
Time Sharing Operating System
(TS,OS)

Language Processor
Programming
Reference Manual

July 1971
OJ-008-2-00

Marketing Publications
Buildin~J 204-2
Cherry Hill, N.J.

The information contained herein is subject
to change without notice. Revisions may be
issued to advise of such changes and/or
additions.

First Printing: June 1971 (DJ-008-2-00)

The following revision to this manual has
been issued:

July 1971 (DJ-008-2-01)

PREFACE

This manual describes the Assembler, the COBOL and FORTRAN
background compilers, and the Post-Assembly and Post-Compilation
Diagnostic Routines. It also discusses briefly other routines which are helpful
to a prograrnmer after execution of a language processor program.

The reader of this manual should be familiar with the Assembly, COBOL,
and FORTRAN languages described in their respective reference manuals.
Furthermore, the assumption is made that programmers using the routines
described in this text are familiar with the fundamentals of TSOS.

This manual contains six sections and delineates the basic concepts necessary
to enter, compile and test the logic of programs under TSOS.

Section I: Cobol Background Compilation - This section describes the
methods for COBOL source program retrieval, object module storage, source
and object program listing, Internal Symbol Dictionary generation, and
diagnostic file generation. Included, as a part of the descriptive material are
several sample compilations. This section covers the use of both the RCA
COBOL background compiler and the ANSI COBOL background compiler.

Section 2: FORTRAN Background Compilation - This section contains
information relating to the processing of FORTRAN programs. Included are
discussions of compiler-source language compatibility, object module
generation, source input specification, listing generation, and Internal
Symbol Dictionary and diagnostic file generation. In addition, a description
of the FORTRAN object time facilities has been given at the close of the
section.

Section 3: Assembly - This section defines the facilities provided in TSOS
for the processing of Assembly language programs. This information includes
source input retrieval, object module transcription and listing, Internal
Symbol Dictionary and diagnostic file generation.

Section 4: Post Source Language Translation Routines - This section
presents an overview of the Post-compilation Diagnostic Routines. A
description has also been included on the use of the Interactive Debugging
Aid as a post-compilation diagnostic tool. In addition, information on
immediate, as well as delayed execution of, object programs has been given
at the close of the section.

Section 5: Post-compilation Diagnostic Routine (BDIAG) - This section
describes the TSOS interactive diagnostic routine designed to provide
programmers operating from remote terminals with diagnostic information
concerning background COBOL and/or FORTRAN compilations.

Section 6: Post-assembly Diagnostic Routine (ADIAG) - This section
describes the TSOS interactive diagnostic routine designed to provide
programmers operating from remote terminals with diagnostic information
concerning assembler executions.

iii

iv

CONTENTS

Page

1: COBOL BACKGROUND COMPILATION. .. 1-1
Introduction .. , 1-1
Equipment Configuration. .. 1-2
Optional Equipment. .. 1-2
Compiler Features 1-2

Source Input 1-2
Disc-Resident Source Files 1-2
Card Input 1-4
Terminal Input : 1-4
Use of SYSFILE Command 1-5

Generated Object Modules .. 1-5
Disc-Resident Object Modules 1-5
Object Module Card Decks 1-5
Class I and II Object Modules 1-6

Source and Object Listings .. 1-6
Immediate Listings. .. 1-6
Saved Listings .. 1-6

Use of the P ARAM Command 1-7
COBOL Language Modifications 1-8

Segmlentation .. 1-8
SPECIAL-NAME Paragraph 1-8
SELECT Statement 1-9
FILE CONTROL Paragraph. .. 1-10

SELECT Filename " 1-10
External Name .. 1-10
UNIT-RECORD. .. 1-10
DIRECT-ACCESS 1-10
UTILITY. .. 1-10
ORGANIZATION 1-10
RESERVE. .. 1-11
SYMBOLIC KEY. .. 1-11
ACTUAL KEY , 1-11
RECORD KEY. .. 1-11

I-O-Control Paragraph 1-11
File Description (FD) Paragraph. .. 1-11

Recording ., 1-1 1
Record Contains .. 1-1 2
Label Records 1-1 2
Value of ID 1-12

Debugging Statements 1-12
STOP Verb. .. 1-12
ACCEPT Statement 1-12
DISPLAY Statement 1-13

v July 1971

Page

COBOL Interface With DMS and Other System Components
Handling Files Accessed By Object Programs 1-13

Access Methods 1-13
File Description 1-13
FILE Command. .. 1-14
Device Independence for Sequential Files 1-14

COBOL Source Library on Disc. .. 1-14
Diagnostilc File Generation .. 1-15
Generation of Internal Symbol Dictionary (lSD) " 1-15
Sample Sessions " 1-1 7

Example.t\ " 1-17
Example B 1-19
Example C .. 1-20

2: FORTRAN BACKGROUND COMPILATION 2-1
Introduction ... , .. 2-1
Equipment Configuration. .. 2-1
Source Language Compatibility 2-1
Source In.put .. 2-2

Disc-Resident Source Files .. 2-2
Card Input " .. 2-3

IntermedJlate Work Files. .. 2-3
Generated Object Modules. .. 2-3

Disc-Resident Object Modules 2-4
Object Module Card Decks " 2-4
Class I and Class II Object Modules 2-4

Generated Listings 2-5
Immediate Listings. .. 2-5
Saved Listings .. 2-5

Internal Symbol Dictionary (lSD) Generation 2-6
Diagnostk File Generation. .. 2-7
Summary of FORTRAN Compiler Parameter Specifications. 2-7
FORTRAN Object Time Facilities. .. 2-9

FORTRAN and DMS Related Concepts. 2-9
FORTRAN Data Management Facilities. 2-10
FORTRAN Data Management Library Routines 2-20

FORTRAN Data Definition Establishment Facility. 2-21
File Management and Cataloging Facilities. 2-31
Mathematical Routines. .. 2-32
Debugging Routine " 2-32

3: ASSEMBLY ... 3-1

July 1971

Introduction. .. 3-1
Equipment Configuration. .. 3-2

Optional Equipment. .. 3-2
Assenlbly Language 3-2

In]Jut .. 3-2
Disc-Resident Source Files 3-2
Card Input 3-4
Terminal Input. .. 3-4
Macro Libraries 3-5
Source Input Correction. .. 3-6
Use of SYSFILE Command 3-6

vi

Page

Output Object Module .. 3-7
Disc-resident Object Modules. 3-7
Object Module Card Decks .. 3-7
Class I and II Object Modules 3-7

Listings .. 3-8
Diagnostic File .. 3-8

Intennediate Work Files ' " 3-9
Use of PARAM Command for Assembly 3-9

P ARAM Command ParaIneters .. 3-9
Sample Sessions 3-11

Example of a Conversational Session Where a Programmer
Assemlbles and Stores the Object Module
in an Object Module Library 3-11
Example of a Conversational Session Where the
Programmer Enters Source Statements From a Terminal 3-12

4: POST-SOURCE LANGUAGE TRANSLATION ROUTINES 4-1
Introduction " .. 4-1

Post-Compilation Diagnostic Routine " 4-1
Diagnostic File Contents 4-1
Diagnostic File Compilation-Time Parameter. 4-2
Cataloging, Allocating, and Naming a Diagnostic File. 4-2

Interactive Debugging Aid (IDA) .. 4-2
Immediate Execution of an Object Program. 4-4
Delayed Execution of an Object Program. .. 4-5

Library Maintenance Routine (LMR) 4-6
Linkage Editor " 4-6

5: POST-ASSEMBLY DIAGNOSTIC ROUTINE (BDIAG) 5-1
Introduction. .. 5-1
Operation and Use .. 5-1
Command Notation 5-2
Command Definitions 5-2

STATUS Command 5-3
PRINT Command ' " 5-3
HELP Command ".............................. 5-5
DEND Command " .. 5-5

Progralll Messages , .. 5-5
Considerations for Use .. 5-6
Sample Session. .. 5-7

BDIAG, with COBOL and FORTRAN Compilations. 5-7

6: POST-ASSEMBLY DIAGNOSTIC ROUTINE (ADIAG) 6-1
Introduction " .. 6-1
Operation and Use .. 6-1

Terminal Mode. .. 6-1
Printer Mode 6-1
Invoking ADIAG 6-2
Comlnand Interruption 6-2

vii July 1971

Page

Structure and Use of the Diagnostic File 6-2
Stru cture ... 6-2
Naming the Diagnostic File 6-3

Diagnostic Program Commands 6-3
Conventions for Command Description 6-4
Command Definitions 6-4

STATUS Command 6-4
FLAGS Command 6-6
LlNES Command 6-6
NUMBERS Command 6-6
TAGS Command 6-7
XREF (Cross-Reference) Command. 6-8
PRINT Command. .. 6-8
DEFINE Command 6-9
HELP Command 6-10
MODE Command. .. 6-10
VERIFY Command 6-11
REMOVE Command 6-11
END Command 6-12

INDEX ... Z-1

July 1971 viii

1. COBOL BACKGROUND COMPILATION

INTRODUCTION

The RCA and ANSI COBOL Background Compilers (BGCOB and
ANSICOB) are nonconversational, Class II (pageable) programs which run
under control of RCA time sharing systems. Both compilers are direct access
oriented programs. The compilation facilities provided by the two COBOL
compilers are:

1. Source input retrieved from a cataloged file, from a card deck, from a
remote terminal, or from cataloged COBOL source-library file.

2. A generated object module can be written on the task's Object Module
File and then punched on cards.

3. Requested listings written on temporary files, and automatically printed
or written on permanent files for printing at the user's convenience.

4. An Internal Symbol Dictionary (lSD) to be used by the Interactive
Debugging Aid (IDA) for debugging at program execution time.

5. A diagnostic file generated for query through the Post-Compilation
Diagnostic Routine (BDIAG).

Before compilation, the COBOL Programmer at a remote terminal may
invoke the interactive COBOL Syntax Checker Routine (for RCA COBOL
only) or the COBOL Program Development Subsystem to detect and correct
syntactical errors in source programs, and to obtain a cataloged indexed
sequential file containing the corrected source program.

During compilation, the COBOL Background Compiler operates in the
nonconversational mode; however, these can be dynamic communication
between the compiler and the programmer in the sense that the programmer
may type a COBOL program at a terminal or type a BASIS statement which
directs the cOlnpiler to compile a program from a COBOL Source Library.

The programnler can request that the COBOL compiler produce a diagnostic
file of the program's compilation errors. In that case, the programmer may,
after compilation, invoke the Interactive Post-Compilation Diagnostic
Routine to interrogate this file. In this way, he may obtain diagnostic
information about his compilation, such as the number of errors noted by
the compiler and a description of any such errors. Once in possession of this
information, the programmer can decide whether to correct the source
program and recompile it, or to execute the object program.

1-1

At object program. execution time, the programmer at a remote terminal can
employ the IDA (Interactive Debugging Aid) System to aid in debugging
COBOL object programs. If an Internal Symbol Dictionary (lSD) was
created at compilation time, the IDA user will be able to refer to data fields,
entry points and instructions by their COBOL source data names, procedure
names, and sequence numbers. Without an lSD, the programmer must use
hexadecirrtal addresses to refer to them.

EQUIPMENT CONFIGURATION

The COBOL Background Compilers each require approximately 100,000
bytes of virtual In emory . The following minimum TSOS configuration is
required flOr COBOL compilation:

I-Processor (262KB)
2-Direct Access Units
I-Paging Drum

In addition, the system must include a Communications Controller
Multichannel (CC:M) with associated buffers and remote terminals, if it is to
support conversational users.

Optional Equipment

Direct Access Storage (for the COBOL source library)
I-Card Reader (card input)
I-Card Punch (if the object module is to be punched as cards.)
I-Printer (for listings)

COMPILER FEATURES

Source Input

The COBOL Background Compiler reads source input by using the RDATA
macro. RDA T A instructs the Executive to read an input record from the
SYSDT A file. The SYSDT A file may be equated to a cataloged file on
direct-access devices, a card reader, or a remote terminal. (See Figure 1-1.)

Disc-Resident Source Files

A COBOL source file which resides on direct-access must be either a
Sequential Access Method (SAM) file or an Indexed Sequential Access
Method (lSAM) file. In the latter case, the 8-byte numeric keys must be
situated in the first 8 data bytes of the record. ISAM files with this
construction may be directly created, updated, and edited by the File Editor
(see the File Editor Reference Manual) or EDT (see the EDITOR Reference
Manual).

If the compiler is to retrieve its input from a direct access file, it is the
programrner's responsibility to ensure that the source input is contained in a
cataloged file and to use the Executive command SYSFILE to direct
SYSDTA to his source file. (See examples at the end of this section.)

1-2

OBJECT
DECK

INPUT

COBOL
COMPILER

OUTPUT

IMMEDIATE
LISTINGS

REMOTE
TERMINAL

FIGURE 1-1. COBOL BACKGROUND COMPILER'S INPUT-OUTPUT FLOW CHART
(THE DIRECT ACCESS UNITS SHOWN ARE NOT NECESSARILY DIFFERENT)

1-3

Card Input

Terminal Input

Note: If the programmer wishes to do any additional
processing after the end of the compilation, such as the
library Maintenance Routine, care must be taken at that
tirrle to redirect SYSDT A from the COBOL source file to
whatever source is required by the subsequent routines. For
instance, in a conversational task a programmer wishing to
redirect SYSDT A to the terminal after compilation would
issue the following command:

/SYSFILE SYSDT A=(SYSCMD)

A progranlmer may wish to enter an entire compilation as a background task
in the form of a card deck containing a /LOGON card, cards containing
commands to the compiler, the COBOL source program, and a/LOGOFF
card. The operator places the deck in the reader and initiates execution of
the task by entering the RCARD command on the console, and the entire
card deck is spooled in and then executed. In this case, the programmer
should direct SYSDTA so that the compiler can take its input from the
spooled-in file, thus:

/SYSFILE SYSDTA=(SYSCMD)

In a conversational task, SYSDT A is by default the remote terminal from
which the task was initiated. A conversational programmer initiating a
cornpilation from a terminal might wish to instruct the compiler to take its
input frOlTI a source -deck which the programmer had previously requested
the operator to place in the reader. In this case, the programmer should
redirect SYSDT A from the terminal to the card reader by giving the
comnland:

/SYSFILE SYSDTA=(CARD)

The operator receives a message requesting confirmation that the deck is
actually in the reader. SYSDT A should be redirected from the reader as soon
as possible so as to free the card reader for other tasks.

The conversational programmer may enter the source program directly from
a remote termina1. In this case, the programmer must be sure that SYSDTA
is directed to the terminal, redirecting it there, if necessary, by the
command:

/SYSFILE SYSDT A=(SYSCMD)

before beginning a compilation.

The compiler types an asterisk (*) on the terminal, indicating that it is ready
to receive source input. The programmer types a line of COBOL source, not
longer than 80 characters and conforming to the usual COBOL margin
requirements. The compiler reads this line, then types another asterisk (*) to
signify that it is ready for another input line. This process goes on until the
programnler has entered the whole source program and signified end of input
by typing a slash followed by an asterisk (/*) instead of another input
record. The compiler then takes control and proceeds to compile the source
program. An input error will require that the programmer reload the
compiler.

1-4

Use of SYSFILE Command

filename

(CARD)

(PRIMARY)

(SYSCMD)

The Executive command SYSFILE allows the programmer to direct
SYSDTA to a cataloged source file or to the system card reader, to redirect
SYSDT A to its primary assignment, or to the command input stream.

SYSFILE SYSDTA= fIlename
(CARD)
(PRIMARY)
(SYSCMD)

Identifies the: name of the cataloged source file. The command is invalid if
the file is not cataloged.

Identifies the system card reader.

Identifies the primary assignment of SYSDT A.

Identifies the command input stream.

Generated Object Modules

The compiler can generate an object module on public storage EAM space.
The programmer may obtain punched cards by issuing a PUNCH *
command.

Disc-Resident Object Modules

The compiler automatically writes the object module on an EAM file unless
the programmer specifically inhibits this by means of the following
command:

jPARAM DISC=NO

Because files created by EAM are temporary (at most, they remain available
for the duration of the task in which they are created), the programmer who
wishes to keep an object module in a permanent, direct access file should do
so by invoking the Library Maintenance Routine (for a description of this
routine, refer to the Utility Routines Reference Manual).

Object Module Card Decks

If the programmer wishes to receive an object module in the form of a deck
of punched cards, he must be careful to issue a jPUNCH * command after
the end of compilation and before logging off. This command instructs the
system to punch out the EAM file; thus the programmer who wants an
object deck must not have previously issued the command:

jPARAM DISC=NO

which would preclude the object module's being written on the task's Object
Module File.

1-5

Furthermore, once the PUNCH command has been issued, the EAM object
module file will no longer be available to the programmer. If he wishes to
save the object nl0dule in a library, he should do so by using the Library
Maintenance Routine before issuing the PUNCH command.

Class I and II Object Modules

The Compiler can produce either Class I or Class II object modules. Class II
programs are pageable and use virtual memory. Class I programs use resident
memory, are not pageable and are TOS/TDOS compatible.

The programmer should specify the type of object module required by using
the /PARAM comnland:

/P ARAM CLASS::: 1
/P ARAM CLASS:::2

for Class I object modules
for Class II object modules
(default option)

Source and Object Listings

Immediate Listings

Saved Listings

To obtain compiler listings, the programmer must specify the following
paraln eters:

/PARAM LIST=YES

/PARAM OBJLST=YES

/PARAM XREF=YES

/PARAM DIAG=YES

/PARAM MAP=YES

For source listing (NO is the
default.)
For object listing (NO is the
default.)
For cross-reference listing (NO
is the default.)
For diagnostic listing (YES is
the default.)
For locator map listing (YES is
the default.)

The cOInpiler writes these listings on temporary files and then issues a
spoolout PRNT Inacro causing them to be printed. The listings are spooled
out as a separate task independent of the programmer's current task.

If the programmer wishes to have any of these listings saved on a permanent
file, he should specify whichever of the following parameters is applicable:

/P ARAM SA VLST=SOURCE
/PARAM SA VLST=OBJECT
/PARAM SAVLST=LOCMAP

/PARAM SAVLST=ALL

F or source listing
For object listing
For maps, cross reference
listing and diagnostic listing
For all of the above

The specified listings are not printed when the programmer logs off after the
compilatilon, but are available as permanent files so that the programmer
may issue a /PRINT command whenever convenient. (For a discussion of the
SPOOLOUT conlmand, PRINT, refer to the Utility Routines Reference
Manual.)

1-6

To print a SA VLST file, the programmer must use the /PRINT command
with the edit option. For example:

/PRINT Xl.SOURCE,SPACE=E

Xl is the program name and SOURCE identifies the listing required.

Thus Xl.SOURCE is the fully qualified name of the file containing the
source listing IOf program Xl.

To request the printing of a saved object listing for program X2, the
programmer would issue the following PRINT command:

/PRINT X2.0BJECT,SPACE=E

Permanent listing files are SA:M files containing variable-type records in
blocks of 2048 bytes. They remain available until such time as the
progranlmer decides to eliminat{~ them using the ERASE command.

Use of the P ARAM Command

The following options of the Executive Command, /PARAM may be used to
direct the execution of the COBOL Compiler. The default cases, which are
underlined, pertain if the user does not enter a particular parameter.

DEBUG= 1~~SI
If SYMDIC=YES is specified, DEBUG=YES signifies that the source
sequence numbers are used to construct COBOL verb symbols. If
DEBUG=NO, compiler line nunlbers are used. If SYMDIC=NO, the DEBUG
parameter has no effect.

DISC= 1~~SI
The object module is to be written on the task's object module file (YES), or
not (NO).

