
Cil 
o 
en 

en 
o 

~ 
:> 
:D 
m 
o 
m en 
() 
:D 

~ 
o 
z 

Z 
"Tl o 
:D 
;:: 
:> 
-i o 
Z 

;:: 
:> z 
c 
:> 
r 



SPECIRA,../C 
TIME-SHARING OPERATING SYSTEM (TSOS) 

Software Description 
Information Manual 

OOG5LJD 
Information 
Systems 



The information contained herein is subject 
to change without notice. Revisions may be 
issued to advise of such additions and/or 
corrections. 

First Printing: July 1968 



INTRODUCTION 

CONTROL ROUTINES 

BACKGROUND 
COMPILERS 

INTERACTIVE 
COMPILERS 

PROGRAM PREPARA­
TION AND TESTING 

UTILITIES 

HARDWARE 
MAINTENANCE 

SCIENTIFIC 
APPLICATIONS 

CONTENTS 

. 1 

Executive. . . . . . . . . . . . . . . . . . . 3 
Data Management ................. 9 
Dynamic Linking Loader ............. 17 

COBOL Version 1 .. 
COBOL Version 2 .. 
FORTRAN Version 1 .. 
FORTRAN Version 2 .. 
Report Program Generator .. 
TSOS Assembler ..... . 
TOS Assembler (ASMDOS) .. . 

Basic. . . . . . . 
Desk Calculator .. 
FORTRAN. . . . . 

· .19 
.20 

· .21 
· .23 

. . 23 
• • 24 

28 

.31 
· .37 
• • 40 

Assembler Diagnostic. . . . . . . . . . . . . . 42 
COBOL Syntax Checker .............. 43 
File Editor ................... 45 
Interactive Debugging Aid ............ 47 
Static Linkage Editor (Modified TOS) ...... 49 
Linkage Editor (TSOS). . . . ...... 50 

Activate/Deactivate.. .... .52 
Library Maintenance. . . ........ 53 
Sort/Merge. . . . . . . . . . . . . . . . . . . 53 
Peripherals. . . . . . . . . . . . . . . . . . .53 
Self-Loading Device Edit ............ 53 
Self-Loading Memory Edit ............ 55 
System Generation ................ 56 
Volume Initializer ............... 57 

Disc Hardware Check ............... 59 
Basic Processor Unit Exerciser ......... 59 
Card Punch Program. . . . . . . . . . . . . . . 59 
Card Reader Program ............... 60 
Printer Device Segment Routine ......... 60 
Seven-Level Tape Hardware Check ......... 60 
Nine-Level Tape Station Hardware Check. . . . . 60 

61 

iii 



INTRODUCTION This manual presents a brief description of the 
various programming routines available under the RCA 
70/46 Time-Sharing Operating System (TSOS). The sys­
tem creates an appropriate system environment to satis­
fy the following user requirements: 

• Convenient, direct access to the computer for 
many users simultaneously, with facilities for 
dynamic interaction with an executing program. 

• Enhanced facilities for efficient background 
processing in a multiprogramming random access 
environment. 

• Rapid response from the computer to reduce the 
overall time between problem definition and 
solution. 

The 70/46 operating system is compatible with the 
RCA Tape Operating System (TOS). This compatibility 
permits the user to progress easily and naturally from 
TOS to the more sophisticated TSOS that is oriented 
toward random access. 

The multiprogramming facilities of TSOS are more 
elaborate than those of TOS, and depend upon the fol­
lowing techniques: 

• virtual storage management. 

• Use of a drum to retain frequently used por­
tions of the Supervisor, control programs, and 
system tables. 

• Spooling (buffering) of conventional card in­
put files and files destined for the printer 
on random access devices (or tape). 

• Construction of a simple task queue from mul­
tiple input sources, and concurrent execution 
of many of these tasks as the resources of the 
system allow. Nonconversational tasks may be 
entered into the task queue from remote ter­
minals. 

The considerably enhanced file management facili­
ties in TSOS provide for: 

• Cataloging of all files in the system. 

1 



INTRODUCTION 
(Cont'd) 

Introduction 

• Specification by the user of file names and 
characteristics at execution time, or, if he 
chooses, at assembly or compilation time. 

• Sharing of files when specified by the user, 
but protection of the user's private files by 
the system through passwords. 

• Indexed-sequential access for files retained 
on random access devices. 

• Transcribing inactive or infrequently used 
files to or from the Mass Storage Unit. 

'rhe TSOS also offers convenient program prepara­
tion and testing based on facilities for: 

• On-line preparation and editing of files in­
cluding symbolic programs and data by means 
of a powerful file editor. 

• Interactive, line-at-a-time compiling and in­
terpretive execution of programs in a FORTRAN 
IV related program. 

• System direction through a flexible and easy­
to-use command language that provides for pre­
stored common procedures. 

• Program checkout with symbolic debugging com­
mands that permit the user to request data 
from his program, to modify variables, and to 
specify locations in the program under which 
deferred commands are to be performed. 

The routines described in this manual have been 
divided into seven general types: 

1. Control Routines 
2. Background Compilers 
3. Interactive Compilers 
4. Program Preparation and Testing 
5. utilities 
6. Hardware Maintenance Routines 
7. Scientific Routines 

The user should refer to the appropriate manual 
for detailed information on any given routine and 
before attempting the execution of any program. This 
manual gives a broad view of the types, variety, and 
the large number of programs available to the TSOS user. 

2 



CONTROL ROUTINES 

TSOS EXECUTIVE 

TSOS Executive 
Macros 

The Executive system of the Spectra 70/46 Time 
Sharing Operating System (TSOS) is a modular system 
that adapts to its environment of programs and hard­
ware devices. The system also supports multiprogramming 
and general-purpose time sharing. Inquiry programs, 
interactive programs and batch programs can be run 
concurrently in the system as user programs. 

A control program governs the privileged system 
operation and includes the functions necessary to 
support the operating system. Programs other than the 
control program are treated as user programs. 

The Executive controls the execution of tasks and 
controls the equipment environment in which they op­
erate. The Executive receives interrupts, sorts them 
as to type and function, and gives control to appro­
priate routines to respond to each. By means of time 
slicing, it provides rapid and complete service to a 
number of users concurrently. 

Executive routines control I/O activity and allo­
cate machine resources. The Executive controls system 
startup, performs error recovery functions, and accu­
mulates user accounting statistics. 

The most frequently used components of the Exec­
utive are resident in main memory with the others 
readily available from the drum. It executes largely 
in the privileged mode and its locations are not ad­
dressable by other programs. The Executive is not 
itself generally time-sliced. 

The Executive control functions are invoked 
through the use of both macros and commands. 

REQM - Request Memory 

This macro requests a contiguous area of memory 
for a user's program at object time. 

RELM - Release Memory 

This macro releases a contiguous area of memory 
in a user's program at object time. 

CSTAT - Change Status 

This macro changes the status of a specified 
page or all pages in a program. 

3 



TSOS Executive 
Macros 

(Cont'd) 

Control Routines 

SAVE - Save Register Contents 

This macro saves contents of general registers 
for a calling program. 

RETRN - Return to a Program 

This macro returns control to the calling program. 

RDATA - Read Record from SYSDTA 

This macro is used to retrieve the next record 
from SYSDTA file. 

WROUT - Write Records to SYSOUT 

This macro sends a message from the program to 
the SYSOUT file. 

WRTRD - Terminal Tandem Write Read 

Conversational mode programs use this macro to 
send a message to the terminal that requires a response. 

SETSW - Set Switch 

This macro sets and resets the task switches. 

GETSW - Get Switch 

The Get Switch macro retrieves the task switches 
and places them in Register O. 

WRLST - Write Print Line 

The user program uses this macro to write a record 
to SYSLST. 

TMODE - Task Mode 

This macro provides the user with task information 
in a designated area. 

LSTFM - SYSLST Format Macro 

This macro indicates editing options for records 
written to SYSLST file. 

PASS - Relinquish Remainder of Time Slice 

This macro causes the task to relinquish its 
current time slice. 

4 



Control Routines 

TSOS Executive 
Macros 

(Cont'd) 
SPEXT - Supply Executive Table 

This macro enables a Class II program to obtain 
a status block required by the user's interrupt 
routines. 

GDATE - Get Current Date 

This macro acquires the current date. 

TOS Macros 
Supported by 

TSOS 
The TOS macros supported by TSOS provide the 

same functions as in the Tape Operation System. The 
TSOS expansions of the macro are the same as for TOS, 
thus providing object level compatibility. Unless 
otherwise noted in the following sections, these 
macros are permitted in either Class I or Class II 
programs. 

TOS Macro Description Class SVC# 

LPOV Load Program Overlay both SVC 2 (0 ) 

FLOAD FCP Load I SVC 25 (0 ) 

ADEXT Address Executive Tables I SVC 3 (0 ) 

STXIT Set Contingency Routine Address both SVC 4 (0 ) 

EXIT Exit from Contingency Routine both SVC 18,19,20 (0) 

ASCII Set ASCII Mode both SVC 16 (0 ) 

EBCD Set EBCDIC Mode both SVC 17 (0) 

TERM Terminate Program both SVC 28 followed 
by SVC 9 (0) 

TERMD Terminate and Dump both SVC 28 followed 
by 22 (0 ) 

GETOD Get Time of Day both SVC 23 (0 ) 

TERMJ Terminate Job both SVC 63 (0 ) 

ERFLG Set Error Flag both SVC 60 (0 ) 

STUTl Set SYSUTl Flag both SVC 57 (0 ) 

I STUT2 Set SYSUT2 Flag both SVC 56 (0 ) 

5 



control Routines 

TOS Macro Description Class SVC# 

MONTB Address Monitor Table both SVC 59 (0 ) 

RDCRD Read System Input both SVC 62 (0 ) 

PROUT Write Print Line Image both SVC 58 (0) 

WRTOT Write System Output both SVC 61 (0 ) 

TOCOM Move to Common Data Area both SVC 32 (0 ) 

EXCOM Set from Common Data Area both SVC 33 (0) 

GEPRT Get Program Time both SVC 24 (0 ) 

SETIC Set Time Clock both SVC 21 (0) 

Command Language The command language ·permits individuals using 
the system to identify themselves, to specify work for 
the system, and to monitor that work. It is the prin­
cipal means of communication between TSOS and indivi­
duals who use the system. These may be: 

System Administrator 

System Operators 

Users 

When granted access to the system, an individual 
is assigned one or more command privilege classes that 
determine the commands he is authorized to issue to 
the system. 

System administrators use the facilities of the 
command language to authorize user access to the 
system, and to maintain and retrieve records of system 
use for accounting and administrative purposes. 

6 



System 
Administrator 

Commands 

System Operator 
Commands 

Control Routines 

JOIN - Grants a user access to the system. 

SEVER - Prohibits a user subsequent access to the 
system. 

LOGON - Identifies the user to the system. 

LOGOFF - Terminates a task. 

CANCEL - Cancels a waiting task or terminates a task 
being executed. 

STATUS - Presents the status of tasks being executed. 

PRIORITY - Allows priority of a task to be changed. 

BROADCAST - Allows the operator to send a message to 
all active terminals. 

MESSAGE - Allows the operator to send a message to a 
specific user's terminal. 

RCARD - Reads punched cards and transcribes them to a 
work file. 

SHUTDOWN - Terminates task in preparation for physical 
shutdown of the computer. 

BIAS - Schedules the mix of conversational and non con­
versational programs. 

ENTER - Places a nonconversational task into the job 
stream. 

CANCEL - See System Administrator commands. 

STATUS - See System Administrator commands. 

PRIORITY - See System Administrator commands. 

SUSPEND - To be specified later. 

7 



User Commands 

Control Routines 

LOGON - See System Administrator commands. 

LOGOFF - See System Administrator commands. 

FILENAME - Enables the user to execute a PROC file. 

PROCEDURE - Serves as starting delimiter of a PROC 
file. 

ENDP - Returns control from a PROC file to the 
Primary SYSCMD. 

ENTER - Specifies the name of a catalogued file for 
input of nonconversational tasks. 

EXECUTE - Loads object module and initiates program 
execution. 

PARAMETER - Indicates language processor options. 

SKIP - Tests the designated task switches. 

REMARK - Indicates the user's remarks to the SYSOUT 
file. 

STEP - Resets the Monitor Table and task switches 
16-31. 

