
SPELl: I RAT 70
TIME SHARING OPERATING SYSTEM (TSOS)

Interactive FORTRAN System
Reference Manual

OO(]3LJ1]
Information
Systems

70-00-618
January 1969

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

First Printing: January 1969

FOREWORD • This manual is a programmer's reference document for the Extended
Interactive FORTRAN language that is used in writing programs for the
TSOS (Time Sharing Operating System) Interactive FORTRAN System.

The Extended Interactive FORTRAN language consists of the following
three su bsets:

I. FORTRAN IV language (modified)

2. Editing statements

3. De bugging sta tern en ts

Section. I describes the objectives of the TSOS Interactive FORTRAN
system and the facilities and services provided. Also included are the
notation conventions used throughout this manual.

Sections 2, 3, and 4 describe the Extended Interactive FORTRAN
language.

Section 2 describes the TSOS FORTRAN IV language that is
documented in the TOSjTDOS FORTRAN IV Reference Manual
(70-00-604). This section discusses the differences, in statement format and
continuation conventions, between these two languages.

Section 3 describes the editing statements available with the system.

Section 4 describes the debugging statements available with the system.

Special programming considerations and examples are included
throughou t the manual.

iii

1. GENERAL
DESCRIPTION

2,. TSOS FORTRAN
IV LANGUAGE

3. EDITING
STATEMENTS

CONTENTS

Features
The Extended Interactive Language
Notation Conventions

Introduction
Programs
Statements
Modes
Entering Text from a Terminal
Line Number Commands
Immediate Execution

Files .. .
Lists of Consecutive Statements
Statement Sets
Syllables
Lists of Syllables
Relative Syllable and Statement Notation
Special Syllable Lists
Search Expressions
List Expressions
Logical Expressions
The Syntax of List Expressions
Evaluation of List Expressions .
Definitional Programs .
Descriptions of Editing Statements:

#GET
#SAVE
#UNSAVE
#PREFIX
#DELETE
#MOVE
#INSERT
#REPLACE
#NUMBER
#ORDER
#PREP
#CHECK
#NAME
#FORGET .,
#REFER
#IN
#FIND
#EDIT

iv

Page

1-1
1-1
1-2

2-1
2-2
2-2
2-3
2-3
2-4
2-6

3-1
3-2
3-3
3-3
3-4
3-4
3-5
3-5
3-9
3-10
3-11
3-11
3-12
3-13
3-13
3-13
3-14
3-14
3-14
3-15
3-15
3-21
3-22
3-22
3-23
3-23
3-23
3-24
3-24
3-24
3-24
3-25

3. EDITING
STATEMENTS

(Cont'd)

4. DEBUGGING
STATEMENTS

APPENDICES

LIST OF
TABLES

CONTENTS
(Cont'd)

#DEFINITION
#PATTERN
#EXPAND

Introduction .
Descriptions of Debugging Statements

#DISPLA Y ,
#PRINT
#WHEN
#RETURN
#TURN OFF
#TRACE
#NOTRACE
#CHECKPOINT
#RESTART
#EXECUTE
#PROCEED
#HALT

A. Summary of Editing Commands
B. Description of Syntactical Units..
C. Command Abbreviation Scheme
D. Programming Aids
Z. Index

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table C-l.

Search Syllables and Respective Matching Syllables ..
Elementary Search Expressions
Values for (type) in Search Expressions
Values for (kind) of Statement
TSOS Interactive FORTRAN System Command
Ab breviations

v

Page

3-25
3-26
3-26

4-1
4-2
4-2
4-4
4-4
4-5
4-5
4-5
4-5
4-5
4-6
4-6
4-6
4-6

A-I
B-1
C-I
D-I
Z-l

3-5
3-6
3-7
3-7

C-l

1. GENERAL
DESCRIPTION

FEATURES

THE EXTENDED
INTERACTIVE

LANGUAGE

• The TSOS Interactive FORTRAN System combines the features of a
conversational FORTRAN compiler, a special FORTRAN text-editing
facility, debugging statements, and an immediate execution capability to
provide the FORTRAN user of the 70/46 time sharing system with a
comprehensive program preparation tool.

The system consists of a single interpreter which accepts FORTRAN
programs written using the full FORTRAN IV language, the same language
accepted by the TSOS FORTRAN IV background compiler. The system pro­
vides to the user the following functions:

1. Complete syntax checking of the FORTRAN IV language.

2. Comprehensive text editing of FORTRAN programs, which takes
into account the structure of the FORTRAN language.

3. Comprehensive debugging statements that include facilities for
displaying values, checkpointing, and controlled interrupts.

4. A facility for immediate execution for evaluating FORTRAN
expressions entered from a remote terminal.

These facilities are obtained by combining the editing statements, the
debugging statements, and the FORTRAN language itself into an extended
language which is accepted by the interactive FORTRAN system. A user
normally constructs, syntax checks, modifies, tests, and debugs his
FORTRAN program, all in the interactive mode, and subsequently compiles
it using the FORTRAN IV batch compiler.

• The extended language of the TSOS Interactive FORTRAN System
consists of three components:

1. The FORTRAN language

2. The special FORTRAN editing statements

3. The debugging statements

The system is designed in such a way that editing statements and
debugging statements may be embedded in a FORTRAN program if desired,
to form a valid interactive FORTRAN program which can then be executed
by the interactive system. For processing by the FORTRAN background
compiler, however, such statements must be removed, which can be done
automatically on command by means 0f an editing statement.

The three components of the extended interactive language are
described in detail in the following sections.

1-1

NOTATION
CONVENTIONS

General Description

• The following conventions for writing the elements of the Extended
Interactive FORTRAN System are a guide to the programmer in writing his
own statements.

1. Words printed in all capital letters and preceded by the symbol #
are reserved words. These words have preassigned meanings within
the Extended Interactive FORTRAN System. In all formats, these
words represent an actual occurrence of a command or of a special
variable.

2. All words printed in lower-case letters represent information that
must be supplied by the programmer. All lower-case words
appearing in formats are defined in the context or in Appendix B.

3. Some lower-case words are hyphenated to facilitate references to
them in the text; this modification does not change the syntactical
definition of the words.

4. Hyphens appearing outside of syntactical unit definitions serve as
indicators of complementation or range. Their use is described in
detail for each command where they appear.

5. Square brackets [] indicate that the enclosed item may be used or
omitted, depending on the requirements of the particular program.
When two or more items are stacked within brackets, one or none
of them may occur.

6. Braces { } enclosing vertically stacked items indicate that one of
the enclosed items is obligatory.

7. The ellipsis (. ..) indicates that the immediately preceding unit
may occur once, or any number of times in succession. A unit
means either a single lower-case word or a group of lower-case
words and one or more reserved words enclosed in brackets or
braces. If a term is enclosed in brackets or braces, the entire unit
of which it is a part must be repeated when repetition s specified.

8. Comments, restrictions, and commentary on the use and meaning
of every format are contained in the appropriate sections of the
text.

9. The delimiters () are used to enclose the name of a syntactic unit
in the description of the syntax of the editing and de bugging
statements.

10. All other punctuation and special characters, except those
mentioned above, represent the actual occurrence of those
characters. Punctuation is necessary where it is shown.

11. In the examples, a box is drawn around information typed by the
system to distinguish it from that supplied by the user.

1-2

2. TSOS
FORTRAN IV

LANGUAGE

INTRODUCTION • The TSOS FORTRAN IV language is the same as that accepted by the
TSOS FORTRAN IV background compiler, described in detail in
TOS/TDOS FORTRAN IV Reference Manual 70-00-604. Two differences
are: statement format, and continuation conventions.

The format of statements written in the TSOS Interactive FORTRAN
System is completely free-form, ignoring the column conventions of
standard FORTRAN systems. The sole requirement concerns the character
position immediately following the system line number. In the case of a
FORTRAN comment, a "c" must be typed in that position; for any other
statement, it must be other than "C". When the statement is entered into the
system from the terminal, it is automatically reformatted according to
standard FORTRAN column conventions, so that in format it is immediately
ready for compilation by the background compiler.

The continuation conventions of the Interactive FORTRAN System
require that following the last character of the line to be continued, the user
type a carriage return (the RETURN button on the teletype). The system
then responds on the next and all subsequent continuation lines of that
statement with the character "-" (hyphen). It will be typed by the system at
the beginning of the line. The line number is typed following the hyphen.
When such a continuation line is entered into the system, it will be converted
to conform to the standard FORTRAN continuation convention in order
that the continued statement be acceptable to the background compiler.

Because of the interactive nature of the system, the FORTRAN
processor accepts statements in a prescribed order. So as not to burden the
user of the system with the necessity of arranging his program in the
required way, an e(ijting command, #ORDER, is included in the system.
This command automatically reorders the statements in the prescribed way.
However, by writing his program in the required order, the user simplifies
the processing of his program and realizes time savings in its execution. The
following types of statements must appear in the order given for a program
in the TSOS Interactive FORTRAN System:

1. FUNCTION, SUBROUTINE, #DEFINITION, BLOCK DATA, or
PROGRAM

2. IMPLICIT

3. ABNORMAL

4. EXTERNAL

5. Explicit type statements

6. DIMENSION

7. COMMON

2-1

INTRODUCTION
(Cont'd)

PROGRAMS

STATEMENTS

TSOS FORTRAN IV Language

8. EQUIV ALENCE

9. DATA

10. #PATTERN

11. Statement function definitions

12. Any other statements

13. END

• A file may contain one or more programs or it may contain data. Each
program in a file must be identified by an initial PROGRAM, SUB­
ROUTINE, FUNCTION, #DEFINITION, or BLOCK DATA statement. The
retrieval of a file of programs causes the definition of the names of the
programs it contains as the names of the lists of all the statements which
they each contain (except for the END statements). In general, a program
name may be used in editing statements to designate the list of statements
that it contains.

If more than one file is in virtual memory and programs with the same
name occur in different files, then in editing statements a unique program
may be designated by qualifying the program as (file) . (prog) .

• A statement consists of an initial line and possibly one or more
continuation lines. Each line (including continuation lines) must have a line
number. In editing statements, a statement may be designated by the line
number of the first line of the statement, by its FORTRAN statement
number, or by its contents.

Line numbers will be of the form

L.N

where Land N represent a one or four decimal digit number. Leading zeroes
in L and trailing zeroes in N will not be typed by the system unless explicitly
requested by the user. See below.

Every line number that is typed by the user to indicate a place in a file
(at which new text is to be inserted) implies that additional lines of input
will follow, that the line number will be incremented, and what the
increment is. The implicit increment will be a 1 in the least significant digit
typed. Thus, in 101. the increment is 1.; in 4.07, .01; and in 2.030, .001.

The implied increment may always be superseded by explicitly giving
the desired one. An explicit increment follows the line number and is
enclosed in parentheses. It has the same form as the line number itself, and
need not be a fractional number. The number of N digits typed by the
system will be the maximum of the number of N digits in the line number
and the increment, if given.

2-2

STATEMENTS
(Cont'd)

MODES

ENTERING TEXT
FROM A

TERMINAL

TSOS FORTRAN IV Language

Examples:

Typed by User Increment Actual or Implied Line Numbers Typed by System

20.01 .01 I 20.01,20.02, ...

3.042 (.002) .002 A 3.042,3.044, ...

4.713 . 03 A 4.713,4.743,4.773, ...

5.1 (2.01) 2.01 A 5.10,7.11,9.12, ...

• The system is assumed to be always in one of two modes: Command or
Text. In the Command mode, which is equivalent to the Desk Calculator
mode, lines entered are extended FORTRAN statements. They are executed
immediately, and, unless the instruction explicitly alters the mode, a new
Command mode line is required as the next line.

In the Text mode, the system is expecting a line of text to be entered
into a file. This fact is indicated by the system typing a line number. This
line number becomes the line of text's number in the file if a line of text is
entered. If a line of text is not entered, the typed line number is ignored and
no change is made to the file because of it.

• Whenever a user requests to insert new text into a file (whether it is a
new or existing file), the system attempts to preset the line number and
increment for him.

In the case of a new file, after the system responds with

I FILE IS EMPTY I
the line number and increment are set to 1, the mode set to text, and the
line number (1.) typed in anticipation of the first line.

If a place is specified between two lines of an already existing file, the
message

I BETWEEN LINES (line 1) AND (lin~

is typed and the line number and increment computed from (line 1) and
(line 2) , if possible. The increment will be a 1 in the least significant non­
zero N digit of (line 1) or the whole number I, if all N digits are zero. If this
increment is such that (line 1) + (increment) ~ (line 2) , the increment will be
shifted one place right and tested again. The line number typed by the
system in expectation of the first line of new text is then computed to be
(line 1) + (increment) .

If no increment can be found, no line number is typed but an
appropriate message is typed.

2-3

ENTERING TEXT
FROM A

TERMINAL
(Cont'd)

LINE NUMBER
COMMANDS

TSOS FORTRAN IV Language

Examples

Line 1 Line 2 Increment Typed Line Number

2.0000 2.0100 .001 2.001

2. 3. .1 2.1

4.999 4.9992 .0001 4.9991

7.9999 8. -- --

If new text is to be inserted at the end of an existing file, the message

I LAST LINE IS (line I) I
is typed. The increment is a "I" in the least significant non-zero N digit, or a
" I ." if all N digits are zero and if the beginning line number is (line 1) +
< increment) .

• Whenever text is being inserted from a remote terminal, several
commands are available for altering the sequence of statements stored into
the file. These include the ability: (1) to change the current line number and
increment; and (2) to temporarily change it, but have it remembered so that
it may be returned to later. This second capability permits one to go back
and insert text between two previously entered lines and then resume at the
old place with a minimum of line number typing.

All commands which pertain to line numbers are identified by an "@"
symbol. The permissible commands are shown below, and are followed by an
explanation of their meaning and use.

1. @SET (line-no) [« increment))]

Examples:

@SET 1.79

@SET 1.24(.01)

@SET 1 OO(1 0)

Examples:

@100(10)

@100

3. @

2-4

Command 1:

@SET

Command 2:

@n

Command 3:

@

TSOS FORTRAN IV Language

• This command specifies that the current line number and increment are
to be forgotten, bein.g replaced by the specified line number and increment,
and that new text is to be entered at this new place. No text is typed on this
line, because the system will type back the new line number before accepting
the text for the line.

When this command is given in place of a line of text (i.e., on a line for
which the system has typed a line number), it is not taken as text, the line
number of this line is ignored, and the new line number is typed in
expectation of a line of new text.

Example:

12.

13.

9.1

'-----

A line of text

@SET 9.1

inside of box typed
by system

Line 12 stored

This line, 13, ignored

Text accepted for
line 9.1

This command is valid only if an insert is being made to a file and if a
line number h~s been typed out by the system.

• This instruction specifies that the current line number and increment
are to be saved (pushed) in a push-down stack for later retrieval, and then
replaced by the specified line number and increment. As with the @SET
command, the line on which it is typed is not entered as text, and an extra
line is skipped before the number is typed.

This command is used in conjunction with command 3, and examples
follow its description.

• When typed in place of a line of text, this command specifies that the
current line number and increment are to be replaced by the most recently
pushed line number and increment, and the stack "popped". The stack has a
maximum depth of 3, and if an attempt is made to pop it more times than it
has been pushed, an error message is given, no action is taken, and the
current line number is preserved and then retyped for the next line of text. It
should be noted, however, that after the stack has been pushed the fourth
time it becomes circular and the fourth pushed line number replaces the
first. In this case, it can be popped indefinitely, with the line numbers
repeating every fourth time, and no error is detected.

2-5

Command 3:

@

(Cont'dj

IMMEDIATE
EXECUTION

TSOS FOR TRAN IV Language

Examples:

71. (text) Text entered as line 71
72. @9.l Save line number 72, Go to 9.1

9.1 (text)
} Skipped line

Text for line 9.1
9.2 (text) Te~t for line 9.2
9.3 @7.01 Save 9.3, Set to 7.01

} Skipped line
7.01 (text) Text for line 7.01
7.02 (text)
7.03 @ Return to last previously saved line.

} Skipped line
9.3 (text) Text for line 9.3
9.4 (text) Text for line 9.4
9.5 @SET22.03(.02) Start entering at line 22.03

} Skipped line
22.03 (text) T~xt for line 22.03
22.05 (text) Text for line 22.05
22.07 @ Return to first previously saved line.

} Skipped line
72. (text) Back to original line number. Text

for line 72.
73. (text) Text for line 73
74. @ Attempt to perform procedure too

many times.

TOO MTY POPS I
74. Text mode continues

The @n procedure can be used in place of the @SET command, simply
by never issuing the corresponding @.

• A statement typed in with no line number is a request for immediate
execution of that statement.