LIST=

OBJLST=

W~sl

I~~sl
An object listing is to be printed. after compilation (YES), or not (NO).

MAP= I~~sl
A program map is to be printed after compilation (YES), or not (NO).

XREF= I~~sl
A cross-reference list is to be printed after compilation (YES), or not (NO).

1-7

DIAG= I ~~sl
A diagnostic listing is to be printed after compilation (YES) or no diagnostic
listing is printed (NO).

CLASS I i I
TIle source program is to be compiled into Class 2 object code (2) or Class 1
object code (1).

SYMDIC=

An Internal Symbol Dictionary is to be created (YES), or not (NO).

ERRFIL= INO I
YES

A diagnostic file is to be created for subsequent examination by BDIAG
(YES), or no such file is to be created (NO).

SAVLST=

{

NO } SOURCE
OBJECT
LOCMAP
ALL

A permanent source, object or map listing file is to be created (SOURCE,
OBJECT, LOCMAP), or all of these (ALL). NO specifies that a permanent
listing fi]e is to be created.

Note: The LIST and SAVLST parameters are independent of
one another, that is, LIST=YES need not be specified for
SA VLST=SOURCE to be effective.

COBOL LANGUAGE N[ODIFICATIONS

Segmentation

The COBOL language implemented by the COBOL Background Compilers is
a superset of that provided by the respective TOSjTDOS COBOL compilers.
The implementation in RCA time sharing systems of various COBOL
language elements is described in the paragraphs which follow.

The ANSI COBOL segmentation facility under RCA time sharing systems
does not permit the use of fixed, overlayable segments. Fixed, overlayable
segments are considered to be permanent segments.

SPECIAL-NAMES Paragraph

The keyword, TERMINAL, may be assigned a mnemonic name.

1-8

The SELECT Sentence

Although not all the phrases in the SELECT sentence have counterparts in
DMS, they are required for syntax capability. The device addressed by a
Class 2 object program is determined either from the catalog entry or the
FILE command associated with the filename specified in the SELECT
sentence. The: external name, device class, and unit number designations in
the SELECT sentence are for syntactic completeness only. However, other
clauses, such as RESERVE, ORGANIZATION, RECORD KEY, etc., are
pertinent to DMS FCB operands and must be specified as shown in the
COBOL Reference Manual.

Special consideration is given to the system device names when used in the
SELECT sentence. FCB's are not created for these files because they are
assigned to Executive files as follows: SYSIPT and SYSIN are assigned to
SYSIPT; SYSOPT and SYSPUNCH are assigned to SYSOPT; and SYSLST
and SYSOUT are assigned to SYSLST.

A read or write to these files generates the appropriate executive macro
rather than a DMS input-output macro. The macros issued are the same as
those for the ACCEPT and DISPLAY verbs. However, files assigned to the
system device names in the SELECT sentence must be programmed as data
files, and require OPEN and CLOSE statements as well as AT END
imperatives for input files. The advantage of this implementation is that the
files are: not cataloged, but are EAM files existing only for the duration of
the task. They are ideal for low volume input and output.

When the system device names SYSIPT or SYSIN appear in a SELECT
sentence, the filename is associated with the Executive's SYSIPT file. The
file may be directed to the system card reader or a cataloged SAM or ISAM
file by the SYSFILE command.

The record type should be variable and the record size should not exceed 80
bytes for SAM files or 72 infonnation bytes for ISAM files. In ISAM input
files the eight··byte key must be the first eight data bytes of the record (after
the 4-byte record length field). The key field is placed in positions 73
through 80 of the input record area if more than 72 bytes are defined. The
AT END imperative is executed when end-of-file is reached in a cataloged
file, or on the first command statement or IEOF card in the card reader.

When the system device names SYSLST or SYSOUT appear in a SELECT
sentence, the filename is associated with an Executive EAM file destined to
be printed on SYSLST. The size of the record must not exceed the print line
size of the system' printer or remote batch printer. Because the file is under
Executive control and is cumulative throughout the task, the programmer
should issue a print control character to skip to the top of page before the
first and after the last data records are written to the file by the problem
program. The file is printed and then erased at task termination by the
control program.

When the system device names SYSOPT or SYSPUNCH appear in a SELECT
sentence, the filename is associated with an Executive EAM file destined to
be punched as SYSOPT. The size of the record must not exceed 80 bytes.
The file is cumulative throughout the life of the task and is punched and
erased at task termination by the: control program.

1-9

The FILE CONTROL Paragraph

SELECT Filename

External-Name

The name specified is entered in its entirety into the filename operand of the
FCB. The name must be a COBOL name; DMS qualified filenames are not
pennitted. The first eight characters, including hyphens if they appear, of
the filename are entered in the FCB as the linkname. Hyphens are valid in
the filename of the FCB, but not in the linkname. Therefore, hyphens
should be avoided within the first eight characters of the COBOL filename.

This entry is required only for syntactical completeness.

UNIT-RECORD

Because Class 2 programs may not access unit-record devices directly, a
standard SAM fill~ FCB will be generated for files assigned to unit-record
devices. After the problem program has finished executing, the user must
issue a PRINT or PUNCH command naming the output file. The FCB of the
SAM file specifies fixed, blocked records; such a file could be created by the
File Editor or by another problem program.

DIRECT-ACCESS

UTILITY

A standard SAJ\tl file FCB is established unless ORGANIZATION IS
INDEXED is specified in which case an ISAM file FCB is established.

A standard SAM file FCB is established. However, some changes, such as
block size, may be made with a FILE command at run time.

OR GANIZATION

If DIRECT is specified, a SAM file is established in the FCB and user PAM is
employed to simulate TOSjTDOS random access processing as defined in the
COBOL Reference Manual. Under this mode of operation, a standard PAM
page of 2,048 bytes is treated as a track as in TOSjTDOS. The relative track
number given in the ACTUAL KEY is interpreted by compiler generated
routines as a relative page number. The SYMBOLIC KEY is maintained on
the pages as part of the data records. The various access methods defined in
the reference manual are simulated by COBOL routines which expect that
block size will not exceed 2,048 bytes, less the length of the SYMBOLIC
KEY fields. The BLOCK CONT AINS clause is not applicable when
ORGANIZATION IS DIRECT, and the BLKSIZE operand in the FCB may
not be changed by a FILE command. Files created by COBOL programs
under this mode Illay be processed only by other COBOL programs.

If INDEXED is specified, a DMS ISAM file FCB is established. The compiler
will generate routines to process the ISAM files as defined in the COBOL
Referenc'e Manual. Any alteration of the OPEN type operand in the FCB by
a FILE command is not supported.

If ORGANIZATION is not specified, a standard SAM file FCB is established.

1-10

RESERVE

This entry has no effect in class 2 programs because DMS handles buffering.

SYMBOLIC KEY

This entry is treated as defined in the COBOL Reference Manual and is
maintained on the file by COBOL generated routines, except when used for
ISAM where it is supported by DMS directly, and determines the KEY ARG
entry in the FCB.

ACTUAL KEY

This entry is processed as defined in the COBOL Reference Manual.
However, it is treated as a relative PAM page address rather than a relative
track address.

RECORD KEY

This entry determines the FCB operand entries for KEYPOS and KEYLEN.
Processing is defined in the COBOL Reference Manual.

The I-O-CONTROL Paragraph

The APPLY RESTRICTED SEARCH OF integer TRACKS ON filename
clause is interpreted in Qass 2. programs as integer PAGES ON filename
though the word TRACKS is required for syntax. In other words, an integer
specification of 5 is interpreted as meaning 5 PAM pages (5 standard blocks
of 2,048 bytes) rather than 5 physical tracks.

The APPLY BLOCK DENSITY n PERCENT ON filename clause is
interpreted as specifying the complement of the percentage to be specified in
the PAD operand of the FCB. Thus, 60 PERCENT would cause the PAD
factor of 40 to be generated.

The following clauses have no meaning for Class 2 programs in this
release: SAME AREA, RERUN, APPLY FORM-OVERFLOW, and APPLY
WRITE ONLY, APPLY CHECKPOINT, APPLY CYLINDER-OFLO, and
APPLY LOG.

The File Description (FD) Paragraph

Recording

The recording mode specified will be used in the FCB as long as it is
syntactically acceptable to the compiler. The use of undefined records,
however, is highly inefficient because DMS will write them as one record per
standard 2048-byte block. The BLOCK CONTAINS clause cannot override
this restriction.

Fixed, blocked records will be specified in the FCB if F is given. However,
because system products and Executive system files all use variable-type
records, an FCB which specifies fixed-type records cannot handle files
created by the DATA command etc. Nor can a system product read a file
created with such an FCB.

1-11

The most efficient recording mode is V and is to be preferred over fixed and
undefined.

The compiler always generates the BLKSIZE operand of the FCB in terms of
a number of standard blocks of 2,048 bytes. For standard SAM files, only
2,044 bytes are available for data. For ORGANIZATION IS DIRECT, the
full 2,048 bytes are available.

If the BLOCK CONTAINS clause specifies more than 2,044 bytes, the
number of stand.ard blocks required to contain that number of bytes is
requested in the FCB. Therefore, if BLOCK CONTAINS 2045
CHARACTERS is specified, a buffer of 4,096 bytes will be requested and
2,043 bytes of each block written will be unused. It is the programmer's
responsibility to determine what multiple of 2,044 bytes is required to make
the most efficient use of the space available. The default, if BLOCK
CONTAINS is not specified, is one standard block. For magnetic tape output
files, the BLKSIZE operand of the FCB may be changed at run time by a
FILE cOlnmand. If other than standard blocks are written or read to tape,
the BLKSIZE must be specified in the FILE command.

Record Contains

Label Records

Value of ID

This entry is interpreted as specified in the COBOL Reference manual.

ST ANDARD must be specified for all but UNIT-RECORD and magnetic
tape files. For UNIT-RECORD files, the FCB entry will be changed to
STANDARD by the compiler.

Magnetic tape files with UTILITY specified in the SELECT sentence may
have STANDARD, OMITTED, or data name specified and they will be
processed as, defined in the COBOL Reference Manual.

This is not supported. DMS does not allow the user program to access the
HDRI label. Only UHL and UTL labels may be created and checked by user
programs.

The ACCEPT Statelnent

COBOL Statement

ACCEPT data-name
ACCEPT data-name FROM
CONSOLE
ACCEPT data-name FROM
TERMINAL
ACCEPT data-name FROM
SYSIN
ACCEPT data-name FROM
SYSIPT

Macro Issued

RDCRD
TYPIO

RDATA

RDCRD

RDCRD

J'\"ote: When TERMINAL is used in a nonconversational
program a RDCRD is issued.

1-12

The D ISPLA Y Statem,ent

COBOL Statement

DISPLAY data-name
DISPLA Y data-nam,e UPON
CONSOLE
DISPLA Ydata-name UPON
TERMINAL
DISPLAY data-name UPON
SYSPUNCH
DISPLAY data-name UPON
SYSOPT
DISPLAY data-name UPON
SYSOUT
DISPLAY data-name UPON
SYSLST

Macro Issued

PROUT

TYPIO

WRTOT

WRTOT

PROUT

PROUT

Note: When TERMINAL is used in a nonconversational
program a PROUT is issued.

Debugging Language Statements

STOP Verb

The TRACE and EXHIBIT verbs writ.e to the system printer.

The STOP RUN statement generates a QUIET macro followed by a TERM
macro. The STOP 'literal' state:ment will issue a TYPIO macro to print the
literal. The macro requires a reply in this instance. The reply may be a null
message (EOT key only), or any other message from the console. The
message is not available to the program, but does cause execution to be
resumed.

COBOL INTERFACE WITH DMS AND OTHER SYSTEM COMPONENTS IN HANDLING
FILES ACCESSED BY OBJECT PROGRAMS

Access Methods

COBOL object programs use the following Data Management System access
methods:

SAM
ISAM
PAM

(Sequential Access Method)
(Indexed Sequential Access Method)
(Direct Access Method)

The selection of an access method is based on the ORGANIZATION and
ACCESS clauses in the SELECT sentence of the Environment Division.

File Description

The user may wish to make his input and output files acceptable to other
system components. For instance, he might wish to use the /DATA
command which creates a file containing standard blocks of variable type.
The programlner may wish to take this into consideration when he is
planning his file description (FD).

1-13

FILE Command

Before executing an object program the programmer must issue a FILE
con1mand with the LINK=linkname parameter (refer to Data Management
Systern Reference Manual) for each file which is to be accessed by that
object program. 1he link name connects the filename in the user's catalog
with the filename in the COBOL File Description. To ensure correct use of
the link feature, the programmer must be careful that:

1. The first eight characters of the FDname are unique among the first eight
characters of all other filenames in his program.

2. The character - (hyphen or dash) does not appear in the first eight
characters of the FDname.

3. The FILE command must not be used to modify any of the following
items in the FCB in the COBOL object program:

FCBTYPE
RECFORlv.1
VARBLD
OVERLAP

KEY LEN
KEYPOS
PAD
DUPKEY

IND.EX
LABEL
OPEN

If the programmer were to use the FILE command to override any of the
above for a COBOL object time file, the results would be unpredictable.

In addition, if the object program is to write to an output file which has not
yet had space allocated to it, the FILE command must also include the
SPACE=(primary-imteger, secondary-integer) parameter.

Device Independence for Sequential Files

Although the programmer specifies DIRECT-ACCESS or UTILITY in the
ASSIGN clause, this clause can be overriden by the appropriate parameter in
the FILE command at execution time.

COBOL SOURCE LIBRARY ON DISC

The COBOL Cornpiler supports the use of a disc resident COBOL source
program library. The programmer creates and maintains a source library by
using the COBOL Library Update Routine (COBLUR). For a full description
of this routine, refer to "the Utility Routines Reference Manual.

If the source program which is supplied as an input to the compiler contains
BASIS, INCLUDE or COpy statements, the compiler will take the specified
program or portion of the program from the specified source library file.

COBLUR creates an ISAM file with variable length records indexed by a
14-byte alphanunleric key which is composed of the library-entry name (8
bytes) and the six digit source sequence number of the source coding. The
ISAM library fIle consists of four sections:

Section 1
Section 2
Section 3
Section 4

Identification/Environment Entries
Data Division Entries
Procedure Division Entries
Complete Source Program Entries

1-14

Because the source library file has records with alphanumeric keys, it cannot
be accessed by the File Editor, which handles only records with numeric
keys.

When the programmer wishes the compiler to retrieve all, or part, of a source
program fr01u the source library, he must issue a FILE command for the
library file before invoking the compiler. In this FILE command, the link
name must be specified as COBLIB. Thus, if the programmer has a COBOL
Source Library file named SOURCLIB, he must enter the command:

/FILE SOURCLIB,LINK=COBLIB

Note: The library-entry name specified in the BASIS,
INCLUDE and COpy instructions is an external name,
therefore, in RCA COBOL, it must be enclosed in
apostrophes.

DIAGNOSTIC FILE GENERATION

The COBOL Compiler creates a permanent disc resident diagnostic file if the
programmer so requests via the command:

/PARAM ERRFIL=YES

before compilation.

The file contains English language error messages describing each COBOL
source error detected during compilation. The programmer at a remote
terminal can subsequently invoke the Post-Compilation Diagnostic Routine
to access his error file and display the messages therein. For a full description
of the Post-Compilation Diagnostic Routine, see Chapter 4 of this manual.

The COBOL Compiler creates a catalog entry and allocates space for the
diagnostic file if the programmer has not already done so. It constructs a
filename by prefixing the source program name (not more than the first
eight characters) to the basenanle ERRFIL, thus:

source-program-name.ERRFIL

GENERATION OF INTERNAL SYMBOL DICTIONARY (ISD)

The COBOL Compiler generates an Internal Symbol Dictionary (ISD) for the
COBOL program if the user so requests at compilation time via· the
command:

/PARAM SY1\1DIC=YES

The Internal Symbol Dictionary records are contained in the output object
module.

The ISD extends the programmer's debugging capabilities when he is
checking the logic of the COBOL object program with IDA. With an lSD, the
programmer will be able to specify COBOL source data names, procedure
names and verbs in IDA conilmands at object program execution time;
without it, the programmer would have to refer to them as hexadecimal
addresses within the object program.

1-15

If the SYMDIC parameter is specified, the compiler examines the Data
Definitions and Procedure Descriptors to collect information describing data
name and procedure name items. It creates an ISD definition for each such
item.

The COBOL cOlupiler creates an entry in the ISD records for every data
name in the DATA DIVISION and procedure and section names in the
PROCEDURE DIVISION. The data names from the FILE SECTION of the
DATA DIVISION must not be referenced with IDA statements until after
the file has been opened and, in the case of input files, a record has been
read. The compiler lists the names of all symbols for which there is an entry
on the lSD. This list is included in the object listing. A COBOL symbol is
written in an IDA statement within delimiting apostrophes, e.g.,
'START-PARA'. COBOL qualification may be included as part of the
symbol along with the key words OF and IN. The COBOL qualifier is
written within the apostrophes, for example: 'DAY OF MONTH IN
MASTER-RECORD'. IDA qualifiers, separating periods, offsets, subscripts,
etc. are written outside the apostrophes. Any item described by an OCCURS
clause nlay be subscripted in IDA by numeric constants for up to three
dimensions. Synlbols or expressions may not be used for subscripts. The
subscriplCs must immediately follow the closing apostrophe, be enclosed in
parentheses, and be separated by commas, for example: 'TABLE-ITEM'
(3,9).

COBOL also generates IDA symbols for each verb in the Procedure Division,
by statement number. The format for referencing verbs through IDA is as
follows:

'statement-number verb position'

statement-number

verb

position

Example:

Is the source sequence number or compiler line number of the source
statement generated by the compiler, depending on whether the value of the
DEBUG:: was YES or NO, respectively.

Is the verb on that line which is to be referenced. (The verb name may
require abbreviation For a list of abbreviations, please refer to the IDA
Reference Manual).

[s the sequential position of the verb on the line in the instance where the
same verb is used more than once on the same source line. A blank indicates
the first occurrence, the digit 2 the second occurrence, the digit 3' the third
occurrence, etc.

Source Hne
600210

IDA Reference
'600210MOV
'600210MOV2'

MOVE A TO B, MOVE A TO C.

(first occurrence)
(second occurrence)

1-16

SAMPLE SESSIONS

Example A

The following is a sample session in which a programmer at a remote
terminal compiles a COBOL source program, stores the object module in an
Object Module Library, loads the object program, enters IDA commands,
and executes the object program.

%C E222 PLEASE LOGON. o /LOGON KREFTEST

ffi
%C E223 LOGON ACCEPTED AT 1009 ON 04/22/70, TSN 1245 ASSIGNED.

2 /PARAM LIST=YES,CLASS=2,SYMDIC=YES
3 /SYSFILE SYSDTA=EKCOBSRI

32AO COMPILATION INITIATED (BGCOB VERSION=035B)
(;\ 32AA COMPILATION COMPLETED
~ /EXEC BGCOI3

%LOOI PROGRAM LOADING
%EBOOI SPOOLOUT INITIATED FOR TSN=1246 ID=KREFTEST
% PRINT FILE=00004

CD/FILE OMLIB,SPACE=(18,3)
/FSTATUS O~~LIB

% 0 0 000 18 OM LI B
~/SYSFILE SVSDTA=(SYSCMD)
0) IEXEC (LMR)

POOl - DLL V-2A
::CONTROL OUTF I LE=OMLI B
~ADD SOURCE=~,OBJMOD=TSTISAM
::END
LM 039 NORMAL JOB TERM. ® /PUNCH ::
%EBOOI SPOOLOUT INITIATED FOR TSN=1248 ID=KREFTEST
% PUNCH FILE=00005
/FILE EKISAM,LINK=EKISAM

(;\/FILE OUTFILE2,LINK=OUTFiu:2,SPACE=(6,3)
~/LOAD (TSTISAM,OMLIB),IDA=YES

%POOI - DLL V-2A
@/AT 'PARA2'j/D 'WAll

/RESUME
@%INTERRUPTED AT 001A9A

% VM-ADR 001698:00l69C P-COUNT 001A9A
% 001698 00000.
/R
%INTERRUPTED AT 001A9A
% VM-ADR 001698:00l69C
% 001698 00001.

