PROGRAMMING
SYSTEMS

How does one use the programming systems for the Rice
Computer?

The solution to a private computing problem is a private
system of programs and data. The diagram illustrates use of
the Rice Computer programming systems in the construction and
execution of a private system.

PRIVATE SYSTEM

FORMULATION
WRITE DECIMAL WRITE
IN APl DATA IN GENIE
PREPARATION ON SYMBOLI;\\\ // \\ SYMBOL;Z\\\
FLEXOWRITER AP1 EDIT DATA EDIT GENIE EDIT
PREPARATION WITH l v *l * ' '
COMPUTER PLACER
_____ -
ABSOLUTE
PROGRAMS DECIMAL
DATA
PAPER TAPE LOAD LOAD OR READ
DURING EXECUTION
— T T T —— L
/ MT SYSTEM ~ SAVE ON

/ MT
EXECUTION PRIVATE (

[SPIREL WITH LIBRARY PROGRAMS |

\ AND DATA 1

PRIVATE SYSTEM ——{/

May, 1967

A private system consists of:

the operating system private data
with library programs + and programs
So, private programs and data are added to SPIREL to form a private
system.
SPIREL is the operating system for the Rice Computer. It may
be used from the console or dynamically by private programs for
such operations as:

reading '\
{

correcting } of programs and data

printing
punching
execution of programs
Dynamic storage control is provided automatically by SPIREL, and
various debugging aids are available in the system.

The SPIREL system is composed of SPIREL and a library of
programs which perform functions likely to be useful to private
programs. Any private program in a private system built on SPIREL
may use any library program as a subroutine. The library provides
functions such as:

trigonometric functions
vector and matrix operations
formatted printing and plotting

The construction of a private system entails the preparation
of private programs and data. PLACER is the programming system
used for preparation of system elements; it has nothing to do with
system execution. It works on one program or one data tape at a
time, and provides the following operations:

editing

listing on the printer of programs or data
punching

translation of programs from symbolic to executable

form and vice versa

January, 1968

Programs are written in a symbolic langauge:
APl, the assembly language in which statements correspond

one-to-one with instructions to be executed by the computer

or Genie, the formula language in which mathematical notation is
employed and which contains as a subset the AP2 assembly
language

PLACER contains the APl assembly program and the Genie compiler.

APl translates programs written in the APl language to executable

form. The Genie compiler translates programs written in the Genie

formula language to executable form.

The magnetic tape system provides

filling of memory from a block on magnetic tape

dumping of the contents of memory onto magnetic tape
SPIREL and PLACER are on magnetic tape and are read into memory by
use of the magnetic tape system. Once a private system has been
composed in memory, the magnetic tape system may be used to write
the system onto tape. Subsequent use does not require loading of

private items from paper tape.

May, 1967

PLACER

PLACER

Function of PLACER . ¢ ¢ ¢ o o o o e

PLACER Operation . o o« e o o o o o =

Read e o © e e e o e e e © e o o e o

Edit L] . Ld L] L] -] o . L L] o L] * L L] L]

Punch © ®© o ® 0o o o e o o o e e o o

LiSt ° L] L] ° L J L L ® ° ° L] L] o - L] .

CheCk‘ o L] L] L] © ° ° o ° ° ° L] o L L]

Translate o o @ 0o e ® o o e e e & o

Back=Translate o« o o o o e o o o o e

Run . . L] 3 ° L] . ° [o ° ° ° o L] .

FUNCTION

The PLACER system is designed to facilitate preparation of

programs for the Rice Computer,

Programs exist on paper tape in two forms:
symbolic =~ in the assembly language or Genie language.
absolute -=- in machine language, as translated from sym-

bolic form from assembly or Genie language, ready to
be loaded for execution.,

PLACER operations which may be applied to program tapes are:
read symbolic tape -- forming "tape image" in memory
edit image =-- change, insert, or delete lines in image,

per edit instructions on paper tape
punch image =-- on paper tape
list image =-- on printer
check symbolic tape =-=- against image
translate image =-- assemble or compile as appropriate,

and produce absolute tape

back~-translate absolute tape =-- read absolute tape,
"back translate' into symbolic assembly language,
forming image as if symbolic tape had been read.
PLACER operations may also be applied to data tapes which
are manually prepared on the flexowriter, In this case, the

translation operations would not be meaningful.

OPERATION

When PLACER is read into membry from magnetic tape program *340
is executed, and the main PLACER stop
| (I): 00 HTR cc
occurs. One or several PLACER operations may then be designated in

the sense lights:

SLl --— read symbolic tape

SL2 --- edit

SL3 —-—-— punch (edited) symbolic tape

SL4 --- 1list (edited) symbolic tape

SL5 ---— check (edited) symbolic tape punched

SL6 --— translate (edited)-symbolic tape

SL7 --- back-translate absolute tape

SL15 -- run with SPIREL

SLlO—SL15 -—-— run with specified system tape block
The original tape to be processed should be placed in the reader.
SL7 is used if this tape is absolute, and SLl is used if it is

7 and SLl operations

symbolic. It is not meaningful to elect both SL
in PLACER. A

Pushing CONTINUE at the main PLACER stop with more than one
operation designated causes the operations to be carried out in the

following order:

SLl or SL7 --- read symbolic tape or read absolute tape and
back-translate to APl symbolic, forming symbolic image
in the machine ‘ ‘

SL2 --- wait for edit tape; then edit image

SL3 --- punch (edited) image, generating symbolic tape

SL4 --— list (edited) image on the‘printer A

SL5 --— check symbolic tape against edited image if tape is

feady in the reader; if tape is not ready and transla-

tion operation is designated, go on to translation and

PLACER March, 1968

L -

i

OPERATION
2

return to check after translation; if tape is not ready
and translation is complete or not designated, wait for

tape; if tape does not check, do not exercise run option

SL6 --- translate edited image, generating output on the
printer and absolute tape
SLlO—SL15 --— obtain designated block from magnetic tape for

running, SPIREL if only sp.1®

If only one operation is designated in SLl through SL7 at the

main PLACER stop, pushing CONTINUE will cause a stop for that
 operation: ' '

(1): 0i HTR cc
for SLi on. Then options for the particular operation may be
designated in the sense lights before pushing CONTINUE to cause the.
operation to be carried out.
The PLACER operations and the options available for each are

explained in detail in the sdcceeding sections.

PLACER March, 1968

READ

SLl, READ

The symbolic tape to be read must begin with a carriage return.
All characters beyond the last cr on the tape are ignored by the
system. When the reading is complete, the system has in the machine

a tape image.

Options
If only SLl is turned on at the main PLACER stop so that only
the READ operation is designated, the stop
(1): 01 HTR cc
occurs. READ options may then be designated in the sense lights

as follows:

SL15 causes reading to terminate at the first double carriage

return punch. A double carriage return is any two
carriage returns not separated by a printable character.
Here printable characters include those represented by
a backward arrow; nonprintable characters include only
the space, the tab, case punches, and the carriage
return itself.

Pressing CONTINUE with no tape in the reader will cause exit
to the console typewriter. A program may then be typed in, using
exactly the format used on the flexowriter. The backspace key will
not properly backspace over the characters "*, 4, $". It will not
backspace beyond carriage returns. To erase é line, type a quegzzén
mark' (?). To erase the entire input text, type the sequence 22?.

Depressing the "index" key will cause exit of the read option.

PLACER March, 1968

< -

i

|
!

il

EDIT

SL EDIT

The stop
(1): 02 HTR cc

occurs, The edit tape is placed in the readerj‘.Pushing CONTINUE
causes this tape, which must contain only the corrections for the
tape image in the machine, to be read, When reading is complete,
PLACER's tape image in the machine is edited,

Each edit of a tape image requires specification of a range
of lines in the tape image to be affected by the edit. The carri-
age return numbers for the or1g1na1 image are used for this purpose,.
A line in a symbolic tape 1is termlnated by a carriage return, these
being numbered from 1 on the listing. The edit range is specified
by initial carriage return i and final carriage return f, inter-

preted as from and not including carriage return i through carriage

return f. Such a range will be denoted (i,f) here,.
Each edit is one of the following:

o replacement of lines (i,f) in the image with n (octal) symbo-

lic lines read from the edit tape. The specification is punched
(1.c.)i(sp)£f(sp)n(cr)
The n lines of the replacement follow the specification on the
edit tape, and each line is terminated by a carriage return.
e deletion of lines (i,f) in the image, The specification
is punched
(1.c.)i(sp)f(sp)O(cr)
No symbolic lines accompany this specification on the edit tape.
Deletion is just the case of replacement with n = 0.

e insertion in the image after carriage return i of n (octal)
symbolic lines read from the edit tape. The specification is
punched

(l.c.)i(sp)i(sp)n{cr)

Insertion is just the case of replacement with i = £, a null range

>
to designate position only.

e '"move" for replacement of lines (11,f) in the image with

lines (iz,fz) in the image. The spec1f1catlon is punched

(l.C.)il(Sp)fl(sp)iz(sp)fz(cr)

I

(i

EDIT

No symbolic lines accompany this specification on the edit tape.
The lines (iz,fz) are deleted from their former position.

o "move"™ for insertion in the image after carriage return il

of lines (i2,f2) in the image. The specification is punched

(l.c.)il(Sp)il(sp)iz(sp)fz(cr)

No symbolic lines accompany this specification on the edit tape.
The lines (i2,f2) are deleted from their former position.

Edit specifications may overlap since the carriage return
numbers are preserved in all edit operations internally. Numerous

edits of the tape image are possible using the latest carriage
return numbers.

There are no EDIT options.

TPressing CONTINUE with no tape in the reader at the edit halt will

cause exit to the console typewriter. Edits may then be typed ex-
actly in the format used on the flexowriter, being certain to type

an initial carriage return before the first edit specification.
If this option is reached accidently, depressing the index key
immediately will cause the edit halt to reappear. The index key
is ﬁsed,also to exit the edit mode. As in the read option a
question mark (?) will erase a line. Do not, however, use the 3

question mark sequence.

PLACER March, 1968

.

PUNCH

s.>, PUNCH

The tape image (symbolic version) is punched out on paper with

corrections if editing was done. It is advised that the CHECK option
always be used with this operation.

There are no PUNCH options.

PLACER January, 1968

LIST

st.?, List

The tape image in the machine is listed on the printer with
carriage return numbers. If the tape begins with 'DEFINE' (as
do Genie program tapes), superscript and subscript lines will be
printed above and below the base line. Other tapes will be listed
with more lines per page, one line per carriage return number
with superscript printed as the character ' 4' and subscript as 'V'.
A lower case Roman letter after f is printed as '. upper case
letter'.

If a line ends in a superscript or subscript position, it is
followed by a message noting the displacement.

Options
If only SL4 is turned on at the main PLACER stop so that only
the LIST operation is designated, the stop
(I): 04 HTR CC
occurs. LIST options may then be designated in the sense lights
as follows:
§E_i forces printing of separate superscript and subscript lines.

SL15 causes double spacing on the listing.

PLACER January, 1968

i

CHECK

s1’>, CHECK

If the tape to be checked is not in the reader, the stop
(D) : 05 HTR cc
occurs, Pushing CONTINUE causes the tape that is read to be com-
pared to the tape image in the machine. An error print is given
if the comparison fails,

There are no CHECK options,

[0

TRANSLATE

SL6, TRANSLATE

The tape image in the machine is tranSlated, by the Genie
compiler if it begins with 'DEFINE', by the assembly program
otherwise.

Both translation procedures produce output on the printer
and absolute program tapes. Details are given in the literature
on the assembly and Genie languages.

Assembly Options

If QELX_SLG is turned on at the main PLACER stop so that only
the TRANSLATE operation is designated, the stop
(I): 06 HTR cc
occurs. TRANSLATE options for assembly may then be designated in
the sense lights as follows:

SL9 causes assembly output on the printer to be double spaced.

SLll suppresses punching of the absolute tape.

SL13 causes punching of a self-loading absolute tape. Such

a tape will load by using the LOAD switch on the console.
. See assembly language literature for more details.
Note that SL14 and SL15 are turned on automatically and should be
left on.
Also, if TRANSLATE is selected with other operations at the
main PLACER stop, assembly options may be designated in the in-

dicator lights (IL9, ILll, 113 as above).

Compilation Options

If only SL6 is turned on at the main PLACER stop so that only
the TRANSLATE operation is designated, the stop
(I): 06 HTR cc
occurs. TRANSLATE options for compilation may then be designated

PLACER January, 1968

TRANSLATE

2
in the sense lights as follows: _

Sle punches the internal portion of the Symbol Table, in-
cluding internal names and statement labels, as a
program tail. See SPIREL-CONSOL COMMUNICATION for
details on use.

SL13 suppresses output of absolute tape.

SL14 provides condensed compilation on the printer -- only
the first instruction of each command sequence and no
Symbol Table.

SL15 causes output during compilation of intermediate code
forms -- sets and phase 1 code. This is rarely of
interest to the general user.

Also, if TRANSLATE is selected with other operations at the

main PLACER stop, compilation options may be designated in the

12

indicator lights (IL™7, ILl3, IL14, IL15 as above).

PLACER March, 1968

L

BACK~-TRANSLATE

s.’, BACK-TRANSLATE

If the absolute tape to be translated is not in the reader,
the stop
(1) : 07 HTR cC
occurs, Pushing CONTINUE causes the absolute tape to be read,
and a symbolic tape image of an equivalent APl program is construct-
ed in memory. This image is no different from one generated by the

READ operation,

Details of Back~Translation

Several types of program tapes are recognized by the back-
translator which generates an appropriate ORG pseudo-order in
each case:

program to be loaded by SPIREL at a fixed location
program to be loaded by SPIREL with numbered or named
codeword
program to be loaded by SPIREL as an element of a
numbered or named array
program to be loaded with the console LOAD switch at

a fixed location or at the setting of B6

In normal use, the process of back-translation takes place
in two phases:

1) flow analysis from word 1 of the program to determine

which words may be executed as instructions and which are in-
ternal data words or constants

2) construction of a symbolic tape image to represent

the program, with OCT pseudo-orders for constants and symbolic
labels only on lines which are referenced by instructions

within the program

Information is passed from the first phase to the second by tagging
the words of the program as they are classified. The tag conventions

are :

i

BACK-TRANSLATE
2

no tag on data words not explicitly referenced in the program
tag 1 on data words explicitly referenced in the program and
on all cross-reference words
tag 2 on instructions not explicitly referenced in the program
tag 3 on instructions referenced in the program
Tag 0 may also indicate an instruction which cannot be identified
as such,
It is possible for a program to be written in such a way that
the flow analysis will not distinguish properly between instructions
and constants., Three of the most common programming situations

which cause analysis problems are:

° entry points at other than the first instruction of a
program
® use of transfer vectors or computed transfers within

a program (e.g., TRA CC+B3)
e use of the X register, as in JMP in the operation field
or CC+X in the auxiliary field
BACK~-TRANSLATE options (discussed below) make it possible to speci=-
fy as executable instructions those words which would not otherwise

be identified as such.

Options
If only SL7 is turned on at the main PLACER stop so that only

the BACK-TRANSLATE operation is designated, the stop
(I): 07 HTR cc
occurs, BACK-TRANSLATE options may then be designated in the sense

lights as follows:

SL12 suppresses flow analysis; tape image construction 1is
performed on the basis of the tags on the program as
read.

SL13 causes the back-translator to accept a list of words

which must be identified as instructions, Immediately
after the program tape is read, the stop

(1): 13 HTR ceC

SL

SL

14

15

BACK-TRANSLATE
3

occurs, A tape listing words to be identified as
instructions is read, The format is

[cr] AAAAA [cr] BBBBB [cr] CCCCC eevee.
where [cr] is a 'carriage return' punch and AAAAA, BBBBB
cccCC, ... are five-digit (octal) relative locations in
the program. Note that it is only necessary to specify
the first word of a block of instructions and analysis
will find the others; a block is ended by an uncondi-

tional transfer instruction, either explicit or implicit,

causes punching of the program with tags after flow

analysis,

suppresses construction of the symbolic tape image.

RUN

SLlo—SLlS, RUN

After options designated by SL1 through SL7 are complete, the
octal number NN in SLlo-—SL15 designates that block NN is to be
loaded from the system tape. The following is a special case:

NN = 1, or SL15 only, for the closest SPIREL
In any case, the system obtained from magnetic tape is "fresh";

the program operated on by other PLACER options is not loaded.

PLACER May, 1967

ASSEMBLY LANGUAGE

Symbolic Coding
Instruction For
Types of Symbol
Instruction Con

Operation Codes
Class O
Class 1
Class 2
Class 4
Class 5
Class 6

Class 7

Summary of

L Y Y Y™

Pseudo-Orders

ASSEMBLY LANGUAGE

© - . o) -

m ° [. . . o

S . . L] o o] ° ° ° .

tent . . . ¢ . o . &

Tests and Transfers
Arithmetic

Fetch, Store, Tags
B-Registers, Lights,

Special Registers

Logic and Fast Registers

Input-Output
Analog Input, Shifts
Operation Codes

° . . ° 3 . L]

ORG and END

EQU

BSS and BE
BCD, FLX,
DEC and OC
REF

Macro=-Orders |,
Applicatio
Definition
Call
Examples

Assembly Proced

Coding Examples

S
REM
T

. . . . © . . . ° . 3

n

ure , ° .) °

° o . o ° L]

Delays

Shifts

SYMBOLIC CODING

The absolute machine language of the Rice Computer is described
in detail in the Rice Computer Manual., 1In practice, programs are
not written in the absolute language of the computer but in a
symbolic language. A language which provides symbolic notation
for instructions, or commands, that correspond one-for-one with

absolute machine instructions is called an assembly language. The

program which translates assembly language into machine language

is called an assembly program.

Use of the assembly language for the Rice Computer depends on
a knowledge of the absolute machine instruction format, a familiar-
ity with the registers of the computer, and a general acquaintance
with the instruction repertoire -- all explained in the Rice
Computer Manual. Two forms of the Rice Computer assembly language
are available:

AP1, for independent use

AP2, for use within Genie programs
The corresponding assembly programs have the same names:

APl, an independent assembly program

AP2, a subset of the Genie compiler

The two assembly languages are very similar, The major dis-
tinction concerns octal and decimal numerals, 1In APl, all
numeric constants are assumed to be octal unless immediately
preceded by the special symbol "d", meaning decimal. In AP2, all
numeric constants are_assumed to be decimal, except when octal
form is indicated by a plus sign immediately preceding the octal
number,

In the following discussions, M stands for the final number
formed in the last 15 bits of I (the instruction register) after
all specified indirect addressing and B-modification has taken
place; and if Q is any machine location, then (Q) stands for

the contents of location Q.

M

INSTRUCTION FORM

The general form of an APl or AP2 instruction and its cor-=-
respondence to a machine-language instruction as explained in the

Rice Computer Manual is

bits |1 6l7 2122 2728 39)40 54 tag bits tl t2
[F1 F2 F3 F2 |
| ' ‘
— .]
LOCN SETU OPN ADDR+MOD, AUX TAG
cr |1st tab |2nd tab |3rd tab |4th tab
Here "cr"™ denotes '"carriage return"™, and "tab" denotes '"tabulate"

on the flexowriter used for preparation of input to the assembly
programs.
LOCN gives the symbolic label (if any) on the instruction.
SETU corresponds to Field 1: bring a “fast'" register to U;
then inflect (U).
OPN corresponds to a Field 2 operation chosen from one of
seven classes.,
AUX corresponds to Field 3: alter a B-register, send (U) or

(R) to a "fast" register, send the M portion of I to a
B-register, or clear R.
ADDR+MOD corresponds to Field 4: compute the final address
M, sending M to the last 15 bits of I; load S with M

or (M); then inflect (S).
A1l fields may be symbolically coded. All fields but MOD and TAG

may be coded numerically.
If no TAG is to be specified, the 4th tab may be omitted. If

no AUX operation is to be specified, the preceding comma may be

omitted,

T

TYPES OF SYMBOLS

Precise definitions of the allowed symbols are as follows:

Register names. The following symbols are used as names of

"fast" registers:
A-series Z, U, R, S, T4, T5, T6, T7
B-series cc, Bl1, B2, B3, B4, B5, B6, PF

These may appear in SETU, ADDR+MOD, and AUX fields. The symbol I

may be used in SETU and AUX. The special register names may be

used in ADDR; these are
SL sense lights
IL indicator lights
ML mode lights
TL trapping lights
P2 second pathfinder
X increment register
TT “to-tape'" register
FT "from-tape" register

These symbols may be used only as register names.
Special characters. *, a(APl) or #(AP2), d(APl), +, - -

3 H J
(,), “tab"™, "cx", and

, (comma).

Operation codes, These include the mnemonic operation codes

in the assembly vocabulary, pseudo-operation codes (APl only),
macro-operations (APl only), and general symbols defined by the
user as operation codes with a LET (in Genie for AP2) or an EQU

(in AP1l). A1l of these areas are covered in later discussions.

General names., In AP2, a private name may be

a single lower case Roman letter
or an upper case Roman letter, followed by upper case Roman
letters, followed by lower case Roman letters,
followed by numerals.
In APl, a private name may be
an upper case Roman letter, followed by upper case Roman
letters, followed by numerals,

Spaces may not appear in names., Any number of characters may form

I

TYPES OF SYMBOLS
2

a name; AP2 will retain the first four if lower case Roman letters

are used, the first five otherwise; APl will retain the first six,

The following are general names in APl and AP2: B, M3, COMM, ZETAZ.
The following are general names in AP2, but not in APl: b, Comm,

Zeta?2. General names may appear only in the LOCN and ADDR fields,

INSTRUCTION CONTENT

Each field of the symbolic instruction has a well-defined
form. If this form is not recognized by the assembly system, a
message is printed during assembly, The acceptable contents of

each field are as follows:

LOCN. This field may be blank or absolute or symbolic., Abso-
lute LOCN fields are permitted only when an APl program is being
assembled in absolute form (see the ORG pseudo-order discussion),.

A symbolic LOCN field may contain any general name. A name may

not appear in LOCN more than once in any one program.

SETU. This field may be blank, absolute, or F, where F is

an A- or B-series register name or "I", or any of the forms -F,
IF|, or —IF[c If SETU is blank, "U" is understood and the octal
equivalent 01 is inserted into the machine instruction. I sets
U to the integer +1; -1 sets U to the integer =-1. Note that Z
sets U to all zeroes; -Z sets U exponent to zZero and U mantissa
to minus zero, or all ones,

Examples: Bl | T4 | -PF - |r| z -1

If the T-flag is on for register Ti (i=4,5,6,7), indirect
addressing through Ti will occur when Ti is addressed in the SETU
field., To denote this mode of addressing the % may be used before
the register name:

*Ti - *Ti | #Ti | - | *Ti |
This is a symbolic convenience only, and these will be translated
as:

Ti -Ti | T1 | -|Ti|

OPN. This field may be absolute or an operation code., 1In
the case of conditional transfers, a symbolic operation has the form
IF(CCC)TTT where CCC represents test conditions and TTT is a mnemonic

for a transfer order. Other symbolic operation codes consist of

(i

INSTRUCTION CONTENT
2

one or more 3-letter mnemonics. Special symbols such as -, +, -

2 I

",", and +i (where i is an octal integer) are sometimes permitted

(see the section on operation codes),

AUX. This field may be blank, absolute, or one of the forms
U-F, R~F, I-Bi, Bi+1l, Bi~1, or Bi+X. Bi stands for one of the
B-series register names; F is any A- or B-series register name;
I refers to the last 15 bits of the instruction register; and X
is the increment register., As a special case, R-Z causes R to
be cleared to zero,

Example: U-T4 R-PF I-B1 B2+1 B3 -1 B4+X

If the T-flag is on for register Ti (i=4,5,6,7), indirect
addressing through Ti will occur when Ti is addressed in the AUX
field., To denote this mode of addressing the * may be used before
the register name:

U-%T1i R—*Ti
This is a symbolic convenience only, and these will be translated
exactly as:

U-Ti R-Ti

ADDR+MOD. ADDR may be blank or absolute or symbolic, or the
ADDR+MOD field may consist of an octal or decimal number to be used
as an operand, MOD is either blank or one or more of the B-series
register names, connected to ADDR by + signs. Special inflections
control the IM and IA bits as follows: IM bit 1 is set to 1 (to
load S with M instead of (M)) whenever the symbol "a" (APl) or "#"
(AP2) appears, or whenever certain OPN mnemonics are used (see the
section on operation codes). IM bits 2 (absolute value) and 3
(minus) are controlled by the special forms -Q, |Q\, and —lQl,
where Q is an allowed ADDR4MOD symbol. The IA (indirect addressing)
bit is set to 1 whenever the symbol "%" appears in this field,

If ADDR is symbolic, any A-series register name, any special
register name, or any general name is acceptable. A general name

may be followed by a relative part consisting of an integer preceded

INSTRUCTION CONTENT
3
by a + or - sign,

If ADDR is absolute, any octal integer of not more than 5
digits, or any decimal integer of absolute value not larger than
32,767, is permissible. Any octal or decimal integer above these
limits or any floating point decimal number is treated as the name
of a location containing that number; storage space is reserved
for it at the end of the program, In this case, no MODs are al-
lowed, and only the absolute value and - inflections are meaningful,

All characters appearing within parentheses in this field are
ignored, so that an address field which is modified by the program
may be conveniently noted. For example, (FWA)+B1+B2 is treated
as Z+B1l+B2. 1If a symbol appears in ADDR but never in LOCN, a blank
location will be reserved at the end of the program, ADDR+MOD
should not be blank; the Z character may always be used to pro-
duce a zero field.

Examples of equivalent APl and AP2 ADDR+MOD fields are:

AP1 AP2
COMM+10 or COMM+d8 COMM+8 or COMM++10
-|A+B1-d12| or -|A+B1-14]| -|A+B1-12| or -|A+Bl-+14]|
a *ZETA # *ZETA

d4s 48

-ad122+B1 -#122+B1

B4+B5 B4+B5

00500 +00500

d2.009027 2.009027

777700000 +777700000

30 24

The only field which may be continued onto another line is
ADDR+MOD, AUX by punching a '"cr"™ followed immediately by three
"tab" characters, so that continuation lines will follow under

ADDR+MOD, AUX.

INSTRUCTION CONTENT
4

TAG. This field may be blank or symbolic. 1If no tag is de-
sired, the 4th tab punch may be omitted. If a tag is desired, the
TAG field must contain one of the mnemonics TGl, TG2, or TG3. The
corresponding tag will be placed on the assembled instruction,
printed on the octal listing, and punched with the instruction

in checksum format,

OPERATION CODES

The most common Field 2 operations have been given names in the
vocabulary of APl and AP2 for convenience in coding., All Field 2
operations are fully explained in the machine manual. The mnemonics
defined in this section are summarized in a chart at the end of the
section. These operation code symbols may not be used for any other
purpose. Other Field 2 operations may be given general names by
use of LET (in Genie for AP2) or EQU (APl), and such symbols are

then treated as operation codes throughout the program in which

they have been defined.

OPERATION CODES
2

e Class 0, Tests and Transfers

In the list below, the symbols are followed by their octal
equivalents and a brief explanation of their meanings; the
indication "a,#" means that the operation symbol automatically
causes IM bit 1 to be set to 1 (to load S with M instead of (M)),
since the operation indicated deals with M rather than with (S).

The four unconditional transfers are represented by:

octal codes

a,# HTR 00000 Halt and transfer. Halt, setting CC
to M when CONTINUE is pressed,
a,# TRA 01000 Transfer, Set CC to M.

SKP 02000 Skip. Subtract (S) from (U); then
increment CC by 1, skipping the next
order,

JMP 03000 Jump, Subtract (S) from (U); then

increment CC by (X), the increment
register,

Conditional transfers have the form IF(CCC)TTIT where TTT is
one of the above transfer mnemonics, and CCC represent one, two,
or three test conditions joined by + or x signs. Use of the +
sign indicates that the specified transfer is to occur if any of
the conditions listed is satisfied; wuse of the X sign indicates
that the specified transfer occurs only when all of the conditions
listed are satisfied simultaneously, A single order may not con-
tain both + and X signs. One condition from each of the first
three groups may be specified; or a Group IV mnemonic may be com-
bined with a Group III test as noted., If a TRA or HTR is used,
the specified test is made on (U). If a SKP or JMP is used, the
specified test is normally performed on (U)-(S). The exceptions

to this rule are noted below Group II.

OPERATION CODES

3
Group I
octal code
PSN 00100 Positive sign., Is the sign bit of U
equal to 07
%
MOV 00200 Mantissa overflow., Is Indicator Light
#4 on?
%
EOV 003007 Exponent overflow, Is Indicator Light
#5 on?
NSN 00500 Negative sign., 1Is the sign bit of U
equal to 17
%
NMO 006007 No mantissa overflow. 1Is Indicator
Light #4 off?
NEO 007007c No exponent overflow. 1Is Indicator
Light #5 off?
%
Note that indicator lights are turned off when tested.
Group TII
octal code
ZER 00010 Zero. 1Is (U) mantissa all 1's or all
0's?
EVN 00020 Even. 1Is bit 54 of U equal to zero?
a,# SLN 00030 " Sense light on. Are all the sense
lights corresponding to 1's in M on?
*%
NUL 00040 Null. Are all 54 bits of U zero?
NZE 00050 Non-zero. Is (U) mantissa different
from zero?
OoDD 00060 0odd. 1Is bit 54 of U equal to 17
a,# SLF 00070 Sense light off. Are all the sense

lights corresponding to 1's in M off?

xNote that sense lights are not altered when tested., SLN and SLF
tests are meaningful only with SKP or JMP orders, and in these cases

no subtraction takes place,

sk
If the NUL test is used with a SKP or JMP order, a logical compari-

son is made as follows: wherever a bit of R is equal to zero, the

OPERATION CODES
4

bits in corresponding positions of U and S are compared. If (U)
is identical with (S) in each of these positions, the resulting (U)
is null and the NUL portion of the test is satisfied. If the NUL

comparison is not satisfied, the resulting (U) is meaningless.

Group III

octal code
S

TG1 00001 Tag 1. Is Indicator Light #1 on?
TG2 00002 Tag 2. 1Is Indicator Light #2 on?
TG3 00003* Tag 3. 1Is Indicator Light #3 on?
NTG 00004* No tag. Are Indicator Lights #1,
#2, #3 all off?
NT1 00005 No tag 1. Is Indicator Light #1 off?
NT2 00006* No tag 2. 1Is Indicator Light #2 off?
NT3 00007* No tag 3. 1Is Indicator Light #3 off?

ol

“Note that indicator lights are turned off when tested.

Group 1V
octal code

POS 00110 Positive or zero. Is (U) mantissa
greater than or equal to zero?

NEG 00510 Negative or zero. 1Is (U) mantissa
less than or equal to zero?

A + sign must be used when combining either of these mnemonics
with a Group III test.
octal code

PNZ 04150 Positive and non-zero. Is (U) mantissa
strictly greater than zero?

NNZ 04550 Negative and non-zero. Is (U) mantissa
strictly less than zero?

A 4 sign must be used when combining either of these mnemonics

with a Group III test.

OPERATION CODES
5

e Class 1, Arithmetic

In the list below, the symbols are followed by their octal
equivalents and a brief explanation of their meanings.

Any Class 1 mnemonic may be followed by - or +1, to cause
storing of the final (U) in the location addressed by M; by +2,
storing (U) at location (B6); or by +3, storing (U) at location
M+(B6). Octal codes may be joined by a '+' to Class 1 mnemonics
for various special operations. If n is such an octal code, the
combination appears as

mnemonic +n in AP1
mnemonic ++4n in AP2
Any floating point mnemonic may be followed by +1j (j=0, 1, 2, or
3), causing the last bit of (U) to be set to 1 (rounded) after
the operation but before storing. After floating point mnemonics
+4j suppresses normalization of the result, +5j rounds and sup-
presses normalization. Other options are given in the machine manual,
The Class 1 mnemonics are as follows:

Fixed point

octal code

ADD 10000 Add. (U)+(S)-U.

SUB 10100 Subtract., (U)-(S)-U.

BUS 14100 Reverse subtract. (S)-(U)-U.

MPY 10200 Multiply. (U)x(S)-U,R (double length).

IMP 10220 Integer multiply. (U)X(S)-U.

DIV 10300 Divide. Double length (U,R)+(S)-U,
247x remainder -R.

VID 16300 Reverse divide. (S)+(U) U,
247% remainder -R.

IDV 13300 Integer divide. (U)*(S)-U,

remainder R,

VDl 17300 Reverse integer divide. (S)+(U)-U,
remainder -R.

OPERATION CODES

6
Floating Point
octal code

FAD 10400 Floating add. (U)+(S)-U.

FSB 10500 Floating subtract. (U)~-(S)-U.

BSF 14500 Reverse floating subtract. (S)-(U)-U.

FMP 10600 Floating multiply. (U)x(S)-U,R
(double length).

FDV 10700 Floating divide. Double 1length
(U,R)+(S)-U, 2%47x remainder -R.

VDF 16700 Reverse floating divide. (S)+(u)-U,

247y remainder -R.

OPERATION CODES
7

® Class 2, Fetch, Store, Tags
In the list below, the symbols are followed by their octal

equivalents and a brief explanation of their meanings; the indication
"a,#" means that the operation symbol automatically causes IM bit 1
to be set to 1 (to load S with M instead of (M)), since the operation
indicated deals with M rather than with (S).

Any Group I or Group II mnemonic may be followed by a comma and
any Group III mnemonic. In addition, any Group I or Group III mnemonic
may be followed by - or +1, storing (U) with (ATR) at location M; or
by +2, storing (U) with (ATR) at location (B6); or any Group I, II,
or III mnemonic may be followed by +3, storing (U) with (ATR) at
location M+(B6). Note that all Group I and Group II mnemonics clear
(ATR) unless followed by a Group III mnemonic.

The Class 2 mnemonics are as follows:

Group I
octal code
CLA 21700 Clear and add. Bring (S) to U.
*
BEU 21000 Bring exponent to U. Exponent portion
of (S) replaces exponent portion of (U).
*
BMU 20700 Bring mantissa to U. Mantissa portion
of (8) replaces mantissa portion of (U).
*
BLU 21400 Bring left half to U. Left half of (S)
replaces left half of (U).
*
BRU 20300 Bring right half to U. Right half of
(S) replaces right half of (U).
*
BIU 20200 Bring inflections to U. Inflection
portion of (S) replaces inflection
portion of (U).
*
BAU 20100 Bring address to U. Address portion
of (S) replaces address portion of (U).
*
BNA 21600 Bring all except address to U. Inflec-

tion and left portions of (S) replace

inflection and left portions of (U).
*
The "bring" mnemonics may be joined by commas to fetch more than

one portion of a word.

ASSEMBLY LANGUAGE November, 1966

OPERATION CODES

8
Group I1
octal code
*
RPE 20701 Replace exponent. Exponent portion
of (U) replaces exponent portion of
word at location M.
%
RPM 21001 Replace mantissa. Mantissa portion
of (U) replaces mantissa portion of
word at location M,
RPL 20301 Replace left half, Left half of (U)
- replaces left half of word at loca-
tion M,
RPR 21401 Replace right half. Right half of (U)
replaces right half of word at loca-
tion M.
*
RPA 21601 Replace address. Address portion of

(U) replaces address portion of word
at location M.