Example

10.0 PROGRAM NASA003

10.1 DIMENSION X(30)

10.2

LJ
ETX < NULL>

Y = SIN (22,379)

Z=3.l4*Y

#DISPLA Y (/NASA003/Y,Z)

Because there is no line number on the statements following 10.2, they
would be executed immediately. As a result, their values are displayed at the
terminal.

2-6

3. EDITING
STATEMENTS

FILES

Designating
Statements and Places

• The types of entities processed by the FORTRAN editing statements
are files, programs, statements and lists of consecutive statements, syllables
(elementary constituents of FORTRAN statements), lists of consecutive
syllables, and strings of consecutive characters. Each of these is discussed
separately below.

• Before a file can be executed or manipulated in any way by the inter­
pretive system, it must be retrieved from the disc or typed in at the terminal.
On the disc, a file is an indexed sequential file, sorted by line number. The
same conventions are used for naming files as are used throughout the TSOS
System. A file is never cataloged or stored back on the disc unless an explicit
command requesting such storage (#SA VE) is executed. Otherwise, the file
remains in the user's virtual memory until the end of the session. In general,
a file name may be used in editing statements to designate the list of
statements which it contains, and the retrieval of a file causes the definition
of the file name as the name of that list of statements.

In certain of the editing and debugging statements, in which the name
of a file is required and is not specified, one of two actions will take place:

1. If there is only one file in virtual memory at the time, that file
(referred to in the sequel as the "only" file) is referenced.

2. If there is no file in virtual memory at the time, or if there is more
than one file, omitting a file reference causes creation of a new file
(or reference to it, if it has been previously created in this way).
This file is referred to in the sequel as the "unnamed" file, and is a
temporary or work file which is not saved at the end of the user's
session.

• In some editing statements, it is necessary to identify a point within a
file where information is to be inserted. This is always identified as before or
after a statement or list of statements. In the description of the syntax of the
editing statements the use of a designator of a statement or list of statements
in this way is called a (place) , which may take the following forms:

1. (list-name)

3. (end-pt»)

The (list-name) may be a file name, program name, or the name of a list
of statements defined by a #NAME statement. The (end-pt) selects a single
statement out of the list; its forms are:

1. (line-no)

2. &(stmt-no)

3. (list-name)

4. #S(integer) [« exp»)]

3-1

Designating
Statements and Places

(Cont'dj

LISTS OF
CONSECUTIVE
STATEMENTS

Editing Statements

where:

(line-no) represents the line number of the first line of a statement and
is an integer (1-4 digits) possibly followed by a decimal point followed
by a fractional part (0-4 digits).

(stmt-no) represents a (1-5 digit) statement number; and the form 4
denotes a statement located previously by a #FIND, #EDIT, or
#PATTERN statement (described below; see also the section on the
"Lists of Syllables" below). Each form must represent a statement
which is actually present in the list being qualified.

• A set of consecutive statements of a program may be treated as a list by
the editing statements and designated by a name (with the #NAME state­
ment). Such a named list of statements may still retain its position in a
program or in another list.

A sublist of a list of statements may be designated by specifying the
first and last statements in the sublist; and these, in turn, may be designated
by their initial line numbers, by their statement numbers, or by specifying a
list containing them.

More exactly, a (stmt-list) , used in editing statements to designate a list
of statements, has the following forms:

1. (list-name)

where:

(range) serves to extract a list of consecutive statements from the
(list-name) (the unnamed or only file in case 3) and has one of the
following forms:

1. (end-pt)

2. (end-pt) - (end-pt)'

3. (end-pt) -

4. - (end-pt)

Form 3 means: "from the beginning of (end-pt) through the end of the
(list-name)". Form 4 means: "from the beginning of (list-name) through the
end of (end-pt) "

3-2

STATEMENT SETS

SYLLABLES

Editing Statements

• Many of the editing statements operate on specified sets of statements.
If these are the entire contents of some named list, they may be referred to
by the list name alone. However, ranges of statements within a named list
may be specified by giving the line numbers, statement numbers, or sublist
names of the beginning and end of each range.

Specifically, such a reference will be called a (stmt-set) and has the
following possible forms:

1. (list-name)

2. (list-name) ((range) , (range) , ...)

3. (list-name) - ((range) , (range) , ...)

4. ((range) , (range), ...)

5. -((range) , (range) , ...)

In case 2, the (range)' s here are selected from the (list-name) . In case 3,
the complement of the (range) 's is selected from the (list-name) . Cases 4 and
5 are like 2 and 3, except that the single unnamed file (or the only file in
virtual memory) is being designated.

Examples of (stmt-set) 's

ARCSIN

MULT(10l)

MULT- (101-110.3)

HARP (-&15, &20, &30, &40-)

PROGA (10-LISTA)

PROGB (LISTB-)

PROG(#S2-)

- (&20-&40)

The mere mentioning of a statement set does not affect its existence in
virtual memory nor change the relationships which the set or any pa~ ~ +he

set bears to any existing file, program, or list of statements.

• When analyzed, a statement is broken down into syllables, the smallest
syntactic units which are recognized by the lexical scanner. For example, the
following are syllables:

1. Names

2. Numbers

3. Statement Numbers

4. Arithmetic or Logical Operators

5. Relations
6. Punctuation

7. Statement Keywords: GO TO, READ, etc.

3-3

SYLLABLES
(Cont'd)

LISTS OF
SYLLABLES

RELATIVE
SYLLABLE AND

STATEMENT
NOTATION

Editing Statements

Some editing statements permit one to search within statements for
patterns composed of syllables and lists of syllables. For this purpose, a
number of elementary search procedures are provided to specify specific
syllables or certain classes of syllables. Having located a syllable or a list of
syllables within a given statement, it may be named, copied, moved, deleted,
etc. by the syllable editing statements. The syllable editing statements
(#FIND and syllable list assignment statements) are distinct from the editing
statements used for statements and lists of statements.

• A sublist of consecutive syllables within a statement may be located by
the #FIND statement. In order to be able to distinguish the names for these
sublists from other names with which they may be combined, the special
names #1, #2, #3, ... are used.

The special names #S 1, #S2, #S3, ... are used to designate the state-
ments containing the sublists #1, #2, #3, ... , respectively.

Notice that the syllable lists #1, #2, ... have definite positions within
the specific statements #S 1, #S2, ... which, in turn, represent specific state­
ments of some file or program.

• The syllable which is a certain number of syllables after (or before) the
syllable list #n may be designated by the notation

#n(e)

Here N is a positive integer and e is any integer FORTRAN expression.
If the value of e is positive, say 7, then #n(7) represents the 7th syllable after
the syllable list #n. If the value of e is negative, say 7, then #n(7) represents
the 7th syllable before the syllable list #n. The syllable #n(e) has a definite
position within a statement. If the value of e is zero, then #n(e) represents
the syllable list #n.

Similarly, the statement which is a certain number of statements after
(or before) the statement #Sn may be designated by the notation #Sn(e),
where n is again a positive integer and e is an integer-valued FORTRAN
expression. If the absolute value of the expression e is 7, then #Sn(e)
represents the 7th statement after the statement #Sn, or the 7th statement
before #Sn, according to whether the value of e is positive or negative,
respectively. If the value of e is zero, then #Sn(e) represents the statement
#Sn.

Examples of Relative Syllable Notation

#1 (1)

#2 (-1)

#3(1**2+6)

#62(-J+K-2)

Examples of Relative Statement Notation

#Sl (1)

#S2 (-1)

#S3(J)

#S4(-K+J*2)

3-4

SPECIAL
SYLLABLE

LISTS

SEARCH
EXPRESSIONS

ElennentarySearch
Expressions

Editing Statements

• The special names #1 L, #2L, ... are used to designate special lists of
syllables or characters which are never sublists. That is, they are never part of
a statement or program. They are like list accumulators and are used for
intermediate list computations.

• Certain strings of concatenated syllables (constants, identifiers,
operators, and punctuation characters) form legal elementary search
expressions, (search-exp). These legal search expressions include the
following:

1. Any legal FORTRAN arithmetic or logical expression.

2. Any legal assignment statement or arithmetic statement function
definition.

3. Any arithmetic or logical operator or relation.

4. Any actual argument or actual argument list with or without the
enclosing parentheses.

Except within literal constants, blanks are ignored in these elementary
(search-exp) 's.

These elementary search expressions are matched with lists of syllables
(rather than with strings of characters) in the statements being searched.
Therefore, not all occurrences of the same set of characters will be regarded
as a match. For example, an asterisk represents the operation of multiplica­
tion and thus an asterisk in a search expression will not match the asterisk in
the following statement:

REAL*4 I

Table 3-1 shows a list of various search syllables and their respective
matching syllables.

Table 3-1. Search Syllables and Respective Matching Syllables

Search Syllable Matching Syllable

identifier Same identifier; e.g., variable, array, function name, etc.

numerical Any equal number used numerically, but not repeat count, data
constant length, or statement number.

+ - * / ** Same symbol used as an operator .

. AND .. OR. Same symbol used as logical operator.

.NOT .

. GT. .GE .. LT. Same symbol used as a logical relation .

. LE .EO .. NE.

& integer Statement number as actual argument.

literal constant Any equal literal constant.

(period) Any occurrence not part of constant, operator, or relation.

3-5

Elementary Search
Expressions

(Cont'd)

Searches for Classes
of Syllables

Editing Statements

Table 3-1. Search Syllables and Respective Matching Syllables (Cont'd)

Search Syllable Matching Syllable

Beginning of statement itself, after continuation column.

, End of statement.

, () @%?= Any occurrence.

blank Ignored, except in literal constants.

Any (search-exp) of the types shown in Table 3-1 may be enclosed in
the characters < > without changing its meaning. It must be so enclosed if it
is used to form a compound search expression.

Examples of Elementary Search Expressions

A+B

(A+B) *4.16

<C,IO,D>

:A=B+ I;

<1+2>

• Table 3-2 gives the format of elementary search expressions which are
satisfied, in general, by classes of syllables.

Form of (search-exp)

#1 [(type)]

#V [(type)]

#A [(type)]

#F [(type)]

#C [(type)]

#S

#B
#N [(e)]

#L [(e)]

#ANY

#ANY()

#ST (kind»)

" string"

Table 3-2. Elementary Search Expressions

Matching Syllable

any identifier [with type (type)] *

any variable [with type (type)] *

any array name [with type (type)] *

any function name [with type (type)] *

any constant [with type (type)] *

any su broutine name

any block name

any statement number [with value of expression e]

any statement label [with value of expression e]

any string of syllables, including null string

any string of syllables, with balanced parentheses

any syllable in statement of kind (kind) **

any matching character string

*See Table 3-3, Values for (type) in search expressions.

**See Table 3-4, Values for (kind) of statement.

3-6

Searches for Classes
of Syllables

(Cont'd) Type

L
L1
L4
I
12
14
R
R4
R8
C
C8
C16

Kind

X
S
A
C
I
0
T
E
GO
IF
LlF
DO
CON
PAU
STOP
CALL
RET
READ
WRI
EF
BS
PUN
PRI
IMP
ABN
EXT
DIM
COM
EOU
PRO
REW
END
FUN
SUB
ENT
BD
DATA
NAM
FOR

Editing Statements

Table 3-3. Values for (type) in Search Expressions

Meaning

Logical
Logical, 1 byte
Logical, 4 byte
Integer
Integer; 2 byte
Integer, 4 byte
Real
Real, 4 byte
Real, 8 byte
Complex
Complex, 8 byte
Complex, 16 byte

Table 3-4. Values for (kind) of Statement

Meaning

Any executable statement
any specification statement
any assignment statement
any control statement
any I/O statement
any organizational statement
any explicit type statement
any extended language statement, editing or debugging
GOTO
arithmetic IF
logical IF
DO
CONTINUE
'PAUSE
STOP
CALL
RETURN
READ
WRITE
END FILE
BACKSPACE
PUNCH
PRINT
IMPLICIT
ABNORMAL
EXTERNAL
DIMEN~ION
COMMON
EOUIVALANCE
PROGRAM
REWIND
END
FUNCTION
SUBROUTINE
ENTRY
BLOCK DATA
DATA
NAMELIST
FORMAT

3-7

Compound Search
Expressions

Editing Statements

• Elementary search expressions may be combined by the following
operators, which are listed in order of binding strength from strongest to
weakest:

Representation
Meaning: i.e., what list satisfies compound expression

(Sl and S2 are search expressions)

.NOT. $1 list satisfies if it doesn't satisfy $1

$1 .AND. $2 list satisfies if it satisfies $1 and $2

$1 .OR. $2 list satisfies if it satisfies $1 or $2

$1 $2 list satisfies if it consists of list satisfying $1 followed by list
satisfying $2; i.e., concatenation.

The delimiters < > serve to denote the scope of the character string
defining the search expression. In addition, parentheses may be used to
group subexpressions in the normal way.

Examples

<A> .OR.

<A .OR. B>

A.OR.B

<A> .AND.#ACI6.0R.

#B.AND.«XX> .OR. <yy»

#ST(GO) .AND. #NO 0) < ; >

Given a portion of a program containing the statements:

220. 10 IF (A .OR. B) GO TO 17

225. 20 A=3

230. 30 B=7

235. 45 AB=14

The following table indicates both the line number and the statement
number of those statements for which the given search expression is satisfied
when using editing statements.

Search Expression Statement Number Line Number

<A>.OR. 10,20,30 220,225,230

<A.OR. B > 10 220

A.OR. B

A 10,20 220,225

<A>

<AB>.OR.<A> 10,20,45 220,225,235

AB .OR. A None None

3-8

Compound Search
Expressions

(Cont'dj

Special List Names in
Search Expressions

LIST
EXPR ESSIONS

Editing Statements

All or portions of lists found by a search expression may be given one
of the special list names #1, #2, ... by enclosing that portion in parentheses
and preceding it by #n: . In the absence of parentheses this "naming
operator" has a scope extending up to the next concatenation operation;
however, the insertion of the parentheses must not change the meaning.

Example

#2: <A> .OR.

#2:«A>).OR.) These are different.

• If a special list name of the form #n or #nee) or #nL appears in a search
expression it has the same meaning as if the contents of that list surrounded
by the delimiters < > were inserted in the search expression at that point.
By convention, any compound search expression may be surrounded by
these delimiters without changing the meaning.

Example

#1 :(#V) <*>#J

This search expression will be satisfied, for example, by A * A or B*B, if
A and B are simple variables.

• List expressions are much simpler than search expressions. They consist
of concatenations of the following types of quantities:

1. Literal strings surrounded by double quotes.

2. Special syllable list names (#n, #n(e), #nL).

3. Certain functions; namely, the functions

#SV(e)

#CH(m,n,(list-exp»)

#DM(el ,#n[(e2)])

The function #SV yields the source code representation of the value of
an ordinary numerical or logical expression.

The function #CH yields the character string which is the n characters
from the m th through the (m+n-l)th character of the list expression
(list-exp) .

The function #DM(el ,#n[(e2)]) yields a character string which is the
source code representation of the el th dimension of the array whose name
must be the contents of #n[(e2)].

3-9

Syllable List
Assignment Statements

LOGICAL
EXPRESSIONS

Comparison of
List Expressions

List Expressions
of Equal Length

List Expressions
of Unequal Length

Editing Statements

• The syllable list assignment statement provides a means of creating a
syllable list, or of changing the contents of an already existing one. The
syntax of the syllable list assignment statement is as follows:

= = [(list-exp)]

where n is a positive integer and e is any FORTRAN integer expression.

The syllable list specified by the left side of the assignment statement is
replaced by the list specified by the list expression, (list-exp) , on the right
side. If the list expression is omitted, the syllable list is defined to be a null
(empty) list; that is, the previous contents of the list are deleted.

• The relational operators are extended for TSOS Interactive FORTRAN
to include list expressions.

Logical expressions for the TSOS Interactive FORTRAN are expressed
as listed in the TOS/TDOS FORTRAN IV Manual (No. 70-00-604) with the
following changes:

Relational operators combined with:

a. Arithmetic expressions whose mode is integer or real; or

b. List expressions.

• A list expression may be compared only with another list expression.
List expressions are evaluated before they are compared (see Evaluation of
List Expressions, on the next page).

• If list expressions are of equal length, comparison proceeds by com­
paring characters in corresponding positions starting from the left-hand end
and continuing until either a pair of unequal characters is encountered or the
right-hand end of the two list expressions is reached, whichever comes first.
The list expressions are determined to be equal when the right-hand end is
reached without encountering any difference.

The first encountered unequal pair of characters is compared for
relative position in the EBCDIC character set. The list expression that
contains the character position higher in this collating sequence is deter­
mined to be the greater list expression.

• If the list expressions are of unequal length, comparison proceeds as
described above. If this process exhausts the characters of the shorter list
expression, then that list expression is determined to be less than the longer
list expression.