@ /STOP
/LOGOFF •

P-COUNT 001A9A

%C E420 LOGOFF AT 1017 ON 04/22/70, FOR TSN 1245
%C E421 CPU TIME USED: 0018.4160 SECONDS.X

1-17

Notes on Example A:

CD
CD

®

CD
CD

®

®

@

@

@

Programmer logs on.

Indicates compilation-time parameters. In this case, a
source-program listing and a Class 2 object module containing
Internal Symbol Dictionary records.

Directs SYSDT A to the cataloged disc file which contains the
source language program.

Invokes execution of the COBOL compiler.

Create a catalog entry and allocate space for an Object
:Module Library file.

Re-direct SYSDT A to the terminal so that the programmer
lllay type in instructions to the Library Maintenance
Routine.

Invoke Library Maintenance Routine and enter the
instructions required to create an Object Module Library.

Punch an object deck. Note: This erases the Object Module
File.

Load the object module from the library. IDA=YES must be
specified if the user intends to enter IDA commands.

Enter an IDA command, specifying COBOL source names.

IDA interrupts execution of object program and displays the
value of the specified data-name.

Programmer stops execution of object program and logs off.

1-18

Example B

Conversational user executing a compilation and linking his object module.

/LOGON KREFTEST
%C E223 LOGON ACCEPTED AT 1042 ON 05/05/70, TSN 0310 ASSIGNED

~
/PARAM LIST=YES,OBJLST=YES,XREF=YES,CLASS=2

2 /SYSFILE SYSDTA=EKCOBSRI
3 /EXEC BGCOB

%L001 PROGRAM LOADING
32AO COMPILATION INITIATED (BGCOB VERSION = 035B)

(D 32AA COMPILATION COMPLETED
%EB001 SPOOLOUT INITIATED FOR TSN=0314 ID=KREFTEST
% PRINT FILE=00006

CD /SYSFILE SYSDTA=(SYSCMD)
/EXEC TSOSLNK
~PROGRAM LNKCOB,XREF=Y

LIST? N .
PROGRAM LNKCOB,XREF=Y

:q NCLUDE ..
INCLUDE ..

:cEND
END

G) PROGRAM BOUND
(j) PROGRAM WRI TTEN

/LOGOFF

Notes on Exarnple B:

Programmer specifies parameters for COBOL compiler.

and directs SYSDTA to COBOL source file.

Executes compilation.

32AA code indicates an error-free compilation.

Programmer re-directs SYSDTA to the terminal in order to
type Linkage Editor statements.

Linkage Editor messages indicating successful executing.

1-19

Example C

Conversational user compiling a COBOL program and executing it
inlmediately.

~
/PARAM L I ST=YES~ CLASS=2

2 !SYSFILE SYSDTA=EKCOBSRI
3 /EXEC BGCOB

%LOOl PROGRAM LOADING
32AO COMPILATION INITIATED (BGCOB VERSION=035B)
32AA COMPILATION COMPLETED

%EBOOl SPOOLOUT INITIATED FOR TSN=Ol47 ID=KREFTEST
% PRINT FILE=00005 o /FILE EKISAM~LINK=EKISAM
IFIILE OUTFI LE2'~ LINK=OUTFI LE2~ SPACE=(6~ 3)

CD /EXEC ,~
P ·-DLL V-2A

%POOl DYNAMIC LOADER INVOKED
® /PRINT EKI SAM

%EBOOI SPOOLOUT INITIATED FOR TSN=0148 ID=KREFTEST
% PRINT FILE=EKISAM
/PRINT OUTFILE2
%EBOOI SPOOLOUT INITIATED FOR TSN=0149 ID=KREFTEST
% PRINT FILE=OUTFILE2

Notes to Example C:

CD

CD
CD
o

Programmer describes parameters required - a source listing
to be printed and a Class II object module. (Note that only
Class II object modules are acceptable to the Dynamic
Linking Loader.)

Direct SYSDT A to source file.

Invoke the COBOL compiler.

FILE command must be issued to define files accessed by
object program.

Execute object program directly from EAM object module
HIe. Note that the Dynamic Linking Loader creates only
temporary load modules.

The programmer may wish to spool-out input and output
files to check on the execution of the object program.

1-20

2. FORTRAN BACKGROUND COMPILATION

INTRODUCTION

The FORTRAN Background Compiler is a non conversational Class II
(pageable) program which runs under control of RCA time-sharing operating
systems.

The FORTRAN Compiler is a disc-oriented program; it accepts source input
from disc or card files and generates an object module on disc.

EQUIPMENT CONFIGURATION

The FORTRAN Background Compiler requires approximately 100,000
bytes of virtual memory.

The following minimum configuration is required for a FORTRAN
compilation:

1 - Processor (262KB)

2 - Disc Storage Units

1 - Paging Drum

In addition, the system must include a Communications Controller
Multichannel (CCM) with the associated buffers and remote terminals if it is
to support conversational users.

Optional Equipment:

1-card-reader: if input is to come fronl cards.

1-card-punch: if the object module is to be punched as cards.

1-prin ter: if listings are required.

SOURCE LANGUAGE COMPATIBILITY

The language elements implemented by the FORTRAN Background
Compiler are the same as those provided in the TOSjTDOS Compiler. In
addition, FORTRAN programs prepared by the Interactive FORTRAN
System (IFOR) are acceptable for compilation by the compiler.

2-1 July 1971

SOURCE INPUT

The FORTRAN Background Compiler reads source input by using the
RDATA macro. RDATA causes the Executive to read an input record from
the SYSDTA file. The SYSDT A file may be a cataloged file, a card reader, or
a remote terminal. (See figure 2-1.)

Disc-Resident Source Files

July 1971

A cataloged FORTRAN source file must be either a Sequential Access
Method (SAM) file or an Indexed Sequential Access Method (lSAM) file. In
an [SAM: file, the 8-byte numeric keys must be the first 8 data bytes of the
record. ISAM files may be directly created, updated, or edited by the File
Editor (see the File Editor Reference Manual). File Editor can also edit SAM
files indirectly. The user may also use the Interactive FORTRAN System
(lFOR) to prepare a FORTRAN source program, which will be free of
syntactical errors, as input to the compiler.

L
~II

~T
MODULE ---

/

OR (REMOTE TERMINA.)

/
/

/
/

/

TEMPORARY
LISTING

FIGURE 2-1. FORTRAN BACKGROUND COMPILER INPUT-OUTPUT FLOWCHART

2-2

Card Input

Before he initiates a compilation, the user must direct SYSDT A to the
source file with the command:

/SYSFILE SYSDTA=filename

where filename is the cataloged name of his file.

Note: If the user wishes to do additional processing after the
end of the compilation, for example, Library Maintenance
Routine, he must redirect SYSDTA from his FORTRAN
source file to whatever source is required by subsequent
routines. For instance, a conversational user wishing to
redirect SYSDT A to his terminal would issue the following
command:

/SYSFILE SYSDTA=(SYSCMD)

A user lllay enter his entire compilation as a background task in the form of
a card deck containing a /LOGON card, cards containing commands to the
compiler, the FORTRAN source program, and a /LOGOFF card. The
operator places the deck in the reader and initiates execution of the task by
entering the RCARD command on the console, and the entire card deck is
spooled in and then executed. In this case, the user should direct SYSDTA
so that the cOlnpiler can take its input from the spooled-in file, thus:

/SYSFILE SYSDTA=(SYSCMD)

In a conversational task, SYSDTA is, by definition, the user's terminal. A
conversational user initiating a compilation from his terminal may instruct
the compiler to take its input from a source deck which he had previously
requested the operator to place in the reader. In this case, he should redirect
SYSDTA from the terminal to the card reader by giving the command:

/SYSFILE SYSDTA=(CARD)

The operator then receives a message asking him to confirm that the deck is
actually in the reader. SYSDTA should be redirected from the card reader as
soon as possible to free it for system use.

INTERMEDIATE WORK FILES

The FORTRAN compiler uses direct-access files for its intermediate work
space. The compiler accesses these disc files by using the DMS EAM
function.

GENERATED OBJECT MODULES

The compiler generates object 1110dules on a direct-access EAM file from
which the user may punch it onto cards using the spoolout PUNCH
command.

2-3 July 1971

Disc-Resident Object 1v[odules

The cOlnpiler automatically writes the object module on an EAM file unless
the user specifically instructs it not to do so by means of the following
command:

jPARAj\1 DISC==NO

Because: files created by EAM are temporary (at most, they remain available
for the duration of the task in which they are created), the user who wishes
to preserve his object module should do so by invoking the Library
Maintenance Routine (for a description of this routine, refer to the Utility
Routines Reference Manual).

Object Module Card Decks

If the user wishes to receive an object module in the form of a deck of
punched cards, he must issue a

jPUNCH*

command after the end of compilation and before logging off. This instructs
the system to punch out the EAM object module file; thus, the user who
wants an object deck must not have previously issued a command:

jPARAIV1 DISC=:NO

whii.ch would inhibit the creation of an EAM object module file.

Furthermore, once the PUNCH command has been issued, the EAM object
module file wilJ no longer be available to the user. If he wishes to save the
object module in a library, he should do so by executing the Library
Maintenance Routine before issuing the PUNCH command.

Class I and Class II Object Modules

July 1971

The cornpiler can produce either Class I or Class II object modules. The user
should specify the type of object module he requires in the jPARAM
command, as foHows:

jPARAM: CLASS= 1
produces Class I (nonpageable) programs

jP ARAM CLASS=2
produces Class II (pageable) programs

If the user does not specify the CLASS parameter, the default option of 2
pertains.

Class I object module output contains external references to TOSjTDOS
FORTRAN CaJl Library modules; the program should be bound and
executed as a Class I program. Class II object module output contains
external references to the TSOS FORTRAN Object Module Library; the
program should be bound and executed as a Class II program.

2-4

GENERATED LISTINGS

Immediate Listings

Saved Listings

The FORTRAN user may instruct the compiler to produce a source program
listing by specifying the parameter LIST=YES in the jPARAM command.

A diagnostic lis:ting is always printed if any diagnostics exist.

An object program map will be printed unless the user suppresses its printing
by specifying the parameter MAP=NO in the jPARAM command.

The compiler generates these three listings on ,a temporary, EAM,
direct-access file and at the end of compilation places them on the spoolout
queue to be printed. After they have been spooled out, they are destroyed.

The user may have his listings written on cataloged SAM files; in this case,
t1;ley are not automatically printed. However, the files are available for the
user to access at any time until he himself chooses to ERASE them.

The conlpiler will write any or all of the following listings on cataloged files
if the user specifies the following parameters in the jPARAM command:

SA VLST=SOURCE
specifies that the source program listing is to be written on a
cataloged file.

SAVLST=LOCMAP
specifies that the object-program map is to be written on
cataloged file.

SAVLST=ALL
specifies that both of the above are to be written on
cataloged files.

The compiler constructs filenames for these files by prefixing the
FORTRAN source program name to the base-name SAVLST, e.g.,

source-prograrn-name. SA VLST

The filename is further qualified by suffixing the base-name SA VLST with a
selected mnemonic resulting in one of the FORTRAN-specified
combinations:

source-progrmTI-name.SAVLST.S
for source listing file

source-progra1TI-name.SA VLST.M
for map file

2-5 July 1971

INTERNAL SYMBOL DICTIONARY (lSD) GENERATION

The FORTRAN compiler generates an Internal Symbol Dictionary (lSD) for
the FORTRAN program if the user so requests at compilation time in the
command:

IPARAM SYMDIC=YES

The ISD extends the user's debugging capabilities when he is checking out
the FORTRAN object program at execution time using IDA. With an lSD,
the user will be able to specify his FORTRAN source variable names and
statement numbers in IDA commands at object program execution time;
without it, he would have to refer to them as hexadecimal addresses within
his object program.

If the SYMDIC parameter is specified, the compiler generates ISD definitions
defining each symbol's object program location, length, and type attributes.

The Linkage Editor and Linking Loader can generate ISD symbol entries for
every entry symbol appearing in the ESD records for use by the IDA
system. The generation of this data is distinct from the compiler's generation
of ISD records and must be specifically requested. The Linkage Editor and
Linking Loader generate ISD definitions for the program name, named
COMMON, and label definitions (ESD types SD, CM, and LD, respectively).

ISD information collected by the compiler is passed along in the form of ISD
records in the output object module.

DIAGNOSTIC FILE GENERATION

July 1971

The FORTRAN compiler creates a permanent disc-resident diagnostic file if
the user so requests via the command:

IPARAM ERRFIL=YES

before compilation.

The file contains English-language error messages describing each FORTRAN
source error detected during compilation. The conventional user at a remote
terminal can subsequently invoke the Post-Compilation Disgnostic routine to
access his error fHe and display the messages therein. For a full description of
the Post-Compilation Diagnostic routine, see Chapter 4 of this manual.

The FOR fRAN compiler creates a catalog entry and allocates space for the
diagnostic file if the user has not already done so. It constructs a filename by
prefixing the source-program name to the base-name ERRFIL thus:

source-program-name.ERRFIL

The user may use the FILE command of DMS to create a catalog entry and
to allocate space for his diagnostic file before executing his compilation. In
this case, the filename may be the name which the compiler would construct
or a user-assigned name. In either case, he must specify the linkname of
ERRFIL in his FILE command, for example,

IF I LE filename, LINK=ERRFIL,SPACE=(primary-integer, secondary
integer)

2-6

SUMMARY OF FORTRAN COMPILER PARAMETER SPECIFICATIONS

CARD=

CLASS=

CODE=

DEBUG=

DISC=

The options listed below for the /PARAM command may be used to direct
the execution of the FORTRAN compiler. The default cases, which are
underlined, pertain if the user does not enter a particular parameter.

YES

NO

2

2

3

YES

NO

YES

NO

The object module is written to the task's EAM object
module file on disc for subsequent punching when the
programmer enters the PUNCH* command.

Note: This option need not be used if DISC=YES is specified,
since the same file will be written in either case.

The object module is not written to the EAM object module
file unless DISC=YES is in effect.

The source program is to be compiled into Class I
(nonpageable) object code for TOS-compatible execution.

The source program is to be compiled into Class II (pageable)
object code for execution under the TSOS control program.

The source program records are to be read as EBCDIC
characters.

The source program records are to be read as
7094-compatible characters.

The source program records are to be read as
330 I-compatible characters.

The execution-time diagnostic routine is to produce source
program line nunlber references in the error analysis listing.

The line number reference facility is not to be used.

Object modules are to be written to the task's EAM object
module file on disc for subsequent processing as filename *.
This option is redundant when CARD=YES has been
specified.

Object modules are not to be written to the task's EAM
object module file unless CARD=YES has been specified.

2-7 July 1971

ERRFIL=

YES

NO

LIST=

YES

NO

MAP=

YES

NO

SAVLST=

SOURCE

LOCMAP

ALL

NO

July 1971

All diagnostic messages along with a diagnostic summary
record are to be written to a SAM file named
progname.ERRFIL for subsequent interrogation using the
BDIAG routine. Progname is the name of the user's program,
subprogram or function subprogram and if not specified will
be NONAME by default; that is, NONAME.ERRFIL. The
user's file will be used if a FILE command specifying
ERRFIL as the linkname is issued before the EXECUTE or
RESUME command.

The diagnostic SAM file is not to be written.

A source program listing is to be written to the EAM output
file and printed when the compilation process is completed.
The file is erased after printing.

A source program listing is not to be written to the EAM
output file.

The program's location map listings are to be written to the
I':AM output file and printed when the compilation process is
completed. The file is erased after printing.

The locator map listings are not to be written to the EAM
output file.

A listing of the source program is to be written to a SAM file
for post-compilation printing. The command used for
printing the file is jPRINT progname.SAVLST.S,SPACE=E.
The filename is progname.SAVLST.S and the linkname is
SAVLST.

Listings of the locator map are to be written to a SAM file
for post-compilation printing. The command used for
printing the file is jPRINT progname.SAVLST.M,SPACE=E.
1'he filename is progname.SAVLST.M and the linkname is
SAVLST.

Both the source program and locator rna p listings are to be
written to a SAM file for post-compilation printing. The
command used to print the file is jPRINT
progname.SA VLST .A,SPACE=E. The filename is
progname.SA VLST.A and the linkname is SA VLST.

The SA VLST file is not to be created.

2-8

SYMDIC~

YES

NO

An Internal Sym.bol Dictionary is to be created with an entry
for each variable name, statement number, and line number
of executable instructions. The ISD records are to be
incorporated into the object module for use by symbolic
IDA.

ISD records are not to be generated.

FORTRAN OBJECT TIME FACILITIES

FORTRAN and DMS Related Concepts

A file is said to be stored in the system if it resides on one or more
direct-access or magnetic tape devices (volumes) and if the identification of
these volumes (volume serial number) is available in the system catalog.

A volume may be classified as either public or private. A public volume is a
direct-access volume and must be mounted and on-line during the entire
period of system operation. A public volume may be used by many tasks
concurrently. A private volume need not be mounted for the entire period of
system operation. Its use is restricted to one task at a time and it need only
be mounted when the task refers to it. A direct-access volume may be a
private volume, while magnetic tape volumes are always classified as private
volumes.

Files to be cataloged can be stored on all types of volumes. Files used within
a task need not be cataloged if their use is temporary (that is, confined to
the task); the FORTRAN EAM data set could be utilized here. Users
generally make the most effective use of the system by storing their files on
public volumes and cataloging them, when it is necessary to retain the files in
the system. Public volumes are always on line, and files stored on public
volumes are always available for access to a user's task.

A user can allocate space for his files on public volumes within the limits of
public space allocation established for him at JOIN time.

If a user employs private volumes, he may need to wait for the devices on
which to mount the volumes, because each time a request is made for a
device on which to mount a private volume, the system must determine
whether or not it can honor the request.

When each user is joined to the system, the system controller specifies the
maximum amount of space on public volumes which the user may acquire.
The space, which is referred to as the user's public space allotment, is not
actually allocated to the user until he requests it.

2-9 July 1971

For files which reside on public volumes, the system will dynamically
allocate space whenever this is required, and if necessary, will acquire space
from other public volumes. The important attributes of public volumes are
summarized as follows:

1. The public volume is the default type of volume.

2. A given file may be contained on any number of public volumes without
the user's knowledge; in particular, it is the only type of volume on which a
file can be extended across volumes during the execution of the problem
program.

3. Full file security and integrity are provided, yet the volume may be used
concurrently by any number of tasks.

4. The volume is always mounted (accessible).

Compilation and Execution Considerations

The FORTRAN user can achieve volume (device) independence, eliminate
the need to reestablish the standard data definition, and organize the
execution procedure for a variety of tasks.

Volume or device independence can be achieved by assigning integer
variables as the data set reference numbers in the FORTRAN source
program. This is particularly useful in allowing the entering of input data
from a number of sources (volumes with different formats).