LOAD - Loads a program into storage. 

SETSW - Sets the task switches on, off, or to an 
inverted position. 

TYPE - Prints a message on the operator's console 
typewriter. 

SECURE - Reserves resources for task execution. 

EOF - Transfers to user's end of file routine. 

STATUS - Obtains current status of tasks for a user. 

BREAK - Allows transfer of control from a user program 
to process command statements. 

SYSFILE - Allows reassignment of SYSIPT, SYSOPT, or 
SYSDTA. 

CANCEL - See System Administrator commands. 

SUSPEND - To be specified later. 

8 



User Commands 
(Cont'd) 

Utility Commands 

DATA MANAGEMENT 
SYSTEM 

File Security 

Control Routines 

PAUSE - Allows operator directions to be printed on 
the system's console typewriter. 

INTR - Causes control to be resumed in the operator's 
communication routine. 

IHBPXP - Loads and initiates the TSOS Basic Processor 
Unit Exerciser routine. 

PR~NT - Initiates printing of a specified file on the 
printer. 

PUNCH - Initiates punching of a specified file onto 
cards. 

ACTIVATE - Transcribes a file from mass storage to 
disc. 

DEACTIVATE - Transcribes a file from disc to mass 
storage. 

TSOS provides comprehensive facilities for syste­
matic and convenient management of the conventional 
input/output files used by data processing programs, 
source programs, object programs, and subroutines; and 
textual information to be organized and processed by 
the File Editor. 

These facilities fall naturally into two cate­
gories: 

• File cataloging and management 

• Problem program input/output 

File management facilities provide the means for 
identifying files; for storing and retrieving them 
within the system; for sharing them with other users; 
for copying, modifying, and erasing them; and for de­
fining their existence and use in the system. Problem 
program input/output facilities provide for the actual 
transfer of data to and from programs that are in 
execution. 

When a user creates a file, he is recognized as 
its owner. No other user can obtain access to the 
file, unless the owner catalogues it with the SHARE=YES 
parameter specification. 

9 



File Retrieval 

Volume Concepts 

C CLASSIFICATION 
L 
A 
S 
S 

PRIVATE 
II 

PUBLIC 

TOS 

C UNIT RECORD 
L 
A 
S 
S 

I 

; 

Control Routines 

File access to both the owner and the sharer is 
also controlled by two options. Two passwords can be 
associated with the file: a read password and a write 
password. Two passwords facilitate two levels of file 
sharing. The ACCESS parameter can be used to limit the 
file to read access. 

A file, marked as sharable, can be accessed by 
any user that can provide the identification code of 
the owner, the file name, and the ~ppropriate pass­
word (if required). 

The passwords required to gain access to protected 
files must be supplied by a PASSWORD command. 

Temporary files can be created for the duration 
of a task (Logon to Logoff)i optionally, they may be 
recatalogued as permanent. Temporary files are system 
allocated from public volumes. 

Volumes are classified as follows; 

DA TAPE MUST BE RESTRICTED FILE TSOS TOS 
PERMANENTLY TO SINGLE PROT. I/O EXCP 

MOUNTED TASK MACRO ACCESS 
ACCESS 

YES YES NO YES YES YES NO 

.~ - >-

YES NO YES NO YES YES NO 

YES YES NO YES NO YES I YES 

NO YES 

10 



File Space on 
Public Volumes 

The Access 
Methods 

Sequential 
Access Method 

(SAM) 

Indexed-Sequen­
tial Access 

Method (ISAM) 

Control Routines 

When each user is JOINed to the system, the sys­
tem administrator specifies the maximum amount of 
space on public volumes that the user could require. 
The space is not actually allocated to the user until 
it is required, and is referred to as the user's pub­
lic space allotment. 

Primary and secondary space requirements can be 
specified for files occupying more than one volume. 
Secondary space will be dynamically allocated by the 
system as required for public volumes. 

1. Sequential Access Method (SAM) 

2. Indexed-Sequential Access Method (ISAM) 

3. Basic Direct Access Method (BDAM) 

4. Basic Tape Access Method (BTAM) 

Logical records are retrieved by the use of the 
GET or GETR macro-instructions, which supply a logical 
record to the program. The access method anticipates 
the need for records based on their sequential order 
(the order in which they are written) and normally will 
have the desired record in storage, ready for use. 
Logical records are designated for output by use of 
the PUT macro. The program can continue as if the 
data record was written immediately, although the 
access method's routines may perform blocking with 
other logical records, and delay the actual writing 
until the output buffer has been filled. Buffers are 
automatically scheduled by the system. The sequential 
access method is, for the most part, device independent 
and allows files on both magnetic tape and random ac­
cess devices to be processed. 

The Indexed-Sequential Access Method processes 
logical records in an indexed-sequential file. It may 
be used to: 

• Create an indexed-sequential file in a sequen­
tial or nonsequential manner. 

• Retrieve the logical records of the file in a 
sequential or nonsequential manner. 

11 



Indexed-Sequen­
tial Access 

Method (ISAM) 
(Cont'd) 

Basic Direct 
Access Method 

(BDAM) 

Basic Tape 
Access Method 

(BTAM) 

Control Routines 

• Update records in a sequential or nonsequential 
manner. 

• Insert new records in their proper logical se­
quence within the file. 

• Delete selected records from the file. 

A file is created by use of the PUT macro-instruc­
tion which records records in logical sequence of the 
keys within the records. Logical records are sequen­
tially retrieved from a created file by use of the GET 
or GETR macro-instruction. 

Retrieved logical records are updated and returned 
to the file by using the PUTX macro-instruction. The 
INSRT and STORE macro-instructions are used to add new 
records to the file. A record may be eliminated from 
the file by using the ELIM macro-instruction. The 
program can continue as if the data record were written 
immediately, although the access method's routines may 
perform blocking with other logical records, and delay 
the actual writing until an output buffer has completed. 
Buffers are automatically scheduled by the system when 
sequential processing is being performed. 

The Basic Direct Access Method (BDAM) provides 
the user with the ability to create and process files 
on random access devices. The user is free to estab­
lish his own file organization. Macros are provided 
to load, read, update, add, or replace records. 

Files can be of two types: with a key or without. 
Nevertheless, when a file is specified as having keys, 
every record in the file must have a key and all keys 
must be of the same length. Two record formats are 
provided: fixed-length and undefined. If the user 
wishes blocked records, he must provide his own bloc­
king and deblocking routines. 

The Basic Tape Access Method (BTAM) provides the 
programmer with an efficient and flexible means for 
storing and retrieving the blocks of a sequentially 
organized tape file. 

A major feature of BTAM is that it permits the 
programmer to transfer data from a magnetic tape de­
vice directly to a specific area of main storage or, 
conversely, to transfer data from a specific area of 

12 



Basic Tape 
Access Method 

(BTAM) 
(Cont'd) 

Data Management 
Commands 

Control ~outines 

main storage to the device, without first moving it to 
or from a buffer. This feature is particularly useful, 
if, owing to the large size of the records to be pro­
cessed, no main storage space is available for buffers. 

The user may supply his own I/O areas. When sup­
plying his own I/O areas, the user must ensure that 
the buffers do not cross page boundaries. I/O requests 
referencing buffers that cross page boundaries are not 
processed by the DMS. 

Because of the additional modes of the OPEN macro­
instruction provided for the physical access method, 
it is effective in applications where records are to 
be alternately read and written, in rapid succession, 
from and to a file used as a temporary extension of 
main storage. 

ALLOCATE - Performs storage allocation for direct ac­
cess devices. 

CATALOG - Creates or alters a catalog entry for a 
file. 

COpy - Copies a file. 

DELETE - Deletes one or more entries from the cata­
log. Does not disturb the file. 

DROP - Removes the Hold status of a Link name. 

ERASE - Deallocates space assigned to one or more 
files and deletes catalog entries. 

FILE - Allows the user to catalog a temporary file, 
allocate space for a file, preassign de­
vices, complete or modify the FCB of a file 
at execution time, and supply the symbolic 
device names and device types for TOS pro­
grams. 

13 



Data Management 
Commands 
(Cont'd) 

Data Management 
Macrcs 

Control ;Routines 

FSTATUS - Furnishes the status of one or more files 
in hard copy form. 

HOLD - Used to override normal releasing of devices 
and file commands. 

PASSWORD - Supplies passwords to a task. 

RELEASE - Releases the definition of a previous FILE 
command. 

RENAME - Changes the name of a file. 

TRANSFER - Transfers the catalog entry of a file on a 
public volume from one user to another. 

The following TSOS file management macros perform 
essentially the same functions as the correspondingly 
named commands: 

MACROS COMMANDS 

ALLOC ALLOCATE 

CATAL CATALOG 

DEL DELETE 

ERASE ERASE 

FILE FILE 

FSTAT FSTATUS 

REL RELEASE 

RENAM RENAME 

The following is a list of the various TOS macros 
that are fully supported or partially supported under 
TSOS: 

14 



Control Routines 

Executive Macros 

TOS TSOS SUPPORT 

NO FULL PARTIAL 
MACROS SUPPORT SUPPORT SUPPORT 

TYPE X 
LPOV X 
ADEXT X 
STXIT X 
DDEV X 
TERM X 
TERMS X 
EXCPW X 
EXCP X 
WAIT X 
CHECK X 
AID X 
ASCII X 
EBCD X 
EXIT X 
CPCI X 
TERMD X 
DMODE X 
DTYPE X 
GETOD X 
COMTY X 
CCB X 
CKPT X 
FLOAD X 
SMODE X 
SPRG X 
QUIET X 
ASSGN X 

15 



Monitor Macros 

MACRO 

TERMJ* 

RDCRD 

WRTOT 

ERFLG 

MONTB 

PROUT 

STUTl 

STUT2 

MNSNP 

I NO 
SUPPORT 

x 

FULL 
SUPPORT 

x 

x 

x 

x 

x 

x 

x 

x 

Control Routines 

ACTION TAKEN BY TSOS 
CONTROL PROGRAM 

Similar to TOS action. 

Supports TOS function 
of reading one line 
from SYSIPT. 

Cataloged file is 
created. User can ex­
plicitly request pun­
ching of Object Module. 

Set Error Flag. 

Address Monitor Table. 

Print line images are 
spooled for listing on 
printer. 

Similar to TOS action. 
Set SYSUTl Flag. 

Similar to TOS action. 
Set SYSUT2 Flag. 

*All except TERMJ are supported for Class I programs 
only. 

16 



DYNAMIC LINKING 
LOADER 

Linking Loader 
Functions 

Control Routines 

The TSOS Linking Loader provides an alternate 
method of loading Class II programs. Class II programs 
containing tree structured overlays must be bound by 
the Linkage Editor. All other Class II programs may 
be loaded by the Linking Loader. It will be part of 
the TSOS control system. 

The TSOS Linking Loader accepts three types of 
input: 

1. Object Module Files consisting of one or 
more object modules (For example, Language 
Processor output). 

2. Object Module Libraries. 

3. INCLUDE Control statements to allow selec­
tive loading of object modules. 

The Linking Loader can perform the following 
functions: 

• Load one or more object modules directly into 
memory. 

• Obtain and load object modules from secondary 
inputs. 

• Search one or more object module libraries to 
obtain modules to be loaded into memory 
(explicit calls). 

• Collect control sections with COMMON attribute 
and reserve space for them. Both named and 
"blank" COMMON are supported. 

• Satisfy unresolved external references (impli­
cit calls) by an automatic search of a user's 
TASKLIB and the System Library. 

• Adjust CSECT origins according to attributes 
specified in the ESD card defining the CSECT. 

• Allow programs in load module format (that is, 
Linkage Editor output) to include object 
modules. 

• Allow conversational TSOS languages to include 
subprograms compiled by other languages to be 
included at execution time. 

17 



Linking Loader 
Functions 

(Cont'd) 

Control Routines 

• List all outstanding, unresolved, external 
references at the completion of the load 
process. 

• Construction of an IDA file. 

18 



BACKGROUND 
COMPILERS 

COBOL VERSION 1 

Alternate Input 
Files 

Disc Files 

Diagnostic File 

The TSOS COBOL Background Compiler (CLASS I pro­
gram) is a modification of the existing TOS COBOL 
Compiler. It provides the TSOS COBOL user the basic 
TSOS facilities. The object code produced by the 
COBOL Version 1 Compiler is CLASS I object code. 