3-10

THE SYNTAX
OF LIST

EXPR ESSIONS

Editing Statements

• List expressions consist of concatenations of the following types of
quantities:

1. Literal strings surrounded by quotation marks (")

2. Syllable sublist names (#n[(e)])

3. Independent syllable list names (#nL)

4. The following functions:

a. #SV(e) source value

b. #DM(el, #n [(e2)]) dimension

c. #CH(m,n, (list-exp») characters

d. #PB(#n [(e)]) or #PB (#nL) preserve blanks

In case the list expression appears after a == operator or in response to
a syntax error report, and, if the list expression consists solely of a literal
string not containing quotation marks, leading blanks, or trailing blanks, the
quotation marks may be omitted. If the quotation mark character is to be
included in the literal string, then two quotation marks must be indicated.

#Sv • The function #SV yields the source code character string representation
of the value of an ordinary arithmetic or logical expression.

#OM • The function #DM yields a character string which is the source code
representation of the el th dimension of the array whose name must be the
contents of #n [(e2)] .

#CH • The function #CH yields a character string of length n which includes
the m th through the (m+n-l)th characters of the value of the list expression
(list-exp) .

#Ps • The function #PB yields a character string which is equivalent to the
argument syllable list with blanks preserved.

EVALUATION
OF LIST

EXPR ESSIONS

Literal Strings
Surrounded by

Quotation Marks

A more detailed discussion of these functions is included in the
description of the evaluation of list expressions.

• A list expression is evaluated by the juxtaposition of its component
parts (i.e., without introducing any blanks between the component parts).
The resultant character string is the value of the list expression.

The rules for the evaluation of the component parts are given below.

• The result string consists of the entire literal string which is contained
within the quotation marks. Two consecutive quotation mark characters
within the literal string is interpreted as a single quotation mark character in
the result string at that point.

3-11

Syllable Sublist
Names (#n[(e)])

I ndependent Syllable
List Names (#nL)

#SV(e)

#CH(m,n,
(Iist-exp))

#fB (#n [(e)]
or

#PB (#nL)

DEFINITIONAL
PROGRAMS

Editing Statements

• The result string consists of the contents of that list, with blanks
squeezed out. If the syllable sublist name contents is null the result is also
null.

• Same as for syllable sublist names above.

• The arithmetic or logical expression e, is evaluated. The result string is
the source code character string representation of the value of that
expression. The result string will be output in logical, integer, floating point,
or complex notation as appropriate.

• The result string is the source code representation of the el th

dimension of the array whose name must be the contents of #n [(e2)] .

• Let c = number of characters in the value of (list-exp)

d = min(c,m+n-l)

The result is the m through the dth characters of the value of (list-exp) ,
or is null if m is greater than c.

• The result string consists of the contents of the argument syllable list
including all blanks. Note that the evaluation of syllable sublist names and
independent syllable list names will always result in the blanks being
squeezed out if the #PB function is not used.

• Definitional programs effectively permit arbitrary extensions to the
FORTRAN language in a way which is analogous to the way programmer­
defined macros permit an extension to an assembler language.

A definitional program consists of a #DEFINITION statement, possibly
followed by specification statements, followed by one or more #PATTERN
statements, followed by an editing program, followed by an END statement.

The following schema illustrates this arrangement:

#DEFINITION ...

[Specification statements]

#PATTERN

[#PATTERN statements]

Editing program

RETURN

END

3-12

DESCRIPTION
OF EDITING

STATEMENTS

Editing Statements
#GET

#SAVE

• Following is a detailed description of each of the FORTRAN editing
statements, including its syntax, a description of its function, and examples
of its use where appropriate.

#GET • Format:

#SAVE

#GET (file), [f C'n' l] t X'h' f (file), ...

This statement finds (by using the catalog) the named files on the disc
and reads them into virtual memory. Each file name becomes defined in the
symbol table as a file name and may be referenced subsequently in editing
statements. All names of programs within a file which are read into virtual
memory by the #GET become defined as program names within their
respective files and may be used subsequently in editing statements to
designate the list of statements which they contain.

C'n' or X'h' are password options. In the case that a password is
required to access the named file, it is specified either by C'n' where n is a
1-4 alphanumeric character password, or by X'h' where h is a 1-8 digit
hexadecimal password, depending upon the type of password associated with
the particular file.

If more than one file is in virtual memory and programs with the same
name occur in different files, a unique program may be designated in editing
sta temen ts by qualifying the program as (file) . (prog) ..

Examples

#GETQUIRK

#GET QUIRK, QUARK

#GETC'A4D' PAY

#GET FILE 1.PROGA

When #GET is issued, an OPEN is given, and the file is copied to virtual
memory and then closed.

• Format:

#SAVE [AND DELETE] [{~:~:}]
r{C'n'll
L x'h'fJ

{filel [= ({stmt-setl ,{stmt-setl , ... ~,

{filel [= ({ stmt-setl , ... l] , ...
This statement stores each file named (file) back on the disc, or enters

its name in the catalog and then stores it on the disc if it is not already a
catalog entry. If a (stmt-set) is given, the data to be stored in the file is the
concatenation of the contents of (stmt-set) , (stmt-set), .. , If there was no
file previously cataloged by the name (file) , and no (stmt-set) is given, then a
new file is cataloged and the entire contents of the current se~sion are
#SAVE'd in the file. The #SAVE statement does not serve to name or create
a file in virtual memory. The password options C'n' or X'h' are as described
in #GET.

3-13

#SAVE
(Cont'd)

#UNSAVE

#PREFIX

#DELETE

Editing Statements
#SAVE

#UNSAVE
#PREFIX

#DELETE

The file (or the statement sets) remains unaltered in virtual memory
unless the AND DELETE option is written. In this case statement sets are
deleted from virtual memory as if they had been specified by a #DELETE
statement.

Examples

#SAVE

#SAVE

TIME,HIGH

GLOB = (TIME (&10-10.12,16.1),QUE)

• Format:

#UNSA VE (file), (file) , ...

This statement causes the files named to be deleted from the catalog
and from the disc. It does not affect virtual memory.

• Format:

#PREFIX [(file prefix)]

This statement causes the interpreter to remember the (file prefix) and
to prefix it to any file names mentioned subsequently in editing statements.

The (file prefix) has one of the following forms:

(identifier)

(identifier). (identifier). (identifier)

For example, if the two editing statements

#PREFIXA

#GETB

were executed, then the effect would be to get the file A.B.

A #PREFIX with no (file prefix) serves to cancel the last previous
#PREFIX statement.

• Format:

#DELETE [(stmt-set) , (stmt-set) , ...]

This statement causes the specified statement sets to be deleted from
virtual memory. The symbol tables of any program which are completely
deleted by the statement are forgotten. (See the #FORGET statement.) The
names of any lists, programs, or files which are completely deleted are also
forgotten.

The line numbers of material which has not been deleted are not
affected.

A #DELETE with no statement sets means delete the unnamed or only
file.

3-14

#MOVE

#INSERT

Entering a New File
from the Terminal

• Format:

Editing Statements
#MOVE

#INSERT

#MOVE [BEFORE] (place) = ((stmt-set) , (stmt-set) , ...),

[BEFORE] (place) = ((stmt-set), ...) ...

This statement causes the information contained in the statement sets
on each right-hand side to be copied after (or before, if the optional
BEFORE is written) the information contained in the corresponding
statement or list designated by (place) , after which the original copies of the
statement sets are deleted as described under the #DELETE statement.

• This statement may be used at a terminal to enter a new file or to insert
or change statements in an existing file (for making changes or corrections).
It may also be executed as part of a stored program. These uses are discussed
separately below.

• When the interpreter is expecting to execute a statement from the
terminal (Le., is in the immediate execution mode), the #INSERT statement
may be used to name and prepare for the entering, checking, and storing of a
program file from the terminal. The simplest form of the #INSERT to use in
this case is:

If the file (named or unnamed, as the case may be) is empty, the system
will then print the line:

I FILE IS EMPTY I
and the first line number:

If the file is not empty, the system responds with the line:

I LAST LINE IS 336 I
and the next available line number:

1337.1

A previously typed line may be corrected by retyping the line number
and the new line. Lines are inserted in the file in order by line numbers.
Thus, an insertion between two previously stored line numbers may be made
by simply entering a line number intermediate between the line numbers of
the previously typed lines. A previously typed line may be deleted from the
file by typing only the line number followed by an end-of-transmission
character (ETX).

If the automatic line number and increment must be changed
temporarily, an @ symbol followed by another line number and paren­
thesized increment will save the old line number, and start prompting with
the new one. To use the old automatic line number and increment, an @
symbol followed by an ETX is given.

3-15

Entering a New File
from the Terminal

(Cont'd)

Editing Statements
#INSERT

If a new line number and increment is to be used and the old one not
retained, the statement is given as:

@SET (line-no) [(increment)]

For a complete description of these commands, see "Line Number
Commands" on page 2-4. A line number may be rejected by sending a null
line (i.e., sending only an end-of transmission character). If this is done,
automatic line number generation is suppressed and the system enters the
immediate execution mode; i.e., it executes immediately any statement given
to it without a line number. Thus, side computations or editing operations
may be performed while constructing the program. In order to return to
INSERT mode, a null line is again sent.

The end of the statements to be stored in the file may be indicated by
an #END statement given without a line number, in the immediate
execution mode.

The following example illustrates the procedure. The lower case phrases
and sentences are comments on the procedure and would not appear on the
terminal listing.

Example

* I #INSERT

FILE IS EMPTY I

1. @ SET 100 (1)

100. X = 2.5

101. Y = 3.7

102. A = A+X

103. B =

- 104. A+Y

105. C = 3.7

106. ETX I <NULL> j

* #DELETE 102

* ETX r <NULL>

106. C THIS IS A COMMENT.

i
Printed by system not user.

3-16

RETURN character sent
for continuation.

No spaces before ETX.
ETX sends user to desk
calculator mode. Second
ETX sends user back to
insert mode.

Changing:1'" Existing
File from the Terminal

Syntax Checking
and Statement

Reformatting

Editing Statements
#INSERT

• The procedure for making insertions or changes to a file that already
exists in virtual memory is very similar to entering a new file. The main
differences are that qne may specify a (place' where an insertion is to be
made and that the system responds to the #INSERT by informing the user
of the existing line numbers in the vicinity of the designated (place' .

Example

#INSERT BEFORE LACK (&10)

BETWEEN LINES 210.2 AND 211

210.3 x = 22.2

210.4 Y = 26.1

210.5 Z = 20.

210.6 ETX

* #END

Example

* #INSERT ALPHA

LAST LINE IS 662.01

66~.02

662.03

STOP

END

662.04 ETX <NULL>

L:J#END

~ Printed by system
not user

~ Printed by system
not user.

• When a program is initially being entered at the terminal, it is normally
checked for executability by the interactive system. This check is carried out
by also building a symbol table and checking for consistency in the use of
names. In order to change this normal mode, the following control options
are allowed on the #INSERT statement:

[
{

AND [COMPILER] [SYNTAX]} CHECK] [BEFORE] [(place']
WITHOUT

DATA

3-17

Syntax Checking
and Statement

Reformatting
(Cont'd)

Syntax Checking

Error Reporting

Editing Statements
#INSERT

The checking options are the same as the options available with the
following statement:

[COMPILER] [SYNTAX] CHECK ...

If corrections to an already existing program are being inserted from
the terminal, the symbol table is not normally completed for that program
and, in that case, the checking is done without reference to a symbol table
(corresponding to the SYNTAX CHECK option).

• When a statement is entered in the desk calculator mode, or in the
insert mode with a specific request for syntax checking, such checking is
done by the system and any errors detected are reported, one at a time. That
is, if one or more errors are detected in a statement, the user is notified of
the first and given a chance to correct it, then he is notified of the next
error, and so on. A number of possible responses are acceptable to the
system and will be described below.

• If a syntax error is detected by the TSOS Interactive FORTRAN
System when a statement is entered, a question mark is typed at the extreme
left of the next line, and the syllable Jist name #1 becomes defined to be
that syllable or character which was being examined when the error was
detected (as if it has been located by a #FIND statement).

If the user cannot determine what the error is, he may respond with a
? followed by ETX, whereupon the system types on the next line another
? directly under (or as close as possible to) the syllable in error and then
skips to the next line.

For further information, the user may again respond with ?ETX in
which case the system types a diagnostic message on the next line followed
by. another ? on the following line. Further responses of ? by the user
merely result in a repetition of the error message and final ?

Example

27. READ(97,IO)A,
~----------------~

? ?ETX

?

?ETX

IDENTIFIER EXPECTED

L?J

3-18

Error Reporting
(Cont'd)

Error Correction

Editing Statements
#INSERT

Corrective procedures may be invoked at any time immediately after
the system responds with any of its question marks, as described in the next
section below.

In some cases, the line containing the error is reprinted before the
second ? is typed by the system. This occurs when the line containing the
error is not the last one typed (e.g., the error occurs in the second of three
continued lines), or if there is more than one error in the line and a
correction changes its original content. When the line is reprinted it contains
a * in place of the decimal point in the line number, to indicate to the
user that this is a line typed back by the system, and not the original line
typed by the user.

Example

29. I A=B++(C+D
.----------~

? extra plus sign deleted by user

? ?ETX

29*0000 A=B+(C+D
?

The provisions for making the deletion indicated in the example and
other facilities for correcting errors are described next.

• When a syntax error is reported as described above, the user has four
options which he may exercise at any stage immediately following the
receipt of a ? from the system.

I . Ignoring the error

If for any reason the user wishes to ignore the error and continue
processing he simply types # (followed by ETX). The system
responds with the next line number (in insert mode, or with *
in desk calculator mode). Note that in this case if there is more
than one error in the line of text, all remaining ones are also
ignored and are not even reported to the user.

2. Deleting the erroneous syllable

To delete the syllable in question, the user types the backspace
character _ (shift-O on the teletype) followed by ETX.

3-19

Error Correction
(Cont'd)

Editing Statements
#1NSERT

3. Replacing the erroneous syllable

To replace the syllable in question with a correct one the user
simply types in the new syllable (followed by ETX) immediately
following the system's ? Note that in this case the backspace
character, if it appears, is considered part of the replacement text
and does not serve to delete the preceding character. Alternatively,
a syllable list assignment statement may be used to change a
syllable in the vicinity of the syllable in question (relative to #1).

4. Making side computations

If the error occurs in the insert mode, the user may enter the desk
calculator mode in order to make side computations before
applying the correction, by typing a null message (ETX alone).
Another null message, in the desk calculator mode, returns him to
the insert mode so that he may then make the correction based on
this side computation.

In cases 2 and 3 above, it should be noted that the system always
applies the correction to the syllable to which the second ? printed by the
system is pointing. In a few cases this is not necessarily the syllable which
the user expects. Thus caution is in order in applying such corrections to
avoid unexpected results.

Example

5. I A=B++C

? ?ETX

?j

l#ETX

6. I IF (A .GT. B)) 46

? ?ETX

l?ETX

TOO MANY RIGHT PARENTHESESI

? ETX

? ?ETX

6*0000 IF (A .GT. B) 46

?

BAD 'THEN' CLAUSE IN LOGICAL 'IF' I
? GO TO 46 ETX

7. J

3-20

Reformatting of
Statements and

Entering Data

Use of #INSERT
to Copy Statements

#REPLACE

Editing Statements
#INSERT

#REPLACE

• When program statements are entered with the #INSER T, they are
automatically reformatted to obey the column conventions required by the
background compiler so that an indexed sequential file entered from a
terminal can be compiled; i.e., statement numbers are put in column
positions 1-5, continuation marks in column 6, and END statements in
columns 7-9. If this reformatting is to be avoided, then the DATA option of
the #INSERT must be used.

• The information being inserted may also be contained in a file in virtual
memory. There are two cases: (1) the statements (to be inserted)
immediately follow the #INSERT, or (2) they exist elsewhere in the files in
virtual memory. In the first case, the statements to be inserted are followed
by an #END statement which marks their extent. The following example
shows how such an #INSERT might itself be inserted in a program file:

* #INSERT PROG (&10)

BETWEEN 271 AND 272

271.1 #INSERT PROG (&40)

271.2 X= 2.

271.3 Y= 3.
This is stored.

271.4 #END

271.5 ETX

* #END This is executed.

In the case that the statements to be inserted exist elsewhere in virtual
memory, the format of #INSERT to be used is as follows:

#INSERT [<check)] [BEFORE] <place) = «stmt-set), ...) ,

[BEFORE] < place) = « stmt-set) , ...) ...

The effect of this statement is to copy the statements on each right­
hand side after (or before) the statement(s) designated by the corresponding
< place) .

In these cases, no checking occurs unless it is explicitly asked for by
including some form of the < check) which has the following syntax:

AND [COMPILER] [SYNTAX] CHECK

• This statement has the same syntax as #INSER T except that wherever
<place) is legal in #INSERT, <stmt-list) is legal in #REPLACE and the
optional BEFORE is not allowed.