Facilities provided by the operating system include the following:

1. Class n programs which do not contain an overlay structure can be
executed immediately after compilation. The user should issue the Executive
comlnand /EXEC *, thus invoking the Dynamic Linking Loader. Class I
programs and those which contain an overlay structure must be bound by
the Linkage Editor before being executed. (For a full description of the
Linkage Editor and the Static and Dynamic Linking Loaders, refer to the
TSOS Utility Routines Reference manual.)

2. Class II object programs are pageable; they require less main memory and
therefore more programs can run concurrently.

3. Files rnay be put on public volumes. Such files do not require mounting
and dismounting of devices; the sharing of volumes permits more programs
to be run concunen tly .

FORTRAN Data Management Facilities

July 1971

File management facilities provide the means for identifying files; for storing
and retrieving them within the system; for sharing them with other users; for
copying, modifying and erasing them; and for defining their existence and
use in the system. Problem program input/output facilities provide for the
actual transfer of data to and from programs which are in execution.

2-10

The creation and specification of the data sets is derived from two sources:

I. The FORTRAN Compiler I/O Language Elements.

2. The user designated data set definition.

FORTRAN Compiler Data Set Specification

The FORTRAN I/O statements identify the basic input/output functions at
the logical level through format statements and READ/WRITE lists. The
physical implernentation details, such as the allocation of memory (buffer)
and device resources, are either system supplied or supplied through a
user-defined data set reference. The link between the physical
implementation and the FORTRAN I/O statement is the data set reference
number. The data set reference number is contained in a Device List Table
linking the reference number to the device characteristics.

SEQUENTIAL DATA SET SPECIFICATION

In FORTRAN, records for sequential data sets are defined by specifications
in FORMAT statements and by READ/WRITE lists. A record defined by a
specification in a FORMAT statement is a FORTRAN record. A record
defined by a READ/WRITE list is a logical record. Within each category,
there are three types of records: fixed-length, variable-length, and undefined.
In addition, fixed-length and variable-length records can be blocked.

RECORDS CONTROLLED BY FORMAT STATEMENT

Fixed-Length Undefined Records:

For fixed-length and undefined records, the record length and buffer length
are specified in the BLKSIZE parameter. For variable-length records, the
record length may be specified in the RECSIZE parameter; the buffer length,
in the BLKSIZE parameter. The information coded in a FORMAT statement
indicates the FORTRAN record length (in bytes).

Fixed-Length Unblocked Records:

For unblocked fixed-length records written under FORMAT control, the
FORTRAN record length must not exceed BLKSIZE (see figure 2-2).

Example: Assume BLKSIZE=44

10 FORMAT(FIO.5,16,2FI2.5,'SUMS')
WRITE(20, I O)AB,NA,AC,AD

1------BLKSIZE-----------,

I
-----FORTRAN RECORDS ---------.

r--- 44 BYTES OF DATA L ____ ----'

FIGURE 2-2. FORTRAN RECORD (FORMAT CONTROL) FIXED-LENGTH
SPECIFICATION

2-11 July 1971

July 1971

If the FORTRAN record length is less than BLKSIZE, the record is padded
with blanks to fill the remainder of the buffer (see figure 2-3). The en tire
buffer is written.

Example: Assume BLKSIZE=S6

5 JFORMAT(FIO.S,16,FI2.S,'TOTAL')
'NRITE(lS,S)BC,NB,BD

r ----------BLKSIZE--------------.

1 I ---WRITTEN RECORD-------------.

1

r------ FORTRAN RECORD -------.

[33 BYTES OF DATA 23 BYTES OF BLAN KS I
FIGURE 2-3. FOHTRAN RECORD (FORMAT CONTROL) WITH FIXED-LENGTH
SPECIFICATION

Variable-Length Unblocked Records:

For unblocked variable-length records written under FORMAT control.
BLKSIZE is specified as eight greater than the maximum FORTRAN record
length. These extra 8 bytes are required for the 4-byte block control word
(BCW) and the 4-byte segment control word (SCW), as shown in figure 2-4.
Th.e BCW contains the length of the block; the SCW contains the length of
the record segtnent (denoted by LRECL); i.e., the data length plus 4-bytes
for the SCW.

-----BLKSIZE------------....., I I-Ir-~~~~~~~~~-FO-R-T~::C~E-C-O-R-D------------------~~~~~~~~====
~BCW ~~I ___________________ D_A_T_A ______________________ ~

FIGURE 2-4. FORTRAN RECORD (FORMAT CONTROL) WITH VARIABLE-LENGTH
SPECIFICATION

2-12

If the FORTRAN record length is less than BLKSIZE, the unused portion of
the buffer is not written (see figure: 2-5).

I ,..... --------------I3LKSIZE --------------.

Ii
WRITTEN RECORD --

r---LRECL

I I FORTRAN RECORD-1

I BCW I SCW I DATA I NOT WRITTEN

FIGURE 2~5. FOHTRAN RECORD (FORMAT CONTROL) WITH VARIABLE-LENGTH
SPECIFICATION

Undefined Records:

For undefined records written under FORMAT control, BLKSIZE is
specified as the maximum FORTRAN record length. If the FORTRAN
record length is less than BLKSIZE, the unused portion of the buffer is not
written (sec figure 2-6).

~------------- BLKSIZE ----------------.

FORTRAN RECORD --,

DATA I NOT WRITTEN

FIGURE 2-6. FORTRAN RECORD (FORMAT CONTROL) WITH UNDEFINED
SPECIFICATION

Blocked Records:

For all blocked records, the record length is specified in the RECSIZE
parameter; the block length and buffer length in the BLKSIZE parameter.

Blocked fixed-length records:

For blocked fixed-length records written under FORMAT control, RECSIZE
is specified as maximum possible FORTRAN record length, and BLKSIZE
must be an integral multiple of it. If the FORTRAN record length is less
than LRECL, the rightmost portion of the record is padded with blanks (see
figure 2-7).

2-13 July 1971

July 1971

Example: Assume BLKSIZE=48 and LRECL=24

10
20

FORMAT(I8,F 16.4)
FORMAT(I12)

WRITE(l3,10)N,B

WRITE(13,20)K

----.------- BLKSIZE

I
I ,--

---·------WRITTEN BLOCK --------------,

-----LRECL------------~-------LRECL----------~

r

I
___ f:ORTRAN ______ ~- FORTRAN

RECORD I
24 DATA BYTES 12 DATA BYTES

12 BYTES OF
BLANKS

FIGURE 2-7. FIXED-LENGTH BLOCKED RECORDS WRITTEN UNDER FORMAT
CONTROL

Blocked Variable-Length Records:

For K-blocked variable-length records written under FORMAT control
BLKSIZE must be equal to or greater than K (LRECL); where the value of K
is the number of records in a block.

Four additional bytes allocated with BLKSIZE are required for the block
control word that contains the block length. The 4 additional bytes allocated
with LRECL are used for the segment control word that contains the
record-length indicator.

If a WRITE is executed and the amount of space remaining in the present
buffer is less than LRECL, only the filled portion of this buffer is written;
the new data goes into the next buffer. However, if the space remaining in a
buffer is greater than LRECL, the buffer is not written, but held for the next
WRITE (see -figure 2-8). If another WRITE is not executed before the job
step is terminated, then the filled portion of the buffer is written.

Example:: Assume BLKSIZE=28 and RECSIZE=8

30
40
50

FORMAT(I3,F5.2)
FORMAT(F4.1)
FO RMA T(F7.3)

2-14

WRITE(12,30)M,Z

WRITE(12,40)V

WRITE(12,50)Y

I
BLKSIZE ---------------,

,---- WRITTEN BLOCK -----------,

11'--- LRECL -----r---- LRECL--......,

I r- FORTRAN RECORD ~ FORTRAN I I I RECORD l

I BCW I SCW 8 DATA BYTES SCW 4 DATA 4 BYTES
• . BYTES NOT WRITTEN

r-FORTRAN RECORD~

IT THIS SPACE IS 13 BYTES.

BCW SCW __ ~ ____ 7_D_A_T_A __ B_YT_E_S __ ~ ______ R_EA_D_Y~F~O~R~N~EX~T~W_R_I_T_E. ____ ~
_ (SPACE LRECL)

FIGURE 2-8. VARIABLE-LENGTH BLOCKED RECORDS WRITTEN UNDER
FORMAT CONTROL

Logical Records (Not Controlled by FORMAT Statement)

All record ~ormats specified for FORMAT-controlled sequential data sets are
supported for sequential data sets without FORMAT control. (See figures
2-9 through 2-11.) However, logical records without FORMAT control span
buffers whenever the data length exceeds the available buffer space. The
spanning of buffers necessitates the green control word (GCW), which will
prefix the text of each subrecord of unformatted records. The green control
word's format is as follows:

[!YTEI BYTE 2 BYTE 3 BYTE 4

Byte I - contains 0 except for the green word of the last subrecord which
contains the number of subrecords (this is used for backspacing).

Bytes 2-4 - contain number of bytes of text in the subrecord.

The green word is considered as part of text when specifying the RECSIZE
and BLKSIZE parameters, i.e., RECSIZE=TEXT SIZE+4 bytes.

2-15 July 1971

July 1971

The user can specify that the green control word not prefix the text of each
subrecord for BT AM variable-length records only. This may be done by
including the following statement within the FORTRAN source program.

CALL GREEN (DS1, DS2, , DSI,)

where: Each DSI represents the data set reference number associated
with that I/O device which will contain the unformatted
logical records without the GCW.

Note: This statement must appear before any other
statement that references the I/O devices being used.

Without the green word, the TEXT SIZE will be equal to the RECSIZE. The
four-byte segment control word is modified to have the following format:

SCW XX 00 I
2 Bytes

where: LRECL represents the length of the record segment.

XX represents a code describing the status of the current
subrecord in the unformatted record, that is:

XX

00

01

02

03

STATUS

ONLY subrecord in the unformatted record

FIRST subrecord in the unfonnatted record

MIDDLE subrecord in the unformatted
record

LAST subrecord in the unformatted record

Example 1 (see figure 2-9): AssUlne BLKSIZE=32 and RECSIZE=24

WRITE(18)Q,R

where: Q and R are real 8-byte variables.

I I======.======-L-O-G-IC:~K:~::RD --------,

B~_:;c_w __ '--____ D_A_T_A_SE_G_M_E_N_T ____ __'__N_O_T_W_R_IT_T_E_N I
444

BYTES BYTES BYTES
16

BYTES
4

BYTES

FIGURE 2··9. VARli~BLE-LENGTH UNBLOCKED RECORDS, NO FORMAT
CONTROL, ONE RECORD SEGMENT

2-16

Example 2 (see figure 2-10): Assume BLKSIZE=32 and RECSIZE=24

WRITE(18)Q,R:$, V ,X

where: Q,R and V are real 8-byte variables.

S and X are real 4-byte variables.

BLKSIZE

r
BEGINNING OF LOGICAL RECORD

BCW I~ GCW DATA SEGMENT 1

4 4 4 20
BYTES BYTES BYTES BYTES

r END OF LOGICAL RECORD I
I BCW I SCW GCW I DAT A SEGMENT 2 I NOT WRITTEN

4 4 4 12 8
BYTES BYTES BYTES BYTES BYTES

FIGURE 2-10. VARIABLE-LENGTH UNBLOCKED RECORDS, NO FORMAT
CONTROL, TWO RECORD SEGMENTS

Example 3 (see figure 2-11): Assume BLKSIZE=36 and RECSIZE=12

WRITE(18)A

WRITE(18)B

WRITE(18)E

where: A is a real 8-byte variable.

Band E are real 4-byte variables.

2-17 July 1971

I
BLKSIZE

I LOGICAL RECORD LOGICAL RECORD1

EEl Gew I A sew I Gew I B NOT WRITTEN

4 4 4 8 4 4 4 4
BYTES BYTES BYTES BYTES BYTES BYTES BYTES BYTES

,LOGICAL RECORD,

~BeW ~ __ G_C_W ____ E __ ~I _______ S_PA_C_E __ R_E_A_D_Y __ FO_R __ N_E_X_T_W __ R_IT_E ____ ~
4 4 4 4

BYTES BYTES BYTES BYTES
16

BYTES

FIGURE 2-11. VARIABLE-LENGTH BLOCKED RECORDS, NO FORMAT CONTROL

Example 4: (See figure 2-12.) Assume BLKSIZE=64 and RECSIZE=56

CALL GREEN (33)

WRITE (33) (ARRA Y(I), 1=1,30)

where: ARRAY is defined to be a real *4 array with dimension 30,

DIRECT-ACCESS DATA SET SPECIFICATION

Direct Access is implemented with the Indexed Sequential Access method
(lSAM) of D~[S. Therefore, the user must provide space in the record for
ISAM keys when he writes his DATAD macro.

Define File Statement

July 1971

The record length and buffer length for a data set may be specified by the
user through the DEFINE FILE Statement. The DEFINE FILE statement
and its associated parameters are described below:

DEFINE FILE a(m,r,f,v)

a = data set reference number

m = number of records in the file

r = record size

2-18

Record Formats

IF
BLKSIZE

BEGINNING OF LOGICAL RECORD

,

I BCW I LRECL

4 2
BYTES BYTES

I
BCW I LRECL

4 2
BYTES BYTES

01

SCW

02

00 I DATA SEGMENT 1

2 56
BYTES BYTES

,MIDDLE OF LOGICAL RECORD

00 I DATA SEGMENT 2

2
BYTES 56

BYTES

END OF LOGICAL RECORD

SCW I

±CLI 03 I 00 I DATA
NOT WRITTEN

SEGMENT 3

4 2 2 8 48
BYTES BYTES BYTES BYTES BYTES

FIGURE 2-12. VARIABLE-LENGTH UNBLOCKED RECORDS, NO FORMAT
CONTROL

where: E = access with format statement

U = access W /0 format control

L = either E or U

v = associated variable which is utilized by the user to direct the retrieval and
writing of specified records. Upon return to the user program the associated
variable can be interrogated to obtain the value of the next record number in
the file.

The record bormat for direct access data set is the same as the format
described for fixed-length, unblocked records written for sequential data
sets.

2-19 July 1971

Records written without FORMAT control on direct-access data sets contain
the FORTRAN green control word. The logical record can exceed the record
length specified in the DEFINE FILE statement, and if a record segment is
shorter than the record length, the remaining portion of the record is padded
with spaces (see figure 2-13).

Example: A DEFINE FILE statement has specified the record length for a
direct access data set as 24. This statement is then executed.
WRITE(9'IX)DPI ,DP2,RI ,R2

where:

I
I

DPI and DP2 are double-precision variables.
Rl and R2 are real variables.
IX is an integer variable that contains the record position.

---- RECORD LENGTH

----RECORD SEGMENT
1
-------------,

~:w 1 ______ . _________________ 2_0_D_A_T_A __ B_Y_T_E_S ______________________ ~
RECORD SEGMENT l + RECORD SEGMENT2 = 1 LOGICAL RECORD

I ----RECORD SEGMENT2 ----------......,

~cw 14 DATA BYTES 16 BYTES OF SPACES

FIGURE 2-13. LOGICAL RECORD (NO FORMAT CONTROL) FOR 01 RECT
ACCESS

BACKSPACE, END FILE, and REWIND operations are ignored for direct
access data sets.

FORTRAN Data Management Library Routines

July 1971

The FORTRAN Data Management library routines provide the following
three Data Management facilities and associated functions:

I. FORTRAN data definition establishment facility.

2. FILE managelnent and catalog facilities.

a. Object-time data control block generation, validation, and
updating.

b. Dynamic file allocation and catalog default function.

c. Dynamic buffer management.

2-20

d. File positioning and label checking.

e. File purging.

f. File copying.

3. INPUT-OUTPUT facilities.

a. Input-output control.

b. Logical record blocking and deblocking.

c. Access driver.

d. FORMAT controlled input conversions.

e. FORMAT controlled output conversions.

f. NAMELIST controlled input conversions.

g. NAMELIST controlled output conversions.

h. Binary (non-FORMAT, non-NAMELIST) input-output.

i. BACKSPACE, REWIND, and END FILE function.

FOR TRAN Data Definition Establishment Facility

STANDARD SYSTEM DATA DEFINITIONS

The library contains a copy of the standard data sets constituting the basic
data definitions established for use in RCA time sharing systems. Table 2-1
describes each of these data sets.

TABLE 2-1. VMOS STANDARD FORTRAN DATA SETS

Data Set Device File Action Recform
Number Name Type Macro Type

1 Terminal SYSDTA RDATA VARUNB

2 Terminal, SYSOUT WROUT VARUNB
Printer

5 Card SYSIPT RDATA VARUNB
Reader

6 Printer SYSLST WRLST VARBLK

7 Card SYSOPT WRTOT VARBLK
Punch

97 Card SYSIPT RDATA VARUNB
Reader

98 Card SYSOPT WRTOT VARBLK
Punch

99 Printer SYSLST WRLST VARBLK

2-21 July 1971

Data sets 7, 97, and 98 have been supplied to support TOS/TDOS
compatible system logical files. Also, data set reference numbers 97, 98, and
99 are referenced when the programmer uses the READ (old form), PUNCH,
and PRINT statements, respectively.

ALTERNATIVE SYSTEM/CORE DATA DEFINITION

Facilities have been provided which permit the programmer to define
additional data sets, redefine any or all of the standard data sets, and
designate that virtual memory be used as the data set. Additional data sets
must, however, reference the same file types as those assigned to standard
data sets (see table 2-1).

In order to implement the specification of any of the alternative data set
options, the programmer must assemble both a DDS macro and a DVLST
macro. The DDS macro defines the characteristics of the data set. The
DVLST macro creates a device list table containing the data set reference
numbers of the data sets used by the FORTRAN program.

DDS (Define Data Set) Macro

Operation

DDS

July 1971

Operand

DSREF = data set reference number

RECFORM= {FIXBLK }
FIXUNB
VARUNB
VARBLK
UNDEF

[,BLKSIZE=

[,RECSIZE=

[TYPEFLE=

[CONTROL=

[,DCBEQU=

[LDEVICE=

bytes]

bytes]

fNPm

}]

OUTPUT
INOUT
OUTIN
DUMMY

rSA

} ~~CH]
deb-name]

{
SYSTEM}]
CORE

[

,DEVADDR= {SYSDTA}] SYSIPT
SYSLST
SYSOUT
SYSOPT

2-22

DSREF=

RECFORM=

BLKSIZE=

RECSIZE=

TYPEFLE=

A two-digit integer supplied by the programmer to refer to a data set.

FIXBLK

FIXUNB

VARUNB

VARBLK

UNDEF

Blocked, fixed-length records.

One per block, fixed-length records.

One per block, variable-length records with the length
specified in the first 4 bytes of the block.

Blocked, variable-length records with the length specified in
the first 4 bytes of each record.

Logical record of variable size. No length specification. This
is the default case.

The largest block to be read from or written to the data set. It establishes the
minimum buffer size.

If no BLKSIZE is specified, the block size and record size (RECSIZE) are
associated by the system with the device address (DEV ADDR=). The
following table specifies this relation:

DEV ADDR= RECSIZE=

SYSDTA
SYSOUT
SYSLST
SYSOPT

80
73

133
80

BLKSIZE=

88
81

141
80

The record size for fixed-length records. The maximum size for
variable-length and undefined records.

If no RECSIZE is specified, the record size and block size (BLKSIZE) are
associated by the system with the device address (DEV ADDR=). The
following table specifies this relation.

DEV ADDR= RECSIZE=

SYSDTA
SYSOUT
SYSLST
SYSOPT

80
73

133
80

BLKSIZE=

88
81

141
80

INPUT Indicates input processing. This is the default option.

