRUCTIONS

LEGEND: (TABLES E-l AND E-2)

L Field length in bytes (1-256)

Ll Length of first Operand field (1-16)

L2 Length of second Operand field (1-16)

Dl Displacement value first Operand (0-4095)

D2 Displacement value second Operand (0-4095)

Bl Base (general) register number first Operand (0-15)

B2 Base (general) register number second Operand (0-15)

Rl General register or floating-point register number

R2 General register or floating-point register number

R3 = General register or floating-point register number

General Registers (0-15)

Floating-point registers (0,2,4,6)

12 = Immediate date value (0-255)

*X2 = Index register number (0-15)

81 Absolute or relocatable expression

82 Absolute or relocatable expression

*If B2 is coded explicitly in an RX instruction, X2 must be specified. If indexing is not desired, X2
is written as a zero (0).

E-l

Appendix E

Table E-l. 70/35-45-55 Instruction Formats

Applicable Instruction Machine Format

1 OP 81 L: k: 1 B: 1 121 B241 AP, CP, DP,MP, MVO, PACK,
D1 D2

121
SP, UNPK, ZAP.

SS FORMAT (1)

1 81 B:I
CLC, ED, EDMK, LSP, MVC,

OP 81 121B241 121
MVN, MVZ, NC, OC, SSP, TR, L D1 D2
TRT, XC.

SS FORMAT (2)

I
CKC, CLI, DIG, HDV, IDL, MVI,

OP 81 81 B:I 121
NI, 01, PC, RDD, SDV, TDV, TM, 12 D1
WRD, XI. SI FORMAT

1 OP 81 R: IR:I B:I
121 LM, SLA, SLDA, SLDL, SLL, SRA,

SRDA, SRDL, SRL, STM, BXH, D2
BXLE.

RS FORMAT

A, AD,AE,AH, AL,AU, AW, BAL,

[
BC, BCT, C, CD, CE, CH, CL,

OP 81 R: I x: I B: 1
121 CVB, CVD, D, DD, DE, EX, IC, L, D2

LA, LD, LE, LH, M, MD, ME, MH,
N, 0, S, SD, SE, SH, SL, ST, STC, RX FORMAT

STD, STE, STH, SU, SW, X.

ADR, AER,ALR, AR, AUR, AWR,
BALR, BCR, BCTR, CDR, CER,
CLR, CR, DDR, DER, DR, HDR, 8 4 4

HER, ISK, LCDR, LCER, LCR, OP R1 R2
LDR, LER, LNDR, LNER, LPDR,
LPER, LPR, LR, LTDR, LTER, RR FORMAT

LTR, MDR, MER, MR, NR, OR,
SDR, SER, SLR, SPM, SR, SSK,
SUR, SVC, SWR, XR, LNR.

--
Note:

Variations in the above instruction types are reflected in the assembly operand format (see
table E-2). The fields not written in the symbolic operand will be assembled as binary zeros.

E-2

Appendix E

Table E-2. 70/35-45-55 Instructions

PROCESSOR
MN~M It\STRUcTrON MANUAL ~ACH F'ORMAT
ONTC NAM~ PAGE COCE TVPE

A ADD WORD 118 5A RX
AD ADD NORMALIZED LONG 193 t:JA RX
ADp ADD NORMALIZED LONG 193 2A RR
AE ADD NORMALIZED SHORT 193 ?A RX
AER ADD NORMALIZED SHORT 1Q3 3A RR
AH Ar;D HALr:'~ORD 11.9 4A RX
AL ADD LOGIr:AL 1?0 5E RX
ALP ADD LOGIr,AL 120 1E RR
AP AnD DFCIMAL 142 F'A SSl
AR ADD WORD 118 1A RR
AU ADn UNNORMALIZED SHT 195 ?E RX
AUR ArD UNNORMALIZEO S~T l~~ 3E ~R

AW ADD UNNOqMALIZED LN~ 195 6E RX
AWP ADD UNNORMALIZED LNr, 195 2E RR
R 8R A~.ICH U\JCnNDITIONAI EX1
RAI BR A ~!CH A~D LINK 179 45 RX
BAI R 8R Af\!CH AND LINK 179 05 RR
RC BRANCH 0"' CONDITION 178 47 RX
RCP BR Af\ICH ON CONDITION 178 07 RR
RCT 8RAf\JCH ON COUNT 180 46 RX
BCTR BR .Af\iCH ON CoUNT 180 06 RR
BE BRANCH ON EQuAL EX1
RH BRANCH ON HIGH EX1
Rl 8R Af\!CH Of\1 LOW EX1
8M 8RAf\ICH ON MINUS EX1
BN~ BRANCH ON NOT E~UAL EX1
BN~ 8R Af\ICH ON NOT HIGH EX1
ANI BR Af\!CH Of\J NOT LOW EXl
BO 8R At<-'CH O~! OVERF'lOW EXl
RF' 8RANCH ON PLUS EX1
RR BRANCH UNCOND I T IONAI 6X2
RX~ 8R Af\!CH O\J INDEx HIG~ 1A1 86 RS
FlXI E BRANCH O!\J INDEx LOW OR F.QUAI 182 87 RS
BZ 8RA~JCH 0\1 ZERO EX1
C COMPARE i.jORD 124 59 RX
cn COMPARE LONG 198 69 RX
cDp COMPARE lONG 198 29 RR
CE COMpARE SHORT 198 79 RX
CEP COMPARE SHORT 198 39 RR
Crt COMPARE ~ALFWORD 125 49 RX
CKr c~ErK clolANNEL PRyVrL 99 9F' 5 I
Cl COMpARE LOGICAL 157 55 RX
Clr COMPARE LOGICAL 157 DK S52
ClT COMPARE ,_ OG I CAL 157 95 S I
CLP COMPARE LOGICAL 157 15 RR
Cp cnMpARE nt!CIMAL 145 F'9 551
CR COMPARE wORD 124 19 RR
eVR CONvERT TO BINARY 12 9 4F' RX
cvn CONVERT TO DECIMAL 130 4E RX
0 DIvIDE 128 50 RX

E-3

Appendix E

Table E-2. 70/35-45-55 Instructions (Cont'd)

F'R~C~SSOR

MNFM INSTRUCTION MANUAL MAC~ j::"ORMAT
ONIC NAME PAGE CODe TVPE

DO DIVIDE LONG 202 60 RX
DOR DIVIDE LONG 202 20 RR
DE DIVIDE SHORT 20' 70 RX
nER DIVIDE SH~RT 202 3D RR
DIG DIAGNOSE PRtVIL 91 83 SI
DP DIVIDE DECIMAL 14' F'D SS1
DR DIVIDE 12~ 10 RR
F.1) EDIT 16' DE SS2
EDMK EDIT AND MARK 170 Dr:' SS2
EX tXECUTE 18~ ~4 RX
HDR HALVE LONG 199 24 RR
HDv HALT DEvICE pRIV!L 95 9E S I
HFR HALVE SI-oIORT 199 34 RR
Ie INSERT CHARACTER 162 43 Rx
P1L IDL PRlvrL 90 80 S I
rSK INSERT ST(')RAG~ I<Ey pRIVIL 100 09 RR
L LOAD WORD 111 58 RX
LA LOAD ADDRESS 164 41 RX
LCDR LOAD CQMPLEME"JT LONG 190 23 RR
LeER LOAn COMPLEME"JT SHORT 190 33 RR
LCR LOAD CoMPLEME~T 114 13 RR
l. n LOAD LOt'--!G l8R 68 Rx
LOR LOAD LONG 188 28 RR
LE LOAD SI-IORT 18R 78 RX
LER LOAD SI-IQRT 18B 38 RR
LH LOAD HALF'wORD 11'- 48 RX
LM LOAD MULTIPLE 11? 98 RS
L~nR LOAD NEGATIVE LnNG 19' 21 RR
LNER LOAD NEGATIvE SI-IORT 19, 31 RR
LNR LOAD NEGATIVE 11fl 11 RR
LPDR LOAD POSITIVE LONG 19~ 20 RR
LPFR LoAD PosITIVE SHORT 191 30 RR
LpR LOAD pOSITIvE 115 10 RR
LR LOAD WORD 111 18 RR
LSP LOAD SCRATCH PAn PRIVTL 8~ 08 SS2
LTDR LOAD ANn TE~T LI"lNG 18Q 22 RR
LTER LOAD ANn TEsT SHORT 189 32 RR
LTR LOAD AND TEXT 11~ 12 RR
M MULTIPLY WORD 12~ 5C RX
MD MULTIPLV L O~IG 201 6C RX
MI)R MULTIPLY L O~!G 201 2C RR
ME MULTIpLy s~nRT 201 7C R)(
MER MULTIPLY SHORT 201 3C RR
MH MULTIPLY ~ALF'WORD 12' 4C R)(
~P MULTIPLY nECIMAL 146 F'c ss1
MR MULTIpLv WORD 126 1C RR
~Vc MOVE 154 02 SS2
MVI MOVE 154 92 SI
MV~ MOVF. NUMEPlr-S 15" D1 ss2
MVO MOVE WITH OrF'~ET 15n r1 SSt
MVZ MOVE ZQNES 15~ 03 SS2

E-4

Appendix E

Table E-2. 70/35-45-55 Instructions (Cont'd)

PROCESSOR
Mr-,It:'M rr-..STRlJCTTON MANUAL MACH FORMAT
o r-,I T C f\JAMf: PAGE CODE TVPE

N A~f) 158 54 RX
~!c Ar-.. n 158 D4 SS2
r-..I I A~: f) 158 94 S I
NOp f\JC npFRATION EX1
f\iOpR NO nPFRATION EX2
~!R A~i) 158 14 RR
0 OR 159 56 RX
DC OR 159 96 S I
a I OR 159 D6 SS2
OR OR 159 16 RR
PArK PACk: 148 F"2 SS1
PC PRO(~RAM r.ONTROL PRIVIL 88 82 S I
Pr,i) R~An DrRI=CT PRIVTL 103 85 S I
S SURTRACT WORfJ 121 58 RX
SD SURTRACT NORMALIZED SHORT 196 68 RX
SOP SURTRACT NORMALIZED LONe; 196 28 RR
Sn\! START nE\lIr;E PRyVrL 92 9C S I
s!= SUPTRAC;T NnR~ALIZE=D SI-tORT 196 78 RX
S!=p Sl.'f3TRAr.T NOR~ALIZE=D SHORT 196 38 RR
SI-t S l} ~ T R A r. T HALFWORO 122 48 RX
SI SI QTRArT LOGICAl 123 5F RX
SLA Sf-1FT LE~T SINGLE 134 88 RS
SI rA S~IFT LE~T DOUBLE 136 8F RS
SLT"'L S~IFT LE~T DOUBLE LnGICAL 174 80 RS
SLI s~rFT , EI='T SINGLE LnGICAL 172 89 RS
SLP Sl'HTRAr,T LoGICAL 123 1F RR
Sp SL8TRACT DF:CIMAL 143 r8 SSl
SP~' S~T PR()G~A~ MASK 106 04 RR
SR SI.;r1TRArT WORn 121 18 RR

**** ASSFMRLY FORMATS ***
R1.P2 R~

R1. R3,T')2(82) RS
R~ .n2(x2.82) RX
n1(Pl),I? S I
1')1 (I 1,R1) ,n2(L2,82) SSl
D 1 (l ,81),02(82) SS2
D?(V2,r:~2) t:Xl
R? EX2

E-5

Appendix E

Table E-2. 70/35-45-55 Instructions (Cont'd)

"R~CI=SSOR
MNEM INSTRUCTION MANUAL MACH F'ORMAT
ONIC NAMe F'A~E CODE TVPE

SRA SHIr:"T ~TNGLF RIG~T 13115 8A RS
SRDA SHIF'T RIG~T D~ueLE 13' Be RS
SRDL sHIrT RIG~T DoUBLE LoGICAL 17~ 8C RS
SRl SHI~T RIG~T SINGLE LOtlICAL 17~ 88 RS
SSK SET STORAGE KFY PRIVIL 10t 08 RR
SSP STORE SCRATC~ PAD PR!VIL 8' 00 SS2
ST STO~E WoRn 13t 50 RX
STC STORE C~ARACTr;R 16~ 42 RX
STD STORE LONG 200 60 R)(
STE STORE S~ORT 200 70 R)(
STH STORE HALF'WORO 132 40 R)(
STM STORE MULTIF'L~ 133 90 RS
SUR sUBTRACT UNNORMALIZED sl-fORT 19' 3F' RR
SVC SUpERVISOR CALL 105 OA RR
SW SUBTRACT UNNO~MALIZED LONG 19' 6; R)(
SWR SUBTRACT UNNORMALIZED LONG 19' 2~ RR
sU sUBTRACT UNNORMALIZED S~ORT 19, 7; RX
TDV TEST DEvIce pRIv!L 9, 90 SI
TM TEST UNDER MASK 16~ 91 SI
TR TRANSLATE 16!J nc SS2
TRT TRANSLATE AND TEST 16& 00 SS2
UNPK UNPACK 149 ;3 SSl
WRD WRITE OIRF.CT ~R!V!L 102 84 SI
X EXCLUSIVE OR 160 51 RX
XC EXCLUSIVE O~ 160 07 SS2
X I EXCLUSIVE OR 160 97 SI
XR EXCLUSIvE OR 160 17 RR
ZAP ZERO AND ArlO OeCIMAL. 144 ~8 SSt

E-6

APPENDIX F

SUMMARY OF
70/25

EXCEPTIONS

• The 70/25 Assembler is a subset of the POS/TOS/TDOS Assembly
System language. The following alphabetically arranged list delineates the
exceptions or restrictions of the 70/25 Assembler from the other Spectra
Assemblers.

Address Constant

AOPTN

CNOP

COM

DC

DS

Explicit Format

Extended Mnemonics

Maximum value of the calculated expression
of an A-type constant is 224_1 on the 70/25.

(See page 5-6.) AOPTN functions of POS are
applicable to 70/25.

Not available on 70/25.

Not available on 70/25.

F-, H-, E-, D-type constants and related
Scale and Exponent modifiers are not avail­
able on 70/25.

F-, H-, E-, D-type operand entries are
permitted to obtain appropriate boundary
alignments.

70/35-45-55 Compatibility can be maintained
by specifying D2 (0, B2).

BR, NOPR not permitted. All others are
acceptable.

Equipment Requirements: 70/25 Assembly System

Processor (one, 16K bytes)

Magnetic tapes (three work tapes with reverse read; one 9-channel
system tape)

Input - card reader or magnetic tape

Listing - card punch or magnetic tape

Output - card punch or magnetic tape

Listing device - printer or magnetic tape

Literals

Location Counter

Macro Call

F-1

A duplicate literal is not generated for an
address constant that contains a reference to
the Location Counter.