The user can specify the following options: 

1. Alternate input files. 

2. That object modules be written to disc files. 

3. That a diagnostic file be generated and 
catalogued for subsequent query through a 
post compilation routine. 

4. That an internal symbol dictionary be gene­
rated and catalogued for subsequent use by 
the Interactive Debugging Aid (IDA). 

The TSOS COBOL Compiler normally retrieves the 
next data record from the SYSIPT file, a card file 
which has been spooled to a temporary random access 
file. The user may optionally redirect SYSIPT to a 
catalogued data file. 

The Compiler normally writes an output record 
(object code) to SYSOPT (card output). When it is 
desired to catalogue an object module, the user re­
directs the Compiler by specifying the parameter 
CARD=YES. This causes an indicator to be set in the 
monitor table to effect the cataloguing of the object 
module to disc. Note that //PARA CARD=YES is used to 
maintain TOS compatibility. 

The user may request that a diagnostic file be 
produced and stored on disc by the parameter //PARA 
DIAGF=YES. 

The TSOS COBOL Diagnostic routine is a post com­
pilation routine providing diagnostic information 
concerning a compilation at a remote terminal. The 
routine will be used as a TSOS CLASS II Conversational 
program. 

The diagnostic routine is activated by any of the 
following: 

19 



Diagnostic File 
(Cont'd) 

Internal Symbol 
Dictionary 

COBOL VERSION 2 

Background Compilers 

STATUS - Provides a brief summary of the results of 
the compilation. Included in the summary are 
the total number of errors detected, and the 
flag errors. 

PRINT - Lists all the error messages with their ex­
planations or the error message identifica­
tion and the associated statement number. 

HELP - Lists the entire set of command names if the 
operand field is omitted, or the functional 
description of those command names specified 
in the operand field. 

STOP - Permits the user to interrupt and terminate 
execution of any diagnostic command. 

The user, by specifying //PARAM SYMD=YES causes 
the Compiler to produce and catalogue an internal 
symbolic dictionary. 

This dictionary is used when the user is debug­
ging his program through IDA. 

The TSOS COBOL Background Compiler (CLASS I pro­
gram) produces object code that allows the user to 
run his program as a CLASS II program. All source 
input statements (exclusive of the COBOL library 
functions) will be read from the SYSDTA file. The 
SYSDTA file can be catalogued as a data file, a 
system card reader, or a terminal. 

Object modules are saved if the user specifies 
CARD=YES or DISC=YES. DISC=YES is used for LOAD and 
GO situations. 

Source and object listing will be provided if the 
user specifies LIST=YES and/or OBJECT=YES. The Data 
Management Easy Access Method (EAM) is used to write 
the listing. 

The compile-time facilities provided in the TSOS 
COBOL Background Compiler version I are also available 
in Version 2. 

The COBOL language elements implemented by the 
Version 2 Background Compiler are the same as those 
provided in the TOS/TDOS COBOL Compiler. In addition, 
a new optional clause is added in the SPECIAL-NAMES 

20 



COBOL VERSION 2 
(Cont'd) 

FORTRAN BACK­
GROUND COMPILER 

VERSION 1 

Background Compilers 

paragraph to permit the use of a terminal device in 
the ACCEPT and DISPLAY statements. Also, the imple­
mentation of the SELECT sentence will be modified to 
conform with the Data Management System (OMS) require­
ments. 

COBOL object programs will utilize the following 
Data Management System Access Methods: 

SAM (Sequential Access Method) 

ISAM (Indexed-Sequential Access Method) 

BDAM (Basic Direct Access Method) 

The selection of an access method is based on the 
ORGANIZATION and ACCESS clauses in the ENVIRONMENT 
DIVISION. 

The SORT/MERGE System is not capable of running 
as a TSOS Class II program. COBOL source programs 
containing the SORT feature must be compiled by the 
TSOS COBOL Version I Compiler. 

The TSOS FORTRAN Background Compiler Version 1 
is a modification of the TOS/TDOS FORTRAN Compiler." 
The Compiler operates in the'nonconversational mode 
as a Class I type program under the Spectra 70/46 
Time Sharing Operating System (TSOS). The TSOS FOR­
TRAN Background Compiler generates object modules that 
are executed as Class I programs under TSOS. The TSOS 
FORTRAN user can specify certain basic facilities: 

1. Source input can be retrieved from a cata­
logued data file on disc. 

2. A generated Object Module can be written to 
disc, to be automatically punched on cards 
at task termination. 

3. Requested listings will be written to disc, 
to be automatically printed at task termina­
tion. 

4. An Internal Symbol Dictionary (ISO) can be 
generated, for subsequent use under the TSOS 
IDA System when debugging at program execu­
tion time. 

21 



FORTRAN BACK­
GROUND COMPILER 

VERSION I 
(Cont'd) 

Internal Symbol 
Dictionary (ISD) 

Generation 

5. 

Background Compilers 

A Diagnostic File can be catalogued and 
generated to the disc for subsequent query 
through the post-compilation TSOS FORTRAN 
Interactive Diagnostic routine. 

Prior to compilation with the TSOS FORTRAN Back­
ground Compiler, the TSOS FORTRAN user may compose, 
syntax check, and correct source programs using the 
TSOS FORTRAN Interactive System. The user can then 
direct the Background Compiler to process the resul­
ting catalogued indexed-sequential file containing 
the corrected source program. 

The Compiler maintains a total count of error 
messages, and also counts according to severity code 
types. When all detail records have been processed, 
a summary record containing the three total values 
is generated to the disc. This Summary Record will be 
written in Update mode and will overlay the dummy 
Summary Record written at file initialization. The 
Diagnostic File will be subsequently closed. 

The Version I Compiler generates Internal Symbol 
Dictionary (ISD) if the user specifies the Compile­
time parameter SYMDIC = YES. 

The ISD will contain the given names of symbols 
defined in the FORTRAN source program, together with 
the necessary information required to define each 
symbol's object program location, length and type 
attributes. The symbols are simple variables, dimen­
sioned variables, and statement numbers. 

The ISD is used when on-line debugging is desired 
through the use of the Interactive Debugging Aid (IDA). 

22 



FORTRAN BACK­
GROUND COMPILER 

VERSION 2 

REPORT PROGRAM 
GENERATOR (RPG) 

Background Compilers 

The TSOS FORTRAN Background Compiler (Class I 
program) produces object code that allows the user to 
run his progrilln as a Class II program. All source 
input statements will be used from the SYSDTA file. 
The SYSDTA file can be catalogued as a data file, as 
a system card reader, or as a terminal. 

Object modules are saved if the user specifies 
CARD=YES or DISC=YES. 

Source and object listings will be provided if 
the user specifies LIST=YES and/or OBJECT=YES. The 
Data Management Easy Access Method (EAM) is used to 
write the listing. 

The compile-time facilities provided in the TSOS 
FORTRAN Background Compiler Version I also are availa­
ble in Version 2. 

The RCA Report Program Generator (RPG) for the 
Spectra 70 System is a simplified programming language 
that produces a printed report without requiring a de­
tailed knowledge of machine coding. The source program 
specifications are written on a series of preprinted 
tabular forms that describe the input data, output 
forms, and calculations to be performed. 

The principal function of the RPG is program 
generation. A machine language program is generated 
in accordance with specifications furnished by the 
programmer. RPG automatically allocates the necessary 
storage locations, provides linkage to input/output 
operations, and includes constants and other designated 
information. During the data processing state, the 
object program coding processes the user's input data 
files and produces the output files and/or printed 
reports. 

RPG is a compiler which is itself a Class I pro­
gram and produces object programs not capable of pag­
ing. RPG offers such report features as input data 
selection, editing, calculation, summarizing, control 
breaks, and file updating. 

23 



TSOS ASSEMBLER 

Input 

Background Compilers 

The TSOS Assembler is organized to work efficient­
ly and conveniently with the TSOS Remote Terminal user 
by (1) using the DMS I/O system, (2) providing an 
optional assembly diagnostic file that can be inter­
rogated remotely (by an Assembly Diagnostic routine 
described in this document) and (3) providing an op­
tional Internal Symbol Dictionary for use with the 
Interactive Debugging Aid. This Assembler supports a 
larger Assembly language that contains many of the 
language elements currently in the larger IBM Assembly 
Systems (such as IBM DOS, OS-360, etc.). Some of 
these language features are: (1) a greater flexibility 
in naming macro set symbols, (2) availability of type 
and length attributes at source code generation time, 
(3) additional conditional assembly statements, and 
(4) an increased number of macro operands. 

The TSOS Assembler is designated to run under con­
trol of the TSOS Executive System on a Spectra 70/46. 
The Assembler is a Class II sharable program. 

The Assembler accepts programs and macro defini­
tions written in the TSOS Assembly Language. The 
output from the Assembler includes (1) a listing file 
that contains the source program, object code, and 

diagnostic information; (2) an object file that can be 
loaded and executed; and (3) a diagnostic file that 
can be tested from a remote terminal. 

Input to the TSOS Assembler is, of course, the 
User's Source Program. 

The TSOS Assembler assumes that the 
program is on the system SYSDTA file and 
accessed with the RDATA executive macro. 
macro can support the following devices: 

user's source 
that it is 

The RDATA 

1. Card reader (the card reader is supported by 
means of a temporary file that is spooled 
from the card reader to the disk) . 

24 



Input 
(Cont'd) 

Sequential Files 

Index-Sequential 
Input Files 

Terminal Input 

Background Compilers 

2. Catalogued SAM file. 

3. Catalogued ISAM file. 

4. Terminal. 

The Assembler will test General Register 15 upon 
return from the RDATA macro to determine the input de­
vice type. 

Card reader files and SAM files are treated as 
80-character card images. The standard columns are 
column 1 for start, column 71 for end, and column 16 
for continuation. Standard columns may be changed by 
the Assembler ICTL statement. (See the Assembly Ref­
erence Manual for complete description of standard 
columns and the ICTL statements). 

Index-sequential files will be treated as vari­
able-length card images. Images that are less than 
80 characters will be space filled to the right, and 
card images that are longer than 80 characters will 
be truncated. Since ISAM input files can be in File 
Editor format, an eight-byte key will be assumed to 
be at the beginning of each record. The Assembler 
will adjust the starE column to 9, the end column to 
79 and the continue column to 24. If a user uses an 
ISAM input file that is not in File Editor format, 
then an ICTL Assembler instruction should be used to 
reset the standard columns. 

Input from a r'emote terminal will be treated as 
variable-length card images. Records that are not 
equal to 80 bytes will be space-filled or truncated 
as in Index-Sequential input. Columns 1, 71, and 16 
will be used as the start, end, and continue columns. 
Column 1 means the first position at which the termi­
nal I/O routine released the keyboard to the user. 
Horizontal tab characters are treated as one blank 
character. 

25 



Macro Libraries 

External 
References to 

Macro Libraries 

Monitor Para­
meter Table 

Indicators 

Background Compilers 

A collection of macro definitions can be made 
available to more than one source program by placing 
the macros in a macro library. When this is done, the 
macro definition can be referenced by writing only the 
macro instruction call line. 

Two kinds of macro libraries exist in the system: 
one is a system macro library, which is available to 
all users, and the second is a private macro library, 
which is catalogued as a user's file. Both the system 
macro library and a private macro file can be refer­
enced in the same assembly. If a macro instruction 
references a macro definition that is in both librar­
ies, the definition in the private library will be 
used. Definitions in a private macro library can call 
on other macros in the same private file, or they can 
calIon system macros. System macros can calIon 
other system macros; however, they cannot call macros 
that are in a private library unless the macro from 
the private library is also referenced in the source 
program. 

The system macro library is specified with a File 
Control Block that has LINK=SYSLIB. When a user wishes 
to supply his own file ~s the system macro library, 
he may supply a /FILE card for the new macro library 
that has SYSLIB as the link. 

The alternate macro library has a LNIK=ALTLIB 
specification. When a user wishes to use a private 
macro library, a /FILE card and a /PARAM card speci­
fying LATLIB=YES must precede his job. If no /FILE 
card is found with LINK=ALTLIB, the Assembly will pro­
ceed using only the system macro library. 

Alternate Macro Library 

The alternate macro library bit is set when: 

/PARAM ALTLIB=YES 

is found in the job control language statement. The 
user also must have a /FILE card with LINK=ALTLIB, 
which gives the name of his macro library file. 