2-23 July 1971

CONTROL=

DCBEQU=

DEVICE::

DEVADDR=

July 1971

OUTPUT

INOUT

OUTIN

DUMMY

ASA

MACH

NO

Indicates output processing.

Indicates input processing with the ability to write to the file.

Indicates output process with the ability to retrieve records
from file.

INPUT-OUTPUT operation is inhibited.

The first character of the record will control spacing
according to the ASA conventions: blank means single space,
o means double space, I means advance to next page, and +
means no space.

The first character will be given to the printer directly for
carriage control.

The first character will not be used for carriage control. The
first character will be printed and lines will be single spaced.
This is the default option.

Note: If a task is conversational and the output device is the
terminal, the control character is ignored.

The naJne of an existing DCB to which the DCB created by the DDS is to be
equated.

SYSTE~\1

CORE

SYSDTA

SYSIPT

SYSLST

SYSOUT

SYSOPT

One of the system logical files. If this option is used, the
DEV ADDR parameter must be entered.

Virtual memory.

Specifies the current data input stream: a terminal, the card
reader, or a cataloged direct access file.

Specifies the current data input stream: a card reader or
cataloged direct access file. SYSIPT supplies Class I program
compatibility.

Specifies the printer for output listings.

Specifies the output destination of messages: terminal
(conversational task) or printer (nonconversational (task).

Specifies that output be sent to the card punch.

2-24

DV LST (Device List) Macro

Operation Operand

DVLST Data set no! , ... , Data set no K

where: K~99

Redefi ne Standard Data Sets

The redefinition of any standard data set requires the use of both the DDS
macro and the DVLST macro. The DDS macro is used to describe the data
set being redefined. The DVLST macro creates the device list table for all the
data sets to be used by the program.

The following procedure describes the optimum procedure for redefining
standard data sets.

1. Write and assemble aDDS macro describing the new characteristic of each
redefined data set.

2. Write and assemble a DDS macro describing the standard characteristics of
each of the remaining standard data sets to be used by the program.
Although the characteristics of these data sets are not being altered, they
must be defined. The characteristics of the standard data sets are given in
table 2-2.

3. Write and assemble a DVLST macro listing the numbers of all the data sets
(redefined and standard) to be used by the program.

Example:

The programlner is redefining data set 6, SYSLST, and also wishes to use
data sets 1 and 2, SYSDTA and SYSOUT, in their standard form.

1. DDS macro for redefinition of data set 6 to change the data set number to
10 and record size to 120.

DDS DSREF = 10,RECFORM=VARUNB,
BLKSIZE=14l,RECSIZE=120,TYPEFLE=OUTPUT,
CONTROL=NO,DEVICE=SYSTEM,DEV ADDR=SYSLST

2. DDS macro for reestablishm.ent of the default (standard) attributes of
data set 1.

DDS DSREF=l ,RECFORM=V ARUNB,BLKSIZE=88,RECSIDE=
80, TYPEFLE= INPUT, DEVICE=SY STEM, DEV AD D R= SYSDT A

Note: The CONTROL= and DCBEQU= parameters are not
applicable to the standard definition of data set 1.

2-25 July 1971

3. DDS macro for reestablishment of the default (standard) attributes of
data set 2.

DDS DSREF=2,RECFORM=V ARUNB,BLKSIZE=81 ,RECSIZE=73,
TYPEFLE=OUTPUT,CONTROL=NO,DEVICE=SYSTEM,
DEV ADDR=SYSOUT

Note: The DCBEQU= parameter is not applicable to the
standard definition of data set 2.

4. DVLST macro to create the Device List Table to be used by the program.

DVLST 1,2,10

Note: Only those data sets for which a DDS was written must
be referenced in the DVLST.

Add New System Data Set

July 1971

The addition of a new system data set to the Device List Table of standard
data sets requires the use of both the DDS and DVLST macros. The DDS
macro is used to describe the data set being added to the Device List Table.
The DVLST macro updates the Device List Table to include the new data set
reference number.

The foUowing describes the procedure for adding a new system data set to
the Device List Table.

1. Write and assemble a DDS macro for each of the data sets being added to
the Device List Table.

2. Write and assemble a DVLST macro listing both the new data set and all
of the standard data sets.

Example:

The programm er wishes to add a third SYSLST data set to the Device List
Table. The data set reference number is to be 12.

1. DDS macro describing the characteristics of data set 10.

DDS DSREF=12,RECFORM=VARUNB,BLKSIZE=141,
RECSIZE=133,TYPEFILE=OUTPUT,CONTROL=NO,
DCBEQU=DS99,DEVICE=SYSTEM,DEVADDR=SYSLST.

2. DVLST listing all standard data sets including the one being added to the
Device List Table.

DVLST 1,2,5,6,7,97,98,99,12

2-26

Designate Virtual Memory As a Data Set

To designate that a portion of virtual memory be used as a data set, the
program:mer must use both the DDS macro and the DVLST macro. The DDS
macro defines the characteristics that the programmer wishes to assign to
virtual memory. The DVLST macro creates the proper entry in the Device
List Table.

The following describes the procedure for designating that virtual memory
be used as a data set:

1. Write and assemble a DDS macro describing the characteristics that virtual
memory is to assume as a data set.

2. Write and assemble a DVLST macro listing all the standard data sets and
the data set number to be assigned to virtual memory.

Example:

The programmer wishes to designate that virtual memory be used as a data
set. The data set 'reference number if to be 8.

1. DDS macro defining the characteristics of virtual memory.

DDS DSREF=8,RECFORM=V ARUNB,BLKSIZE=88,
RECSIZE=80,TYPEFLE=INOUT,DEVICE=CORE

Note: The CONTROL=, DCBEQU=, and DEVADDR=
parameters refer only to system logical files and their
corresponding devices.

2. DVLST macro to add data set 8 to the Device List Table.

DVLST 1,2,5,6,7,97,98,99,8

TABLE 2-2. VMOS STANDARD DATA SET CHARACTERS

OSREF= 1 2 5 6 7 97 98 99

RECFORM~ VARUNB VARUNB VARUNB VARUNB FIXUNB VARUNB FIXUNB VARUNB

BLKSIZE= 88 81 88 141 80 88 80 141

RECSIZE= 80 73 80 133 80 80 80 133

TYPEFLE= INPUT OUTPUT INPUT OUTPUT INPUT INPUT OUTPUT OUTPUT

CONTROLn N/A NO N/A NO N/A N/A N/A NO

OCBEQU= N/A N/A OS97 OS99 OS98 N/A N/A N/A

DEVICE= SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM

OEVAOOR= SYSDTA SYSOUT SYSIPT SYSLST SYSOPT SYSIPT SYSOPT SYSLST

2-27 July 1971

NONSTANDARD (NONSYSTEM) DAT/\ SET DEFINITION

FORTRAN programmers may also define data sets for device address
references other than SYSTEM or CORE. The DCB's (Data Control Blocks)
established for these additional data sets may be ISAM, BT AM, or EAM.

The programmer establishes the ISAM or BT AM DCB by using the FILE
command with the LINK paralneter referencing the data set number. When
initial access is made to the data set, the data set reference number will be
added to the Device List Table. Subsequent accesses to the data set number
will reference the Device List Table.

If the programIner accesses a nonstandard data set and has not issued a FILE
cOlnmand describing the data set, the system assigns an EAM DCB for that
data set. EAM data sets are system defaults; users cannot specify their own
EAM data sets.

FI LE Command Parameters for ISAM DeB

July 1971

The FILE cOInmand parameters listed in this section are relevant to
FORTRAN processing for ISAM DCB's. The parameters shown are only
pertinent to FORTRAN direct-access files. The values explicitly specified are
the default values peculiar to FORTRAN and are not necessarily those used
by the Data Management System (DMS). For alternative values for these
parameters, consult the Data Management System Reference Manual.

DMS processing requires that the OPEN type for a new file must be
OUTPUT or OUTIN. For an old file, the OPEN type must be INPUT or
INOUT. The programmer must issue the appropriate FILE command for the
type of file to be processed.

The FILE comrnand paranleters for an ISAM DCB follow:

FILE

filename

LINK = DSETnn

FCBTYPE=ISAM

RECSIZE=n

Operand

filename, LINK=DSETnn,
FCBTYPE=ISAM,RECSIZE=n
[,BLKSIZE=STD] [,KEYLEN=4]
[,DUPKEY=NO] [,KEYPOS=n]
[,RECFORM=n] [OPEN=type]

The name of the file. This entry is required.

nn is the two-digit reference number of the
data set. This entry is required.

This entry is required and must be
specified as shown.

n is the length in bytes of the logical
records in the file. If RECFORM=V
is specified, n cannot exceed 2040 bytes.
If RECFORM=F is specified, n cannot
exceed 2048 byte. This entry
(RECSIZE=) is required.

2-28

BLKSIZE=STD

KEYLEN=4

DUPKEY=NO

KEYPOS=5
=1

RECFORM=F
=V

OPEN=INPUT
=OUTPUT
=OUTIN
=INOUT

Example:

This entry is not required. If
specified BLKSIZE must be STD.

This entry is not required. A keylength
of 4 will be assumed by FORTRAN if
the KEYLEN parameter is not
specified. If KEYLEN is specified,
it :must be 4.

This entry is not required. If the
DUPKEY parameter is not entered, no key
duplicating will be allowed.

This entry is not required. If
RECFORM=V is specified, the record
key is assumed to begin in byte 5
of the record. If RECFORM=F is
specified, the record key is assumed
to begin in byte 1 of the record.

This entry is not required. RECFORM=F
specifies fixed form records; RECFORM=V
specifies variable form records. If
the RECFORM parameter is not specified
the record form is assumed to be
variable (Y).

This entry is not required. If no file
opening specification is entered,
OPEN=OUTIN is assumed.

The following shows the use of the FILE command to specify an ISAM data
set. The reference number is 25 and the record size is 24.

FILE TJ .FOR,LINK=DSET25 ,FCBTYPE=ISAM,RECSIZE=24

The preceding example lists only the required parameters. All others were
allowed to assume their default values.

FI LE Command Parameters for BTAM DCB

The FILE command parameters listed in this section are relevant to
FORTRAN processing of BTAM DCB's. The parameters shown are the
minimum set pertinent to FORTRAN tape files. For a description of the
remaining FILE command parameters for BT AM files, consult the Data
Management System Reference Manual.

The minimunl FILE command parameters for a BTAM DCB follow:

Operation

FILE

Operand

filenatne, LINK=DSETnn,
FCBTYPE=BTAM, RECSIZE=n,

BLKSIZE=n, RECFORM= { ~ }

2-29 July 1971

filename

LINK = DSETnn

FCBTYPE=BTAM

RECSIZE=

BLKSIZE=

RECFORM=F
=V
=U

The name of the file. This entry is required.

nn is the two-digit reference number of the
data set. This entry is required.

This entry is required and must be specified
as shown.

n is the length in bytes of a logical
record. The maximum record length is 4096
bytes. See Program Considerations for
the use of this operand.

n is the size in bytes of a block of
logical records. See Programming Considerations
for the use of this operand.

F = fixed length records. V = variable­
length records. This is the default
value. U = undefined records. See
Programming Considerations for the
use of this operand.

Programming Considerations

July 1971

lhe programmer must specify a value for either RECSIZE or BLKSIZE
when issuing the FILE command. Table 2-3 describes the use of these
operands in conjunction with the record form (RECFORM) specifications
for BT AM record blocking.

TABLE 2··3. SPECIFICATIONS FOR BTAM RECORD BLOCKING

Blocking
Type

FIXUNB

FIXBLK

VARUNB

VARBLK

UNDEF

RECFORM RECSIZE

F Yes

F Yes

v No

v Yes

U Yes

2-30

BLKSIZE

Yes

Yes

Yes

Yes

Yes

Comment

BLKSIZE must be K (RECSIZE).
Where K is an integer.

If only BLKSI ZE is
given, BLKSIZE=RECSIZE
+8 bytes.

BLKSIZE must be greater
than RECSIZE +8 bytes.

If both are given, the
system will set both
BLKSIZE and RECSIZE=
4096 bytes. If only
RECSIZE is given, the
system will set BLKSIZE
equal to maximum RECSIZE.
If BLKSIZE is given, the
system will set RECSIZE
equal to BLKSI ZE.

Example:

The following FILE command defines the characteristics of a BT AM data set
whose reference number has been specified as 25.

FILE TJ.FOR, LINK=DSET25, FCBTYPE=BTAM, DEVICE=T9N,
R E C FOR M = F , R EC S I Z E = 256, B L K S I Z E = 1 024
VOLUME=AAI234

In the preceding command specification, the DEVICE and VOLUME
parameters were not required by FORTRAN for BTAM processing.
However, the DEVICE and VOLUME parameters should be specified in
order to assure proper processing by the operating system.

As both RECSIZE and BLKSIZE were given and RECFORM was specified
to be F, the blocking type is fixed block (FIXBLK).

If the progratnmer does not specify a particular type labeling convention,
standard labels will be supplied by the system.

EAM DCB Characteristics

If a data set reference number other than 1,2,5,6,7,97,98, or 99 has been
used and a file command has not been issued with LINE= DSETNN before
execution, the: user will automatically get an EAM file.

EAM files are not cataloged and are temporary.

EAM files cannot be shared or multiply opened.

EAM files always reside on public volumes, and user storage allocation,
device assignment, or label processing is not permitted.

An EAM file may only be used for files with sequential organization and
access. No record keys are permitted.

EAM DeB's conform to the following specifications

RECFORM = VARBLK

RECSIZE = 2040

BLKSIZE = 2048

File Management and Cataloging Facilities

FORTRAN will make full use of the DMS FILE, CATALOG, and FCB
macros, to provide the following functions:

File positioning and label checking.

File purging.

File copy.

2-31 July 1971

For a full description of these macros, refer to the Data Management System
Reference Manual.

Mathematical Routines

All the TOS/TDOS FORTRAN mathematical routines are supported and are
reentrant.

Debugging Routine

July 1971

The function of the debugging routine is to give the programmer a report on
the cause of an abnormal termination and the status of the subprogram
linkage at the time of termination. In the case of an I/O error termination, it
gives pertinent information about the I/O statement and the data involved.

The user specifies

/PARAM DEBUG:=YES

before compilation, the DEBUG subroutine also displays the line number of
the source statement where the error occurred.

The object-time error messages are directed to the task's SYSOUT file. For a
conversational task, this is the user's terminal; for a non conversational task,
the printer.

In addition, if the user specifies:

/PARAM SYMDIC=YES

the FORTRAN Compiler generates a symbol dictionary so that the user may
employ symbolic IDA at object-program execution time.

2-32

3. ASSEMBLY

INTRODUCTION

The Assembler is a non conversational Class II (pageable) program which runs
under control of the Spectra-70 Time Sharing Operating System (TSOS). It
generates object modules that can be executed under TSOS as either Class I
(non-pageable) or Class II (pageable) programs.

The Assembler is a disc oriented program which generates object modules on
EAM direct access files. The' source program correction facility of the
Assembler also handles BTAM magnetic tape files as input and output.

The following are some of the facilities provided by the Assembler:

1. Souree input can be retrieved from a cataloged file, from a card deck,
from a command stream, or from a remote terminal. The source program
correction facility accepts BTAM magnetic tape input.

2. The generated object module is written on the EAM object module file
and can be punched on cards before task termination.' The source correction
facility writes its output to a BTAM private tape file.

3. Requested listings are written on EAM files and automatically spooled out
at task termination.

4. An Internal Symbol Dictionary (lSD) can be generated, to be used by the
Interactive Debugging Aid (IDA) for symbolic debugging at program
execution time.

5. A diagnostic file can be generated on disc for query through the
Post-Assembly Diagnostic Routine (ADIAG). This file also acts as a saved file
of the assembled listings. The ADIAG routine is used to print the listings
when desired.

The Assembler operates nonconversationally, that is the user cannot direct
the process of assembling once it has begun. However, there can be dynamic
communication between the Assembler and the programmer in the sense
that the programmer enters source input from a remote terminal.

After assembly, the conversational programmer may invoke the
Post-Assembly Diagnostic Routine, ADIAG, to interrogate the diagnostic
file. In this way, the programnler can obtain immediate information about
the assembly, such as the number of errors noted by the Assembler and a
description of any such errors. This information enables the programmer to
decide whether to correct the source program and recompile or whether to
execute the object program.

3-1

At object program execution time, the programmer can employ the IDA
(Interactive Debugging Aid) System to help him find logic errors in the
object program. If an Internal Symbol Dictionary (lSD) was created at
assembly time the IDA commands can refer to tags by their symbolic names;
without an lSD, a tag must be referred to by its hexadecimal address.

EQUIPMENT CONFIGURATION

The Assembler requires approximately 80,000 bytes of virtual memory. The
following minimum TSOS system is required for Assembly:

I-Processor (262 kb)
2-Disc Storage Units
I-Paging Drum

In addition, the system must include a Communications Controller
Multichannel (CCM) with associated buffers and if it is to support
conversational users, remote tenninals.

Optional Equipment

2-Tape Drives - if the source correction facility is used.
I-Card Reader .. if input is to come from cards.
I-card Punch - if the object module is to be punched into cards.
I-Printer - if listings are required.

ASSEMBLY LANGUAGE

[nput

The source language processed by the Assembler is described in the
Assembly System Reference Manual. The macros which an assembly
language programmer can use to communicate with the Executive and the
Data Management System (and which are contained in the standard macro
library) are described in the Executive Macros Reference Manual, and the
Data Management System Reference Manual, respectively.

The Assembler reads its input by using the RDATA macro which instructs
the Executive to read a record from the current task's SYSDT A file. The
SYSDTA file may be equated to a cataloged file, the card reader, a remote
terminal, or the command stream (See figure 3-1).

When the assembly source correction facility is used, the input must be a
magnetic tape file which is accessed by the Basic Tape Access Method
(BTAM).

Disc-Resident Source Files

An Assembly language source file which resides on disc must be either a
Sequential Access Method (SAM) file or an Indexed Sequential Access
Method (lSAM) file. In the latter case, the 8-byte numeric keys must be
situated in the first 8 data bytes of the record. The eight-byte keys are
printed in columns 73-80 of the Assembly source listing. ISAM files with this
construction may be directly created, updated, and edited by the File Editor
(see the File Editor Reference Manual). The File Editor can also edit SAM
files indirectly.

3-2

PRINTED
LISTINGS

[

SOURCE
DECK

INPUT

VMOS

ASSEMBLER
(ASSEMB)

OUTPUT

OBJECT
DECK

w
o
R
K

FIGURE 3-1. ASSEMBLER INPUT-OUTPUT FLOWCHART.

3-3

REMOTE
TERMINAL

Card Input

If the Assembler is to retrieve its input from a file, it is the user's
responsibility to ensure that the source input is contained in a cataloged file
and to use the Executive command SYSFILE to direct SYSDTA to the
source file. (See examples at the end of this section.)

Note: If the user wishes to do any additional processing after
the end of the compilation, for example, the Library
Maintenance Routine, he must be careful at that time to
redirect SYSDT A from his source file to whatever source is
required by the subsequent routines. For instance, a
conversational user wishing to redirect SYSDT A to his
terminal after compilation would issue the following
c01nmand:

jSYSFILE SYSDT A =(SYSCMD)

A progranlmer may wish to enter the entire assembly as a background task in
the form of a card deck containing a JLOGON card, cards containing
commands to the Assembler, the source program, and a jLOGOFF card. The
operator places the deck in the card reader and initiates execution of the
task by entering the RCARD command on the console. The entire card deck
is then spooled in and executed. In this case, the programmer should direct
SYSDT A so that the Assembler can take its input from the spooled in file,
thus:

jSYSFILE SYSDTA=(SYSCMD)

In a conversational task, SYSDT A is, by definition, the programmer's remote
terminal. A conversational programmer initiating an assembly from the
terminal :might wish to instruct the Assembler to take its input from a source
deck which the programmer had previously requested the operator to place
in the card reader. In this case, the programmer should redirect SYSDTA
from the terminal to the card reader by giving the command:

jSYSFILE SYSDT A =(CARD)

The operator receives a message asking him to confirm that the deck is
actually :In the card reader. After the deck has been read, the programmer
should direct SYSDT A from the card reader in order to free it for use by the
system.