Maximum value is 2
19

-Ion the 70/25.

An inner macro call may contain up to 112
characters in the operand field on the 70/25.

SUMMARY OF
70/25

EXCEPTIONS
(Cont'd)

Macro Format

Macro Model Line

MCALL

MPRTY

MTRAC

NTRAC

Operand Field

stacked Assembly

Symbol Limits

XFR

F-2

Appendix F

The format of the macro definition can be
altered by the ICTL instruction, if included
in the calling programs source deck.

A model line may be continued on as many
lines as necessary.

Not available on 70/25.

Not available on 70/25.

Not available on 70/25.

Not available on 70/25.

The Operand Field may not extend through
the "END" column. A blank "END" column
must terminate the operand.

Not permitted with a 16K assembly when
SYSOOO (worktape) and SYSOPT (generated
output tape) are assigned to the same tape
device.

1,024, 2,048, or 4,096 symbols are per­
mitted with a 16K, 32K, or 65K assembly
respectively.

See page 5-14. The XFR function of POS is
applicable to 70/25. See also POS overlay
methods, Appendix H.

APPENDIX G

SOURCE
LANGUAGE

MAINTENANCE

INTRODUCTION

SOURCE LIBRARY
TAPE

• Source language maintenance is an extension of the TOS and TDOS
Assemblers that provides the programmer with the capability to store
and maintain Assembler language source programs on magnetic tape.

Depending on the options chosen, source language maintenance requires
one or two additional tapes, which cannot be the devices assigned to the
Assembly System (SYSUTl-3).

Additional maintenance facilities for programs stored on magnetic tape
are provided by the Source Library Update. This utility routine is discussed
in the Spectra 70 TOS Utility Routine manual, 35-302.

• The source library tape may contain a single program or multiple pro­
grams in any order, but is confined to a single reel. Each program consists
of a number of blocks containing five 80-column source statement images,
preceded by an 80-column *ST ARTC image and followed by a tape mark.
The last program on the tape is followed by a double tape mark. Labels
are not required on the input but if they are present they must be in standard
format. Standard labels are written to the output tape.

To permit stacking of source coding for multiple assemblies neither
tape is rewound unless rewinding is called for by a *STARTC Control State­
ment. Whenever output is written on magnetic tape, the Assembler writes
two tape marks and backspaces one tape mark in anticipation of multiple
assemblies.

Whenever a source statement is replaced the new statement and the
first 38 bytes of the old statement are listed on SYSLST immediately pre­
ceding the E"\~~I '1al Symbol Dictionary of the assembly listing.

G-l

Maintenance Control
Statement

Format

Operation Field

Operand Field

Progname

Option

Appendix G

• When source language maintenance is desired, a control statement, of
the format below, must be the first statement read from SYSIPT. This
statement cannot be continued.

• OPERATION OPERAND

*STARTC Progname, [option], [SEQ] , [number] , [size] , [ID]

• Columns 1-7 must contain *STARTC.

• All operands except Progname are optional. A comma must be used to
denote a missing operand unless no operands follow.

The program named in the *STARTC card is always assembled, and the
*STARTC card from SYSIPT always replaces the *STARTC card image on
the output tape. The program ID may be updated by placing a version number
after the last optional operand.

• The program name must be preceded by at least one space and can be
any combination of characters except space and comma. Maximum length is
eight characters.

After the program is on magnetic tape the program name may be changed
by placing the new name in cols. 73-80 of the *STARTC card.

• This operand may be unspecified or one of the five options listed below
can be chosen.

1. Unspecified: The source program, which must be in SYSIPT, is
assembled and written to the output tape. This option is used for
initial creation of the source library tape.

2. ADD: All programs on the input tape are copied to the output tape,
then the program to be added, which must be in SYSIPT, is assembled
and appended to the output tape. Correction may not be applied. If
more than one program is to be added, the succeeding programs
must use option 1.

3. ASSEMBLE: The choice of this option causes the specified program
on the input tape to be assembled with no corrections. An output tape
is not produced and the *ENDC card must be omitted.

4. CORRECT: The source program from the input tape is updated with
corrections from SYSIPT and assembled. An output tape is not
produced.

5. COPY: The source program from the input tape is updated with
corrections from SYSIPT, assembled, and written to the output tape.
No other programs from the input tape are processed.

6. COpy ALL: This function is identical to COPY, except that all pro­
grams on the source library input prior to the one to be assembled/
corrected are first copied to the source output.

G-2

Appendix G

SEQ • This operand is optional. If present, it instructs the assembly to insert

Number

sequence numbers in the updated source program. If this operand is blank,
the contents of columns 73-80 of the source cards, or correction cards,
are retained.

• This operand is optional and should be used only in conjunction with
the SEQ operand, above. If SEQ is not used, the number operand is
ignored when present.

This operand specifies the first sequence number to be assigned; if
the field is omitted, zeros are assumed. In any case, sequence numbers
are incremented by 100 for each statement.

Size • This optional field specifies the size of the sequence number and must

Identification

Tape Positioning

Source Input

Source Output

be from four to eight digits in length. For example, if 4 is specified, the
sequence number is placed in columns 77-80. If the field is not specified,
an eight-character field (that is, columns 73-80) is assumed.

If the number of digits specified in the number field exceeds that speci­
fied by the size field or the implied size field, the rightmost digits of the
number field are used.

• This operand is ignored if the SEQ operand is omitted. This operand
specifies an identification field that will be reproduced into all source
statements beginning in column 73. If SEQ is used p the ID field length is
the difference between the maximum (8) less the number of characters
specified in the SIZ E operand.

• Columns 71 and 72 of the *STARTC message may be used to control
positioning of the source input and source output tapes. The acceptable
characters and their effect on the input and/or output tapes are summarized
below.

• If column 71 specifies repositioning of source input tape, the tape will be
rewound and positioned following the first tape mark if the tape contains a
Volume and Header label. If no labels are present, it will be positioned at
BOT. If no repositioning is specified, the tape will not be rewound.

It should be noted that initial creation of a source library tape, using the
"unspecified" option of the *STARTC card, will include a dummy Volume
(VOL) and Header (HDR) label.

• If column 72 specifies repositioning of the source output tape (SOURCE),
the tape will be rewound and positioned according to the following rules:

1. If a Volume (VOL) label is not found as the first "record on tape, a
dummy label set (VOL, HDR, TM) will be written out.

2. If a Volume label is found, a search is made for a HDR label. The
expiration date is checked and if found to be purgable, a dummy
Header label and TM will be written out. If the purge check fails, the
operator has the choice to continue or to mount a new tape and retry.

G-3

Source Output
(Cont'd)

Correction Statements

Appendix G

The purge control characters and their meanings are as follows:

COLUMN CHARACTER MEANING SIGNIFICANCE

71 Y Position source Because source correc-
input tape regard- tion only searches tapes
less of whether or forward, this permits
not it has been assembly of a program
positioned. previously read from

the tape.

71 N Do not position This provides a conven-
the source input ient method of utilizing
tape; even if it multiple inputs (switched
has never been about by ASSG N cards).
positioned.

71 Other than Position source This is the standard
Y or N input if not yet TOS mode of operation.

positioned.

72 N Do not position This provides a conven-
the source output ient way to switch output
tape - even if it units and control
has never been positioning.
positioned.

72 Other than Position if not This is the standard
N yet positioned. TOS mode of

Do not purge if operation.
already
positioned.

• Correction statements are identified by exception; that is, if a statement
does not begin with *STARTC, *DELETE, OR *ENDC it is processed as a
correction. Correction statements must be in SYSIPT in ascending order
by sequence number (columns 73-80).

Correction statements fall into two categories: replacement and inser­
tion. If the sequence field of a correction statement is equal to the sequence
number of a source library statement, then the source library statement is
replaced by the correction statement. If a correction statement has a
sequence number that is not equal to the sequence number of any statement
on the tape, then the statement is inserted in proper numerical order. If a
correction statement has a blank in column 80 it is considered to be an
insertion and is inserted immediately. Thus, by utilizing dummy replace­
ments or insertions to position the input tape, large sections of new coding
may be inserted.

G-4

Delete Statement

Format

Operation Field

Operand Field

End Statement

Format

Operation Field

Operand Field

Appendix G

• Whenever deletion of one or more cards is desired, a delete statement
of the format shown below is required.

• OPERATION OPERAND

*DELETE [,]

• *DELETE is punched in columns 1-7 to identify the delete statement.

An optional comma may appear in column 8.

• d1 specifies the sequence number of the first card to be deleted and
begins in column 9.

d2 specifies the sequence number of the last card to be deleted and must
be equal to or greater than d1.

d 1 and d2 are any combination of characters except blank or comma.
If the field is greater than eight characters, the rightmost eight characters
are used. If the field is Ie ss than eight characters, the sequence field is
right-justified, and space-filled to the left. If d2 is omitted, then it is set
equal to d1.

The comma in column 8 is optional. If present, the next eight characters
regardless of value, are considered as the d1 operand. This option allows
correction of individual statements that contain invalid characters in the
sequence number field. In order to properly position the source tape, a
"dummy" correction should be given to the last preceding statement con­
taining a valid sequence number.

• The final statement for all programs being corrected must be the *ENDC
statement unless the ASSEMBLE option is used. If corrections are present
this statement must follow the last correction statement, however if no
corrections are present, it must follow the *STARTC statement.

• OPERATION OPERAND

*ENDC [COpy]

• *ENDC is punched in columns 1-5.

• The COpy operand is optional. If present, it directs the assembly to
copy the remaining programs on the source Ii brary input to the updated
source output. This copy option is allowed even if the program being
assembled was on SYSIPT (that is, the *STARTC operand was ADD or
blank).

If the *STARTC card specifies the CORRECT option, and the COpy
operand is present in *ENDC, the COpy is ignored.

G-5

Error Messages

Example

Message Meaning

ERROR 1. dl greater than d2
in *DELETE card.

2. Option operand in
*STARTC card
invalid.

*ERROR*FATAL Program to be corrected
cannot be located on
source library input.

NO*ENDC 1. No *ENDC card to
CARD READ terminate deck.

2. Correction cards out
of sequence .

• II STARTM

I I ASSGN SYSLST ,Ll

I I ASSGN SYSUTl,Ol

I I ASSGN SYSUT2,02

II ASSGN SYSUT3,03

II ASSGN SYSLIB,04

II JOB

I I PARAM INPUT = SYSUT6

I I ASSGN SYSUT5,05

I I ASSGN SYSUT6,06

II ASSMBL

*STARTC PROGl,ADD,SEQ,OlOOO,5,PGl

MAIN START

*ENDC

BALR 2,0

USING *,2

END

G-6

Appendix G

Action

d2 is set equal to

dl·

Blank operand.
Assumed-rest
of card ignored.

If COpy ALL is
used in *STARTC
the source input
is copied to source
output.

Correct and
restart.

APPENDIX H

OVERLAY
(SEGMENTA­

TION) METHODS

POS OVERLAY
METHODS

• Many programmers find themselves faced with the situation where
a vailable memory is not adequate for the entire program. They then must
make the choice of reducing program size or developing a scheme where
memory is o.verlaid when a particular segment of coding is needed.

This section describes the various methods of program overlays
(segmentation) available to the POS and TOS/TDOS programmer. The
design philosophy of the POS and TOS/TDOS systems requires that overlay
planning be considered during program design and coding. The methods
described herein are written at the source language level. The generated
coding produced from these methods permits production of loadable object
modules in the desired segmentation format.

Each logical coding entity is known as a segment. Reference to data and
transfer of control between the modules within segments are accomplished
by use of external referencing techniques. (See EXTRN and ENTRY, pages
4-16 and 4-15.)

A given program may contain multiple segments.

Overlay points within a program are known as "node" points. In the
following diagram we show a single node point structure. Segment X is
the root segment. Segments Y and Z share a common overlay point (node
A). The housekeeping coding in X starting at node point A may be overlayed
by either segment Y or Z.

NODE

PO!NT~ x

~--+--..,

Y z

Because there are differences in the POS and TOS/TDOS systems
implementation, a separate discussion of overlay methods is presented
for each system.

• In POS a single assembly may create overlays. All overlays except the
last must end with an XFR card. The last overlay ends with the normal
END card.

To guarantee that an overlay is loaded in the desired address an ORG
statement should be the first line of coding in the overlay.

H-1

POS OVERLAY
METHODS

(Cont'd)

SAMPLE PROGRAM

Introduction

Appendix H

Overlays are called into memory by use of the FETCH or LOAD macros
(see POS FCP and Supervisor Communication Manual, No. 70-00-605).

Multiple assemblies may be combined into a program through use of
the Linkage Editor.

An example of an overlay follows. This example is oriented toward the
70/25, however, the usage is applicable to POS also.

On page H-8, the DTFEN on line 0456 is coded with an OVLAY param­
eter. This parameter is applicable to the 70/25 only and causes the Open
routine to be coded in line so that the Open may be overlaid with problem
cOding.

At object time the Loader reads the object cards until it encounters the
XFR card. At this point (line 0490) controlis transferred to the open routine
at OPENRT. At the end of the open routine the FETCH macro (line 0480) is
executed which overlays the open routine with the remainder of the object
deck. At the end of this overlay the END (line 1870) transfers control to
MAIN (0530) and the rest of the program is executed.

• This program has been included in this manual, not as an exercise in
programming, but as a review of some of the assembly features previously
discussed herein and contained in the related publication "POS File
Control Processor and Supervisor Communication Macros Reference
Manual," (No.70-00-605).

The sample program illustrates the order in which the following features
might be used to solve a problem.

1. Job-Control cards used to assemble.

2. Logical and physical FCP inclusion.

3. Possible overlaying techniques.

4. Some assembly controlling codes.

5. Basic assembly formats.

6. Literals, constants and working storage.

7. Supervisor calls.

This program shows only the coding necessary for assembling a 70/25
object program.

H-2

70/25 SAMPLE PROGRAM (POS)

50. 55.

1.

PCHANGE RT

51. 56. 2.
(PDELETE)

33. 43.

52. 57.

34. 44.
3.

53. 58.

35. 45.
4.

54.

ADDITION '19. 5.
36.

46.

37.
60.

6.

47.

38.

T> M
7.

T<M

48. ::r: 17.
I

c:".,
8.

25. 39.

49.

18. 11. 40.
9.

26.

111. 12.
41.

10.

27.

20. 13.

42.

28.

21. 14.

29

22. 15.

(RESET)
23. 16.

30.
,...------,

24. 31.

32.

CMARGE NO.