% :

RPI 21501 Replace inflections. Inflection por-
tion of (U) replaces inflection por-
tion of word at location M.

a,# STO 20001 Store. Store (U) at location M,

%

The "replace" mnemonics may not be combined with each other,

Group III
octal code
ST1 20010 Set Tag 1. Set ATR to 1.
ST2 20020 Set Tag 2., Set ATR to 2.
ST3 20030 Set Tag 3. Set ATR to 3.
WTG 20040 With Tag. Do not change ATR.
Group IV
octal code
NOP 30000 No operation. Do not alter (U) or (ATR).
FST 20041 Fetch and store. Bring contents of

location M to S; then store (U) with
(ATR) at location M,

RWT 21641 Replace address, with tag. Address
portion of (U) replaces address portion
of word at location M, without changing
the tag on the word at location M.

OPERATION CODES
9
Double Option

Any Class 2 operation applied to U with original F4 address
N may also be applied to R with origianl F4 address N+1 by use
of the mnemonic:
octal code

DBL 20004 Double. After operating on U with
original F4 address N, apply same
operation to R with original F4
address N+1,.

Examples:

BAU,DBL DATA

loads the address portion of U from the location DATA and
loads the address portion of R from the location DATA +1.

STO,DBL *ANS

stores (U) through the codeword at location ANS and stores

(R) through the codeword at location ANS +1.

Use of the +2 store option with DBL stores (U) with (ATR) at
location (B6), stores (R) with (ATR) at location (B6+1), and
increments (B6) by 1. The +3 store option with DBL uses (B6)
for both stores and does not increment (B6).

After a double operation, the M portion of (I) contains the

final address used with R.

OPERATION CODES
10

e Class 4, B-Registers, Lights, Special Registers, Shifts

In the list below, the symbols are followed by their octal
equivalents and a brief explanation of their meanings; the
indication "a,#" means that the operation symbol automatically
causes IM bit 1 to be set to 1 (to load S with M instead of (M)),
since the operation indicated deals with M rather than with (S).

The Class 4 mnemonics are as follows:

B-registers

octal code

a,# TSR 40000 Transfer to subroutine. Set PF to
(CC); then set CC to M,

a,# SBi 40001 Set Bi., Set Bi to M, for i=1, 2,
o e e 60

a,# SPF 40007 Set PF., Set PF to M,

a,# ACC 41000 Add to CC. (CC)+M-CC.

a,# ABi 41001 Add to Bi. (Bi)+M-Bi, for i=1, 2,
e o o 9 6.

a,# APF 41007 Add to PF. (PF)+M-PF,

ERM 00020 Enter repeat mode. Turn on mode

light #2.

The ERM mnemonic is meaningful only when joined by a comma

to one of the above Class 4 mnemonics.

Lights
octal code

a,# SLN 42000 Sense lights on. Turn on sense lights
corresponding to 1's in M.

a,# ILN 42001 Indicator lights on. Turn on indica-
tor lights corresponding to 1's in M.

a,# MLN 42002 Mode lights on. Turn on mode lights
corresponding to 1l's in M.

a,# TLN 42003 Trap lights on. Turn on trapping
lights corresponding to 1's in M,

a,# SLF 42004 Sense lights off., Turn off sense
lights corresponding to 1's in M.

a,# ILF 42005 Indicator lights off. Turn off indi-

cator lights corresponding to 1's in M.

a,# MLF

a,# TLF

Note that

octal code

42006

42007

OPERATION CODES
11

Mode 1lights off. Turn off mode lights
corresponding to 1's in M,

Trap lights off. Turn off trapping
lights corresponding to 1's in M,

lights corresponding to O's in M are not affected

by the above orders.

registers

Special
a,# STX
a,# STT
a,# SFT

Shifts
a,# DMR
a,# DML
a,# LUR
a,# LUL
a,# LRR
a,# LRL
a,# LRS
a,# LLS

octal
43005
43006
43007

octal

44000

44010

45010

45020

45001

45002

45015

45062

code

code

Set X. Set the increment register to M.
Set TT. Set the to-tape register to M.

Set FT, Set the from-tape register to M.

Double mantissa right. Arithmetic
right shift of (U,R) mantissa M places.

Double mantissa left, Arithmetic left
shift of (U,R) mantissa M places.

Logical U right, Shift (U) right M
places, shifting zeros into left end
of U.

Logical U left. Shift (U) left M
places, shifting zeros into right end
of U,

Logical R right. Shift (R) right M
places, shifting zeros into left end
of R.

Logical R left. Shift (R) left M
places, shifting zeros into right end
of R.

Long right shift. Shift (U,R) right
M places, shifting (U) into R and zeros
into left end of U.

Long left shift., Shift (U,R) left M
places, shifting (R) into U and zeros
into right end of R.

OPERATION CODES
12
octal code

a,# CRR 45055 Circle right. shift (U,R) right M
places, shifting (U) into R and right
end of (R) into left end of U.

a,¥#¥ CRL 45066 Circle left. sShift (U,R) left M places,
shifting (R) into U and left end of (U)
into right end of R.

a,# BCT 46000 Bit count. Clear U; shift R right M
places; add each 1 which spills from R
one at a time into U.

T-flags

t TFU 47000 T-flags and ITR to U. Clear U, then
bring two ITR and four T-flag bits to

i U: ITR in octal (0,1,2, or 3) - bits

| 49 and 50, TF4-bit 51, TF5-bit 52,

i TF6-bit 53, TF7-bit 54.

ASSEMBLY LANGUAGE November, 1966

OPERATION CODES

13
e (Class 5, Logic and Fast Registers

In the list below, the symbols are followed by their octal
equivalents and a brief explanation of their meanings.

Any Class 5 mnemonic may be followed by - or +1, to cause
storing of the final (U) at location M; by +2, storing (U0) at
location (B6); or by +3, storing (U) at location M+(B6). In ad-
dition, any Class 5 mnemonic may be preceded by a - sign, causing
the final result in U to be complemented (before storing). The
Class 5 mnemonics are as follows:

octal code

CPL 50100 Complement. Change all 1's in U to
O's and all 0's to 1's.

XUR 54000 Exchange (U) and (R). (U)-R as (R)-U.

LDU 50410 Load U. (S)-U.

LDR 50400 Load R. (S)-R without disturbing (U).

LTi 504i0 Load Ti. (§)-Ti without disturbing
(U) or (R), for i=4, 5, 6, 7.

STF 50540 Set T-flag. Turn on flag bit for the

T-register being loaded to cause in-
direct addressing in Fl1 and F3. Mean-
ingful only if adjoined to LTi by comma.

SUR 53000 Shuffle S, U, and R, (U)-R then (S)-U.

ORU 50010 Or to U. Logical or for each bit posi-
tion: (U)=0 and (S)=0 results in (U)=0;
otherwise, (U)=1 as result.

AND 50314 And. Logical and for each bit position:
(U)=1 and (S)=1 results in (U)=1l; other-
wise, (U)=0 as result,

XTR 50020 Extract. For each bit position:
(s)-U if (R)=1, (U) unchanged if (R)=0.
SYD 53220 Symmetric difference. For each bit

position: (U)=(S) results in (U)=0;
(U) #(S) results in (U)=1,

SYS 53120 Symmetric sum. For each bit position:
(U)=(S) results in (U)=1; (U)#(S) re-
sults in (U)=0,

OPERATION CODES
14

e Class 6, Input-Qutput

In the list below, the symbols are followed by their octal
equivalents and a brief explanation of their meanings; the
indication "a,#" means that the operation symbol automatically
causes IM bit 1 to be set to 1 (to load S with M instead of (M)),
since the operation indicated deals with M rather than with (S).

For detailed explanations of f;ading, printing, punching,
plotting, and magnetic tape operation, see the Rice Computer Manual,

The Class 6 mnemonics are as follows:

Paper tape

octal code

a,# RTR 60000 Read triads. Read 1 to 18 triads
from paper tape into U,
*
a,# RHX 60100 Read hexads. Read 1 to 9 hexads from
paper tape into U.
PHX 60400 Punch hexads. Punch 1 to 9 hexads
from (S) onto paper tape.
PH7 60500 Punch hexads with 7th hole., Punch 1

to 9 hexads, each with a 7th hole,
from (S) onto paper tape.

PTR 60600 Punch triads, Punch 1 to 18 triads
from (S) onto paper tape.
“Either "Read" mnemonic may be followed by - or +1, storing (U)
at location M; by +2, storing (U) at location (B6); by 43, storing
(U) at location M+(B6); by +40 to turn on IL4 (mantissa overflow)

if there is no tape in the reader.
Console typewriter

octal code

TYP 60700 Type. Type (S) as 18 octal digits on
‘ console typewriter,

Printer
octal code

a,# PRN 61110 Print numeric., Print, using first 32
characters of print wheel, from print
matrix beginning at location M; space
one line after printing.

PRA

PRO

SPA
SP2

SP3

SP4

SP5

SP6

PAG

DLY

octal code

61210

61310

61010
61020

61030

61040

61050

61060

61070

61000

Magnetic tape

a,#

WDi

WMi

RDi

SMi

RWi

BCK

NST

octal code

64100
64120
65100
66100~
66101
60040

65004

OPERATION CODES
15

Print alphanumeric. Print as above,
using all characters,

Print octal. Print as above, using
characters 0-7 only,.

Space. Advance printer paper one line,

Space, format 2, Advance printer paper
to next 1/22 page mark.

Space, format 3, Advance printer paper
to next 1/11 page mark.

Space, format 4, Advance printer paper
to next 1/6 page mark,

Space, format 5, Advance printer paper
to next 1/3 page mark.,

Space, format 6. Advance printer paper
to next 1/2 page mark,

Page restore. Advance printer paper
to next new page.

Printer delay., n Successive executions
of DLY will delay the machine for at
least n=1 tenths of a second and not
more than n tenths of a second,

Write data on MT unit i; i=Z(for 0),
1, 2, 3,

Write marker from last 8 bits of (S)
on MT unit i; i=Z(for 0), 1, 2, 3,
Read data from MT unit i; i=Z(for 0),
1, 2, 3.

Search for marker in last 8 bits of
(S) on MT unit i; i=Z(for 0), 1, 2, 3.
Rewind tape on MT unit i; i=Z(for 0),
1, 2, 3.

Backward, Perform operation in back -
ward direction,

No store. Do not store to memory.
This is meaningful only for read MT
orders,

OPERATION CODES
16

*
Search is overlapped with computer operation, but next order to

searching transport will hang until search is complete,

Oscilloscope and strip chart plot

octal code

PLT 67000 Plot on oscilloscope or strip chart.

ADV 67700 Advance movie film,

OPERATION CODES
17

e Class 7, Analog Input, Shifts, Delays

Any Class 7 mnemonic may be followed by - or +1, to cause
storing of the final (U) at location M; by +2, storing (U) at
location (B6); or by 43, storing (U) at M+(B6). This class deals
with various instructions used in conjunction with operation of
the analog~-to~digital converter,

The Class 7 mnemonics are as follows:

octal code

WAT 71100 Wait., Machine will wait until the next
pulse from a crystal-controlled 1 kc,
pulse generator before exiting Field 2.

LS1 72010 Special fast arithmetic shifts of

1S2 72020 dou?l?-lenth (UfR)’ left if S exponent
positive, right if S exponent negative.

LS4 72040 Shifts are 8 bits at a time. LSi in-

dicates i shifts of 8 bits. These
shifts are principally used in unpack-
ing converted data, The mnemonics may
by combined to get different length
shifts: ©LS4,1S1 would give 5 shifts
of 8 bits (total: 40 bits). These
shifts do not pass through the expo-
nents of U or R nor through the sign
of R, but do shift into the sign of U.

MCN 72110 Manual conversion, An A-to-D conver-
sion of the channel specified by (5)
will be performed.

ACN 72364 Automatic conversion. Six conver-
sions from channels 1 through 6 will
be performed.

Conversion results will be packed into U as follows: The 8
bits (sign plus 7 bits) resulting from each conversion will be
packed into the mantissa with the bits resulting from the first
conversion farthest to the left and the bits resulting from
last conversion in the right-most 8 bits of U. The U exponent
will be set to 77. The R mantissa is used.

There are sixteen channels into the converter. The channel
to be converted is specified by the right-most 16 bits of S,

Channel 1 corresponds to Sm4 etc.,

7 Channel 2 to Sm46’

OPERATION CODES

18
In addition to the formal store options, operations may be
performed with the 72xxx orders as follows:
72xxx + 400 (S) will be sent to U before per=-
forming any other operation.
72xxx + 200 (S) will be cleared and a 1 sent to
Sm47'
72xxx + 4 (S) will be logically shifted 1 to the

left each time (U,R) is shifted 8 to
the left., Notice that this feature
can be used to sample consecutively
numbered channels automatically.

OPERATION CODES
19

e Summary of QOperation Codes

The accompanying chart summarizes the Field 2 mnemonics avail-
able in APl and AP2., If an operation code is followed by the symbol
@, the corresponding mnemonic causes IM bit 1 to be set to 1,

The symbol "-" following an operation mnemonic of class 1, 2

2

5, 6, 7 causes a final store of U to M.
The symbol "-" preceding a class 5 operation mnemonic causes
a final logical complement of U,

For more than one operation mnemonic in an instruction, the
octal codes will be combined by a logical OR. In most cases,
mnemonics are separated by commas. In class 0O, the tests are
separated by "+" for "ANY", by '"x" for "ALL". The mnemonics '"POS"

and "NEG" are compound "ANY" tests and the mnemonics "PNZ" and

"NNZ'" are compound "ALL" tests.

OPERATION CODES
20
SUMMARY OF OPERATION CODES
CLASS O

HTR 00000@ IF(ANY)HTR 00000@ IF(ALL)HTR 04000@
TRA 01000@ IF(ANY)TRA 01000@ IF(ALL)TRA 05000@
SKP 02000 IF(ANY)SKP 02000 IF(ALL)SKP 06000
JMP 03000 IF(ANY) JMP 03000 IF(ALL) JMP 07000
PSN 00100 ZER 00010 TGi 00001
MOV 00200 EVN 00020 NTG 00004
EOV 00300 SLN 00030@ NTi 00004+i
NSN 00500 NUL 00040 i=1,2,3
NMO 00600 NZE 00050
NEO 00700 0DD 00060 POS 00110
SLF 00070@ PNz 00150
NEG 00510
NNZ 00550
CLASS 1 CLASS 2
ADD 10000 FAD 10400 STO 20001@ RPL 20301
SUB 10100 FSB 10500 FST 20041 RPE 20701
MPY 10200 FMP 10600 RPM 21001
DIV 10300 FDV 10700 gig 5%288 RPR 21401
BUS 14100 BSF 14500 BAT 20700 RPA 21601
IMP 10220 VDF 16700 BRU 20300 RPI 21501
IDV 13300 RWT 21641
VID 16300 BMU 20700
e 19508 BIU 20200 STi 20010
CLA 21700 i=1,2,3
S
CLASS 4
TSR 40000@ SLN 42000@ DMR 44000@ CLASS >
SBi 4000i@ ILN 42001@ DML 44010@ LDR 50400
SPF 40007@ MLN 42002@ LDU 50410
ACC 41000@ TLN 42003@ fgi Zgg;gg LTi 50410
ABi 4100i@ SLF 42004@ i=4,5,6,7
APF 41007@ ILF 42005@ LRR 45001@
LRL 45002@ STF 50540
ERM 40020 MLF 42006@
L]] TLF 4200ve LRS 45015@ SUR 53000
P=dsees LLS 45062@ XUR 54000
BCT 46000Q STX 43005@ CRR 45055@
CPL 50100
AND 50314
SYD 53220
CLASS 6 SYS 53120
RTR 60000@ PRN 61110@ WDi 64100 XTR 50020
RHX 60100@ PRA 61210@ WMi 64120
PHX 60400 PRO 61310@ RDi 65100 CLASS 7
PH7 60500 SPA 61010 NST 65004
PTR 60600 SPi 610i0 SMi 66100 WAT 71100
i=2 6 RWi 66i01 ACN 72364
— * & o ’
TYP 60700 PAG 61070 BCK 60040 MCN 72110
i=7.1.2.3 LSi 720i0
PLT 67000 t=as 1,4, i=1,2,4

ADV 67700

OPERATION CODES
21

The tables on this page summarize the options available in
SETU (Field 1), AUX (Field 3), and ADDR+MOD (Field 4). 1In the

tables

A indicates the full length special registers Z,U,R,S,T4,T5,T6,T7
specified in the second triad by 0,1,2,3,4,5,6,7.

B and Bi indicate the short index registers ¢cc,B1,B2,B3 ,B4,B5,B6,
PF specified in the second triad by 0,1,2,3,4,5,6,7.

I and M indicate the number formed in the address field of the
instruction. (M) indicates the contents of the memory lo-

cation numbered M.

Exceptions are R-Z, 10 in field 3 and I or |z|, 20 and -I or -|z]|,
30 in field 1. R-Z has the result that R is cleared to Z. I or
|Z| has the result that an integer 1 goes to U, -1 or -|Z| has

the result that an integer -1 goes to U.

st Triad Field 1 l1st Triad Field 3
(SETU) (AUX)

A 0 B 4 A0 U-Bi 4
-A 1 -B 5 R-A 1 R-Bi 5
[A] 2 |B| 6 Bi+1 2 Bi-1 6
- A 3 -|B| 7 Bi+X 3 I-Bi 7

lst Triad Field 4

(ADDR+MOD)

a0 Mo 4

-(M) 1 -M 5

lay | 2 M| 6

-y | 3 -|M| 7

PSEUDO-ORDERS

Pseudo-orders govern the process of APl assembly and facili-
tate the handling of blocks of various types of data within APl

programs., Pseudo-orders do not exist in AP2.

e ORG and END

All programs to be assembled by APl must be started by an
ORG (origin) order and terminated by an END order.

The function of ORG is to initialize the assembly process,
to identify the program which follows, and to determine whether
it is to be assembled in relative or absolute final form. The
ORG order is preceded by a '"cr" and an "uc" or "lc" punch (up-

per or lower case).

A relativized program will run anywhere in memory. ILf an

order in location P refers in Field 4 to location Q, it is through
a Control Counter reference of the form CC+(Q-P)-1. A relativized
program that will load under SPIREL control is generated if the
LOCN field of the ORG pseudo-order is not blank; the ADDR field
must be blank or zero in this case. To assemble a program to
load with codeword at address N (octal) the ORG pseudo=-order
has the form

N ORG

| cr | 1st tab 2nd tab

To assemble a program to load symbolically with name S (5 or fewer
characters) the ORG pseudo-order has the form
S ORG
cr | 1st tab 2nd tab

To assemble a program to load as the Ath element of the Bth element

... of array K the ORG pseudo-order has the form
K,...,B,A ORG
l cr 1st tab 2nd tab

Here A,;B,... are octal numbers; K is the codeword address or name

(LT

PSEUDO-ORDERS
2

(as above) of the array to which the program belongs. As many as
five levels may be specified. All control words are provided for
the loading of the program as the designated array element,

A relativized program is also produced if the ORG pseudo-order
has zero ADDR field and blank LOCN field. This form is only
appropriate if the self-loading option is to be used during assembly,
The self-loading tape produced will load with the LOAD switch be-
ginning at the address in B6,.

An absolute program will run only at the specified memory
location. Field 4 reference to location Q is made directly. An
absolute program is generated if the ADDR field is not blank or
Zero; the LOCN field must be blank or zero. To assemble a pro-
gram to load at address M (octal) the ORG pseudo-order has the
form

ORG M
| cr st tab 2nd tab 3rd tab

The program will load with the LOAD switch if the self-loading op-

tion is used during assembly; otherwise it will load under SPIREL

control,
The END order has the form
END cr cr
cr l1st tab 2nd tab

where "END" must be immediately followed by two (or more)
carriage returns,
Neither ORG nor END cause any words to be generated in a

program.,

PSEUDO-ORDERS
3

e EQU
The EQU (equivalence) order gives a numeric equivalent for

a symbol or equates one symbol to another. The order has the form

L EQU M
| cr | 1st tab | 2nd tab 3rd tab

where L (in LOCN) is the symbol defined by the pseudo-order, SETU
is blank, and M (in ADDR) is either absolute or a symbol whose
value has previously been defined through its appearance in the
LOCN field of another order. L is assigned the value M., If M

is a 5-digit octal code, the symbol L may appear in the OPN field
of any order following the EQU order; L will be treated as an
operation code and will be replaced during assembly by the octal
code for which it stands. No words are added to the program

being assembled due to an EQU.

PSEUDO-ORDERS

4
e BSS and BES

Either of these orders inserts a block of zero words into

the body of the program. BSS (block started by symbol) and BES
(block ended by symbol) have the form

L XXX M
| cr | 1st tab | 2nd tab 3rd tab

where L (in LOCN) is blank or symbolic, SETU is blank, and M (in

ADDR) is absolute. M is the number of zero words to be inserted.
If L is symbolic, it is assigned as if the LOCN field had been

associated with the first (BSS) or last (BES) word in the block.

PSEUDO-ORDERS
5

e BCD, FLX, REM

These orders deal with alphanumeric data and have the form

L XXX M
cr | 1st tab 2nd tab | 3rd tab

where SETU is always blank, The operation mnemonic must be fol-
lowed by a "tab" character, and after that all characters (in the
ADDR field M) are retained, 9 characters per word. Any occurrence
of the "cr tab tab tab" sequence to continue the character string
is replaced by a "space". For BCD (binary coded decimal), each
character is converted to a corresponding printer hexad and the
words are stored into the program being assembled; if L (in LOCN)
is symbolic, it is assigned as if associated with the first word
stored. For FLX (flexowriter), all codes (including case shifts,
etc,) are preserved without conversion and the words are stored
into the program being assembled; L (in LOCN) may be symbolic as
for BCD. For REM (remarks), L (in LOCN) must be blank; this
order is used only to obtain printed comments in the program list-

ing, and no words are stored into the.program being assembled.

PSEUDO-ORDERS

6
e¢ DEC, OCT, and HDC

The DEC (decimal), OCT (octal), and HDC (hexadecimal, i.e.
base 16) orders are used for inserting numeric data into the body
of the program. They have the form

L XXX M

lcr |1st tab |2nd tab 3rd tab
where L (in LOCN) is blank or symbolic, SETU is blank, and M
(in ADDR) consists of a list of one or more octal or decimal
numbers. If L is symbolic, it is assigned as if associated with
the first number in the list. Each number must be separated from
its successor by a comma, and each will be stored into a separate
word in the program being assembled. Continuation lines should
not be used; for long lists of numbers, several DEC or OCT pseudo-
orders in succession may be used to produce a continuous block
of data. An octal number consists of one to 18 octal digits. A
decimal integer cdnsists of one to 14 decimal digits; a floating
point decimal number, of one to 14 significant figures and a
decimal point. A hexadecimal number consists of one to 13 hexa-
decimal digits (0, 1,...,9, a, b, c, d, e, f). It may be 14
hexadecimal digits‘if its value is less than or equal to
SffffFELFELFESE,

PSEUDO-ORDERS
7

e REF

The REF (reference) order defines a single cross-reference
word in the program being assembled. A1l REFs for a program must
appear immediately after the ORG order, before any code for the

program, The form of a REF order is

NAME REF CONTENT
cr | 1st tab 2nd tab | 3rd tab
or
NAME REF *CONTENT
| cr st tab 2nd tab | 3rd tab

Each REF must contain a location symbol, the name used to address
it in the code for the program. The ADDR field of the REF speci-
fies the content of the cross-reference word: a string of charac-
ters containing only upper case letters and numbers which will be
converted to printer hexads, filled to 5 with '25' hexads or
truncated to 5 as appropriate. If the cross~reference word is
to contain an indirect addressing bit (for a vector, matrix or
program), this is denoted by '*' before the hexad string, with no
intervening spaces or punches. If k REFs appear in a program, the
first will be at location =(k-1) of the final program, ..., the
kth at location 77777 (-0). The punched output of the final pro-
gram will be followed by a control word to set the initial index
of the program to ~-(k-1). When the program is loaded, execution
of the control word to set initial index to -(k=-1) will cause
SPIREL to operate on each of the k cross~-reference words as
follows:

1) make an entry in the Symbol Table (ST) of the 5 hexads

in the cross-reference word;
2) insert the corresponding Value Table (VT) address in
the address field of the cross-reference word.

Indirect reference in the assembled program through the REF then
causes addressing of the item with name in ST, the value in VT for

@ scalar or the codeword in VT for a vector, matrix, or program,

PSEUDO~ORDERS
8

For a double operand, such as a complex scalar or non-
scalar, two cross-references must be used and these must appear in
the order of the parts of the operand. The name of the operand
is associated with the first part, and the second part is named
"ditto", which is printed 'eecee' but typed '#####'. If A is

a complex scalar its cross-references might appear as

AREAL REF A
AIMAG REF e
cr lst tab | 2nd tab | 3rd tab

where 'eceece! is typed "#####'. It may be that one of the

cross-references is never referred to in the code; this is the
only case where an unlabelled REF may be used, but two REFs

must be given,

MACRO-ORDERS

e Application

Macro-orders are available in the APl assembly language.
This facility allows the coder to define parameterized sequences
of code and have these substituted in his program during assembly,
Since a code pattern may thus be written only once for more than
one occurrence in the program, a number of advantages are offered:

Symbolic code for the program is shorter;
-~ code for the program is less prone to error because fewer
instructions are prepared;

-- the program is more easily changed because a single change

in a macro definition will take effect in all occurrences

at assembly;
-- the program is more readable because single macro names
appear in the code for operations which actually require

sequences of machine instructions.

A macro-order is a general name which has been defined by the

programmer to represent one or more valid APl instructions. Then,

at each subsequent call of the macro-order, these instructions

are inserted into the assembled program. Any order included in

the macro-definition may contain a parameter in one or more fields;

such a field may be changed each time a macro-order is called by

specifying a different value for the parameter at each call.
Example. Suppose in an APl program there existed the follow-

ing code:

CLA A LPHA

FAD B6+1,U-T4
STO GAMMA

CLA B6

FAD BETA ,B6+1
STO B6

CLA ALPHA

FAD BETA ,U-R

STO GAMMA

it

MACRO-ORDERS

the repetitious Sequences of instructions by defining a macro-order

called SUM with four parameters as follows:

S UM MACRO ADONE+ADTWO*TOTAL,AUX
CLA ADONE
FAD ADTWO,AUX
STO TOTAL
MEND
Then,

having defined the macro-order SUM,
could call it in his API code,

at each call:

the programmer

using different parameter values
~ZUESs

SUM ALPHA ,B6+1, GAMMA,U-T4
SUM B6,BETA,B6,B6+1
SUM ALPHA BETA ,GAMMA ,U-R

The instructions assembled would be identical with those

originally written by the Programmer, but the repetitious code

would not appear in the program,

MACRO~ORDERS
3

e Definition

A macro-definition specifies a set of instructiohs, gives the
set a name, and determines which fields (if any) are to contain
parameters. The macro-definition consists of three parts: (1) the
MACRO pseudo-order, in which the LOCN field gives the name of the
macro-order and the ADDR field gives the list of parameters; (2)
the set of instructions to be represented by the macro-name; (3)

the MEND pseudo-order, ending the macro-definition.

(1) The MACRO pseudo-order may or may not include a list of

parameters and must be one of the following forms:

NAME MACRO PARA ;PARB,...,PARZ
| cr | 1st tab | 2nd tab | 3rd tab

NAME MACRO

| cr | 1st tab | 2nd tab

The name of the macro-order may be any valid AP1 general name,
This is its only appearance in the LOCN field; it is written in
the OPN field at each call of the macro. If the macro-order has
parameters, they are listed in the ADDR field of the MACRO pseudo-
order., A parameter name is any valid APl general name, and is
separated from the next parameter name by one of the following
special characters:

, = - + - X / ()
The last parameter is followed by a carriage return; if more than
one line is required, the 'cr tab tab tab' sequence follows (but
does not replace) the separating character at the end of the first
line., Note that if parentheses are used, they must be used in
pairs. In this way meaningful notation may be employed in the list

of parameter names; for example,

COMP MACRO RATE ,TIME ,DIST ,TOTAL

MACRO-ORDERS
4

could also be written

COMP MACRO RATE (TIME) -DIST ,TOTAL
or

COMP MACRO RATEXTIME=DIST-TOTAL

(2) Any reasonable number of instructions may be represented
by the macro-name; generally, a lengthy set of instructions will

best be coded in closed subroutine form rather than in the open
form generated by a macro-order. Any valid APl instructions except
pseudo-orders may be included. Symbols which have appeared in the
ADDR field of the MACRO pseudo-order are parameters and are subject
to the special rules described below; all other symbols are treat-
ed in accordance with the usual APl conventions. Orders within a
macro-definition may conform to the rules for instruction content,
or they may include parameter names which are then subject to the

rules below.

LOCN: Symbolic LOCN fields which are not parameters may be
used within a macro-definition, but such symbols are not meaning-
ful outside the set of instructions comprising the macro-defini-
tion; they may be referenced only by other orders within the set,

A symbolic LOCN field which is a parameter name must be given a
different value at each call of the macro-order; these values

may then be addressed by orders outside the macro-definition. Note,
however, that orders within the macro-definition may reference LOCN
symbols which appear elsewhere in the program, including those |

defined by pseudo-orders,

SETU: A single parameter name may appear in SETU, with or

without the minus and absolute value signs normally permitted in
this field., All values taken by this parameter at subsequent
calls of the macro must then be valid SETU symbols or octal equiv-
alents., Note that if a - or | | sign is included, it is effective

regardless of whether another - or | | sign is used with a SETU

MACRO-0ORDERS
5
symbol as a parameter value at a subsequent call; such inflection

signs are combined by a logical '

or'. If, at a given call, a SETU
parameter value is omitted, it is replaced by the octal code '01'

(do not change U),.

OPN: Multiple parameter names are permitted in OPN to allow
flexible coding of Class 0 tests, Class 2 tag orders, etc. These
parameter names may be combined with the special symbols such as

- -+

, +, X, etc., normally permitted in this field. In the case of

multiple parameters, values need not be specified for all parameters
at every call if the resulting code is valid, Parameter values for
OPN may include any valid OPN symbols or octal codes; the special

symbols -, +, X, etc. may also be used as part of parameter values.

ADDR+MOD: This field may consist of a single parameter name ,
which is to assume a value equivalent to any valid ADDR+MOD form
(e.g., *ZETA, B1+B2+1, M+B6); or the field may include several
parameters, provided the values they assume at any given call rec-
sult in valid code (for example, SYMB+BREG+NUMB might become
BETA+PF+3 or *ALPHA+B2+1); or one or more parameter names may be
combined with other symbols and/or numbers which are to remain the
same at each call (such as NAME+Bl+1l, which might become ABC+B1+1
or XYZ+Bl+1l). A parameter value may be omitted entirely at a
given call if such an omission does not destroy the validity of
the remaining code., The special symbols such as *, a, -, and | |

may appear either with the parameter name or as part of the para-

meter value, and are combined by a logical 'or'.

AUX: This field may consist entirely of a single parameter
name ; if so, the value assumed by this parameter must be a valid
AUX octal code or symbolic equivalent (e.g. U-T4, Bl-1, etc.).
Alternatively, either or both of the fast register symbols (and
also I and X) may be represented by parameter names, provided that
only valid combinations are used for parameter values (for example,

B1-X and I-T4 are not permitted),

MACRO-ORDERS
6

TAG: The customary TAG symbols (TGl, TG2, TG3) may appear
within a macro-definition, or this field may contain a parameter
name for which one of the above symbolic values will be substituted

when the macro=-order is called.

(3) The MEND pseudo-order which terminates the macro-defini-

tion is as follows:

MEND
| cr l1st tab 2nd tab

More than one macro-definition may appear within a given
program, provided each is bracketed by its own MACRO and MEND
pseudo-orders., The same parameter names may be used in separate
macro-definitions without causing confusion, but they must not be
used as symbols elsewhere in the program. A macro-definition may
appear at any point in a program; it generates no code at this
point, and transfers around the macro-definition are not needed.
The only restriction is that a macro-order must be defined before
it is called. One macro-definition may not appear within another,
but a previously defined macro-order may be called within the

definition of another macro-order.

MACRO-ORDERS
7

e Call

After a macro-order has been defined, it may be called by
writing the name of the macro-order in the OPN field of an instruc-
tion; if the macro-order uses parameters, their values for this
particular call are listed in the ADDR field of the same instruction,
Parameter values for a macro-order are listed in the same order as
the list of parameter names in the MACRO pseudo-order of the corre-
sponding macro-definition. Parameter values are Separated by
commas ; the list is terminated by a cr, and the 'ecr tab tab tab'!
sequence following a comma may be used to continue the list onto
a2 second line, Certain parameters may be omitted at a given call;
in this case, two adjacent commas (with or without spaces between
them) or a comma followed by a cr indicate an omitted parameter.