26 



Monitor Para­
meter Table 

Indicators 
(Cont'd) 

Background Compilers 

Cross-Reference Indicator 

The cross-reference indicator is set with 
the following job control language card: 

/PARAM XREF= YES 
NO 

YES is the default case. When XREF=YES is 
in effect, the Assembler prints a combined symbol 
table map and cross-reference listing on the 
output file. 

Error File Indicator 

The error file indicator is set with the 
following command: 

/PARAM ERFILE= NO 
YES 

NO is the default case. When ERFILE=YES is 
specified, the Assembler creates a file that can 
be used at a later time with the Assembler Diag­
nostic routine. 

Listing Indicator 

The listing indicator is set with the fol­
lowing command: 

/PARAM ASMLST= YES 
NO 

YES is the default case. The Assembler will 
produce a program listing on the output file when 
ASMLST=YES is in effect. 

Note: When ERFILE=YES is specified, it is strong­
ly suggested that the listing be suppressed. 
The listing can be obtained by issuing a 
PRINT command for the Diagnostic Error File. 

Internal Symbol Dictionary (ISD) Indicator 

The ISD indicator is set with the following 
command: 

27 



Monitor Para­
meter Table 

Indicators 
(Cont'd) 

Outputs 

Program Listing 

ASMDOS 

/PARAM SYMTAB= NO 
YES 

Background Compilers 

When SYMTAB=YES is specified, the Assembler 
produces ISO records that allow symbolic debug­
ging facilities with the system debugging pro­
gram IDA. 

The program listing will contain a listing of the 
External Symbol Dictionary (ESD) , the source program 
with the corresponding object code and associated 
flags, cross reference data, and diagnostic executive 
WRLST macro. The listing will not be saved after it 
is spooled to the printer, that is, WRLST will not 
create a catalogued file). 

ASMDOS is an enhancement of the TOS Assembler 
and runs in the 70/45 mode (a 65K processor with at 
least 40K assigned to the Assembler) as a Class I 
program. ASMDOS operates within the TOS Executive 
and Monitor. 

ASMDOS source language is identical to that of 
the TOS Assembler; however, the TSOS language has 
some features that are not available in ASMDOS: 

1. DC, OS Enhancements 

2. Operation Code Enhancement 

3. Operation Synonym 

4. continuation Line Enhancement 

5. Copy Predefined Source Code 

28 



Background Compilers 

Summary of TOS, ASMDOS, and TSOS Assemblers 

Feature 

1. FCALL and TS operations 

2. Hexadecimal Self-defining term 
Binary Self-defining term 
Character Self-defining term 

3. DC and DS-
Duplication factor and 
Modifiers expressed as: 

4. Macro name same as operation 
code 

5. OPSYN 

6. Control Section Boundary 

7. PSECT 

8. Control Section Attributes 
Variable Read, Public, 
Privileged 

9. COpy 

10. Continuation lines 

11. Source Language Correction 

12. Number of symbols 

13. Output formats 

TOS 

No 

1-6 digits 
1-24 bits 
1-3 chars. 

Self-Defin-
ing term 

No 

No 

Double Word 

No 

No 

No 

2 

Yes 

<4096 -

--

29 

ASMDOS TSOS 

No No 

1-8 digits 1-8 digits 
1-32 bits 1-32 bits 
1-4 chars. 1-4 chars. 

Self-defin- Self-defin-
ing term or ing term or 
a Macro vari- Macro Vari-
able Symbol able Symbol 

or Expres-
sion enclosed 
in parentheses 

No Yes 

No Yes 

Page Page 

Yes Yes 

Yes Yes 

No Yes 

2 No real limit 

Yes No 

<4096 <8192 - -

Same as TOS Not yet speci-
except attri- fied 
butes may be 
output in ESD 
card 



Background Compilers 

Macro Language 

Feature TOS ASMDOS TSOS 

1. Operand Sublists No Yes Yes 

2. Nesting level 3 6 Limited only by 
Storage 

3. Use of macro variables out- No Yes Yes 
side of macro definitions 

4. Number of Macro-Instruction 50 50 50 
Operands 

5. Number of Macro Set Symbols 
&AGn 25 25 100 
&CGn 20 50 100 
&BGn 480 480 480 

&ALn 16 16 50 
&CLn 0 0 50 
&BLn 128 128 128 

6. Generated Sequence Symbols No Yes Yes 

7 . Conditional Assembly No Yes Yes 

8. Prototype relaxation No Yes Yes 

9. SET operation code No Yes Yes 

10. Type Attribute No No Yes 

11. Length Attribute (macro) No No Yes 

12. Count Attribute No Yes Yes 

13. Number Attribute No Yes Yes 

14. Size of macro operand 8 127 127 

15. Size of SETC variable 8 127 127 . 
16. Size of Substring 16 255 255 

17. Statements not allowed in COpy COpy COpy 
a macro END END END 

ICTL ICTL ICTL 
ISEQ 
START 

30 



INTERACTIVE 
COMPILERS 

BASIC 

BASIC Control 
Statements 

The Beginner's All-purpose Symbolic Instruction 
Code provides the ability for the creation, modifi­
cation, and execution of BASIC programs in an inter­
active mode. 

The TSOS BASIC System includes comprehensive 
language facilities for editing source programs. There 
are commands for editing a program (deleting or ex­
tracting part of a program, renumbering a sequence of 
lines, etc.), listing a program, executing a program, 
saving and reloading programs on a user's disc file 
space, and interrogating the BASIC system. The intent 
of these language facilities is to combine TSOS BASIC 
source statements and editing commands into a homogen­
eous language for conversational program preparation 
and execution. 

Therefore the user does not have to manually switch 
between edit and program construction modes. 

BASIC validates source language statements and 
prompts the user when an error is detected. If a 
source error occurs, the user corrects only the part 
of the statement in error and not the entire state­
ment line. 

The BASIC file is not saved unless the user 
specifies the SAVE command. Edit commands are executed 
immediately and therefore do not become part of the 
BASIC file. 

The BASIC Compiler is essentially a one-pass, load­
and-go subsystem. The Compiler generates CLASS II 
nonreentrant object code. The Compiler itself is 
CLASS II reentered code. 

GO TO 

This statement causes an unconditional transfer 
of control to the statement whose line number is 
referenced. 

ON 

When used in connection with the GOTO statement, 
this statement provides a conditional transfer of con­
trol. 

31 



BASIC Control 
Statements 

(Cont'd) 

BASIC Input/ 
Output Statements 

Interactive Compilers 

STOP 

This statement terminates program execution. 

END 

This statement denotes end of compilation. If 
an END is missing, the Compiler will supply one auto­
matically. 

GOSUB 

This statement transfers control to a subroutine. 

RETURN 

This statement returns control to the statement 
immediately following a GOSUB command. 

IF 

This statement denotes a conditional branch. 

IF (an arithmetic expression is true) THEN (go 
to this statement number). If an expression is not 
true proceed to next statement. 

FOR 

This statement initiates a program LOOP. The LOOP 
is terminated by a NEXT command. Loops may be nested. 

NEXT 

This statement terminates a loop. It serves as a 
delimiter for the extent of a loop. 

READ 

This statement reads in data defined by a DATA 
statement and assigns the data to the variables listed. 

DATA 

DATA statements are an ordered set of nonexecutable 
statements, that in effect, constitute a data file. 
This set can be placed anywhere in a program. 

32 



BASIC Input/ 
Output Statements 

(Cont'd) 

Interactive Compilers 

RESTORE 

This statement resets the DATA list so that it 
points to the first item in the list. 

INPUT 

This statement is similar to the READ statement. 
Unlike the READ statement, however, the INPUT state­
ment is dynamic (it acquires input from the user's 
terminal) . 

PRINT 

This statement causes data values to be written 
to the user's terminal. 

BASIC Declara- DIM 
tion Statements 

BASIC Matrix 
Operations 

This statement reserves sufficient room for a 
list or a table. (It is usually used to specify an 
array. ) 

DEF 

This statement defines a function within the 
BASIC program. This ability will be a time saver for 
functions used repeatedly. If a function is defined 
as ABC, the user merely supplies the values and the 
function is performed immediately. 

LET 

This statement assigns a value to a variable. 

The BASIC user could perform matrix operations by 
using the statements described thus far. However, the 
following is a special set of instructions for matrix 
computations of a numeric array. Each matrix instruc­
tion must start with the word "MAT". 

MAT READ 

This operation reads the matrices named in the 
Read statement; their dimensions having been previously 
supplied. 

MAT PRINT 

This operation prints the matrices named in the 
Print statement. 

33 



BASIC Matrix 
Operations 

(Cont'd) 

Interactive Compilers 

MAT ADD 

MATC=A+Bi place in the matrix c, the sum of A 
plus B. 

MAT SUBTRACT 

MATC=A-Bi place in the matrix c, the result of 
A minus B. 

MAT MULTIPLY 

MATC=A*Bj mUltiply the matrix A by the matrix B, 
placing the product in the matrix c. 

MAT INVERT 

MATC=INV(A)j invert the matrix A. 

MAT TRANSPOSE 

MATC=TRN(A) i transpose the matrix A. 

MAT SCALAR-MULTIPLY 

MATC=(A)*Bj multiply the matrix B by the number A. 
The number A, which must be in parentheses, also can 
be a formula. 

MAT ZEROS 

MATM=ZER, fill out m with zeros. 

MAT ONES 

MATM=CONj fill out m with ones. 

MAT IDENTITY 

MATM=IDNi matrix m is defined as an identity matrix. 

34 



Interactive Compilers 

BASIC Edit NEW 
Commands 

This statement informs the BASIC Compiler that 
the user is creating a new program. 

OLD 

This statement informs the BASIC Compiler that 
the user requests the loading of an old program; 
(that is, a program permanently stored by a SAVE com­

mand) . 

RENAME 

With this statement the user can change the name 
of the program currently in his work space. 

SCRATCH 

The user can erase the current contents of his 
work space by using this statement. The program name, 
however, is retained. 

LENGTH 

This statement causes the amount of space occupied 
by the user's program to be printed on the user's 
terminal. 

STATUS 

This statement prints the program name and the 
current time of day onto the user's terminal. 

SAVE 

This statement causes the user's current program 
to be cataloged as a permanent file in the user's 
public space. 

UNSAVE 

This statement erases BASIC programs that have been 
previously SAVED. 

CATALOG 

This statement prints a list of the user's BASIC 
programs previously SAVED. 

35 



BASIC Edit 
Commands 
(Cont'd) 

Interactive Compilers 

SYSTEM 

This statement is used to return control to the 
TSOS. 

RUN 

This statement directs the system to compile and 
execute the BASIC program in the user's work space. 

LIST 

This statement directs the system to print, on the 
user's terminal, the sequence of lines referenced. 
When no line number is given, the entire program is 
printed. 

DELETE 

This statement directs the system to delete from 
the user's work space, the sequence of lines referenced. 
When no line number is given, the entire program is 
deleted (same effect as the SCRATCH command). 

EXTRACT 

This statement is used to extract, from the user's 
work space, the sequence of lines referenced. All 
other lines of source text are automatically deleted. 

RESEQUENCE 

This statement is used to renumber the sequence 
of lines referenced, using the range of line numbers 
specified. 

DUPLICATE 

This statement duplicates the sequence of lines 
referenced, using the range of line numbers specified. 

MERGE 

This statement directs the system to merge a 
specified sequence of programs that has been previously 
SAVED, into the program currently being worked upon. 

36 



DESK CALCULATOR 

Add Function (+) 

Subtract Func­
tion (-) 

Multiply Func­
tion (*) 

Divide Func­
tion (I) 

Load Func­
tion (@) 

Store Func­
tion (=) 

Restart Func­
tion ($) 

Square Root 
Function (SQR) 

Exponential 
Function (EXP) 

Cosine Function, 
Radians (COS) 

Interactive Compilers 

The TSOS Desk Calculator is a conversational type 
routine that is designed to simulate a commercial desk 
calculator by the use of a remote terminal. Both 
arithmetic and elementary functions are provided. A 
general accumulator and 10 special accumulators can 
be accessed or displayed. 

This function adds a given constant or the con­
tents of a specified accumulator to the general 
accumulator. 