DATE REQ'D ___________ _

NAME OPERATION OPERAN!)

SPECTRA 70

ASSEMBLY PROGRAM FORM

FLOW CHART REFERENCE

DATE 2/68 PAGE--L OF~

PROGRAM Sample Program
PROGRAMMER ___________ _

COMMENTS I!)ENTI FICA TIOH

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30;11 32 33 34 35 36 37 38 39 40 41 4243 44 45 46 47 48 49 so 51 52 5354 55 56 57 58 59 6061 626364 65 66 67 6869 70 71 72 73 74 7576 n 71 79 10

I

/ / JOB

/ / I LOG

/ / i ASS G N

G N

G N

/ / I j A!S Is GIN

/ /

/ /

I
ASS GI N

I I
nIA'T E'

F G

I ! I

I !

I

I

I

I

I I i

I

I I
i i

ASS E M B

S Y S 0 0 0 • X 100 1 I , T 2

S Y S 0 0 1 • X I 002 I • T 2

S Y SiO 0'2 • X 100 3 I • T 2

S Y SIP T • xl I 2 0 n I • R 1

S Y SOP T, X I 2 0 E I t P 1

S Y S L ST. xl I 3 0 Fl. L 1

6 5 356 I

o 1 1

i I

!

I

I

I I

i
I

i I

I

I
I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62636465 66 67 6869 70 71 72 73 74 75 76 77 78 79 80

CHARGE NO. ______________________ __

DATE REQ'O

NAME OPERATION OPERAND

1 12 3 4 5 6 7 18 9 10 11 12113 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

,

Si,T !A
I

B E G I NI RT 100 o 0'

I INM A ST E R
!

DT F S R A L T TA P E = S Y S o 0

i I
5 0 , , J: L K S I Z E = ,

I ,

I

29 30 31

SAM

0 ,

SPECTRA 70

ASSEMBLY PROGRAM FORM

FLOW CHART REFERENCE _______ _

COMMENTS

32 33 3. 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 SO 51

P L E lAs s E M B L Y P R a B L E M

OA TE __ -=2",,1-,6:.;8,--_ PAGE_2_ OF _12 __

PROGRAM __ -",S""am",p.,.l=e",---,P,,-,r,,-,o,,-,g:>-,r~a=m~ ______ _

PROGRAMMER __________________ _

IDENTI FICATION

52 53 54 55 56 57 58 59 6061 62 63 6.65 66 67 6869 70 71 72 73 7. 75 76 77 78 79 80

(7 o 1 2 5) 0 0 1 0

C ·0 0 2 0

C 0 0 3 0

I D EV A D D R = S Y S 0 o 1 , C 0 0 4 0

I
I D E V I C'E = T A P E , C 0 0 5 0

! ,

I I E a FA DD R =[E N D 1 , C 0 0 6 0
I I

E R R a P T = slK I P C 0 0 7 0

l
F I L A B L = SiT D , C 0 0 8 0

--~- ~"- r-r--r

i
i

I alA
I

I I R E A, I =MA S T 1 , I C 0 0 9 0

~---L
I

I a A REA 2 = M AI S T 2 I C 0 1 0 0
~

I

! i

,

F aiRiw A !

I I I R E A D = R Di , C 0 1 1 0
!

! i MI= F ! R E C F a R I X U N B , C 0 1 2 0

!
I
I T Y plE F'L EI=' I N P U, T , C 0 1 3 0

I

RI K
! '

E! s I
I

i W a Ai = Y I

1 I

I

I I i
, ,

1 I
i ! i

I
I I 1 I 1 1 I I

I I
!

i I

I
!

I

i
I

I

!

I
I

i

I I
! ---,-

I

I

i j !

I
I

I I ,

I I

I I i

112 3 4 5 6 7
1

8 9 10 11 12113 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

CH RGE NO. ----.- .-------~
D TE REQ'D ___________ _

NAME OPERATION OPERAND

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

o U T~M A S T R D T F S R A L T TAP E = S y S 0 0 2 ,
B L K S I Z Ei= 5 0 ,

f

D E V A D D RI= S Y S 0 0 3 ,
- t

,

D E V I C E =jT A P E ,
,

i F I LA B L =IS T D , i

I I

I

I I 0 AR E A l
j
= OUT -f-- .

I I 0 AR E A 2 = OUT 1 .
R E C F 0 RM = F I X U N B .1

-~

T Y P E F L E = 0 U T PUT
'1

W 0 R K A = Y4 E S I

;-

;

i

I i
I
I .

I

I

I

1

!

:

i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPECTRA 70

ASSEMBLY PROGRAM FORM

FLOW CH RT REFERENCE _______ _

COMMENTS

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

i

i

I

I

I

,

I
I--+- -
I
I

:
i

,

1 I I
I ,

.

! I
i

i

I
I

I

!

I
, ,

!

!

I
~

,
I

I

I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

54 55 56 57 58 59

54 55 56 57 58 59

D TE 2/68 p GE_3_ OF __ 12_~

.PAO'GR M _ Sample P~ra-:cm=--__ _

PROGR MMER __________ _

--

I DENT! FICA TION

60 61 62 63 64 65 66 67 6869 70 71 72 73 74 75 76 77 78 79 80

C 0 ~,.2 ~
C 0 1 6 0

- ._-- 1--1--

C 0 1 7 0

c 0 1 8 0

i
i c 10 2 1 0

I
,

i

i
C '0 2 2

-I--~
I c o 2 2~ --

I
i

I c 0 2 4 0

,

I

c o 2 ~f-Q --I-~ 1--1-- - - I--

! 0 2 6
--I-- f--Q

:

i
I I .. - I--1--1---

! I
--

I I
!

I
i

i I

! !
,

I I
I

!

I
I

i I

1-1--1---

i
-~--t--I--

i 1

i
I . I

ftr~
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76f77 A~~

1

CHARGE NO.

OATE REQ·O

NAME

2 3 4 5

C ~ 'R D I

I

!

I

i

1 2 3 4 5

I

OPERATION

6 7 8 9 10 11 12 13 14 15

N D T F S R

I

I

I I
!

i

I

I

6 7 8 9 10 11 12 13 14 15

OPERAND

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

B L K S I Z E = 8 a .
D E VA D D R = S Y S RDR .
D E V I C E = R E AD E R .
A L T D E V = TA P E .
E o F A D D R = E N D 3 ~

I OA REA 1 = CA R D 1

I o A REA Z = C A R D Z

R E C F o R M= F I X U N B ,
T Y L = I N P U T P E F E .
W 0 R KA = YES

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPECTRA 70

ASSEMBLY PROGRAM FORM

FLOW CIV<RT REFERENCE _______ _

COMMENTS

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

52 53 54 55 56 57 58 59 60 61

I

52 53 54 55 56 57 58 59 60 61

OATuE_--=-Z-<-I:>t.6><.8 __ PAGE __ 4_ OF _1_2 __

PROGRAM Sample Program

PROGRAMMER ____________ _

I DENTI FICA TION

62 63 64 65 66 67 6869 70 71 7273 74 75 76 77 78 79 80

c a Z 7 a

C a Z 8 a

C a Z 9 a
C a 3 a a
C a 3 1 a

C a 3 Z a
C a 3 3 a
C a 3 4 a

C a 3 5 C

a 3 E C

62 63 64 65 66 67 68 69 70 71 7273 74 75 76 77 78 79 80

::::c:
I

ex>

CHARGE NO. ______________________ ___

DATE REQ'D ________________________ _

NAME OPERATION OPERAND

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P R I NT DT F S R B L K S I Z E = 1 3 2 •

C 0 N T RO L = YES ,
D E V A D D R= S Y S L S T •

DE V I C E = P R I N T E R ,

I 0 AR E A 1 = L I S T .
P R I N T 0 V -YES .
R E C F 0 RM = F I XU N B ,

T Y P E F L E = o U T P U T

DT FEN o V LAY

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPECTRA 70

ASSEMBLY PROGRAM FORM

FLOW CHART REFERENCE

3233 34 35 36 37 38 39 40 41 4243 44 45

32 33 34 35 36 37 38 39 40 41 42 43 4445

COMMENTS

4647 48 49 so 51 52 53 54 55 56 57 58 59 6061

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

DATE 2/68 PAGE-----2- OF ~

PROGRAM Sample Program
PROGRAMMER ________________________ _

IDENTI FICATION

6263 64 65 66 67 6869 70 71 7273 74 75 76 77 78 79 80

C 0 380

C 0 390

C 0 4 0 0

C 0 4 1 0

C 0 420

C o 4 3 0

C 0 4 4 0

0 450

o 4 6 5

62 63 6465 6667 6869 70 71 72 73 74 75 76 77 78 79 80

CHARGE NO. ______________________ __

DATE REQ'D ______________________ __

NAME OPERATION OPERAND

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPECTRA 70

ASSEMBLY PROGRAM FORM

FLOW CHART REFERENCE

32 33 34 35 36 37 38 39 4041 42 43 44 45

COMMENTS

46 47 48 49 50 51 52 53 54 55 56 57 58 59 6061

o piE N R T o P E N I N MA S T E R. , 0 UT MA S T R. , C A R. D I N • P R I N T

F E T C H MA I N

X F R o P E N RT

REP RO

P H A S E MA I N

o R G o P E N RT

MA I N B A L R 3 • 0 L 0 A D G E N E RAL R E G I S T E R S

I U S I N G * , 3 • 4 , 5 , 6 , 7 S T ART MA I N P A T H

LOlA D LM 4 , 7 . B A S E

B H S K P

R A S F. D C A (L C A D+ 4. 0 9 6) R E G I S T E R C 0 N S T A N T S

D C A (L 0 AD + 8 1 9 2)

D C i A (L 0 A D + 1 2 2 8 8)

i D C A (L 0 AD+ 1 6 3 8 4)

His K P C N T RL P R I N T , S K , 1 P A G E C HAN G E F 0 RM
I

I E A M V C L I S T K S P A C E C L EAR P R I N T A R

T Y P E DA T E EX C P C C B T y P E R
I Wi A I T C C B T y P E R

I B P 0 I N T 1

C C B T Y P E R C C B S Y S 1 o G , C C WT Y P E R DA T E C 0 N S T A N T

C C W T Y P E R C C W W R , K DAT E, K D AT E + 9

K D AT E D C C 'E N T E R D A T E '

P 0 I N T 1 EX C P C C B R E AD

WA I T C C B R E A D
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 S4 5S 56 57 58 59 60 61

DATE __ ---'2"""'/w6 ... 8'--_ PAGE~ OF ~

PROGRAM Sample Program

PROGRAMMER

IDENTI FICA TION

62 63 6465 66 67 .6869 70 71 72 73 74 75 76 77 78 79 80

0 4 7 0

0 4 8 0

0 490

0 5 0 0

0 5 1 0

0 5 2 0

0 5 3 0

0 5 4 0

0 5 5 0

0 5 6 0

0 5 7 0

0 5 8 0

0 5 9 0

0 600

0 6 1 0

0 6 2 0

0 6 3 0

0 6 4 0

o 6 5 0

0 6 6 0

0 6 7 0

0 6 8 0

0 6 9 0

0 7 0 0

62 63 646S 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

CHARGE NO.
-~--

~
SPECTRA 70 @ DATE 2/68 PAGE_7_ OF ._1_2 __

DATE REQ'D ASSEMBLY PROGRAM FORM PROGRAM __ Q.amp1e Progril.!!!.-___ ~ _____

FLOW CHART REFERENCE PROGRAMMER
--~--.-

~-- ------

NAME OPERATION OPERAND COMMENTS IDENTI FICATION

--I- ---

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 6869 70 71 72 73 74 75 76 77 78 79 80

I
B P 0 I N T 2 1---1--1-_ 0 J-el.Q

C C .B R E,A D clc B s y S L 0 G , C C W R E A D 0 7 2 a
-- I---f---f-.

I

C C W R E'A D cl~ W R D F , W DA T E W D A T E + 5 a 7 3 a

W !D A T EI D S c L 6
I

I a 7 4 a
!

I

._-1--- _.- -I-f---

i I I

I I 1 1
- .- 1--1--.

I
I 1--1---

I t--I-t-- ---I -- --t--
I

P 0 I N T 2 G E T I N MA S T E R M P R C a ~1-J!. - _. 1---1--1--- -

P 0 I N T 3 G E T C A R D I N , C D I N I a II ~.Q 1---1--- _. - f--I-- -
I

C H E C K 1 qL C T A C C T M AI-C C T r.lo 1M P A R R A C C o U N T C 0 :c E s --t--o 1--. a 7 7 a
B L A D D I T ION B RA N C H T 0 A D D a_e1-~~

I
B H W RTM B RA N C H T 0 W R I T E 0 U T 02. ~~
C L C T C o D E , = C ! D ' C OM P A R El T RAN S A C T I,O N C 0 D E i a 8 a a

I B N E U P DA T E B RA NC IH T 0 U P DA T E L 0 G I c l a 8 1 a

I
MV C E X I T + 2 (2) AD Al i SET P l{ I N T EX I T T 0 P 0 I N T 1 a 8 2 a

I I I

ID BI P D E L E T E BRA N C H T 0 P R I N T E L E T R a 8 3 a
I I

U P D A T E P :A C K W T AM T (5) , T A M T (9) P A C K T R A N SA C T I 0 N AM o II N l' a 8 4 a
lAp M B A LA N C E , W .T AM T ADD T RAN IAIMIT T 0 B A T IA N r. R a 8 5 a

I i ~ Iv C M D A T E W D A T E M o V E r. II RIR IRINIT InlA ITR TID 1M A S ITIEIR a 8 6 a
I

IA ip I IMT RA N S X ! 1 C , ADD 0 N E T 0 INlu 1M IB E R o F TRA Nis a 8 7 a

~ C E X I T + 2 (2) , A D B 1 S E T P R I N T Elx liT T 0 P 0 I N T S a .J!. ~~
Is! p C HIA N G E B RA N C H Tlo P R I N T C H A N IG E a 8 9 a

A D B 1 D C S (P 0 I N T 3) s T y P E C 0 N S T A Nl ~ a~ &.Q
A D C 1 D C S (C H E C K ~) S T y P E C 0 N S T A N T S a 9 1 a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

CHARGE NO. ______ _

OATE REQ'O

r------.-

NAME OPERATION OPERAND

SPECTRA 70

ASSEMBLY PROGRAM FORM

FLOW CHART REFERENCE

COMMENTS

~ll} 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
f-. -

D c! o II N clo ~~ 5 (P T 2) N 5 T A N T A D D R E 5 5

I i

I

t---i---,- 1---

AD ID I T I olN M,V C I M 5 T 0 R E , M P R C M 0 V E MA 5 T E R T 0 W 0 RK
t-.-~, .-.- t-'

i i MV C M P R C (3 0) , C D I N M 0 V E T R IAN 5 T 0 MA 15 IT IER t-t--+--:
KI

I I P A C M B A LA N C E T A M T P A C K A N D M 0 V E AIMIT

I

! ! M;V C M D A T E W D A T E I M 0 V E C U R R E N T DA T IE IT 10 1M IA Is
I i M1V

I
lMov t- C M T RAN 5 , = X ! 0 0 o 0 0 ! E Z E R 0 5 T 0 N 0 o F T R A Nis

I I I I
i I

MV C 5 W I T C H + 1 (1) , = X ! F 0 ! 5 E T W R I T E 5 WIT C H

I I

MV C E X I T + 2 (2 } . A D B 1 5 E T P R I N T E X I T Tlo Ic IHIK 11
I

•

B P A D D E D B RAN C H T 0 P R I N T ADD I T T r: N

I

W IR 'T 1M
!