Terminal Input

The conversational programmer may enter programs directly from a remote
terminal. In this case, the programmer must be sure that SYSDTA is directed
to the terminal, redirecting it there, if necessary, by the command

jSYSFILE SYSDTA=(SYSCMD)

before starting an assembly.

3-4

The Assembler types an asterisk (*) on the terminal, indicating that it is
ready to receive source input. The programmer types a line of source code,
not longer than 80 characters and conforming to the usual margin
conventions (Le., columns 1, 71 and 16 are used as the beginning, ending and
continuation columns, respectively). The Assembler processes this line, then
types another asterisk (*) to signify that it is ready for another input line.
This process goes on until the programmer has entered the entire source
program; the assembly language verb END indicates the end of a CSECT to
the Assembler. The Assembler then takes control and processes the
preceding CSECT. To terminate execution of the Assembler when SYSDTA
is directed to the te~minal, the programmer should press the ESCAPE key
and, when the system'responds with a slash, /, type the command EOF. The
system responds with another slash and the programmer may enter any other
system comrrland.

Macro Libraries

A collection of macro definitions can be made available to more than one
source program by placing the macro definitions in a macro library. If the
prograrnmer includes a macro instruction call in the source program the
Assem bIer takes the corresponding Inacro definition from the macro library
and places it in the output object module and in the source listing. This
process is known as expansion. The Assembler accesses two types of macro
libraries, the system macro library (MACROLIB) and a private macro library
(MACROALT) which an individual programmer has created for his own use.
Both the system macro library and a private library may be referenced in the
same assembly. It is the programmer's responsibility to ensure that only
Qass 1 macros are used in Class 1 programs and Qass 2 macros in Qass 2
programs.

The system nlacro library is supplied with the system and is available to all
programmers. Macros on the system library may call other macros on the
system library but may not refer to macros in a programmer's private library
unless these macros have been used in the source program. If however, the
source program refers to macros in the private library, then the macros in the
system library may refer to those private macros.

An individual programmer must create his private library through the use of
the Macro Library Update routine (MLU). Macros in a private library may
refer to macros in the same library or in the system macro library. If a source
program refers to a macro which appears in both the system library and the
programmer's private library, the Assembler takes the macro expansion from
the private library.

If the prograrnmer wishes the Assembler to refer to a private macro library,
the fqllowing commands must be issued before executing the assembly:

/PARAM ALTLIB=YES which indicates that he intends to use a private
library.

/PILE Macro-library-file-name,LINK=ALTLIB which supplies the name of
the macro library file. The LINK=ALTLIB parameter indicates that the
named file is to serve as a private macro library.

3-5

If the private macro library is given the file name MACROALT, the FILE
command is not necessary. (Caution: The Assembler always tries to open a
file named MACROALT as a private library. Therefore, if there is any
possibility that a programmer may ever execute the Assembler, he should
not use the filename MACROALT for any purpose other than as a private
macro library. The mere presence of a file named MACROAL T causes the
Assembler to try to use it to expand macros.

If, in a pa:rticular assembly, the programmer does not wish the Assembler to
search the MACROALT file, the programmer can suppress this search by
issuing the command:

/FILE * DUMMY, LINK=ALTLIB

before invoking the Assembler.

If a programmer wishes to substitute a private macro library for the system
library in a particular assembly, the programmer can do so by issuing the
conlmand:

/FILE macro-library-file-name,LINK=SYSLIB

before invoking the Assembler.

Source Input Correc tion

Assenlbly progranls may be introduced through the source facility from
SYSDT A or from a private BT AM magnetic tape file.

The source program correction facility is described in the TSOS Utility
Routines Reference Manaul.

Use of SYSf7LE Command

filename

(CARD)

(PRIMARY)

The Executive command SYSFILE allows the programmer to direct
SYSDT A to a cataloged data file, the system card reader, or to redirect
SYSDTA to its primary assignment or command stream.

SYSFILE SYSDTA=

I
filename I
(CARD)
(PRIMARY)
(SYSCMD)

Identifies the nanle of the cataloged source file. The command is invalid if
the file is not cataloged.

Identifies the system card reader.

Identifies the primary assignment of the SYSDTA file (the user's terminal in
a conversational task, the card reader or the spooled in file in a
nonconversational task).

3-6

(SYSCMD)

The same source as commands.

Output Object Module

The TSOS Assembler generates an EAM object module file on direct access
public storage.

Disc-Resident Object Module

The Assembler automatically writes the object module on an EAM file unless
the programmer specifically inhibits this by means of the following
command:

/PARAM DISC=NO

Because files created by EAM are temporary (at most, they exist for the·
duration of the task in which they are created), the programmer who wishes
to keep an object module in a permanent disc file should do so by invoking
the Library Maintenance Routine (for a description of this routine, refer to
the Utility Routines Reference Manual.)

Object Module Card Decks

If the progralnmer wishes to receive an object module in the form of a deck
of punched cards, either or" the following commands may be issued:

/PARAM CARD=YES

This command ITlust be issued prior to assembly and is an instruction to the
Assembler to punch out the object deck.

/PUNCH *

This command must be issued following the assembly and prior to logoff.
When this command is to be used, the programmer must issue the
command /PARAM DISC=YES prior to assembly.

Furthermore, once the PUNCH command has been issued, the EAM object
module file will no longer be available to the user. If he wishes to save the
object module in a library, he should do so by using the Library Maintenance
Routine before issuing the PUNCH command.

Class I and II Object Modules

The Assembler can produce either a Class I or a Class II object module.

The programlner should specify the type of object module required in the
/PARAM com.mand, as follows:

/PARAM CLASS=1
/PARAM CLASS=2

For Class I object modules
For Class II object modules
(default option)

3-7

Listings

Diagnostic File

The Assembler can produce a source code listing and a cross-reference listing.
The source code listing, which also shows the generated object code at the
left hand side of the list is automatically generated and spooled out at task
ternlination. If the programmer does not require this listing, it may be
suppressed by issuing the command:

/PARAM ASMLST=NO

before executing the assembly.

The cross reference listing is not generated unless the programmer
specifically requests it with the command:

/PARAM XREF=YES

Note: If a conversational programmer requests a diagnostic
file which is to be used in the ADIAG routine, a printed
listing may be superfluous because the same information can
be displayed at the terminal through the ADIAG commands
PRINT or END listing.

If the programnler issues the command:

/PARAM ERRFIL=YES

before executing the assembly, the Assembler produces an ISAM diagnostic
file which the programmer can query, from the remote terminal by using the
ADIAG routine, to ascertain the success of the assembly.

The diagnostic file contains: the External Symbol Dictionary (ESD) listing,
the assembly listing proper, the cross-reference listing, error data, and a
SUlllmary .of errors. The diagnostic file is built sequentially as an ISAM file,
so that it can be accessed by the Assembler Diagnostic Program.

The Assenl bIer forms the name of the diagnostic file by suffixing the name
of the program's first CSECT with the characters .ASSM.DIAG. Thus if the
first CSECT (or the START statement) of a program is named ZZZ, the
diagnostic file for that program has the name ZZZ.ASM.DIAG. This means
that two programs having the same first CSECT name will also have, the same
diagnostic file nanle. It should be noted that the diagnostic file is erased and
recataloged at the beginning of each assembly. Assume for the two program
examples discussed above that the first assembly produces a diagnostic file
which is to be examined after the second program is assembled. It is then
necessary to change the name of the first program's diagnostic file to avoid
its destruction. See the Data Management System Manual for a description
of the use of the CATALOG command to change the name of a file.

If the first CSECT of the program is unnamed, the Assembler gives the name
ASSM.DIAG to the Diagnostic file.

3-8

If the prograInmer wishes to supply a file name for the Diagnostic file, rather
than having the Assembler supplied name, the following command must be
issued before invoking the Asseln bIer:

/PILE filename,LINK=DIAGFILE,SPACE=(primary allocation, secondary
allocation)

The programmer must also issue another FILE command for this file before
invoking the Assembler Diagnostic Routine ADIAG, in this form:

/FILE filenarne,LINK = D lAG LINK

Intermediate Work Files

The Assembler uses disc resident files, not tapes, for intermediate work
space. The Assembler accesses these files by the EAM Access Method of the
Data Manage1nent System.

USE OF PARAM COMMAND FOR ASSEMBLY

The following options of the Executive command P ARAM may be used to
direct the e~xecution of the Assembler. The default cases, which are
underlined, hold if the user does not enter a particular parameter.

PARAM Command Parameters

ALTLIB =

YES

NO

ASMLST=

YES

NO

CARD =

YES

NO

A private macro library is to be used during assembly as well
as the system macro library.

Only the system macro library is to be used.

Note: The ALTLIB parameter is not currently supported.

An assembly listing is to be written on a temporary disc file
and printed at task termination.

No listing is to be produced.

The object module is to be written on an EAM (temporary)
file (same as DISC= YES. However, CARD=YES will cause
the Asembler to automatically have the EAM file punched
into cards.

Specifies that the object module is not to be written to disc
unless the option DISC=YES is in effect. If DISC=YES has
been specified, the programmer may issue a/PUNCH *
command after assembly to have the EAM file punched into
a card deck.

3-9

DISC =

YES

NO

ERRFIL =

YES

NO

INPUT =

SYSDTA

filename

OUTPUT =

ASMSRCE

filename

SYMDIC =

YES

XRBF=

YES

NO

The object module is to be written on the task's object
module file (an EAM temporary file named *).

The object module is not to be written on the EAM file
unless CARD=YES is specified.

All assembly diagnostic information is to be written on an
ISAM file for use in the ADIAG routine.

The diagnostic file is not to be written.

All source language input will originate from SYSDT A.

Only the source correction input will originate from
SYSDTA; the source program is to be retrieved from the
specified BTAM file. The file name must be fully qualified.

The output of the source correction facility is to be written
to the BT AM file named ASMSRCE.

The output of the source correction facility is to be written
on the specified file. The file must be a private BT AM file
whose name exists in the TSOS catalog.

An Internal Symbol Dictionary is to be constructed with
entries for all tags, including EQU, ENTRY and EXTRN
naInes.

NO ISD is to be created.

A symbol table map and cross-reference listing is to be
written on a temporary file and printed at task termination.

No cross-reference listing is to be produced.

3-10

SAMPLE SESSIONS

Example Of a Conversational Session Where a Programmer Assembles a
Program and Stores That Object Module In An Object Module Library

ffi
/PARAM ERRFIL=YES,ASMLST=NO

2 /SYSFILE SYSDTA=DUM
3 /EXEC ASSEMB

%L001 PROGRAM LOADING
VERSo 0009 OF TSOS ASSEMBLER READY

~
FLAGS IN 00000. STATEMENTS, 000 PRIVILEGED

5 /SYSFILE SYSDTA=(PRIMARY)
6 /FIL.E OMLIB,SPACE=(12,3)

/FSTAT OM,L I B

FLAGS, 000 MNOTDS

%0000024 OMLIB
(j) /EXEC LMR

%Lb01 PROGRAM LOADING

I
LMR VEROA4 100170 READY.ENTER CONTROLS.

8 ~: CONTROL OUTF I LE=OML I B
9 ::SOURCE ::
10 ::ADD OBJMOD=TES T
11 ::END

%D U600 LMR NORMAL HALT.
/LOGOFF
%C E420 LOGOFF AT 1638 ON 12/04/70, FOR TSN 7585.
%C E421 CPU TIME USED: 0083.3315 SECONDS.

Notes on Above Session:

CD
@

CD
o
CD
®
(j)
®
®

User specifies parameters, he wishes to have a diagnostic file
created and the source listing suppressed.

Directs SYSDTA to the file (DUM) containing the Assembly
source program.

Invokes the Assembler.

Assembler message indicates no errors, therefore user does
not invoke ADIAG to scan diagnostic file.

Re-directs SYSDT A to the terminal.

Catalogs a file (OMLIB) for the object module library and
allocates space for it.

Invokes Library Maintenance Routine.

LMR Control statement indicates name of OML file.

Source * indicates that the object module is in the task's
temporary (EAM) object module file.

3-11

Supplies name (TEST) of object module to be included in
OML.

End of LMR input.

Example of A Conversational Session Where The Programmer Enters Source
Statements From A Terminal

%C E222 PLEASE LOGON.
CD /LoGoN USERID.I ACCOUNT .. PASSWORD

%c E223 loGO~ ACCEPTED AT 1462 ON 12/15/70, TSN 9596 ASSIGNED
IFSTAT
%0000005 DUM
%0000003 EK.COBSRC
'60000003 CANDID
%0000005 KREFFT
%TOTAL PUBLIC PAGES ALLOCATED = 00000018
IEXEC (EDIT)
'~P001 - DLL V-02

VERS. 11A OF FILE ED I TOR READY
:~O DUM

OPENED DUM AS OLD V-TYPE FILE.
:~P 100 400
TEST STJI.RT

BAL.R 2.10
US I NG :~.1 2

STXIT ,PRoGCHEK"oPINT.lURERR
:~ P $

END
:~H

CD IEXEC ASSEMB
%L001 PROGRAM LOADING

VERSo 0009 OF TSOS ASSEMBLER READY
START
BALR 2,0
USING ::.2
ST)(IT ,PROGCHEK"oPINT,URERR
END

CD FLAGS IN 00003 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNoTES

lEaF
I " ..
ILoGoFF
%c E420 LOGOFF AT 1648 ON 12/15/70, FOR TSN 9596.
%c E421 CPU TIME USED: 0010.2206 SECONDS.

Notes on above session:

User logs on.

3-12

0)

Invokes the Assembler. No SYSFILE command is required in
this case because SYSDT A is automatically directed to the
terminal in a conversational session and has not previously
been directed elsewhere. The user enters a program consisting
of five statements.

The Assembly statement END indicates the end of a CSECT.
The Assembler processes this CSECT and then displays an
asterisk to allow the user to enter another CSECT if he
wishes. If he chooses to end execution of the Assembler he
should press the ESCAPE key on his terminal.

After the user presses ESCAPE, the system displays a slash,
indicating that the user may enter a system command. He
enters EOF to signal end-of-file on SYSDTA, thus
terminating the execution of the Assembler.

3-13

3-14

4. POST-SOURCE LANGUAGE TRANSLATION ROUTINES

INTRODUCTION

Because a programmer writes a problem program to perfonn a specific
function, his work is not complete until his program is actually running
without errors and doing the job it was intended to do.

The output of a successful language translation is an object module which is
free of language errors. This is only the first step, albeit an important one, in
getting a program to fulfill its purpose. After that, the programlner needs to
know how to instruct the system to create and execute a loadable program.

Figure 4-1 illustrates the various paths a programmer may take after
executing a successful compilation. The various routines which are shown in
the figure are described briefly in this chapter.

POST-COMPILATION DIAGNOSTIC ROUTINE

The conversational user may call on the post-compilation diagnostic routine,
BDIAG, (see Chapter 5 of this manual) to check the diagnostics, if any, that
the compiler produced.

The background compilers generate a permanent diagnostic file on disc if the
user so requests at compilation time. The file contains English language error
messages describing each source language error detected during compilation
and a summary of the severity of errors. The generation of a diagnostic file is
independent of the generation of a diagnostic listing even though both
contain the same messages. The programmer must specifically request each
option through its particular compiliation-time parameter.

After compilation, the conversational programmer at a remote terminal can
invoke the BDIAG routine to access the diagnostic file and display the error
information he requests.

Diagnostic File Contents

The diagnostic file contains two types of records:

1. Summary record
2. Diagnostic detail record

The file contains one summary record and a variable number of detail
records. If the compiler did not generate any diagnostic messages, the file
would contain only a summary record indicating that no errors were
detected during compilation.

4-1

Diagnostic File Compilation-Tinle Parameter

To obtailn a diagnostic file on disc, the programmers using the FORTRAN or
COBOL compiler must give the command:

/PARA~f ERRFIL=YES

Cataloging, Allocating, and Naming a Diagnostic File

The user may, if he wishes, create a catalog entry and allocate storage for the
diagnostic file by issuing the following DMS command:

/FILE filename,LINK=ERRFIL,SPACE=(Primaryinteger,secondaryinteger)

For a full description of the FILE command, see the DMS Reference
Manual.

The filename parameter can be the compiler-constructed name or the user
assigned name. If the programmer does not catalog and allocate disc space
for the d.iagnostic file, the compiler will do so.

The conlpilers construct a filename for the diagnostic file by taking the
program name (not more than the first eight characters) and prefixing it to
the base··name .ERRFIL thus:

Source-program-name.ERRFIL

For a complete description of the post-compilation diagnostic routine,
BDIAG, by which the programmer can interrogate the diagnostic file from
the terminal, see Chapter 5 of this manual.

POST-ASSEMBLY DIAGNOSTIC ROUTINE

The conversational programmer may call on the post-assembly diagnostic
routine, ADIAG, to check the diagnostics, if any, that the Assembler
produced. For a description of the ADIAG program, refer to Chapter 6 of
this nlan ual.

The Assembler generates a permanent diagnostic file on disc if the user
requests it at Asselll bly time with the command /P ARAM ERRFIL= YES.
This is an indexed sequential (lSAM) file for which the Assembler creates a
catalog entry and allocates disc space; the filename is constructed by
suffixing the name of the first CSECT (or the START statement) with the
characters .ASSM.DIAG. For instance, if the first CSECT is named BAT, the
Assembler will use the file name BAT.ASSM.DIAG for the diagnostic file.

The programmer can supply a filename for the diagnostic file. The paragraph
entitled Naming the Diagnostic File in Chapter 6 fully describes the
commands needed to do this.

INTERACTIVE DEBUGGING AID (IDA)

After achieving an error-free compilation, a programmer normally wants to
check the program logic in one or more test runs, some of which will
probably indicate the need for changes in the source program and
consequent recOlnpilation.

4-2

POST-TRANSLATION
DIAGNOSTIC ROUTINE

2

ImmEldiate
execution of

LANGUAGE
TRANSLATION

DYNAMIC
LINKING
LOADER

Object Program
(I DA optional).

or

3

LIBRARY::] MAINTENANCE
ROUTINE

DYNAMIC l.·.· LINKING
LOADER

or

LINKAGE
EDITOR

OBJECT DECK
(Optional)

TSOS LINKAGE
EDITOR

STATIC
LOADER

FIGURE 4-1. POST-COMPILATION ROUTINES, FLOWCHART:

4-3

2

or

3

or

4

4

The programmer may use the Interactive Debugging Aid (IDA) to monitor
and debug the program in test execution runs.

A user who wishes to employ IDA for hands-on debugging of the object
prograrn must not only instruct the compiler to create an Internal Symbol
Dictionary, but must also specifically instruct the Linkage Editor or the
Dynamic Linking Loader to create a loadable program containing an internal
Symbol Dictionary (lSD) for use by IDA. If he does not do so, the ISD will
not be completed and placed in the load module. To request its inclusion,
the programmer should give the parameter IDA=YES in the /LOAD or
/EXECUTE command to the Dynamic Linking Loader, or the parameter
IDA=Y in the PROGRAM statement of the TSOS Linkage Editor.