The effect is that the < stmt-list) is replaced by the new information.

3-21

#NUMBER

#ORDER

• Format:

Editing Statements
#NUMBER

#ORDER

#NUMBER (stmt-list) [==(number) [,(increment)])] ,

(stmt-list) [==(number) [,(increment)])]

This statement causes new line numbers to be formed for each
(stmt-list) mentioned. If a line number is given, the line numbers of the
statements are:

(number)

(number) + (increment)

(number) + 2(increment»)

Both (number) and (increment) may be arbitrary arithmetic
expressions. If the (increment) is omitted, it is assumed to be 1.

If the line number is omitted and the (stmt-list) is a sublist of some file,
then the line numbers are spread uniformly over the available gap in line
numbers previously occupied by the (stmt-list); (i.e., as if it had just been
inserted in the file). If, however, the (stmt-list) is a complete file, then it is
numbered starting at 100 with an increment of one.

• Format:

#ORDER (name), (name), ...

This statement rearranges certain non-executable statements in one or
more programs into the required sequence for execution. The (name) 's may
be program names or file names. If a file name is specified, then each
program in the file will be rearranged separately.

The required order of statements for execution is:

l. FUNCTION, SUBROUTINE, BLOCK DATA, #DEFINITION, or
PROGRAM.

2. IMPLICIT

3. ABNORMAL

4. EXTERNAL

5. Explicit type

6. DIMENSION

7. COMMON

3-22

#ORDER
(Cont'd)

#PREP

#CHECK

#NAME

8. EQUIV ALENCE

9. DATA

10. #PATTERN

11. Statement function definitions

12. Any other statements

13. END

• Format:

#PREP (stmt-set) , (stmt-set) , ...

Editing Statements
#ORDER

#PREP
#CHECK
#NAME

This command searches the specified (stm t-set) 's and deletes any
editing or debugging statements which they contain.

• Format:

#[COMPILER] [SYNTAX] CHECK [AND PRINT] (stmt-set) ,

(stmt-set) , ...

This statement causes the statements in the designated statement sets to
be checked for legality for the Interactive FORTRAN System or for the
background compiler (if optional COMPILER is written).

If the optional SYNTAX is written, then each statement is checked by
itself without reference to a symbol table; otherwise, the appropriate symbol
table is used for each statement to check for consistent use of identifiers and
statement numbers.

Normally, the errors are reported conversationally at the terminal in the
same manner as described for the #INSERT statement, except that the line
containing the error must first be typed before the mark can be typed. If the
optional AND PRINT is written, however, full error comments are printed
off-line.

• Format:

#NAME f:ide?t) t (s)trnt -list) I , (ident) [: (strnt -list) I ,...) , ...
\!Ile , fIle , ...

The first form of this statement assigns each (ident) as the name of the
corresponding (stmt-list) (the list itself is not moved or copied). If there is no
(stmt-list), then the (ident) is defined to be the name of an empty file in
virtual memory. An (ident) is a 1-6 character FORTRAN identifier.

The second form of this statement causes an empty file to be created in
virtual memory having the name (file) , where (file) is a file name conforming
to the standard TSOS naming conventions.

3-23

#FORGET

#REFER

#IN

#FIND

• Format:

#FORGET
{

(qualifier) }
(qualifier) ({ ident) , ...)

Editing Statements
#FORGET

#REFER

#IN
#FIND

, ...

This statement is used to remove all entries in the symbol table for a
(qualifier) (a program, subprogram, or COMMON block), or only those
identifiers listed in parentheses after the (qualifier) .

• Format:

#REFER ~ qualifier) [(<jdent) , (ident) , ...) 1]
, [(qualifier) [({ ident) , (ident) , ...)]] , ...

This statement changes (usually temporarily) the symbol table which is
used to interpret references to variables in subsequent statements. If
#TABLE (with no further specifications) is executed, it means "use the
symbol table of this program"; i.e., revert to the symbol table of this
program for interpretation of all identifiers.

If some additional specification is given, it means interpret all or some
of the identifiers in following statements according to the symbol table of .
some other program or COMMON block. The (qualifier) is either a program
or subprogram name or the name of a COMMON block. If specific identifiers
are listed in parentheses, it means to interpret only those variables as
belonging to (qualifier) .

A frequent use for this statement occurs when it is desired to refer to
variables within some program or subprogram from the direct program; i.e.,
from the desk calculator program which is immediately executed from the
terminal.

• Format:

#IN (stmt-set) , (stmt-set) , ...

This phrase directs the attention of the interpreter to the particular sets
of statements specified by the (stmt-set) 'so It is usually used as an
introductory phrase to the #FIND, #EDIT, or #EXPAND statements, to
select those statements to be found, edited, or expanded. This phrase may
also appear as a statement by itself.

• Format:

[

(#IN-stmt)] #FIND (search-exp) [=={ list-exp) 1

#A T (rel-p;ace) ,

3-24

#FIND
(Cont'dj

#EDIT

#DEFINITION

Editing Statements
#FIND
#EDIT

#DEFINITION

The #FIND statement locates the next instance of a specified list of
syllables within the statements specified and optionally changes that string
of syllables. The #FIND statement causes the statement sets specified by the
#IN statement (if an #IN statement is prefixed or just previously executed)
to be searched starting at the beginning; or at a place determined by a
previous #FIND; or at (reI-place), which is a relative syllable or relative
statement position, i.e., is #n [(e)] or #Sn [(e)]. Each statement is
examined, left to right, to find the first syllable list within it which satisfies
the conditions specified by the search expression, (search-exp). When the
first matching syllable list is found, it is replaced by a list which is specified
by the list expression, (list-exp), on the right of the double equal sign. If
there is no double equal sign, then the only effect of the #FIND is to
possibly define one or more of the special syllable list variables #1, #2, ...
and to advance the current position in the statement sets defined by the
previous #IN.

If a #FIND statement has located at least one occurrence of the
(search-exp), then the special logical variable #FOUND is set to .TRUE.;
otherwise, it is set to .F ALSE.. Thus, the success of the search can be
subsequently tested with a FORTRAN logical IF; e.g.,

IF (#FOUND) GO TO 20

• Format:

[
(#IN-stmt)]

' #EDIT(search-exp) == (list-exp)
#AT (reI-place) ,

The #EDIT statement is very similar to #FIND except that it finds and
changes all instances of a specified string of syllables within the specified
statements. The search procedure described under #FIND is similar except
that it continues in #EDIT immediately following the (modified)
(search-exp) to search for another matching syllable list. This search
continues until the end of the statement sets has been reached. The special
logical variable #FOUND is set for #EDIT exactly as described under
#FIND.

• Format:

#DEFINITION (def-name) [(arg) , (arg) , ...)]

This statement introduces a definitional program. The (def-name) is the
name of the definitional program and may be used to reference it in
#EXPAND statements in other programs (or from the terminal). The list of
(arg) 's contains dummy arguments which must be passed by the #EXPAND
statements. There need not be any arguments; in which case, the parentheses
are also omitted.

3-25

#PATTERN

#EXPAND

• Format:

#P A TTERN (search-exp) / / (stmt-no)

Editing Statements
#PATTERN

#EXPAND

The #PATTERN statement defines a special type of program, a
definitional program which, when referenced by an #EXPAND statement,
may cause extensive systematic editing of statement sets. #PATTERN
defines a pattern which is to be searched for in the statement sets being
expanded by the just previously executed #EXPAND statement. When the
pattern is found, control passes to the statement whose number is (stmt-no) .
Syllable list variables may be defined within the (search-exp) as if it had
occurred within a #FIND statement. The program starting at (stmt-no) is
normally an editing program which will make some change in the program
being expanded. Execution of a RETURN statement will cause the searching
process to continue immediately after the pattern which was located by the
(search-exp) .

If it is desired to change the place of continuation of the search, then
the special pointer variable, #SEARCH is set equal to some special list or
relative list; i.e.,

#SEARCH = #n[(e)]

just before the RETURN.

This causes the search to continue the expansion starting at the syllable
designated by #n[(e)].

• Format:

[(#IN-stmt) ,] #EXPAND (def-name) [(arg) , ... , (arg»)]

This statement causes the statement sets designated by the attached (or
just previously executed) #IN statement to be expanded by the definitional
program (def-name) . The actual arguments (arg) , ... , (arg) are passed to the
definitional program by the #EXPAND. The definitional program must be in
virtual memory at the time the #EXPAND is executed.

3-26

4. DEBUGGING
STATEMENTS

INTRODUCTION • The statements described in this section provide the debugging tools of
the TSOS Interactive FORTRAN System. They provide means for:

1. Displaying the values of variables of the program.

2. Displaying selected variables when they are changed.

3. Checkpointing the program and continuing and then later
resuming at the previous checkpoint.

4. Branching to another program whenever certain variables are
changed.

5. Printing a list of all statements of a subprogram which have (have
not) been executed during the test.

6. Displaying the present call structure of the programs.

These debugging statements may be written into a program which is to
be subsequently executed under the TSOS Interactive FORTRAN System,
or they may be issued from the terminal in the desk calculator mode. There
is an editing statement, #PREP, which assists the user in preparing a program
or file for the TSOS background compiler. One of the functions of this
command is to remove all debugging and editing statements.

The TSOS Interactive FORTRAN System provides a special identifier
#STEP The value of this integer variable reflects the current computational
step. This value is incremented before each statement is interpreted.

The computational step number applies to the entire program and is
never reset except at the start of a session. The following statements do not
affect the step number:

FORMAT

NAMELIST

DATA

BLOCK DATA

ENTRY

SUBROUTINE

FUNCTION

END

PROGRAM

Specification statements

CONTINUE

All other statements cause the step number to be incremented by 1.

4-1

INTRODUCTION
(Cont'd)

DESCRIPTIONS
OF DEBUGGING

STATEMENTS

#DISPLAY

Form 1

Form 2

Debugging Statements
#DISPLAY

In the following discussion, (spec-list) is a string of characters of the
following form:

/x/a,b, ...

where:

x is a subprogram, program, or COMMON name,

and

a, b, ... are variable names within x.

• This section describes each of the debugging statements of the TSOS
Interactive FORTRAN System, including its syntax and a description of its
function.

• Format:

#DISPLA Y (what to print)

This statement displays, at the terminal, information about programs in
virtual memory that are being executed. The formats of (what to print) are
listed below.

Note:

In the description of the forms,

the b's represerit block names, program names, or subprogram names;

c,d,e,f, . .. represent identifiers or statement numbers, whichever is
appropriate, within the specified COMMON block or program; and

"exp" represents an arithmetic expression.

• VAR ~NOT] CHANGED [SINCE (exP)D [(fbi [c,d, ...]

/b/[e,f ...] ...)]

This statement prints the values of variables or arrays. Either the
changed (since computational step "exp") or unchanged variables can be
printed. In any case, the quantities to be printed are selected from the list
supplied within parentheses. If no identifiers are listed for a given qualifier
(block-name, program name, etc.) it means all the variables associated with
that qualifier.

• STMT [ID] [[NOT]

[< stmt-set) , ...]

{
CHANGED } [SINCE (exp) ~
EXECUTED

This sTatement pnnts statement sets or only the line numbers and
statement numbers of selected statements within the statement sets. It can
be specified that only statements which have been changed by editing
statements or only those not changed, or only those statements (not)
executed are to be printed. The SINCE clause permits a more specific
meaning to be given to "CHANGED" or "EXECUTED".

4-2

Form 3

Form 4

Form 5

Form 6

Form 7

FormB

Form 9

Debugging Statements
#DISPLAY

• VAR XREF [[NOT] CHANGED [SINCE (exp)]] [Ubi [c,d, ...]

Ibl [e,f ...] . ·0·)]

This statement generates cross reference tables for identifiers; that is,
lists of every statement that mentions each selected identifier.

• STMT XREF [[NOT] {EXECUTED} [SINCE (exp)]] [(fbi [c,d, ...]
CHANGED

Ibl [e,f ...] ...)]

This statement causes the generation of cross reference tables for
statement numbers; i.e., lists of line numbers and statement labels that
contain references to each selected statement number.

• {
VAR } TABLE [(b,b ...)]
STMT

This statement causes the printing of either the variables or the
statement numbers present in selected programs.

• BRANCHES [[NOT] EXECUTED [SINCE (exp)]] [(b,b, ...)]

This statement generates selected lists of the branches of each program
along with indications of which alternatives have actually been exercised
(since computational step "exp").

• LINKAGE

This statement displays the current subroutine linkage. This includes:

I . The name of the current subprogram and the line number of the
current line being executed.

2. The name of the calling program and the line number from which
the CALL or reference was invoked.

3. Similarly for all other calling programs to the top level program.

• CHANGES [OFF] [(fbi [c,d, ...] Ibl [e,f ...] ...)

This statement prints the value of a selected variable each time it
changes during execution. (A variable is considered to have changed
whenever a value is stored in it, even if the new value is identical to the old.)
The statement remains in effect until cancelled by a corresponding statement
using the OFF option.

• PROGRAM NAMES [C file-name) , (file-name) , ...]

This statement prints the name of each program in the files named, and
the line numbers of the first and last statements in each program~ If no
(file-name) is specified, the unnamed or only file is assumed.

4-3

#PRINT

#WHEN

• Fonnat:

#PRINT (what to print)

Debugging Statements
#PRINT

#WHEN

This statement prints off-line, information about programs in virtual
memory that are being executed. The specification (what to print) is
identical to that of #DISPLA Y including all of the same forms and options
as described in detail under the #DISPLA Y description.

• Format:

#WHEN (e) S

where:

e is a logical expression and S is an executable statement (except DO, a
logical IF, or another #WHEN).

Execution of the #WHEN statement causes the logical expression e to
be evaluated between each statement which is processed by the interpreter.
The statement S is then executed if the logical expression e yields a TRUE
value.

The scope of a #WHEN statement is that program or subprogram
within which it is written. That is, all #WHEN statements which are active in
a program are temporarily disabled during the execution of any subordinate
subprograms and re-enabled when control is returned to the calling program.

If the statement S causes a transfer of control (other than CALL or a
function reference) then that transfer point must be within the same sub­
program and control must be returned to the interpreter by means of a
#RETURN statement. All #WHEN statements are disabled until after the
#RETURN has been executed.

Example

Line No. Stmt. No. Statement

100. A=3.

101. CALL B(A)

102. STOP

103. END
104. SUBROUTINE B(A)

105. #WHEN (A=5.) GO TO 30

106. C=D

107. #WHEN (1=2) GO TO 40

108. D=E

109. A=5.
110. B=6.
111. RETURN
112. 30 #DISPLAY LINKAGE
113. 40 A=O.
114. #RETURN
115. END

4-4

#WHEN
(Cont'd)

#RETURN

#TURN OFF

#TRACE

#NO TRACE

#CHECKPOINT

Debugging Statements
#WHEN #TRACE

#RETURN #NO TRACE
#TURN OFF #CHECKPOINT

Explanation

The scope of the first #WHEN is lines 106-111; that of the second, lines
108-111. At line 101 the subroutine B is called, causing the execution of line
105 which enables the first #WHEN. At line 107 the second #WHEN is
enabled. At line 109 the first #WHEN is satisfied, whereupon control goes to
statement 30 (line 112) as specified by that #WHEN. Since satisfaction of
the #WHEN causes a transfer of control (to statement 30), both #WHEN's
are temporarily disabled during the execution of lines 112-114. The
#RETURN at line 114 re-enables the #WHEN's and returns control to line
110. The RETURN at line 111 disables both #WHEN's (permanently in this
example, since there are no further calls on B) and returns control to the
main program at line 102.

• This statement returns control to the interpreter, after a transfer to a
subprogram from a #WHEN statement, reactivating the #WHEN.

• Format:

#TURN OFF (end-pt)

where:

(end-pt) is as described on pages 3-1 and 3-2, and specifies a #WHEN
statement. A diagnostic results otherwise.

This statement disables the specified #WHEN statement. The #WHEN
statement remains disabled until it is executed again.

• This statement turns the trace mode on. The output of the trace mode
consists of the line number of each statement which causes a transfer of
control and the statement number to which the control is given, in the
program or subprogram in which the trace is active.

The scope of the #TRACE statement is the same as for the #WHEN
statement.

• This statement turns off the trace mode for the program or subprogram
in which the statement is executed.

• Format:

#CHECKPOINT (f)

where:

f is a file name.

This statement causes a checkpoint to be taken on the file designated
by f.

4-5

#RESTART

#EXECUTE

#PROCEED

#HALT

• Format:

#RESTART (f)

where:

Debugging Statements
#RESTART
#EXECUTE

#PROCEED
#HALT

f is the name of a file which contains a checkpoint.

This statement restarts the program after the point of the checkpoint
contained on file f.