P U T OUT MA 5 T R M P R C WE I T E NEW MA 5 T E R
I

I ! 10 5 ,W,I 'T C H B C X 7 ! R IE 5 E T W R I T E 5 W I T C H
I G E T I N M A 5 T E R M P R C REA D MA 5 T E R I

I MV C 5 W I T C H + 1 (1 1 = X ! 0 0 ! 5 W I T C H CON 5 T ANT

I I 'I B C H E C K 1
!

I
~ I T I R 'E i5 E M V C 5 W I T Ie H + 1 (1) = X ! 0 {) ! R E 5 E T Iw R IT 'I' E 5 W I T C H

: I
I i MV C M P R C M 5 T ORE M 0 V E 5 T o R E D MA 15 T IE R

I

i B C H E C K 1 B R A N C H T 0 C H E C K 1

I

P C H A N G E MW r L I 15 IT IK S P IA Ir. IE.
I

MV C L A C C T 1M A C C~

I MV C LA M T ... M A 5 K 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

DATE 2/68 PAGE_8_ OF __ 1_2_

PROGRAM 5amp1e Program

PROGRAMMER _. .. .

IDENTI FICATION

60 61 42 63 64 65 66 67 6869 70 71 7273 74 75 76 77 78 79 80

o 9 2 0

0 9 3 0

0 9 4 0

0 9 5 0

0 9 6 0

0 9 7 0

0 9 8 0

0 9 9 0

Or2-r2-U

1 0 o 0

1 0 1 0

1 0 2 0

1 0 3 0

1 0 4..9..

1 o 5 0

1 0 6 0

1 0 7 0

1 0 8 0

1 0 9 0

1 1 o 0
60 61 ~2 63 6465 66 67 68 69 70 71 7273 74 75 76 77 78 79 80

CHARGE NO. ________ _ SPECTRA 70

DATE REQ'D ASSEMBLY PROGRAM FORM PROGRAM Sample Program

FLOW CHART REFERENCE _______ PROGRAMMER ---------~ @ DATE __ 2..:...1_6_8 __ PAGE __ 9_0F_l_2 __

~-.--_____,_,____.__-----~------r-r---

NAME OPERATION OPERAND COMMENTS IDENTI FICATION

1 2 3 4 5 6 7 8 9 10 11 12131415 16 17181920 21221232425 26 272829 3031 32333435 3637 38 394041 4243 4445 464748 49 so 5152 5354 55 56 57 58596061 6263646566 67686970 71 72 73 74 7576 77 78 79 80

i ! i I! I
I M V C i L B A L AI N C.E , MAS K 1 I 1 1 1 0

! 'T I II
' E D I LAM T ,W t'!'..~A+M T r! 1 1 2 0

1---1---+-+-+-+-+--1-- r-- ~ pl-+l L B A }:~: E~J_ MBA L A NI C E I I I ! 1 1 3 0

P R I N T 0 U T PUT i I P R I NI Ti i ,1 i ill 4 0

i PRMY PRINTi~·;21- i SENSE IFlolR OVERFLOW 11S0

EX;IT B 'i HALTSI 11 I I COMMON !PRINT EXIT 1160

HALTS HB 1 HALTS,Xi,!os, ! INVALID ElxIT 110AID 1170

I

K'D,ELETE
I ,

KiAID D

,

* DiE LET E

P DEL E T E

I
!

I

I

I
I I

+-+'~~4-+-+-+-~e~---+·--~-+-+~~4-+-+-~~-+-+-+~~~+-+-~'~~+-+-+-~~-+-+-+-+~~+-+-+-i--~-+-+-+~4-+-4-+-~~-+-+-+-r~
I I coiN S TAN T S 1 1 8 0

I !! !
D C I C' ADD E Di ,! I 1 2 1 0

D C I X' 41 0 2: 0 ! 6! B I 2 0 2 0 2 0 6 B 2 0 2 ot 2 1 4 E 2 0 2 0 6 0 '

D C I I P' +: 1 ; 12 S! '

M V ci I

M V C

B'

I !
PAT HI ,

L DEL E'T EID , K DEL E T E

LAC C T , M\C C T

P R I N T 0 UI TI

i

M 0 V E D EL E TED C 10 N :S TAN IT
I

MOVE Ar.lcIOITNIT NUMBER

BR~NCH TO PRINIT

1 220

1 2 2 S

1 2 3 0

1 2 4 0

1 2 S 0

1 260

* ADD I T ION P RII N T PAT H I I 1 2 7 0
i

M V C : LIS T
I

KsplAclE MOVE SPACES Tlo IplRrlNIT 1280

M V C I LAD D ED. :K ADD MOVE CONslTAINIT ITlo IplRlrlNIT 1290

PUT P R I N T I PRINT LINIE 10iNIE 1'300
I I

~~-+~+-+-~-+B~~4-+-~-+P~C~H+A~N~G~E+-+~+-+-~-+~~+-~-+~~B+R~A~N4C~H~+T~10~41~PIR~~III~NIT~~+-~~-+~+-+-~-+~+-+-~-+~~+-~-+~1~3~1+'~O
I

1 2 3 4 5 6 7 8 9 10 11 121314 1516 17181920 21 22123242526 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

CHARGE NO. __________ _

DATE REQ'O ________ . ___ _

NAME OPERATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

*' AIL L 0 C A T I 0 N o F S T o R

l1S 0 F

MA S T 1 D S C L 5 0

M~ ~ tr 2 D S C L 5 0

~p R C D S a C L 5 0

M~ C C T D S C L 6

M~ ~ ~ E D S C L 2 4

M B ~ LA N C E D S C L 5

MD~ rr E D S C L 6

Mtr RIA N S D S C L 5

M S P IA C E D S C L 4

SPECTRA 70

ASSEMBLY PROGUM 'FnRM

FLOW CHART REFERENCE

OPERAND

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 .w 41 424J 44 45

AGE A R E A S FOR I N MA S T E R

I N PUT A R E A ONE FOR MA S T

I N PUT A R EA TWO FOR M'A 's T

W 0 RKA FOR I N P UT MA S T E R

P A C K E D F I E L D

COMMENTS

46 47 48 49 50 51

E R

E R

o U tr D S C L 5 0 A L L 0 CA T I o N o F S T o R AGE FOR C A R D

o IU tr 1 D S C L 5 a

* 1 r. L L 0 CAT ION o F S T ORA G E A R E A S FOR CA R D I N
I

D S 0 F

C iA IR D 1 D S C L 8 a I N P U T A R EA ONE FOR C D I N

C AIR D 2 D S C L 8 0 I N P UT A R EA TWO FOR C D I N

C P I N D:S 0 C L 8 0

T ~ C C T D IS C L 6

T ~ ~ ~ E D S C L 2 4

T 1\ Mtr D S C L 9

T C o D IS D S C L 1

I W T AM T D S C L 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

DATE 2/68 PAGE~ OF _1_2 __

PROGRAM Sample Program

PROGRAMMER . ___________ _

IDENTIFICATION

52 53 54 55 56 57 58 59 6061 6263 6465 66 67 6869 70 71 7273 74 75 76 77 78 79 80

1 3 1 2 a
1 330

1 3 4 a
1 350

1 3 6 a
1 3 7 a
1 3 a Q

1 390

1 4 a a
1 410

1 4 2 a
I N 1 4 2 5

1 4 2 6

1 4 3 0

1 4 4 a
1 4 5 0

1 4 6 0

1 4 7 a
1 4 8 0

1 5 9 0

1 5 a 0

1 5 1 a

52 53 54 55 56 57 58 59 60 61 6263 6465 66 67 6869 70 71 72 73 74 75 76 77 78 79 80

CHARGE NO. ______________________ __

DATE REQ'D ~ ____________________ __

HAME OPERATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

OPERAHO

21 22 23 24 25 26 27 28 29 30 31

SPECTRA 70

ASSEMBLY PROGRAM FORM

FLOW CHART REFERENCE

32 33 34 35 36 37 38 39 40 41 42 ·43 4445

* A L L 0 CA T I o N o F S T o R AGE A R E A S F 0 R P R I ~ T 0 U T

o S Q F

K S P A C E o C X ' 4 0 ,

L I S T 0 S C L 1 3 2

o R G L I S T

L S PAC E o S C L 1 0

LA C C T o S C L 6

L S P A C E 2 o S C L 7

LA MT o S C L 1 2

L S P A C E 3 o S C L 6

L B A L A N C E 0 S C L 1 2

o R G L I S T + 1 0

LA o 0 E 0 0 S C L 5

0 R G LIS T + 1 9

L 0 E L E T E 0 0 S C L 7

0 R G LIS T + 132

-
* A L L 0 C A T I o N OF MA S T E R S T o R AGE

o S '0 F

M S T 0 R E o S C L 5 0

* S T ART END o F RUN R 0 U T I N E S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 "21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

DATE _...::2o.L/~6~8 ___ PAGE--.J:L OF __ 12 __ __

PROGRAM Sample Program
PROGRAMMER ______________________ __

COMMEHTS IOEHTI FICATIOH

46 47 48 49 50 51 52 53 54 55 56 57 58 59 6061 62 63 6465 66 67 6869 70 71 72 73 74 75 76 77 78 79 80

1 5 2 0

1 5 3 0

1 5 4 0

1 ') 5 0

1 5 6 0

1 5 7 0

1 5 8 0

1 5 9 0

1 6 0 o·

1 6 1 0

1 6 2 0

1 6 3 0

1 6 4 0

1 6 5 0

1 6 6 0

1 6 7 0

1 6 8 0

1 6 9 0

1 7 0 0

1 7 1 0

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 7273 74 75 76 77 78 79 80

CHARGE NO.

DATE REQ'D _

r----.-

NAME OPERATION OPERAND

1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P A D D E D MV C L I S T , K S P A C E

r-t-r MV C LA D D E D KA D D

p U T P R I N T H-+--.
f----+-t------ B P C H A N G E

I

!
, I

I !
I

I

~,l BIC X
, 0 , , F I N A L

" I

---L--t-- M V C E N D 3 + 1 (1) , = X
, F 0 ,

I I j MV C MA C C T-->. X
, F F F F F F F c-t-++ =

i i
I G E T C A R D I N , C D I N

I B A D D I T I 0 N
I

! I I !

I i
I

! I

E iN D 3 B C X
, 0 0 ' , F I N A L

I I I I
M V C E N D 1 + 1 (1) , = X

, F 0 ,
I

I I I MV C T A C C T = X I F F F F F F F
I

I B W R T M

I

F I N k L C L o S E I N MA 1£l1' l.&lR o U T M A S T

E 0 J

E N D MA I N
I

i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPECTRA 70

ASSEMBLY PROGRAM FORM

FLOW CHART REFERENCE _______ _

COMMENTS

32 ~~ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

END o F :1 N MA S T E R F I

F F F F F F F F F I

I

END o F CA RD I N F I L E

F F F F F F F F F ,

R--,- C AjR D I N P R I N T
I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

DATE 2/68 PAGE~ OF _1_2 __

PROGRAM Sample Program

PROGRAMMER ____________ _

IDENTI FICATION

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 6869 70 71 72 73 74 75 76 77 78 79 80

1 7 2 0

1 7 3 0

1 7 4 0

1 7 5 0

L E 1 7 6 0

1 7 7 0

1 7 8 0

1 7 9 0

1 8 0 0

1 8 1 0

1 8 2 0

1 8 3 0

1 8 4 0

1 8 5 0

1 8 6 0

~.-.8. ~...O.

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

TOS/TDOS OVERLAY
METHODS

Appendix H

• TOS overlays are created from separately assembled object modules
by the Linkage Editor.

Overlay segments in the program can be loaded when desired by using
the LPOV macro (described in the TOS/TDOS FCP Manual, No. 70-00-608)
or either the CALL or SEGLD macro described below. The latter two
methods require the Linkage Editor to produce an Overlay Control Module
and two tables (SEGT AB and EN TAB) and bind them into the user's pro­
gram. This overlay control module accesses tables that reflect the status
of segments presently in memory and of the overlay structure of the
program. These tables provide the facility for a single overlay macro
call by the user to bring a particular segment and all segments in the same
path between it and the root segment into memory. The facility is also
available for an overlay call to become a branching action when the re­
quested load is already in memory.

It is recommended that the LPOV macro not be used in a program that
also uses either CALL or SEGLD. The LPOV macro interfaces directly
with the TOS Executive and thus does not update the overlay status tables.
Since this status information is required by the CALL macro, which loads
a segment only if the segment is not already in memory, invalid results
could occur.

Furthermore, if either CALL or SEGLD is used, the NOCTL parameter
must not be specified to Linkage Editor

H-16

CALL
Call Segment

General Description

Format

Specification Rules

Name

Operation

OPerand

Appendix H

• The CALL macro is used to effect a transfer of control between seg­
ments. When CALL is issued the Linkage Editor tables are checked to
determine if the requested segment is already in memory. If the segment
is in memory, a branch is performed to the symbol specified. If the seg­
ment is not in memory, an overlay request is issued which causes the
requested segment and any other segments in its path to be brought into
memory. Then the branch is performed.

• The format is as follows:

NAME

Symbol or Blank.

• Symbol or blank.

• CALL.

OPERATION

CALL

OPERAND

Symbol.

• Symbolic name of the entry point within the called segment to which
control is transferred. This symbolic name must appear as an ENTRY
in the segment to be loaded.

Register 15 is used by this macro and its previous contents will be
destroyed.

H-17

SEGlD
Segment load

General Description

Format

Specification Rules

Name

OPeration

Operand

Appendix H

• The SEGLD macro causes loading of the segment containing the ref­
erenced entry point (SYMBOL1) including all segments within its path.
The requested segment is loaded unless it is higher in the path than the
requesting segment.