A macro-order will usually be called at several different points

in a program. Any call may have a symbolic LOCN field, but

no two calls may have the same symbolic LOCN field. The LOCN
symbol is assigned to the first order of the set of instructions
represented by the macro-order, unless the LOCN fiéld of this order
contains a parameter name for which a value is specified at the
current call; in this case, the parameter value takes precedence,
Note that several orders may replace a single macro-order; hence
relative addressing around a call must be used with care,

At each call, the sequence of parameter values must correspond
to the sequence of parameter names which appeared in the macro-
definition, but the values assumed by the parameters will usually
differ from one call to another. A parameter value may consist
of any string of characters which, when substituted into the macro-
definition at each occurence of the corresponding parameter name,
will produce valid APl code for the field in which it occurs, If
the call lies within another macro-definition, a parameter name
from the outer macro-definition may be used as a4 parameter value

for the inner macro~call.,

MACRO-ORDERS
8

e Examples

Suppose an APl program contains the following code;

B1 SB1 B2 ,U-B2
LT4 MMATR 1
B1 sB1 B2 ,U-B2
B3 SB3 B4, U-B4
LTS HMATR2
B3 SB3 B4, U-B4

This could be written by defining a macro-order such as

BREGS MACRO BA,BB,SBA,LTJ,MATRI
BA SBA BB,U-BB
LTJ #MATRI
BA SBA BB,U~BB
MEND

and calling it as follows:

BREGS B1,B2,SB1,LT4,MATRI

BREGS B3,B4,SB3 ,LT5 ,MATR2

Another example of a macro-definition might be:

STORE MACRO TREG ,0PN ,TAG ,SYMB ,BMOD
| TKEG | OPN ,TAG SYMB+BMOD ,I -BMOD
BMOD RPA JWTG SYMB-1
MEND

where the call
STORE T4,STO,ST2,ALPHA,B3

would produce

| T4 STO,ST2 ALPHA+B3 ,I-B3

B3 RPA ,WTG ALPHA-1

MACRO-ORDERS
9

and the call

S TORE -T6,FST,B6,B1
would produce
-| 16| FST B6+B1,I-B1
B1 RPA ,WTG B6-1

All of the preceding examples are crowded with parameters in
order to demonstrate the versatility and flexibility of macro-
orders, In actual practice, many instances will be found where
only one or two symbols vary at each repetition of otherwise iden-
tical blocks of code. Here the saving in programming time and in
reducing the likelihood of introducing errors when copying lengthy
sections of code will prove substantial. For example, the follow-
ing block of code might occur repeatedly in a control program link-

ing various subroutines:

LITES MACRO SUBR
CLA SL
RWT RESET
SLF 77777
TSR *SUBR
SLF 77777

RESET SLN (2)
MEND

Once defined, the macro-order "LITES" could be called at
each point in the program where a transfer to a subroutine occurs.
By specifying the particular subroutine as a parameter value of the

macro-order, one order could be written in place of six each time,

A macro-order using no parameters at all would be useful, for

example, in reversing the indexing of a matrix:

MACRO-ORDERS

10
TRANS MACRO
B1 SB1 B2 ,U-B2
LT4 #WMATR
B1 SB1 B2 ,U-B2
MEND

At each call, the macro-order '"TRANS" would cause T4 to be

loaded with the desired element of the transposed matrix MATR,

As noted above, one previously defined macro-order may be
called within the definition of another, producing a set of
"nested" macro-orders. In the following example, such a set of
nested macro=-orders is used to multiply two matrices and store
their product as a third matrix,

The outermost macro-order MULT has as parameters the codeword
addresses and dimensions of the matrices involved; MATA has NROW
rows and L columns, MATB has L rows and MCOL columns, and the pro-
duct matrix MATC has NROW rows and MCOL columns, Within the
initialization and storage operations performed by MULT, a second
macro-order PROD is called; its definition uses two of the same
parameters used by MULT and it performs the actual arithmetic and
indexing operations required for the matrix multiplication., Both
these macro-definitions are assumed to be embedded in a larger
program in which numerous matrices of varying dimensions must be

multiplied together,

MACRO-ORDERS

11
230 ORG
APl inst%uctions
r' PROD MAGRO MATA MATB
|
1 LOOP B2 SB2 B3 ,U-B3
§ LT4 SMATA
i B2 SB2 B3 ,U-B3
definition B1 SB1 B3 ,U~B3
inneifmacro T4 FMP *MATB,B1-1
FAD T5 ,U-T5
B1 SB1 B3 ,U-B3
B3 IF(NZE) TRA LOOP
z MEND
L
[MULT MACRO MATA MATB MATC ,NROW MCOL,L
SB1 NROW
OUTER SB2 MCOL
INNER z SB3 L,U-T5
definition PROD MATA MATB
Outeifmacro T5 STO *MATC ,B2-1
| B2 IF(NZE) TRA INNER
call of _J SB1 Bl1-1
inner macro B1 IF(NZE) TRA OUTER
MEND
M?LT A,B,C,5,3,7

.
.

APl instructions

MULT M1,M2,M3, %P, %Q %V
MULT G,H,J,2,2,%N

.
.

APl instructions

°
.

END

ASSEMBLY PROCEDURE

An APl program is assembled by exercising option #6 in the
PLACER system.

Assembly output on the printer consists of error messages,
progfam listing, and symbol table. These are‘discussed below.
Assembly also provides a punched paper tape which contains the
assembled program to be loaded under SPIREL control or with the

LOAD switch. Assembly options are also discussed below,

Error indications. An APl error indication is produced by

apparent errors in syntax or sequencing. The type of error and
its location are given by a message:
ERROR IN [F] AT CR NO [N]

where F is the name of the field in error

and N is the placer listing carriage return number of the line

containing the error.

If a single instruction is continued onto more than one line, the
carriage return nuﬁber for the last line will pertain to the entire

instruction,

Assembled program listing. Four columns are printed, giving:

(a) The symbolic location (if any exists).
(b) The location count, relative position of the word in the
program, in octal,
(¢c) The instruction in octal, broken into fields, with tag.
(d) The symbolic address (if any exists),
Locations not assigned by the coder are assigned by the assemblj
program beyond the code for the program being assembled. These
appear with their names below a row of asterisks in the program
listing. A name may be one supplied by the coder, as 'A' in the
case
STO A
where 'A' never appears in a LOCN field. A name may also be one
supplied by the assembly program for long octal or full length

decimal numbers referenced in ADDR, as in the cases

ASSEMBLY LANGUAGE May, 1967

ASSEMBLY PROCEDURE

2
AND 77777 0000 7777 00000
or CLA d3.o0
or ADD d412697

Specifically, the names assigned to numbers by the assembly pro-
gram are '<0000A', '<0000B',... in order of occurrence in the pro-

gram being assembled.

Symbol table. The table of symbols is printed out in seven

columns giving information relevant to the symbols defined in the
program:
(a) The relative position in the table.
(b) The symbol.
(¢c) A number (usually 0) which determines the type of ob-
ject for which the symbol stands.
(d) The equivalent assigned to the symbol (5 octal digits),
unless the symbol is a macro name or a macro parameter,
(e) A number (usually 1) which indicates reference in the
program to the symbol. A number 3 denotes a symbol
which appears in a LOCN field but not in an ADDR field,
so this may be an unnecessarily defined location in the
program. A number O appears on macro names and macro
parameters and on symbols given a numeric equivalent.
(f) An 18 digit octal number. The first 5 digits indicate
the line at which an equivalent was assigned,
(g8) A number which indicates how (if at all) the equivalent
was assigned:

0: by appearing in the LOCN field of an order,

1: by appearing in the LOCN field of an EQU pseudo-order
in which the address was symbolic (see section on
pseudo-orders),

2: by appearing in the LOCN field of an EQU pseudo-order
in which the address was numeric (see section on

pseudo-orders),

ASSEMBLY PROCEDURE
3

Assembly Options., If only option #6 of PLACER is requested,

the stop

(1) : 06 HTR cC

occurs. In addition to sense lights 14 and 15 which are turned

on automatically, other sense lights may be turned on for special

forms of output.

load
will
load

SL9 on: Print with double (instead of single) spacing.

SL11 on: Do not punch assembled program.

SL13 on: Punch self-loading tape. The tape produced will
by using the LOAD switch on the console. An absolute program
load to the origin specified., A relativized program will

to the setting of B6. These program forms are discussed under

the ORG pseudo=-order.

CODING EXAMPLES

@ Storage Exchange

This program STEX handles dynamic storage allocation in
SPIREL. 1If Bl = codeword address of array and B2 = length of
array upon execution of STEX, space is taken, and Bl = first
word address of block upon exit. A more detailed explanation of
the use of this program may be found in the SPIREL literature.

The remarks in the program serve to explain the program's opera-

tion.

Lines Commen ts

2 This program has codeword address 154,

6 +2, store to B6 option on class 5.

13 EQU'ed name in field 4; only the first 6-hexads
of any name are retained.

25 Decimal integer constant in ADDR; 'a' bit is
generated automatically due to shift order in OPN.

37 Simple store option '=' on class 1 arithmetic
order; Store is to fast register T6.

46 R is cleared to zero in AUX by R - Z, not Z - R.

60 Increment of CC in AUX causes a skip.

65 -T in field 1 sets U to the integer -1,

100 Only AUX is used here; no operation is perform-
ed in OPN.

101 I - B3 means final address to B3 in AUX.

110 More tham two B-mods in field 4.

131 Store ATR to memory in OPN, compound mnemonic.

137 +3, store to B6 + M option in OPN.

155 Control counter is incremented by contents of
X register in AUX, causing a jump.

174 Long octal constant is used in ADDR and is stored

at bottom of program.

[y

Lines

224

227-230

231

232-240

CODING EXAMPLES
2

Comments
T7 is restored from value stored on the B6-list.
Labelled long octal constants out of code sequence,
The first will be right-adjusted, filled with lead-

ing zeroes to 18 octal places.

Binary coded decimal psuedo-order generates two
words of hexads here.

Equated symbolic names,

154

3lvea

SIves

b/1176€

T7

~

-~ TNNN

~J —-—

T7
F5

N NN

F3
Py
P

LT7+2

TRA

sAU+2

LDR

LL3

BAU

SAJ
IFIZERITRA
IFINUL) TR2

REM

cLA
I[FENUL) TRA
CRL

LUR

LUR
IFINUL) TRA
DR

1F(NUL 18KP
AB«4

AB4

SAU

AU
IF(NE~)SKP
ADD -

RPA

aND
IFINUL)TRA
5T

aDD

gAU+2

TRA

LDR~

LS

cAU
[F(Ppe)sKP
TRA

LR3

sAY

STO

IFINYL)TRA
KPA

JPA

=AU

IFINZT)oKP
TRA

ADD -
IFINZF)TRA
CLA

TRA

REM

PAGE 1

STEX FOR SPIRFL

t1sB6+]
A%SAVFE y R
Xe35+)
STIRACG
d13,U~TE
FTIRSTEX»U~TS
a3 1rU-Tu
REIRG2R=2
TAKE

IMACTTIVATE SPACF ADNDRESSED RY

BloUeT?
OIVES»U+34
dl132R~-33
a4 U35
S1J+B8
GTVER
MASK?2

T7

B3sCC+|
b3«=|
a33+12U-R
&34

T=

T4

£1

MA 3K
GTVE3
85286+
d33=],y-B1
833186+
GIVElsR=7
B1aR=-Ry
G132U~PF
d34=12PF 4
TS IR=7
GIVE4
o13184=]
=3TORAG, [»B3
b4

Lr+]
c3,CC+)
aTIRAC

azl

T4

TAKE
ba<laP -]
@IJE]lﬂ’Z
o5=22]+Bg
GIVE3s»J+31

ATTIVATE BLOCK NF LENGTH R+

L/1176¢
TAK"™ Pe
7
Té
7
7
TAK* | T4
TAK-2 RS
o)
TAK- 3 =
T4
3
REQKG E6
REQ-G1
=6
REQ” 32
R4
1
REQ™a3
REJ~GH
3
REQH 3K =8|
REQGe 7
F6
REQ™7 Fa
7
F3

11,37
IF{ZEP)TRA
BAU
1F(PQa)s¥P
TRA
woP
DR
L3
IF(PQOe)sKP
TRA
5TJ
LR3
IF(ZED)TRA
sTJ
RPA
IF(ZER)TRA
TRA

AND
IFINZE)TRA
AR3

RPA
AB4sEPM
CLAZWTS+3
TRA
CLA»WTG+3
SURALNR+S
IFINUL)TRA
50114
1FINYL)TRA
LU

LUl

oM
[F{PSMX7ER)TRS
ADJ

RWT
IFINZ=)TR4
sAY
[F(NE~)OKP
5TX
IF(NZ7)8xP
TRA

DR

L3

IFINyL)TRA
5U3

TRA

432+ 2d-T7
T?
ATAKE » =81
aZ1U=-Tg

2 STORAG, [-B3
dals
T7,UeR5
RTIRG
£3,33+]
o!3sR+34
TAKES
BI3+B2r o34
STIRAR
ATAKz 1R=7
ATAKE » =51

#wAUTE ACTIVE RLOCKS TN LJW ADDRFS<cS

C4)00r JoT7
AR E-Y)

== IRSTEX, [+R4

RIJRG7

® 345 U=35
dl3sR=3]

kT JRGZ
EI+B1+]s =By
~TIRG4A
d15+d34

34

MA3K]
REJRG2,) B3+
c1sB4-
§C+];P1+|
cCl+]l2l1=E5
D328~}
rTJIRG7
E4a84+]
o4aBi+)
rRTIRGR, 3~}
MASKZ21R+35
Cr+l
a3sCC+)
a3,85-1

G35
LT+1aFR3+
da33=12y-35
B5=1
RIJIRG4,R3+]
a342CC+X

Ts

o JoPF
A€LASTEX
R=JIRGR

o4

alsu=g]
RIIRGH
al|+84, R4
KZIJRG7,UB6

PACE

2

74

7:

7¢

77
196
101
10?2
103
104
10%
106
107
10
11t
1i?
112
114

116
117
120
121
127
123
124
125
126
127
130
131
132
132
134
1 3%
134

411764

EQOY 38

REQ 739

REQ™10

REQYI

ATA<E

MAS“ |
MAS¥ 2
NOT

3

XCW"
SAV*
JNSAVE
STOVAG

FIRSTEX

LASTEX

T7
T4
PF

RS
Té

PF

1TAl
[
Pl

T7
PF

1137

MLF
IF(NN7)SKP
ADD~»
IF(SLF)ceKP
TRA
CLA
BAU
sSLN
TSR
SLF
DR
CLA
LOR
1F(NZF)8KP
TRA
CLA
Lu=
CLA
1FINUL) SKP
APF
RPA
TRA
IF(NZF)TRA
TRA

LR
RPL
5TX

IF(ZFo,NTr) TRA

LT7
ABs

JCT
oCT
£ QU
< QJ
QU
QU
tQuU
£ Qu
=Qu
e ND

04300+ U~36
T3

T4

JM02
KZIRG®
013024010000000000
ANMOTEsJ-T7
07302

* X CWD
079302

G a8
B4sUsP5
MASKz »J=PF
a34+] 13441
rRTIR11,UBS
B4+
0272U=31

G 1 +PF s J=pF
Lr3F =1

]

Gat]
REIRID
TAKE | sR=7
TAKER2sy~+37

g3

STIRAR

@36~ 1,U-T7

& «INSAVE,R6=]
c5"1alUaR]
&777745U-CC

473007000
7777777772740077777
KTJIRGANIZATION

123

125

i3

137

173

i71

112

PAGE 3
167
170
171
172
173
174
175
17¢€
177
200
201
232
203
204
20F
20F
207
210
211
217
212
214
2=
?le

-l
22!
22?7
223
224
225
P2¢

234
23%
23¢
237
240
24
247
243

PRO®RAM 154
STEY FOR aPIRFL

INACTIVATF cPACE
GIvE)

GIVE?

GIVE=

GIVEs

GlveES

ACTTVATE BLPCk OF LENGTH R2+!

TAKE

TAKE 1
TAKE?

l 07 50477
2 1o Clnon
3 on 204107
4 91 =0aQn
&) 00 LRMED
6 00 ”B10n
7 20 2t10r
10 41 Mogn
11 27 Ningn
AUDRESSEDR RY B
12 01 21700
13 01 ~iogr
14 21 AFrge
15 Q7 4% gn
16 45 s%A|n
17 o1 Mrgn
20 J1 BFagr
?é 00 £2nyn
2 0t 41rp4
23 91 41rp4
24 00 =f1on
25 90 ~Ttor
2g Q1 NPEgn
27 02 100!
20 44 P1AQOY
2 07 =QR|&
22 o1 rlrg~
33 41 20001
34 44 1QnQON
35 00 PC10°
206 o1 ~{oon
27 00 040!
40 00 s50g2
4l oo =000
4z o1 021)n
43 01 r£ia0n
44 47 LBeryE
45 0” ~0lo~
bg 01 °reo!
47 43 Fingr
&0 44 21eQy
5] 44 216Q0
se a6 20100
53 0] "Zngn
G4 o1 Nteor
=5 30 10NCY
=6 o1 ~lngn
57 ot 27
60 o1 oron
61 42 cleogn
62 o0 201on
&3 nNne "1 n
b4 Qo rinpon
65 21 20nQn
XS] o1 =Q4or
67 o0 L¥ng”
70 o1 "™y
71 0y Mleor
72 4 2t
73 45 LBN =
74 48 ~lngn
72 [slalaiviale}]

26
oz
26
o]
06
05
04

1<

oG

53

54

0o

C7
(o]0}
41
06
73
co
45
(o]¢
23
=4
00
74

Q007
4400
JO0N
Q000
4000
J000
4002
4GC0!
400!

2007?
400!
4000
4000
400n
400!
000!
Q000
404n
4040
4010
4020
000
Joor
J00°?
Q001!
400!
4100
4010
4010
4001
o00”
4000
4020
2000
400!
4000
Q400
4020
4001
aoic
200¢C
400>

> 2000
; 4001

atoe
400!
alon
4001

4001
4004
naor
400!
4000
2400
4000
Joon
4Q0!
4010
4000
400!
4014

£H000
Co13s
77775
cn100
oonlz
Cot01
CoN00
00070
Co047

€on0o
CN04y
caoniz
0n030
ConG3
conNos
Cote?
00007
cp00n
77776
00n01
Co000
00005
CoN0s
CQ000
0015%
CconN04
00000
77774
(elo]o]0])
77752
0onoe
contz
77776
conos
CQ00s
[oJoYaR W4
Coloon
00000
C200
¢Qooo
caoi100
Co000
CoN04
Q0004
77776
77737
7777%
77788

cotlz
oTsJalo D!
o007
Qo114
00000
0nto0
conlt7z
09007
00007
nQ000
cool?
coNo1
onnoon

4/172/66 15, 2/

SAVE
STNRAG
FIRSTE

PEORG
TAKY

CIVES

Glve»
MpeK?

MASK |
Clv=?

Glvel

Glved

STNRAG

STNRAG

TAKL
Glvdl
GIve3

ATARF

ATAKFE

STORAG

RENKE

TAKER

TAKE=?

76
77
100

WRITE ACTIVF RLOCKS

REORG

REORC |

RENRCG2

REQORC3
RENRC4

PEORCS
REJRCE

REQREG7

RENRCS

REORGS

REDRIO

1ol
102
103
104
105
106
107

o

CUE WN— O N U WM —

Y]
~N

130
121
132
133
| 24
135
136
137
140
141
142
143
| 44
145
| 46&
147
150
151
152
153
154
185
156
1 &7
160
161
Y]
163
| 64
|65
166
167
170
171
172
173
174
175
176

44
o4

TO LOW
46
ol
01
0!
01
01
46
01
ot
01
01
ot
01
01
44
20
01
0t
o1
01
(e}l
o1
01
02
02
a1
o
ot
43
41
00
01
46
44
01
01
00
o1

0t
o7

47
ot

01
0!
ot
o)
0!
01
ot
20
45
06
o1
o}
01
21
ot
47
A1

21£0' 00 2000
nLeye 10 4001
riecor 41 400!

ADPRFSSES

L2007
[[alols
LAnQ"
[akNalela
5170/\
LErge
~rLege
40007
~{nor
>{70"
DAY
=214
~lege
L1002
PleQn
4ynzu
P74
rleon
21742
234072
0104
=014
Nlogn
LEnpn
tgngn
ugnor
CELA
[Kelalelal
2ley
B Nal Yol
20100
0fR|Nn
LanprF
repnge
ol Nalola
Lol
LEMgD
(2 Nal g
e1on
~rlnor
LPA00e
nérgn
170t
[stdab4a
sl oLy
21700
2P0
L2ror
[olalelal
4znpn
ERLgn
21700
(o Tola!
"3nsn
Ofﬁoﬁ
21700
b!glh
2170n
ngngn
L1007
21£0!
a8 Ralo]a

o7
76
74
co
45
51
00
74
00
o]
o]
00
3
64
2]
45
61
00
24
24
€l
55
00
20
65
00
25
45
00
23
30
oG
47
o]
00
00
41
00
74
46
46
00
0o
00
00
00
07
00
00
00
S4
45
47
24
45
00
41
47
€7
00
00
00

4000
400N
4400
400!
Q420
4000
400!
4017
400!
4140
q420
00!
400!
4007
J00t
4007
2040
4001
3020
Q020
400!
200!
4001
4000
4000
4000
4001
4040
Q04N
400!
4020
Joon
400N
4400
400!
yozn
4000
4001
4022
400!
4000
Jooe
J000
4000
4001
200!
4001
400N
4400
4000
Q000
Joze
000!
4020
400!
2020
4000
2207
Joon
400N
Q020
4001

09100
00101
00100

04000
0no0o
00101
00035
Cp000
Q017
cono?
00001
00025
00000
0000
coo77
0nnos
00000
0000
00001
00000
00017
00000
00000
o010
00061
€000
00011
00011
CON44
0000}
77776
77776
77764
00000
00004
o002
0olor
Co005
Coo00n
oony7
77735
00000
77770
C40CO
00008
00004
00007
coneos
conN3u
G003}
000C?
cnlzs
00002
co1zs
[¢le]o]e]e]
cooz2?
00001
con07
00001
00033
000Q0Nn
conoo
00n01
00001
77764

STORAG
ATAKE
ATAKE

FIRSTE
RENRG7
REORG?2
RENRGEg

MASK 1
RENRG3

RENRG7

RECRGS
MASK?

RENRGY4

LASTEX
RENRGSR
RENKSG|

RENKGY

RENRGY
+0000A
NOTE
XCWD

G
MASK?2

REORI]

RENRIN

RENR1]

ATAKF

MASK

MASK?

NOTE

N 2 55 0 g 3 ¢

«0800CA
34 SAVE
3's STAR
3'6 FIRS
3'7 RFOR
370 TAKE
37 GIVF
372 GIVE
373 GTYVF
3~y MASK
3°5 MASK
376 GIVF
3?7 GIVF
339 ATAK
37 TAKF
372 TAKE
373 TAKE
37 REQR
375 RFOR
375 REOR
377 REQOR
350 REQR
34 REOR
342 RFOR
343 LAST
3uy REOR
343 RFOR
346 «n0n
347 NATE
350 XCwWD
351 G
372 REQR
3%3 REQR
354 UNSA

177
200
2ni
202
203
204
205
206
207
210
211
212

213

AG
TE
G

|
5
2
2
1
3
4
£
1
2
3
G7
G!
G2
Gé
G3
G4
GR
('
G8
G9
NA

10
11
VE

[eXe o ReXo o Ro oo Yoo Nolo o Ne Yoo Bolle Nole NoNeNoRa e o Ro o o Lo ko bo/

04
00
26
0?
41
00
07
47
00
77
61
40

00

O;nsn
ninor
h'n]=
26301
4300=
{3
Sty 7n
'S Nalol
nenpor
77777
sh=ge
‘gcoz

(ole}-F"gl

126
100
10y
tnt

12
Bl
24
21A
an?
27

(4
2~
7?9
7%
7¢
149
el
112
137
13
174
1 2%
{rP
1514
1¢%
21"
2'1
12¢

16&
177
177

10
42
00
(o] 0]
07
66
41

00
77
14
65

10

[R Yo R e o R e kel Xo N

4001
4001
4000
2000
4500
4400
2100
4000
4000
7400
5405
3752

Jo000

77671 TAKE 1
77671 TAKL?
00017

00100 CTORAG
77776

Cot37 UNSAVE
77776

77774

co000

77777

55071

£p525

00000

243n000000000000
2450090000000000
2460000000000C00
1240000000000000

770000000000000

230000000000000

660000000000000

350000000000000
2350000000000000
2330000000000000

£00000000000000

£30000000000000
224n090000000000
1100000C00000000
1110000000000000
1140000000000000
1650000000000090
1300000000000000
135000000C000000
162000000€000000
146000000€000000
1470000000600000
161000000C00G000
2470000000000006
174000000€000090
2060000000000000
2=1n000000000000
2370000000000000
2420000000000000
241000000000000C
2110000000000000
2220000000000€90
2440000000000000

COO00O0O0DUCO0OLUDOOOUODOOLUULUODODODOLOOOOOOOO

CODING EXAMPLES
3

¢ Matrix Inverse

This program computes the inverse and determinant of a real
matrix and prints an error message if the matrix is singular.
The method used is essentially in-place Gaussian reduction as
described in "An Introduction to Numerical Mathematics", Stiefel,
E.L., 1963, page 3. Each successive pivot element is the largest
in absolute value of all the remaining choices in a given column.
The result is a compromise between speed and accuracy. An n X n
matrix is numerically singular if the ratio of any two pivot
elements exceeds 106/n. The codeword address of the matrix to be
inverted is in T7 on entry, the inverse is stored as USTAR
(codeword address 10), and the determinant is output in T7. 1If

the matrix is singular, T7 = 0 on exit,

Lines 11 to 36:
The fast registers are saved, the input matrix is copied if
necessary, internal constants are computed, the row codewords are

labelled, and DET is initialized.

Lines 37 to 61:
The next column is scanned for the largest element, the

largest and smallest pivot are stored and tested.

Lines 62 to 101:
The exchange algorithm is now applied to USTAR, the non-
scalar accumulator in Genie and the pivot element is multiplied

into DET.

Lines 102 to 113:
The two appropriate row codewords and their back references

are exchanged if necessary.

Lines 114 to 151:
The columns of the final inverse matrix are now sorted as

necessary due to non-diagonal pivoting.

Lines 152 to 157:

This section of code causes printing of an error message.

11

12

15-16

35

41

46

66

106

127

154

160

162-165

CODING EXAMPLES
4

Comments
This is a symbolically named program, INV.

Cross-reference words for named items referred
to by INV.

Extra carriage returns and a remark in the code
sequence.

Use of +2 store option in operation field, store
to B6.

Minus inflection in SETU, compound test in OPN,
use of EQU'ed name in address field. The 'a' bit is
not required since TRA gives this inflection auto-
matically.

EQU'ed name in address field, and REF'ed name
in address field.

Decimal constant in address field will be stored
at the bottom of the program.

Absolute value inflections in SETU and ADDR, and
indirect addressing specified by '*' in ADDR.

'-' codes as a store to M, here MAXP; '+1' in
OPN is equivalent.

Enter repeat mode option on set or add to
B-register orders.

Use of more than one B-modifier in field 4,
Bl + PF + M (M = 0).

Reset X register from number originally stored
on B6-1list,

The address part of this instruction or M was
replaced by the contents of PF at the instruction
on line 13. Anything in () is ignored in assembly.,

A decimal constant is defined and is stored at
EPSLN.

'Z' with OCT causes zero to be stored at these
locations.

Lines
166-171

173-174

CODING EXAMPLES
5

Comments

EQU psuedo-orders assign numeric values to names.

The END pseudo-order terminates the code but
generates no instructions. It is followed by two
carriage returns.

4711766 16,17

INV

MCOFY
ERPR

ROWSTO

INVI P

SCAN

00”1

P3
T4

5
R4
T4
P4
El

ORG

REF
REF

REM

BAU+2
IF(ZERSEQV)TRA
RPA

8AU
IF{ZER)SKP
TSR

ST

STO

CLA

CRL

cPL

FMpP

vDF

STO

LDR

LLS

LRS

STO
IF(Ppe)SKP
TRA

LDR

STO

STX

sR2
IF(Ppe)SKP
LT6

AB1
IF(PN7)TRA
IF(ZER,EQVITRA
LTS~
IF(ZE®)TRA
IF(PN7)SKP
STJ

LT&~
IF(ZER) TRA
IF(NN7)SKP
sT)

CLA

FDV
LF(NEr)SKP
TRA

LT4

LTS

FDV

FMP
SB3IgPM
FMP»

SB2
LFZER) JMP
LTS5~

SR2

xMCOPY
®«ERRP

INVIT7) « USTAR

X2 36+1
aA%SAVF) U«R
FE3AVF,Re7
T7sR-R3
atISTAR, [+B|
A #MCOPY,y-B?
avMINP

aMAXF
E1sU-B]
d4]52FR«By4
ar

TwWi47
E23LN

8T XROR
ct+12R3+]
a415sU-B5
a+d15

AR |+1»Bl+1
aldy

aRJIWSTI

ala 0sUePF
anzT
a7,U-Tg
aPFs1-81

| «JSTARI

% ISTAR,U-R3
a77776sU-T7
a3CAN
dSINGLR
MAXPsUTy
aF [RST

T=

aMAXP

MIANP

aSTEST

T4

aMINP

MAXP

MINP
EQQORIR.Z
ASINGLR
=41, 02y-81
»!JSTAP)R+RZ
TSsUTy
DET18P+1
a331U~Te
*x'|STAR,B3~|
aPFsU=B1
T7sB4-

® J3TAR

435

PAGE

M= DI NNNE Q) N

4/711/6¢

Loo”2

TEST
HUNT

LAST
ouT

SWA®
EXLNQP

FIX

SINGLR
PFSAVE

EPSLN
TWQ47
ERRUR
MINP
MAXF
DET
UST?eR

75

R2
By
T7

B3

R3

B3
FF

PF
Bl

Be
Fe
El

BS
FF

16, 12

SR |

FMP

sBy

EADO
IF(PN7)TRA
IF(PN7)TRA
SBy4

CLA
IFINzZE) SKP
TRA

CLA

LDR~

aT)

57D

STO
IF(PN7)TRA
$33

LDR

LLS
IF{ZER)SKP
IF{PN7)TRA
iF{ZEn)sKP
TRA

TRA

sB2
IF(PN7)TRA
TRA

STX

LT?7

oB|

LDR

sB2

LDR e

582

3TQ
IF(PN7)TR2
CLA

LOR

LLS

CRR

STO

LDR

LLs

LR3

S5TY

TRA

SB1

TSR

SPF

TRA

sTO

TRA

DEC

ocT

ocT

ucT

uCT

ocT

cQuU

axTyz

%1 STAR
a4+
KJSTAR,B2-|
alLDOP?
al_J0P1
ax*T6sU-B3
USTAR» U=
a’F
ATESTsPF =~
B14PFsy=a2
E1+B3s1+33
a32,R-32
a3 | +PF,1R3
a32,PF =]
aTNVLP

a4 132
B1+B3

a418
dR2s83=]
aANUNT

a33+]
aSAAP»33+1
AT [X2 U=PF
32«12]~+33
aHuUNT

A% JNSAVE
a%36-1,Bg~1
LETaU-CC
a34,U-PF
*IJSTAF
a33,U=»33

* JSTAR

a3 3,U~B3

X)STAR,B| =1
aT XLoop
PF+B3
FT+82
d415sU=R
ai}5

&RF+83
PE+B2

a4d15

aiis
aF+87
aLAST»U=+31
aUSTAR, U+B2
a*STEX

&l Z"L'OE[
A¥ERPRHB | +]
adET

adJT
1900000 o

042000000000000000

— NN

PAGE

2

163
164
165
16¢

4711766 16412 PAGE 3

STEX £QU 135 167
SAVE EQU 136 170
UNSAVE EQU 137 171
177

END 172

174

PROERAM

INVIT?)

INV

MCcPY 77776
ERFR 77777

+ USTAR

ROwSTO

INVLF

SCanN

FIRST

STEST

LI3oP1

Laorz

NOUFWN —

a2=6=
Lbee

2010°
nl2yn
21€0!
€100
n2nyn
Ahooh
20001
20001
21700
L®AGL
RC]OA
(T ool
16700
20001
=G40
48ngo
L¥N R
20001
n2|1n
S alo]
EQapn
20001
clalel
Lo lalel
IR
Rouen
41001
08150
nLayn
Brug
Nlege
cé1gn
28001
461
clegn
rErFsn
2U00!
21700
te7on
LT
cieon
l-'.oh#n
ceLE|
19700
17601
LQrz=
10401
L2
0N A
:hqs'
4ftrnpr
LY olalo}
1000
40001
10401
rRISA
8150
4rnce
21700
rPrgn
rirpn

J400
7400

q000
4400
3001
0000
4000
4401
4001
400
3002
4000
4000
000!
3001
4001
00072
4000
4000
4002

;4020

4001
2001
400!
4000
4200
2400
o4on
4000
4001
%00!
0001
4001
9000
4001
0001
4001

) 9000

4001
0001
200!
Q001
4001
100!
9400
2000

g 200!

4040
2400
4200
2000
0400
4040
4400
2400
4020
2400
4001

) 4001

4400
q000
4200
400!

00000
00000

77775
00136
00140
00007
0oo1l0
77767
00143
00143
00000
0o017
o000
00134
00132
00133
00001
oonit7z
Cool7
0000
00000
77771
0nt130
coles
00007
Co000
0oolo
0po0lo
77776
77773
00104
Ccolls
00002
coNos
cot1l?
0ollo
00002
0000¢
00105
00105
Cco103
C0o101
00070
00103
conito
00005
oQn77
00000
0poo0lo
00000
00007
coo0lo
0000
0on07
00010
00001
opoio
77777
77765
00004
o0oo0l10
c0000
0nnos

4711766 |6, 14

SAVE
FFSAVE

USTAR
MCOPY
MINP
MAxP

TWO47
EPSLN
ERROR

ROWSTO
=0N0NA
DET

USTAR
USTAR

SCAN
SINGLR
MAXF
FIRST

MA P
MINP
STEST
MINF
MAYP
MINP
ERRUR
SINGLR
*0NGC0A
USTAR

PET

USTAR

LiISTAR

USTAR
USTAR
LOnP?2
L.GorP |
USTAR

TEST

76 0l 2700 42 0207 00000

77 J1 =C401 73 2017 Coooo
100 43 2000! Sz 4004 00000
101 02 70001 73 4207 00000
102 43 2000! 67 4004 00n0N
TEST 103 47 PFI50 0OC 400! 77727 INVLP
104 01 40002 72 4022 00N0O
HUNT 1035 01 040r 00 Q012 conoo
106 00 4®ng™ 0C 4000 0oni7
107 01 P2NIN €3 4004 00000
110 42 C¥IBN 00 400! 77773 FUNT
11y 42 ranir 00 4010 000G
e 01 ~lnroM 23 400! 00006 SWAP
113 41 0I00N 47 4001 0002 FIx
LAcT 114 01 40002 73 4004 77776
11 42 CFIBN 00 400! 77766 HUNT
Our 116 Ol £10r0" 00 4400 Qo137 UNSAVE .
117 01 43N0% 46 4500 77776
120 47 TC470 40 0001 00034 PET
Swap i21 41 &48r0! 47 4020 03000
ExiocP 122 31 ECLOr 00 0400 09010 USTAR
123 42 LCO0™ 43 4010 00000
124 0? FC401 0C 0400 0300 USTAR
125 42 L0002 435 4010 0000
126 02 200Gt &1 4400 Ogclo IJSTAR
127 41 CBISA 00 4001 77774 EXLUOP
130 91 1700 0G 221" 00nN0OO
131 01 T040r 00 2204 CHOGO
132 0ot 4¥re® 0z 4000 Co0l7
133 01 ¢¥p5% 00 4000 0ool7
134 a1 28n0! 00 421N Cpnon
Flx 135 ~ 01 BQ40n 00 2204 Corvo
136 21 4Erg? 00 4000 00r)7
137 45 4%r1= 00 4000 00C17
140 02 PCr0t 00 4204 00C00
14 47 Clogn 41 4001 7775 LAST
SINGLR j4p 00 £0N0! 42 4000 00010 USTAR
143 A1 «CrON 00 4400 00135 STEX
PFeAVE 144 20 40007 41 4000 0g0CH
l4s a1l nleon 21 4401 7763 ERPR
146 00 20C0! 00 400! 00006 DET
147 01 7J0or 00 4001 77745 cuT
EPgLr 150 03 ~{720 44 2000 00N00
TAO47 181 36 20rGA 00 0000 0N000
ERRQF 15z 00 "frpn 06 0000 00000
MINp 153 Q0 ~OCO”~ GO 0000 00000
MAYpP 154 00 £0ro~ 00U 0000 03000
bET 155 00 ~0rO™ 00 000N 00NOO
HE NN 0 N W g
«0n00A 156 a1 £C1on 00 Y000 00000
34 MCOPY 0 77778 | 2000000000000
3!'3 ERPR c 77777 1 3000006000030
3186 SAVE 0 12¢ 0 1740000007000000
317 PFSAVFE 0 L4k { 152000000n0000000
3°0 USTAR o 10 0 1720000060000000
37] MINP 0 158 1 1650000000000C00
3°2 MAXP 0 1564 | 1670000C000C0C00
3°3 TWO47 0 17 | 1610000000000000
374 EPSLN 0 156 1 1570000000000000
373 ERROR 0 152 1 163000000N000030
3% ROWSTO o] 1y 1 PEO00000N000NOA

LOOODOLOOLO

by20r6¢

INV

L7776
L77777

L1

L1z

L42

L46

Lé0

Lé4

1Tl

75
Ty
15
Ty
T6

T6

14 39

oR3

REM

KEF

REF

3AU+2
01310

RPA

BAU
IF(ZEr)SKP
TSR

ST)

ST

CLA

CRL

CcPL.