The ISD records which the compilers create are preserved intact in the
prograrnmer's Object Module Library created by the Library Maintenance
Routine, unless their exclusion is specifically requested.

When instructed, the Linkage Editor and Linking Loader will generate ISD
symbol entries for every entry symbol appearing in the object module ESD
records. The generation of this ISD data is distinct from the compiler's
generation of ISD records. Those items in ESD records of COBOL object
lTIodules for which the Linkage Editor and Dynamic Linking Loader will
generate ISD symbol entries are the program name and paragraph names
(ESD ltypes SD and LD, respectively). The items in ESD records of
FORTRAN object modules for which the Linkage Editor and Dynamic
Linking Loader generate ISD symbol entries are the program name, named
common, and label definitions (ESD types SD, CM, and LD, respectively).

Note: A programmer may wish to compile a program with
[SD records in the object module and test it, using IDA.
After testing, the user may realize that the program contains
::10 errors; therefore, there is no further use for the Symbol
Dictionary. In this situation, the user need not recompile,
~)imply link and load without the IDA parameter. The ISD
records generated by the compiler will not be included in the
loaded program.

IMMEDIATE EXECUTION OF AN OBJECT PROGRAM

The user can execute his object program directly after compilation by .
invoking the Dynamic Linking Loader. Because the compiler-generated EAM
object Illodule and the loadable program produced by the D LL are both on
teITIpOrary disc files, immediate execution is best suited to the programmer
who is repeatedly compiling, testing for logic errors, and recompiling.

The user can use one of the following command streams:

Command Stream A.

/EXEC BGCOB (or BGFOR)
/FILE

/EXEC *

4-4

compile a FILE command for
command for every
file accessed by the object program

Load & execute object program (*
specifies object module in EAM
file)

Command Stream B.

IPARAM SYMDIC=YES

IEXEC BGCOB
(or BGFOR)
IFILE

ILOAD* ,IDA==YES

IEXEC BGCOB
(or BGFOR)
IFILE

ILOAD* ,IDA=:YES

I.
I.
I.

RESUME

Instructs compiler to generate
Symbol Dictionary

Loads object module in EAM file and
instructs DLL to complete
Symbol Dictionary

Loads object module in EAM file and
instructs DLL to complete
Symbol Dictionary

Any IDA commands needed
for debugging

Initiates execution of object program

The programmer should note, however, that the Dynamic Linking Loader
handles Class II programs only. Class I programs must be linked by the
Linkage Editor and then loaded and executed.

Notes:

1. For a full description of the Dynamic Linking Loader, see
the Utility Routines Reference Manual.

2. See Example C of the COBOL section of this manual for a
session in which a user compiles his source program and
executes it immediately.

DELAYED EXECUTION OF AN OBJECT PROGRAM

When the user is satisfied that the program contains no logic errors, a
permanent, disc-resident loadable program can be created which can be
executed without recompilation .. There are two ways in which this can be

- done.

4-5

Library Maintenance Routine

Linkage Editor

The first is by using the Library Maintenance Routines to place the object
module in a disc resident Object Module Library (OML). Object modules
which are in an OML can be used as input to the Linkage Editor or to the
Dynamic Linking Loader.

Before invoking the Library Maintenance Routine, the programmer must be
sure to c:reate a catalog entry and allocate disc space for the OML with the
FILE c01nmand of DMS, because the LMR does not do this. Also, because
LMR takes its commands from the SYSDTA file, the programmer must be
sure that SYSDTA is directed to the source which will contain those
com1nancis. For instance, a terminal user who is com piling and then placing
the object module in an OML needs to redirect SYSDTA away from the
source-language file and back to the terminal so that LMR commands can be
typed in should issue:

/SYSFILE SYSDT A=source-file
/EXEC BGCOB (or BGFOR)
/SYSFILE SYSDT A=(PRIMAR Y) Redirect SYSDT A to terminal
/EXEC LMR
*CONTROL etc. The system types * and the user types commands to LMR

Note: For a complete description of the Library Maintenance
Routine, refer to TSOS Utility Routines manual.

Second, object lTlodules produced by the compiler may also be used as input
to the linkage Editor, which constructs a loadable program from one or
nlore object modules in its input stream and writes this program on a
permanent disc file. The output of the Linkage Editor can be loaded and
executed by the Static Loader. For a full description of the Linkage Editor,
refer to the Utility Routines Reference Manual.

The Linkage Editor expects to find its control statements in the SYSDTA
file; therefore, a programmer who is compiling and then linking must be
careful after compilation to redirect SYSDTA away from the
source-language file to the file or device which contains the Linkage Editor
control statements. For example, a terminal user who wished to enter
Linkage Editor control statements from the terminal should use the
following command stream:

/SYSFILE SYSDT A=source-file-name
/EXEC BGCOB (or BGFOR)
/SYSFILE SYSDTA=(PRIMARY)
/EXEC TSOSLNK
Linkage Editor control statements

The user may use the FILE command of DMS to create a catalog entry and
allocate space for the disc file which is to contain the loadable program.
However, if the programmer does not do so the Linkage Editor will do it.

4-6

If the user decides to catalog and allocate a file, care should be taken to
specify the filename correctly in the Linkage Editor PROGRAM statement.

If the file indicated in the PROGRAM statement of the Linkage Editor
already contains text (e.g., from a previous execution of the Linkage Editor),
it will be over written with the loadable program created in the eurrent run.

Note: See Example B at the end of the COBOL section of
this manual for a session in which a user compilles a source
program and then binds it with the Linkage Editor.

4-7

4-8

5. POST-COMPILATION DIAGNOSTIC ROUTINE (BDIAG)

INTRODUCTION

The Interactive Diagnostic Routine is a post-compilation program designed
to provide the user at a remote terminal with diagnostic information
concerning a Background COBOL or FORTRAN Compilation. It operates as
an interactive, Gass II program.

OPERATION AND USE

To use the Diagnostic Routine, the programmer proceeds as follows.

Before a compilation, the user must specify via the command:

IPARAM ERRFIL=YES

that the background compiler (COBOL or FORTRAN) is to generate a
diagnostic file on disc.

The Diganostic disc file is accessed via the DMS Sequential Access Method
(SAM). The first record of the: file is a summary record, followed by a
variable number of diagnostic detail records.

The conversational user at a terminal may at any time query the status of the
diagnostic file for a particular compilation. The programmer can verify the
existence of the diagnostic file by issuing either the command IFST ATUS
with the appropriate filename or the BDIAG command STATUS.

As soon as the user has verified that the file exists, that is, that the file has
been generated and can be accessed, the Interactive Diagnostic Routine and
diagnostic commands can be invoked.

The Diagnostic Routine operates ina conversational mode as follows:

The command IEXEC BDIAG invokes the routine.

As soon as the routine takes control, the following messages will be typed
out on the tenninal:

BF BDIAG
BF DEFAULT IS FORTRAN
BF FOR COBOL TYPE C,'COMMAND
BF READY'*

The programrner may type in a command following *. For any command, at
least one space must exist between operands. The maximum allowable length
for a filename is 44 characters.

5-1

After processing a command, BDIAG types another *. At this point, the user
nlay enter the next command.

When the programmer issues a STATUS command, the routine reads the
summary record and types out the total count of messages, followed by two
counts according to severity type. These totals summarize the relative
success .of the particular compilation. If there are any errors of severity type
2, it indicates that the Compile and Go mode has been inhibited. If there are
any of type 1, the user has the prerogative of deciding whether or not to
attempt executing the object program.

When the programmer issues a BDIAG PRINT command, the routine reads
all the detail records in sequential order, but types only those error messages
specifically requested. If the file contains no detail records (i.e., no error
nlessages from the compiler), the routine will type out a reply stating NO
ERRORS.

The programmer may interrupt and terminate execution of any Diagnostic
command.

COMMAND NOTATION

In the command format, the notations braces {} and square brackets [
are used in accordance with the following conventions:

{} Braces enclose two or more items from which one item must be
chosen.

[] Square brackets enclose options which may be included or omitted, as
required.

At least one space must appear between the command code and the operand,
a<; well as between each word in the operand field. The last character of a
command must be an end-of-text character.

The following symbols are used in this document to represent data in the
system's response messages:

F

iiiii

SSSSS

V

COMMAND DEFINITIONS

Special character that identifies a Post-Compilation
Diagnostic Routine response message.

Error message index number.

COBOL source statement sequence number.

Severity code.

The four commands in this routine (STATUS, PRINT, HELP, and DEND) all
have the following format:

Conunand Field

Conlmand Name
spelled out in capital
letters or abbreviated to
a single eapitalle:tter

Operand Field

One or more
parameters

The operand field is optional for some commands.

5-2

STATUS Command

Example:

Provides a summary of the results of the compilation. It enables the user to
decide whether to proceed to execute the object program, or request
additional diagnostic information to determine the usefulness of the
compilation.

User: {~TATUSI diagnostic-filename

BDIAG Response:

F TOTAL OF ttttt DIAGNOSTIC MESSAGES
(F SEVERITY:=O FOR ttttt)
(F SEVERITY:=1 FOR ttttt)
(F SEVERITY:=2 FOR ttttt)
(F SEVERITY:=3 FOR ttttt)

Where ttttt is the total number of messages in question. The last four lines
will not be typed if the total number of diagnostic messages is zero.

User: STATUS TAXPROG.ERRFIL

BDIAG Response:

F TOTAL of 00015 DIAGNOSTIC MESSAGES
F SEVERITY=O FOR 00011
F SEVERITY=1 FOR 00003
F SEVERITY=2 FOR 00000
F SEVERITY=3 FOR 00001

If there are no etTo:r messages, there will still be a response in the form:

F TOTAL OF 00000 DIAGNOSTIC MESSAGES

PRINT Command

PRINT ALL

There are four forms of the PRINT command. In the following format
specifications Hiii represents index code, sssss represents source sequence
number, and v represents severity type.

Lists all the diagnostic messages. (They also appear on the Diagnostic Listing
generated by the COBOL Compiler.) Each message contains the index code,
source sequence number, and severity type, plus a full explanation that may
extend across several lines.

User: diagnostic-filename ALL

BDIAG Response:

F iiiii sssss v explanation
(cont'd)
(cont'd)

F iiiii sssss v explanation

5-3

Example:

User: PRINT TAXPROG.ERRFIL ALL

BDIAG Response:

F 21074 00030 2 INVALID RERUN
OPTION

F 31128 00048 LEVEL NUMBER
EXCEEDS TWO
DIGITS

PRINT ERRORS

Example:

Lists all the diagnostic messages, typing out only the index code, sequence
number, and severity type.

User

BDIAG Response:

F
F

iiiii
iiiii

sssss
sssss

User: PRINT

BDIAG Response:

F
F
F

21074
31128
E2010

00030
00048

diagnostic-filename ERRORS
E

v
v

TAXPROG.ERRFIL

2
1
3·

PRINT SEVERITY

Lists all the diagnostic messages associated with a specified line number, i.e.,
COBOL source statement number. Also, to list all diagnostic messages
without any source statement numbers, i.e., null line numbers.

User: PRINT

BDIAG Response:

F 71174 00195

TAXPROG.ERRFIL LINE=00195

5-4

PERIOD MISSING
OR I WORD
APPEARING ON T

Example:

User: PRINT

BDIAG Response:

F

F

21074

31128

TAXPROG.ERRFIL L=NULL

2 INVALID RERUN
OPTION
LEVEL NUMBER
EXCEEDS DIGITS

For COBOL, the programmer must have a five digit line number. Leading
zeros are allowed for COBOL line numbers.

If the programnler specifies the NULL option, BDIAG searches through the
diagnostic file and prints all diagnostic messages associated with source
statements which have no source sequence number.

HELP Command

Lists all the diagnostic commands.

HELPH

BDIAG Response:

F Description of each command.

DEND Command

Terminates the routine.

DEND

PROGRAM MESSAGES

If a command is syntactically wrong, the routine will respond with:

BF BAD COMMAND
BF RETYPE
BF READY*

If the programlner specifies a severity code outside the specified range, an
error message in the following form will be typed out:

E ILLEGAL SEVERITY SPECIFIED
BF READY*

If the programlner specifies a wrong filename, the following error messages
will occur:

F FILE HAS NOT BEEN ALLOCATED
E BRANCH TO OPEN EXIT 1
F PLEASE LOGOFF AND LOGON AGAIN

5-5

At this point the routine automatically terminates, and the user should
LOGOFF and start again.

CONSIDERATIONS FOR USE

Programnlers inquiring about a COBOL compilation need to type in C
command before using the (PRINT fIlename line=sssss) command. Should
the user decide to inquire about his FORTRAN compilation after inquiring
about the COBOL compilation, the programmer should type the F
comlnand. Alterlilatively, the diagnostic routine may be terminated and
restarted. See the example following.

If the first compilation about which the programmer wishes to inquire is a
FORTRAN compilation, the F command need not be typed.

In addition, the user can use the STATUS command of BDIAG to determine
whether the diagnostic fIle has been built. If the file has been built the
programIner will receive normal response to STATUS; otherwise, the same
error message will be received as if the programmer specified an incorrect
filename (see itera 3 in the foregoing explanation of Program Messages).

5-6

/PARAM LIST=YES~ERRFIL=YES
/SYSFILE SYSDTA=EK.COBSRC (EK.COBSRC IS A FILE CONTAINING THE
/EXEC BGCOB CONTAINING THE SOURCE PROGRAM NAMED "POLITICS".
%LOOI PROGRAM LOADING "POLITICS".

32AO COMPILATION INITIATED (BGCOB VERSION=035B)
32AA COMPiLATION COMPLETED WITH SERIOUS ERRORS

%EBOOI SPOOLOUT INITIATED FOR TSN=4862 ID=HPBLS857
% PRINT FILE=00034
/SYSFILE SYSDTA=EK.FORT
/EXEC BGFOR
%LOOI PROGRAM LOADING

A TSOS FORTRAN BACKGROUND COMP I LER ~o:VER Al o~o:
%EBOOI SPOOLOUT INITIATED FOR TSN=4865 ID=HPBLS857
% PRINT FILE=00027
/SYSFILE SYSDTA=(PRIMARY)
/EXEC BDIAG
%LOOI PROGRAM LOADING

BF BDIAG
BF DEFAULT IS FORTRAN
BF FOR COBOL TYPE C. COMMAND
BF READY

~STATUS POLITICS.ERRFIL
F TOTAL OF 00001 DIAGNOSTIC MESSAGES
F SEVERITY=2 FOR 00001
BF READY

~eC •

BF READY
~PRINT POLITICS.ERRFIL ERRORS

F BI006 00048 2
BF READY

~STATUS EKFORT.ERRFIL
F NO DIAGNOSTIC ERRORS
BF READY

BF READY
:e P R I NT E K FOR T . ERR F I L ERR 0 R R S

F NO DIAGNOSTIC ERRORS
BF READY

~cDEND

/LOGOFF BUT
%C E420 LOGOFF AT 1130 ON 01/21/71~ FOR TSN 4901.
%C E421 CPU TIME USED: 0001.5939 SECONDS.

5-7

5-8

6. POST-ASSEMBLY DIAGNOSTIC ROUTINE: '(AD1AG)

INTRODUCTION

The Post Assenlbl.y Diagnostic Routine is a post-assembly prograln designed
to provide the programmer at a remote terminal with diagnostic information
about a particular execution of the Assembler. It operates as a Qass II
program which can be executed conversationally and nonconversationally.

OPERATION AND USE

Terminal Mode

Prin ter Mode

To use the Post-Assembly Diagnostic Routine, the programmer procedes as
follows:

Before an asserrlbly, the user must specify in the command:

/PARAM ERRFIL=YES

that the Assembler is to generate a disc resident diagnostic file.

The diagnostic file is accessed by the DMS Indexed Sequential Access
Method (lSAM).

The conversational programmer at a terminal may at any time query the
status of the diagnostic file for a particular assembly. The user can verify the
existence of the diagnostic file by issuing either the FSTATUS command
with the appropriate file name or the ADIAG STATUS command described
below.

As soon as the programmer has verified that the file exists and can be
accessed, the Interactive Diagnostic Routine, ADIAG, may be invoked and
diagnostic comlnands may be entered.

During the conversational session, the user has the option of using the
Diagnostic Program in two different modes: the terminal mode and the
printer mode.

This is the standard conversational mode. The commands are accepted from
SYSDTA and the responses are written to SYSOUT. Both these files are
directed to the terminal.

In this mode, the commands are still accepted from SYSDTA. However, the
results are put out to a high-speed printer at task termination. This mode
permits the user to extract or construct selected data to produce, in effect,
hand-tailored assembly listing data.

6-1

At the beginning of a session, AD lAG is in the terminal mode. The
prograrrlmer can switch to the printer mode by using the MODE command.

When ADIAG is in the printer mode, the commands are scanned as they are
entered" They are not immediately executed but are placed in an Active List
which is a list of commands to put out data on the printer after the user has
ended the session with the Assembler Diagnostic Routine.

Thus, a.s long as the Diagnostic Program is in the printer mode, it is
constructing a list of commands for later execution. None of the commands
in the list will be executed until after the current session with the Diagnostic
PrograITl is ended. At any time during the session, the list of commands that
are in the list Inay be displayed at the terminal (VERIFY command). Also,
any or all of the commands may be deleted from the list of commands to be
executed (REMOVE command).

Invoking ADIAG

The cornmand /EXEC ADIAG invokes the routine. As soon as ADIAG has
been loaded, it displays an asterisk at the terminal to indicate that it is ready
for the programmer to enter a STATUS command. The STATUS command
enables the programmer to specify the particular diagnostic file to be
interrogated.

After processing a command, ADIAG displays another *. At this point, the
user may enter his next command.

Command Interruption

The Diagnostic Program is constructed so that the programmer can interrupt
and terminate execution of any diagnostic command by pressing the BREAK
key. This interrupts the Diagnostic Program and puts the user in
communication with the Executive. The programmer can return to the
Diagnostic Program by typing the Executive command RESUME, in which
case execution continues as if the program had not been interrupted; or the
user can type the Executive command INTR, in which case the Diagnostic
Programl will abort any command in progress and expect the programmer to
enter the next command.

The Diagnostic Program can be used conversationally from a terminal so that
the programmer can control processing, one command at a time. It can also
be used nonconversationally from a sequential file or system card reader.
The Diagnostic Program gets its commands from a logical sequential file
which is equated with SYSDTA. Output in the form of responses and
nlessages is directed either to the user's terminal in the case of a
conversational task, or the printer in a nonconversational task.

STRUCTURE AND USE OF THE DIAGNOSTIC FILE

Structure

The Diagnostic File is created at assembly time; for a description of how to
request its creation, refer to the section in Chapter 3 entitled Use of TSOS
PARAM: Command for Assembly. The file contains all the data that appears
in the normal Assembly listing, plus some additional summary information
for use by the Diagnostic Program. The file is constructed as an indexed
sequential file for more efficient accessing by ADIAG.

6-2

Naming the Diagnostic File

The Assembler provides a default filename for the diagnostic file, unless the
programmer wishes:'to supply a name for the diagnostic file.

The default file name is constructed by prefixing the name of the first
CSECT in' the' assembly to the characters .ASSM.D][AG (i.e.,
csectname.ASSM.DIAG). After the user has invoked ADIAG, a STATUS
command must be issued specifying the csect-name. ADIAG then finds the
correct file for the programmer. (In the case where the first CSECT is
unnamed, the Assembler names the diagnostic file ASSM.DIAG and the
STATUS comnland needs no operand.)