• The format is as follows:

NAME OPERATION OPERAND

Symbol or Blank. SEGLD Symbol 1, [Symbol 2J

• Symbol or blank.

• SEGLD.

• SYMBOL1

SYMBOL2
(OPTIONAL)

- Names an entry point within the segment to be loaded.

- Specifies the instruction that is to be executed upon
completion of the loading process. If no symbol specified,
control goe s to next sequential instruction.

1. If SYMBOL2 is an external reference, it is the user's responsibility
to establish the appropriate ENTRY and EXTRN statements and to
ensure that the module that contains SYM BOL2 is in memory upon
completion of the loading process.

2. Register 15 is used by this macro and its previous contents will be
destroyed.

H-18

PROGRAM EXAMPLE

Appendix H

• The following example is intended to represent a program structure
of numerous object modules. Each object module was assembled separately
and bound by the Linkage Editor into the logical structure as shown. All
module to module references were made by use of CALL or SEGLD
macros.

~I ROOT

C D

E F G H J

K L

The following names were available in the indicated modules.

1. In program A the following statement caused only a branch to
TESTER because it is contained in the root load.

NAME OPERATION

CALL

2. In Program B the statement

NAME

RHOM

OPERATION

CALL

OPERAND

TESTER

OPERAND

NET

caused segments L,E, and C to be called into memory giving
the following use of memory with control transferred to NET.

MODULE
NAMES

A

B

C

E

L

H-19

Entry Points

HOME

TESTER
RHOM I ROOT

SEGMENT

TREAT

NET

PROGRAM EXAMPLE
(Cont'd)

Appendix H

3. In program L, the following statement

NAME OPERATION OPERAND

REINT SEGLD TREAT

caused segments E and C to be called into memory again and control
transferred to the next sequential instruction.

4. In Program L, the statement

OPERATION OPERAND

SEGLD WKLY, GROSS

caused segments J and D to be called into memory and control
transferred to GROSS which is a tag in segment D.

HOME

A

B TESTER ROOT
RHOM SEGMENT

D GROSS

J WKLY

H-20

APPENDIX I

MACRO
LANGUAGE

TERMINOLOGY

Call Line

Character String

Conditional
Commands

Expressions

Global Symbols

Header Statement

Inner Macro Call
Statement

Keyword Macros

Local Symbols

Logical Expressions

• See Macro Call Statement.

• A sequence of character values that are combined at generation time
into a final character value. (See Substring.)

• The conditional commands permit the programmer to control the
sequence of the executed or generated statements based on values present
in the macro call.

• See Logical or Relational Expressions.

• Assigned values of SETA, SETB, and SETC variable symbols which
remain in effect for all references to the variable symbol throughout the
assembly unless changed. SETC variable symbols must be global.

• The first statement of a macro definition. Indicates the beginning of a
macro definition.

• Name given to a macro call that is contained within a macro definition.
The type of inner macro call (that is, positional or keyword) is independent
of the type of the containing macro definition.

• Values to be substituted (generated) are paired with keywords in the
macro definition so that if a required value is omitted from the macro call
"line, the keyword associated with that value will be substituted. Param­
eters may appear in random order within the macro call. (See also
Positional Macros.)

• Assigned values of SETA and SETB variable symbols which remain in
effect for all references to the variable symbol within the macro in which
the variable symbol is defined unless changed by a SET command. SETC
variable symbols cannot be local. After the macro is generated, the values
are reset to zero or false.

• A series of terms connected with one or more logical operators (AND,
OR, and NOT) that controls the combining of the component terms into a
final value. Each expression is enclosed in parentheses, and no more
than three levels of parentheses are allowed. Logical Expressions are
only used with the SETB, AIF, and AIFB macro commands.

1-1

Macro Definition

Macro Expansion

Macro Call Statement

Model Statements

Null Parameter

Operand Values

Positional Macros

Prototype Statement

Relational
Expressions

Set Macro Commands

Sequence Symbols

Set Variable Symbols

Substring

Appendix I

• The series of statements that comprise the macro. The definition con­
sists of a Header Statement, a Prototype Statement, Model Statements, and
a Trailer Statement.

• The substitution of variable symbol values in the model statements
during their generation in place of the macro call statement.

• The line(s) of coding that contains the parameters that are substituted
within the generated model statements. Also referred to as: Call Line,
Macro Call, and Macro Instruction.

• Statements that make up the macro definition which are executed or
generated. The Name, Operation, and Operand fields can contain symbols
defined in the macro call or variable symbols used in the macro definition.
The variable symbols are, in turn, replaced by the values they represent.

• A parameter that is not included in the macro call when a symbolic
parameter has been included in a prototype statement.

• See Values.

• One of the two types of macros (see Keyword Macros). Values to be
substituted for symbolic parameters in the Prototype statement must
appear in a prescribed order in the macro call.

• Defines the format and the mnemonic operation code of the macro call.
The Operand field contains symbolic parameters used during generation
of model statements. This statement must appear as the second statement
in the macro definition.

• Consist of two terms connected by a relational operator (EQ, NE, LT,
GT, LE, GE). Each expression is enclosed within parentheses, and no more
than three levels of parentheses are allowed. Used only with the SETB,
AIF, and AIFB macro commands.

• Allow character manipulation, arithmetic calculation, and the setting
and testing of binary switches on the basis of logical and relational ex­
pressions. The Set commands are: SETA, SETC, and SETB, which assign
arithmetic, character and binary values, respectively, to Set variable
symbols.

• Identifies a model statement as the destination of a conditional or
unconditional macro branch command (AIF, AIFB, AGO, or AGOB).

• Symbols that are associated with the Set commands. Character, arith­
metic, and binary values are assigned to them and may be altered by the
programmer at any time using the Set commands.

• Used in the SETC or SETA statements to obtain a portion of a value.

1-2

Symbolic Parameters

System Variable
Symbols

Trailer Statement

Values

Variable Symbols

Appendix I

• Name given to the generalized parameters defined in the prototype
statement. Values contained in the macro call that correspond to the
prototype's symbolic parameters (either positionally or by keyword) are
substituted for the identical symbolic parameters in the model statements
at generation time.

• Local variable symbols that are assigned values by the Assembler
at generation time. They can be used in the Name field or Operand field
of macro definition statements. The system variable symbols are &SYSNDX,
&SYSECT, and &SYSLST.

• Signifies the end of a macro definition. Must be the last statement 'of
a macro definition.

• The character string of up to eight characters which is assigned by
either a Set macro command or a macro call statement to a variable
symbol. Each call value must have been represented in the prototype
statement as a symbolic parameter.

• Symbols representing varying values, which may be assigned, changed,
or tested at any time during macro generation, by the programmer and/or
the assembler. Current values are examined to determine what model
statements are to be generated. Variable symbols can either be: 1)
symbolic parameters, 2) System variable symbols, or 3) Set variable
symbols.

1-3

APPENDIX J

SUMMARY OF MACRO DEFINITION OPERATION CODES

Operation Codes Name Field Operand Field

AGO A sequence symbol or blank. A sequence symbol of a statement
following the AGO.

AGOB A sequence symbol or blank. A sequence symbol of a statement
preceding the AGOB.

AIF A sequence symbol or blank. A logical or relational expression
enclosed within parentheses,
immediately followed by a se-
quence symbol of a statement
following the AIF.

AIFB A sequence symbol or blank. A logical or relational expression
enclosed within parentheses,
immediately followed by a se-
quence symbol of a statement
preceding the AIFB.

ANOP A sequence symbol. Not used.

MACRO Not used. See page 7-2.

MEND A sequence symbol or blank. Not used.

MEXIT A sequence symbol or blank. Not used.

MNOTE A sequence symbol or blank. An optional error code followed
by a combination of characters
enclosed within quotation marks.

SETA &AG.!!, or &AL!!, where 1!. is An arithmetic expression.
o - 15.

SETB &BG!!, or &BL!!, where!!. is A logical expression or a
o - 127. relational expression enclosed

within parenthe se s.

SETC &CG~, where E.. is 0 - 15. Up to eight characters enclosed
within a pair of single quote
marks with substrings allowed.
ConcatenatiC'n of enclosed terms
allowed to form the final eight
characters.

J-1

Appendix J

SUMMARY OF MACRO DEFINITION OPERATION CODES (Cont'd)

Operation Codes Name Field Operand Field

Model Statement (any A symbol parameter, a symbol, Any combination of characters
assembly mnemonic a variable symbol, a sequence (including symbolic parameters
operation code, symbolic symbol, or a combination of and variable symbols).
parameter, or as sembly variable symbols and other
command except END, characters that are equivalent
ICTL, ISEQ, START, to a symbol.
and sequence symbols).

Prototype Statement Mnemonic operation code. Comma(,) or a maximum of 49
symbolic parameters, sepa-
rated by commas.

Macro Call Statement A valid mnemonic operation Comma(,) or a maximum of
code. 49 operands, separated by

commas.

J-2

APPENDIX K

SUMMARY OF MACRO EXPRESSIONS

Comment Arithmetic Character Logical Relational

Can Contain: 1. Positive decimal 1. Up to eight char- I. 0, 1, or SETB 1. Two arithmetic
self -defining acters enclosed variable expressions.
terms. by a pair of single symbols.

quote marks.

2. SETA and SETB 2. Any SET variable 2. NOT &BLn or 2. Two character
variable symbol or pre- NOT &BGn expressions. -
symbols. viously defined where

symbolic param- n=0-127.
eter enclosed by
a pair of single
quotes.

3. SETC variable 3. A combination 3. Two or more
symbols if the (concatenation) of SETB variable
value assigned variable symbols, symbols and
is a positive- symbolic param- the associated
decimal, self- eters, and other logical
defining term. characters en- operators.

closed by a pair of
single quotes with
substring s allowed
to form the final 8
characters (16
intermediate
characters).

4. Symbolic par am- 4. ° and 1 can
eters if the be used
corre sponding only in
operand is a single-term
po sitive decimal expressions.
self -defining
term.

5. &SYSLIST(n) if 5. Combination
the correspond- of logical and/
ing operand is a or relational
positive-decimal , expressions
self -defining enclosed in
term. parentheses

and nested to
a maximum of
three levels.

6. &SYSNDX.

K-1

Appendix K

SUMMARY OF MACRO EXPRESSIONS (Cont'd)

Comment Arithmetic Character Logical Relational

Operators + , - , * , and/. Concatenation with AND, OR, and EQ, NE, LT, GT,
Are: a period (.). NOT. LE, and GE.

Range of
24 o to 2 -1. Zero to eight O(false) or O(false) or

Values Are: characters. l(true). l(true).

Can Be 1. SET A operands. 1. SETC operands. 1. SETB 1. SETB
Used In: operands. operands.

2. Relational 2. Relational 2. AIF operands. 2. AIF operands.
expressions. expressions.

3. SETC operands. 3. SETA operands 3. AIFB 3. AIFB
if the assigned operands. operands.
value is a posi-
tive-decimal ,
self -defining
term.

K-2

Symbol

Symbolic
parameter.

SETA

SETB

APPENDIX L

SUMMARY OF MACRO SYMBOLIC PARAMETERS
AND VARIABLE SYMBOLS

Defined By Initialized or Set To Value Changed By Can Be Used

Prototype Corresponding Constant throughout 1. Arithmetic expres-
statement. macro call definition. sions if operand is

operand value. self-defining,
positive-decimal
term.

2. Character
expressions.

3. Model statements.

4. Relational
expressions.

Predefined. 0 SET A command. 1. Arithmetic
expressions.

2. Character
expressions.

3. Model statements.

4. Relational
expressions.

Predefined. 0 SETB command. 1. Arithmetic
expressions.

2. Character
expressions.

3. Logical
expressions.

4. Relational
expressions.

5. Model statements.

L-l

Symbol

SETC

&SYSNDX

&SYSECT

&SYSLIST(n)
Where n
is an
arithmetic
expression.

Appendix L

SUMMARY OF MACRO SYMBOLIC PARAMETERS
AND VARIABLE SYMBOLS (Cont'd)

Defined By Initialized or Set To Value Changed By Can Be Used

PredefL'1ed. Null character SETC command. 1. Arithmetic expres-
value. sions if operand is

self -defining
positive-decimal
term.

2. Character
expressions.

3. Model statements.

4. Relational
expressions.

The Macro instruc- Constant throughout 1. Arithmetic
assembly. tion index. definition; different expressions.

for each macro
2. Character

call.
expressions.

3. Model statements.

4. Relational
expressions.

The Control section Constant throughout 1. Character
assembly. in which macro definition; set by expressions.

call appears. CSECT, DSECT,
2. Model statements.

and START.
3. Relational

expressions.

The Corre sponding Constant throughout 1. Arithmetic
assembly. macro call definition for a expressions if

operand value. given value of n. operand is self-
defining, positive-
decimal term.

2. Character
expressions.

3. Model statements.

4. Relational
expressions.

L-2

APPENDIX M

HEXADECIMAL-DECIMAL CONVERSION TABLE

General • The table provides for direct conversion of hexadecimal and decimal
numbers in these ranges:

Hexadecimal­
Decimal Number
Conversion Table

Hexadecimal

000 to FFF

Decimal

0000 to 4095

• In the table, the decimal value appears at the intersection of the row
representing the most significant hexadecimal digits (162 and 161

) and
the column representing the least significant hexadecimal digit (16°).