• Format:

#EXECUTE (stmt-list>

This statement causes the statements in (stmt-list> to be executed; that
is, it effectively causes a transfer of control to the first statement of the
(stmt-list> and terminates the execution after the last statement in the
(stmt-list> has been executed for the first time.

This statement may be used to execute a main program, or a BLOCK
DATA subprogram. The latter causes initialization of named COMMON's.
Then, if the file starts with a main program, that main program is executed.

During debugging, a small section of any program or subprogram may
be executed by the use of this statement.

Notice that there already exists a way of causing a subroutine or
function subprogram to be called while passing parameters; i.e., the CALL
statement and the function reference.

• This statement is executed only at the terminal. It causes the Inter­
active FORTRAN System to resume computations at the point where it was
when interrupted by a "break sequence", in order to examine variables, to
make side computations, or to make changes by executing direct statements
at the terminal.

• This statement terminates an individual user's current session of the
TSOS Interactive FORTRAN System and returns control to the TSOS
Executive System.

The system prompts the user in order to notify him that the file(s)
currently in virtual memory must be #SA VE' d. The files must be saved if he
is to retain their content (perhaps edited or updated) before executing the
#HALT which would erase them from virtual memory.

4-6

APPENDIX A

SUMMARY
OF EDITING

COMMANDS

Commands Entities Specials

#INSERT files
#REPLACE programs
#NUMBER COMMON blocks
#GET statement lists
#SAVE statement sets
#PREP
#NAME
#PREFIX
#UNSAVE
#CHECK
#ORDER
#MOVE
#DELETE

#FIND syllables #FOUND
#EDIT syllable sets #SEARCH

syllable lists
consecutive character strings
search expressions

#AT relative statement or
syllable position

#IN statement sets

#FORGET symbol
#REFER programs

subprograms
COMMON blocks

#DEFINITION definition name
#PATTERN statement numbers
#EXPAND syllable

and others [e.g., search
expressions (see #F I N D)]

Note:

All commands in a group do not necessarily apply to all entities in a corresponding group.

A-I

APPENDIX B

DESCRIPTION
OF SYNTACTI­

CAL UNITS

Entity

name

(file)

(list-name)

(integer)

(line-no)

(stmt-no)

(end-pt)

(place)

(range)

(stmt-set)

(stmt-list)

Description

program or file name

file name

name

list of statements defined by a #NAME

a 1-4 digit unsigned integer

line number of 1st line of statement

a 1-5 digit FORTRAN statement number

selects a single statement from (list-name)

(line-no)

& (stmt-no)
(list-name)

a statement located by a #F I N D
#S (integer) [(!exp»)]

(list-name)

(list-name) ((end-pt))

((end-pt»)

extracts a list of consecutive statements

(end-pt)

(end-pt) - (end-pt)

(end-pt) -

- (end-pt)

(list-name)

(list-name) ((range), (range), ... ,(range»)

(list-name) - ((range), (range), ... , (range»)

((range), (range) , ... , (range»)
-((range), (range), ... , (range»)

(list-name)
(list-name) ((range»)
((range»)

B-1

LIST NAMES

Global List Name

File Name

Program Name

Global List Name
Ambiguities

Appendix B

• A (list-name) is a mnemonic name which may be used to address either
a file or possibly one or more statements contained in a file. A (list-name) is
either a global list name or a local list name. A local list name may only be
referenced within the program unit* in which it has been previously defined,
while a global list name may be referenced by any program unit in the task.

• A global list name is a file name or a program name, where a program
name is the name of a main program, the name of a subprogram (including
#DEFINITION), or an ENTRY name.

• A file name is unique among all global list names in the task. The file
name addresses all statements which that file contains. A file name may only
be introduced into the task as the result of the execution of one of the
following statements:

1. #GET

2. #INSERT

3. #NAMEA,C

(i.e., the #NAME statement without the optional (stmt-list))

4. #SAVE

An explicit file name does not exist for the unnamed file.

• A program name is unique within the file in which it is stored.
However, program names, within the above mentioned constraint, need not
be unique. The program name addresses all statements in that program
including the initial statement (PROGRAM, SUBROUTINE, FUNCTION,
#DEFINITION) and the END statement. In the case of an ENTRY name the
program name addresses only the ENTRY statement. A program name may
only be introduced into the task as the result of the execution of one of the
following statements:

1. #GET

2. #INSERT

An explicit program name does not exist in the source code representa­
tion for a BLOCK DATA subprogram; however, the interpreter assigns a
name of the form #Bnn to each BLOCK DATA subprogram, where nn is 01
for the first BLOCK DATA subprogram encountered, 02 for the second, etc.

• If more than one named file is in virtual memory and the same program
name appears in different files, then in editing statements, a unique program
name may be designated by qualifying the program name with the file name
as (file) . (prog) . If a prefix is active at the time this sequence is interpreted
(see #PREFIX statement), then that prefix is applied to (file) .

The syntax of several statements specifies, among other things, either a
file name or a program name. In these cases ambiguities may result.

*A program unit will refer to a main program, a subprogram, or to a sequence of statements being
executed in the desk calculator mode.

B-2

Global List Name
Ambiguities

(Cont'd)

Local List Name

Appendix B

Example

#PREFIXA

#GET B

Establish the active prefix as A.

Read file A.B into virtual memory (suppose file A.B
contains programs B and C).

#INSERT B

In the above example, it is not clear whether the file A.B or the
program B which is contained in file A.B is to be referenced. In all such
cases, the ambiguities are resolved by the following convention. The
specified name, prefixed where appropriate, is first checked as a file name,
then as a (file> . (prog> name, and finally as a program name. The item which
is first matched under this scheme is considered to be the referenced item.
(Thus, the reference in the above example is to the file A.B.) The following
algorithm specifies this procedure more precisely.

Let B be the specified name (e.g., A or A.B).

Let C be the specified name preceded by the active prefix, if any (e.g.,
P.A or P.A.B).

then,

1 . If C is the name of a file name entry in the symbol table, then that
file is addressed; otherwise

2. If B contains at least one period and, in addition,

2.1 If D is a program name which is contained in file E, then that pro­
gram (D) is addressed, where D is the rightmost name in C and E is
the string of characters in C up to, but not including, the period
which immediately precedes D.

2.2 If D is not a program name which is contained in file E, then the
reference is undefined.

3. If B does not contain at least one period, and

3.1 If B is a unique program name, then that program (B) is addressed.

3.2 If B is not a unique program name, either because it is undefined
or because it is multiply defined, then that reference is either
undefined or multiply defined, respectively.

• A local list name may only be defined in a program unit as the result of
the execution of a #NAME statement. The local list name addresses those
statements which are contained in the (stmt-list> (see #NAME). The local list
name may only be referenced in the program unit in which it is defined. This
is not to say that the lines, so addressed, cannot be referenced from a
different program unit since they may also be referenced via some other
local name, by a global name, or a line number, etc.

B-3

Using (list-name)
to Address
Statements

Preliminary Definitions

Appendix B

• It is possible to address a list of consecutive statements which perhaps
may not have been explicitly named or to address a place in a file or a set of
(not necessarily consecutive) statements. This is accomplished by the
specification of certain combinations of list names, line numbers, or
statement numbers. Explicit syntax rules for these constructs are given in the
following sections.

• The (end-pt) selects one or more statements out of the (list-name) with
which it is associated (see (place), (stmt-list), (stmt-set»). The forms for
(end-pt) are:

1. (line-no)

2. & (stmt-no)

3. (list-name)

4. #S(integer) [(exp)]

where:

(line-no) represents the line number of the first line of a statement and is
an integer (1-4 digits) possibly followed by a fractional part (0-4 digits
preceded by decimal point);
(stmt-no) represents a (1-5 digit) FORTRAN statement number;
Form 3 may be any (list-name) except a file name; and
Form 4 addresses a single statement.

In all cases, the statement or statements which are addressed by
(end-pt) must be completely contained in the associated (list-name). A
diagnostic will be given otherwise.

Forms 1, 2, and 4 are used to address a single statement while form 3
may address more than one statement.

• The (range) is similar to (end-pt) in the sense that it is used to extract
one or more consecutive statements from an associated (list-name). (See
(stmt-list), (stmt-set). However, (range) is more general. (range) has the
following forms:

1. (end-pt)

2. (end-pt-1) - (end-pt-2)

3. (end-pt) -

4. - (end-pt)

Form 1 addresses all statements contained in (end-pt) ;

Form 2 addresses the statements from the first statement in (end-pt-1)
through the last statement in (end-pt-2) ;

Form 3 addresses the statements from the first statement in ,(end-pt)
through the last statement in the associated (list-name) ; and

Form 4 addresses the statements from the first statement in (list­
name) through the last statement in (end-pt) .

B-4

(range>

(Cont'd)

(place>

[BEFORE] (place>

(stmt-list>

(stmt-set>

Appendix B

Since (range> is specified in terms of (end-pt>, the statement or state­
ments which are addressed by (range> must be completely contained in the
associated (list-name> .

• (place> selects a list of consecutive lines in a file. (place> is always used
in a context which permits the optional word BEFORE to be specified:

• If the optional BEFORE is omitted, the place specifies the position in
the file which immediately follows the last (or only) selected line.

If BEFORE is written, (place> specifies the position in the file which
immediately precedes the first (or only) selected line.

(place> may take one of the following forms;

I . (list-name>

2. [(list-name>] (end-pt»

In form 2, if the optional (list-name> is omitted, then a (list-name> is
assumed according to the following rules. If there is more than one file in
virtual memory, then the unnamed file is assumed. If there is only one file in
virtual memory, then that file is assumed. In either case the line(s) specified
by the (end-pt> must be a subset of the line(s) specified by the (list-name> .

• (stmt-list> is used to select a list of one or more consecutive statements
and has the following forms:

1. (list-name>

2. [(list-name>] (range»

If the optional (list-name> is omitted from form 2 then a (list-name> is
assumed according to the rules given above (see "[BEFORE] (place>").

Form I addresses the statements contained in (list-name> and Form 2
extracts that list of consecutive statements which are addressed by (range>
from the list of statements addressed by (list-name> .

• Many of the editing statements operate on specified sets of statements
which are not necessarily consecutive. The (stmt-set> is the construct which
is used to address such sets of statements. Its forms are:

1. (list-name>

2. [(list-name>] (range> [,(range>] ...)

3. [(list -name>] -(range> [,(range>] ...)

Form I addresses the statements contained in (list-name> .

In forms 2 and 3, if the optional (list-name> is omitted, then a (list-name>
is assumed according to the rules above (see "[BEFORE] (place>").

B-S

(stmt-set)

(Cont'd)

Appendix B

Form 2 extracts the lists of consecutive statements which are addressed
by the (range) 's from the associated (list-name). The (range) 's must be
contained in the (list-name). The (range) 's are processed from left to right in
the order in which they are specified.

Form 3 extracts the complement of the statements which are addressed
by the (range) 's from the statements contained in the (list-name). The
(range) 's are processed from left to right and must be specified in ascending,
non-overlapping, order (by line number). Any (range) which is out of order
will result in an error message at execution time.

B-6

APPENDIXC

COMMAND
ABBREVIA­

TION SCHEME

ALGORITHM
USED

Table C-1. TSOS
Interactive FORTRAN

System Command
Abbreviations

• Most editing and debugging commands in the TSOS Interactive
FORTRAN system may be abbreviated if the user of the system so desires.
This is a scheme for determining the unique acceptable abbreviation knowing
the command in its entirety.

• 1. If the command is a single word of three letters, there is no
ab brevia tion.

2. If the command is a single word but not three letters in length,
the abbreviation is the first and last letter of the word.

3. If the command is two words or more, the abbreviation is the
first letter of each word, ignoring the word AND if it appears in
the command.

Command Abbreviation

#AT #AT
#CHECK #CK
#CHECK AND PRINT #CP
#CHECKPOINT #CT
#COMPI LER CHECK #CC
#COMPILER CHECK AND PRINT #CCP
#COMPILER SYNTAX CHECK #CSC
#COMPILER SYNTAX CHECK AND PRINT #CSCP
#DEFINITION #DN
#DELETE #DE
#DISPLAY VAR #DV
#DISPLAY VAR NOT CHANGED #DVNC
#DISPLAY VAR CHANGED #DVC
#DISPLAY VAR NOT CHANGED SINCE #DVNCS
#DISPLAY VAR CHANGED SINCE #DVCS
#DISPLAY STMT #DS
#DISPLAY STMT CHANGED #DSC
#DISPLAY STMT NOT CHANGED #DSNC
#DISPLAY STMT EXECUTED #DSE
#DISPLAY STMT NOT EXECUTED #DSNE
#DISPLAY STMT CHANGED SINCE #DSCS
#DISPLAY STMT NOT CHANGED SINCE #DSNCS
#DISPLAY STMT EXECUTED SINCE #DSES
#DISPLAY STMT NOT EXECUTED SINCE #DSNES
#DISPLAY STMT ID #DSI
#DISPLAY STMT ID CHANGED #DSIC
#DISPLAY STMT ID NOT CHANGED #DSINC
#DISPLAY STMT ID EXECUTED #DSIE
#DISPLAY STMT ID NOT EXECUTED #DSINE
#DISPLAY STMT ID CHANGED SINCE #DSICS
#DISPLAY STMT ID NOT CHANGED SINCE #DSINCS
#DISPLAY STMT ID EXECUTED SINCE #DSIES
#DISPLAY STMT ID NOT EXECUTED SINCE #DSINES
#DISPLAY VAR XREF #DVX
#DISPLAY VAR XREF CHANGED #DVXC
#DISPLAY VAR XREF NOT CHANGED #DVXNC

C-l

Table C-1. TSOS
Interactive FORTRAN

System Command
Abbreviations

(Cont'dj

Command

#DISPLAY VAR XREF CHANGED SINCE
#DISPLAY VAR XREF NOT CHANGED SINCE
#DISPLA Y STMT XREF
#DISPLAY STMT XREF CHANGED
#DISPLAY STMT XREF NOT CHANGED
#DISPLAY STMT XREF EXECUTED
#DISPLAY STMT XREF NOT EXECUTED
#DISPLAY STMT XREF CHANGED SINCE
#DISPLAY STMT XREF NOT CHANGED SINCE
#DISPLAY STMT XREF EXECUTED SINCE
#DISPLAY STMT XREF NOT EXECUTED SINCE
#DISPLAY VAR TABLE
#DISPLAY STMT TABLE
#DISPLA Y BRANCHES
#DISPLAY BRANCHES EXECUTED
#DISPLAY BRANCHES NOT EXECUTED
#DISPLAY BRANCHES EXECUTED SINCE
#DISPLAY BRANCHES NOT EXECUTED SINCE
#DISPLAY LINKAGE
#DISPLAY CHANGES
#DISPLAY CHANGES OFF
#DISPLAY PROGRAM NAMES
#EDIT
#END
#EXECUTE
#EXPAND
#FIND
#FORGET
#GET
#HALT
#IN
#INSERT
#INSERT AND CHECK
#INSERT AND COMPILER CHECK
#INSERT AND SYNTAX CHECK
#INSERT AND COMPILER SYNTAX CHECK
#INSERT WITHOUT CHECK
#INSERT DATA
#MOVE
#NAME
#NO TRACE
#NUMBER
#ORDER
#PATTERN
#PREFIX
#PREP
#PRINT VAR
#PRINT VAR NOT CHANGED
#PRINT VAR CHANGED
#PRINT VAR NOT CHANGED SINCE
#PRINT VAR CHANGED SINCE
#PRINT STMT
#PRINT STMT CHANGED
#PRINT STMT NOT CHANGED
#PRINT STMT EXECUTED

C-2

Appendix C

Abbreviation

#DVXCS
#DVXNCS
#DSX
#DSXC
#DSXNC
#DSXE
#DSXNE
#DSXCS
#DSXNCS
#DSXES
#DSXNES
#DVT
#DST
#DB
#DBE
#DBNE
#DBES
#DBNES
#DL
#DC
#DCO
#DPN
#ET
#END
#EE
#ED
#FD
#FT
#GET
#HT
#IN
#IT
#IC
#ICC
#ISC
#ICSC
#IWC
#10
#ME
#NE
#NT
#NR
#OR
#PN
#PX
#PP
#PV
#PVNC
#PVC
#PVNCS
#PVCS
#PS
#PSC
#PSNC
#PSE

Table C-1. TSOS
Interactive FORTRAN

System Command
Abbreviations

(Cont'd)