FMp

VDF

5T)

LDOR

LLs

LRS

STD
IF(PQe)sKP
TRA

LDR

ST

5TX

SB2
IF(Ppe)SKP
LTs

AB |
IF(PN7)TRA
01310

LT3-
IF(ZEp)TRA
IF(PN7)SKP
ST

LTéo
IF(ZER)TRA
IF{NN7)SKP
sTO

CLA

FDvV
IF(NEr)gK®
TRA

LTS

LTS

FDV

FMpa

40023

FMP s

B2
IF(ZER)UMP
LT3

sB2

5B

FMP

581

BACK=TRANSLATION
*MZOPYv

* «ERRP
77775286+
a#]136*J+R
Li44re7
T7sR="3
a1321+3)
x.77776sU-B2
L133

L134
B‘.pu-.f“l
17sR+%4
az

L1351

L1350

L1352
Blelar3+
172 U5
17
Blvlaty+y
a34

L7
L136sliePF
L35

7o jeT
PEaIit)
110t
*13s2U*33
77776 U~T7
L3

aLt4z
L13421sTy
La2

s

Lt3s

L1133

L4d

Ts

L133

L1354

L1533
L132sKe2
L142
~L1562U+3]
*{J»R+32
TSsU+Ty
L1352 2+
a335,U~-T6
*10,83=1
PEaUe"y
17,84~
%10

B3

*7

*x!)

Ba+]

PAGE

V=TI N Ny Y—

—

Lio=
Lio®

Ly

Lile
Lir”

Ltz
Liz-

L13=

L1g"
Lig
Llge

Lis"
L13!
Lis»
o157
L 1 51-.
Lis=
L15=

4/20/6€
Fe
Fé4
17

F3

F3

F3
PF

P3
re

Pl
E2
FF
Fl
Fe
P2

Pl

14, 39

FAD=
IF({PN7)TRA
IF{PN7)TRA
SB4

CLA
IFINZF)sKP
TRA

CLA

LNOR=

ST

ST)

ST
IF{PN7)TRA
SB3

LDR

LLS
IF(ZE2)SKP
IF(PN7)TRA
IF(ZER)SKP
TRA

TRA

582
IF(PN7)TRA
TRA

STX

LT?7

sB1

LDOR

S32

LDR«

382

ST
IF(PN7)TRA
cLA

Lo

LLsS

CRR

5Td

LhR

LL3

LR3

sTO

TRA

S8

TSR

SPF

TRA

§T)

TRA

acT

ocT

oCT

ocT

ocr

gCT

GCT

END

R10,B2=1

La4

L&)

x4, UeH3

IRV RVEZal!

anF

L1233,PF=}
Pe+B|syenp
B1+B32]+32

bB2sReH2

FF+B]+1+33

BsPF=~|

L7

B4, 1aH2

B1+B3

17

al2,87=]

L1235

a33+]

L1212%3+

L1355,V ePF
B2=1sTe83

L1)5

137

r3se] 186w
L135,'1eCC

BasrUPF

x1)

B2, U-o‘.‘j

x1)

B3sUet3

¥10481=1

L1122

Pr+83

PE+32

170Uo:’

17

PF+83

FF+B82

17

17

FreB2

Lt]4)“-.8]

171U 2

*x 135

Ze JoB 1

®L 77777481+

L135

L1114
C1)177044000000000
U52007000000000000
0170070C0000000000
Gn30070C0000000000
G"30070C0000000000
0120073C0N0N0NONON
0101700000000000C

PAGE 2
74
7%
76
77
1o0
191
1072
102
104
108
10é
107
1o
11
12
113
114
1=
1A
117
120
121
122
123
124
128
12¢
127
1360
131
137
132
134
13%
136
137
140
141
142
142
44
{45
14¢€
147
150
'35
1357
1352
154
13K
136
157
140
161
162
162
164
1 6F
154

GENIE

Genie e o s+ o e & e o o o

Genie Program Format . . .

Names e o e e o o o e o @

Numbers e o o s o o o o o

Variables e o o o & e o

Declarations . . « +« « « .

Functions e ¢ e o o o o

Constants e o e o e o e o

Remarks c e s+ e o o e e s

Command Sequence

Arithmetic Expressions . .

Arithmetic Commands o o e

GENIE

Conditional Arithmetic Commands .

Transfer Control Commands
Loop Control Commands . .
!' Storage Control Commands .

l Execute Control Commands .

Input-Output Commands .
(Including Sense lights)
Data Commands o e o e s
Fast Registers .,
Assembly Language . . .
Punctuation ,
Compilation Procedure .
Running Genie Programs |,

Coding Examples e v o

Genie Coding Conventions

GENIE September, 1967

GENIE (continued)

GENIE

The formula language for the Rice Computer is called the

Genie language. Programs written in the Genie language are called

Genie programs. Translation of Genie programs into machine language

is accomplished by the Genie compiler,

The language and the compiler are both often referred to as
just Genie. What is meant is usually clear from the context.

Genie programs may contain instructions written in the AP2
assembly language. Hence, the AP2 assembly language is a subset
of the Genie language, and the AP2 assembly program is a subset

of the Genie compiler.

T

PROGRAM FORMAT

The unit of definition to the Genie compiler is the
definition set, which has the form

DEFINE

declarations of external variables and
parameters for the entire definition set

constant codeword address specifications for external
variables

function definitions

PROG1 (PARAM1) .=SEQ -
declarations of internal variables :
st
remarks 1 program
constant specifications in definition
command sequence for the calculation set
END -
PROG2 (PARAM2) .=SEQ 2nd program
. in definition
END set
PROGn th -
n program
: in definition
END set
DEFINE
LEAVE
| cr | 1st tab stop

A definition, then, is a collection of programs (in the most usual
case just one) which depends on a common set of external quantitiés
and which are completely independent with respect to their private
internal symbols, The definition set has meaning only at compila-
tion; the independent programs may be dynamically interconnected,
among themselves or with programs compiled at another time, in

any meaningful way at the time they are executed.

PROGRAM FORMAT
2

Typing of the definition set is begun by the sequence
'cr tab uc DEFINE'. This first 'DEFINE' insures that the compiler
does not retain any symbols mentioned by another user of the system.
Each line of a program should be begun with a case punch (uc or 1lc)
and is ended by a carriage return (cr). If a statement is so long
that it needs to be broken in typing, the sequence 'cr tab tab tab'
provides continuation of the statement onto the next line. 'PROGi'

designates a program name. 'PARAMi' designates the parameters of

the program, a non-empty list of names separated by commas. The
operation '.=' followed by the symbol 'SEQ' signals initiation of
code generation for the program. Recursive code will be generated
(so that a program may use itself) if 'RSEQ' is used instead of
'SEQ'. 'END', typed at the left hand margin and followed immediate-
ly by a 'cr', terminates the program, initiates final compiler
output of the program, and causes the symbol table limit to be back-
ed up so that the compiler retains only its vocabulary symbols and
the external variables of the definition set. The second 'DEFINE'
terminates the definition set and causes the symbol table limit

to be backed up so that the compiler retains only its vocabulary
symbols; all external variables backed over are printed out.
"LEAVE', typed at the left hand margin and followed immediately

by 'cr cr', causes exit from the system.

NAMES

Private names, those invented by a user of the Genie compiler,
are formed by the following rules:
1) a single lower case Roman letter;
or 2) an upper case Roman letter, followed by upper case
Roman letters, followed by lower case Roman letters,
followed by numerals (no embedded spaces).
By rule 1) the following are examples of names:
a i p X
By rule 2) the following are examples of names:
A CAT Fn DDxy 12 PQ29 Dog3
Concatenation of names implies multiplication of the variables
specified, The following are not names:
ab A B38 Pt4p M5ef w10
They are interpreted respectively as:
axb AXB3 8 Pt4xp M5xexf wX10
Any number of characters may be used in a name, but only five
are retained by the compiler. If lower case Roman letters are
embedded in a name, the first is tallied as two characters.
The names
m Man

are stored as

RRRY

NAMES
2

Names in the vocabulary of the compiler may not be used by
the coder as private names. These include

names of library items -- COL, SIN, LINCT, etc.
names of various machine registers -- Bl, CC, T4, etc.
names with special meaning in the Genie language -- as

DATA, TRUE, LEAVE, etc.

In alphabetical order, vocabulary names are:

ACOSH CCSH CSOLN FUNCT MINSE REPEA
ACCEPT CDET CSNH FXEXP MITIM RESUL
ARRAY CDIV CSQR GAMMA MMPY ROW
ASIN CEXP CSUB | co MOD | RTRAN
ASINH CFEXP CTAN M | MopuL SCALA
ATAKE CHISQ CTNH INFER MPATC SCRIB
ATAN CINV CTRAN INPUT MPOLA SET
ATANH CLENG CVSPA INTEG MPOWE SIN
Bl CLOG CXEXP INV MRE SINH
B2 CMADD DATA ITIME MSPAC SL

B3 CMCON DEFIN ITRAN MSUB SMDIV
B4 CMCPY DET LEAVE MTAKE SMMPY
B5 CMMPY DIAG LENGT NEO SOLN
BCD CMPY DISPL LET NUMBE SOR
BOOLE CMSPA DPUNCH LGAMM | oop STNDV
CADD CMSUB END LINCT ORTHO T4
CARTN CMTAK EOV LOG OUTPU TS
CACSH COL ERASE LOGL0 PAGCT T6
CALL COMPL EVEN MADD | paGE T7
CASN CONJ EXECU MATRI PLOT TAN
CASNH CONTR EXP MAX POLAR TANH
CATAKE CONVL FALSE MCART PRESC | TITLE
CATN cos FFT MCMPL PRINT TRAN
CATNH COSH FFTC MCONJ PUNCH TRUE
cc COT FIX MCOPY QCONF | TTAKE
CCEXP CRCOR FLEX MEAN RANDM VECTO
CCOL CROW FLOAT MFLT RE VREV
CCONT CSIN FOR MIM READ VSPAC
CCos CSMDV FORMA MIN REAL z
CCOT CSMMP FTRAN MINDE REM

The following names may be used as private symbols in Genie
language but have special meaning in the assembly language:

B6 I PF R S U X

Four character strings which are not names have special
meaning to the compiler:

and if or not

GENIE July, 1968

NUMBERS

A string of decimal numerals

DDD < 214

is an integer. A string of decimal numerals containing either a

decimal point '.' or a power point '%*' is a floating point number.

The form of a floating point number is illustrated by

A.B*C
which is interpreted as

A.Bx10°
There may be as many as 14 numerals in A and B combined. C is an
integer between -70 and 70; if C is not preceded by a minus sign,
it is taken to be positive., Minus signs may precede decimal num-
bers, integer or floating point, with the usual arithmetic meaning.

A string of 18 or fewer octal numerals immediately preceded

by a unary '+'

+o00

is a right-adjusted octal configuration. [A '+' between two num-

bers is binary and does not cause the number which follows it to

be octal.]

The following numbers will be understood as shown:

3 decimal, integer
-3.0 decimal, floating point
3. decimal, floating point
3 %8 decimal, floating point
3.0%-8 decimal, floating point
-0.3 decimal, floating point
.3 decimal, floating point
+30 octal
Spaces may be embedded in numbers; they are ignored.' There-

fore, fields within a number may be separated by spaces for ease
of reading. For example, if _ represents a 'space' punch,
3_641_209.4_% -8

is exactly equivalent to

3641209 .4%-8

NUMBERS
2
and

+00200_0130_0004 00257

is exactly equivalent to

+002000130000400257

VARIABLES

In any program, each variable falls into one of three

categories: internal, external, or parameters.,

Internal variables must be scalars {integer, real floating

point, complex, or Boolean), and these are assigned storage within
the program. The names of internal variables are not retained out-
side the compilation of a single program; hence, the same name

may be used in more than one program with a different meaning in
each of the programs, Labels on statements are also internal

variables,

External variables may be either scalar (integer, real float-

ing point, complex, or Boolean) or non=-scalar (program, vector, matrix,

or array), and all non-scalars must be external. All external
variables of a program must appear in the definition set containing
that program before any '.=', External variables of any one program
are the common property of all programs in which they are declared ex-
ternal that are in the machine at running time. The names must have
unique meaning throughout the system. During program execution, each
external variable has its name on the symbol table (ST, *113) and its

scalar value or non-scalar codeword in the corresponding value table
(VT, %*122) entry.
Parameters may be either scalar or non-scalar., If they are

non-scalar they must be so declared within the definition set con-
taining the program before any '.='., Parameters are neither in-
ternal nor external with respect to the program in which they
appear, but while running the arguments will fall into one of these
categories with respect to dynamically higher level programs, Para-
meters of a program are only representative of the arguments which
will be specified to the program by the dynamically higher level
program which uses it while running. Within a system of programs
the dynamically highest level program receives control from the
operating system and cannot have arguments provided by the system;
hence, the dynamically top level program should have one purely
dummy parameter, a name that is never referred to in the program.

The names of parameters are not retained outside the compilation

GENIE July, 1968

[T

VARIABLES
2

of a definition set; the same name may be used as a parameter for

more than one program in a definition set, but for no other purpose

in the definition set.

DECLARATIONS

Declarations are used to describe variables that names

represent. The simple form of declaration is illustrated by:

VECTOR A
VECTOR A, B, C
VECTORS A, B, C
cr |1st tab
A more general form is illustrated by:
INTEGER VECTOR A, B, C
INTEGERS VECTORS A, B, C
cr st tab
One or more declaration words (either singular or plural) are
followed by one or more variable names separated by commas,

A variable used in the Genie language is completely de-

scribed by its:

type : integer, real, complex, or Boolean
shape Scalar, Vector, Matrix, or Array
and mode function or not

A scalar is described by a type declaration:

INTEGER or INTEGERS for integer

REAL or SCALAR or SCALARS for real floating point
COMPLEX for complex (Cartesian fofm)
BOOLEAN for Boolean

A non-scalar is described by a shape declaration:

VECTOR or VECTORS for vector

}whose elements
MATRIX or MATRICES for matrix are scalars
ARRAY or ARRAYS for non-scalars whose elements

are non-scalars
and a type declaration which applies to its elements.
A function is described the mode declaration:
FUNCTION or FUNCTIONS for a private program name
and type and shape declarations which appropriately describe its
;gglicit result, if it has one. Note: Library programs are known

to Genie, and need no declarations.
Not all variables need be described by declarations. When

GENIE July, 1968

DECLARATIONS
2

a variable appears on the right side of an equation in the Genie

language, its type, shape, and mode will be inferred if they have

not been declared:

type real floating point
shape scalar
mode non-function

The INFER declaration may be used to cause other type and shape

inferences:

fINTEGER\

REAL VECTOR
INFER ¢ SCALAR) MATRIX

COMPLEX ARRAY

\BOOLEAN }

where either a type or a shape is given, or both in either order.
The range of effect of an INFER is to an INFER which respecifies
what it specifies, but not outside a definition set.

The name of every external variable must appear in at least
one declaration before any '.,='., A1l declarations pertaining to
parameters must appear before any '.=', but they need not appear
in any declaration if inference will give a proper description.
Declarations pertaining to internal variables must appear within
the program to which they belong, and only the type declarations
are applicable since all internal variables are scalars,

Not more than one declaration in each group may be applied to
a single variable, and not more than one declaration in each group
may appear in a single declaration statement.

Thus ,

BOOLEAN MATRIX FUNCTION F
{ cr 1st tab
is a legal statement, but

INTEGER BOOLEAN B
l cr st tab

is not.

GENIE July, 1968

FUNCTIONS

A function is a program which may be referred to in the

Genie language, either for implicit execution as 'F' in the

command
or for explicit execution as 'G' in the command

EXECUTE G(Q)

Implicit execution is meaningful only if the function is
single wvalued; in this case its output is not specified in the
parameter list. In all other instances explicit execution is
required.

The last executed command of a function to be used implicitly

must define the output as follows:
RESULT=scalar or non-scalar arithmetic expression

cr Ist tab

In the definition of a function, its parameters are given

as an ordered list of those quantities which are supplied as
arguments by the program which causes it to be executed. An
argument for a parameter which designates a quantity to be cal-

culated by the function must be specified as a simple variable

name; other arguments may be given by any arithmetic expression.

For example, if F(A,B,C) is defined such that parameters A and

B are used in the calculation of parameter C by the function F,

a proper use of F would be F(3m2+n,Va,P). But F(SIZE, SPAN, q2)

is incorrect since the third argument may not be an expression.

Care must be taken that parameters in the definition of a Genie

program and arguments in the use of it by other Genie programs

are always listed in the same order and agreé in number and type.
A function may be sufficiently simple to be defined in one

statement. This is done before any '.=' and is illustrated by

the definition of f in the statement

f(x,y):Bax+azy, a=2+x

| cr

The function f may then be executed implicitly within the command

I

FUNCTIONS
2

sequence of a program,
h:sz(m,n)

where the closed subroutine f will be applied to the arguments
m and n., During compilation, output for £ will be produced in-
dependent of that for the other programs in the definition set.

Every Genie program is a function. It may be used as such
by any other Genie program. A Genie program begun with 'RSEQ'
is a recursive function, one which may use itself. For example,
the function FACTL may be executed from within the command se-

quence'for‘FACTL:

FACTL(k) .=RSEQ

m = FACTL(n-1)

END

A recursive function may be executed either implicitly or explicit-
ly, as appropriate to its definition. Genie programs begun with
'SEQ' and functions defined in one statement do not cause recur-
sive code to be generated; they may not use themselves.
) All functions except those in the library must be de-
clared in function declarations. If a function is to be exe-
cuted implicitly and its result is not to be '‘inferred, then its
name must appear in declarations to describe the result as well as
in a FUNCTION declaration. Thus, the function with its‘arguments
is an operand which must be assigned the type and shape of its out-
put if it is to appear within an arithmetic expression.

A function name is not followed by arguments in a declaration.
To specify execution, a function must be followed by arguments,
as SIN X2 or CALC(q) or MAP(a+b,VAR). A function name, without
arguments, may be supplied as an argument to a function which will
do the execution. Thus, the program P may be defined as P(...,F,...),

where the parameter F is a function, and call for execution of F(...);

GENIE May, 1967

FUNCTIONS

3
then P may be executed with argument g as P(...,g,...) and the
result will be execution of g(...) while running.

Note: One inconvenience is associated with this notation.

If F1 is a function of a single parameter F2 which is a function,
the expression

.. .F1(F2)...
will be misinterpreted by the compiler. One extra pair of
parentheses is required, as

... (F1(F2))...

if a single parameter is a function,

CONSTANTS

Internal variables which are constants may be numerically
specified by a LET statement within the program. The statement
must be given before the name of the constant is used in the
commands of the calculation. The form of this statement is il-
lustrated by: |

LET PI=3.14159
cr 1st tab
This is a message to the compiler which causes the number 3.14159
to be used in the program each time the internal variable name
'"PI' is used. A LET statement causes no code to be generated.

The above shows specification of a real floating point value.

The variable PI takes on real floating point type.
An integer value may be specified, as
LET K=3
The variable K takes on integer type.
A complex value may be specified, as
LET CVAL=-3.2+/5.19
or
LET POLE= 1+/0
The variables CVAL and POLE take on complex type.
A Boolean value (TRUE or FALSE) may be specified, as
LET t=TRUE
or
LET No=FALSE
The variables t and No take on Boolean type.
An octal configuration (right-adjusted) may be specified, as
LET MASK=+4777777077

The + inflection concatenated immediately to the left of a number

denotes octal interpretation of the number. The variable MASK
should not be used in the Genie language.
A fixed address or codeword address may be specified, as

LET #TIME=+200

GENIE January, 1968

il

T

CONSTANTS
2

must be used for every numbered scalar, program, vector, or matrix.
A Genie program may assign its own name a numerical equivalent,
and the tape produced by the compiler will load with codeword at
the address specified.
The values of non=-scalars may not be specified in a LET
statement.
The LET statement may also be used to specify the equivalence
of two names. For example
LET ALPHA = BETA
causes 'BETA' to be substituted for 'ALPHA' throughout the program.
Similarly
LET COUNT = B5
causes the index register B5 to be used for 'COUNT'.
More than one constant may be specified in a LET statement,
if they are separated by commas, as
LET A=3, z=5.41%-6, #PROG=+127, TIME1=TIME2
There are three other commands which identify names with wvalues.
They are explained later: BCD, NUMBERS, and FORMAT in the section
on data commands, These commands are non-executable and must be

transferred around, and must therefore be used with care.

REMARKS

Printed comments in compilation output listings may be obtained
by using the REM statement within the program, as illustrated by
REM COMPUTE_FIRST VALUE
or
REM
COMPUTE_FIRST VALUE
cr ! lst tab
where _ indicates a space typed within the remark. 'REM' is fol-
lowed immediately by a single space or 'cr' which is not part of
the remark, and then all following characters are taken as remark
text. The statement may be continued to succeeding lines at the
3rd tab position by using the 'cr tab tab tab' sequence. The form
of REM in which the text begins at the left margin causes remarks
to stand out more vividly on program listings.
The REM statement does not introduce any data into the final
program; its only effect is to cause the remark to be printed in

the compilation output listing.

N

COMMAND SEQUENCE

All statements of a program from the '.=' to and including

the '"END', except 'LET's, remarks, and declarations, cause code to
be generated, Such statements are called commands, The occurrence

of a label on a command causes a command sequence to be initiated.

The ordered set of all command sequences of the program is called

the command sequence for the calculation. Each command falls into

one of four categories; arithmetic, control, input-output, or data.
These will be discussed in separate sections.
Any command may be labelled. The label is typed at the left-

hand margin, as 'CALC' in the command

CALC A=BZ4B4+3.2, BoW+5.1

cr | 1st tab

TR

ARITHMETIC EXPRESSIONS

The righthand side of an equation in the Genie language must

be an arithmetic expression. An arithmetic expression is just an

operand. A scalar constant, a variable, an inflected variable, or
a function name followed by a parenthesized list of arguments is
an operand. [A single argument given as a simple variable name
need not be enclosed in parentheses.] A pair of operands joined
by an operation (where the triplet left operand, operation, right
operand is defined in Genie) is an operand.

Any operand may be enclosed in parentheses to dictate order
of computation within an expression in the conventional manner.
Order is also implied by relative rank of operations. In order

of decreasing rank, i.e., the most binding first, the arithmetic

operations are:

unary inflections: -, ‘...l, and 'not'
subscription

exponentiation

X and /

+ and binary -

relations: =, +, <, *, <, *

The triplets of operands joined by an arithmetic operation

which are permitted in an arithmetic expression on the righthand
side of an equation are given in the following paragraphs.
1) +, =, X, / between integer, real floating point, or
complex scalar operands,
If the operands are both integer or both floating
point or both complex, the result is of the same type.
If one operand is complex and the other is not, |
the non-complex operand is made complex before the
operation is carried out, and the result is complex.
If one operand is floating point and the other is
integer, the integer is floated before the operation

is carried out, and the result is floating point,

I

5 T A —— o roo———

ARITHMETIC EXPRESSIONS
2
2) +/ between integer or real floating point scalar or non-
scalar operands.

This is the explicit representation of a complex
quantity in Cartesian form, as x+/y (written x+iy in math-
ematical notation). The result is complex with real and
imaginary parts real floating point. The shape (scalar,
vector, or matrix) of the parts determine the shape of the
result; both parts must be of the same shape, and non-
scalars must have the same dimensions. If the operénds
joined by +/ are expressions, they must be enclosed in
parentheses. If the operand x+/y is combined arithmetically
with other terms, it must be enclosed in parentheses.

-/ between integer or real floating point scalar operands.

The complex scalar x-/y is simply x+/(-y).

3) +(or), -(symmetric difference), x(and), /(symmetric sum)
between Boolean scalar operands.

Combination of Boolean operands yields a Boolean result,
by the following rules:

+ FALSE if both operands FALSE, otherwise TRUE

- TRUE if operands differ, FALSE if operands the same

x TRUE if both operands TRUE, otherwise FALSE

/ TRUE if operands the same, FALSE if operands differ
The octal representations for the Boolean values are

TRUE 007777777777777777

FALSE 007777777777777776

4) +, -, x between non-scalar operands containing integer, real
floating point or complex elements.

Standard conventions apply as to restrictions on dim-
ensional compatibility, and the operands must be in
standard form.* Addition or subtraction of two vectors
or two matrices yields a vector or a matrix respectively.
Multiplication of matrices yields a matrix. Multipli-
cation of vectors yields the scalar product which is

GENIE April, 1967

5)

6)

ARITHMETIC EXPRESSIONS
3

a scalar. Multiplication of a vector and matrix yields
a vector. 1If the operands are of the same type, the
result is of that type. If the operands are of dif=-
ferent types and one is complex, the result is com-
plex. 1If one operand is integer and the other float-
ing point, the result is floating point,
between integer, real floating point, or complex scalar
and integer, real floating point, or complex non=-scalar,
The scalar may be on the left or the right of the
non-scalar, which must be in standard form.%* The re-
sult has the same form as the non-scalar operand, vec-
tor or matrix, If the operands are both integer or
both floating point or both complex, the result is of
the same type. An integer operand is floated before
combination with a floating point operand, and the
result is floating point. An integer operand is
floated and then made complex before combination with
a complex operand, and the result is complex. A
floating point operand is made complex before com-
bination with a complex operand, and the result is

complex.

Division of an integer, real floating point, or complex

non-scalar by an integer, real floating point, or
complex scalar.

The non-scalar must be in standard form.%* The
result has the same form as the non-scalar operand,
vector or matrix., If the operands are both integer
or both floating point or both complex, the result is
of the same type. An integer operand is floated be-
fore combination with a floating point operand, and
the result is floating point., An integer operand is
floated and then made complex before combination with
a complex operand, and the result is complex. A float-

ing point operand is made complex before combination

ARITHMETIC EXPRESSIONS
4

with a complex operand, and the result is complex,

7) Implied multiplication between operands which appear
immediately next to one another, not separated by an
operation. The same rules apply as for the explicit X,

8) Exponentiation between integer, real floating point or
complex scalar operands,

If either or both operands are complex, the result
is complex. If neither operand is complex but either
or both operands are floating point, the result is
floating point and the base may not have a negative
value., If both operands are integers, the result is
an integer, zero if the base is > 1 in absolute value
and the exponent has a negative value. Note that AB
is typed 'A sup B sub', wusing the superscript and sub-~
script keys on the flexowriter., The counter associated
with these carriage moving keys should be set to zero
before starting a program and must return to zero
before the cr which ends each command,

9) Exponentiation of a short logical operand by an integer.

Short logical words are 15-bit configurations whose
bits are numbered 1 to 15 from left to right. 1In

' particular SL (the sense light register) is in the
vocabulary of the compiler and falls into this
category. The result of exponentiation of such an
operand by an integer, as SLk, is Boolean, TRUE if
bit k of SL is 1 (on) and FALSE if it is 0 (off). The
value of the bit addressed is not affected by the
operation, The user may also exponentiate a private
variable which has been declared BOOLEAN.

10) Exponentiation of a square integer or real floating point
matrix to an integer power,

If the matrix is integer it will be floating before
exponentiation. The matrix must be in standard form,*

The result is always a floating point matrix. TIf P

GENIE January, 1968

ARITHMETIC EXPRESSIONS
5

is the power and P<0O, the inverse is computed. If
|P|>0, multiplication occurs ‘P-1| times. If P=0,
the result is the unit matrix.

11) Subscripting of a vector by an integer scalar operand
or of a matrix by a pair of integer scalar operands
separated by commas.

The result is an element of the vector or matrix
and is of the same type (integer, real floating point,
complex, or Boolean) as the non-scalar of which it is
an element. The expression Ag is typed 'A sub B sup'
and return to zero carriage level must be observed as
for exponentiation.

12) Any non-scalar may be subscripted with a total of five
integer subscripts separated by commas. The operand
is indirectly addressed after Bl,...,B5 are loaded with
the subécripts. An Array may be subscripted at both
levels in one expression, e.g. "'(AI,J,K)L,M"" where
A in an Array, is a reference to element LM of the
matrix AI,J,K’ The placeément of the parentheses indi-
cates the break point in the structure and the sub-
scripting procedure is restarted with Bl. The paren-
theses are not necessary for the first level, e.g.
-++Bg ..., where B is an Array, is a reference. to
non-scalar BK,L'

13) Relations =, %, <, 4, <, ¥ between integer or real float-
ing point scalar operands.

Combination of integer or floating point operands
with a relational operator yields a Boolean result, TRUE
if the two operands stand in the specified relation to
each other, FALSE otherwise. If the operands are not
both integer or both floating point, the integer op-
erand is floated before the comparison is made, If
r and r' are relations, the form ArBr'C is tempting
but not permitted; an equivalent form is (ArB) x

(Br'C). A precise sequence of typed characters

ARITHMETIC EXPRESSIONS

6
is required:
+ is typed ' = backspace uc | '
{ is typed ' < backspace uc | '
¥ is typed ' < backspace | '

Note that the relations > and > are not available, but
> is equivalent to ¥ and = is equivalent to ¢.

14) Unary - applied to an integer, real floating point, or
complex scalar operand.

The negation of the operand takes place before it
is combined with any other across a binary operation,
except exponentiation and subscription.

15) Absolute value of an integer or real floating point
scalar operand.

This inflection is denoted by absolute wvalue bars
'|' before and after the operand. These bars are simply
parentheses that cause the quantity inside to be taken
with positive sign.

16) Unary 'not' or - applied to a Boolean scalar operand.

The complementation of the Boolean operand takes place
before it is combined with any other across a binary
operation, except exponentiation and subscription. 1f
the Boolean scalar has the value TRUE, then not A has
the value FALSE; if A has the value FALSE, not A has
the value TRUE.

*The standard form for vectors and matrices is that handled by
VSPACE, MSPACE, and the Genie input-output commands. Generation
and input-output of non-standard forms can only be handled by
explicit use of SPIREL facilities.

GENIE July, 1968

ARITHMETIC COMMANDS

The form of a simple arithmetic command is illustrated by:

A-arithmetic expression
‘ cr 1st tab

The form of a compound arithmetic command is illustrated by:

A=arithmetic expression, Bzarithmetic expression, ...
cr \ 1st tab
where more than one equation appears in the command,

If there are no interdependencies among the equations of a
command, the equations are coded by Genie in the order given. If
there are interdependencies, the first equation will be coded 1last
and preference will be given to coding the remaining equations from
right to left; for the second and any following equations, if the
ith depends on the jth and i>j (counting from left to right), then
the jth equation will be coded before the ith. So the second and
following equations may well be used to define subexpressions of
the first (or primary) equation, producing code that will run
more efficiently and copy that will be more readable. An example
in which reordering will take place 1is

y=a+b, a=5c¢/d, b=6, c=b+4
| cr lst tab
The code generated will evaluate b, then c, then a, then y. On
the other hand, the equations in

M=P+Q, a=3, i=j+1
are not dependent upon each other and will be coded in the order
given.

The variable on the lefthand side of an equation may be a
scalar, or a non-scalar, or a subscripted non-scalar (denoting
a scalar element of a vector or matrix). All lefthand side
variables in a command must be distinct, no scalar or non-scalar
defined more than once. More than one element of the same non-
scalar may be defined in one command.

The '=' joining lefthand side to righthand side of an equa-

tion causes storage of the computed righthand side into the 1loca-

g

ARITHMETIC COMMANDS
2

tion or array specified on the lefthand side. Compatibility of
types is checked for at time of compilation, and an error message
is printed out if incompatibility of the two sides is detected.
In every case the righthand side dominates and will be stored as
calculated, no conversion taking place. If the righthand side is
non-scalar, the storage addressed by the codeword on the lefthand
side is freed before the store across the '=' takes place.

Genie has the ability to apply the commutative laws of
arithmetic to reorder the terms of an expression to provide cal-
culation using a minimum number of temporary stores., 1In the coding
for a non-complex scalar expression, the compiler may use the
T-registers of the computer for temporary storage. Push-down
storage addressed by index register B6 is also used for this pur-
pose. When profitable, the T-registers are used by the compiler
for non-complex scalar variables that are referred to often in
an equation. The codeword at machine address 10 (octal) is
used in the code generated by the compiler as an accumulator for
real vectors and matrices produced in the course of evaluating
the righthand side of a non-scalar equation. This address may
not be used by a coder., The accumulator for complex non-scalars
is named CSTAR. Temporary storage for non-scalars is always on

the B6-1list,

CONDITIONAL ARITHMETIC COMMANDS

A simple arithmetic command may be of conditional form, as

illustrated by

A:El if Pl, 2 2

cr ! lst tab
where each Ei is an arithmetic expression and each Pi is a
predicate which is either true or false. The code that is
generated will evaluate A as Ei for the least i for which Pi
is true. If every Pi is false, then A is evaluated as E

n+1l°
If E is omitted, then A is not evaluated at all if every Pi

n+l
is false.
Boolean valued expressions are predicates, as in the follow-
ing examples:
K =1.0 if B<C, 2.0 if x<-12.9, 3.0
K = 1.0 if not (SL"), 3.0

K = 1.0 if SL’ + not (s1™)

I

cr | 1st tab
Boolean valued expressions joined by the operations 'and' and 'or'
form predicates, as in the following example:
K = 1.0 if (B<C or |C + D| # 3.72) and SL’ + not (SL%),
2.0 if x<-12.9, 3.0
| cr lst tab | 2nd tab| 3rd tab
The most binding first, the operations are ordered as follows:
arithmetic operations
'and'
'Or'
Parentheses may be used, as in the above example, to dictate
computational order.
'The‘predicate form F; r Fp r' Fy is tempting but not per-
mitted. An equivalent permissible form is
F, r F; and F; r' F4
or (F; r Fp) x (Fz r' F3)
Two exceptional Boolean predicates are 'EOV', asking if the
exponent overflow light is on, and its negation 'NEO'; neither

of these may be inflected by 'not'. Both of these tests turn the

CONDITIONAL ARITHMETIC COMMANDS
2

light in the indicator register off.
A conditional arithmetic equation must stand alone as a
command., It may not be grouped with other equations in a com~

pound arithmetic command.