Exarnple: C21 1G 310510

l
~;~l 2

CO 3072 3073 3074
C1 3088 3089 3090
C2 3104 (3'lo'5) 3106
C3 3120 '3r2i' 3122

For numbers outside the range of the table, add the following values to
the table figures:

Hexadecimal Decimal Hexadecimal Decimal

1000 4,096 COOO 49,152
2000 8,192 DOOO 53,248
3000 12,288 EOOO 57,344
4000 16,384 FOOO 61,440
5000 20,480 10000 65,536
6000 24,576 20000 131,072
7000 28,672 30000 196,608
8000 32,768 40000 262,144
9000 36,864 50000 327,680

AOOO 40,960 60000 393,216
BOOO 45,056 70000 458,752

Example: 1C211G 720110

Hexadecimal Decirnal

C21 3105
+1000 +4096

1C21 7201

M-l

Appendix !vI

HEXADECIMAL-DECIMAL CONVERSION TABLE (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
01 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
02 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
03 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063
04 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 OU79
05 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
06 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 01ll
07 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
08 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
09 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 U159
OA 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
OB 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191
OC 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
OD 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OE 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OF 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

0 1 2 3 4 5 6 7 8 9 A B C D E F

10 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
11 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
13 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

14 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
15 0336 0337 0338 0339 0340 0341 0342 0343 0344 03,~5 0346 0347 0348 0349 0350 0351
16 0352 0353 0354 0355 ,)356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
17 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
18 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399

19 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415

lA 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431

lB 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

1C 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463

1D 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479

1E 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495

1F 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

0 1 2 3 4 5 6 7 8 9 A B C D E F

20 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
24 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
27 0624 0625 06?6 0627 0628 00?9 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
28 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2B 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

0 1 2 3 4 5 6 7 8 9 A B C D E F

30 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
31 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
34 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
35 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
38 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

M-2

Appendix M

HEXADECIMAL-DECIMAL CONVERSION TABLE (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C D E F

40 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
41 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
44 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
45 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
46 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1i34 1135
47 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
48 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 H98 1199
4B 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 214 1215
4C 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

0 1 2 3 4 5 6 7 8 9 A B C D E F

50 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
51 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
52 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
54 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
58 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5A 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
5C 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

0 1 2 3 4 5 6 7 8 9 A B C D E F

60 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
61 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
64 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
67 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
68 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 69 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 6A 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 6B 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 6C 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 6D 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 6E 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 6F 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

0 1 2 3 4 5 6 7 8 9 A B C D E F
70 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 71 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 72 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 73 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 74 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 75 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 76 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 77 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
78 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 79 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 195u 1951 7A 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 7B 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 7C 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 7D 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 7E 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 7F 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

M-3

Appendix M

HEXADECIMAL-DECIMAL CONVERSION TABLE (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

81 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

82 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

83 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

84 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

85 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

86 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

87 2160 2161 2162 71(,1 /164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

88 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

89 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

8A 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

8B 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8C 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

8D 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271

8E 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

8F 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

0 1 2 3 4 5 6 7 8 9 A B C D E F

90 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
94 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
97 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
98 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9A 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9C 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9E 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

0 1 2 3 4 5 6 7 8 9 A B C D E F

AO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Ai 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A4 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
AS 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A7 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A8 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

0 1 2 3 4 5 6 7 8 9 A B C D E F

BO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 B1 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 B2 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 B3 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 B4 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 B5 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 B6 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 B7 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 B8 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 B9 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 BA 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 BB 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 BC 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 BD 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 BE 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 BF 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

M-4

Appendix M

HEXADECIMAL-DECIMAL CONVERSION TABLE (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C D E F

co 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C1 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C4 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C6 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C8 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C9 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CA 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CB 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CC 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CD 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
cr 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

0 1 2 3 4 5 6 7 8 9 A B C D E F

DO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D1 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D4 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D7 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D8 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D9 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DA 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DB 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DC 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DD 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DE 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DF 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

0 1 2 3 4 5 6 7 8 9 A B C D E F

EO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E1 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E4 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E8 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EB 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
EC 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
ED 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

0 1 2 3 4 5 6 7 8 9 A B C D E F

FO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
Fl 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F4 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F7 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F8 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
Fe 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD' 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

M-5

APPENDIX N

SAMPLE
PROGRAM

INTRODUCTION • This sample program is included in the manual to illustrate the TOS
Monitor job stream necessary to assemble a source program and bind the
output using Linkage Editor. The loadable module is then executed without
the use of Monitor.

The card deck composition to accomplish this is as follows:

/ /l\STARTM

/ /l\ASSGN SYSLST, Ll

//l\ASSGN SYSUTl,Ol

/ /l\ASSGN SYSUT2, 02

/ /l\ ASSGN SYSUT3,03

/ / L\ASSGN SYSLIB, 04

/ / l\ JOB TOS MONITOR

/ /l\PARAM XREF=YES

/ /L\ASSMBL

(Optional Assembly Codes)

l\ START

L\END

(Reader and printer DTFSR's)

(User source deck macro)

(Remainder of source)

/ /l\LNKEDT

Assembly
Source
Program

(Various / / COMM cards - optional)

/ /L\ENDMON

/ /L\ASSGN SYSOOl,Rl

/ /L\ASSGN SYS002, Ll

/ /L\END

(Data cards)

/*

N-l

!
Run-time parameters for
reader and printer not
shown on listing.

INTRODUCTION
(Cont'd)

Appendix N

The following computer output from these runs are shown on the suc­
ceeding pages:

1. Listing of Monitor control statements;

2. As sembler listing (see note);

3. Linkage Editor map;

4. Sample output from program execution;

5. Console typewriter sheet.

Note • Only a small portion of the cross reference listing has been in­
cluded (XREF=YES). The user macro MOVE has been allowed to expand
(PRINT=G EN), while all other macro expansions have been suppressed
(PRINT=NOGEN).

N-2

Z
I

(j,:)

T 0 S ~1r] ~J J TOR

'/ ASSGN SYSLST,Ll

1/ tlSSG:, SYSUTl,Ol

1/ .'Issei, SYSUT?,02

I / ASS G I" 5 Y 5 l! T J, n 3

/ / t, sse N 5 Y S l I rl , n 4

Z
I
~

1/ JOB TOS MUNITUR

// PARAM XREF=YES

1/ ASSMt3L

Z
I

CI

Toe; A <; ~ r ~lR L Y PfH1GRMl

SYMBOL lYPE

SMWL SO
(OlIM~'Y) I tJI1MMY StJ

IN l.0
INR LI)
OUI LLJ
OUTS LO
IF(P LtJ
IFCPOv LD

PAGE 0001

10 IIDOR LENGTH EXTERNAL SYMBOl. DICTIONARY

01 00000 010C8
FF 00000 00198

01 00000
01 ooo'C
01 oooCO
01 aOlle
01 001B8
01 00918

TOS AS<:,IMALY PP[lGkM"1 PAGE 0002

S YMALIL C5HT VMlJE SYMBOL CSECT VHUf; SYMROL CSECT VALUE SYMBOL. CSECT VALUE L

B EG rr~ 01 DaUB 02 CTR 01 OOFEE 02 EF 01 OOFOO 04 IAFINAL FF oooait 04
lAFTER FF 00070 02 IAFTERIO FF 00074 04 1M TTAPE FF 00062 06 IBLKSIZE FF 00078 04
IBUFFER Fr OOOBO 01 18UFFI;R) FF 000B4 04 IByTCNT FF 0003S 02 IB1STAT FF 0008A 01
IB2STAT FF 0008B 01 ICAPREe FF 00088 01 ICc.RDS FF OOOCO 04 IeeB FF 00000 28
IceBAFI FF 00024 04 ICCBAH FF OOOOE 02 ICCBASR FF OOOlC 04 IceBCAR FF 00010 04
ICCBceR1 FF OOOlS 04 ICCBCCR2 FF 00014 04 lC(BCCW FF 00008 06 IeCBOT FF 00006 01
ICCBEXF FF 00023 01 reCBSS CF 00020 03 ICCBSDN FF 00000 06 ICC8UF FF 00007 01
ICCW1 FF 00028 08 ICCW12 FF 00130 08 I(CW13 FF 00138 08 ICCW14 FF 00140 08
ICCW15 FF 00148 08 ICCW16 ~F 00150 08 ICCW17 FF 00158 08 lCCW18 FF 00108 08
ICCW19 FF 00110 08 ICCW2 FF 00030 08 ICC.W20 FF 00118 oS ICCW21 FF 00120 08
ICCW22 FF 00128 OS ICCW23 FF 00130 08 IC('W24 FF 00138 08 ICCW25 FF 00140 08
ICCW26 FF 00148 08 ICCW27 FF 00150 08 lCl.W28 FF 00158 08 ICCW29 FF 00160 08
ICCW3 FF 00108 08 ICCW32 FF 00168 08 lCCW33 FF 00170 08 ICCW34 FF 00~78 08
ICcw35 FF 00180 OS ICCW36 FF 001S8 OS lceW37 FF 00190 08 ICCW6 FF 00110 08
ICCWl FF 00118 08 Iecw~ FF 00120 08 leCW9 FF 00128 08 ICHECKPT FF 00088 01
leKPTREC FF 00088 01 ICLOSE 01 0022A 01 IeLOSEIB 01 0022A 04 IeONTRDL FF 0008C 04
ICRDERR FF 00070 01 ICHCHR FF 00088 01 IDAIOA FF OOOCO 04 IDARESER FF 00090 04
IDASlllR rF 00000 38 I DTFTYPE FF 0003E 01 IDUMMY FF 00000 01 IEOFADDR FF 00070 01
IEOVIPT 01 00206 04 IEOVREV 01 002Eb 04 1 ERRSYTF FF OOOA8 04 IERROPT FF oooeo 01
IERRURB FF 0003B 01 IEXPAND FF 00060 02 IFCP 01 001B8 40 IFCPOV 01 00918 08
IFEOV 01 00';> E:E 04 IFEOVCAL 01 0032A 04 IFtOVILP 01 00344 04 lFEOVIPT 01 00338 04
IFEOVRPT 01 002F8 04 IFILflSL FF 0003A 01 1 F 1 L L FF 00070 02 IFILSTAI FF 0003A 01
IFIR5TIM rF 0003F 01 IFPINOl FF OOOAC 01 IFPIND2 FF OOOAD 01 IFPIN03 FF OOOAE 01

Z IFPSwA FF 00094 04 IFPSWB FF 00098 04 IFPswe FF 0009C 04 IFPSWD FF OOOAO 04

I IFPSWLB FF OOOA4 04 IFPSWRD FF OOOBe 04 IF~SWTR FF OOOA8 04 IFPSWWR FF 00090 04
~ lGET 01 00394 04 IIAFTIND FF DOOAF 01 1 IUALEN FF 0008A 02 IIDLER FF 00054 04

IIDLoe FF OOOAO 04 JILENAMB FF oo05e 04 IILENhME FF C004C 07 IIOAREhl FF 00048 04
I IOhJ.!EAl FF 00074 01 I IOREG FF OOOAC 01 IISRKEY FF 00053 01 IISRSEEK FF oooee 04
IKEYARG FF 000ge 04 IKEYLEN FF 000S9 01 1 UIBADDR FF 00040 04 ILflBELRW FF 00070 01
ILABNAME FF 00044 04 ILHECON FF 00080 01 ILPABT 01)03F8 04 ILPAFIN 01 00b90 04
ILPAFINL 01 005FO 04 ILPAFT 01 00402 04 lLPAH 01 00610 04 ILPBATCH 01 00720 04
lLPBAVA 01 00592 04 ILPBLOCK 01 00654 04 lLPBOUT 01 00746 04 ILPCARDR 01 00826 04
ILPCCWW 01 0070e 04 ILPCHECK 01 00686 Ob lLPCKPTR 01 003F8 04 lLPCNTS 01 00738 06
ILPCOCCW 01 OOooe 04 ILPETWOT 01 00570 04 ILPEXBLK 01 OObBC 04 ILPEXEC 01 0070A 02
ILPEXECh 01 00702 01 ILPFINI 01 OOSE8 04 lLPFPUT 01 0074A 02 ILPFTERM 01 00664 04
lLPGE:TLA Ol 005311 06 lLPHDO 01 oa5A8 04 ILPHD1 01 005B4 04 lLPHD2 01 005C6 04
ILPLHEX 01 00602 02 ILPMONEF 01 00834 04 lLPOR 01 00788 06 ILPOTEsr 01 0040C 04
lLPPBLK 01 00 7C C- 04 ILPPCNTR 01 007B6 04 ILPPFIX 01 00S10 06 ILpPIOR 01 007FC 04
ILPPOPUT 01 007C4 04 ILPPRET 01 007E2 04 lLPPRIAD 01 00S52 04 ILPPRlec 01 008A4 04
lLPPRIN 01 0040E 04 ILPPRINT 01 0083E 04 lLPPRIRE 01 00882 02 ILPPRISA 01 00714 oS
ILPPRIZ 01 00532 04 ILPPRNON 01 0052b 04 ILPPRSEN 01 004Eb 04 ILPPRSEX 01 OOSOC 04
ILPPRSW 01 008;E 02 lLPPRSWP 01 00864 04 lLPPRVAA 01 00886 04 ILPPRVA8 01 00S92 04
ILPPUSER 01 007AA 04 ILPREGS 01 oa54A 02 ILPRES 01 00b18 04 ILPREST 01 0048C 04
ILPRET 01 0075E 04 ILPRETA 01 0076E 06 lLPRETS 01 0077S 04 ILPRETC 01 00766 04
ILPREVA 01 00754 02 ILPRINV 01 00se2 06 ILPROUT 01 00750 04 ILPSETSW 01 005AO 04
ILPSKnv 01 005IA 04 ILPSOUT 01 006Ae 04 lLPSUBR 01 "ObA2 04 ILPSUBR1 01 00606 04
ILPSUBR2 01 006BE 06 I LPTCCWB 01 003EO 04 ILPTERES 01 00500 04 ILPTERM 01 003E4 01
ILPTERMA 01 004BE 01 ILPTERME 01 005Db 04 lLPTERMN 01 00550 04 I LPTERMW 01 003F4 04

~ ILPTERM1 01 003D6 04 ILPTERRE 01 003DA 04 ILPTEX 01 00430 04 ILPTMSG1 01 004BC 02
lL PTRSAV 01 0071C 04 ILPTSK 01 0047E 04 lLrTSKIP ')1 00494 Ob IL.PTUN 01 005EO 04 "\j-