If the user wishes to supply a filename for the diagnostic file, a FILE
'command must be issued in the following format before the programmer
invokes the Assembler:

/FILE filename:,LINK=DIAGFILE,SPACE=(primary,secondary)

The SPACE parameter is not required if the file has already been allocated
space. After the assembly is completed and before invoking ADIAG, the
programmer must issue another FILE command with the following format:

/FILE filename,LINK=DIAGLINK

The programmer then invokes ADIAG and issues a STATUS command,
either specifying as an operand the name of the first CSECT, or, if the
CSECT was unnamed, leaving the operand field blank.

DIAGNOSTIC PROGRAM COMMANDS

ADIAG commands provide the nleans by which a programmer specifies the
diagnostic inquiries to be made" Commands are normally entered from a
terminal keyboard.

Commands usually consist of four fields:

I. Label Field

The label field is an optional field. It provides a means for the programmer
to reference a particular command that has been entered earlier in the
session while in the printer mode. The label field consists of a symbol
preceded by a period. A symbol consists of from I to 7 characters, the first
of which must be a letter and the remaining are either letters or decimal
digits.

2. Command Operation Field

The command operation field identifies the function to be performed. This
field must always be present.

6-3

3. Command Operand Field

The command operand field identifies the particular types of data about
which the inquiry is being made. For most commands, the operand field is
optional and, when not present, a pre-specified default value will be
assumed.

4. ETX Character

The ETX character must be used to terminate the entering of a command
when the: commands are being entered from a terminal.

Conventions for Command Description

Braces, {} enclose two or more parameters from which a choice must be
made. Brackets, [] enclose options which mayor may not be included. At
least one space nlust appear between the command code and the operand, as
well as between each word in the operand field. The last character of a
command must be the ETX character .

.label, represents a command label field ~ represents a space.

Command Definitions

STATUS Command

Csect-name

password

Determines whether the diagnostic file exists and, if it does, summarizes
briefly the results of the Assembly. It must be issued before all other
commands except HELP, DEFINE and END. It enables the programmer to,
decide whether to issue further diagnostic commands or to go ahead and
execute the object module.

[.label] [I csect-name \]
csect -name#password

Is the name of the first CSECT in the assembled module.

The password, if one is required, for access to the file.

COMMAND EXECUTION

ADIAG tries to open the file named. If it cannot do so, then a message is
printed on SYSOUT. If the file is opened successfully, ADIAG displays a
summary giving (I) the name of the file opened, (2) date and time the file
was created, (3) whether the file has been accessed by the Diagnostic
Program before (indicated by the word OLD or NEW), (4) an error severity
code, and (5) a count of the number of statements in error.

6-4

EXAMPLES

User: STATUS PROGI

System
Response: NEW FILE-PROG 1.ASSM.DIAG

CREATED 06/04/70 08:56:49 SEVERITY=l
NO. OF FLAGGED STATEMENTS=000012
NUMBER OF ERROR FLAGS: 14

When the programmer wishes to have diagnostics written to a specific file,
rather than to the standard diagnostic file which the Assenlbler names
csect.ASSM.DIAG, two FILE commands must be issued. The following
example illustrates how to accolnplish this:

ffi
/SYSFILE SYSDTA=EK.l

2 /FILE EKERR,LINK=DIAGFILE,SPACE=(12,3)
3 /PARAM ERRFIL=YES

/EXEC ASSEMB
%LOOI PROGRAM LOADING

VERSo 0009 OF TSOS ASSEMBLER READY
FLAGS IN 00000 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES

~
/SYSFILE SYSDTA=(PRIMARY)

5 /FILE EKERR,LINK=DIAGLINK
6 /EXEC ADIAG

%LOOI PROGRAM LOADING
G) :: S TAT U S T EST

NEW FILE--EKERR
CREATED 11/24/70 13:52:52 SEVERITY=O # OF FLAGGED STATEMENTS 000000
NO ERROR FLAGS

::END

CD
CD

CD

Direct SYSDT A to Assembly language source program.

FILE command for programmer named diagnostic file. Note
linkname is DIAGFILE.

Instruct Assembler to write the diagnostic file

Re-direct SYSDTA to terminal in order to enter ADIAG
cOlnmands.

Issue second FILE command for diagnostic file. This time,
linkname must be given as DIAGLINK ..

Invoke ADIAG.

Issue STATUS command specifying name of first CSECT in
assembled module.

6-5

FLAGS Command

Gives a count by flag type of the Assembly errors. It gives the programmer a
more detailed picture of the results of the Assembly.

[.label]
I ~LAGSI

COMMAND EXECTUION

EXAMPLE

The diagnostic fIle is interrogated and each general flag is listed with a count
of the number of times this flag appears.

User:

System
Response:

FLAGS

A:=002, M=017, U=003

LINES Command

Lists the: statement numbers and associated error flags of all statements
which have errors.

[.label]
I tINES I

COMMAND EXECUTION

EXAMPLE

The diagnostic file is interrogated and each line that has an error flag is listed
by staternent number. The flag references for the line are listed to the right
of the statement number.

User:

System
Response:

L

00334 U 00428AA 00437U

NUMBERS Command

Lists statement numbers by flag type for all statements having the flag types
which are specified in the command operand field. If no operand is specified,
the statement nunlber of all state,ments containing error flags will be listed.

[.label]
I~UMBERS I [fl f2 f3 f4]

The f's rnay be either the general or detailed flags used by the Assembler to
flag statements in error, and are specified by the user when he is interested in
a particular type or subset of errors. The fs may appear in any order and
may be redundantly entered. The operand field may have up to 20 entries.

6-6

COMMAND EXECUTION

EXAMPLE

The diagnostic file is interrogated and each specified flag listed with the line
numbers where it occurs.

User:

System
Response:

NUMBERS

A 00428
TNONE
U 00334

AUT

00437

TAGS Command

M

U

Xor
XREF

lists all undefined and multiply-defined symbols and, optionally, their
associated cross-reference data. If no operand field is present, both
multiply-defined and undefined symbols are listed; however, no
cross-reference data is given.

[.label] UvI] [U]
X
XREF

Requests that all multiply-defined symbols be listed.

Requests that all undefined symbols be listed.

L,ists cross-reference data for any M or U symbols listed.

The operands can appear in any order.

COMMAND EXECUTION

EXAMPLES

The diagnostic file is interrogated and the requested data is listed. If no cross
reference data was requested, then all multiply-defined symbols are listed
first and then all undefined symbols. If cross-reference data was requested,
then each synlbol is followed by a list of statement numbers which reference
the synlbol. Where the referencing statement is the defining statement, the
statement number is followed by an asterisk (*).

For the following examples assume:

1. Symbol FIELDA is multiply defined by statements 00605 and 00900 and
referenced by statement 00910.

6-7

2. Symbol AREA2 is multiply defined by statements 01000 and 01500 and
referenced by statement 00905.

3. AREAl and FIELDB were undefined symbols referenced by statements
01400 and 01410, respectively. .

User:

System
Response:

User:

System
Response:

User:

System
Response:

T

M AREAl ,'FIELDA
U AREA1,'FIELDB

TAGS X

M AREA 2 01000*,'00905,'01500
M FIELDA 00605*,'00900,'00910
U AREAl 1400
U FIELDS 01410

TAGS UX

AREAl 01400
FIELDB 01410

XREF (Cross-reference) Comman ds

Lists the Gross-reference statement numbers for the symbols specified in the
operand field of the command.

IXX
REF

\ [.label] S 1 S2 S3 ...

Sl, S2, and S3 are symbols for which the programmer requires
cross-reference data. Each symbol in the operand list is separated by at least
one space, At least one symbol must appear in the list.

COMMAND EXECUTION

EXAMPLE

The diagnostic file is interrogated and each symbol designated is listed along
with its as.sociated cross-reference listing data.

User:

System
Response::

XREF

AREAl

AREAl

00100*00212 00257

PRINT Command

Lists a specified statement or a specified range of statements as they would
appear on the assembly listing.

[.label]

6-8

sl or 12

s2 or 12

Specifies the statement at which to begin printing. Printing will begin at the
line whose tag is sl or whose statement number is II.

Specifies the statement with which to end printing. Printing will end with
the printing of the line:

I. whose tag is s2, or
2. whose statement number is 12, or
3. is the Nth line beyond the initial line.

Note: If the s2 or 12 parameter is omitted, then the line
indicated by s I or II is the only one printed.

COMMAND EXECUTION

EXAMPLE

The statements specified are read from the diagnostic file, fomlatted and
displayed. In general, each Asselnbler statement will require two lines for
printing, with Hne I containing the first 65 characters and line 2 the remainig
characters of the statement. The exact format of the printouts will vary
depending on the permitted line sizes for the particular remote terminal
equipment being used.

User:

System
Response:

P 03125

081 DC D2 07 A2C7 A230 093A 7 09310 03123
DNRERPL MVC AREPLACE(8),A8ZER

DEFINE Command

Lists the definition of the specified error flags.

[.label]
I gEFINE\ fl f2 ...

fl ... fn are the flag characters used by the Assembler on a listing to indicate
source statement errors. Both the single letter flags and the detailed flag
indicators may be specified in the command. The maximum number of flag
entries permitted in a single comnland is 20.

COMMAN D EXECUTION

EXAMPLE

The definition of each of the flags listed in the command is printed on the
terminal. The definitions will be printed in the same order as they are
requested in the command operand field.

User: DEFINE U

System
Response: UI UNDEFINED SYMBOL.

6-9

HELP Command

This comnland provides a conversational programmer's manual for the user.
The comrrland may be invoked to get: (1) a list of the Diagnostic Program
commands. or (2) a description of one or more commands. The user may
enter only the operation code and the system will then write a list of the
Diagnostic Prograrn commands. If one or more command names are entered
in the operand fie1d, then a description is written for each command named.

[.label] [name 1 name2 ...]

If the operand field is omitted, a list of the Diagnostic Program commands is
printed without any additional description. If the names (operation codes)
of one or more commands are given (each name must be followed by at least
one space), then a description is written for each command named.

COMMAND EXECUTION

The comrrland is scanned and the appropriate messages written out.

EXAMPLES

User: HELP LINES

System
RESPONSE: (.label) LINES

MODE Command

Places the Diagnostic Program in either the terminal mode, the printer mode,
or both rrlOde. It determines the mode in which the Diagnostic Program will
operate until either an END or subsequent MODE command is processed.

[.label]

TERMINAL
T
PRINTER
P
BOTH
B

If no parameter fi eld is present, then TERMINAL mode is set.

COMMAND EXECUTION

EXAMPLE

The Diagnostic Program is set to the requested mode. The command is
ignored if the program is already in the mode indicated in the operand field.

User:

System
Response:

MODET

(sets execution mode to TERMINAL mode)

6-10

VERIFY Command

Lists at the terminal' those com,mands that have been entered into the Active
List as a result of the Diagnostic Program having been placed in the printer
mode. The command will list either all commands in the Active List or all
commands specifically named (by their labels) in the operand field.

[.label] [.labell .labe12 ...]

If the operand field is missing, all commands in the Active List will be listed
at the terminal. Otherwise, the commands identified by their label field will
be listed at the terminal. A maximum of 5 label entries is pennitted in the
operand field.

COMMAND EXECUTION

EXAMPLE

The Active List is accessed and then the commands are listed.

User:

System
Response:

VERIFY .COMI

.COMI LINES

REMOVE Command

Deletes com1nands from the Active List. It removes all commands or
specifically named commands from the list.

[.label]
I~EMOVEI

[.label 1 labe12 ...]

If the operand field is not present, all commands in the Active List are
deleted. If the operand field contains one or more command labels, then the
commands in the Active List identified by those labels are deleted. A
maximum of 5 label entries is permitted in the operand field.

COM MAN D EXECUTION

EXAMPLE

The Active List is scanned and the appropriate commands are deleted from
the list.

User:

System
Response:

REMOVE .COM,BLANK

(removes commands labeled .COM and .BLANK from the
active list.)

6-11

END Command

Terminates the execution of the Diagnostic Program and can also be used to
request that a standard Assembly listing be constructed and printed from the
diagnostic file.

[.label] \
END\
E J

If no operand field is present, then the Diagnostic Program does not produce
an Assembly listing. If present, the standard Assembly listing printed is
printed in a background mode.

COMMAND EXECUTION

When this command is entered, the Diagnostic Program creates and enters a
background task if either a listing was requested or there are commands in
the Active List. After establishing the background batch task (if necessary),
the Diagnostic Program terminates.

6-12

Page

ACCEPT Statement 1-12
Access Methods .. 1-13
Actual Key 1 -11
ADIAG 6-1
Assembly 3-1
Assembly Language Input .. 3-2

BDIAG 5-1
BDIAG Program Messages. 5-5

Card Input (FORTRAN) 2-3
COBOL Background Compilation. 1-1
COBOL Interface With OMS and

Other System Components 1-13
COBOL Language Modifications , 1-8
COBOL Source Library on Disc " 1-14
Compilor Features ~ 1-2
Cross-reference Command 6-8

DataSet Specifications (FORTRAN) 2-11
DDS (Define Data Set) Macro. 2-22
Debugging Statements. 1-2
DEFINE Command 6-9
Delayed Execution of an Object Program 4-5
DEND Command 5-5
Device Independence for Sequential Files; 1-14
Diagnostic File (ADIAG) 6-2
Diagnostic File (Assembly) 3-8
Diagnostic File Generation (COBOL) 1-15
Diagnostic File Generation (FORTRAN) 2-6
Disc-resident Object Modules 2-4
Disc-resident Source Files (Assembly) 3-2
Disc-resident Source Files (FORTRAN) 2-2
DISPLAY Statement. .. 1-13
DVLST (Device List) Macro 2-25

EAM DCB Characteristics 2-31
END Command 6-12
Equipment Configuration (Assembly) , 3-2
Equipment Configuration (COBOL) 1-2
Equipment Configuration (FORTRAN) 2-1

FILE Command 1-14
FILE Command Parameters for BTAM DCB 2-29
FILE Command Parameters for ISAM DeB 2-28
FILE CONTROL Paragraph , 1-10
File Description (COBOL) ... "............... 1-13
File Description (FD) Paragraph. 1-11
F LAGS Command 6-6
FORTRAN Background Compilation 2-1

Z-l

INDEX

Page

FORTRAN OMS Library Routines. 2-20
FORTRAN Object Time Facilities 2-9
FORTRAN Parameter Specifications 2-7

Generated Listings (FORTRAN) 2-5
Generated Object Modules 1-5
Generation of Internal

Symbol Dictionary (ISO) 1-15,2-6

HELP Command 5-5,6-10

1-0 CONTROL Paragraph 1-11
Immediate Execution of an Object Program 4-4
Immediate Listi ngs 1-6
Interactive Debugging Aid (IDA) 4-2
Intermediate Work Files 3-9,2-3

Library Maintenance Routine (LMR) 4-6
LINES Command 6-6
Linkage Editor 4-6

MODE Command 6-11

NUMBERS Command , 6-6

Object Module Card Decks 1-5, 2-4
Output Object Module "...... 3-7

PARAM Command, Use of " ... 1-7,3-9
Post-Assembly Diagnostic Routine 6-1
Post-Compilation Diagnostic Routine. 4-1
Post-Compilation Diagnostic Routine (BDIAG) 5-1
PRI NT Command 5-3,6-8

REMOVE Command 6-11

Segmentation 1-8
SELECT Sentence 1-9
Source and Object Listings 1-6
Source Input (COBOL) 1-2
Source Input (FORTRAN) 2-2
Source Language Compatibility 2-1
SPECIAL-NAMES Paragraph 1-8
STATUS Command 5-3,6-4
STOP Verb 1-12

TAGS Command .. 6-7

VERI FY Command 6-11

XREF Command 6-6

July 1971

Z-2

Title TSOS Language Processor Programming Reference Manual

Document No. OJ-008-2-00

Date July 1971

Your comments and suggestions will help us to furnish publications that
are more usefu I to you.

Is this publication:

Complete in its coverage?

Logically organized?

Technically accurate?

Easy to understand?

Other comments (Use additional page if necessarY)I.

non Computer
Systems

Name ______________________________________ __ Street or Box No. _____________________________ _

Job Title ____________ _ City __________________________________ _

Company ___ _ State _____ Zip

Q)

I:J
II g
,,2
;1 «
15 ,U

Fold I

BUSINESS REPLY MAl L - no postage necessary if mailed in the United States

Fold

Postage will be paid by addressee

RCA I COMPUTER SYSTEMS
DATA PROCESSING DIVISION
CAMDEN, N. J. 08101

ATTN: Marketing Publications
Bldg. 204-2, Cherry Hill

FIRST CLASS
PERMIT NO. 16
CAMDEN, N. J.

Publications
Purchase
Order

Item Quantity
No. Ordered

1

2

3

4
-

5
-

6

7

8

9

10

11

12

13

~
---- ---.-

15

16

Ship To:

Orderi ng Number

t----

RCA\Computer Systems Division
Camden, N. J. 08101

ROil
Description or Title of Material

Bill To: (Complete if Publ ications Are To Be
Purchased)

Customer P.O. If

Publ ications purchased will be furnished subject to all terms and conditions stated on the reverse
side of this Form.
-
Ship via Date Requi red

Authorized Signature Date

27-41-002

Order Number

Complete if Publ ications Are To Be Purchased

Unit Price Totals

.-

_ .. ---~-.~.-- -- --- - -----_.-

Sub Total

Indicate Appl ica-
ble Sales Tax
--._--_._-- -

Total Cost

Check Appropriate Block:

Bi II My Company \ \

Remittance Enclosed I I

If Pub I ications are to be purchased forward
this Form and any enclosures to:

RCA I Computer Systems Division

Reproduction Services

Camden, N. J. 08101

All other requests: Forward this form to the
nearest RCA Di strict Office.

9/70

Terms And Conditions
Applicable To The Sale of RCA Publications and Forms

nOli

PRICES

All prices are subject to change or withdrclwal without notice and all shipments wi II be bi lied at prices in effect on
date of shipment. Unless otherwise specified or required by law, all prices will be billed exclusive of state and local
sales and similar taxes, and such taxes will appear as additional items on invoices.

TRANSPORT AT ION

All sh ipments wi II be f.o.b. desti nation.

On shipments where Purchaser requests transportation involving expenses beyond those involved on transportation
normally selected by RCA, the Purchaser will be responsible for payment of such extra costs.

RCA reserves the right to ship from any location subject to the foregoing transportation terms.

DELIVERIES

It is the desire of RCA to meet requested delivery schedules. However, RCA shall not incur any liability due to any
delay or failure to deliver for any reason. Any delivery indication furnished by RCA only represents the best estimate
of the time required to make shipment. The del ivery of part of any order shall not obi igate RCA to make further
deliveries, and RCA reserves the right to decline servicing any order in whole or in part.

Of necessity, inventories and current production must be allocated in such a manner as to comply with applicable
Government regulations. In the absence of such regulations, RCA reserves the right to allocate inventories and
current production when, in its opinion, such allocation is necessary.

TERMS OF PAYMENT

Invoices shall be rendered at tim'::; of shipment and shall be payable net 30 days from date of shipment.

Partial shipments will be invoiced as made, and payments therefor are subject to the above terms.

GENERAL

In no event shall RCA be liable for indirect, consequential or special damages.

Information furnished by RCA is believed to be accurate and reliable. However, no responsibility is assumed by RCA
for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No
I icense is granted by impl ication or otherwise under any patent or patent rights of RCA.

This Agreement shall be governed by the laws of the State of New York and constitutes the entire Agreement between
the parties wi th respect to the subject matter hereof. It shall prevai I regardless of any variation in the terms and
conditions of any other submitted by the Purchaser.

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	Index-01
	Index-02
	replyA
	replyB
	replyC
	replyD