TRANSFER CONTROL COMMANDS

Code is generated so that the commands of the program are
normally executed in the order written. An explicit variation
in this order is indicated by a transfer command, illustrated by

CC = #LOOP or GO TO LOOP

l cr | 1st tab
Here 'CC' is the mnemonic for the control counter which is nor-
mally stepped sequentially through the orders of the code. 'LOOP'
is a label on a command of the program, the command to which con-
trol will be passed by this transfer command. Note that 'END' is
a label in every program and may be transferred to for exit from
the program. The inflection '#' is required in this context to
indicate that the address corresponding to LOOP, and not the con-
tents of the location whose address is LOOP, is to be calculated
on the righthand side. The '#' inflection is analagous to the
'a' bit in API1.

The conditional transfer command provides variation in the

order of command execution depending upon the truth values of

predicates., The form of this type of control command is shown by
CC = #A, if Py, #A, if P, ..., #A, if P, #A,,, or

cr | 1st tab GO TO A, if ...etc.

where the A; are labels within the program and the P, are predi-.

cates, The code generated causes CC to be evaluated as the first

#A; for which P, is true. If no P,, for i=1, 2, ..., n, is true,

CC is evaluated as #A,,;. The term #A,,; may be omitted from the

command, in which case CC is unchanged if all P, are false, so

that no transfer is made. The predicates P, are of the form de-~

scribed in the section on conditional arithmetic commands.

GENIE July, 1968

LOOP CONTROL COMMANDS

Loops may be realized in Genie language by a combination of
arithmetic commands and transfer control commands. A concise nota-

tion for a popular loop structure is provided by the loop control

commands, The commands of a loop are parenthesized by the FOR and
REPEAT commands of the form
FOR P=-A, B, C
commands of the loop
REPEAT
cr lst tab
The elements of the FOR command are
parameter of the iteration, P
initial value, A
increment, B
final value, C
All elements must be scalars, either integer or floating point.
In execution, the loop is traversed for P = A + kB, for all
k = 0,1,2,... such that
P <Cif B >0
P=>Cif B <O

The element P must be given as a simple variable name. The ele-

ments A, B, and C may be given as constants or arithmetic -expressions

of integer or floating point type. Only if B and C are given as
simple variable names may their values change during execution of
the loop. Otherwise, B and C retain their values on entry to the
loop throughout the execution of the loop. For example, in the
loop

FOR CO?NT = FIRST, M+N, LAST

N=A+B

.
.
.

REPEAT
the increment value will remain constant, as computed on entry to
the loop.
In the REPEAT command, 'REPEAT' is followed immediately by a

M

LOOP CONTROL COMMANDS
2

1)

cr', A REPEAT must be written for every FOR.

If addressed from outside the loop, the iteration parameter
has the value it had upon exit from the 1loop.

Loops may be nested to any level, but distinét iteration
parameters must be used at each level within a nest. The 'REPEAT'
is considered to be within the loop which it terminates; the 'FOR'
is not. Transfer of control may be made from a command within a
loop to another command within the loop or to a command outside
the loop. Transfer from outside a loop to the FOR command is per-
mitted, but transfer from outside a loop to a command within a
loop is not permitted.

Any 'FOR' or 'REPEAT' may be labelled for purpose of transfer
to it. The compiler generates the label '<FORn' on each FOR
command and '<RPTn' on the corresponding REPEAT command,
n=1,2, ..., 9, a, b, ... in each program. A coder's label
will be used instead if it appears. Thus, FOR and REPEAT commands
begin command sequences whether or not they are labelled by the
coder.

The machine index registers B3, B4, B5 may be used as itera-
tion parameters in loops and will cause significantly more effi-
cient code to be generated, especially when a constant increment
= + 1 is specified., The section on fast registers discusses

coder usage of machine registers.

STORAGE CONTROL COMMANDS

Before a vector or matrix is referred to dynamically in a
program it must be created, either initially from paper tape or
dynamically while running.

In a Genie program, to create, or take space’for, the vector
named VNAME of length NELTS elements the following command 1is
used:

EXECUTE VSPACE(VNAME, NELTS)
cr 1st tab
The vector VNAME contains zeroes initially. To create, or take
space for, the matrix named MNAME of NROWS rows and NCOLS columns
the following command is used:
EXECUTE MSPACE (MNAME , NROWS , NCOLS)
cr 1st tab
The matrix MNAME contains zeroes initially. The dimension arguments
in both commands are integers.

The dimension arguments may be computed dynamically, so that
sizes of vectors and matrices may vary from run to rumn. In fact,
the dimension of an array may vary during a run by use of a crea-
tion command to 'recreate' an array which already exists; the old
copy is automatically erased before the new one is formed.

To explicitly erase, or free the space occupied by, a vector
or matrix named ARRAY on which the calculation no longer depends
the following command is used:

ERASE ARRAY
| cr l 1st tab
Also a single ERASE command may be applied to more than one non-
scalar, as illustrated by:
ERASE VNAME , MNAME , ARRAY
cr | Ist tab

The erasure of a vector or matrix causes the storage occupied
to be returned to a common pool, that from which storage is obtained
for the creation of vectors and matrices. This pool is managed by

STEX, the storage exchange program in SPIREL (explained in detail

MR

STORAGE CONTROL COMMANDS
2

in the literature on SPIREL), and it is called the STEX domain.
STEX may move items within its domain to concentrate space if

necessary to satisfy requests for space.

EXECUTE CONTROL COMMANDS

The command
EXECUTE PROG(PARAM)
cr lst tab
causes control to be transferred to the program whose name 1is
denoted by 'PROG' in this illustration., 'PROG' must have been
declared as a function outside the command sequence for the cal-
culation. 'PARAM' denotes a list of one or more parameters
separated by commas. Parameters may be arithmetic expressions un-
less they designate quantities which are to be calculated by the
function, in which case they must be simple variable names. Con-
trol is returned from PROG to the next command in the sequence.
The interpretation given to the EXECUTE command by Genie 1is
parallel to that for the arithmetic command, the information to
the right of the space after the EXECUTE corresponding to that
after the first '=' in an arithmetic command. Thus, a simple
conditional EXECUTE command is allowed, such as
EXECUTE A(P) if a < b + ¢, B(Q)
cr 1st tab

And a compound unconditional EXECUTE command is allowed, such as

EXECUTE SUM(x,y), x = 2a/b, y = ab, b = &4

cr 1st tab

A

INPUT~-OUTPUT COMMANDS

The input-output commands are:

i

DATA list READ list TPAGE list
PRINT list INPUT list ACCEPT list
PUNCH 1list OUTPUT 1list TITLE string
DPUNCH list DISPLAY list

| cr | lst tab

where 'list' denotes a collection of names separated by commas. Any
name may be that of a scalar, other than fast registers, or of a stand-
ard vector or matrix or of a function. Expressions may not appear in
the argument list, so vector and matrix elements in the subscript
notation may not be designated.

The DATA command provides reading of manually punched signed

decimal numbers from paper tape. The name of any type of variable

may appear in the list, and any name may have been assigned a machine
address in a LET statement. When the paper tape is read, if a decimal
point appears the number will be converted to floating point within
the machine; the absence of a decimal point causes conversion to in-
teger form. Every number on the tape must be followed by a carriage

14 in ab-

return, tab, or comma. Integers greater than or equal to 2
solute value are meaningless; floating point significance to more
than 14 places is not meaningful. A floating point number may be
followed by the sequence '* signed integer' which will cause it to be

multiplied by 10 to the signed integer power upon conversion. The

magnitude of such numbers must be greater than 10"70 but less than
1070. The absence of a sign on a number implies positive sign. Then
punched 328cr converts to integer 328
46 .9cr floating point 46.9
.469*2cr floating point 46.9
-5391cr integer -5391
-69.*-lcr floating point -6.9

tBlank or numbers 1 through 7 only

GENIE July, 1968

INPUT-OUTPUT COMMANDS
2
Integers and real floating point scalars are punched as single deci-
mal numbers in the appropriate format; complex scalars are punched
as real part followed by imaginary part, both floating point.
A vector of length n is punched as the sequence of n+l decimal
numbers: integer n, first element, ..., nth element. A matrix
of m rows by n columns is punched as the sequence of mn+2 numbers:
integer m, integer n, element (1,1), element (1,2), ..., element
(1,n), element (2,1), ..., element (2,n), ..., element (m,1), ...,
element (m,n). When the DATA command is executed, the proper
tape is assumed to be in the reader. If sense light 14 is off,
the line
DATA NAME
| cr | 1st tab
will be printed out for each quantity read, where 'NAME' is as
designated in the program containing the READ command. Thus,
printer monitoring of DATA applied to parameters bears the dummy
parameter name, not the name of the argument supplied as the
parameter.
The PRINT command provides decimal output on the fast line

printer of any named scalar or non-scalar gquantities. These are
labelled by the name given in the argument list. Any name may

have been assigned a machine address in a LET statement. Scalars
are printed four per line. Vectors are printed five elements per
line, the leading element index in octal at the left of each line.
Matrices are printed by row, five elements per line, the leading
column index in octal at the left of each line. Complex variables
are printed as real part followed by imaginary part; the name of
the variable will be given with the real part, and "ditto" (printed
'eweee') will label the imaginary part.

The PUNCH command and the READ command may be applied only to

external variables and to parameters representing arguments which

GENIE November, 1966

INPUT-OUTPUT COMMANDS
4
Formatted printer output may be obtained by use of the command
EXECUTE SCRIBE(Al,...,AK,F)
| cr | 1st tab

where Al,...,AK is the list of arguments to be printed, and F is
the name of a FORMAT statement to be used. Any argument in
Al,...,AK may be a simple name or an expression. The program
SCRIBE is in the library, and its use is fully described in the
library literature. A FORMAT statement gives text which will ‘be
printed directly by SCRIBE and dummy variables which will be re-
placed by argument values.

Page control and headings are provided with formatted printer

output by use of the command

EXECUTE PRESCRIBE(Al,...,AK,F,N,NAME,LIMIT)
| cr | 1st tab
where Al,...,AK,F are just as for SCRIBE, N is the number of blank
lines after SCRIBE'output, NAME is the name of a FORMAT statement
containing pure text or a vector of BCD data to be used in the head-
ing on each page, and LIMIT is the number of lines per page of out-
put. The program PRESCRIBE is in the library, and its use is fully
described in the library literature.

Additional forms of input and output may be 6btained by use of
SPIREL programs directly, but those provided by the input-output
commands should be sufficient for a large number of problems. Also
see the TITLE and PAGE commands on p-5.

The DPUNCH command may be applied only to external variables
as explained earlier in the PUNCH command. DPUNCH provides standard
decimally formatted punched tape to be later read by a DATA command

only. Mixed integer and real data may be punched from scalars,
vectors or matrices. ‘

GENIE July, 1968

INPUT-OUTPUT COMMANDS

5

The TITLE command allows the printing of a string of literal

symbols for labeling pages like SCRIBE only with greater ease. Two

examples are given below.

TITLE
TITLE
PRINT ANOTHER LINE HERE ALSO

cr | 1st tab

PRINT ONE LINE HERE

One would write:

The above would cause the following to be printed:

PRINT ONE LINE HERE

PRINT ANOTHER LINE HERE ALSO

1\

(first printer position)

The PAGE command allows the page to be moved to any position or

by any amount easily.
or no list, i.e., blank.
by the table below:

integer
1

N oy b WN

->

>

-5

-

-5

>

'list!

move
move
move
move
move
move
move

move

to
to
to
to
to
to
to
to

next
next 1/66
next 1/22
next 1/11
next 1/6
next 1/3
next 1/2
full

If the list is blank, the page is restored.

GENIE July,

1968

page
page
page
page
page
page

page -

page

consists of the integers 1,2,...,7

The interpretation of the integers is given

(one space)

(page restore)

INPUT-OUTPUT COMMANDS
6

The ACCEPT command provides reading of data input through the

console typewriter. The name of any type variable may be included
in the list. Data may be entered when the blue light on the type-
writer comes on; each line is processed before another may be typed.
Decimal numbers are handled as in the DATA command; octal numbers
must be preceded by a + sign. T... or F... is typed for the Boolean
values. All values must be separated by commas and a line is ter-
minated by a carriage return. For a vector or matrix of size n or
nXm, n or nxm values must be typed. To change the size of a non-
scalar, the new dimension(s) is enclosed by parentheses (n) or (n,m),
and followed by the values to be stored. A matrix is typed by rows
(as it is read in DATA). For example, where A is a vector 3 long,
B is Boolean, and C is scalar:

ACCEPT A,B,C

typewriter input: -234.0, 8.34%4, .62023, T, +0142000000 cr
stores the first 3 values in A, -Z in B, and the octal number in C.

typewriter input: (4), 8.0, 9.0, -10.0, 11.0, FALSE, 345 cr
erases array A and creates a new one of length 4, stores the next
4 values in A, -1 in B, and decimal value 345 in C.

typewriter input: =, T, +002345 cr
leaves A as it is, stores -2 for B, and the octal value for C. The
"forward arrow" is inserted whenever an item in the list is to re-
main unchanged. If sense light 14 is off, the line

ACCEPT NAME
will be printéd out for each quantity in the list (as in the DATA

command) .

GENIE July, 1968

LIGHT CONTROL COMMAND

The SET command provides program control over sense light setting.
It is illustrated by
SET not SLS, SL9, SLl, not sLl®
lcr |1st tab
Any number of sense lights may be set. The notation 'SLi' causes
SLi to be turned on; 'not SLi' causes SLi to be turned off. 1In
'SLi' i must be numeric and may range from 1 to 15. The lights are

set in the order mentioned.

GENIE April, 1967

DATA COMMANDS

Data commands cause generation of words in the program which

are not instructions. These commands are not executable and all

but FORMAT must be transferred around.
Alphabetic information for output on the printer may be de-

fined by the BCD command, as illustrated by

MESS 1 BCD _ _TEMPUS_FUGLT
or
MESS1 BCD

_ _TEMPUS_FUGIT

cr 1st tab
where 'BCD' is followed immediately by a single space or a 'cr'
which is not part of the data, and _ indicates a typed space. The
command may continue onto succeeding lines at the 3rd tab position
by use of the 'cr tab tab tab' sequence. A space is inserted by
Genie between the last character of one line and the first of the
next line. At the place such a BCD command appears in the command
sequence for the program, the printer code for the information is
inserted in the code for the program, nine characters per word.
The label (if any) on the BCD command is associated with the first
word of data,

A block of numeric data may be defined by the NUMBERS command,

as illustrated by

CONST NUMBERS 36.5, =-2%8, 6, +774777
cr lst tab
In the program Genie generates, in this case,
floating point 36.5 at CONST
floating point -2,0 X 108 at CONST+1
integer 6 at CONST+2
octal 774777 (right-adjusted) at CONST+3
One or more real numbers (each but the last followed by a comma) are
listed; complex numbers may not appear in the list. The list may
be extended onto the succeeding lines by use of the 'cr tab tab tab’

sequence, The numbers are inserted into the program in the order

GENIE April, 1967

I

DATA COMMANDS
2
given, one per word. The label (if any) on the NUMBERS command
is associated with the first word of data,

Formats for the printer output programs SCRIBE and PRESCRIBE
are defined by the FORMAT command, as illustrated by

LINE FORMAT ddd ITERATIONS, CASE aa, K=bb, T=-d.ddce+d
or
LINE FORMAT
ddd ITERATIONS, CASE aa, K=bb, T=-d.ddce+d
cr i 1st tab

where 'FORMAT' is followed immediately by a single space or a 'cr'
which is not part of the data. The label on the FORMAT command is
the name of the FORMAT which is an argument to the output programs.
The format data is a "dummy line" of printer output; lower case
letters and the characters ', 4+, ="' with 'd' form dummy variables
for which argument values are substituted when printing; the rest
of the format data is text which is printed directly. SCRIBE and
PRESCRIBE are programs in the library; their use and the details

of format specification are explained fully in .the library
literature.

GENIE May, 1967

FAST REGISTERS

It is never necessary to use machine registers in the Genie
language., But their use is permitted, with certain restrictions
and with effect that more efficient code may be obtained.

T7 should never be used in the Genie language.

T6, T5, and T4 may be used as the names of scalar variables

within a command, The compiler will not make use of any T=-register
mentioned by the coder, and code efficiency may be increased by
explicit assignment of auxiliary variables to these fast registers,
The values in T6, T5, T4 are not preserved by Genie from one command
to another as they are subject to use by the compiler in any command
in which they are not explicitly mentioned by the user.

The index registers B3, B4, B5 may be used as the names of

scalar integers. These are disturbed by Genie-generated code only
to address elements of arrays of more than two dimensions. (Non-
standard subscripting is discussed in the section on arithmetic
expressions,) Efficiency of code is gained if these registers are
used as subscripts or as iteration parameters of loops with con-
stant increment +1, The index registers Bl and B2 may be used

only if the user understands Genie coding conventions are explained
in another section and can accurately anticipate the use of these
registers by Genie generated code. The registers B6 and PF may not

by used in Genie language.

ASSEMBLY LANGUAGE

In a Genie program, instructions in the AP2 assembly language
may be interspersed at will with commands in the Genie language,
AP2 is discussed in detail in the assembly 1anguage literature,

The following names identify fast registers in both Genie
language and AP2:

T4 T6 CcC B2 B4

T5 T7 Bl B3 B5
The following names identify private quantities in Genie language
and fast registers in AP2

R B6 U I

S PF X
Therefore, a private name I in Genie language may not be addressed
in AP2 code.

Operations without mnemonics in the AP2 vocabulary may be
coded in octal, as

+45061 #15

cr Ist tab | 2nd tab | 3rd tab
Or an operation code mnemonic may be assigned with a LET statement,
as
LET #QSR = +45061

Then the instruction

QSR #15
could be used instead.

In AP2 commands, the coder may make use of the fast registers,
taking care to preserve the value of PF for reference to parameters
and to use B6 for temporary push-down storage only. Entire func-
tions may be written in the assembly language, but the user must
first understand various Genie coding conventions, as discussed

in a later section.

Normally for a Genie program initial and terminal program
sequences and code to preserve parameter addressing are automa-
tically generated by the compiler. For some programs coded pre-=

dominantly in AP2, it may be desirable to avoid generation of or-

A

ASSEMBLY LANGUAGE
2

ders not explicitly coded. This may be accomplished by using 'ORG'
in place of 'SEQ', as
PROG (PARAM) .= ORG
[cr
to start the command sequence for the program. The first instruc-
tion of the program will be the first explicitly coded. The only
words in the program generated automatically by the compiler are
cross-references to external quantities and a one-word END pro-
gram sequence:
END TRA Z
The programmer must code parameter set-up for the program, maintain

PF and B6 by Genie coding conventions.

PUNCTUATION

Reference to rules of punctuation for use in the punching of
Genie programs has been made in other sections. A few generalities
and notes here may help the user to avoid some of the most common
mistakes. |

Every tape must begin with a 'cr'

punch and a case punch
for proper interpretation.

Every line should begin with a case punch so that it
does not depend on the case at termination of the preceding
line, and editing of tapes will be thus simplified.

Spaces may appear anywhere but within a name; they will
be ignored.

Backspaces are ignored except within the sequence of
punches for negated relations,

The superscript and subscript punches should be used only
where meaningful; the sequences 'sup sub' and 'sub sup' are
not equivalent to no punch at all and will not be accepted
by the compiler,

The carriage counter should be set to zero before typing

a program and must return to zero before the 'cr'

which ends
each statement,
A statement is continued onto second and succeeding
lines by the sequence of punches 'cr tab tab tab',
The operation '.=' must be punched as just those two
characters in succession.
The negated relations require specific sequences of
punches for proper interpretation:
+ is punched '= backspace uc |'
4 is punched '< backspace uc |
¥ is punched 's< backspace |'
The operations 'mot', 'and', 'or', 'if' are punched in
lower case and must contain no superfluous punches. All other
"words" in the vocabulary of the compiler are punched fully

in upper case letters.

I

PUNCTUATION
2

Statement labels, the program name, function definitions
'END', and '"LEAVE' are typed at the margin; alternatively, pro-
gram names and function definitions may be typed at the lst tab
position.

Since 'SEQ', 'END', and 'DEFINE' end statements, they
must be followed immediately by a 'cr' punch.

Declaration identifiers, 'DATA', 'EXECUTE', 'FOR', 'LET',
'"NUMBERS', 'PRINT', 'PUNCH', 'DPUNCH', 'READ', 'SET' may be
followed by either a space or a tab punch.

'BCD', 'FORMAT', 'REM' may be followed by a space, a tab,

or a carriage return punch.
For compilation to be terminated properly 'LEAVE' must

be followed immediately by two 'cr' punches.

GENIE January, 1968

COMPILATION PROCEDURE

A Genie program is compiled by exercising option #6 in the
PLACER system,

Compilation output on the printer consists or error messages,
program listing, and symbol tables. These are discussed below,
Compilation provides a punched paper tape to be loaded under SPIREL

control. Compilation options are also discussed below,

Error messages. Genie error messages refer to carriage return

number on the PLACER listing of the program, During compilation
the carriaée return number for the line being compiled is displayed
in FT (the from-tape register). This can be useful if compilation
problems arise with no error message, If a single command, state-
ment, or instruction is continued onto more than one line, the

carriage return number for the last line will pertain throughout.

Program listing. Four columns are printed, giving:

(a) The symbolic location (if any).
(h) The relative location of the word in the program,
.invoctal.- ,
(c) :'The instruction in octal, broken into fields, with
tag.
(d) The symbolic address (if any).
Cross reference words and internal storage are listed after the
instructions of the program, one per word with name, relative
iocatioﬁ, and content for each. The variables referencea relative
to PF are then listed with name and PF increment.

Symbol tables. For each program a symbol table of internal

names is printed. Of interest are columns which give the name and
the relative location in the program (two to the right of the name).
The column to the right of name contains descriptive information

about the variable, by digits:

GENIE May, 1967

COMPILATION PROCEDURE

2

first - type 1, Real (floating point)
2, Integer
4, Boolean
5, Complex

second - shape and mode Scalar

-

Scalar function

-~

Vector

-

Vector function

-

Matrix

~“

Matrix function

-

Array

“

N oo N = O

Array function

-

third - 0, not a parameter
1, non-scalar parameter
2, scalar parameter
After the internal symbol table a list of programs used is
given. If a program is in the library, its name is prefixed
by 'GENIE'. 1If a name is used, this is given. If a number is
used, this is given.
For each definition set a table of external names is printed
in which only the names and descriptive information (as above) are

of interest.

Compilation options. See PLACER-TRANSLATE.

GENIE July, 1968

RUNNING GENIE PROGRAMS

The usual procedure is to run Genie programs with SPIREL so
that all library routines are immediately available.

The initial version of a program should contain liberal out-
put of intermediate quantities. These may be conditioned on sense
light settings or edited out once the program is running.

Initial runs should be made with SL14 off so that printer
monitoring is provided for all SPIREL operations.

Debugging may be facilitated by a SPIREL dump of the positive
portion of the Symbol Table-Value Table. This will show all named
external items in the system being run, the values of scalars, and
the codewords for non-scalars.

A SPIREL dump of a private program will show values of internal
variables.

Arithmetic error tracing may help to locate mathematical
problems. .

All instructions generated by the compiler may be traced, but

this is not a recommended procedure.

GENIE March, 1968

CODING EXAMPLES

e Least Squares

This program computes the coefficients of a polynomial of
specified degree which best fits the input data in the least squares

sense., The basic method is described in "An Introduction to Numeri-

cal Mathematics", Stiefel, E.L., 1963, page 51. The only difference

here being the introduction of weighting factors to the data and

the use throughout of matrix algebra.

Lines 6 to 13:
Internal integers are declared and then stored into; the
number of rows of XDATA and the length of COEFS (the number of co~-

efficients is compared.

Lines 14 to 45:
The size of XDATA is expanded and is filled with the appro-

priate powers of X.

Lines 46 to 55:

The normal matrix is computed taking the weights into account.

Lines 56 to 67:
The coefficients, theoretical polynomial values, residues, sum

of the squares, and the covariance matrix are computed.

Lines Comments
4 Some of the parameters, the non-scalars, are

declared.

6 Notice lower case alphabetic print output for
characters beyond 'f',

14-40 This AP2 code constructs control words for
SPIREL to act upon; notice the labelled instruction
at line 35.

41-45 Double or nested looping.

47 A matrix transpose is done here.

56-57 Non-scalar multiplications,

I

CODING EXAMPLES

2
Lines Comments
60 Solution of a system of equations.
63 Line is labelled but not referred to.

67 Use of matrix exponentiation to compute inverse.

PFIT(XDATA,

AAT™

ACR~

4/06/6€6 14,17 PAGE !

1

DEFINE »
MATRIX XDATA., SIFMA 2
VECTOR YDATA, COFFS, YCAILC» RESID, WGHTS 4
YNATAs W3HTS, CNFFS, YCALCs RESID, <SQSUMs SIGMA). =SEQ
INTEBER N2 Ms Fs oJds W] ¢
N = LENGTHIVDATA) 7
M = LENGTH(QEFS) 10
o S ROW (XDATA) 11
wWom WMo WK 12
CC = « WATE ,If WJ =0 12
7 BAJ XDATA» U-B] 14
LR3 27 | &

CLA «+1150 16

LR3 1? 17

CLA vl UsB2 2c

LRs 152 R-T7 21

TS= ®+|26 27

SPF #T D+ 23

CLA B, U+34& 24

CRL |3s R=g32 2F

-52 ADD «34+8241, B2 2¢
F3 3NA g4+ls U-R a7
CRL 1= 30

LRL 12 31

CLA «+J120 3z

LR> 1° 32

S CRR 15) U=Té 34
R3 P A T4s BZal 35
Té6 TSR %+1261 UaT7 3%
SPF XTND+ | 37

Ez 1FINZE) TRA ~(_J0P, B3+] 40
FOR oJ = 1y, 15 N 4!
FOR I = Hele 10 WM 42
YDATA.I"J = XDAT‘.I-):.J‘XDATA.H:.J 472
FEPEAT 44
PEPCAT 4%
FXFCUTE V3RPA~E(XIFSID, N} 4t
SI1GMA = TRAN{XDATR) 47
FOR «1 = 12 1, WM e
PEQID. = wGHTs., 5 VDATA.I 31
FOR wd = 1s |s M 32
SIGMA'I’.J = sIave WGHTS | 33
REPEAT 34
FePc AT 5=
CUFFS = XDATA x PEeoIN 56
CIGMA = XDATA x TIrMA 37
COFFS = SJNISIGMA, FOEFS) 50

SUM™

END

LEAVE

4/0676€6 14
YCALC
RESID
SUSUM
FOR

cQSUM
REPEAT
SIGMA

PEFINE

8

TRAN(XDATA) x COSFS
YOATA - YCALF

0.0
|I = ll

SJISUM + WEHTS r* RESID

SIGMA™

1

{2 N

1

X (SNASUMZ(Ne oM})

e

PAGE

2

61
6?2
62
64

66

67
7¢
71
72
72

PFIT START NEW PROGRAM 4/06/46 14,158

«BGIN PROCRAM SEWUENCF
Log® PROGRAM SEQUENCE
«FOR| PROGRAM SEWUENCF
«FOX2 PROGRAM SEQUENCF
«RPT2 PROGRAM SEGUENCF
«RPT| PROGRAM SEWUENCF
WATF PROGRAM SEWUENCE
«FOR3 PROGRAM SEQUENCE
«FOR4 PROCGRAM SEQUENCF
*RPT4 PROCRAM SERQUENCE
«RPT3 PROGRAM SEWUENCF
WORK PROGRAM SEQUENCE
SUM™ PROGRAM SEWUENCE
«FORS PROCRAM SEGUENCFE
*RPTS PROGRAM SEWUENCF

END PROGRAM SEGUENCE

PFIT ,=
«BGIN ' In A100Y 02 4400 00136
LooP 51 42 21601 62 0000 00006
~FOR} 5= 20 20001 00 4001 00236 WJ
«FOR2 61 20 10007 00 000! 00231 WH
«RPT2 102 20 10401 00 0001 00211 o
«RPT1 10% 20 10401 00 000! 00206 WJ
WATE 107 A1 21702 26 0200 00005 RESID
«FOR3 |2& 20 20001 00 4001 00170 o1
+FOR4 13> PO 20001 00 4001 00154 W
«RPT4 |55 20 10401 00 0001 00135 "
«RPT3 |57 20 10401 00 0001 00135 o1
WORK 161 01 21707 41 Q200 00000 XDATA

SUMM 4= 00 2000t 00 4600 00006 SQsuM

«FORS 244 PO 20001 00 400! 00046 oI
«RPTS 262 20 10401 00 Q00! 00032 oI
END 304 01 N100" 00 4400 00137

307 61 40005 00 4000 0OGNOO
31n 07 ~1001n 00 4200 00000
REFFRENCE WNRNS. ..,
SMMPY 77770 &P5454577040000000
MPOWE 77771 Ba5756654440000000
M3U3 7777~ ELe264412540000000
SOLN 77772 6254£535%2540000000
MMPY 77774 5u5457772540000000
TRAN 7777= 636140552540000000
VSPAC 7777« 656257474240000000
LEN3T 77777 E4055444340C000000
INTZRMNAL <STrRAGE. .

N

oM

o

oJ

ol
«TW47

31
31»
313
314
3=
314

PARAMETERS AT PF +

XUATA
YOATA
WGHTS
COEFs
YCALC
RESID
SUSUM
SIGMA

NG FHF W —O

£2n000700000C000

SUBROUTINES REFFRENCED

GENIFe,
GENIFw, »
GENIFs,
GENIFy ¢
GENIF. K}

GENIFE¢ 4 s
GENIFO (IR

GENIF. 4

SMMPY
MPOWE
MSUP
SOLN
MMPY

TRAM
VSPAC

LENGT

137

0
0
0
0
0
0

4/20/6€ 14 27

PFIT

L77770
L7777}
L77772
L77773
L77774
L7777%
L77776
L77777
L}

Le

L30

PF

-87
3

<407
o w

-
n\

URG
REM
REF
REF
REF
REF
REF
REF
REF
REF
TRA
SPF
RWT
CLA
TSR
SPF
§TI
CLA
TSR
SPF
§T9
cLA
TSR
SPF
$TO
21740
sus
STO
21740
IF [ZER1SK®
TRA
CLA
NOP
BAU
LRS
CLA
LRS
CLA
LRsS
TSR]
SPF
CLa
CRL
ADD
00204
CRL
LRL
CLA
LRS
CRR
RPA
TSR
SPF
IF (NZE) TRA
ST
CLa
IF (PGS)SKP
TRA

BACK=-TRANSLATIQON
"SMMPY
wKMP0OWE
®xv3UB
®IJLN
xMIPYy

%T AN
xYSPAL
x_INGT
%1365 UeR
Bew22
L3907
PT+lslUeT?
*x_77777
*_307
L3111
PF+3sUeT7
x.77777
*_307
L3112
PTaU=T7
x|\ 77777

* 307 .
L3113

L2212

L3132

Lls

L34

azr

L)

al_107
Z:U-CC
PFpU-R |
31

ai150

14
L3t4sUeB2
{72R=T7
w124
*|_307
BteU=Ry

| 72R23
a33+Bh4+ |, U
B#+11U0é'L R3
17

175U=Tg
T45,B2-
®126,1ieT7
=_307
LS128%¢}
L34

L3t

L34

L1137

PAGE

1

DNINRN & W Ve

1
12
13
14
1=
16

17

21
22
23
24
2F
2¢
27
3¢
31
37
32
34
35
36

4C
4
42
43
44

46
47
3¢

37
32
54
3¢
57
60

6?
63
64
6%
66
87
7¢
71
7?
72

b/20/66 14,27
. !

L63
1
T6
T6
Té
F
1
L107 1
Llo”
7
z
7
R
Bl
I
L12=
R
I
L4~
T6

ADD
STQ
LA
IF(POS)SKP
TRA
CLA
BUS+2
NOP
21740
21740
NOP
NOoP
z1740
21740
10620
NOP
CLA
STO
FAD<
TRA
FAD~
TRA
CLA+2
3AU+2
TSR
SPF
CLA
TSR
50F
CLA
TSR
SPF
LDR
STO
RWT
STO
CLA
IF(Ppa)SKP
TRA
21740
21740
21740
21740
10620
CLA
sTO
STO
CLA
IF(PO=)SKP
TRA
CLA
CLA
21740
21740
21740
21740
10620
CLA
NOP

L313

L35

L3t2

L215

L13%
L314stleTg
L3156+
Zs,J-B?
Ea~lsliaB]
KOF yBAg]
LaJsTH
2rJ~B?
L3132 UeB]
wDF
TasUse?
L12J+B?
L3SrU«B
wOF

L1ts

LA3

L4

L35
Pr+5,Rg+]
aL3il 86+
* 77776
*_307
P=aU~T7

% 77775
%|_307
PE+7sLeR]
%135, 'sBp
®i_307
[NaRet2
B

B2

L3113

L1

L3

L161}
L31S2L1eB
XPE+2s T4
L3313, UB]
®xOF + |
Ta,UsPR
L3S, UaB]
ROF+5
L3114

L1212

L34

L1537
L3152UsTs
L314,VeB2
TasU=ty
AOF 470 JeT4
T4rUast |
*OF 42
TaasUs™
L314sUeB2
Lad=B1

PAGE

2

78

76

77
100
101
10?7
103
104
105
106
107

116
117
120
121
122
123
124
125
126
127
130
131
132
132
134
135

134

137
140
41
142
142
144
145
146
147
150
151
152
153
154
155
156
157
te0
161
162
162
1oL
165
166

L1s?

Lis!

L/23/6¢
r
I

!

14 27

ST0
FAD-
IRA
FAD«
TRA
CLA
CLA
TSR
SPF
CLA
TSR
seF
LDR~+
sTa
RWT
CLA
CLA
TSR
SPF
CLa
TSR
SPF
LDR=
STO
RWT
CLA+2
CLA+2
TSR
SPF
CLA
TSR
5PF
LDR-
STO
RWT
CLA
TSR
SPF
CLA
TSR
SPF
cLA
TSR
3PF
LDR-
STO
RWT
Cl.A
CLA
TSR
SPF
CLA
TSR
SPF
LDR~»
§T)
RWT
sTd
§TO

®OF+7
L34

L140

L2115

L125%
E’:,UOHI
PE+B2llaB2
%7777
®_307
FT+3,1'eB
%135,eB2
®_307
17sR=R2
B1

B2
Pf,U¢Pl
PE+7‘||.BE
xI_77774
x|_307
FT+7,U+B}|
X1 35st'eB2
x_307
[YeR=H2
B1

B2
PE+72%6+]
Pr+3,5%6+]
®_77773
»{ 307
PT+3,UeB]
ﬁ]iS;UQBE
x| 307
1NsR=22
B

B>
PEsU=T7
%1_77773
»!_307
FT+3sU0eBp
x| 7777428
x!_307
PT+bslleB]
*® 1355 'eB2
»!_307

| VsReH2
B!