"\j-
ILPTUSE 01 00446 04 ILPTUSER 01 004bC 04 ILPTWLFB 01 004AA 04 ILPTWLFR 01 00438 O? ~

lLPTWLP 01 00442 04 I LPHJLV 01 00434 01 ILPUNFRP 01 0072E 04 I LPUPLHE 01 00798 01 [
""".
~

~

TOS ASS~MBLY PROGRA~ PAGE 0003

SYMB[jL eSE:eT VALUE SYMBOL (SECT VALUE SYMBOL CSECT VALUE L. SYMBOL CSECT VAI.UE

ILPUSEBY 01 0078C 04 ILPVAREX 01 00808 04 ILPWAIT 01 006E6 01 ILPWAITT 01 OOoFE 04
ILPW/\JTX 01 006F2 04 ILPWAITZ 01 006EE 04 ILPWDRT 01 004BC 01 lL. py 01 0084A 04
ILPYSREG 01 00794 04 ILPlERO 01 00742 01 l\..~AV14 01 004Ab 04 ILSTBL.K FF OOOBO 04
lLSTNTRY FF 00088 'J4 lLSTRLTR FF OOOBe 03 IMRKCTR FF 0003C 02 IN 01 00000 06
INS 01 OOO~C 04 I NONEEO FF 000C4 04 INPUT 01 01078 50 IONTROLP FF OOOBF 01
IOPEN 01 oonz 01 IUPEN1A 01 00222 04 IOVERFLO FF 00088 01 IOVLYNAM 01 0021C 06
IOVRTGR 01 00384 04 IUVRTN FF 00058 04 lOvRTTl 01 00388 04 IOVRTlA 01 00352 04
IOVRT1Al CH 00368 06 IUVRTlB 01 00376 ~4 IPRINTOV FF 00072 D1 IPUT 01 0038C 04
IREI\[J FF 00088 01 IREt.nIO FF 00094 04 lREflDKY FF 00098 04 I R~C;FP~M FF 00088. 01
IREC::.lZE FF 0007C 04 IRELlIDOR FF 00088 01 lRELSE 01 0081A 04 IRELSE1 01 008lE 06
IRESERV FF OOOJF 01 IRE~nND FF 0003F 01 1 SEEKADR FF 000A4 04 ISRCHM FF 00088 O!
ISSAFTER FF 00073 01 IHSTSwC FF 00.089 01 lTESTSW1 FF 0.0089 01 I TESTSW2 FF 00089 01
IHS1SW3 FF ()0089 01 TIESTSW4 FF 00.0.89 01 lTESTSW5 FF 000.89 0.1 ITESTSW6 FF 000.89 01
lTES 1 SW7 FF J0089 01 I TL EOV 01 00.296 04 ITLEOVRT 01 '02CA 04 ITU~OVlA 01 a02AA 04
ITPM,"\RK FF 0008B 01 ITRAt-.JS FF Oo.aB9 Ql ITRUNC 0.1 '039C 94 lTRUNCEX 01 :>0302 0.4
r TRU:IC 1 01 003AB 02 I fRUNC4 01 Oo.3C8 04 lTYPEFLE FF 0003A 01 IUNUSED1 FF 000.88 0.1
IUNU:'ED2 FF 00089 0.1 IUNUSED3 FF OOOA~ O! lUNUSED9 FF 0008/J 01 I VA~ lA 01 Oo.Z2e 0.4
I VAll [3 0.1 OOde 0.4 IVALlD 01 0027E 04 IVALlE 01 00260 04 IVALlG 01 oa34C 04
I VAll ,J 01 00286 04 IVALlL 01 0028E 04 IVALlM 01 002~~ O~. IVARBl.O FF 00.0C4 O~
IVBLKCNT FF 00062 04 lWHATSlT FF 00.068 08 !WLRERR FF oooca 04 IWORKA FF 00088 01
[WRITfID FF 00.080 0.4 IWRITEKY FF 000.84 04 LIST 01 00FF4 84 LOOP 01 OOF3C 0.4
MAX 01 OOFEC 0.2 I'JFLOw 01 OOFee 04 ONE 01 oaFFO 01 oUr oi ooeeo 06
OUTB 0] 0011 C 04 PRINTC 01 oo.FF3 01 RESET 01 OOFFl 02 SAMPL 0.1 00000 01

Z WRIH 01 OOF94 0.4
I

-:)

TOS ASSFMBLY PROGRL\M PAGE 0004

SYMBOL PEFERFI'<CES CROSS REFERENCE LISTING

BEGIN 00812* 00890

CTR 00852 00863 00869 00884*

EF 00052 0(,,)8nl!<

IArINAL 00191* 00576 00611 00696 00717

1 Ar TER 00188*

IfIFTERID 00192*

IALTTAPE 99'

~

lWRlTEKY 00198* ~ ~
Z
I LI ST 00822 00823 00823 00843 00844 00845 00846 00847 00848 00849 00850 00864 00865 00865 00

00888*

Lour 00835* 00866

MAx 00852 00883*

onow 00853 00868*

ONE 00863 00885*

OUI 00019 00082* 00821 00832 00862 00878

oUTB OOOljO 00108*

PRINTC 00089 00103 00115 00118 00119 00824 00854 00868 00887*

RESET 00869 00886*

SAMPL 00005* 00291*

WR ITE 00857* 00870

~
"tJ-
"tJ-
~

S.
<:'>.

~

~

Z
I

c.o

T05 ASSEMBLY PROGRAM

FLAG5 LOCTN OBJECT CODE

00000

PAGE 0016

ADORi AOOR2 5TMNT H SOURCE STATEMENT

00001
OOOO~
00603
00004
00005
00006
00007
00006
00009
00010
00011
00012
00013
00014
00015

QQ074
00075
00076
00077
00078
00144

SAMPL

*

ISEQ 76.,80
PRINT NDGEN
MCALL DTFSR.,OTFEN.,OPEN.,CL05E.,GET,PUT.,TERM
TITLE '105 ASSEMBLY PROGRAM'
START

* THIS SAMPLE PROGRAM ILLUSTRATES AN EDIT RUN FROM CARDS TO PRINTER
* USING STANDARD FCP AND ONe SOuRCe oeCK MACRO., WHICH 15 INCLUDED TO
* SHOW HOW A USER MACRO CAN BE INCLUDED IN THE 50URCE DECK.

*
* IN QTFSR DEVADDR-SYS001,OEVJCe-REAOER,

OUT DTFSR

OTFEN

TYPEFLE-INPUT.,RECFORM-FIXUNB,
IDAREAlaINPUT / 8LKSIZi c eO,
EDFADOR-EF READER R KEYWORD MACRO CALL

OEVADOR-SYS002,OEVI Ce=PR1NTER.,
TYPEFLE=OUTPUT,RECFORM=FIXUNB.,
IOAREA1=PRINTC,BLKSIZE.133,
CTLCHR-YE5.,
ALTOEV.TAPE PRINTER - KEYWORD MACRO CALL

T0500000
T0500010
T0500020
T0501000
T0501010
T0501020
T0501030
T0501040
T0501050
T0501060
T0501070

CT0501080
CTOS01090
CTOS01100

TOS01110

CTOSOll~O
CTOS01140
CT0501150
CTOS01160

T0501170
TOS01180

TOS ASSFMBLY PROGRAM PAGE 0017

FLhGS LOCTN OBJECT CODe fd)OR 1 ADDR2 STMNT M SOURCE STATEMENT

00776 '" TOS02o..oo.
00779 * THIS IS THE MOVE MACRO DEFINITION J WHIcH MOVES UP TO 80 BYTES(&LNlJ TOS0201C
00780 * fROM ONE AREA (&FR) TO ANOTHER AREA(&TO), IN GROUP SIZES(&GPl FROM TOSOZo.20
00781 * 7 TO 80. FIVE SPACES ARE GIVEN BETWEEN EACH GROUP, TOS02030
00782 * "OS02040
00783 MACRO MACRO HEADER T0502050
00784 &NAME MOVE &FRJ (. TOJ f.LNJ &GP POSITIONAL PROTOTYPE TOS02060
00785 AIF (' &LN' EQ ").MVC80 NO LENGTH? - ~OVE SO TOS02070
00786 AIF (tGP LT 7),ERROR GROUPING LESS THAN 7? - ERROR TOSOZ.oJl.o
00787 AJF ('&GP' EO ") .ONEMV &ROUPING NOT DE5IRED? - 1 MOVE T0502090
0078S AIF (&LN GT eO),ERROR INPUT LENGTH GREATER e.o - ERROR JO..so.z~o..c
00789 t:.ALl SETA 0 OUTPUT POSITION FOR NEXT GROUP TOS02110
00790 tAL2 SETA 0 lNPUT POSITION TO BE MOVED TOSOZ120
00791 tCGl ~ETC '&NAME' NAME FOR FIRST MOVE TOS02130
00792 ,I..OOP ANOP ENTRY POINT FOR EACH MOVE T0502140
00793 &CGl MVC &TO+&AL1(&GP)J&FR+&AL2 GENERATED MOVE INSTRUCTION T0502150
0079~ (.eGl SETC ' I REMOVE NAME ON SUBSEQUENT MOVES TOS02160
00795 CAL.! SETA (.ALl+f.GP+5 UPDATE NEXT OUTPUT POSITION TOS02170
00796 CAL2 SETA &AL2+&GP UPDAT~ NEXT INPUT POSITION TOS02180
00797 AIFB (UN-&AL2 liE &GPl,LOOP CAN ANOTHER FULL GROUP BE MOVED? TOS02190
00798 AIF (&LN-&AL2 EQ Ol~END DID GROUPINGS COME OUT EVEN? TO~.O~2QQ
00799 M·VC &TO+&AL1(&LN-&AL2l~&FR+&AL2 GEN. MOVE - LESS THAN GRP T0502210

Z 00800 .END "1EXIT TOS.02Z.20
I J0801 .MVC80 ANOP TOS02230

I-' 00802 &NAME MVC &TO(SOlJ&FR GENERATED MOVE OF 80 T0502240
0 00803 MEXIT TOS02250

00804 .ONEMV ANOP T0502260
00805 CNAME MVC &TO(£LNlJ&FR GENERATED MOVE OF ACTUAL LENGTH T0502270
00806 MEXIT TOS02280
00S07 .ERROR MNOT~ 6J'SPECIF1~ArIONS ExceEDED - NO GENERATION' rOS02290
n0808 MEND MACRO TRA IL ER TOS02300

TOS ASSEMBLY PROGRAM PAGE 0018

FLAGS LOCTN OBJECT CODe ADORl AOOR2 STMNT M SOURCE STATEMENT

00810 * MAIN ROUTINE T0503000
00811 * TOS03010

OOEF8 05 50 00812 BEGIN BAI.R 5,,0 REGISTER 5 COVERS CODING TOS03D2D
ooEFA 00813 USING *,,5 TOS03030

00814 OPEN IN"OUT OPEN FILES TOS03040
00F14 92 40 SOFA DOFF4 00822 MVI LIST"X'40' CLEAR PRINT AREA TOS03050
OOF18 02 82 SOFB 50FA OOFFS 00FF4 00823 MVC LI5T+l(131)"LI5T T0503060
OOFlE 92 C1 SOF9 OoFF3 00824 MVI PRINTC,X'C1' ADVANCE TO TOP OF FORM TOS03070

008Z5 pur OUT T0503080
00833 LOOP GEl IN READ CARD TOS03090
00841 PRINT GEN TOS03100
00842 MOVE INPUT"LIST,,80,,10 CALL TO MOVE 8 GROUPS OF 10 EACH TOS03110

00FS4 DZ 09 SOFA S17E OOFF4 01078 00843 Ml MVC LIST+O(10)"INPUT+O G~NERATEO MOVE INSTRUCTION
00F5A 02 09 S109 S188 01003 01082 00844 M1 MVC LIST+15(lO)"INPUT+l0 GENERATED MOVE INSTRUCTION
00F60 02 09 5118 5192 01012 0108C 0084S M1 MVC LIST+30Cl0l"INPUT+20 GENERA TEO MOvE INSTRUCTION
OOF66 02 09 5127 519C 01021 01096 00846 M1 MVC LIST+45CI0l"INPUT+30 GENERA TEO MOvE INSTRuCTION
00F6C 02 09 5136 SlA6 01030 010AO 00847 M1 MVC I.IST+60CI0)"lNPUT+40 GENERATED MovE INSTRUCTION
OOF72 DZ 09 5145 SlBO Ol03F OloAA 00848 Ml MVC LIST+75CI0)"INPUT+SO GENERA TEO MOvE INSTRUCTION
00F78 02 09 51S4 5leA 0104E 01064 00849 Ml MVC LIST+90CIOl"INPUT+60 GENERA TEO MOvE INSTRUCTION
OOF7E 02 09 S163 51C4 01050 010BE 00850 Ml MVC LIST+I05CI0l"INPUT+70 GENERATED MOVE INSTRUCTION

00851 PRINT NOGEN TOS03120
OOFS4 F9 11 50F2 50F4 OoFEC OOFEE 00852 CP MAX"CTR TEST FOR OvERFLOW T0503130
TXT CARD " IS 0052.

Z OOFSA 47 80 50C6 onFCO 00853 BE OFLOw T0503140
I 00F8E 92 01 SOF9 00FF3 00854 MVI PRINfC"X'Ol' 5ING~E SPACE CHARACTER TOS03150 I--' 00855 WRITE PUT OUT PRINT LINE T0503160 I--'

OOFAC FA 10 SOF4 50F6 ooFEE OOFFO 00863 AP CTR"ONE ADO 1 TO COUNTER TOS03170
OOFB2 92 40 SOFA OOFF4 00864 MVI LIST"X'40' CLEAR PRINT AREA TOS03180
00FB6 02 82 50FB 50FA 00FF5 OOFF4 00865 MVC lIST+IC131l"lIST TOS03190
OOFBC 47 FO 5042 OoF3C 00866 B lOOP T0503200

00867 * OVERFLOW AND CLOSE ROUTINES TOS03210
TXT CARD 1# IS 0053.
OOFCO 92 C 1 50F9 OOFF3 00868 OFLOW MVI PRINTC,X'C1' PAGE CHANGF TOS03Z~0
OOFC4 D2 01 SOF4 SOF7 OOFEE OOFFI 00869 MVC CTR(z),RESET T0503230
OOFCA 47 Fo 509A ooF94 00870 B WRI TE TOS03240

00871 EF CLOSE IN,OUT TOS03250
00879 TERM T0503260
00882 * CONSTANTS,COUNTERS"AND I/O AREA5 TOS04010

OOFEe 060C 00883 MAX DC X'060C' MAXIMUM PAGE SIZE T0504030
OCFEE OOOC 00884 CTR DC X'OOOC' LX NE COUNTER TOS04040
OOFFo IC 00885 ONE DC PI+1' SINGLE SPACE VALUE TOS04050
OoFFl oooc 00886 RESET DC X'OOoC' ZERO FOR CLEARING LINE COUNTE~ TOS04060
TXT CARD " IS 0054.
00FF3 00887 PRINTC OS CLl PRINT CONTROL CHARACTER T0504070
00FF4 00888 LIST DS CLl32 PRINT AREA TOS04080
01078 00889 INPUT 05 ClBO CARD INPUT AREA T0504090
OOEF8 00890 END BEGIN T0599999

~
STMNTS. VER~IQN NUMAER IS VQ09. (ToS) ~ FLAGS IN 000000 ~

~
~

1/ LNKEGT ~
<S.

~

~

Z
I

PROGRAM

NAME 01- PRUGR.'lM

tl/\Hf: or SE:(.r1[NT

MODlJLES

***END lNKEDT

SIIMPI

(RnOTl

I\Jl\ME OF
MODULE

SAMPL

LINKAGE EDITOR --- PROGRAM MAP

NUMBER 001

LOAD
ADDRESS

000000

COMPUTED LENGI~

NUMBER OF REGIONS
NUMBER OF SEGMENTS
NUMBER OF MUDULES
BLANK COMMON LENGTH

SEGMENT LENGTH
SYMBOLIC OVERLAY POINT
NEXT SEGMENT IN PATH

00004296

001
001
001

00000000

00004296
CROOT)
(ROOT)

MODLJLE
LENGTH

NUMBER OF
ENTRYS

00004296 00007

~ 1/ (OMM OBJECT MODULE IS ON SVSUT2, NAMED SAMPL.