This function subtracts a given constant or the 
contents of a specified accumulator from the general 
accumulator. 

This function mUltiplies the general accumulator 
by either a given constant or the contents of a 
specified accumulator. 

This function divides the general accumulator by 
either a given constant or the contents of a specified 
accumulator. 

This function loads the general accumulator with 
either a specified constant or the contents of a 
specified accumulator. 

This function stores the general accumulator in 
the special accumulator specified. The special accum­
ulators are named AO thru A9. 

This function resets conditions as they were before 
execution of the last line entered. 

This function computes the positive square root of 
the quantity in the general accumulator and stores the 
result in the general accumulator. 

This function raises fe' to the power specified by 
the general accumulator and stores the result in the 
general accumulator. 

This function computes the cosine of the quantity 
in the general accumulator and stores the result in 
the general accumulator. 

37 



Cosine Function, 
Degrees (COD) 

Sine Function, 
Radians (SIN) 

Sine Function, 
Degrees (SID) 

Tangent Function, 
Radians (TAN) 

Tangent Function, 
Degrees (TAD) 

Cosine Hyper­
bolic Function 

(COH) 

Sine Hyper­
bolic Function 

(SIH) 

Tangent Hyper­
bolic Function 

(TAH) 

Natural Logar­
ithm Function 

(LOG) 

Log Base Ten 
Function (LGT) 

Power Function 
(PWR N...--N) 

Interactive Compilers 

This function converts the quantity in the general 
accumulator from degrees to radians; computes the 
cosine of the converted quantity; and stores the result 
in the general accumulator. 

This function computes the sine of the quantity 
in the general accumulator and stores the result in 
the general accumulator. 

This function converts the quantity in the general 
accumulator from degrees to radians; computes the sine 
of the converted quantity; and stores the result in 
the general accumulator. 

This function computes the tangent of the quantity 
in the general accumulator and stores the result in 
the general accumulator. 

This function converts the quantity in the general 
accumulator from degrees to radians, computes the tan­
gent of the converted quantity and stores the result 
in the general accumulator. 

This function computes the hyperbolic cosine of 
the quantity in the general accumulator and stores the 
result in the general accumulator. 

This function computes the hyperbolic sine of the 
quantity in the general accumulator and stores the 
result in the general accumulator. 

This function computes the hyperbolic tangent of 
the quantity in the general accumulator and stores 
the result in the general accumulator. 

This function computes the logarithm to the base 
'e' of the positive quantity in the general accumulator. 
The result is stored in the general accumulator. 

This function computes the logarithm to the base 
10 of the positive quantity in the general accumulator. 
The result is stored in the general accumulator. 

This function raises the positive quantity in the 
general accumulator to a power specified by either a 
given constant or a specified accumulator. The result 
is stored in the general accumulator. N may be from 
1 to 15 digits. 

38 



Inverse Tangent 
Function, Radians 

(ATN) 

Inverse Tangent 
Function, Degrees 

(ATD) 

Inverse Sine 
Function, Radians 

(ASN) 

Inverse Sine 
Function, Degrees 

(ASD) 

Square Func-
tion (SQA) 

Reciprocal Func-
tion (REC) 

Factorial Func-
tion (FAC) 

Absolute Value 
Function (ABS) 

Repeat Function 
(REP N "'-N) 

Interactive Compilers 

This function computes the principal value of the 
inverse tangent of the quantity in the general accumu­
lator. The result, in radians, is stored in the general 
accumulator. 

This function computes the principal value of the 
inverse tangent of the quantity in the general accumu­
lator. The result, in degrees, is storec i~ the gen­
eral accumulator. 

This function computes the principal value of the 
inverse sine of the quantity in the general accumulator. 
The result, in radians, is stored in the general accum­
ulator. 

This function computes the principal value of the 
inverse sine of the quantity in the general accumulator. 
The result, in degrees, is stored in the general 
accumulator. 

This function squares the quantity in the general 
accumulator and stores the result in the general 
accumulator. 

This function computes the reciprocal of the 
quantity in the general accumulator and stores the 
result in the general accumulator. 

This function computes the factorial of the posi­
tive quantity in the general accumulator and stores 
the result in the general accumulator. If the input 
'n' is not an integer, the quantity n(n-l) (n-2)----P 
is computed and stored in the general accumulator; 
where 1<P<2. If n is less than one it is ignored. 

This function computes the absolute value of the 
quantity in the general accumulator and stores the 
result in the general accumulator. 

This function repeats the current entry, a 
specified number of times, beginning with the first 
character of the line. The repeat function must be 
the last entry on the input line. If a negative input 
for n n is given, the function is ignored. The num­
ber may be from 1 to 15 digits. 

39 



Display Expon­
ent Short (#ES) 

Display Exponent 
Long (#EL) 

Display Fixed 
Point (#NN) 

Terminate (END) 

INTERACTIVE 
FORTRAN IV 

FORTRAN (Conver­
sational Editor 

and Checker) 

FORTRAN (Conver­
sational Inter­

preter) 

Interactive Compilers 

This function displays the general accumulator 
and any special accumulators requested in short 
floating-point format with 10 significant digits. The 
accumulators to be displayed are separated by commas. 
A display of consecutive accumulators is indicated by 
a dash. Accumulators must be requested in ascending 
sequence. The general accumulator is always displayed. 
Ex.: #ES, AO, A3-A5, A7, A8, A9. 

This function is similar to the 'Display Exponent 
Short' function with the exception that 16 significant 
digits are displayed. 

This function is similar to the 'Display Exponent 
Short' and 'Display Exponent Long' functions, with the 
exception that all displays are made in fixed point. 
'NN' is the number of digits to be displayed from 01 
to 16 rounded. 

This function terminates the Desk Calculator rou­
tine. 

The FORTRAN Editor and Checker provides syntax 
checking for the full FORTRAN IV language; the same 
language accepted by the Background FORTRAN IV Com­
piler. The editor and checker provide all the neces­
sary interactive facilities to allow FORTRAN program 
construction in an interactive mode to allow subse­
quent compilation with the Background Compiler. The 
editing language also can be interspersed with FORTRAN 
statements in the interactive mode and can be executed 
interpretively. The facilities are reentrant, CLASS II 
programs. 

The FORTRAN Interpreter provides terminal users 
with an immediate execution capability by interpre­
tively executing any FORTRAN statements, debugging 
commands, and editing commands as they are retrieved 
from a file created by the interactive systems. Files 
to be processed interpretively must have been ordered 
by editing facilities. 

The TSOS Interactive FORTRAN System combines the 
features of a conversational FORTRAN Compiler, a 
special FORTRAN text editing facility, a debugging 
language, and a desk calculator capability. This 
provides the FORTRAN user of the Spectra 70/46 TSOS 
with a comprehensive program preparation tool. 

40 



FORTRAN (Conver­
sational Inter­

preter) 
(Cont'd) 

Interactive Compilers 

The system consists of a single interpreter that 
accepts FORTRAN programs written using the full 
FORTRAN IV language, the same language accepted by the 
TSOS FORTRAN IV Background Compiler, and provides the 
following functions: 

Complete syntax checking of the full FORTRAN IV 
language. 

Comprehensive text editing of FORTRAN programs, 
which takes into account the structure of the 
FORTRAN language. 

Immediate execution of FORTRAN programs from a 
remote terminal. 

Powerful debugging commands. 

A desk calculator facility for evaluating FORTRAN 
expressions entered from a remote terminal. 

These facilities are obtained by combining the 
text editing commands, the debugging commands, and the 
FORTRAN language, itself, into an extended language, 
that is interpreted by the interactive FORTRAN System. 
It is envisioned that by means of these facilities a 
user will ordinarily construct his FORTRAN program, 
syntax check it, modify, test, and debug it, all in 
the interactive mode, and subsequently compile it 
using the Background Compiler. 

41 



PROGRAM PREPARA­
TION AND TESTING 

TSOS ASSEMBLY 
DIAGNOSTIC ROU­

TINE 

The Assembly Diagnostic routine provides the user 
with post-assembly diagnostic information at a remote 
terminal. Thus, with this routine and the TSOS Text 
Editor facilities, a user is able to·do all of his 
assembly work (that is, correct source code, reassemble 
and receive diagnostic data) from a remote terminal 
without waiting for any cards or printouts to be listed 
or punched and physically returned to him. To use the 
diagnostic routine, the user must use the TSOS Assembler 
and request that a diagnostic file be created during 
the assembly. When the assembly is completed, the user 
may invoke the diagnostic routine through the Executive 
System. 

The diagnostic routine allows the user to request 
the following information: 

Status - ~his is a summary giving the total number of 
lines in error and the number of errors associated 
with each error flag. 

Line errors - This is a list of the statement numbers 
of all statements that were flagged in conjunction with 
their associated flags. 

Flags - This is a list of all statement numbers that 
contain a given error flag. 

Tags - This is a list of all symbols that are unde­
fined and/or mUltiply defined; and, optionally, the 
cross-reference data for each symbol. 

Cross reference - This is a list of all cross-reference 
data for each symbol supplied in the operand field. 

Print - This is a list of statement numbers exactly 
as they appear on the Assembly listing. 

Define - This is the definition of a specified error 
flag. 

Help - This is a description of the diagnostic routine 
commands. 

The Assembly Diagnostic routine is written as a 
conversational, shared program. 

42 



COBOL SYNTAX 
CHECKER 

COBOL Syntax 
Checker Conunands 

Program Preparation 
and Testing 

The COBOL Syntax Checker provides the user with 
the ability to enter and check COBOL statements for 
syntax, a line at a time, from a terminal. Also, the 
statements can be retrieved and checked from a catalogued 
file on disc. This provides an error-free COBOL source 
program for presentation to the Background Compiler to 
produce object code. 

Facilities are provided to correct (or ignore) each 
line as errors are displayed. Diagnostics are given 
for incorrect syntax. The proper syntax can be supplied 
and it is rechecked. Complete sentences can be recon­
structed upon detection of error. 

A complete COBOL source program or a division may 
be syntax checked. 

ENTER 

This conunand informs the Syntax Checker that the 
source program is conuning from a terminal. 

CHECK 

This command informs the Syntax Checker that the 
source program is on an ISAM file on disc. 

CORRECT 

This conunand corrects lines and syntax checks 
in a division of a COBOL file existing on disc. 

CEND 

This conunand terminates the correct command. 

MODIFY 

This command modifies the contents of the current 
line number, increment, or interval counters. 

IGNORE 

This command ignores the current diagnostic 
(postpone correction). 

43 



COBOL Syntax 
Checker Commands 

(Cont'd) 

FILE EDITOR 

WHY 

Program Preparation 
and Testing 

This command is used to expand the diagnostic 
message. 

HELP 

This command supplies information about the syntax 
checker command(s). 

STOP 

This command is used to stop the session. 

FILE 

This command specifies the catalog name of the 
COBOL source file. 

The TSOS File Editor is a routine that enables 
the user to create, modify, and display catalogued 
program files interactively. It also can be used for 
other types of catalogued files. 

The File Editor is designed to be used conversa­
tionally from a terminal so that the user may control 
processing a command at a time; it also can be used 
nonconversationally from a sequential file or system 
card reader. 

The File Editor is comprised of twenty basic verbs, 
which, when invoked, perform editing functions on the 
contents of a file. These verbs also can be parameter­
ized so that a series of records can be processed 
by one verb. A verb with its optional parameters can 
be referred to as a Command Statement. 

A command statement can process a record or a series 
of records of one file. This file must be catalogued 
as an Index-Sequential File and must be available to 
the user in the Update mode. Hence, at the beginning 
of a File Editor session, the user must designate and 
open an existing ISAM file or request that a temporary 
ISAM file be catalogued and made available for the 
session. This file is called the Principal File. 
Moreover, the File Editor can read in another file 
sequentially and insert it into the principal file if 
the input records are of permissible length. Also, it 
can write a part of the principal file sequentially 
onto a suitable output file. These input and output 
files are referred to as Secondary Files. These files 
must be catalogued and made available through the Data 
Management System. 

44 



File Editor 
Commands 

ALTER 

Program Preparation 
and Testing 

This command replaces a character string with 
another character string. 

CHANGE 

This command performs character by character editing. 

DELETE 

This command is used to delete a character string. 

FIND 

This command is used to locate a character string. 

GET 

This command copies part of a catalogued file 
into the principal file. 