B2
PT+12l1sB
Fe+4,aB2
%_777 72
*t_307
P7+50”»B]
x135,HeB2
x_307

] YsReH2
Bl

B2

%xOF+g
L35

PAGE

3

167
170
171
1772
172
174
175
176
177
200
201
207
202
204
Ch13
206
207
210
211
212
213
P14
715
214
217
220
221
222
223
224
228
P26
227
30
23!
”3?
733
234
3%
236
237
240
241
P47
P42
P44

Pue

L2477

Laeu

L307

L3y
L2112
L3117
L3+
L21=
L3~

4/20/6¢F

T4

TN

T7

14, 27

CLA
IF(POS)SKP
TRA
CLA
21740
21740
FMP
21740
21740
FAD
FAD~
FAD~»
TRA
21740
su3d
53100
FMP
vOF
LDR
CLA
TSR
SPF
581
TSR
SPF
CLA
TSR
SPF
LDR~
ST
RWT
TRA
S86
TRA
UcrT
cCT
nCT
oCT
cCcT
oCT
END

L3t

L3115

L2554

L35sl'aTg

TasU"y

R’ +5

Us JeTH

TasUsy

XOF +2

Tu

®OF +4

L35

L2247

L2t

L2312

-)

L6

XOF+E2 YT U

-a.l

FE+7

*x|_7777|

»_307

1N

x_7777Q

»x_307

FE+7aiieB]

*1 35, 'eBp

*_307

17,R+R2

B

B2

®x137

Z

P

0930070000 00000N0C
01000700000000000C
070007°000000000N00
¢N200500900000000C
0n9200°00000000000C
0420C"0000000C000C

PAGE

4

262
P62
P64
265
266
267
270
271

?7?
272
274
275
276
?77
200
301

307
302
304
30F
306
297
310
2

212
213
s
&
216
27
220
221

22?7
322
cF
22%
PT3
327
230
234

237
332
234

CODING EXAMPLES
3

e¢ Numerical Integration

This example is adapted from Schwarz (An Introduction to
ALGOL 60. Comm ACM 5:82-95 (1962)). It concerns the numerical
integration of a differential equation of second order with given
initial values. Schwarz chose the method of Adams' extrapolation,

which consists of the following formulae:

y(x+h):y(x)+hy'(x)+h2[%y"(x)+%Vy"(x)+%V2y"(x)+...]

y' (xth) =y ' () +h[y ' () 4Ry () +a TRy (x) 4.]

where the ka"(x) are the backward differences of y'' at the point
x and for the interval h. 1In contrast to other proposals, he
starts the integration by an iterative process (lines 62 to 74)
which uses the same formulae as the forward integration (lines
76 to 123).

The example consists of three separate programs:
EXAMPLE3, a control program to handle input and output and execute
the integration program; F, the function being integrated; and
ADAMS, the numerical integration routine. EXAMPLEB activates STEX
and initiates output with a page restore and heading print, then
goes into a loop in which it reads four input data from paper tape,
performs the integration, prints the input and results, and returns
to read more data. ADAMS receives X0,Y0,Z0, and XE as input (with
the dummy names XX,YY,ZZ, and EE). M, H, and the final results
X,Y, and ZED are external to both EXAMPLE3 and ADAMS.

The integration is based on the following procedure:
The leading row of backward differences (which are unknown at the
beginning) is first filled out with zeroes (line 52). With this
leading row we integrate M steps ahead with the formulae of Adams
(line 64), since R in the loop named ADMINT means the number of
steps to be integrated. After this we may build up a new difference

table from the Mth row backwards by keeping the Mth difference con-

CODING EXAMPLES
4

stant (lines 67-73). 1In this way we obtain a new leading row of

backward differences, with which we again integrate M steps forward.

. . . th . ,
This is repeated until the M difference of two successive runs are

nearly equal (lines 65-66 and 74; note that WE is the Mth difference
of the preceding run). As soon as BETA is FALSE, we start inte-
grating ahead a sufficient number of steps to reach XE (lines 76 to

123).

Lines Comments
13-16 An AP2 sequence is used to initialize output

and activate STEX.

61-63 Note use of the power point in arithmetic
expressions.

17 ,23,24, Input and results are printed with SCRIBE.

27-34 The arguments in the EXECUTE command correspond
in number and order to the dummy fields in the
FORMATs .

11-12, The REM may be followed by either a tab (lines

42-46 42-46) or a carriage return (lines 11-12). The same
is true of FORMAT and BCD.

52-60 Extra spaces are ignored.

37 This line illustrates both the definition of

a function in a single line and the use of an
auxiliiary equation to evaluate a common sub-
expression.

51 Execution of VSPACE leaves zeroes in the vector
for which space is taken. This initializes W for
the first pass through the loop.

61,65,66, If a name occurs for the first time on the

61,63 lefthand side of an equation, its type is inferred
from the righthand side. Thus, DECIDE and BETA
are inferred to be Boolean in lines 61 and 63; R,
J, and V are inferred as integers in lines 61,65,
and 66.

63 BETA is evaluated as TRUE if 10 /<
otherwise BETA is evaluated as FALSE.

WM—WE 5

Lines

72,76,105
122

22641
102&37

123

CODING EXAMPLES
5

Comments

These are all conditional equations. Lines
76 and 105 illustrate arithmetic conditionals;
lines 72 and 122 illustrate Boolean conditionals.

The values to be used at each execution of
a function are passed to the function as an ordered
argument list, with the arguments corresponding
in number and type to the parameters in the defini-
tion of the program.

The vectors for which space was taken at the
beginning of ADAMS are freed at the end.

4713766 13 24

PAGE !

1
PEFINE ?
SCALARS X0sYNsZ0sXF,HaXs Vs ZED 3
INTEGER M L
VECTORS BaChuw =
FUNCTIONS F,aDAMS '3
-
EXAMPLE3(7), =SEQ 10
PEM g
THI® IS THE DRIVER PROGRAM, TT CONTROLE INPUTs INTEGRATION, AND cyTPUT
PAG -7 13
SLN +700C7 14
LT? +70000C 3120 00CO 00135 18
TSR %+126 16
EXFECUTE SCRIRE(HFACER) 17
Mz4s H=0, 01 an
LOoP CATA X0,Y0s20,XE 2!
EXECUTE ADAMS{X02Y0,702sXT) 27
EXFCUTE SCRIRE(MH, XM, Y0»20sIN) 232
FXECUTE SCRIRE(XsY¥»ZFDsG'IT) 24
SPA .7 2=
cC=+LOOP 26
HEAPER FORMAT 27
M H ¥0 Yo Z0 30
IN FORMAT ‘ 31
d dr dadela ~dddddy ddded ~dddrds ddddd mddddde. d 34dd
QuT FURMAT 33
~dddde, dddd¢ ~ddd~d, ddddd ‘mddddd, doddd
END 3%
3%
F(XV:YYJZZ):ZZ(SIN(TMP)+COS(TMP‘+YY°+2}n TMP=XX+YY4+2Z 37
40
ADAMS(XX:YYnZZ:EE)Q=SEG &1
REM XXsYY»227 AFF THE INITIAL VALUFS FOR X2YaY ¥RIME
PEM M IS THE CRPEP CF THE METHUD (s6) 42
REM tE Is THE ENMD OF THE TNTEGRATICN 44
FEM H IS THF TMTERRATION STEP 4<
REM WO Is THE &FCAND WERIVATIVE: WK THE KTH 3ALK DIFF,
EXECUTE VSPACE(B,.7) 47
EXECUTE VSPAre(C»7) 30
EXFCUTE VS3PAFE(WsM+) 51
Elzl.; C]=n.= 52
B =05 C.=h /6. 52
c 2
By /120 (.=t /78, 54
9423-/8{1 (h=!9./!80. 58
B_=251./720. » cgza./a?, 54

4719766 13424

LooP
RLINT

ADMTNT

L4

NSHIFT

END

LEAVE

96295./388.: C6=“63-/10020.

97:190870/60h8011 C7=?75u/33550

WE=]*%102 R=M, DErIDE=TRUZ
CC=«ADMINT
RETAZ | %=7<I W, ~WE |

w;:WM
FOR Jz=Ms=1,
FOR V=P, 1aM

fo= -
VRO

PEPEAT

PEPEAT

CC=eLOOP .If 3ETA
R=FIX((XE=XX)/H)» PECIDE=FALFE
Y=XXs Y=YY, 7ED=7Z

FUR J=z1,s1aR+]

CC=el 1t JIf =

FOR V=M=,

! =i
kV+l wv

REPEAT

wl:F1XJY:ZEDl

REM F IS THE FUNCTION DEFINING THF
REM DIFFERENTYAL FQUATION
CC=eNSHIFT ,1¢ J=C

FOR V=2, 1,M+)

/ p=g)
kV*l Wv

REPCAT
F=7s d=L
FOR V=1,1sM+

=P+B
PP v Ny

SR
0=Q CV wv

REPEAT

X=X+H

YSY+H({ZED+Q H)
ZED=ZED+P H

REPEAT

CC=«RLINT .1~ DEC|DE
FRASE B,Caw

PEFINE

PAGE

2

60

61
6?2
63

64

6%
66
67

70
71
72
73
74
7%
7€
77
100

10!
192

102
104
19%
104
197

110

tit
112

12

1=
116
117
120
121
122
123
124
128
126
127

EXAMP START NEW PROGRAM 4/19/66 13,33

«BGIN PROGRAM SEUWUENCF
LOQP PROGRAM SEQUENCF
HEANE PROGRAM SEGQUENCF

IN PROGRAM SEWUENCF
QuT PROGRAM SEWUENCF
END PROGRAM SEQUENCF
EXAMP , =
«BGIN 1 47 21641 00 000! 00101 END

THI® IS THE DRIVER PROGRAM. IT CONTROLS INPUTs INTEGRATICON, AN
D 0'TPUT

L30p 1= 01 40001 00 4000 00004
HEADE 51 0N "000n 00 Q000 00007
IN 61 no npS0N 00 0000 00010
nuT 72 0n NO302 00 0000 00010
END 102 01 71009 00 4000 00000

REFFRENCE WORDS: ..
7eD 77764 714464325250C000000
Y 7776% 7r2525252500000000
X 77766 £72%25232500000000
ADAMS 77767 LOy40546240000000
Xc 77770 674125252500000000
20 77777 710025252507000000
YO 77777 700r252<2507000000
X0 77773 &£70n25252500000000
«INQU 77774 755°55545440000000
H 7777= 47zR25£52500000000
M 77774 ®upr25232500000000
SCRIR 77777 EP426150%4147000000

INTFRNAL STORAGE,,
«NUMB 104 3120000000135
«NUMB 10= ?770r24343605075341

SUBROUTINES REFERENCED
ADAM3
GE'\!IFQ.I "INF'\J
GENIE. 4 s SCR1I3

F START NEW PRO3RAM 4/719/66 13, 33
«BGIN PROGRAM SELUENCFE

END PROCRAM SEWUENCFE

F o=
«B3GIN ! 1N ~1009 02 4400 00136
END 2= 0! n{00" 00 4400 00137

24 01 40005 00 4000 nNOOON
27 €7 n{00N 00 4200 00N0OO
REFTRENCE WORDS, ..
c0s 77774 4P5462232547000000
SIN 77777 £ PEN55252540000000
INTHRNAL STCRAGE,,
TP 3n 0
«NUMB 31 107200170007°000000

PARAMETERS AT PF +
XX
vy
22

v— QO

SUBPOUTINES REFERFNCED

GENIEs s Cas
GENIF«.» SIN

ADAMS START NEW PROGRAM 4/19/766 1233

«BGIN PROGRAM SFUWUENCE
Log® PROGRAM SELUENCE
RLINT PROGRAM SEUWUENCF
«F0=| PROCGRAM SEWUENCF
«FO"2 PRQOCGRAM SEQUENCF
«RPT2 PROGRAM SEWUENCF
“RPT| PRORRAM SEGUENCF
ADMTN PROCRAM SEGUENCF
«FQR3 PROGRAM SEWUENCE
«FOR4 PROGRAM SFWUENCE
«RPT4 PROCRAM SEQUENCF
Ll4 PROCRAM 3EWUENCF
«F QX5 PROCRAM SEWUENCF
*RPTS PROGRAM SEWUENCE
NSHTF PROGRAM SEWUENCF
«FQr6 PROCRAM SEQUENCE
«RPTg PROGRAM SEQUENCF
«RPT3 PRUGRAM SEWUENCF
END PROGFRAM SEWUENCF

ADAMS =
«BGIN 1 1A N10C0N 02 4400 00136

XXs¥Y222 ARE THE INITIAL VALLFS FOK XsYsY PRIME

M IS THE ORCER OF THE MFTHOD (s2)

EE 'S THE END OF THE INTEGRATION

A IS THE INTEGRATIUN STEP

Wi0* IS THE SECOND DERIVATIVE, wyK¢ THE KTH BACK DIFF,

LOooP 121 01 21709 40 4001 00053 ADMIN
RLINT |p» C1 21747 41 0401 77650 M
«FORY 13 f1 217097 00 0401 77636 “
«FOR2 141 £1 21707 0C 4000 00002

<RPT2 18=. 20 10401 00 000! 00230 v

«RPTI 157 30 10401 00 Q001 00725 J
ADMIN 17= A1 21700 00 0600 00000 XX
«FOR3 202 20 20001 00 4001 00701 J
~FOR4 2= 91 21707 00 Q401 77555 i
«RPT4 23~ 20 104C! 00 0031 00135 v
Li4 23> "0 20107 26 4401 77734 X

F IS THE FUNCTION UEFINING THF

OIFFERENTIAL EQUATION
«FORS 24¢ 01 21707 00 4000 00002
«RPTS 247 20 104C1 00 000! 00122 v
NSHIF 2¢= nn 20061 00 4001 00122 P
oEORé 267 20 20001 00 400! o0O0tté Vv
«RPTe 313 €0 10401 00 000! 00072 v

«RPT3 33r 20 10401 00 0001 00054 J

FND 347 ™1 ~100Y 00 4400 nNO137

35n A1 40005 00 4000 00ro0O

351 "7 N100N 00 4200 nGNOO

REFTRENCE «wCRDS, ..
F 77764 b=2=25232547000000

780 7776F 714443232507000000

Y 77764 702525252500000000
X 77767 672525232507000000
FIX 77777 4=5r67252540000000
H 77777¢ 472525232507000000
XE 77772 £74025232500000000
M 77772 B4 252523250C0000000
W 77774 6£252525254C000000
c 7777% 4722%2525254C0C0000
VSPAC 77774 8F6257474240000000
R 77777 4125252325400C0000
INTERNAL STCRAGE,,
- 35» 0
«UNEF 352 1017 100190070C0000
«NUMB 354 77200007520007°000000
«NUMR 35= 10760GY0000°0C0000
«NUMB 354 1075001720007060000
«NUMR 35 10140070000000000
«NUMR 36~ 16100072007000000
«NUMB 361 10"3009000C000000
«NUMB 362 102300700G°000000
«NUMR 369 1244001720000C0000
«NUMR 364 13730073000000000
«NUMB 36% P0N264730070C0000
«NUMB 364 102C00N2000000N00
«NUMB 367 11270073007000000
«NUIMB 37A 20 110700067000000
«NUMB 371 201n37740007000000
«NUMB 372 20L73u1N200C0C0N0N
«NUMR 372 P1124350000000000
«NUMR 374 23%4207°0000000000
«NUMB 37= 200 1044007°000000
«UMB 374 201540730070000G0
«NUMB 377 RONR257305744C0000
We 40nr n
R 401 0
NECID 40~ 0
«NUMR 407 7EQN 8327745152748
RETA 40¢ 0
J 40= 0
v 40¢ o)
«P2 40~ 0
P 41m 0
n 411 s}

PARAMF TERS AT FF +
XX
Yy
7L
Fe

SUBFOUTINES REFFRENCFED

137
c 135
GENIF¢, s FIX
GENIFQ.' VSPAC

13%

CODING EXAMPLES
6

e¢ Complex Matrix Inverse

This program inverts a square matrix whose elements are complex
numbers. The method used is essentially inplace Gaussian reduction
as described in "An Introduction to Numberical Mathematics",
Stiefel, E.L., 1963, page 3., Each successive pivot element has
the largest modulus of all the remaining choices. This insures the
least possible error in the resulting inverse. If the modulus
of any pivot element is too small, the matrix is numerically singu-
lar, an error message is printed.

The n X n complex matrix is stored as 2 n X n real matrices
with the primary codewords in two successive memory locations.
Throughout the program, subscripting and arithmetic are performed
on the complex variables with the same Genie code that has hereto-

fore been used for real variables,

Lines 11 to 13:

Working storage defined.
Line 14:

Complex matrix B is copied into A. Thus, B will be pre-
served after its inverse is computed,
Lines 20 to 27:

The largest remaining pivot element is found and stored in GMOD
and indices stored in GG and HH.
Lines 30 to 64:

If the chosen pivot is large enough, the exchange algorithm
is applied to A.

Lines 66 to 103:

Since pivot elements were not in general along the diagonal,
the rows and columns of the inverse are rearranged depending on
the contents of ROWW and COLL.

Line 104:

The inverse is stored in RESULT, where all results of implicit

CODING EXAMPLES
7

functions are stored. Working storage is freed,

Lines

3-4

10

11-12

13

22

24

30

45

51

60
106
107

115-117

Comments

Double declarations of integer vectors and
complex matrices.

Use of ROW function implicitly in expression.
ROWW and COLL are declared real and, thus, are

created by VSPACE, the real vector space program
called in the program.

NEW is declared complex. Thus, even though
MSPACE is called by the user, CMSPACE (complex
matrix space) will be the program executed,

Subscripting of a complex variable; use of
MOD function implicitly in an expression,

Two equations on one line, as many as fifteen
permitted.

Specification of a constant using power point,
'#', '<' is printed for '#'.

Use of '4+/' to create complex variable out of
two real variables.

~Labelled REPEAT command. This is not the same
as labelling the corresponding FOR statement,

Compound conditional transfer.
Unconditional transfer to labelled location,
Use of SCRIBE to print error message,

Terminating LEAVE statement is followed by
two carriage returns,

9/23/6F 13.02

PEF INE
COMPLEX MATRIX BaA,NEW
INTEGER VECTNR R0WW,COLL

INVERT(B], =€END

MORE

SOME

GENIE
September,

1966

INTEGER GGsHWsL2CaDIE
COMPLEX
L=ROW(R)
EXFECUTE VSPACE(ROWW,L)
EXFCUTE VSPACE(COLL 2L)
EXECUTE MSPA~E(NEW,L»L)
A=S

[9]

FOR C=1s1sL
GMND=0Q,
GG=CaHH=C

FOR D=C,isLL
FOR E=Cs sl
KMOQ—MOD(AD’E)
CC=+MORE +If KMOD2GMOD
GG=D,HH=E
GMND=KMQOD
REPEAT

REPEAT

CC=+BYE .If GMOD<l, 0%~12
COLL =66

RONWC:HH

FOR D=1, 1sL

G=ACID

Ac,07%66,0D

AGG;D:G

REPEAT
FOR D=1s10ll

G:ADiC

AD:ngDJHH
AD)ﬂHze

REPEAT

NENC‘C:(1 "'/0.)/A
FOR D=1a10l
CC=<SOME ,If D=C

NEWs, ™ p,c/ e,
REPEAT

FOR D=1s1al
CC=+TOME If D=C

NEWe,p™ e, 0”%c, !

C,C

PAGE

!

W) —-

D RS) I

20

QI Ol UL Ul
W N —

S

9/23/6€6 13,02 PAGE 2

TOME REPEAT 5%
FOR D=1,s1sL S5é
FOR E=1s1sL 37
CC=+VOME .,If D=C 0.R E=C 60

N = h { 1

th:E ADJE+(VEwC:F’ ADIC) 5
vOME REPEAT 62
REPEAT 63

AZNEW A4

PEPEAT 6%

FOR C=Ls=12] 6%

HH:COLLC 67
GE=ROWM _ 70

FOR D=1,1sL 71

= 2

G=4,¢ 7

- 2

A0, DaHH 7

= N

AD)Pf‘H-G 7

REPEAT 7=

FOR D=1, 1sL 74

G:ACoD 77
= Is)

Ac,0™66,0 1oe

= 1

Aagsn=C to!
REPEAT to?
REPEAT 102

RESULT=A 104

ERASE COLLsROWWINEW,A 1R

CC=<END 104

3YE EXFCUTE SCRIBE(MESS) 107
CC=<«END o

MESS FORMAT 111
NO TNVERSE DUE TQ SINGULARITY 112
END 1132
DEFINE 114

LEAVE 1=
11#

GENIE

September, 1966

INVER

START NEW PROGRAM

«BGIN PROGRAM SEJUENCF
«FOR] PROCRAM SEQUENCE
«FQR2 P9QCRAM SEWUENCE
«FOR3 PROGRAM SEQUENCE
MORE PROGRAM SEQUENCT
«RPT2 PROCRAM SEGWUENCT
«FOR4 PVFRAM SEUUENCT
«RPTy4 R0CRAM SEGUENCT
«FORS PROCRAM SEQUENCE
«RPT5 P2QGRAM SEQUENCF
«FOR6 PRQGRAM SEGUENCT
SOME PROGRAM SEWUENCE
«FOR7 PRQCRAM SFQUENCFE
TOME PROCRAM SEGUENCE
«FOR8 PIQERAM SEQUENCE
«FOF9 PIQGRAM SEQUENCE
VOME PROCRAM SEGQUENCF
«RPT8 PROGRAM SEWQUENCF
«RPT| PQQCGRAM SEQUENCT
«FORa PROCRAM SFQUENCT
«FORo PRQCGRAM SEQUENCT
«RPTo PIQGRAM SEQUENCE
«FORc PRQGRAM SEQUENCF
«RPTe¢ P20QCRAM SEQUENCF
«RPTa PoQGRAM SEQUENCE
3YE PROCRAM SEQUENCF
MESS PROCRAM SEWUENCFE
END P2OCRAM SEQUENCE

INVER , =
«BGIN 1
~FOR} 47
«FOR2 6~
«FOR3 6%
MORE 11=
«RPT2 117
«FOR4 13
«RPT4 162
«FOR5 |éu
«RPTS 217
<FNRE 232
SOME, 26F
«EOR? 267
TOME 321

GENIE

September, 1966 «FORR 322
«FOR® 327

n1009
20001
?1701
21709
10401

10401

Y 20001

10401
20001
10401
20001
10401
20001

10401

' 20001

20001

o]
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

4400
4C01
0001
ooo!
0001
000!
400!
000!
4C01
0001
400!
0001
4001
000!
4001

4001

9/23/66

00136
00511
00500
00473
00450
00us4s
00430
00402
00400
00352
00231
00277
00275
002432
00241

007”36

v < < m 1 O (@]

o)

1 () Cc U

m o O

13. 02

GENIE

September

REFERENCE WPRDS: ..
SCRIB
CADD
~MPy
cD1y
CMPLX
MOD
CSTAR
O-;"&Or
A
-t
cCMCPY
CMsPA
NE W
T X X°T
coLL
VvSPAC
ROWW
CROW

INT=RNAL STCORAGE, ,
L
-P]
an

c

GMOD

656

HH

D

F

vg]

CX X T

KMOD

«NUMB

£}

X L XY 3

«ONEF
1966

B

L R L XX 3

37+
377
420
42
43=
467
46
512
51=
Sy
Sk

552
554
357

77755
7775«
7775>
77750
77761
7776~
7776~
77764
7776
77764
77767
77770
77771
7777~
7777~
7777¢
77775
7777«
77777

554
557
54
561
5¢”
56=
56u
Séx
Sec
567
57n
571
57~
57
574
57

PARAMETERS AT PF +

3n
01
0n
01

e1
07

10401
10401
10401
21700
”0001

10401

Y 20001

10401
10401
?1702
f000N
n100n

40005
n100N

00
00
00
00
00
00
00
00
00
26
00
00

00
o]o]

000!
0001
000!
0001
400!
0001
4001
000!
0001
4001
0000
4400

4000
4200

00170
00165
00140
00133
00127
0010!
00077
00051
00043
00004
00004
00137

00000
00000

424261574 140000000
424043432540000000
4LP5457702540000000
4242506=2540000000
425457536707000000
757575757500000000
B45443232540000000
k26262496 140000000
7E7875757540000000
402F28232540000000
7=7=75737540000000
L25442577040000000
Lo5442574040000000
BF4166252540000000
7=7RTR737540000000
4254535232540000000
&E6257404240000000
£15466642540000000
426156642540000000

[e Mo Je No No No le No Jo e ¥o No)

7300 10627463004557
0

o]
10n10090000000000

SUBROUTINES REFFRENCED

GENIE.,»
GENIE: s
CENIE: o s
GENIEw. o
GENIE: .«

GENIE; s
GENIFEs o e
GEMIE, . .
GE\}IEI [)

GENIE
September, 1966

SCR1IB
CADD
CMPY
CDIV
MOD

CMCey
CMSPA
VSPAC
CROW

135

135

CODING CONVENTIONS

This section discusses details of compiler generated code.
It is intended for those who are particularly interested and for
those who wish to code in a lower level language while maintaining
compatibility with compiled programs. This material is not essen-
tial to the understanding of the Genie language and should not be
read before attempting to write some programs for the compiler
and gaining some familiarity with the Rice Computer, the aésemblyb

language, and the SPIREL system.

AR

CODING CONVENTIONS
2

© Programs initialization and termination

The 'SEQ' or 'RSEQ' causes the compiler to generate a sequence
of orders which initializes the program being compiled. The first
of these orders is labelled '<BGIN', and the orders are collectively
called the "<BGIN code sequence", For each 'SEQ' or 'RSEQ' .there
is an 'END', and an "END code sequence" corresponds to each «BGIN
code sequence. The forms of these code sequences depend on whether
'SEQ' or 'RSEQ' is used, the number of parameters (p) listed for
the program and, in some cases, the types of the parameters. Each
complex parameter is counted as two parameters, the real part follow-
ed by the imaginary part,

An 'SEQ' causes generation of a non-recursive program; an
'RSEQ' causes generation of a recursive program. These two types
of code are distinguished functionally by the location of internal
variables for the program. Constants are always stored.within
the program. Private storage is inside a non-recursive program and
on the B6-list, addressed relative to PF, for a recursive program.
Genie-generated recursive code will not alter itself while running,
and a recursive program may use itself -- provided AP2 code in the
program also obeys conventions necessary for recursion. The use of
a program by itself is élear in a case where program A uses program
A; if program A uses B which uses C which uses A, then again pro-
gram A is using itself,

For a non-recursive program -- one begun with 'SEQ' or a one

statement function ... A single fast parameter in the definition
of a program is a special case which causes only PF to be saved
and assumes no parameter addressing in Genie language within the
program. Otherwise, fast register names should not be used as
parameters in a program definition, and the following discussion
applies. A single parameter enters a program in T7, the value of
a scalar or * codeword address for a non-scalar., Immediately a
scalar with name P in T7 is stored at internal location 'P'; a

non-scalar parameter is stored on the B6-list, All fast registers

CODING CONVENTIONS
3

are saved; 1if there are parameters on the B6-list (p>1 or p=1

and a non-scalar parameter) PF is set to point to the first para-
meter, In this case (PF) is stored in the address portion of
'"END+1' and must be maintained with this value throughout the pro-
gram for the purpose of addressing parameters. The END code se-~
quence restores the fast registers, sets B6 to free the storage
occupied by any parameters on the B6-list, fetches (T7) for implicit
execution, and exits to the PF setting on entry. The specific code

sequences are as follows:

p=1 <BGIN PF RWT END
fast .
END TRA YA
p=1 ~BGIN -Z TRA *+136, U-R
scalar T7 STO P
END TRA *+137
T7 TRA PF
p=1 <BGIN T7 STO B6, B6+1
non-scalar -7 TRA *+136, U-R
S PF B6-11
PF RWT END+1
END TRA *+137
SB6 Z
T7 TRA PF
p>1 “~BGIN -Z TRA *+136, U-R
SPF B6~-p-10
PF RWT END+1
END TRA *+137
SB6 z
T7 TRA PF
For a recursive program =-- one begun with 'RSEQ' ... A

single parameter enters a program in T7, the value of a scalar

or % codeword address for a non=-scalar. Multiple parameters enter
on the B6-list at B6-p,...,B6-1, address for a scalar and * code-
word address for a non=-scalar. A single non-scalar parameter is
stored on the B6-list, In all cases the PF setting for the last

execution of the program is picked up from 'END+1' and stored just

CODING CONVENTIONS
4

beyond the parameters on the B6-list. This B6 value is stored in
"END+1' for the PF setting of the current execution., B6 is ad-
vanced over i private storage locations for the program., A full
save is done. Then PF is set for execution -- with p parameters at
PF-p,...,PF-1 and i private storage locations at PF+l,.,..,PF+i. A
single scalar parameter named P is stored at private storage loca-
tion 'P'. 1In the case of a single fast or a single scalar para-
meter, the program is considered to have no parameters, B6-list

utilization by a recursive program is illustrated by:

PF~-p-
p parameters
PF-1-
entry B6é=execution PF -] PF setting from last execution
PF+1-[
i private storage locations
PF+i -
10 words for SAVE
execution B6-]
push-down storage for execution

The END code sequence restores all fast registers, restores the
PF setting for the last execution at END+1, backs B6 up by p+i+l
to free all B6-list list used in execution, fetches (T7) for im-
plicit execution, and exits to the PF setting on entry. The

specific code sequences are as follows:

single
scalar
(p=0)

single
non-scalar
(p=1)

single fast

(p=0)
and multiple

(p>1)

all cases

-BGIN

<BGIN

<BGIN

END

B6
B6
-Z
T7
T7

B6
B6

B6
B6

PF
T7

CLA ,WTG+2
RWT
ADD
TRA
S PF
STO

STO
CLA ,WTG+2
RWT
ADD
TRA
S PF

CLA ,WIG+2
RWT
ADD
TRA
S PF

TRA
CLA ,WTG
STO,WTG
AB6
AB6

CODING CONVENTIONS
5

END+1
END+1,B6+1
a-*END+3 ,U-B6
%+136 , U-R
*END+1

P

B6,B6+1

END+1
END+1,B6+1
a-*END+3 ,U-B6
*+136 ,U-R
*END+1

END+1
END+1,B6+1
a-*END+3 ,U~B6
*+136 ,U-R
*END+1

*+137

Z
END+1,B6-1
[=-i],U-R
[-p],R-CC

CODING CONVENTIONS
6

e Result for implicit execution

A program which is single valued may be executed implicitly;
that is, it may be mentioned within the formula on the righthand
side of an equation in Genie language. A non=-complex scalar result
must be in U upon exit from the program, a complex scalar result in
the complex accumulator named CMPLX, a non-complex non-scalar
result in the non-scalar accumulator whose codeword is by defini-
tion at location +10 during execution. The name 'RESULT' is
interpreted by the compiler as T7 for a non-complex scalar, as
CMPLX for a complex scalar, as codeword address +10 for a non-
complex non-scalar and as CSTAR for a complex non-scalar., 'RESULT'
may appear only on the lefthand side of an equation and must be
defined in the last command executed before 'END' on all dynamic
paths to 'END'. The 'END' code sequence fetches (T7) to U as it
exits so that a non-complex scalar result is indeed in U upon

return to the program causing the implicit execution.

CODING CONVENTIONS
7

e Addressing of variables

With respect to any given program every variable is in one of
three categories: internal, external, parameter. All internal
variables are scalar. For a non-recursive program the values of
all internal variables are stored within the program, For a re-
cursive program internal variables are of two types: constants
are stored within the program; others are stored in private storage
on the B6-list, the ith private storage word being addressed at
(PF)+i after program initialization. External variables may be
scalar or non-scalar, the address or * codeword address respective-
ly being stored in a cross reference word within the program, the
value or codeword respectively being stored in the Value Table
(#+122) during execution. In the general case, reference words
for parameters are stored on the B6-list. For a non-recursive pro-
gram the pth parameter is addressed at (PF)+p-1 after program
initialization. For a.recursive program the pth parameter is
addressed at (PF)-p after program initialization. Parameters of
a program during execution are indeed internal or external with
respect to some dynamically higher level program, but this does
not affect addressing in the program where they are parameters.,

The following charts summarize addressing conventions for variables.

CODING CONVENTIONS

ton B6-list

8

For a non-recursive program --

data codeword
variable representation address address value element
internal value in program #IS | mememm-- (Is) | =~==mma
scalar at IS
external address in program| (ES) = | =====--- *¥ES @ ~====a-a
scalar at ES
external * codeword address | ======= address | =~===-= *ENS
non-scalar { in program at ENS in (ENS)
scalar address at (PF+p=1) | =~-=====- *¥PF+p=1| ~======-
parameter PF+p-1
non-scalar | * codeword address | ======= address in | ====---=~ *PF+p-1
parameter at PF+p-1 (PF+p=-1)
For a recursive program --

data codeword ‘
variable representation address address value element
internal value in program #IC | memmmmeaa- (IC) . | ======-
constant at IC
internal value on B6-list #FPF+i | mmmmema- (PF+i) | =======
storage at PF+i
external address in program | (ES) = | ~=eme--- *¥ES] memme-a
scalar at ES
external * codeword address | ====-=ux address in ; ===== *ENS
non-scalar |in program at ENS (ENS)
scalar address on B6=list | (PF-p) | ===wm==- *PF~-p P e e mmm
parameter at PF-p
non-scalar ! ¥ codeword address | ~====~ address in | =~==-= *PF-p
parameter at PF-p (PF-p)

CODING CONVENTIONS

9
e B6-list, working storage

The SPIREL system uses the block with codeword address +112 as
a working storage area. The conventions associated with this
storage are that B6 points to the next available location on the
list [hence, the term "B6-1list"] and that the storage is used in
a linear "last-in-first-out" or "push-down'" fashion. Genie
generated code uses the B6-1list for temporary storage of interme-
diate quantities within the calculation of an arithmetic formula,
always storing at (B6), incrementing (B6) after the store, retriev-
ing from (B6)-1, and decrementing (B6) after retrieval. The B6-
list is also used for storage of parameters before entering a pro-
gram; the program then decrements (B6) over the parameters before
return since the storage occupied by parameters is no longer in
use. For a recursive program, a private storage area is established
on the B6-list and freed prior to exit, The SAVE (*+136) and
UNSAVE (*+137) programs and other SPIREL routines use the B6-1list
for temporary dynamic push-down storage.

Using the B6-list for temporary storage, the following sequence
shows storage of A, B, C and later retrieval of C, B, A with proper

maintenance of (B6) as a pointer to the B6-1list:

.
.

CLA+2 A, B6+1

CLA+2 B, B6+1

CLA+2 C, B6+1

calculation perhaps involving
use of B6-list with balance of

. stores and retrivals, so that
. final (B6) = initial (B6)

CLA B6-1, B6~-1

STO c

CLA B6-1, B6~-1

STO B

CLA B6-1, B6-1

STO A

CODING CONVENTIONS
10

e Parameter set-up for program execution

Execution of a program with a single non-complex scalar
parameter SP is preceded by code which accomplishes (SP)-T7.