Command

#PRINT STMT NOT EXECUTED
#PRINT STMT CHANGED SINCE
#PRINT STMT NOT CHANGED SINCE
#PRINT STMT EXECUTED SINCE
#PR INT STMT NOT EXECUTED SINCE
#PRINT STMT 10
#PRINT STMT 10 CHANGED
#PRINT STMT 10 NOT CHANGED
#PRINT STMT 10 EXECUTED
#PRINT STMT 10 NOT EXECUTED
#PRINT STMT 10 CHANGED SINCE
#PRINT STMT 10 NOT CHANGED SINCE
#PRINT STMT 10 EXECUTED SINCE
#PRINT STMT 10 NOT EXECUTED SINCE
#PRINT VAR XREF
#PRINT VAR XREF CHANGED
#PRINT VAR XREF NOT CHANGED
#PRINT VAR XREF CHANGED SINCE
#PRINT VAR XREF NOT CHANGED SINCE
#PRINT STMT XREF
#PRINT STMT XREF CHANGED
#PRINT STMT XREF NOT CHANGED
#PRINT STMT XREF EXECUTED
#PRINT STMT XREF NOT EXECUTED
#PRINT STMT XREF CHANGED SINCE
#PRINT STMT XREF NOT CHANGED SINCE
#PRINT STMT XREF EXECUTED SINCE
#PRINT STMT XREF NOT EXECUTED SINCE
#PRINT VAR TABLE
#PRINT STMT TABLE
#PRINT BRANCHES
#PRINT BRANCHES EXECUTED
#PRINT BRANCHES NOT EXECUTED
#PRINT BRANCHES EXECUTED SINCE
#PRINT BRANCHES NOT EXECUTED SINCE
#PRINT LINKAGE
#PRINT CHANGES
#PRINT CHANGES OFF
#PRINT PROGRAM NAMES
#PROCEED
#REFER
#REPLACE
#REPLACE AND CHECK
#REPLACE AND COMPILER CHECK
#REPLACE AND SYNTAX CHECK
#REPLACE AND COMPILER SYNTAX CHECK
#REPLACE WITHOUT CHECK
#REPLACE DATA
#RESTART
#RETURN
#SAVE
#SAVE AND DELETE
#SYNTAX CHECK
#SYNTAX CHECK AND PRINT

C-3

Appendix C

Abbreviation

#PSNE
#PSCS
#PSNCS
#PSES
#PSNES
#PSI
#PSIC
#PSINC
#PSIE
#PSINE
#PSICS
#PSINCS
#PSIES
#PSINES
#PVX
#PVXC
#PVXNC
#PVXCS
#PVXNCS
#PSX
#PSXC
#PSXNC
#PSXE
#PSXNE
#PSXCS
#PSXNCS
#PSXES
#PSXNES
#PVT
#PST
#PB
#PBE
#PBNE
#PBES
#PBNES
#PL
#PC
#PCO
#PPN
#PD
#RR
#RE
#RC
#RCC
#RSC
#RCSC
#RWC
#RD
#RT
#RN
#SE
#SD
#SC
#SCP

Table C-1. TSOS
Interactive FORTRAN

System Command
Abbreviations

(Cont'd)

#fRACE
#TURN OFF
#UNSAVE
#WHEN

Command

C-4

Appendix C

Abbreviation

.#TE
#TO
#UE
#WN

APPENDIX D

PROGRAM­
MING AIDS

REPLACING
STATEMENTS

• There are a number of useful programming aids available to the user
while in the insert mode.

• If while entering statements, the user decides he would like to change
certain statements entered previously, he may do so as follows:

1. To replace one or more lines then return to the present line
number and continue:

a. When the system types the next line number, the user types
@nETX where n is the line number of the first line to be
changed.

b. The system responds by skipping a line and typing out n as
the next line number, and the user types the new line.

c. He continues replacing, the system incrementing line
numbers by 1, until he has replaced as many lines as desired.

d. When the next line number is typed out the user responds
with @ETX which returns him to the line at which he typed
@rrETX.

Example

Note:

5.

6.

7.
8.

6.

7.

8.

READ(97,20) A,B

D=A+B

WRITE (99,25) A,B,D

@6

D=A*B
@

At this point line 7 still contains the WRITE statement typed
in originally; it is not affected by "7. @"

2. To replace all previous lines be'ginning with a given line number
when the user does not wish to return afterwards to his current
place (or to change line numbers altogether in case the user wants
to leave space for later insertions, for example):

a. When the system types the next line number the user types
@SET n ETX where n is the line number of the first line to
be replaced.

D-l

REPLACING
STATEMENTS

(Cant'd)

INSERTING
STATEMENTS

DELETING
STATEMENTS

Appendix D

b. The system responds by skipping a line and typing out n as
the next line number, and the user proceeds as usual (the
system continues to increment line numbers by I as usual).

Example

5.
6.
7.

8.

6.

7.

8.

9.

READ(97,20) A,B

D=A+B

WRITE (99,25) A,B,D,E

@SET6

D=A*B

E=D+A

WRITE (99,25) A,B,D,E

• To insert statements between previously entered lines of the current
file, the user follows procedure 1 outlined above but this time specifying a
line number between the two in question (and a suitable increment in
parentheses following the line number if he wants to insert more than one
line). '

The increment may be any number of the user's choosing up to a
maximum of four digits followed by a decimal point followed by four more
digits.

Example

5.

6.

7.

8.

5.1

5.3

5.5

8.

A=B+C

D=A*F

WRITE (99,20) A,D

@5.1 (.2)

D=O

F=G+H
@

• If the user decides at some point in the insert mode to delete one or
more previously entered lines he proceeds as follows:

When the system types the next line number the user responds with
@D (list)

where (list) may be a line number, a range of line numbers, or any com­
bination of these separated by commas. A range of line numbers is two line
numbers separated by a hyphen and means those two lines and all lines in
between.

D-2

DELETING
STATEMENTS

(Cont'd)

DISPLAYING
STATEMENTS

Display to the Teletype

Print on the
On-Line Printer

Appendix D

If the user neglects to furnish a < list) or if the < list) contains an error, he
gets the error message, "@ PARAMETER IN ERROR" and the system
retypes the line number.

Example

Assume the file into which the user is inserting contains lines 1 through
6, 6.1 , 6.2, and 7 through 15, and that the system has just typed line number
16:

~ @DIO,3,5-B,14

After this statement is entered, the file contains lines 1, 2, 4, 9, 11, 12,
13, and 1 5, and the system responds with line number 16 again.

• Two options are available to the user if he wishes to display selected
lines while in the insert mode.

• When the system types the next line number, the user types
@P<list)

where < list) is the list of lines to be printed and is defined above (in
"Deleting Statements").

The system responds by typing the specified lines followed by the line
number at which the @P command was given. In displaying the lines the line
numbers are typed out in full; e.g., line number B. is typed as IB.OOOI.

• Instead of typing @P< list) , if the user types
@L<list)

the specified list of statements is spooled out and will be printed on the
on-line printer connected to the computer when the user logs off.

Example

5. A=1.

6. B=2.

7. D=3.

B. E=4.

9. F=5.

10. G=6.

11. H=7.

12. @PB-I0,6

B.OOOO E=4.

9.0000 F=5.

10.0000 G=6.

6.0000 B=2.

12.

D-3

APPENDIX Z

INDEX

A. AMPERSAND •• , .•••.••• , .• , •• , •• ,., ••.• , •••• " •••
#. UNDERSCORE; POUND SIGN """ t •••• , , •••••••••• I •

#A #~ #C #S #B #N #L #ANY; SEARCW EXPRESSION jI #V
.ANY #5T; SEARC~ E~PRESSJON .•. ,.,., ••.•••. "t.",
#ANYJ SEARC~ EXPRESSION #1 #V #A #r #c #5 #8 #N #L
"AT •• ,"' ••••• , ...•. "., •• ~ •. , •• , ••• , •• , ••••••• ,.
'9 #N #L #ANY. SEARCH EXPRESSION #1 #V #A #F #C #S
#C #5 #B #N #L #ANY; SEARC~ EXPRESSION #1 #V #4 #V
#C~ CHARACTER STRING CHARACTERS ." ••••.. , ••• ".,'
'CIoIECK ,., ••• , ••••••• , ••••••••••••••• , •.•••• ,", ••
#CWECKPO I NT ••••••.•••••••••• , .•• ,." ••.•••• "" ••
'COMPILER SYNTAX CI-IECK • t" P" ~"'''!''''''''''''
'DEFINITION • " •••• , , ••••••••• , , •• 4 ~ •• It' • , t

#DFFINITION #~ATTERNJ DEPINITIONAL PROGRAMS ,,""
#Df.rINITION DeFINITIONAL PROGRAM , ••• , .•••• ,.,',.,
'DEl,.ETE ., .••••• , • , ••••• t , ••••••• , ••• t •• ,t '.

#DJ:l,.ETE #fORGET .•••• , •••••..•••.•• " ••••• " •• ,"'.
.DISPLAY, ••••.••••••••. , •••• ,., •••• , •.•.•• ,."",
#OM CHARACTER STRING DIMENSION '" ., •••• , •• "I'!f,
"SOIT ••••..• ,. .' •. I •••• ' ••• , •• " ••• ~ •••• ,.t.
#il'IT """"" , , • • , ~ • , • • • , • • , • , • , t • • , • , , • , t •

MEnIT ••• , .••••• .• ,.I!! •••••••••••••• ~ • ••• " •• t.!

#-ENO ,.,." •• t ••• , ••••• ., • « •••••••• , t , t ~ •••• , • I •• , • ,

lEND •.•• ,. t • • • t •••• , •••••••• , It , , I ••• I! • , , t , •••

,ExECUTE ••••••• , ••••••• , •••••• , •••• t , ••• ,

.EXPAND ". t • ,. • • • • • , •• , ••••••• t. t •• , ••• , , It',
#EXPANO •••• , •••••• , •••• ,.,. ~ ,t ••.• , ,t •• It , •• ,. , • , • t

,~ #e *s #8 #N #L #ANYJ SEARCH EXPRESSION #1 #V #A
#F'tND ••• t •• , •• , ••• , •••• , •••••••• ,,.'t~. " •• ,"
#FIND .ttl •••• ' ... ,., •••• " •• ".,........ .., ••••

• F t N D (S E E ERR 0 R R'F P 0 R TIN G) • • • • • , • • • • • , • • • , , , • I

.rIND SPECIAL NAMES #N #1 #2 #3 #5N #51 #S2 #53 't

#fORGET ••.•• , ••• t • , ~ • '! ••••••••• , •••• , ••••• , •• fI •• ,

#f;"ORGET. #DELf::TE ••••••••• , •••••• , ••••• , •• " ••••
#,nUND •••...•. ,.,' •. t • , •• , t " •• " •••• !II • • • • •• , , • ,

#GFT PASSWORD •••••••• ~ •••••••••• , ••• , •••••• "' •• ,
, G! T PRe F I XED F' I LEN A M t:,...,.........,.,..
*HA L. T """'" t • t ••• t •• t •••• , ••• , •• , ••• III •••• , t , " •

#1 .V #A #F #c #5 ~B #N #L #ANYJ SEARC~ EXPRESSION
#I~f .,.'ft •••••••••••• t.~.' ... f.' .•• ' •••.• "."'.'t
*INSERT t • • ••••• , , ••• , t •• , • , •••••• , , t , , •

INSERT , •.• ". t , •••• t •• , •• ~ • t , , ••• , , •••••••••• It ••

_INSERT AND COMPILER SYNTX CHECK •• t •••••• "." •• , * I NSFRT BEFORE •.••••• , ••••••• ,., •• ,', •.•• , t • , , • , • * I NSERT BEFORE ., t ••••••••••••• f • , • , t , ••••••••• , , •

'INSERT DATA t ••• , •••••• , ••••••••• , ••••••••••• , •• ,

#INSERT WITHOuT CHECK •.•••••.•••••• , ••.••••• , ••• t

#~ .ANV. SEARCI-I EXPRESSION #1 #V #A #f #C #S #R #N
''''OVE .• ". f • , • • • , • t • • • • • •• , • , , •• , •• , • , , , ••

#MOVE BEFORE •. . • • . • • • • • • • , .•• , • , ...••• , • , , • t

Z-l

3-1.
3,,1.9,3 ... 20
3.6
3-6
3.6
3.'4
3-6
3-6
3-9,3"'11,3 ... 12
3-'-3
4-5
3-1.8,3-23
2-1.,2 ... 2,3 .. 22
3.1.2
3.~5
3.,t4
3-1.4
4,,~

3-9,3-11,3 ... 12
3-24
3.2
3.,-5
3-~1
3-16,3-17
4_6

3.'6
~.'4,3 .. 25,3 .. 26
3.6
~.24,3-25,3 .. 26
3.'
3-18
~,,4

3.24
3-t4
3-25
3 .. 13
3.1.4
4.6
~h:~

3.,4.3-26
3·?1
3.15
3·17,3-21
3 .. 17
3.21
3.1.7
3-17
3 .. 6
3-1.5
3.1.5

IN 0 EX (Cont'd)

iN #L *ANV; SEARCH EXPRESSION #1 #V #A #, #C #S #8
*N #NeE) #NL ~IST NAMe ASSIGNMENT. LIST NAMES "'1
*N *1 #2 #3 #SN #S1 #52 #S3} #FIND SPECIAL NAM5S
#N f e) .,., .. , t • , • t • f • , ••• t ••••• , ••• , • , ••••• , ••• , ••

*NfE) #NL LIST NAMF ASSIGNMENT; LIST NAMES #N I~"
#NfE), RELATIvE NOTATION SVLLABLE ••• , , •••••• , ••
*NAME •• " •••••.. I ••••••••• , , , ••••• , f: • • •••• __ •• t

*NAME ••••.•• f ••• , • , , t •• , , •••••••••• , , • • • • ••••• t!'

*NAME} rILE NAME PROGRAM NAME LIST NAME ••••• ,'.
*NL #1l *2L #JL: SYLLABLE LISTS SPECIAL NAMES "'1
#Nl LIST NAME ASSIGNMENT. LIST NAMES #N #NfE) I't,
iNO TRACE "', •.. ,', •••••.••.•••••• , , •••••••• ,
*NUMBER •••• , •••• , •••• , . , •.••••••••••• , •••••• t , • , •

#ORDER •••••• t •• , •••• , , • It ••• ~ • , •••• , , ! ••••••• (I •• t •

*ORDER STATEMeNf ORDER .••• t •••••• ,., ••••••••• , •• I

*ORDER; STATEMENT FORMAT ORDER , •• ,', ••••••••• ,.,.
#PATTERN •..••.•. • t ••••••• ,. I""'.' .••. II, •. "
*P.ATTERN ••• , •• , ••••• t, .••.•.•••• I,. ~ ~ ... , •. ",
_PATTERN 41 ~ t ••••• t •••••• , •••• t., •••• , ... " ••• " t" t

.PATTERN, DEFINITIONAL PROGRAMS *DE~INITION ",.t.
iPe PRESERVE ~LANKS 8LANK , •••.•••• ' ••••••••• , t •• t

*P~EF" I x CANCEl.. .. ,., ..•••. , ••••••••• " •••••••• ,".
*P~Ef" I X FILENAME •• , •.••••• , ••. , .• , •• , •• "., •• , •••
#PREP , •••• 0' • , •• , , • , • , ~ , •••• , , •• I •••• , •• , ••••

*PREP .•••..••••.•.•...• , ••....•. III , ••• , It •••••

'PRINT .,'t, ••.•.•.• IlI ••••••••••••• ,t •••••••••••• ,.

#PROCEED •• ," •••••••••••••••• , ••••••• ".,., •• , ••• ,
_RFFER ,t" •••• , • • • • • • • • •• f! I • t , •• t , • til' •

• RFPLACE t.... , , . , I , , , •••• , •• , t •• ,

iRESTART .,., .•••••••••••.••• , ,
#Re TURN ., •• ,' ••••• , •••••••••••• , ... , . • , • , , •••
#S " ..• , •... , t ~ •••••••• t ••• t , •••• 41 •• , t •• , •

#S *9 *N #L #ANY; SEARC~ EXPRESSION ~I #V #A #~ #C
#SAVE AND DELETE#DFLETE ~ •• , .•.••• ,. ~ ••.•••.• I I ~ ••

.SAVE PASSWORO •.•.•.• , •••••• , ••• , •••••.••••••• , ••
*SF.ARC~ t, ••••• , ••• ,., ••••••••••• , It , • , •••• ~ • IIiII • e t • I

*SN #51 #52 #53. #FIND SPECIAL NAMES #N #1 #~ #J
#SN(E)J RELATIV~ NOTATION STATEMENT ~ •••••••• 1 •• '.