HALT 

This command terminates the File Editor and returns 
control to the TSOS Executive command. 

INPUT 

This command is used to create new lines in the 
principal file from SYSDTA. 

JUMP 

This command causes a conditional transfer to 
another command. 

LOOP 

This command causes the repetitive execution of 
a command series. 

MOVE 

This command copies one part of the principal file 
to another part of the principal file. 

NOTE 

This command causes a SYSOUT display message that 
is used within procedures. 

45 



File Editor 
Commands 
(Cont'd) 

OPEN 

Program Preparation 
and Testing 

This command opens a new file as the principal file 
and closes the current principal file. 

PRINT 

This command is used to write the principal file 
to SYSOUT. 

QUALIFY 

This command is used to open and identify a 
procedure file as input file. 

RESET 

This command allows the user to change File Editor 
variables. 

SET 

This command sets the value of the symbolic line 
address, the current line pointer, or a line content 
parameter. 

TEXT 

This command permits the user to scan a file and 
make changes or create new lines. 

UPDATE 

This command enables the user to insert a character 
string before or after a specific character in an 
existing line. 

VERIFY 

This command displayed the File Editor variables 
on SYSOUT. 

WRITE 

This command saves the principal file on a 
secondary file. 

46 



INTERACTIVE 
DEBUGGING AID 

(IDA) 

Program Preparation 
and Testing 

The IDA language of the Spectra 70/46 TSOS facil­
itates the checkout of new or revised programs. The 
IDA permits the user to check the progress of a pro­
gram during its execution to localize the cause of 
trouble in a program, and to modify the program in the 
course of its execution. The user does not include 
source language debugging instructions in his program 
nor does he recompile his programs in order to utilize 
IDA. 

Once the user has loaded his program, he can input 
IDA statements that refer to his program, then initiate 
execution. When the user is operating in the conver­
sational mode, he can interrupt execution by pressing 
the break key at his terminal and then input further 
IDA commands and statements. He can then cause program 
execution to resume from its point of interruption by 
entering the RESUME command. Alternatively, the user 
can input dynamic IDA statements, prior to program 
initiation, specifying control points at which execu­
tion is to be stopped. 

IDA Commands AT 

This command defines a statement in the program 
to be debugged at which some command is to be 
executed at a later point in time. 

DISPLAY 

This command displays at the terminal the contents 
of a data field. 

DUMP 

This command displays on the debug file a large 
area of memory. 

PROPAGATE 

This command is used to fill a receiving data 
field with the contents of a sending data field. 

47 



Program Preparation 
and Testing 

IDA Commands IF 
(Cont'd) 

STATIC LINKAGE 
EDIT (MODIFIED 

TOS) 

Class 

This command causes the conditional execution of 
the command used with AT and any other command. 

MOVE 

This command moves the contents of a data field 
to a receiving data field. 

QUALIFY 

This command provides for implicitly qualified 
symbols by specifying the LOAD MODULE and CSECT to 
which the symbols refer. 

REMOVE 

This command nullifies the dynamic delayed 
execution of AT statements. 

RESUME 

This command resumes execution of the object pro­
gram. 

SET 

This command is used to change the contents of the 
data field to binary numeric value. 

STOP 

This command stops execution of the object program. 

The Static Linkage Edit is an enhanced TOS routine 
that includes parameters for CLASS, PAGE, READ ONLY, 
and PUBLIC attributes; and a transcriber that produces 
a bound program on disc as well as tape. This routine 
operates as a Class I program. 

The Class control card indicates the class of the 
program to be recognized. The format of the Class 
card is as follows: 

Class 1 indicates a TOS program, Class 2 indicates 
a TSOS program, and Class E indicates an Executive over­
lay. 

48 



ESD Card 
Information 

Read Only 

Public 

Reset of 
Attributes 

V-CONS in 
TSOS 

Transcriber 

Program Preparation 
and Testing 

The first card encountered in a module (that is, 
the ESD card containing the CSECT name that will be­
come the name of the module) will be examined for 
information concerning PUBLIC, READ ONLY, and PAGE. 

The Page control card indicates that a module 
is to start on a page boundary. 

~PAGE~MODULE-name 

The READ ONLY control card indicates to the Link­
age Editor that the specified module is to be in pages 
marked as READ ONLY at program execution time. 

~READONLY~MODULE-name 

The Public control card indicates that a particular 
load is public (that is, shared) and is recognized 
and processed by the Linkage Editor. 

~PUBLIC~LOAD-name 

The previously described attributes can be reset 
by cards with the following format: 

NOT PAGE~module-name 

READONLY~module-name 

PUBLICllLoad-name 

In TSOS, programs containing V-CONS will cause 
generated overlay control modules that will become 
pages separate from the main program. 

The Transcriber is the last pass of the Linkage 
Editor. Each program is automatically written to both 
tape and disc; both may be loaded and executed. 

49 



TSOS LINKAGE 
EDITOR 

Linkage Editor 
Functions 

Program Preparation 
and Testing 

The Linkage Editor is one of the TSOS service 
routines. It converts object modules to load module 
format, links object modules that have been compiled 
or assembled separately, and produces a loadable pro­
gram consisting of one or more load modules. 

Class I programs must be bound by the Linkage 
Editor before they can be loaded for execution. Class 
II programs, alternatively, can be loaded directly 
from object module format by the Linking Loader, if 
they are nontree structured in nature. Class II pro­
grams tree-structured overlays must be bound by the 
Linkage Editor prior to execution. 

The TSOS Linkage Editor accepts three types of 
input: 

1. Linkage Editor Control Statements. 

2. Object Module Files (for example, Language 
Processor output) . 

3. Object Module Libraries (for example, System 
Library) . 

The TSOS Linkage Editor includes all of the 
functional capability of the TOS Linkage Editor. 

The Linkage Editor can perform the following 
functions: 

• Translate one or more object modules into load 
module format. 

• 

• 

• 
• 

• 

Link two or more object modules to form one load 
module. 

Link two or more object modules in an overlay 
structure consisting of two or more load modules. 

Obtain object modules from secondary inputs. 

Search an object module library file to obtain 
modules that are then translated and linked into 
the load modules being produced. (This is an 
explicit search.) 

Rename entries and external references within an 
object module. 

50 



Linkage Editor 
Functions 

(Cont'd) 

• 
• 

• 

• 

• 

• 
• 

• 

• 

Program Preparation 
and Testing 

Define e~try names from an object module. 

Define a new standard entry point for an object 
module. 

Collect control sections with COMMON attribute 
and reserve space for them in the load modules. 
Both named and "blank" COMMON control sections 
are supported. 

Satisfy those unresolved external references, 
which are not explicitly excluded, by an automatic 
search of object module libraries, including the 
system library (SYSLIB). 

Replace, delete, or rename control sections within 
object modules. 

Change the attributes of control sections. 

Produce at the user's option, a load module map 
and/or a cross-reference listing of external 
definitions and external references. 

List all outstanding, unresolved, external refer­
ences at the completion of linkage processing. 

Furnish diagnostic messages relating to errors 
and inconsistencies in the user's input. 

51 



UTILITIES 

ACTIVATE/ 
DEACTIVATE Class II programs have access to files stored on 

Model 70/568 Mass Storage Units. Access is provided 
through the Activate and Deactivate commands. It 
should be noted that Class I programs can also access 
70/568 files directly by using the TOS FCP facilities 
supported by the TSOS. 

The ACTIVATE command transcribes a file from a 
mass storage unit to a public or private volume on a 
direct access unit (disc or drum). After a file has 
been transcribed, it can be accessed using the TSOS 
Data Management System. Direct access files created 
by any of the access methods (including indexed se­
quential) can be transcribed using this command. The 
mass storage file specified in the Activate command 
must be catalogued and must have been transcribed to 
the 70/568 using the Deactivate command. 

The Deactivate command transcribes a file from a 
direct access unit to a mass storage unit. The file 
to be transcribed, therefore, must be catalogued and 
a mass storage file must have been created and cata­
logued prior to issuing the Deactivate command. 

These commands provide a flexible method for 
managing file space on public as well as private 
volumes. For example, when the file storage capacity 
on a direct access unit is exhausted, a user can issue 
the Deactivate command to transcribe a file to a mass 
storage unit. He can then issue an Erase command to 
release the space occupied by that file on the direct 
access device, and reclaim it for other purposes. T 
Thus, these commands provide a means for using the 
Spectra 70/568 Mass Storage Device as a lower-level 
storage medium for "inactive" or infrequently used 
files. At the user's option, the Deactivate command 
will create a magnetic tape "backup" copy of the file 
being transcribed. In fact, the user may specify that 
tape creation is the only transcription desired. If 
a file cannot be activated from the mass storage unit, 
a message will be written to SYSOUT. The conversation­
al user could then reissue the Activate command, speci­
fying an input file that resides on magnetic tape 
(backup volume) . 

52 



LIBRARY MAIN­
TENANCE ROUTINE 

SORT/MERGE 
ROUTINE 

PERIPHERAL 
ROUTINES 

SELF-LOADING 
DEVICE EDIT 

Utilities 

This routine can be used to create or update ob­
ject module libraries. The routine maintains the 
directory that is included in every library to speed 
searches made by the Linkage Editor and the Dynamic 
Linking Loader. 

The TOS/TDOS Sort Merge Generator runs under TSOS 
as a Class I program routine. This includes the Tape 
Sort and the Disk Sort routines. 

The same capabilities afforded under TOS/TDOS 
are available under TSOS. They include: 

1) Generation of a tailored Sort Merge program 
based on user-supplied parameters. 

2) Inclusion of own-code routines. 

The various TOS/TDOS Peripheral routines can be 
run under TSOS as Class I program routines. 

The 70/46 Self-Loading Device Edit routine is 
primarily a debugging aid and a program testing tool. 
It gives the user an easy method of examining infor­
mation read from, or written to, a random access de­
vice or a magnetic tape by providing the ability to 
edit and print all of, or selected portions of, the 
information contained on these devices. It is self­
loading and completely self-contained, including all 
necessary routines to perform input/output operations 
at the hardware level. Thus, the Self-Loading Device 
Edit routine does not require services from the Exec­
utive or Data Management routines, and can be run 
independently of all other software. Furnished as a 
card deck, it is loaded from the card reader and is 
controlled by parameters entered from the console 
typewriter or the card reader. The output may be to 
the on-line printer or to a magnetic tape for later 
printing. 

The Self-Loading Device Edit is supplied as an 
Assembly Language source deck for assembly with the 
TSOS Assembler or with 70/45 ASMDOS. The source deck 
contains a two-card Absolute Loader that will be re­
produced by the Assembler under control of a PUNCH 
pseudo-opi the balance of the program will be produced 
in the form of a text card object deck. The program 

53 



SELF-LOADING 
DEVICE EDIT 

(Cont'd) 

utilities 

occupies approximately 7,850 decimal memory locations. 
All of the remaining high-speed memory is used as the 
input area. 

The function of the 70/46 Self-Loading Device 
Edit is to edit the contents of a random access device 
or a magnetic tape and to output this edited data to 
a printer or to a magnetic tape, as indicated by input 
parameters. The program contains the following options: 

• Output to printer or output to tape. 

• Input from random access device (70/564 Disk 
Unit, 70/565 Drum, 70/567 Paging Drum, or 
70/568 Mass Storage Unit) or input from mag­
netic tape (seven- or nine-level). 

• Graphic representation of the data, hexadeci­
mal representation of the data, or both graphic 
and hexadecimal (combination) representation 
of the data. 

• Rewind or No Rewind of the input tape. 

Because this routine loads itself into low memory 
that may have been occupied by the control program, 
the control program must be reloaded at the end of a 
Self-Loading Device Edit run. 

To terminate the edit before the entire requested 
area has been printed, press COIN: the program will 
then ask for the next edit parameter. 

For random access input, the buffer size (5,193 
bytes) is large enough to handle the largest paging 
drum record. For magnetic tape input, the routine 
creates two buffers by dividing the first 131K of 
available memory into two equal-size buffers for 
double-buffering purposes. 

The random access portion of the Device Edit al­
lows the editing of up to forty records on a single 
track. Any records after the fortieth are not printed 
and the program proceeds to the next track, parameter 
permitting. 