In the case of a single non-scalar parameter NSP, the code accom-
plishes #*NSP.T7. For more than one parameter, representations

are stored sequentially on the B6-1list; if the kth parameter is

a scalar SP, then SP-B6, B6+1; if the kth parameter is a non-
scalar NSP, then *NSP-B6, B6+1l. A complex parameter is treated as
two parameters, the real part followed by the imaginary part. If
one of a group of parameters is given by a number or an expression,
then the quantity must be given a name before the proper parameter
representation can be stored on the B6-list. For such purpose

the names '<Pl', '-~P2', etc. for non-complex quantities are generated
by the compiler. The quantity is stored at «Pn for a scalar or
*#Pn for a non-scalar is stored on the B6-list. A non-scalar at
~Pn is freed upon return from the program for which it was stored;
then all «Pn used are available for re-use. Complex quantities

are stored as pairs named '<Ql', '<Q2', etc., then each part is
treated like a non-complex parameter.

The execution of program PROG is accomplished by TSR #*PROG
where PROG is a éross-reference word for PROG within the program
doing the execution; the codeword for PROG is in the Value Table
(#+122) . Thus, PROG is an external variable with respect to the

program which executes it.,

CODING CONVENTIONS
11

® Representation of Complex Variables

A complex variable is always on the first level of ad-
dressing represented by a pair of words in consecutive memory lo=-
cations, the real part followed by the imaginary part. The name
of a complex variable is attached to the first word of the pair,
the real part; the second word of the pair has the name "ditto",
printed 'eeeewe', The Cartesian form is used, and both parts are
real floating point.

Genie generates internal storage for the complex scalar A as

A real part of A
e imaginary part of A
Genie generates cross-reference words for the external com~-

plex variable A as

A name 'A' in hexads/% if non-scalar/
VT address for A

————— name "ditto" in hexads/* if non=-scalar/
VT address for A's ditto

Then while running the corresponding ST-VT configuration is

ST VT
A e real part of A -
value if scalar,codeword if
non-scalar
o o b b PRI) imaginary part of A-
value if scalar, codeword
i if non-scalar
f

Genie constructs two argument words on the B6=list for each
complex argument A, The first addresses the real part of A;

the second addresses the imaginary part of A.

CODING CONVENTIONS
12

® Subscription

In the Genie language any variable may be subscripted by from
one to five indices separated by commas. The indices are assumed
by the compiler to be integers: explicit numbers, simple names,
or arithmetic expressions of any complexity. The indices are load-
ed successively into B1l, B2, ..., B5 by the following procedure
which allows subscripts to themselves be subscripted:

1) scan n indices from left to right, computing those
which are not numbers or simple names, and storing
those computed (except the last) on the B6-1list;

2) scan from right to left storing (U), quantity from
B6-1list, named quantity, or explicit number into
Bi for i=n, n-1, ..., 1.

In the sense of SPIREL, a subscripted variable is called an “array",
In particular, a one-dimensional array of data is called a "vector"
and is indexed by Bl, and a two-dimensional array of data is called
a "matrix" and is indexed by Bl and B2 in that order. But in fact
an array may be of as many as five dimensions and may contain either
data or programs, and its elements may be addressed in the Genie
language. The indices may take on negative values if the storage

configuration is.correspondingly established.

CODING CONVENTIONS
13

® Operations on standard forms of non-scalars

In order to perform an operation between a scalar and a vector
or matrix, to combine two vectors or matrices, or to store a vector
or matrix the non-scalar itself must be addressed in the code.
Although completely general forms of non-scalars may be created
and manipulated in the SPIREL context and may have their elements
addressed in the Genie language, operations on full vectors and
matrices are defined only for arrays of standard form in order
that execution time is not spent in handling the most general case.
The standard form of non-scalars is entirely sufficient in a vast
ma jority of applications., The definition is as follows:

standard form of one dimensional array, vector

1) 1loaded with STEX active

2) indexed by Bl

3) initial index = 1

standard form of two dimensional array, matrix

1) 1loaded with STEX active

2) indexed by Bl for row specification and B2 for
column specification

3) initial row index = 1, initial column index = 1

A standard complex non=-scalar is a pair of standard

non-scalars, as described., Codewords must be adjacent,

real then imaginary; a name adheres to the real part,

and the imaginary part is named "ditto' («eecee),

Arithmetic operations involving standard non-scalars parallels
scalar arithmetic quite closely. By convention, codeword +10 1is
used as the non-complex non-scalar accumulator, commonly called
'U%'; the complex non-scalar accumulator is named CSTAR. The
programs used for performing operations on non-scalars recognize a
null codeword address for a non-scalar operand to mean that the
operand is the accumulator. The creation of a new U%* or CSTAR
causes the storage previously addressed by that '"name'" to be freed.
If a non-scalar in U% or CSTAR needs to be temporarily saved, this

is done on the B6-1list; that is, a word or pair of words on the

accumulator codewords are cleared.

new codewords,

non-scalar storage A - B is as

CLA
TSR
S PF
CLA
TSR
SPF
LDR-
STO

CODING CONVENTIONS

14
B6-1list are taken as codewords for the storage addressed and the
Note that this storage also
involves adjustment of the STEX back-references to address the
The code sequence generated by the compiler for non=-complex
follows:
—
A ,U-B2
yA #MCOPY,U-B1 copy A-U%* only if AfUx
*END+1 |
B ,U-B1]
free storage addressed
*.
z +135,0-B2 as B only if B*U* and
X*END+1 _Jnot on Bb6-list
Z +10 ,R-B2 :] clear U% codeword
R B1 ;tore new codeword if B%U*
or B
B1l B2 update back=-reference

RPA ,WTG

The code sequence generated by the compiler for complex non-

scalar storage A - B is as follows:

Bl

#

CLA
TSR
S PF
CLA,DBL
TSR
NOP
TSR
CLA
CLA,DBL
STO,DBL
RPA
NOP
RPA
STO,DBL
S PF

A ,U-B2
*CMCPY ,U-B1
*END+1
B,R-B1
%+135 ,U-B2
Z,Bl-1
#1135 ,U-B2
CSTAR,U=PF
PF ,U-B2

B1 |

B2 ,R-B2
Z,Bl+1

B2 ,R-Z

PF

*END P1

—
—

1L

L

—

]

copy A-CSTAR
only if A4CSTAR

free storage addressed
as B only if B4CSTAR
and not on B6-list

store new codewords
for B
if
B$CSTAR
update back=-references
clear CSTAR
codewords -

#(PF) reset only if program is recursive or is using (PF) for
reference to parameters.

CODING CONVENTIONS
15

© Assignment of type and shape to variables

In the Genie language each variable has a shape: scalar,
vector, or matrix. The shape of a variable may be explicitly
specified as non~scalar by a declaration: VECTOR for vector,
MATRIX for matrix. Each scalar, vector, matrix, and function (re-
sult) has a type: integer, real floating point, complex, or Boolean,
The type of a variable may be explicitly specified in a declaration:
INTEGER for integer, REAL or SCALAR for real floating point,
COMPLEX for complex, and BOOLEAN for Boolean. The standard
shape/type is scalar/floating point unless otherwise specified
in an INFER declaration. If tﬁe first appearance of a variable
name is not in a declaration, its type is implicitly specified
by the following rules:

1) If a variable name first appears on the right side
of an equation, the variable is assigned the
standard shape/type.

2) If a variable name first appears on the lefthand
side of an equation, the variable is assigned
the shape/type of the expression on the right-
hand side,

In a compilation a variable will not have its type changed
once it is assigned. An equation which has lefthand and righthand
sides of different types will cause the compiler to comment on the
equating of unlike types; code will be generated to perform a
Store appropriate to the quantity on the righthand side, but the
type of the quantity on the lefthand side will be unaffected,

CODING CONVENTIONS
16

e Arithmetic combination of variables of different types

In arithmetic expressions Boolean and integer variables may
be combined only in exponentiation, Boolean scalar variable to an
integer scalar power. Boolean and floating point variables may
not be bombined.

Integer and real floating point scalars and non-scalars may
be combined in any mathematically meaningful way. In all cases ex-
cept exponentiation of a floating point scalar by a numberically
specified integer < 7, the integer must be floated before the combi-
nation takes place. In all cases the result of the combination is
floating point, If a numerically defined integer scalar is floated,
the floating point equivalent is generated at compilation time and
is referenced in the generated code for the combination. Other ise,
the floating of an integer scalar A is Accomplished by the follow-
ing generated code:

-1LDU -A
FMP ~TW47

where '<TW47' refers to the constant 247 which will be stored with-
in the program. The floating of an intégér vector or matrix is
accomplished by use of the Genie SPIREL program MFLT,

Integers and real floating point scalars and non-scalars may
be combined with complex scalars and non-scalars in any mathemati-
cally meaningful way. 1In all cases except exponentiation of a
complex scalar by an integer or floating point scalar the non-
complex quantity is made complex before the combination takes
place. A floating point quantity is made complex with real part
equal the floating point quantity and zero imaginary part; an
integer Quantity is floated then made complex as a floating

point quantity.

Genie January, 1968

CODING CONVENTIONS
17

e Boolean variables and operations

A Boolean variable may take on the value 'TRUE' or '"FALSE',
these being represented in the computer by full length quantities
TRUE = +007777777777777777
FALSE = +007777777777777776
The binary operations between Boolean variables to yield a Boolean
value cause code to be generated as follows:

or, A+B, true if either A or B is true

CLA A
ORU B
and, AXB, true if both A and B are true
CLA A
ORU B
symmetric difference, A-B, true if A and B have different
values
CLA A
SYD B

ORU #77776
symmetric sum, A/B, true if A and B have the same value
CLA -A
SYD B
The only meaningful unary operation on a Boolean variable is
complementation, not A, true if A is false

-1 ORU -A

The machine register sense lights (SL) is a collection of 15
bits, any one of which may be individually meaningful and may be in
an on or off (1 or 0) state at any time. The variable SL is Boolean
and exponentiation to an integer power is defined

AB, true if bit B of A is on (1) where the bits of A are

numbered from 1 to 15, from left to right

CODING CONVENTIONS

18

CLA A
LUR 15-B if B is a number
ORU #+77776 _|
CLA B
BUS #15,U-R if B is
CIA A a name

or
LUR *R an expression

ORU #+77776 _|

Although the Boolean exponential notation is particularly meaning-

ful for
Thus, a
TRUE or
machine

FALSE.

the lights, it may be applied to any Boolean variable,
Boolean variable A which does not itself have a value of
FALSE may be a collection of 15 bits (the rightmost in a

word) Al, A2, “vuy At each with a value of TRUE or

CODING CONVENTIONS

19
® Loop coding
In the Genie language a loop is begun by the command ’
FOR iteration parameter = initial, increment,‘final and

ended by the command
REPEAT

If there are not labels on these commands, the kth

the labels '~FORk' and '<RPTk' associated with it,

loop will have
The generalized

code generated for loop control is as follows:

<FORk compute initial
initial - iteration parameter
compute increment ' T
Store increment ?
compute final |
store final ;__;?
[~FORk+m] LT7 final __ B
z IF (POS) SKP increment ‘ _—‘]
T7 IF (POS)SKP iteration parameter, CC+1 C
T7 IF(NEG)SKP iteration parameter ___J
TRA “RPTk+n
orders of loop
<RPTk CLA increment ———7
FAD - iteration parameter D
TRA <FORk+m ____l
[“RPTk+n] E

Seldom is the full generalized code necessary, and the following
notes pertain to condensations which are provided in various
specific cases, k
(A) The increment and the final value are computed and stored
only if they are given by expressions, that'is, not

simple variable names or explicit numbers,

CODING CONVENTIONS
20

(B) The final value will be stored in the address field of
the order if it is given by an explicit integer.

(C) 1If the increment is given by an explicit integer, it will
not be tested for being positive or negative and only
the appropriate comparison of iteration parameter to
final value will be generated.

(D) 1If the iteration parameter is a long fast register F, the
<RPTk code sequence will be k
<RPTk F FAD increment, U-F

TRA <~FORk+m
If the iteration parameter is an index register Bi and
the increment is an explicit integer +1 or =1, the
“RPTk code sequence will be

~RPTk TRA ~FORk+m,Biz+1l

CODING CONVENTIONS
21

e Use of fast registers in Genie generated code

Fast registers may be used in the Genie language and in assembly
language coding to be used in a Genie context if there is no conflict
with usage generated by the compiler:

T7 is always subject to use for special purpose temporary storage.

T7 is used for storage of a single parameter when a function is
executed implicitly or explicitly.

T4, TS5, T6 are subject to use in any arithmetic command for scalar
temporary storage and for storage of scalars mehtioned two or more
times in one equation if these fast register names are not mentioned
explicitly in the command.

Bl is used when loading parameters onto the B6-list if a name «Pn is used.

Bl, B2, B3, B4, B5 are used for subscripts in addressing elements of
arrays. The first k are used to address an element of an array of
k dimensions.

Bl and B2 are used in complex scalar arithmetic.

Bl, B2, and PF may be used in operations on vectors and matrices.

Bl is used in input-output commands to specify to the program ¢INOUT
the operation to be performed.

Bl is used in raising an integer or a real floating point scalar to an
integer power ¢ 7.

B6 always addresses the push-down B6-list which is used for temporary
storage of scalars and non-scalars, for multiple parameter storage,
and for private storage of a recursive program.

PF is used within a non-recursive program to address its parameters if
there are more than one or if there is only one but that is a non-
scalar. The appropriate value fo (PF) is, in such cases, stored in
the address portion of END+l so that resetting is easily accomplished
by

SPF *END+1

PF is used within every recursive program to address parameters and
private storage locations. The appropriate value of (PF) is stored
in the address portion of END+l so that resetting is easily accomplish-
ed by

SPF *END+1

GENIE July, 1967

CODING CONVENTIONS
22

® Rearrangement of arithmetic formulae for efficient evaluation

The compiler has the ability to rearrange the terms in addition
(or subtraction) and multiplication (or division) striﬁgs. Con-~-
stant terms are shifted to the left in the formula, Terms which
are themselves expressions, rather than simple variable names or
numbers, are shifted to the left to save temporary stores that would
be required were such complex terms to appear to the right in a
string. The ordering of the complex terms is determined by the num-
ber of temporary stores required to evaluate each; the complex term
requiring the most temporary stores will be shifted farthest to the
left.

If the order of evaluation within a formula is of importance,
this rearrangement may be avoided by defining each complex term
in a separate equation, thereby giving each a name. Then the origi-
nal formula will involve only simple variable names, and rearrange-

ment will not take place.

SPIREL.

SPIREL

Concepts . Ld i L L] . . . L] . . L4 L4

Codewords . . ¢ +¢ +v ¢ o ¢« o o o o o o o =
System Organization« . .
Memory Utilization
B6-list

System Components

Control Words . . .
Program *126, XCWD
Control Word Format
Address Specification
Basic SPIREL Operations
More SPIREL Operations
Recursive Application of SPIREL
Symbolic Addressing
Summary of Control Words

Console Communication . . « ¢ ¢ o ¢ o « o«

Use Oof SPIREL . &« & & « o « ¢ o o o o o @
Normal Running '
Input Paper Tape Format
Tracing
Arithmetic Error Monitor
Block Bounds Check
Diagnostic Dump
High Speed Memory Dump
Error Messages in SPIREL
Symbol Table-Value Table Print Format
SPIREL System on Magnetic Tape

Storage Control . . ¢ ¢ ¢ ¢ ¢ ¢ o v o o &
Linear Consumption by TAKE
Activation of STEX and its Domain
Memory Configuration Generated by STEX
Use of STEX
Deactivation of STEX

System Components . ¢ « « ¢« o & « o o o &
Vectors and Print Matrix
Programs
Component Linkages

System Duplicator . . . ¢« ¢« ¢ & ¢ ¢« ¢« « &
Purpose of the Duplicator
Use of the Duplicator
SPIREL Generation

Backing Storage System ¢ . .

SPIREL January, 1968

CONCEPTS

A computer serves a user by decoding instructions and perform-

ing the operations specified. 1In an analagous manner, the SPIREL

system serves a user by decoding control words and performing the

operations specified. 1In fact, once in the machine SPIREL may be
thought of as an extension of the Rice Computer.

As instructions are used to dictate comﬁuter operations on
single words in the memory, so are control words used to dictate
SPIREL operations on blocks. Physically, a block is a set of
contiguous words in memory. Associated with each block is a
one-word "“label™ called a codeword. A block is a logical unit
from the point of view of the user; it may contain a program, a
vector of data, or codewords which in turn label other blocks.
In general, an array is a logical structure which consists of a
codeword which labels a block of codewords which label blocks,
and so on until on the lowest level are blocks which do not con-

tain labels. The depth or dimension of an array is just the

number of codeword levels in the array. A program is a single block
with one codeword, a one-dimensional array. A data vector is a
single block with one codeword, a one-dimensional array. A matrix
of data is a vector of data vectors, a two-dimensional array.
Collections of programs and data vectors may be logically grouped
to form program and data arrays of any depth deemed organizationally
useful to the SPIREL user.

An array is uniquely associated with its single highest code-

word, the primary codeword. 1In most applications all addressing of

information in arrays (contents in lowest level blocks) is done
through the primary codeword. Thus, access to information in an

array depends on only one address, the codeword address for the

array. The physical location of blocks is irrelevant to the user,
so allocation of storage for blocks is performed by SPIREL, and
addressing through levels of codewords constructed by SPIREL is

accomplished by the indirect addressing of the hardware. A fixed

T

CONCEPTS
2
region of the memory, locations 200 through 277 (octal), is by
convention reserved for primary codewords, and allocation in this
area is the responsibility of the individual user. The unique
correspondence of a primary codeword address to its array provides
an informative "name" for the array, A program with codeword add=-
ress 225 may be called program %225, and a matrix with primary
codeword at 271 may be called matrix %271; the '#%' symbolizes in=-
direct addressing in the assembly language, and here serves to
emphasize this operation in ceonnection with codewords,
A program *P of length K may occupy a block beginning at

machine address F, Then program *P is represented in the machine

as

F:

X 11—

codeword

In programming, control is passed to this program by the code
TSR %P
which becomes
TSR F
when the hardware indirect addressing is carried ocut, The address
formed is that of the first word of the program,

A vectecr #*V of n data elements Vl’ VZ’ eso, Vn may occupy a

block beginning at machine address F, Then vector %V is represented

in the machine as

F: V1
V: | n i JF=1 !”‘”‘-¢> .
codeword v
3]
v
1

In programming, the data element Vp is addressed by the code
p = 1index register i ‘
then

operation *V

CONCEPTS
3

which becomes

operation ptF=1

when the hardware indirect addressing is carried out., The address

formed is that of VP, as desired, The standard vector form uses
index register Bl for element addressing., Non-standard forms permit
variability of indexing and even allow the first word of the block
containing the vector elements to be addressed as VK where K is

any integer,

1,1"“’9Mm,n

is stored one row per block and is represented in the machine as

A matrix %M of m rows by n columns of data M

F:| n ife,-1 Goo | M '
M:[ﬁm | *1 | F-1] 5 = P 2
primary codeword - TTe -1 ’//,£7 3
p D,q
n l J*]Gmnl ijn
secondary codewords
In programming the data element M is addressed by the code

2
P - 1index register i

q - 1index register j

then
operation %M
which becomes

operaticn %p+F=1
énd then

operation q+Gp=1
when two levels of hardware indirect addressing are carried out,
The address formed is that of Mp a4’ as desired. This addressing

2
in no way depends on the size of the matrix %M. The standard

e s

matrix form is for a rectangular matrix, using Bl for row spgecifica=-

tion and B2 for column specification, Non-standard forms permit
variability of indexing and non-rectangular structures and even
allow the first element to be addressed as MK,L for K and L any
integers,

SPIREL cperations on arrays are dictated by contrel words

CONCEPTS
4
which specify the primary codeword address for the array, Such
operations are:
® to take space for a program, vector, or standard matrix
® to print the lowest level blocks in an array
® to punch an array
[to execute a program
® to free the space occupied by an array
¢ and many others
0f particular importance is the fact that arrays may be dynamically
created and erased or changed in size and structure so that only
immediately pertinent arrays occupy space at any time during the

run of a user's system,

SPIREL control words are 18-place octal configurations, i.e.,
one machine word in length. With the SPIREL system in the machine,
control words may be transmitted to the system in two ways:

© internally undevr program control by the user --

control word - T7
and TSR %126

® externally to the SPIREL communication routine from paper

tape ==
control word preceded by 'carriage return'
punch on paper tape in the reader
or from the typewriter o=
centrol word type U-register,
In all these cases the control word is in fact transmitted to XCWD
(Execute Control Word), program *126 in the SPIREL system. This
program is the nucleus of SPIREL; it interprets each control word
and may use other programs in the System to carry out specified
operations., SPIREL is, then, a collection of programs, and any of
these may be utilized directly by the user of the system,
Details about codewords, system organization, control word
decoding and formats, storage control, and the SPIREL programs are

given in the succeeding sections,

CODEWORDS

With every block of memory is uniquely associated a codeword

which has two primary functions:

e description of the block, including current length and
location, current type of block content, and printing
format for the block

¢ indirect addressing portion appropriate for programmed
addressing through the codeword into the block.

The format for a codeword at address C, which labels a block

beginning at address F=f+i or F=f+i-1 is:

1 15| 16 27]28]29 30[31]32 39|40 54]
C: n i a y * m f
\ indirect /
addressing
portion

where
n=length of the block.

i=initial index of the block in 1's complement format,

where zero i is denoted by i=7777; standard SPIREL
provision is for i=1.
For a block with B-mods in its codeword (a
vector), the first word is addressed as element Ci'
For a block with no B-mods in its codeword
(a program), the first word of the block is
addressed as word 1 of C; if i<1l, the words preceding
word 1 are cross reference words.
a=1 if block contains codewords; empty (0) otherwise.
y=printing format to be used for output of block if none
given in print control word

0: octal, 4 words per line (standard SPIREL provision)

1: hexad, 108 characters per 1line
2: octal, 1 word per line in program layout
3: decimal, 5 words per line

*,m=indirect addressing and B-modification bits, effective

in addressing indirectly through the codeword.

i

CODEWORDS
2

f=F-i if block has]
F=the address of the
F-i+1 if block has no J

B-mods in codeword
first word of the
B-mods in codeword block

A codeword is completely formed by SPIREL at the time the
corresponding block is created. This creation is the result of a
control word to take space (structure formed and lowest level
blocks filled with zeroes) or one to read a block (structure formed
and lowest level blocks filled with words read from paper tape) .
The most frequently used codeword forms are illustrated below.

®¢ For a program %P of length k, no cross references:
1 15] 16 27| 28 39 |40 54

0001

0000 F
| L———'——octal digits

where the first word in the block and the first word of code
in the program coincide at address F,

For a program *P with two cross references prior to code:

1 15| 16 27|28 39|40 54|
P: k 7776 0000 F+2 |
L L——-———-octal digits

where the first word of the block is located at address F,
and the first word of code in the program is located at address
F+2.

' In both cases the block occupied by the program is k words

in length, and control is passed to the program by the code

TSR

*P

e For a standard vector %V of length n:

1

15] 16

27

28

39

40

54|

0001

0002

F-1

L

|

octal

where the vector element

index=1, and a B1 modifier is used.

by the code

SB1

CLA

*V

The element Vp

digits

V1 is located at address F, the initial

is addressed

CODEWORDS
3

e For a standard matrix *M of m rows by n columns:

primary codeword

1 15/16 27 28 39 40 54)
M: m 0001 4402 S-1
I L—"'—‘octal digits
secondary codewords
S: n 0001 0004 R,-1
S+p-1: n 0001 0004 R -1
S+m-1: n 0001 0004 Rm-l

[I

where each row is stored in a separate block and the matrix element

octal digits

Mp 1 is located at address R for each p, the initial row and
3
column indices=1, a Bl modifier is used for row specification, a

B2 modifier is used for column specification, the primary codeword

contains an a-bit and a %-bit. The element Mp,q is ad@ressed by
the code

SB1 p

SB2 q

CLA *M

An array whose primary codeword address is utilized in code is
a numbered array. There are also named arrays, whose names are
stored in a system vector called the Symbol Table with primary
codewords stored in the parallel Value Table. A named array is
addressed in code indirectly through a cross reference word which
contains the name of the array. All cross referencekwords for a
program are located within the program before the code. The code
is then one level removed from the primary codeword for a named
array, and the linkage from cross reference word to the codeword
in the Value Table is maintained by SPIREL,

The user spécifies the primary codeword address or the name

for each array, but the location of blocks in the memory is left

CODEWORDS
4

to the "discretion’ of SPIREL. Any given block may be located

variously from run to run, and may be moved even during a run if

the STEX storage control mechanism in SPIREL is active and such

manipulation is necessary for another requested allocation.

ORGANIZATION

e Memory Utilization

The SPIREL system itself is a collection of programs, tables,
and individual constants. System conventions provide memory

utilization as follows:

octal addresses
00000-00007

00010
00011-00020
00021-00022
00023-00024
00025-00026
00027-00036

00037

00040~00077

00100-00177
00200-00277

00300-[E-400] *

[E-377]~[E-100]*
[E-77]-E*

use

machine full-length fast registers %,U,R,S,
T4,T5.T6.T7

used as codeword address by library routines

machine traé locations

not used

link to SPIREL console communication routine

not used

entry to SPIREL program *120, diagnostic dump

console entry to magnetic tape system
(explained in MAGNETIC TAPE SYSTEM section)

used by SPIREL program *120, diagnostic dump,
and by magnetic tape system programs

system codewords and individual constants

region for primary codewords of numbered arrays
or numbered constants of the system user

storage of blocks labelled by system or user
codewords, each block containing a program,
data, or codewords which in turn label other
blocks

main magnetic tape system program

magnetic tape system communication program

*E represents the end of memory:

E=17777 for 8K

37777 for 16K
57777 for 24K
77777 for 32K

SPIREL. September, 1967

(N

ORGANIZATION
3

° B6-1list

The working push-down storage area is addressed by index

register B6 and is commonly called the B6-1ist. SPIREL programs
use the B6-list; programs of the System user may similarly use the
B6-1list; and index register B6 may be used for other purposes only
if the working Storage setting is maintained for those programs
which depend on it. -

Conventional use of the B6-list depends on one fact: that B6
contains the address of the first word of a block of storage not in
use. Therefore, if one word of temporary storage is required, it
is taken at B6 and B6 is incremented by one; if the last word stored
on the B6-1list is retrieved from the address B6-1 and is in fact no
longer resident on the list, B6 is decremented by 1, and the storage
location may be reused.

The B6-1list exists in memory as program block %112. The initial
System setting of B6 is to the first word address of this block
(given in codeword). The standard length of the block is 200 (octal)
locations.

A frequent application of the B6-1ist is for temporary storage
of fast registers to be used by a subroutine, but to appear un-
disturbed to the program using the subroutine. A program wishing
use but preserve T4, T5, and T6 might use the B6-list as follows:

— upon entry

T4 STO B6,B6+1
T5 STO B6,B6+1
T6 STO B6,B6+1

— computation with private use of T4, T5, T6 and any desired
use of the B6-list

— prior to exit

LT6 B6-1,B6-1
LT5 B6-1,B6-1
LT4 B6-1,B6-1

—exit with B6 setting same as that upon entry,

e System Components

ORGANIZATION
4

The programs, tables, and individual constants which comprise

the SPIREL system are listed below. The'programs are fully ex-~-

plained in later sections, and the diagram of SPIREL component

linkage shows how the various components are functionally inter=-

connected,

INDIVIDUAL CONSTANTS

Address
100
101

102
107

114
115
117

121

124

VECTORS,

Codeword

Address

112
113
116
122
125
174

Name
STORAG
FIRSTEX

LASTEX
NUMBER

PRCT
ACWD
STPNT

FWA

NAME

Function
describes available storage

first word address of storage exchange
domain

last word address +1 of storage domain

relative Symbol Table address of SPIREL
operand

current active length of ADDR
used by PUNCH

gives index of last active entry
in ST and VT

first word address of last program
tagged (used by TRACE and TAGSET)

symbolic name (if any) of block
currently being operated on by SPIREL

MATRIX, B6-LIST

Name
LISTB6
ST

PM

VT
ADDR
TEXT

SPIREL ‘September, 1967

Use Length8
Push=Down Storage Area 200
Symbol Table 400
Print Matrix 200
Value Table 400
Base Address Vector 6
Console Input Text 14

PROGRAMS

Codeword
Address

13

14

20
110
111
120
126
127
130
131
132
133
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
155
156
157
170
171
172
173
175
176

Name

TRACE
ARITH
CHECK
HDPR
MATRX
DIADMP
XCWD
SETPM
SMNAM
DATIME
CLOCK
PCNTRL
STEX
SAVE
UNSAVE
DELETE
CHINDX
TAGSET
CONVRT
PRINT
PUNCH
XCWSQ
PFTR
MAP
PRSYM
PWRTN
MRDDC
BINDC
RDCHK
PUNCHK
PLOT
SAMPLE
ERPR
CONSOL
CNTXT
TLU

SPIREL January, 1968

ORGANIZATION
5

Use

Trace

Arithmetic Error Monitor
Check Block Bounds

Print Control Word

Process Matrix

Diagnostic Dump

Execute from Control Word
Set Up Print Matrix

Find Symbolic Name

Print Date and Time

Decode Clock

Punch Control Word

Storage Exchange

Save Fast Registers

Unsave Fast Registers

Insert or Delete Space
Change Initial Index

Tagset

Convert from Decimal

Print

Punch

Execute Control Word Sequence
PF Trace

Map STEX Domain

Print Symbol and Value Tables
Conversion of Powers of Ten
Multiple Read Decimal

Binary to Decimal Conversion
Read with Checksum

Punch with Checksum

Plot Character on Scope
Sample Typewriter for Console Input
Print Error Messages
Interpret Console Input
Determine Context

Table Look-Up

CONTROL WORDS

» Program %126, XCWD

The nucleus of the SPIREL system is the program %126, XCWD
(Execute from Control Word). This routine interprets control
words received in T7 and carries out the specified operations,

The work of %126 may in most cases be described in the following

steps:
1) address determination -- consists of determining the
address of the first word to be operated upon and
the number of words to be operated upon
2) operation determination -- consists of determining the
operation to be performed
3) operation execution -- consists of performing the

operation or using another SPIREL program to carry
out the operation

XCWD accepts a control word in T7 and disturbs no other fast
registers. - Two sense lights affect the behavior of *126:

SL14 off causes XCWD to print one line for each control
word it executes. The information printed includes
the contrnl word, the operation, the name and relative
symbol table address of the block operated on, the lo-
cation and number of words operated on, the number of
free words of storage remaining and a notation if the
storage exchange system is active., This SPIREL moni-
toring provides useful load records and may help in
debugging. A system which has been checked out would
probably run with SL14 on to suppress monitoring,

SL15 on causes "reading" and “"correcting" operations of
SPIREL to bypass storage of what is read and instead
compare it with what is currently in the locations

where storage would otherwise take place.

SPIREL February, 1967

MR

CONTROL WORDS
2

e Control Word Format

A control word is divided into seven fields: N,w,x,y,z,
R, and F. These are arranged as follows:
bits | 1 15|16 27|28 3940 54]
nnnnn WXy2Z rrrr fffff
N R F
where each lower case letter represents one octal digit. 1In

general, N,x,R, and F concern address specification; w,y, and z
concern operation specification. X indicates the shape of the

operand F

X = 0 » absolute address

X =1 5 relative (single level) address

X = 2 » relative with Bl modifier (single level)

X = 4 » relative (all levels) address

X = 5 » relative on symbol table

x = 3, 6, and 7 are given under More SPIREL Operations, p.29,19,20.

SPIREL July, 1968

CONTROL WORDS
3

e Address Specification

General rules for address specification may be stated;
exceptions exist and are noted in the list of control words later
in this section.
The control word fields N,x,R, and F provide information which
determines
33 the address of the first word to be operated on
and 77, the number of words to be operated on.
To specify SPIREL operation on a set of locations whose
absolute machine locations are known:
x=0
r- 3
-7
R irrelevant
For example, it might be useful to have SPIREL print the user's
codeword region, 100 (octal) words starting at location 200 (octal).
To specify SPIREL operation on all of or a portion of a block
labelled by a numbered codeword:
x=1
F=codeword address

If 3’is to be the first word of the block or blocks operated on:
R=0

R#0 specifies the relative program word or vector element,

counting from the initial index of the block in either case,

where initial index=1 for programs containing no cross references

Prior to code and for standard vectors. Note that the 0th word

of a program or Oth element of a vector is specified by R=7777.

If ﬁ’is to be the current length of the block or blocks operated on:
N=0

=7

otherwise:

CONTROL WORDS
4

To specify SPIREL operation on the entire contents of each of
the lowest level blocks of an array which is labelled by a codeword:
x =4
N=0
R=0
(More general application of x=4 is explained in the section on
Recursive Application of SPIREL.)

To specify SPIREL operation on a named scalar or block, the
name is given after the control word on paper tape or in R for
internal control. Then the control word to address a named scalar
or block contains:

x=0 for a scalar, 1 otherwise

F=0
and the control word to address all of the lowest level blocks of a
named array contains:

x=4

F=0

To specify SPIREL operation, other than read, on a named scalar
or all of the lowest level blocks of a named array, the relative
Symbol Table (ST) address of the name may be used in typed external
communication from the console. The typed control word then contains:

x=5
F=relative ST address of name

Addressing of named quantities is discussed in detail in the
section on Symbolic Addressing. 1In the sections which follow, with
the exception of the read operation, a control word which utilizes

x=0

F=location

x=1

F=codeword address

SPIREL February, 1967

CONTROL WORDS
5
may also take the form
x=5
F=relative ST address of name

if the operation can be meaningfully applied to a named scalar or

all of the lowest level blocks of a named array.

CONTROL WORDS
6

e Basic SPIREL Operations

The most basic SPIREL operations and the corresponding control
word forms are described in this section. This set is sufficient
for initial understanding and use of the system.

Read

Read operations are specified by control words with w=0 and
x=0,1,2,4, or 5. The y field specifies the read mode:
y=0, octal from paper tape -- 18 octal digits per word, each
preceded by a carriage return
=1, hexad from paper tape -- 9 hexads per word, each pre-
ceded by a carriage return
=2, zeroes generated by SPIREL
=3, decimal from paper tape, each word followed by a carriage
return and in the form discussed in the section on paper

tape input formats under Use of SPIREL

]
~

, hexad with tags and checksum from paper tape in the form

punched by SPIREL
For y=0,1 or 2 words are stored with the tag given by z. As words
are read (except SPIREL-generated zeroes, specified by y=2), they
are checked for proper storage in memory. If the check fails, ‘the
word as stored and the location of the word are typed in octal on
the console typewriter. The location given is an absolutg machine
address if x=0 in the control word; it is the relative location in
the block if x#0 in the control word. TIf SL15 is on, the words
read (except SPIREL-generated zeroes, specified by y=2) are not
stored but are compared to the contents of the memory location
where storage would normally take place. If the comparison fails
the word actually stored in memory and its location are typed on
the console typewriter as above.