#5T. SEARCH ExPRESSION #ANV ••.•••••• , ••••• ""'"
#STEP •• , •••• t ••••••••••••••••• , •• ~ •• "., •••• "'.,

*sv SOURCE COOE REPRESENTATION SOURCE VALUE ",t"
*st #52 *53; .FIND SPECIAL NAMES #N #1 #2 #3 #SN
#TABLE • • t • • , , • • • , , , • • ~ • , • • • • t • • • • • • , , •• , , , • • • , , , •

#.TRACE , ••••• t' •• , .• " • , •••• I! •••••••• It ~ ••• ~ ••••••••
#TURN OFF'" ••••• , ••••• , ••••••••••••••• , ••• ,., ••••• ,
#UNSAVE "', ••••••••• , •• t! •• , •••••••••••• t t ••••

IV t. I ••••••• t • t •••••••••• , •••• ~ • t I ••• , •• , ••• ~ •• , •

'V *A *V #C #S #8 #N #L #~NY, SEARC~ ExpRESSION #1
*W~EN •••• ' t , •• , •••••• ~ •• , ••••••• t t •••••••••• t • II ••

*1 #2 #3 #SN .Sl #52 #S3. #F'"IND SPECIAL NAMES #N

Z-2

3-6
3-9,3 ... 10
3_4
3.?6
3-9,3·10
3114

3-23
~e'
3-1
3-5
3-9,3-10
4-5
3.22
2-1.,3-22
3-22
2-~,

2-1.,3",23
3-26
31112
3.1.2
3-11,3-12
3-14
3"14
4_1-
3.23
411'4
4_6
3.,,4
3-'1
4_6
4.4,4-5
3.,,3 ... 4
3-6
3.14
l·tJ
3-~6
3_4
3-4
3-6
4-1.

Appendix Z

3-9.3 ... 11,3 ... 12
3_4
3-24
4.5
4 • .,
3-1.4
3-9
J-~
4-4,4",,5
3.4

I N D EX (Cont'd)

*1L #2L #3L; SYLLABLE LISTS SPECIAL NAMES #NL "~'I
ABNORMAL " , •• , t • , • , " • , •••••• , ••••• , • , •••• " , t •• ,

AMPERSAND & ••••• , •••••• , •••••• _ ••• , ~ ~ •• , ••••••• '.
AND ~R NOT; LUGICAL OPERATOR , ••••• 't~ •••• ,"',.,.
ARt;UMENTS •••••.••.•••.. , ••• , ••••••••••.••••• "."
ARIT~MFTIC bXPRESSIONS. RELATIONAL OPERATORS "'"
ARtT~METIC OPERATOR; OPERATOR LOGICAL OPERATOR '"~
BAeKGROUND COMP I LER ., ••••••••• , •. " ••.•.••• , •• , ••
BAOKGROUND COMP I LER •..•••••• ,., •. ,', •••... ,.', •• ,
BAr,KGROUND COMP I LER; BA TCIoo4 COMP I LER " _ •••••• , ••• ,
BATC~ COMP I LER BACKGROUND c:OMP II.ER , ••• ,.,.,.".,'
8l.ANK LITERAL CONSTANT .,." .••••• "., ••••.• , ••• "
AI.ANKJ _P8 PRESERVF BLANKS " ..••• " •••. ,.,"", ••
BI.~CK OATA ,., ••••••• , ••••••••• , , •••••• ,.,.,
B,-OCK nATA t •• ', •••••••• , •••••••• ",., ••••••• ".,.

BL,nCK DATA •• , ••. , •••••. , .•••.•••••••••• , ••••• " ••
BRANCH I NG ""'" I •• , , , , , ••••••••• , t .. , • , •• , ••• , , , •

C ,t. t •• , , • , ••••• 1 ••• t ••• , , •••• It •• " • It , •• , • , • , , t , • «
Ct ••••• , ••• , •••• t , , •••••••• It •• , t •••••••••• , ••• I ••

c e8 C16J TYPE LI L l4 I 12 14 R R4 R8 .",., •• ,.,
CALL. •••••••••• , ••••• t •• ,. , , ••• " •• " !f , •••• , , ••••• ,

OATALOG. fILE •.••• ~ .••••••••• , ••••••••• ' ••• I •• '.'

e~ARACTER STRING CHARACTERS. #CH 1., •••••• , •••• '.1
CHARACTER STRING DIMENSION. #DM .,. , •••• t •• ,.", ••

CHARACTER STRINGS LITERAL CONSTANTJ STRING ,.".t I

CHARACTER. ETx END OF THANSMISSION , ••....• ,." •• ,
OHARACTERS; #CH CHARACTER STRING ."" •• ,.",.".,
e~8CKPo I NT I NG ••••• , •••• I •••••••• , ••••• , •• , , , , • , ••

COL~ATING SEQUENCE; EBCDIC t ••• ",.", •• , •••• , •• ,.

OOlON SEMICOLoN SEARCH SVlLABLE SYL~ABLE' PERIOD •
COLUMN CONVENTIONS, .••.•••••••••••• , •• _ •••••••• ,.
COMMAND MODE MODE OF OPERATION reXT MODE '.'1"'"
COMMENT " ••• ,." ••• , t •• , ••••••••• , , •••••••••• , •• ,

COMMON', • , • , • , ••••• , • , , • , • , • , •• , • , , , • , •••••• , , • I , •

COMMON ",., ••••••• , •• , •••••••• , .• ,., •••••••• , I , • I

OOMMON ., ••• , ••••••••••• , •• , ••••• ,.", ••••• t • , , •• ,

COMPLEX, EXPLICIT TYPE STATEMENTS REAL INTEGER •• ,
COMPLEX' TYPE LOGICAL INTEGER REA~ ••.•••• I~".'"
OOMPONENTS. ExTENDED LANGUAGE .,.,." ••••• " ••••••
COMPUTATIONAL STEP NUMBER" •• " •••• " t •• , •••••• I. t

COMPUTATIONS •••••••.•• I., I ' .. , .. , ,.,.".
CO N TIN U • T ION t"'" • • , • • , • , • • • • , , • • , , , • • , • • • • , ••••
CONTINUATION CONVENT IONS ""." t It

CONTINUATION MARKS •.••• , •• , •••••••• ,' •• ,' ••• ", ••
CONTINUATION USING RETURN CHARACTER ',t", ••• " •••
eONT I NUE , ••••••••• " ••••••• , •• , •• , •• t • , • , • , • , •• t I

CONVENTIONS rILE NAMING ,., , .. ".,
COPYING STATEMENTS ,-""",,t""""t,., •• ,., •• ,.
DA" ••• , •••••••••• , •• ,., ••• , •••• ,',., •• , •• , ••••••
DATA , •••••• " ••••••• , ••••••• ,." •••• , ••••• , ••••• ,

Z-3

3.5
2-1,3 ... t'2
3-1
3.5
3.'6
3-10
3-')
4-1
3-'3
1..,1
1-1
:s-~
3.~.1, 3-12
4-6
4-1
2 .. 1,2 ... 2,3 .. 22
14.t.
~.16

2-1
3-'
4_4
3 .. 1
3-9,3 ... 11,3 ... 12
3-9.3-11,3 ... 12
~-~
3.15
3.9,3 ... 11,3"12
4-1-
3-10
3.~

2-1
2.3
3.16
4-6
2.1,3.22,3 ... 2'
4-2
2.1,3 .. !2 3-,
1-1
4-1
3-20
2-:2
2.1
3.21.
3-16
4-1
3-23
3-21
2-1,3-23
'-1

Appendix Z

IN D EX (Cant'd)

04TA OPTION OF #INSERT •••.• , •.•••••• , ••••• "" •••
06RUGGING •• " ••.••••••• , •••••.•. ,'t, •.•••• "., •• ,
OERUGGfNG S'IATEMENTS ...••• , •••••••• , ••. , •••• !.".
OERUGGtNG STATEMENTS EMBEODING •• ,.,., ••• , ••••• ,.,
C6rINITIONAL PROGRAM EDITING PROGRAM , •••• "., ••• ,
DE,INITtONAL ~ROGRAM SPEClrlCATlON STATEMENTS I'"~
DErINITIONAL pROGRAM; #DEFINITION , •••••••• ,.t ••••
OErlNITIONAL PROGRAMS _DEFINITION #PATTERN .,1 ••• ,
DErINITIONAL PROGRAMS RETURN END t ••• , ••••••••••••

D I AGNOST I C MESSAGE •.••• t •••••••• , ••• , ••••• , • t , • , •

DIMENSION •.••...•• ,., •.•.•••.• , ••••• , ...•. ,"', ••.
DIMENSION, #OM CHARACTER STRING ••••• , •••• , •••••••
nI~Ii'LAY OF"F LINE •.••••••• " ••• , ••••• , •. ,., ••• ,.,.
DI~~LAYING 8RANCHES ..•••..•••• , •••• " •.• ,.,.".,.
DI!;PLAYING CAl,.L STRUCTURE, q to .. " t" to". If tI If'
nI~PLAYING CROSS REFERENCE TABLES , •• , .. ,~."'.,.,
DISPLAYING LINKAGE .•.•. , •••••••• ,., •••.•.••• ~, •••
DISPLAyING STATEMENT SeTS " ... , ... ", ".
DISPLAYING VA~IABLES ..••.•• , •••.•• ", ••• ,." •••••
DISPLAYING VARIABLES ,q • ., ".,,"
DO .' t • , ••••• , • t • , • , ••••• III •• , " • ~ ••••.•••• , •• t ••••• t

DOUBLE EQUAL SIGN ••••••••••••• ,., t ••• , •••••• , , •• ,

DOUBLE QUOTES. QUOTES •• "., •••••••• ,', ••• " •• ,'"
SBeD I C COt,.L A T 1 NG SEQUENCE ., ••••••• ,., ••••• ". I • , •

EDITING PROGRAM; DEFINITIONAL PROGRAM .t •••••••• ,.

EDITING STATEMENTS •••.• ,., •••• , ••••• , •.••••••••• ,
EDITING STATEMENTS EMBEDDING •• ,.,., •• , ••••• , •••••
~M8eDDING' DEBUGGING STATEMENTS .,." •..•••• , " •• e

EMBEDDING. EDITING STATEMENTS .••• t •••••••• " :~~. ~
eND".,., •• t • • • • • , • • • • • • t •. , • ~ :

ENn •••• , •••• t •••••• , • 41 • , ••• fI , •• , •••• 4! •• t ••••••• ~ ~
BND OF TRANSMISSION CHARACTER; ETX , ••••• , •••• , •••
ENn POINT END.PTJ LINE NUMRER ••••••• , •• , •••••••••

. END PO I NT J ENO ... PT •••. ,' ••• , •.• t •• , • t •• , t •••• , , , ••

END POINT. LIST NAME END~PT , •• , ••• ", ••••••••• ,.,
EN~ POINTJ RANGE •••. , •• , •• , •••••• ,." ••••• , ••••••
~N~ POINT. STATEMENT NUMBER END-PT , •• ,.".",.t'.
END S TAT E MEN T,........ I • • • • • • I • • • • • • • , t .f • • • •

ENnJ DE~INITIONAL PROGRAMS RETURN ., ••••• , ••••••••
lSND-PT END POINT ••••• , •••••••• , •• ,." ••••• ,." •••
END-PT END POINT. LIST NAME •••••• ,.t ••. ' .•• ," •••
END·PT END POINT' STATEMENT NUMBER """"",1'"
ENn·PTJ LINE NUMBER END POINT •••• , •• , •••• ' •• ,.' ••
ENTERING STATEMENTS IN FILE. fNSeRTING STATEMENTS
ENTRY •• , ••• , •••••• t •••• , •• , , • , ••••• , , •• t ••• , I I , • ,

eQ NE. RE~ATION LOGICAL RELATION GT GE LT LE ttt.,

EQU I VALENCE ., •.• , •••••• ,., •••• , •••• " •• , •• t • , •• , •

ER"OR CORREC T I ON ••••••••• , •••••••••• , •.•••••• I • I •

IRROR DELETING ••••••• , •••• , ••• ,.,' f., .• ".'.' ••••
eRROR DETECTION. t •••• ,. I.'" , .•.• '., •..... ,.,. t t.

Z-4

3!l1~.1
1-1..
4.1
1-1
3-12
3.12
3-25
:J-!.2
J-~_2

:J-18

Appendix Z

2-1,3 ... 11,3-22
3-9 1 3"11,3 ... 12
4.4
4.2
4.!.
4-2

""~ 4·2
4-1
4-2
3-!~), 3-24

.3.9,·3-11
:SaiO
3-12
3-1
1.i
t-t
l-1
4 .. 1
2-1,3 ... 23
3-t5
3-1
3-1,3 ... 2
3-",
3-1
3-1
3-~1
:5-12
'5-1·,3 ... 2
3-1
3-1
3.1
3-15.3-16
"·1
3-~
2-1,3 .. 2::5
3,,19,3-20
3-19
:1.18.3",23

I N 0 EX (Cont'd)

ERROR I GNOR I NG ..•. , ..••••••••••• " •• , ••••.•• " •••
ERROR REPLACING SyLLABLE ••••..•• t., •••••••• ". t"

ET~ END OF TRANSMISSION CHARACTER ., •..•••.•••• ,.,
EXFFCUTING STATEMENTS .•• , •..••.•. ,., ••.•• ,."., •••
EXP~ICIT TYPE STATEMENTS REAL INTEGER COMPLEX I'"
EXTENDED LANGUAGE COMPONENTS •.•••• " ••.••.• ".,'.
EX TE RNA I.. •••••••••• , •••••••• , •• , •• ~ , •••••••••• , , , •
F'llE , .••... ,.'t .••••• ~., ••••• , •••••• ~ •• ,.t" •••••
F'ILE CATALOG •••••••.••• , •••••. ,.,'!" ..• ,.' ••••• I

r J LE EMPTY ••••.. ,.:., •• , •• , ••••• , ••••..••••• ,.,' 1

'IlE NAME PROGRAM NAME LIST NAME #NAME "." "tl'"
FILE ONL.Y ••• , .•• , •••••• , •••••••.• ,." ..••••• ,""
'ILE ONL.Y UNNAMED tILE Of to f' P'" to., ... " •• e

F' I LENAME •••••••.•.••••••.••••••.•• ,', •. , •••• t , , • ,

PI LENAME J #PREF' I X •••• , .•.••••• , •••• , ••. , •. ,.,.,. I

F'OJ:lMAT .," t , , •• , •••• , til ••••• , •• " • , •• t • , ••

FORTRAN ••••••••••••••••••••••• , ••• ,' ••••••••• ,'"
PORTRAN IDENTIFIER: IDENTIF'IER •• ". t""" I, t.,"
FUNCTION ,,, ,, ••••••••• , •• , ,, t.' t.
rUNCTION •••••••••• , ••••••••••• ,., •• " •• , •• "., •••
FUNCTION DE~ INI T10NS ••• I ••• ' •••• , " •••• ' •••• , I '"

rUNCTION REFERENCE , •••. ,." ••• ,.,., ••.. ""." •• ,
GE LT LE EQ NEJ RELATION LOGICAL RELATION OT "'"
GT GE LT LE EQ NEJ RELATION LOGIeAL RELATlnN I,."
I J2 14 R R4 R8 C C8 C16. TYPE Ll L L4 'f •• "" •• ,

!OENTIF'IER « •••••••• , ••• ,~ •••••••• ,." •• , ~"t ••

IDENTIFIER FORTRAN IDENTIFIER .' •• '.,'.' •••••• ,."
If •. ,.t""., ••••• , ••••••••••• ,., ••• t! •••• " ••• II ••

IMMeDIAT~ EXECUTION ••.•••••••. , ••• " •••• " •• '.~.I
IMP L. I CIT •••• , ••• , •••••• , .•• , ••. I •• , t • , ••• , , , • , , I , ,

I NC:REMENT """'" t •••• , ••• , •• , , , , •• , •• , •• , • , , • , ,

lNeREMENT' LINE NUMBER •• " ••••••• ,', •••••••• ,.,.,
INCREMENT. LINE NUMBER AUTOMATIC ,.,', •. , •• ,.,",.
INSERT AFTER '-LACE ••••••• , •••••••• ,., .•••••• ,""
INS E R T 8 E fOR E P LAC E """'! t .. , • , ••••• , .f • , , , ••• , • t •

INSiRT MODE MODE OF' OPERATION •••• , •• , ••• , •••• ,.,.
r N S E R T T EXT ..,.......,., , • • • • • • • • • ~ • • • • • , • • , • • • , , •
INSERTING STATEMENTS ENTERING STATEMENTS 1"1 'I~E ,
INTEGER COMPLeX; 'eXPLICIT TYPE STATEMENTS REAL •• ~
INTEGER ~EAL COMPLEX' TYPE LOGICAL ." •• t •• ,U"",
12 14 R R4 R8 C C8 C16J TypE LI L L4 1 "t., ••• ,.,
14 R R4 R8 C C8 C16; TYPE LI L L4 I 12 .". "tl"1