54 



SELF-LOADING 
MEMORY EDIT 

Scratchpad 
Memory 

Utilities 

The 70/46 Self-Loading Memory Edit routine is 
intended for use by the operator as an emergency mea­
sure when, for example, an unexpected program stop 
occurs. The routine is self-loading and completely 
self-contained, including all necessary routines to 
perform input/output operations at the hardware level. 
Thus, the Self-Loading Memory Edit does not require 
services from the Executive or Data Management routines, 
and can be run independently of all other software. 
Furnished as a card deck, the routine is loaded from 
the card reader and initiated from the console type­
writer. It can be floated and loaded into any part 
of memory. It dumps all or selected portions of 
memory to the on-line printer or to a tape for later 
off-line printing. 

The 70/46 Self-Loading Memory Edit will provide 
a listing of scratchpad memory, translation memory, 
and high-speed memory. Listings are in hexadecimal 
with graphic equivalents. 

The routine is provided to the user as a con­
densed five-card Relocating (floating) Loader, fol­
lowed by an object deck in the form of standard TSOS 
TXT cards. The first 16010 bytes of memory are occu­
pied by the loader. The object program is relocatable 
(floatable) and occupies approximately one page (4,096 
bytes) of memory. All parameters are entered through 
the console typewriter. 

The program provides an edited listing of the 
following sections of scratchpad memory: 

1. General Registers: 0-15 for program state 
Pl. 

2. General Registers: 0-15 for program state 
P2. 

3. General Registers: 0-15 for program state 
P3. 

4. General Registers: 0-15 for program state 
P4. 

5. I/O Channel Registers for selector channels 
1, 2, and 3. 

55 



Scratchpad 
Memory 

(Cont'd) 

Translation 
Memory 

High-Speed 
Memory 

output Device 

TSOS SYSTEMS 
GENERATOR/ 

INITIATOR (SG/I) 

utilities 

6. Floating-Point Registers 0, 2, 4, 6. 

7. Storage Keys for 262K memory. 

Note: Alphabetic XIS are printed instead of 
those P3 state General Registers (0, 1, 
2, 3, and 15) that were destroyed by the 
load function. 

The program edits all 512 halfwords of translation 
memory, breaking each halfword into its components -
the W, G, U. S, E, M bits, the Real Page Address, and 
the H bit. 

The routine edits and prints the contents of 
high-speed memory as specified by the user. The print­
out is provided in fullword hexadecimal with qraphic 
equivalents, 48 bytes on each print line. 

A print line is separated into three groups of 
four words. Each group is preceded by the address 
of the first byte of that group. All duplicate lines 
are suppressed, and an asterisk is placed in the pre­
ceding line. 

The output of the 70/46 Self-Loading Memory Edit 
can be assigned to the on-line printer or to a mag­
netic tape (seven- or nine-level). If used, the tape 
must be manually rewound before loading the program 
and will not be rewound at program termination. 

Output on magnetic tape can be printed by using 
the pre-edit option of the 70/25 or 70/35-45-55 Tape 
Edit Program. 

When output is to magnetic tape, one tape mark is 
written after the program has satisfied each input 
parameter. This facilitates the printing of multiple 
edits on one tape. The terminate parameter causes a 
double tape mark to be written to end the tape. 

The TSOS SG/r is an RCA supplied program routine. 
It is used to adapt or tailor TSOS to the specific 
user equipment configuration. Also, it selects those 
programming components that are required for the user's 
particular processing requirements by generating a 
Control Program that is maintained on a system resident 
disk. 

56 



TSOS SYSTEMS 
GENERATOR/ 

INITIATOR (SG/I) 
(Cont'd) 

VOLUME 
INITIALIZER 

utilities 

There are three distinct phases to SG/I: 

1. BASIC System Preparation - This phase creates 
a Basic TSOS on a user-specified disk. This 
phase is optional if there is a pre-existing 
system. During this phase the Basic System 
is transcribed to the user disk from the 
RCA-supplied tape by means of the Hardware 
Load function and a special program called 
INALTRAN producing the disk known as SYSRES. 

2. User System Generation - This phase performs 
the following primary functions: 

a. Constructs the table of physical device 
addresses that describe the particular 
configuration. 

b. Constructs a parameter table used in 
loading the CCM. 

c. Organizes a file consisting of the re­
quired systems programming components 
into a bound control program on SYSRES. 

3. User System Loading and Initialization -

This phase actually loads the control program 
into physical and virtual memory from SYSRES. 

a. Paging drum is initialized here. 

b. Physical page table and translation 
memory initialized. 

c. CCM memory loaded terminal lines put 
in service. 

The Random Access Volume Initializer is a routine 
that prepares random access volumes for use with the 
TSOS. A volume is a 70/564 disc pack, a 70/565 drum, 
or a 70/568 magazine. 

Only the systems operator is permitted to use 
this routine. The Volume Initializer is a Class I 
program routine that runs under the TSOS Control 
routines. 

57 



VOLUME 
INITIALIZER 

(Cont'd) 

utilities 

A surface analysis is made of each volume and 
alternate tracks are assigned for any defective tracks 
found. The testing is accomplished by checking sense 
bytes returned when the track is written and immedi­
ately read back. In the case of the 70/568, the read 
back is done by hardware. 

Home Address (HA) records and Track Descriptor 
records (R~) are written on each track. The Home 
Address provides a safeguard against potential impro­
per head selection by the hardware. Also, a flag byte 
is contained within the Home Address record. It iden­
tifies the track as defective/good and as primary/al­
ternate. 

A preformatted Volume Table of Contents "(VTOC) is 
established for later use by the Data Management 
System (DMS). The VTOC is essentially an index of the 
files that reside on the volume. Since the VTOC it­
self is not confined to specific cylinders, there must 
be a way to locate it. The Standard Volume Label (SVL) , 
which is fixed at Cylinder ~, Track ~, Record 3, ful­
fills this function. Other information relating to 
the initialized volume is also contained in the SVL. 

Another function of the Random Access Volume In­
itializer is to create a dummy Initial Program Loader 
(IPL) to thwart any attempt to load the system's 
control routines from the volume. 

58 



HARDWARE 
MAINTENANCE 

ROUTINES 

DISC HARDWARE 
CHECK ROUTINE 

BASIC PROCESSOR 
UNIT EXERCISER 

CARD PUNCH 
PROGRAM ROUTINE 

The TSOS Disc Hardware Check routine (DISC HCR) 
is part of a family of TSOS on-line peripheral test 
routines. These programs reside with the TSOS soft­
ware and run, on a demand basis, as Class I user pro­
grams. 

This multipurposed program routine is intended 
for use by hardware maintenance personnel. It is to 
be used to test the 70/564 Disc Storage Unit without 
resorting to system shutdown. In addition to this, 
the DISC HCR provides troubleshooting aids and con­
fidence tests for the disc and closely related equip­
ment. 

The primary function of the BPUEXR is to exercise 
the internal logics associated with those instructions 
performing an arithmetic function on the 70/46 Basic 
Processor, concurrent with other nonconversational 
programs and conversational programs. 

The BPUEXR operates on line under the TSOS Exec­
utive as a Class II, Permanent Task, and nonconver­
sational program. This program is not reentrant and 
is activated to run at intervals indicated by the op­
erator command, BPURUN. 

The objective of the BPUEXR is to detect arith­
metic instruction malfunctions under multiprogramming, 
time-shared conditions. 

The TSOS Card Punch Program routine (PCHTST) de­
termines the operability of the Model 70/234 or 70/236 
80-column, row-oriented Card Punch and its control 
electronics are functioning properly. 

The PCHTST routine operates under the control of 
the TSOS Executive System, as a Class I (TOS and TDOS 
compatible) user's program utilizing TOS physical 
level FCP. 

59 



CARD READER 
PROGRAM ROUTINE 

PRINTER DEVICE 
SEQMENT ROUTINE 

SEVEN-LEVEL TAPE 
HARDWARE CHECK 

ROUTINE 

NINE-LEVEL TAPE 
STATION HARDWARE 

CHECK ROUTINE 

Hardware Maintenance 

This routine can be used to test all device func­
tions of the Model 70/237 Card Reader. The routine 
includes special hardware testing functions. 

The Printer Device Segment routine tests the 
hardware functions within the 70/242, 243-10, and 
243-20 line printers. In the event of a malfunction, 
this program will diagnose the error condition and 
report (by way of the console typewriter) information 
necessary to correct this condition. 

This routine also provides the capability for 
on-line troubleshooting and preventive maintenance. 

This routine is used to test seven-level 70/432-
442, and -445 Magnetic Tape units when these units are 
connected to a Model 70/473 Tape Controller. This 
routine is used by hardware maintenance personnel; 
system shutdown is not required. 

The routine is run as a Class I user program. It 
uses physical level FCP and creates I/O situations 
both normal and abnormal, and interprets the results 
from the I/O operation. 

This routine is used to test nine-level Model 
70/432, -442, and -445 Magnetic Tape units. This 
routine is used by hardware maintenance personnel; 
system shutdown is not required. 

The nine-level tape routine is run as Class I 
user program. It uses physical level FCP and creates 
I/O situations both normal and abnormal, and interprets 
the results from the I/O operation~ 

60 



TIME-SHARING 
SCIENTIFIC 

APPLICATIONS 

STATISTICAL 
SYSTEM 

Anaylsis of 
Variance 

Factor Anaylsis 

The following scientific applications are written 
completely in FORTRAN IV and currently operate on a 
Spectra 70/45 using the present FORTRAN Compiler. 
These programs can be recompiled to produce object 
decks that operate efficiently on the Model 70/46 as 
Class I programs. 

The Spectra 70 Statistical System consists of a 
series of statistical programs and a monitor system. 
The monitor provides unified operating procedures, 
unified input/output, unified error recovery proce­
dures, and automatic sequential processing of pro­
blems. Variables can be expressed as single- or 
double-precision variables. The following program 
routines are presently part of the system. Because the 
system is open-ended, additional programs can be added. 

This program routine helps analyze repetitive ex­
periments. The numerical results of an experiment 
serve as the input to the program while the output is 
an "analysis of variance table." The table helps the 
user to make probability statements about the existence 
of unknown effects in an experimental situation. The 
program can handle six classifications and N observa­
tions, where N satisfies 

N = <S-45,000 
6 

The Factor Analysis program routine accepts in­
formation describing a set of variables and reduces 
the number of variables necessary to describe a sit­
uation if mathematically possible. The routine also 
can be used to find the eigenvalues and eigenvectors 
of a real, symetric matrix. The routine can handle 
a correlation matrix of order as high as N, where N 
satisfies 

S-40,000+4N(N+l) (S=Memory Size) 

61 



Regression and 
Correlation 

Nonlinear 
Regression 

FUNCTION 
MINIMIZER 

Description and 
Tabulation 

TSOS Scientific 
Application 

The Regression and Correlation program routine 
is designed to analyze large amounts of independent 
observations of sets of variables. The analysis is 
performed to discover inferred or suspected relation­
ships among the measured variables. The analyst hy­
pothesizes a linear function with unknown coefficients 
to describe the relationships between the variables. 
The program, in a stepwise manner, chooses the vari­
ables and the coefficients of the variables that best 
fit the hypothesized linear function. 

Some problems cannot be reduced to a linear 
function and therefore cannot be solved by linear re­
gression. Nonlinear regression would be employed 
where the hypothesized equation is of a nonlinear 
nature. Almost any equation that can be expressed in 
FORTRAN can be used. 

This program routine accepts as input a function 
of many independent variables and by iterative proce­
dure finds the values of the independent variables 
that minimize the function. The program accepts any 
function that can be expressed as a FORTRAN IV sub­
program and can be expressed within available memory. 

Simple Data Description 

This routine computes simple averages and mea­
sures of dispersion of the variables, omitting values 
that the user specified. 

Correlation with Transgeneration 

This routine computes correlation coefficients, 
averages, and measures of dispersion on entering vari­
ables and/or transgenerated variables from selected 
cases. 

Correlation with Item Deletion 

This routine computes a correlation matrix omit­
ting values of variables that the user specifies to 
be deleted. 

62 



Description and 
Tabulation 

(Cont'd) 

Asymetric Correlation with Missing Data 

TSOS Scientific 
Applications 

This routine computes large correlation matrices 
or subsets of large correl~tion matrices from data 
with possibly missing values. 