1/ COHM THIS OBJECT MOD. MAY BE LOADED AND RUN UNDER EXEC. BY TYPING

1/ COHM E LOD SAMPL,02"Rl

II ENOMON

PAGE

MAXIMUM LENGTH

NUMBER OF OVERLAY POINTS
NUMBER OF ENTRY POINTS
STARTING EXECUTION ADDR.
BLANK COMMON LOAD ADDR.

00004296

00.0
00007

OOOEFB
000000

STARTING ADDRESS 000000
REGION NUMBER 001
NUMBER OF MODULES IN SEGMENT 001

METHOD useD TO
BIND MODULtS

EXPLICIT

LISTING

FIELDl

1 TO 10

0000000001
12345b7890

x
xx
xxx
XXXX
XXXXX
XXXXXX
xxxxxxx
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXxxxxxxx
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
xxx
xx
x

x
xx

xxx
XXXX

XXXXX
XXXXXX

xxxxx~x
XXXXXXXX
x~xxxxxxx

XXXXXXXXXX
XxXXXXXXXX

XXXXXXXXX
Xxxxxxxx

XXXXXXX
XXXXxX

XXXXX
XXXX

xxx
xx

X
XXXXXXXXXX

XXXXXXXX
XXXXXX

XXXX
xx
xx

xxxx
XXXXXX

XXXXXXXX
XXXXXXXXXX

OF

FIELl.l2

11 TO 20

1111111112
1234567890

x
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXX)<XXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X

X
XX

XXX
XXXX

XXXXX
XXX XXX

XXXXXXX
XXXXXXXX

XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXX
XXXXXXXX

XXXXXXX
XXXXXX

XXXXX
XX~~

XXX
~X

X
XXXXXXXXl<X

XXXXXXXX
XXXXXX

XXXX
XX
XX

XXXX
XXXXXX

XXXXXXXX
XXXXXXXXXX

SAMPLE

FIELD3

21 TO 30

22Z2222223
1234567890

X
xx
XXX
xxxx
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
xxXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
xxx
xx
X

x
xx

XXX
XXX X

XXXXX
XXXXXX

XXXXXXX
XXXXXXXX

XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXX
XXXXXXXX

XXXXXXX
XXXXXX

XXXXX
XXXX

XXX
XX

X
XXXXXXXXXX

XXXXXXXX
XXXXXX

XXX X
XX
XX

XXX X
XXXXXX

XXXXXXXX
XXXXXXXXXX

DATA

FIEL04

31 TO 40

3333333334
1234567890

x
xx
XXX
XXXX
XXXXX
xxxxxx
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
xXXXXXXXXX
XXXXX>' xxx
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
xx
X

X
XX

XXX
XXXX

XXXXX
XXx XXX

XXXXXXX
XXXXXXXX

XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXX
XXXXXXXX

XXXXXXX
XXXXXX

XXXXX
XXXX

XXX
XX

X
xxxxxxxxxx

XXXXXXXX
XXXXXX

XXXX
XX
xx

xxxx
XXXXXX

XXXXXXXX
XXXXXYXxxx

CARDS

FIELD5

41 TO 50

4444444445
1234567890

x
XX
xxx
XXXX
XXXXX
XXX XXX
XXXXXXX
XXXXXXXX
xxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
xxxxx
XXXX
xxx
XX
X

)(

XX
XXX

XXXX
XXXXX

XXX XXX
xxXXXXX

XXXXXXXX
XXXXXXXXX

XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXX
XXXXXXXX

XXXXXXX
XXXXXX

XXXXX
XXXX

xxx
xx

X
XxYXXXXXXX

XXXXXXXX
XXXXXX

XXXX
XX
XX

XXXX
xxxxxx

XXXXXXXX
xxxxxxxxxx

F I EL 06

51 TO 60

5555555556
1234567890

X
xx
XXX
XXXX
XXX XX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
xxx
XX
X

x
XX

XXX
XXXX

XXXXX
XXX XXX

XXXXXXX
XXXXXXXX

XXXXXXXXX
xxxxxxxxxx
XXXXXXXXXX
xxxxxxxxx

XXXXXXXX
XXXXXXX

XXXXXX
XXXXX

XXXX
xxx

xx
X

xxnxxxxxx
XXXXXXXX

XXXXXX
XXX X

XX
XX

XXXX
XXXXXX

XXXXXXXX
XXXXXXXXXX

FIELD1

61 TO 10

6666666667
1234567890

X
XX
XXX
XXXX
XXXXX
XXXXXX
xxxxxxx
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
xxxxxxxxx
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
xxx
xx
X

X
XX

XXX
XXXX

XXXXX
XXXXXX

XXXXXXX
XXXXXXXX

XXXXXXXXX
XXXX)t'XXXXX
XXXXXXXXXx

XXXXXXXXX
XXXXXXXX

XXXXXXX
XXXXXX

XXXXX
XXXX

XXX
XX

X
XXXXXXXXXX

XXXXXXXX
XXXXXX

XXXX
XX
XX

xxxx
XXXXXX

XXXXXXXX
XXXXXXXXXX

F I EL 08

71 TO 80

1777777778
1234567890

x
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
xxxxxx
XXXXX
XXXX
XXX
XX
X

X
XX

XXX
XXXX

XXXXX
xxxxxx

XXXXXXX
XXXXXXXX

XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXX
XXXXXXXX

XXXXXXX
XXXXXX

XXXXX
XXXX

xxx
XX

X
XXXXXXXXXX

XXXXXXXX
XXXXXX

XXXX
XX
XX

XXXX
XXXXXX

XXXXXXXX
XXXXXXXXXX

L 151 HIt..

FIE L D 1

1 TO l()

00000000nl
12345671390

XXXXXxxxxx
xxxxx>:X~

xxxxxx
xxxx

xx
xx

XXXX
xxxxxx

xxxxxxxx
xXXXXXX:QX

xx
xxx
XXXX
xXXXX
)(XXXXX
XXXXXXX
XXXXXXXX
xxxxxxxxx
XXXXXXxxxx
XXXXXXXXXX
)(XXXXXXXY
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
xXX
xx

x
xx

xxx
xXXX

XXXXX
xxx xxX

XXXXXXX
XXXYXXXX

XXXXXXXXX
:'(XXXXXxXXX
XXXXXXXX U

XXXXXXXXX
xxxxxxXX

XXXXXXX
XXX xxX

XXXXX
xxxx

xxx
xx

X

Of

F I F I [12

11 f[1 2(1

1111111112
1t'34567flYn

XXX"XXOXX
XX",Xx (XX

Xl XX xx
iXX!I

x'
X x

y X <X

X>XXXX
Xx"XX:<Xx

xxx! XX.\X!',x
X
xx
XXX
XXXY
XXX'q
xxx~n:

x,XXYXXX
)\xxxxxxx
XXX>XXXXx
\XXYXX;"XXX
XXXXXXXX)iX
>.XXXXXXXX
xxx>,XXXX
)'XXXXXX
xXXXXX
>XXXX
xxxx
xxx
xX
X

x
xx

xxx
XXX X

XI-XXX
xxxXXX

I.XX"XXX
xxxxxxxx

XX>XXXXXX
xxxxxx/xxx
XXXXXXXXXX

XX)(XXXXXX
XXXXXXXX

XXXXXXX
XXXXXX

XXXXX
xxx X

xxx
xx

X

5hMPLE

FlEL03

21 TO 30

7222222221
1234567H90

Y, X X X X X X X X
x.XXXXxxx

XXXXX,x
XXXX

X)\
xx

XXXX
XXXXXX

>,XXXXXXX
\',XXXI\XX)(V
X
X)(

\l(X
)(J\XX

xxXXX
'I)(XXXx
")(XXXXX
XXXXXXXX
x.'xxxxxxx
'i~XXXXXX)(X

Xl< XXXXXXXX
)(XXXXxxxx
XXXXXXXX
'xXXXXXX
.XXXXXX
XXXXX
XXXX
xxx
XX
X

x
xx

xxx
XXXX

XXXXX
)(XXXXX

XXXXXXX
XXXXXXXX

xxxxxxxxx
XlXXXXXXXX
XXXXXXXXXX

XXXXXXXXX
XXXXXXXX

XXXXXXX
xxxxxx

XXXXX
XXXX

xxx
xx

X

DATA

FIELD4

31 TO 40

3333333334
1234567890

>XXXXXXXXX
x,xxxxXXX

XXXXXX
XXXX

XX
XX

XXX X
XXXXXX

,AJ(XXXXXX
x.XXXXXXXXX
x
xx
xXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
,:xxxXXXXX
nxxxxXXXX
xXXXXXXXXX
xxxxxxXXX
x.XXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
XXX
XX
X

x
XX

XXX
XXXX

XXXXX
XXXXXX

XXXXXXX
XXXXXXXX

XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXX
XXXXXXXX

XXXXXXX
XXX XXX

XXXXX
XXXX

XXX
XX

X

CARDS

F 1 ELD5

41 TO 50

4444444445
1234567890

)(XY,XXXXXXX
xxxxxxxx

xxxxxx
XXXX

XX
XX

XXXX
XXXXXX

XXXXXXXX
XXXXXXXXXX
X
xx
xxx
XXXX
XXXXX
XXXXXX
xxxxxxx
XXXXXXXX
xxxxxxxxx
XXXxXXXXXX
XXXXXXXXXX
xxxxxxxxx
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX
XXXX
xxx
xx
x

x
XX

XXX
XXXX

XXXXX
XXXXXX

XXXXXXX
XXXXXXXX

XXXXXXXXX
xxxxxxxxxx
xx XX·XXXXXX

XXXXXXXXX
XXXXXXXX

XXXXXXX
XXXXXX

XXXXX
XXX X

XXX
XX

X

FIELD6

51 TO 60

5555555556
1234567890

XXXXXXXXXX
XXXXXXXX

XXXXXX
XXXX

xx
XX

XXXX
XXX XXX

XXXXXXXX
XXXXXXXXXX
X
xx
xxx
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
xxxxXX
XXXXX
XXXX
XXX
XX
X

X
xx

XXX
XXXX

XXXXX
XXX XXX

XXXXXXX
XXXXXXXX

xxxxxxxxx
XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXX
XXXXXXXX

XXXXXXX
XXXXXX

XXXXX
XXXX

XXX
XX

X

F I EL 07

61 TO 70

6666666667
1234567890

XXXXXXXXXX
XXXXXXXX

XXX XXX
XXXX

XX
XX

XXXx
XXXXXX

XXXXXXXX
XXXXXXXXXX
X
XX
XXX
XXXX
XXXXX
l(XXXXX
l(XXXXXX
l(XXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXxxx
XXXXXX
XXXXX
XXXX
XXX
XX
X

X
XX

XXX
XXXX

XXXXX
XXXXXX

XXXXXXX
XXXXXXXX

XXXXXXXXX
XXXXXXXXXX
Yxx>fxxxx)(x

xxxxxxxxx
--XXXXXXXX

XXXXXXX
·XXXXXX-

XXXXX
·XXXX

XXX
XX

X

FIELDS

71 TO 80

7777777778
1234567890

XXXXXXXXXX
XXXXXXXX

XXXXXX
XXXX

xX
xx

XXXX
XXX XXX

XXXXXXXX
XXXXXXXXXX
X
XX
XXX
XXXX
XXXXx
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXxx
XXXXXXX
XXXXxx
XXXXX
XXXX
XXX
XX
X

x
XX

XXX
XXXX

XXXXX
XXXXXX

XXXXXXX
XXXXXXXX

XXXXXXXXX
XXXXXXXXXX
-xxxxYxX'X-xY

xxxxxxxxx
XXXXXXXX

XXXXXXX
·XXXXXX

XXXXX
XXXX

XXX
XX

X

Appendix N

E LOD MON",Rl,,4~5~~

V MON ~2L6 ~~2~52

U MON ~3RT ~~:~1:26

U MON ~~:21:~8 JOB TOS MONITOR

V ASSMBL ~2L6 ~~2116

U ASSMBL ~399

V LNKEDT ~2L6 ~~2715

6 LNKEDT ~899 ***END LNKEDT

U LNKEDT ~399

OBJECT MODULE IS ON SYSUT2, NAMED SAMPL. U MON

U MON

U MON

U MON

V MON

THIS OBJECT MOD. MAY BE LOADED AND RUN UNDER EXEC. BY TYPING

E LOD SAMPL,~2"Rl

~3RT ~~:~6:5~

~2NH ~~28~~

E LOD SAMPL,~2"Rl

V SAMPL ~2L6 ~~2824

6 SAMPL 5~86 IN

6 SAMPL 5~86 OUT

Rl ~~~~355

Ll ~~~~356

V SAMPL ~2NH ~~2949 ~~~121

N-15

Spectra 70

POS/TOS/TDOS Assembly

System Reference Manual

70-00-602

Your comments, accompanied by answers to the following questions help us produce better pub­
lications. If your answer to a question is "no," or requires qualification, please explain on a
separate sheet of paper. Please give specific page and line references with comments when
appropriate. If you desire a reply, be sure to include your name and address.

Does this publication meet your needs?

Did you find the material:

Easy to read and understand?

Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

What is your occupation?

YES NO

FOLD

FOLD

STAPLE

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WilL BE PAID BY-

RADIO CORPORATION OF AMERICA
ELECTRONIC DATA PROCESSING
CAMDEN, NEW JERSEY 08101

ATTN: Manager, Systems Software Services
Cherry Hill
Building 204-2

ST APL E

FIRST CLASS

PERMIT NO. 16

FOLD

CAMDEN, NEW JERSEY

FOLD

'w :z
,-I

,(9
'Z
'0
'-I
:~

:1-
,:J
,U

	000
	001
	002
	003
	005
	006
	007
	008
	009
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	06-01
	06-02
	06-03
	06-04
	06-05
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	C-01
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	F-01
	F-02
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	I-01
	I-02
	I-03
	J-01
	J-02
	K-01
	K-02
	L-01
	L-02
	M-01
	M-02
	M-03
	M-04
	M-05
	N-01
	N-02
	N-03
	N-04
	N-05
	N-06
	N-07
	N-08
	N-09
	N-10
	N-11
	N-12
	N-13
	N-14
	N-15
	replyA
	replyB