1(1"10 .,', •• ,., ••••• ,'" •• , •••• "., ••• I"""'" t ••

KIND. SEARCH EXPRESSION TYPE •• '." •• ' •• ' ••••• , •••
L L4 I 12 14 R R4 R8 C ce e16; Tvpe LI """"'"
LE EQ Nil RELATION LOGICAL RELATION GT GE LT I, .. ,
LEX I CAL SCANNiR .,.", f , t • , , ••• , ••• t t , •• , •• ~ •••• , •

~I L L4 I 12 14 R R4 R8 0 08 C16. TYPE " •••• ,",.
LINE NUMBER AUTOMATIC INCR~MENT """." •• ",., ••
LINE NUMBER C"fANGING •• " ", _

Z-5

3-19
3-20
3-15
4.l!I
2-1,3-22
1·t
2.1,3 ... 22
2.;",3 1
3.1.
:J·15
J-1
3-1,3 ... 3
3-14
3"'23
3-14
•• 1
1-1,2-1
3.~J
2-1.,2-2,3,,22
4-1
2.1,3 ... 23
4.4
3.5
3-5 3.' 3.' 3.'3
4.4
S.1II1,2-6,3-20
2.1,3-22
2.3
2.2,2 .. 4,2 .. 5
3-15
3.1
:S.!.
3.15
2.3.2 .. 4
3.S.5,J"16
'.1,:5 .. 22 3-,
3.' 3.' 3-.,
3.11

3."
3.5
3.~

3-'
3.15
3-15

Appendix Z

IN D EX (Cont'd)

1..1 NE NUMBER COMMA NOS •• , t •••••••• , ~ ~ • , •• , , • If' , •• ,

L.INE NUMBER COMMANDS SET •••••••••••••••• " •• , t t.,
1..1NE NUMBER END POINT END .. PT q .. ""." •• ,

I.INE NUMBER FIRST .••••.••• ~ •••••• ,., """ """ I

L.INE NUMBER INCREMENT ••••••••••• " •• , •• , ••• , •• ,'.
1..1 NE NUMBER LAST •.••••• , •••••• , •• , I • , , •• , , ••• , , • ,

L.INE NUMBER NEW ••• , •••••• ,.,., ••• ,., •.• ", •• , ••• ,
L.INE NUMBER STACK ••• ,., ••••••.•• , ••• , ••••••• ,.".
1.15T EXPRESSION ••• ,., •••• ,., ••••••• ~t' ••• ' •• ,.' ••

1..15T EXPRESSIONS •••••••••••• , •••••• , ••••• " •• , •••
L,.IST .EXPRESSIONS COMPARISON ••.••• I •• ' •••••• ,. t •• I

1..15T EX~RESSIONS EVALUATION OF ••• ".t ••• , ••••••••
L.15T EXPRESSIONS; ~ELATIONAL OPERATORS ., •• " "."
LIST NAME .NAME; FILE NAME PROC1RAM NAME .! •••• , I , ,

L.15T NAME ASSIGNMENT; LIST NAMES *N #NfE' #NL ""
I.. r ~T NAME END.PT END PO I NT ,. t • , •••• , , ••••• , ~ , , , ••

1..1ST NAME RANGE; STATEMENT LIST ., ••• , •••• , •• " •••
LI5T NAME. STATEMENT SET RANGE , ••• " ••.• "',.,' "
~IST NAMES #N #N(E) #NL LIST NAME ASSIGNMENT "'t,
LITERAL CONSTANT: BLANK , , •• ,., •••••• ,., •• "
~ITERAL CONSTANT} STRING CHARACTER STRINGS "'I.t,
LITERAL STRING: STRING ., " •••. " " ••
LOt; I CAL EXPRESS IONS •••• , •••••••• ,.,' t •••••• , , • , • ,

1..0GICAL INTEGER REAL COMPLEX; TYPE •••••• t.,.", ••
I.OG I CAL OPERA I OR AND OR NOT , •• , •• ,' ••••• , •• ,.".,
LOGICAL OPERA10R ARITHMETIC OPERATOR. OPERATOR "~I
L.Ot;ICAL RELATION GT GE LT LE EQ NEJ RELATION "'"
1..1 LE EQ NE; RELATION LOGICAL RELATION GT GE t"tt

L4 I 12 14 R R4 R8 C C8 C16; TYPE LI L '0' ,., ","
MonE OF OPERATION TEXT MODEJ COM~AND MODE t""'"
MO~E OF OPERATION; INSERT MODE , •.• " •.•••• ,.",.,
NAMED COMMON , •••••••••••••••..••••• " .••••••• , •••
NAMELIST •••.•••.•• , ••••••••••••••• ,.,., ••• ' •••• 111'

NAMES. PROGRAM •••• , •• ,., ••••.• ,." •••.. , ••• ,. ""
NEj RELATION LOGICAL RELATION GT 'GE LT LE EQ • t'"
NOTJ LOGICAL OPERATOR ANn OR •• ,., ,." .••••••• ,.,.
NOTATION CONVI!:NTIONS ••• , •• , ••• , ••••• , ••••••• , ••• I

NULL LINE (SEt: ETX) •.•• , ••••••••. ,., •••••• , ••••• ,
Nt,JMERICAL CONSTANT •••.•••••••••• ,.,., •••••••• I'"
OPERATOR LOGICAL OPERATOR ARITHMETIC OPERATOR ".,
OR NOT: LOGICAL OP~RATOR AND """",", t ••• t , •• ,

ORnER #ORD~R; STATFMENT FORMAT , •••• , ••. ,.,.t."t,
PASSwORD; #GET ••••••••••••••••••• , •••.••••••••••• ,
PASSWORD, #SAvE •••••.•• , •••••••• "." •• , •••••••••
PERIOD COLON SEMICOLON SEARCH SYLLABLE SYLLAALE .,
POUND SIGN # UNDE:RSCORE t •••••• ,., ••• , ••••• ,' •• , ••

PR~SERVE BLANKS BLANK; #PB ••••••••••••••••• "., "
PRINT OF'F"""LINE .••• , •.••••••••••••• " •••••••• " •••
J'RINT OPTION oF" #CI-lECK " ••••••••• ,."., ••.•• ,', ••
f.)RyNTING STATEMENT LISTS .. , " ,,".

Z-6

3-15,3-16
2·4,2 ... 5,2,",6
3.1

Appendix Z

3-15
2-2,2-4,2-5
3-15
3-15.3-16,3-22
2 .. 5
3-?5
~.9

3-10
J-10,3·11
3-tO
3-1
3-9,3 ... 10
3-t
3-2
3-;'
3 .. 9.3"'10
3.~

3-5
3.,9,3 ... 11
3-10

3-'
:5,,5
3.5
~.'5

3-5
3.1
~!!I~

3.,15
4-6
4.1
4 .. 2
3-5
~ .. 5
1.'
J.!.!:.l
31115
31115
3.5
2-1
3-13 .
3-13
3_~

3,,1.9.3-20
3-11,3 ... 12
4.4
31111~3
4-1

IN 0 EX (Cont'd)

PROGRAM •••• , •••••• , •••• " •••••••• , •• , ••••• , •• t,. I

PROGRAM , •••• , ••••••••••••••••• ,., •••••• ". t t ,. I.,
PROGRAM NAME ~IST NAME .NAMEJ rILE NAME t!tt.!.,.,

PROGRAM NAMES .••••••••• t ••••••••• I , ., ••••••• ,. t ••

PROGRAMS,.......... 1 • • , • • • , • , ., , , • • , • • , • t , , , •

QUFST ION MARK ••••.••••• , •••••••• ,.,., •. t ••• ~ t , • , •

ClUFSTION MA~K RESPONSE TO ,., •• ,."., •••••• " •• ,.,
QUOTES DOUBLE QUOTES , ••••••••••• , •• , ••• " ••••••• ,
R R4 R8 C C8 C16J TYPE LI L L4 I 12 14 0'"""",
RANGE BEGINNING ••••••••••••••••• , •••••• , ••• ,',.,.
RANGE END .•• t •••• , •••••••••••• , •• , •• , • 0 •••• , , ••• ,

RANGE END POINT ••.•••.•••••••••••••••••••••••• , ••
RANGE LIST NAME; STATEMENT SET '0'"""""",,",
RANGE; STATEMeNT LIST LIST NAME "','e""""""
REAL COMPLEX; TYPE LOGICAL INTEGER ,., .• , •••••••••
ReA~ INTEGER COMPLEX; EXPLICIT TYPE STATEMEN~S •••
RELATION LOGICAL RELATION GT GE LT ~E eQ NF •••• ,.
RELATIONAL OPERATO~S ARITHMETIC EXPRESSIONS I"",
RELATIONAL OPERATORS LIST EXPRESSIONS •.•• ,',.,. I'
RELATIVE NOTATION STATEMENT #SN(E) ,., .. , .•• ,~,."
RELATIVE NOTATION SYLLABLE #N(E) , •• " ••••• , •• t"1

RENUMBERING STATEMENTS p ... ,. " .. ,

RE TURN , ••.•• III ••••••• , ••••••••••• , • , , , ••• , • t ••• , ••

RETURN CHARACTER •••.•.•••••••••• , ••• , •• , ••••• ,., I

RETURN ENOl DeFINITIONAL PROGRAMS " •••.•• , •••• ,'.
R4 R8 C C8 C16: TYPE LI L L4 I 12 14 R ••• "., ••• ,
R8 C C8 C16j TypE LI L L4 I 12 14 R R4 '" ",., .• ,
SeARCH EXPRESS I ON••••••.•.••• , I , ~ ••••••• , , •••

SEARCH EXPRESSION #ANY #ST •••••••• ,., •.••••• , ••••
SEARC~ eXPRESSION #1 #V #A #f #C 's #8 #N #L #ANY
SEARCH EXPRE:SSION TYPE KINO, •••.• ,., •.•••• ,."."
SEARCH EXPRESsIONS COMPOUND ••••••• ,., .. '" •••••••
SEARCH EXPRESSIONS ELEMENTARy., ••• ,., ..•••••• ,. I,
SEARCH EXPREssIONS SYLLA8LF LISTS SEARCH SVLLABLE
SEARC~ SYLLABLE SYLLABLE. PERIOD COLON SEMTCOLON •
SEARCH SYLLABLE: SEARCH EXPRESSIONS SYLLABLE LISTS
SEMICOLON SEARCH SYLLABLE SYLLABLE. PERIOD C~LON •
SET COMMAND . f" • ••• • •••••• , •••••••• I ••••••••• , , • t

SET J LINE NUMijER COMMANDS ••••. ,., •• , •..••••• " •• ,
SJr"E COMPUTATIONS ., ..•.•••• , •••••• ", .. ,., •••• ,.,
SOuRCE CODE REPRESENTATION SOURCE VALUE; #SV ,t, ••
SOURCE VALUt; #SV SOURCE CODE REPRESEN1ATION ,.,.,
SPeCIAL NAMES #N #1 #2 #3 #SN #S1 #$2 #S3. #rIND ,
SPFCIAL NAMEs #NL *lL #2L #3L; SYLLABLF LIsTS "'t
SPF:CIfICATION STATEMENTS It , ... t"." ... t

SPFClftCATION STATFMENTSJ DEfINITIONAL PROGRAM .,'
STATEMFNT FORMAT ORDER #ORDER ••.• ,., ••.••• t. "'1'
STATEMENT LIST LIST NAME: RANGE ""qll.t

ST A TEMENT NUMBER •••..•. , .•••..••••••••.•• ".,.,"
STATEMENT NUMij~R END~PT ENn POINT 1,1"'".""""

Z-7

Appendix Z

4.1 2
2.1,2 .. 2,3·22,3-24
:"-1
4-2
2-2
~.1.8

~-20
~-9,3·11

3.'
3.4
3.4
3-'-
3.J
3.~

3."
2.1 .• 3 ... 22
~ . .,
3·1,0
3-1,0
3·4
3 ••
3-22
3.26
3-16
:3-'12 3.,
3-'
3.'5
3.6
3-6
3.6
3-~.3 ... 9
3.~

3.5
3.6
3-5
3-6
3-16
2.4,2 ... 5,2 ... 6
3-16,3-20
3.9,;" ... 11,3-12
3-9,3"'11,3-12
3.4
3.5
4-i
3-12
2·1
J-~
4-1
3-1

IN 0 EX (Cont'd)

STATEMENT NUMBERS ••••••••••••• ,.,.,., •••••• , •• , ••
STATEMENT O~DER; #ORDER ••••••• , •• " •••• t •• ",., ••

STATEMENT SET ., ••• , •••• , •••• , ••••• , •••••••••• ,.'.
STATEMENT SET RANGE LiST NAME " ... ,,, ,,.
STATEMENTS •••••••••••••••••••• ,., ••••••••••• " •••
STATEMENTS CHANGING •••• , •••••••••••• , •••• ".".,.
STATEMI:NTS COpy I NG , ••••• , •••• " ••••• , •• t •••• , , , , •

STATEMFNTS CORRECTING ••• ,.t •••••• , •• , ••••••• ", ••
STA TEMENTS DESUGG I NG •••• ' ••••• ,.,.,.! .. , ... t t , , , •

ST A TEMENTS DELE T I NG ••• , ••• t ••• , •••• t ••••••••• , , , •

STATEMENTS DELETING EDITING ••• ,., ••• , •••• ,. "".,
STATEMENTS ENr£=RIN(,; IN F'ILF ... ".tI" ,
STATEMENTS EXECUTING •••••••••••• ,." •••••••• , •• "
STATEMENTS ~E~'ORMATTING t •• , ••••••• t ••••••••• " •• ,

STATEMENTS RENUMBERING ••• , ••••••• , ••••••••• ,., •• t

STATEMENTS SPECIF ICATION •• , ••••••••• , •• I •• t" I •• I

STEP NUMRER • I • t' ••• • ••••••• " , ,. ,t ." ••••• , • , •• , •

STRING tt." •• ~, ••• 't •• t

STRING C~ARACTER STRINGS LITERAL CONSTANT .1",."
STRING LITE~AL STRING " , .. " " .. .
SUBP.ROGRAM •• , •••••••••• , ••• t ••••••• t ••• , ••• , •• , .• I

SUBROUT I NE •••••• , ••• t •• , •••••••• , • , •••••••••• t •••

SUSROUT I NE •.• f •••••• , , ••••• t •••• , • ~ , •••• , ••• t ••••

SYLL.ABLE ••.•••• ' •••••• , •••••••••• t ,. , •• , •••• I ••• t

SYLLABLE LIST ASSIGMENT STATEMENT " ••••••• , •• , •• ,
SYU .. ABLE LIST VARIABLES" •••••••••• , •••••••• ,. I ••

SYLLABLE LIST~ SEARCH SYLLABLEJ SEARCH EXPRESSIONS
SYLLABLE LISTS SPECIAL NAMF.S #NL #1L #2L #3L ., •••
SYLLABLE SUgLIST NAMES., •••••••••• ,. I ••••••••••••

SYL~ABLE; PERIOD COLON SEMICOLON SEARC~ SVLLABLE ,
SYMBOL TABLE , ••••••••••••• , ••• t. ,. , ••••••• " " ., •

SYNTAX CHECKING ••••• " •••• ,., •••• ,." ••• , ••• " •• ,
SYNTAX CHEC~ING .,., ••••••• , •••••• ,", •• , •••• , •• "
TExT EnITING , •••••••••• , •••• , •••• ,." ••• , •• ,', •••
TEXT MODEJ COMMAND MODE MODE OF OPERATION .,"""
TRANSF'ER CONTHOL ••••••• , •••••• I •• , • t ~ •• , ••••• , , t t

TRUE •• , ••. , f •••• t • t •• , , •••• ~ • , If ••• , • ~ •••••• , , ••••

TYPE KIND. SEARCH EXPRESSION •• ,."., •••••••• ,~,.t
TYPE LI L L4 I 12 14 R R4 R8 C C8 C16 •.••.•• , ••• ~
TYPE LOGICAL INTEGFR REAL COMPLEX _.1• ".,.,
UNOERSCORf::; POUND SIGN # , ••••• , ••• ,., •••••• ".,.,
UNt-JAMEn fILE; FILE ONLy ••••••••••• , ••••• " ••• ",.

Z-8

3-21
3·;?2
3.:"
3-~

2.'
3-t5,3-17
3-21
3-~.5
4.~

3.~'
3.~3
3.15.3-16
4-6
3.21
3-22
4e1
4.1
3.6
3-5
3-9,3"'11
:5-24
2-1.2-1,3 .. 22
4",1,4 ... 2
3-:3
3·~O
3.25,3-26
3.5
3et!)

3-12
3-6
3.~4

1-1
3-17,3-18
1-1
2-3
4 .. 4
4-4
3-~ 3.' ::5-,
3-1.9.3-20
3-1.4

Appendix Z

	001
	002
	003
	004
	005
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	Z-01
	Z-02
	Z-03
	Z-04
	Z-05
	Z-06
	Z-07
	Z-08