Alphanumeric Frequency Count 

This routine computes frequencies of legal char­
acters on one-column data from cards or magnetic tape. 

General Plot Including Histogram 

This routine provides a method by which graphs 
and histograms can be produced. 

Description of Strata 

This routine separates the cases into groups 
based on specified intervals of the conditioning vari­
able. For these selected groups, computations are 
performed for specified conditioned variables. 

Description of Strata with Histograms 

This routine groups the data into a specified 
number of groups and prints histograms for each vari­
able in the groups. The number of classes or cate­
gories of the histograms can be specified, or computed 
by the program. 

Cross Tabulation with Variable Stacking 

This routine computes two-way frequency tables 
of data input. Frequency tables are computed from 
specified ranges of the original variables, variables 
after transgeneration, stacked variables, or combina­
tions of these. 

Cross Tabulation, Incomplete Data 

This routine performs cross-tabulations of input 
data, excluding specified special values or codes used 
to designate missing values. 

63 



Description and 
Tabulation 

(Cont'd) 

MULTIVARIATE 
ANALYSIS 

Data Patterns for Dichotomies 

TSOS Scientific 
Applications 

This routine finds frequencies and patterns of 
anyone particular specified code in the input data. 
The program uses a's to designate the specified code 
or missing values, and lIs to designate other values. 

Data Patterns for Polychotomies 

This routine prints patterns of one-column data 
and item numbers to identify cases having these data 
patterns. 

Mean Substitution 

This routine replaces missing values of a variable 
by the mean of its non-missing values. It will handle 
up to 5,000 variables and any number of cases. 

Principal Component Analysis 

This routine computes the principal components of 
standardized data and orders each case by the size of 
each principal component separately. 

Regression on Principal Components 

This routine computes the principal components of 
standardized data. Each dependent variable is then 
regressed on the first, first two, first three, and 
all principal components. 

Identification of Outliers 

This routine defines the multivariate data for 
outliers by computing the Mahalanobis distance of 
each case from the center of the distribution of the 
remaining cases. 

Factor Analysis 

This routine performs a factor analysis of up to 
198 input variables. The factoring can be done using 
either covariance or correlation matrices. 

Canonical Analysis 

This routine computes the canonical correlations 
between two sets of variables. 

64 



MULTIVARIATE 
ANALYSIS 

REGRESSION 
ANALYSIS 

Discriminant Analysis for Two Groups 

TSOS Scientific 
Applications 

This routine computes a linear function of given 
variables measured on each individual of two groups. 
This function serves as an index for discrimination 
between two groups. 

Discriminant Analysis for Several Groups 

This routine computes a set of linear functions 
for classifying an individual into one of several 
groups. 

Stepwise Discriminant Analysis 

This routine performs a multiple discriminant 
analysis in a stepwise manner. At each step one vari­
able is entered into the set of discriminating vari­
ables. 

Simple Linear Regression 

This routine performs simple linear regression 
analysis on single or combined treatment groups with 
unequal sample sizes. 

Stepwise Regression 

This routine computes a sequence of multiple 
linear regression equations in a stepwise manner. 

Multiple Regression with Case Combination 

This routine performs multiple regression and 
correlation analyses on the data within selected sub­
samples from the same popUlation. 

Polynomial Regression 

This routine computes a polynomial regression of 
the form: 

X
2 k th 

Y = a + 61 X + 62 + .... + 6k X (K degree) 

where K is some positive integer. 

GS 



REGRESSION 
ANALYSIS 
(Cont'd) 

TSOS Scientific 
Applications 

Periodic Regression and Harmonic Analysis 

This routine performs a periodic or harmonic re­
gression analysis using the regression function of the 
form: 

aO + n a. cos (2nit/k + b. sin (2nit/k) 
L 1 1 

i = 1 

Amplitude and Phase Analysis 

This routine computes the amplitude and phase of 
wide-band noise contaminated by extraneous noise. 

Autocovariance and Power Spectral Analysis 

This routine performs the autocovariance and 
power spectral analysis of a given number of time 
series. 

Multiple Time Series Spectral Analysis 

Beginning with a sequence of cross spectral ma­
trices, this routine estimates multiple coherence 
functions and frequency response functions between a 
set of input and a set of output series. 

Multiple Time Series Spectral Estimation 

This routine estimates auto-spectra, cross spec­
tra, and coherences for up to 100 stationary time 
series. 

Time Series Spectrum Estimation 

This routine estimates auto-spectra, cross spec­
tra, and coherence for stationary time series. Each 
series is decomposed into its component frequencies 
by evaluating its finite Fourier transform. 

Mean Frequency Epoch Analysis 

This routine partitions a time series into epochs 
of specified size, computes a mean power and frequency 
for each epoch and plots them against time. 

66 



VARIANCE 
ANALYSIS Analysis of Variance for One-Way Design 

TSOS Scientific 
Applications 

This routine computes an analysis of variance 
table for one variable of classification. 

Analysis of Variance for Factorial Design 

This routine computes an analysis of variance 
for a factorial design. 

Analysis of Covariance for Factorial Design 

This routine performs a full analysis of covari-
ance. 

Analysis of Covariance with Multiple Covariates 

This routine computes the analysis of covariance 
for one analysis of variance variable with multiple 
covariates and unequal treatment group sizes. 

Multivariate Analysis of Variance and Covariance 

This routine handles arbitrary, complete, bal­
anced analysis of variance and analysis of covariance 
desi.gns with an arbitrary number of covariates. 

Analysis of Covariance 

This program routine performs a one-way analysis 
of covariance, using one or more covariates. Group 
sizes can be unequal and parallel analyses can be per­
formed using several dependent variables. 

Multivariate General Linear Hypothesis 

Given a multivariate regression model of the form 
Y = XB + E, this routine computes estimates for the 
matrix S and the covariance matrix of Y. In addition, 
U-statistics and, when possible, F-statisitcs are com­
puted for arbitrary hypotheses of the form ABC = D, 
which are specified by the user. 

General Linear Hypothesis 

This is univariate, general, linear hypothesis 
routine that makes the analysis of missing data, analy­
sis of variance, and analysis of covariance designs 
very simple. By means of very simple specifications 
this program automatically creates the dummy variables 

67 



VARIANCE 
ANALYSIS 
(Cont'd) 

TSOS scientific 
Applications 

required for any complete balanced analysis of vari­
ance of covariance design with or without missing 
data. 

General Linear Hypothesis with Contrasts 

This routine is similar to the General Linear 
Hypothesis routine but it also estimates and tests 
the statistical significance of the parameters that 
occur in the general linear hypothesis model. 

TEXSH 

This routine generates the triple exponential 
smoothing series of a given series. 

DISC I 

This routine computes means of variables in each 
group and a poled dispersion matrix for all the groups. 

DISC 2 

This routine computes a set of linear functions 
that serve as indices for classifying individuals into 
particular groups. 

LGRAN 

This routine computes Y2 + (x) for a discrete set 
of X and Y values. 

FORIR 

This routine calculates the Fourier coefficients 
of order M for a given tabulated function f (x) where 
O<X<2n over the interval 2TIj2N+I. 

RKI 

This routine integrates a first order differential 
equation. 

FRES 

This routine computes the Fresnel integral. 

DTM The Digital Terrain Model Location System, a high-
way design program, is a method of recording a terrain 
data and an associated set of integrated programs that 
work with that terrain data and a roadway design, 
specified by the engineer. 

68 



COGO 

'lRAFFIC SIGNAL 
PROGRESSION 

SALES FORE­
CASTING AND 

CONTROL SYSTEM 

Special Complex 
and Real Matrix 

Subroutines 

TSOS Scientific 
Applications 

COGO is a Civil Engineering problem-oriented 
language that can be used in Control Surveys, Land 
and Right-of-Way Surveys, Highway and Interchange 
Design, Construction Layout, and Bridge Geometry. 

This program routine performs all the necessary 
computations to determine -:':'he phasing of the signals 
and the green bandwidths. 

The Sales Forecasting program routine employs a 
technique of exponential smoothing that requires that 
only previous sales history data be given. This 
method estimates the basic components of the sales 
data and combines these to forecast sales for one or 
more periods. The unique feature of this package is 
that, in addition to using a complete forecasting 
model (including seasonal and trend effects), it 
utilizes a powerful searching technique to select 
optimal model parameter values for each product. 
Going one step further, the program employs a control 
phase that automatically re-evaluates and adapts this 
optimal model. 

REINSK 

This subroutine inverts a real matrix, skipping 
any rows and columns. 

RELINV 

This subroutine inverts a real matrix. 

RESOSK 

This subroutine solves an equation AY = X for Y 
when A and X are real, with the capability of skipping 
rows and columns of A and X. 

RELSOL 

This subroutine solves an equation AY 
when A and X are real. 

RESHSO 

X for Y 

This subroutine shrinks a real vector, leaving 
out any elements. 

69 



Special Complex 
and Real Matrix 

Subroutines 
(Cont'd) 

REEXSO 

TSOS Scientific 
Applications 

This subroutine expands a real vector inserting 
a zero element in any location. 

RELEXP 

This subroutine expands a real matrix, inserting 
the value 1 x 10 35 in any rows and columns. 

COINSK 

This subroutine inverts a complex matrix, skip­
ping any rows and columns. 

COMINV 

This subroutine inverts a complex matrix. 

COSOSK 

This subroutine solves an Equation AY = X for A 
and X are complex, with the capability of skipping 
rows and columns of A and X. 

COMSOL 

This subroutine solves an equation AY 
when A and X are complex. 

COSHSO 

X for Y 

This subroutine shrinks a complex vector, leaving 
out any elements. 

COEXSO 

This subroutine expands a complex vector, inser­
ting a zero element in any location. 

COMSHK 

This subroutine shrinks a complex matrix, leaving 
out any rows and columns. 

COMEXP 

This subroutine expands a complex matrix, inser­
ting the value 1 x 10 35 ln any rows and columns. 

70 



General Matrix 
Subroutines CSUM 

TSOS Scientific 
Applications 

This subroutine sums the elements of each column 
to form a row vector. 

RSUM 

This subroutine sums the elements of each row to 
form a column vector. 

SDIV 

This subroutine divides each element of a matrix 
by a scalar. 

SMULT 

This subroutine multiples each element of a ma­
trix by a scalar. 

SSUB 

This subroutine subtracts a scalar from each ele­
ment of a matrix. 

SSAD 

This subroutine adds a scalar to each element of 
a matrix. 

MADD 

This subroutine adds two general matrices. 

MSUB 

This subroutine subtracts a general matrix B from 
general matrix A forming a general matrix C. 

MMULT 

This subroutine multiples two general matrices 
forming a resultant general matrix. 

MTRAN 

This subroutine transposes a general matrix. 

MTINV 

This subroutine inverts a matrix. 

71 



General Matrix 
Subroutines 

(Cont'd) 

Complex 
Arithmetic 

Subroutines 

COMEQS 

TSOS Scientific 
Applications 

This subroutine solves complex simultaneous 
equations. 

BCT 

This subroutine compiles a table of binomial 
coefficients for every nonegative integer power up to 
the power specified through 130 and stores the re­
sulting two-dimensional triangular array as a one­
dimensional array. 

MATINV 

This subroutine inverts a matrix. 

ZMPY 

This subroutine mUltiplies two complex numbers. 

ZOIV 

This subroutine divides two complex numbers. 

ZSQRT 

This subroutine finds the square root of a com­
plex number. 

ZSIN 

This subroutine finds the sine of a complex 
number. 

ZEXP 

This subroutine finds the exponential of a com­
plex number. 

POLAR 

This subroutine finds the polar coordinates of 
a complex number. 

RKI 

This subroutine integrates a first order differ­
ential equation. 

72 



Complex 
Arithmetic 

Subroutines 
(Cont'd) 

FRES 

TSOS Scientific 
Applications 

This subroutine computes the Fresnal integral. 

TEXSM 

This subroutine generates the triple exponential 
smoothing series of a given series. 

FORIR 

This subroutine calculates the Fourier coeffici­
ents or order M for a given tabulated function f (X) 
where O<X<2 over the interval 2TIj2N+l. 

RANDOM 

This subroutine produces uniformly distributed 
random numbers. 

NORRAN 

This subroutine computes normally distributed 
real random number. 

73 



ROil 
Information 
Systems 

CAMDEN, N.J. 08101 


	000
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	xBack