Read control word forms are as follows:

nnnnn 00yz 0000 fffff Read N words in mode y and store with tag

z (if y=0,1, or 2) beginning at location F.

SPIREL July, 1968 -

CONTROL WORDS
7

nonnn Olyz rrrr fffff 1If codeword at F addresses an array and

STEX storage control is active, free that array.
Create a block of length N and form its codeword at F,
Place octal configuration given by R in the correspond -
ing bit positions of codeword at F. (The last three
triads of R specify the B-modification and indirect-
addressing bits to be used. The first triad describes
the contents of the block being read; its interpreta-
tion is described under Codewords.) Set initial index=1.
Read N words in mode y and store with tag z (if y=0,1,
or 2) into the block labelled by the codeword at F.
nononn 02yz 0000 fffff Exactly equivalent to the control word

nnnnn Olyz 0002 fffff, used to read a standard vector
of data.

nnnnn O4yz rrrr fffff 1If codeword at F addresses an array and STEX

storage control is active, free that array. Create the
structure of a standard matrix with N rows and R columns
with primary codeword at F. Read NXR words, successive

complete rows, in mode y with tag z (if y=0,1, or 2) into

the matrix with primary codeword at F.

CONTROL WORDS
8

e Basic SPIREL Operations (continued)

The most basic SPIREL operations and the corresponding control

word forms are described in this section. This set is sufficient

for initial understanding and use of the system.

Correct

The correct operation is specified by a control word with

w=1 and x=0,1,2,4, or 5. Correction implies that some part of an

existing unit is to be replaced with new information without

completely recreating the unit. Therefore, a correct is just a

read into an existing block over the previous contents. The fields

y and z specify mode and tag as explained for read operations, and

again SL15 on causes comparison instead of storage of what is read.
The correct control word form is as follows:

nnnnn llyz rrrr fff£ff

Read N words into the block labelled by the
codeword at F, where N and R are specified according to
the standard rules for address specification. Read in
mode y with tag z (if y=0,1, or 2).

SPIREL July, 1968

CONTROL WORDS
9

e Basic SPIREL Operations (continued)

The most basic SPIREL operations and the corresponding control
word forms are described in this section, This set is sufficient

for initial understanding and use of the system,

Tagset

Tagset operations are specified by control words with w=2 and
x=0,1,2,4, or 5. The purpose is to set tags on words in the memory,
and the tag to be set is given by z=0,1,2, or 3 (tag 0 meaning no
tag). If y=3, all words in the address range specified are tagged.
Otherwise, all words in the address range specified are considered
instructions and tagging is selective, with a wor& being tagged
only if its "class" triad = y. (The class of an instruction is
given in the third triad from the left.)

The tagset operation is most often used to set tag 3 on
instructions in programs to be executed. Then if execution is
carried out in the trapping mode, the trace program in SPIREL
monitors on the printer the execution of the tagged instruction.
This trace output is explained in detail in the section on Use

of SPIREL.

The tagset control word forms are as follows:

nnnnn 20yz 0000 fffff Set tag z on all words of class y from

location F to location F+N-1, inclusive.

nnnnn 21yz rrrr fffff Set tag z on all words of class y in the

block labelled by the codeword at F, where N and R are
specified according to the standard rules for address

specification.

CONTROL WORDS
- 10

o Basic SPIREL Operations (continued)

The most basic SPIREL operations and the corresponding control
word forms are described in this section. This set is sufficient

for initial understanding and use of the system,

Execute

The exeucte operation is specified by wxyz=3100 or 3500 and
is designed so that SPIREL will, in essence, transfer control to
the address specified as the entry to a closed subroutine. This
operation is usually employed as an external directive to SPIREL,
Primary control is then with SPIREL; successive programs may be
executed, with other SPIREL operations interspersed as desired,

The form of the execute control word is as follows:

00000 3100 rrrr fffff Transfer control to word R of the program

which comprises the block labelled by the codeword at F,
As a special case, if R=0, transfer control to word 1,
or the first word of executable code in the program as
determined by the initial index. At entry to the
specified program, all fast registers except PF and T7
(and T4 if a named program is specified) are set to

the values they had at the time the control word was
given to SPIREL. ‘The program executed should be writ-
ten as a closed subroutine, i.e., it should exit to

the address contained in PF upon entry,

The first execute will be used to start a system running
after loading as necessary into a fresh SPIREL, This first exe-
cute has special effect if STEX has not been activated., A1l1l
memory in use is consolidated so that items previously loaded may
be moved to fill gaps of free storage. All free storage is then
available for further allocations by TAKE. 1In effect, STEX is
deactivated prior to the execution called for. See section on

storage control for more details.

CONTROL WORDS
11

e DBasic SPIREL Operations (continued)

The most basic SPIREL operations and the corresponding control
word forms are described in this section. This set is sufficient
for initial understanding and use of the system,

Activate STEX

The simple storage control algorithm in SPIREL operates on
a principle of linear consumption of space in memory. If STEX,
the storage exchange program, is active at the time blocks are
created, later redefinition of these blocks will result in the
space previously occupied being returned to the system for
re-use. Thus, at any given time only space which is currently
labelled by a codeword is in use. Activation of STEX causes
the STEX domain to be defined
e from the word beyond the extent of linear consumption,
this address being stored at FIRSTEX, location 101
° throughlthe word before the address stored at LASTEX,
location 102.

This definition is illustrated by:

2 aemand last word of linear
FIRSTEX ——» ’ A consumption

set when STEX

-is activated

STEX
domain

LASTEX ~——p»

set permanently
- determines extent
of linear and STEX domains

CONTROL WORDS
12

Any block created after STEX is activated is said to be loaded
under STEX control and will be loaded in the STEX domain. Any
block may be recreated under STEX control, but old space will be
available for re-use only if it was orginally taken in the STEX
domain,

The STEX storage control system is described in detail in
another section.

The control word which causes STEX to be activated is

00000 3120 0000 00135

It belongs to the execute class of control words, If STEX is

activated, subsequent activations are meaningless but harmless.
The first activation of STEX, which may be used after some
loading into a fresh SPIREL, has special effect if it precedes the
use of an execute control word. All memory in use is consolidated
so that items previously loaded may be moved to fill gaps of free
Storage, The last word of memory in use is then taken as the last
word of linear consumption and STEX is activated as described
above., 1In effect, STEX is deactivated prior to the activation

called for. See section on storage control for more details,

CONTROL WORDS
13

e Basic SPIREL Operations (continued)

The most basic SPIREL operations and the corresponding control
word forms are described in this section. This set is sufficient

for initial understanding and use of the system,

Print
Print operations are specified by control words with w=4 and

x=0,1,2,4, or 5. The format of output is given by y as follows:

vy format words/line

0 octal 4

1 hexad 12 (108 chars,)
2 octal, program format 1

3 decimal 5

4 octal, for 8%x11" pages 3

5 octal, with tag 1

6 decimal, with tag 1

7 decimal, for 8%x11" pages 3

For all options except y=1 (hexad), the value of z controls print-
ing at the left of each line the location of the first word on the
line:

z = to print location in octal

L]

not used

-

0
1
2, to not print location

3, to print location in decimal
The number printed is the relative location in a block for x=1 or
4 (relative) or the absolute machine address for x=0 (absolute),
The format for each decimal number printed is:

floating point
~d,ddddddddddde+dd
v A4

12 decimal exponent,
digits 2 decimal digits

if number
is negative

CONTROL WORDS
14

fixed point integer

-ddddddd

1-15 decimal
digits
if number
is negative
The SPIREL monitoring provided if SL14 is off provides a printed

identifier with each block printed,

The print control words are as follows:

nnnnn 40yz 0000 fffff Print in format y N words beginning at

location F, with location format given by z.

nnnnn 41lyz rrrr fffff Print in format y from the block labelled

by codeword at F, where N and R are specified according
to the standard rules for address specification and the

location format is given by z,

00000 44yz 0000 fffff Print in format y all of the lowest level

blocks in the array labelled by codeword at F, with loca-

tion format given by z.

CONTROL WORDS
15
® Basic SPIREL Operations (continued)

The most basic SPIREL operations and the corresponding control
word forms are described in this section. This set is sufficient
for initial understanding and use of the system.

Punch

Punch operations are specified by control words with w=5 and
x=0,1,2,4, or 5. The punch format is given by y and corresponds to
the mode in which the information punched will later be read:

y=0, octal

=1, hexad

=2, no information (zeroes to be generated internally
at read time to correspond to information specified
in punch control word)

=3, decimal format

=4, hexad With tags and checksum

=5, high density hexads with tags, parity and checksum

If z is even, every item punched is preceded and followed by
control words sufficient to cause the information punched to be read
at a later time into logical position identical to that at time of
punching; this is the usual procedure. If z is odd, no control words
accompany the information punched.

If z is even and a complete array is punched, the control words
punched cause recreation of an identical array when the punched tape
is later read. If z is even and only part of an array is punched,
the control words punched assume that an identical structure exists
when the punched tape is later read, and the punched information is
corrected into the structure.

Any tape which is punched with the SPIREL punch operations may
then be read under SPIREL control with SL15 on to effect a validation
of the punched tape by comparison with the information that was to
be punched.

SPIREL January, 1968

CONTROL WORDS
16

The punch control word forms are as follows:

nnnnn 50y0 0000 fffff ©Punch in mode y N words beginning at

location F.

nnnnn 51y0 rrrr fffff Punch in mode y from the block labelled

by the codeword at F, where N and R are specified
according to the standard rules for address speci-
fication.

00000 54y0 0000 fffff ©Punch in mode y all of the array labelled

by the codeword at F.

CONTROL WORDS
19

e More SPIREL Operations

The SPIREL operations described in this section are not
necessary for initial understanding and use of the system,

Address Base Manipulation

SPIREL operations may be applied to blocks and arrays when
the pertinent codeword address is known. The primary codeword
address of any array is fixed and known to the user, and 1is in
the range 200-277 (octal). When the F fields of control words
with x=1 are interpreted as machine addresses, the SPIREL address
base is said to be set to zero. For the purpose of applying SPIREL
.operations to sub~arrays, the SPIREL address base may be set so
that the F field of control words is interpreted relative to the
oth element of a block of codewords. Each base change in a sequence
of base changes will progress one level into an array, and such a
sequence may go to depth 4,

Consider an array of three dimensions with primary codeword
at address A and B-modification on each level. Assuming that A
exists in the machine, the following series of SPIREL operations

illustrates the use of address base manipulations:

operation effect
--=-- address base initially set to
zero

set address base to A address base at A0
00000 0600 0000 aaaaa

print I in octal print two-dimensional array
00000 4400 0000 iiiii AI in octal format

set address base to J address base at AJ’0
00000 0600 0000 jijij

print M in octal, one word print block AJ,M in the format
per line, with tag one word per line, octal
00000 4150 OOQO mmmmm with tag

SPIREL September, 1967

CONTROL WORDS

20
operation effect
set address base back one address base at AO
level
00000 0700 0000 00001
print K in decimal print two-dimensional array Ay
00000 4430 0000 kkkkk in decimal format
set address base to N address base at AN,O
00000 0600 0000 nnnnn
print from R,P words at print words AN,R,Q""'AN,R,Q+P
Q in octal in octal format
ppppp 4100 ggqq rrrrr
set address base to zero return to initial address
00000 2700 0000 00000 base setting
t

Note that the 0 element of a block is denoted by 77777, and

negative element addresses are specified in one's complement form.
The address base manipulation control word forms are as follows:

00000 06y0 rrrr fffff If y=0 and address base is set to zero, set

address base down to F if R is null, to F_. if R is not

null. If y=0 and address base is set dowi to A, set add-
ress base down one level to AF if R is null, two levels to
AFR if R is not null. If y=1 and address base is set down
to A, increment base to A+F on same level, then set down to
(A+F)R if R is not null. :

00000 0700 0000 fffff sSet address base back F levels. If F=0,

set address base back to zero.

SPIREL execution of these control words causes no monitoring
on the printer, but monitoring of SPIREL operations performed with
the address base set to other than zero reflects the successive
levels of address base settings in effect.

SPIREL July, 1968

CONTROL WORDS
21

e More SPIREL Operations (continued)

The SPIREL operations described in this section are not
necessary for initial understanding and use of the system.

Insert and Delete Words in Blocks

The insert operation provides a facility for lengthening and
shortening blocks labelled by codewords. The insert control word
form is

nnnnn_ 1150 rrrr fE£££f£f
The Rth word of the block labelled by codeword at F (counting from

the initial index) is addressed, and N words are inserted at that
point in the block. N is interpreted in one's complement arithmetic.
If N>0, N words containing zeros are inserted beginning at the Rth
word, and the former Rth word becomes the R+Nth word; the length
of the block is increased by N. 1If N<O, N words are deleted be-
ginning at the Rth word, and former R+Nth word becomes the Rth
word; the length of the block is decreased by N. If R is empty ,

N words are added to the end of the block. TIf N is empty, the

Rth word and all following are deleted.

The insert operation requires that space for the new form of
the block be available while the old form still exists. If STEX
is active, the space occupied by the old form is freed when the
new form is complete.

The delete operation generates the new form of the block on
top of the old form and copies only the segment after that deleted.
If STEX is active, the space deleted is freed. If codewords are
deleted and freed, the space labelled by the codewords is also freed.

In addition to x=1, x=2,4, or 5 are also allowed.

CONTROL WORDS
22

e More SPIREL Operations (continued)

The SPIREL operations described in this section are not
necessary for initial understanding and use of the system.

Change Initial Index

The initial index of the block labelled by the codeword at
F is set to N by the control word
nnnnn 1160 0000 fffff

N is specified in one's complement form, and an initial index of
zero is designated by N=77777.

If the codeword at F contains B-mods, the first word of the
block is subsequently addressed as vector element FN.

If the codeword at F contains no B-mods, the words preceding
word 1 in program F are understood to be symbolic cross references
and are immediately loaded. Programs which are written to refer
to named quantities, in particular Genie generated programs, re-
quire these cross references to scalars and codewords in the Value
Table (VT, SPIREL system vector *122) in positions parallel to the
positions of the names of the quantities in the Symbol Table (ST,
SPIREL system vector *113). The cross references must be loaded,
linked to the current VT, each time the program is loaded and

prior to its execution.

In addition to x=1, x=2,4, or 5 are also allowed.

CONTROL WORDS
23

e More SPIREL Operations (continued)

The SPIREL Operations described in this section are not

necessary for initial understanding and use of the system.

Inactivate Storage

The inactivate operation may be applied to any array by
using the control word
00000 1170 0000 fffff
If the array labelled by the codeword at F is in the STEX domain,

all storage for the array is freed and F is cleared.

In addition to x=1, x=2,4, or 5 are also allowed,

CONTROL WORDS
24

e More SPIREL Operations (continued)

The SPIREL operations described in this section are not
necessary for initial understanding and use of the system,
Monitor

If the STEX storage control system is active, blocks in the
STEX domain are subject to being physically moved when it is
necessary to concentrate free space, At the console, the user
may wish to obtain information about the location of a particular
block or the number of words of free storage. The control word

00000 3110 rrrxr fffff

causes SPIREL monitoring to occur if SL14 is off. R is interpre-
ted as in standard address specification as the word in the block
labelled by the codeword at F for which monitoring is desired. No

SPIREL operation is performed on the block,

CONTROL WORDS
25

@ More SPIREL Operations (continued)

The SPIREL operations described in this section are not
necessary for initial understanding and use of the system.

Reorganize

If STEX, the storage exchange program, is active, all free
space in memory may be collected into one contiguous block by
the control word
00000 3130 0000 00135
This operation is called reorganization, and the word REORGANIZATION

is provided on the printer if SL 14 is off. If STEX is not active,

this control word has no effect.

CONTROL WORDS
26

e More SPIREL Operations (continued)

The SPIREL operations described in this section are not

necessary for initial understanding and use of the system,

Execute Control Word Sequence

A block may contain SPIREL control words. The execute control
word sequence operation, when applied to the block, will cause
SPIREL to interpret the words addressed as control words and carry
out the specified operations in order. 1If in the Sequence a con-
trol word specifies a named block by F=0, then the next word in the
sequence must contain the name of the block (five printer hexads
left-adjusted in the format discussed in the section on symbolic
addressing. Therefore, a control word sequence N words in length
which contains M names then contains N- control words.

The control word forms which instruct SPIREL to execute a

control word sequence are as follows:

nnnnn 3040 0000 fffff Execute control word sequence N words in

length stored in memory from location F to location
F+N-1.

nnnnn 3140 rrrr fffff Execute control word sequence in the block

labelled by codeword at F, where N and R are specified

according to the standard rules for addressing.

CONTROL WORDS
27

¢ More SPIREL Operations (continued)

The SPIREL operations described in this section are not neces-

sary for initial understanding and use of the system,

Map STEX Domain

The structure, i.e. codewords, for arrays in the STEX domain

is printed by use of the control word
00000 3150 0000 00135

If a codeword outside the STEX domain addresses a block inside

the STEX domain, it is taken as the primary codeword for an array.
The structure of the array is then printed. If z is odd, all
inactive and active block headers are printed. e.q.,

00000 3151 0000 00135

SPIREL July, 1968

CONTROL WORDS
28

e More SPIREL Operations (continued)

The SPIREL operations described in this section are not
necessary for initial understanding and use of the system,

Deactivate STEX

The control word which causes STEX to be deactivated is
00000 3160 0000 00135

It belongs to the execute class of control words.

The operation involves reorganization of the STEX domain and
recourse to linear storage consumption by TAKE in the inactive area
of storage. More details are given in the section on Storage
Control.

If STEX is not active, deactivation is meaningless but harmless,
Activation of STEX after deactivation causes creation of a new

empty STEX domain,

CONTROL WORDS
29

e More SPIREL Operations (continued)

The SPIREL operations described in this section are not
necessary for initial understanding and use of the system,

Obtain Date and Time

The date and time of day are available in the computer,
SPIREL will format this information (14 positions in length) for
printing when the control word

00000 4300 rrrr 00131

is executed., The next line actually printed will contain the date
and time beginning at print position R, SPIREL will format and
print the date and time beginning at print position R when the
control word

00000 4310 rrrr 00131

is executed, The print positions are numbered 1-108 (decimal)

from left to right across the page. In both cases, if R is empty,
the print position is set by SPIREL to 48 so that the date and time

will appear at the right side of a page 8% inches wide,

CONTROL WORDS
30

¢ More SPIREL Operations (continued)

The SPIREL operations described in this section are not

necessary for initial understanding and use of the system,

Print or Punch Symbol and Value Tables

System elements may have names which correspond to single
word storage addresses and codeword addresses for arrays. When
loaded under SPIREL control, such elements have their names in the
SPIREL system vector *113, the Symbol Table (ST). The parallel
SPIREL system vector %122, the Value Table (VT), contains the
corresponding single word or primary codeword. The index of the
last active ST-VT entry is maintained within the SPIREL system
as a constant at 117, STPNT.

These tables may be printed with basic SPIREL control words,
but a special printing format appropriate to the contents of the
tables is provided when the following control word is used:

nnnnn 45y0 rrrr 00000

N words of ST and VT are printed, beginning at STR and VTR' If N
and R are empty, the range for printing is implied by the value of
y:

y=0 or 3 all entries in the currently active ST-VT

y=4 or 7 all entries with positive indices in the cur-

rently active ST-VT
In any case, y=3 or 7 causes only the entries in context (discussed
‘below) in the range specified or implied to be printed out.

Some or all of the quantities with names in the Symbol Table
may be punched in checksum format for symbolic loading. To con-
sider for punching N items beginning with the Rth in the ST-VT
the following control word is used:

nnnnn 55y0 rrrr 00000

If N and R are empty, the range of entries considered for punching
is implied by the value of y:
y=0,1,2, or 3 all entries in the currently active ST-VT
y=4,5,6, or 7 all entries with positive indices in the

currently active ST-VT

SPIREL July, 1968

' CONTROL WORDS

31
In any case, the value of y specifies which items to punch:
y=0 or 4 all programs, then all data* in the range
specified or implied
y=1l or 5 brograms only in the range specified or implied
y=2 or 6 data* only in the range specified or implied
y=3 or 7 all programs, then all data* in context in the

range specified or implied

*data consists of scalars in VT and arrays with codewords in VT;
data on tape is preceded by a control word to activate STEX.

As a special case, any ST-VT can be printed with the following
control word:

nnnnn 46y0 rrrr fffff

with fffff being the codeword address of the desired ST. The code-
word for the corresponding VT must be in the memory location
immediately following the ST codeword. N, R and Y are used as
described for the system ST-VT.

Prior to the printing or punching called for by these control
words, context is automatically determined. This means that the
ST entries for all items with negative ST indices which are ‘
necessary for support of the programs currently loaded are "marked"
with a tag 0; all others will have a tag 1. All items with
positive ST-VT indices are automatically taken to be in context,
whatever their tags. This assumes that all "library" items are
loaded with negative ST-VT indices and that all ST entries with
negative indices are given a tag 1 prior to loading of any "pri-
vate" programs numerically or with positive ST-VT indices; this is
the case with SPIREL and the standard library. The same situation
may be generated by any user with SPIREL, his own library, and
his own private routines.

GENIE July, 1968

CONTROL WORDS
32

e Recursive Application of SPIREL

In general, SPIREL control words with x=1 cause the specified
operation to be applied to the block labelled by codeword at F.
If meaningful, x=1 may be replaced by x=4 and the operation will
be applied through the array labelled by codeword at F, This
recursive application is accomplished by the use of SPIREL by
SPIREL. 1In other words, when the SPIREL program %126 (XCWD)
encounters a control word C with x=4 (except in the case of read,
w=0), and F labels a block of codewords, the address base is set
down to F, SPIREL is applied to the first N blocks on the next
level with N control words C' in which N'=R and R'=0, and the
address is set back up one level. 1If a control word with x=4
is applied to a block which does not contain codewords, the be-
havior of %126 is as if x=1, and the recursion is terminated.
Thus the depth of the recursion is determined by the structure or
depth of the array addressed.

As an example, consider the control word to print in decimal

00003 4430 0002 00200
where the array %200 is a standard data matrix. Since the block
labelled by the codeword at 200 contains codewords, these control
words are generated and delivered for SPIREL execution:
00000 0600 0000 00200
to set address base to 200
00002 4430 0000 00001
to print the first two words of row 1
00002 4430 0000 00002
to print the first two words of row 2
00002 4430 0000 00003
to print the first two words of row 3
00000 0700 0000 00001
to set address base back one level, to
zero.,

If row 2 in the array %200 had contained codewords for 4 blocks of

CONTROL WORDS
33

data, the control word
00002 4430 0000 00002
in the above sequence would have caused further generation of the
control words:
00000 0600 0000 00002
to set address base to 2002
00000 4430 0000 00001
to print all of block 200
00000 4430 0000 00002
to print all of block 2002
00000 0700 0000 00001
to set address base back one level,

to 200

2,1

52

CONTROL WORDS
34

¢ Symbolic Addressing

SPIREL provides facilities for addressing scalars, programs,
vectors, and matrices by name. A control word with a null F field
will cause program %126 (XCWD) to read what follows on paper tape
as a 5-hexad name preceded by a cr punch., The name is added to
the Symbol Table (ST,*113) if it is not already present, Then the
F field is assigned the address in the Value Table (VT,*122) which
parallels the name in ST. Under program control a control word with
null F may be given in T7, a S5-hexad name left-adjusted in R, and
entry made to the second order of %126 with the order

TSR %126, CC+1
Names are represented by 5 printer hexads and are formed by

the following rules:

® upper case letters A,B,...,Z are represented by the
hexads 40,41,...,71
° lower case letters a,b,...,z are represented by the

hexads 40,41,.,.,71
° the first in a sequence of lower case letters is pre-

ceded by a '26' hexad (backspace punch on flexowriter)

® the numerals 0,1,...,9 are represented by the hexads
00,01,...,11
° @ name containing less than 5 hexads is filled to 5

hexads by '25' hexads (tab punch on flexowriter) on
the right

Examples of 5-~hexad names are

54 40 55 25 25 for MAN

54 26 40 55 25 for Man

54 40 55 01 25 for MAN1
26 54 25 25 25 for m

The printed load record for a run gives the name of any quan-
tity loaded or referenced symbolically. To the right of each name
appears a number F which is the relative Symbol Table address of
that name, A SPIREL control word of the form

nnnnn w5S5yz rrrr £ffff

SPIREL February, 1967

CONTROL WORDS

35

is equivalent to symbolic reference to the Fth Symbol Table entry

for all operations except READ. This form is easily typed for

console communication to SPIREL.

Consider the ST=-VT configuration

ST VT

131 Al +——Ag—— scalar Al

14 A2 +——t—— codeword for vector A2

15| A3 ¢—tp—— primary codeword for matrix
A3

16| A4 L codeword for program A4

The control word with symbol

00001 0030 0000 00000 cr 40 01 25 25 25
will cause the scalar Al in decimal form to be read into Al's
VT entry.
The control word with symbol

00000 4130 0000 00000 cr 40 02 25 25 25
or the control word

00000 4530 0000 00014
will cause the vector A2 with codeword in A2's VT entry to be
printed in decimal form,
The control word with symbol

00000 5440 0000 00000 cr 40 03 25 25 25
or the control word
' 00000 5540 0000 00015
will cause the matrix A3 with primary codeword in A3's VT entry
to be punched with symbol, The tape punched will load at a later
time, creating a matrix with primary codeword in A3's VT entry,
even if this entry is not in exactly the same relative VT location.
The control word with symbol

00004 0420 0003 00000 cr 40 03 25 25 25
will cause the space currently addressed by the codeword in A3's
VT entry to be freed. Then a 4 by 3 matrix of zeroes to be created

and addressed by the codeword in A3's VT entry.

CONTROL WORDS
36

The control word with symbol
00000 4100 0000 00000 cr 40 04 25 25 25
or the control word
00000 4500 0000 00016
will cause the program A4 with codeword in A4's VT entry to be
printed out in octal,.
The control word with symbol
00001 4030 0000 00000 cr 40 01 25 25 25
or the control word ‘
00001 4530 0000 00013
will cause the scalar Al, stored in Al's VT entry, to be printed
out in decimal,

The name of a double operand (such as a complex scalar or
non-scalar) is attached to the first component of the pair. The
second component is named "ditto" which is printed 'eeeee' and
is represented by the hexad string

75 75 75 75 75 for «eceee ("ditto")
For any double operand, its name and "ditto' appear consecutively
on the Symbol Table. 1If K is a double operand, given the néme K,
SPIREL will operate on the first component; then given the name .
"ditto'", SPIREL will operate on the second component. To operate
on the second component of K independent of the first, SPIREL must
be given the name K before the name "ditto" with a control word.
This may be accomplished by use of the monitor control word which
designates no operation to SPIREL:

00000 3110 0000 00000 cr 52 25 25 25 25

nnnnn wxyz rrrr 00000 cr 75 75 75 75 75
If K has ST relative address 31, then "ditto" for K is at 32,
The first component is addressed by the control word

nnnnn w5yz rrrr 00031
and the second component by

nnnnn wbyz rrrr 00032

SPIREL July, 1968

‘Linr TUYTIIS

8961

SPIOM T013u0) 3o Axewwng

5 wds/line

w 0 1 2 3 4 5
read correct tagset execute print punch
4 ::==%==============%==========ﬁ
0 octal octal class 0O execute octal octal
program 4 wds/line
1 hexad hexad class 1 on-line hexad, 108 hexad
control word chars/line
print only
2 zeroes zeroes {class 2 activate octal- Zeroes
STEX program
format
1 wd/line
3 decimal decimal all classes reorganize decimal, decimal

4 hexad + tag hexad + tag class 4 execute octal hexad +tag
+ checksum + checksum control word 3 wds/1line + checksum
sequence 8ix11"
5 insert/ class 5 map codewords [octal with high density
delete space in STEX tag, hexad + tag
domain 1 wd/line + parity +
checksum
6 change class 6 deactivate decimal with
initial STEX tag,
index 1 wd/1line
7 free class 7 initialize decimal
storage : STEX 3 wds/line

8ix11"

LE

CONSOLE COMMUNICATION
1

e Input through the Console Typewriter

When a SPIREL system comes off magnetic tape, control is in
the console communication loop,; at PAUSE -- so named because the
message *PAUSE* appears on the display scope. The blue light on -
the console typewriter will be on.
At any time, PAUSE may be obtained by going to location 23 or
24.
At PAUSE the console typewriter is used to input commands to
the SPIREL SYéTEM. As text is input, it is displayed on the scope.
The 'bs' (backspace) key causes the last character entered to be
erased. Typing a question mark '?' causes the line to be erased. —
A carriage return or semi-colon ';' causes the accumulated command
to be interpreted and printed.
To simply have text transmitted to the printer, '*' should be
used as the first character.
The system interprets and obeys a variety of commands which
may be input at the console:
a) Control commands to halt or have SPIREL read control words

from paper tape;

" b) SPIREL commands to have control words formed and passed to XCWD;
c) REGISTER commands to cause machine registers to be loaded;

a) MAGNETIC TAPE commands to search or read the system tape or
pass control to manual mag-tape system; ’

e) ARITHMETIC commands to perform execution of arithmetic state-
ments. See LIBRARY —-- « IFE. '

It is important to understand that while in the console
communication loop, at PAUSE or with unterminated text displayed, the
only means of communication is through the console typewriter; field
switches may not be used. Direct manual control may be exercised at
'HALT', obtained by issuing the ‘'halt' CONTROL command. At HALT the

machine stops; all registers are set as directed by the user.

SPIREL March, 1968

CONSOLE COMMUNICATION
2

@ Control Commands

Control commands are designated by single characters or keys.
In all cases, the command is displayed on the scope and printed.
The control commands are: :
halt -- The machine stops with 'HALT' displayed in U. Lights and
(uc) H(cr) registers (except U,R,S,T7,P2,B6) are set as at the last
halt, or as changed by intervening executions and register
commands. B6 is set to the top of the SPIREL B6-list
(*112).* Lights and registers may be reset manually at the
‘halt. If a control word is typed into U, pushing CONTINUE
causes the typed control word to be passed on to XCWD. If
'HALT' is left in U and there is paper tape in the reader,
pushing CONTINUE causes one control word from tape to be
passed on to XCWD and FETCHing causes control words on the
tape to be processed until the end of tape or a null con-
trol word is encountered. Pushing CONTINUE with 'HALT' in
U and no paper tape in the reader causes return to the
PAUSE. ' |
fetch -~ Control words are read from paper tape and passed to
(uc) F(cr) XCWD. Control returhs to the console communications loop

or when the end of tape or a null control word is encountered.

"index" The fetch command is equivalent to halt and FETCH with the
field switch. ,

cont -- A single control word is read from paper tape and passed

(uc) C(ct) to XCWD. Control then returns to the console communications
loop. The continue command is- equivalent to halt and
CONTINUE with the field switch.

tThis occurs only if Console (*173) was entered at the lst instruction
or from location 23. If entry is at the 2nd instruction or from

location 24, B6 is'left as it was at entry.

-

SPIREL March, 1968

CONSOLE COMMUNICATION
3

e SPIREL Commands

SPIREL commands provide a-convenient expression of control word
input to XCWD. Each command is input as text followed'by 't'(l) which
causes the command to be interpreted and the corresponding control
word to be passed to XCWD. The form of a SPIREL command text is a
- two-letter key followed by qualification infbrmation'in which

n denotes name or octal codeword'address

i,j,k denote octal numbers, complemented by minus sign
s denotes type or selected portion (?)
o denotes octal absolute address

f denotes format specifier

d denotes string of data words separated by commas(Z)

The SPIREL commands are:

key function - commands _
AS activate STEX AS : activate STEX
BD base down " BDn s '~ set address base down to n
' BD n¢i,...j s set address base down to
. . n. .
- l’.'.'] .
- BU base up BU - set address base up one level
_ BU i set address base up i levels
BZ base to zero BZ : set address base to zero
CB create a block CB i AT n s ' ‘create a block (no B-mods)
' c of zeroes i long with
codeword at n
CH check bounds CHn S set tag to check bounds on n
CM create a matrix CM i BY j AT n § - create a standard matrix of
zeroes i rows by j
columns with codeword at n
CO correct cO nii,...,j s =4 correct data words into array:
n, starting at word
n. .
l,.co,]) .)
CoOo s =4 correct data words into

locations o, o+l,...
(1)
(2)

carriage return or ';'

Form explained in later section

SPIREL March, 1968

key function
cv Create a vector
Ccw control word
DS deactivate STEX
ER erase

EX execute
ID insert/delete
IN initial index
MO monitor
MP map
PR

print

commands

cv

DS
ER
EX
EX

ID
ID
ID

IN

MO
MO

MO i

MO

MO

PR
PR

PR i

PR

PR

SPIREL September, 1967

i AT n s

ijkns

ns

n

néi

i AT n¥j s
i A" n s
n‘i s

i AT n s

n s
n*i,...,j s

AT nij,...,k s

oA

i AT o

nfs
n‘i,...,j f s

AT nij,...,k £ s

oA f s

iAT o f

CONSOLE COMMUNICATION
4

create a standard vector
of zeroes i long with
codeword at n

send control word with
N field=i, WXYZ field=j
R field=k, F field=n
or null with name n to
XCWD

deactivate STEX

erase array with code-
word at n

execute program with code-
word at n

execute n starting at
word i

insert (i>0) or delete
(i<0) |i| words at n.

insert (i 0) i words at
end of n

delete word n. and all
following

set initial index of n to i

monitor all of n

monitor word n, .

. . lreees]

monitor i words in array
- n, starting at word

. P

monitor one word at
location o

monitor i words starting
at location o

map STEX domain

print all of n

print word n, .
’-.0'3

print i words in array n,
starting at n.
J,.'..'k

print one word at location
location o

print i words starting
at location o

CONSOLE COMMUNICATION
5

key function commands

where f blank causes printing in decimal
f = O causes printing in octal
H causes printing in hexad
P causes printing in program format

PU punch PUn f s punch all of n

PU n‘i,...,j f s punch word n, 3

. ,...'

PU i AT n¢j,...,k £ s punch i words in array n,
starting at word

n

. Jreee,k
PUoAf s punch one word at
location o
PU i AT o £ punch i words starting

at location o

where f blank causes punching in hexads with checksum
f = O causes punching in octal
H causes punching in hexads
Z causes punching of space-taking control
words only

RE reorganize RE reorganize STEX domain
ST ri S i -
- print 51 §$ U Bgiﬁg %%ér9£ ?gog?tive)

portion of ST-VT

ST i AT j print i words of ST-VT
starting at relative
location j

TO set.Egé 0 T* n s ' set tag on all of n
Tl set tag I ™ nbi,...,j s set tag on word n; .
. 7oy
T2 set tag 2 T* i AT n‘j,...,k s set tag on i words in
T3 set tag 3 array n, starting at
TR set tag to trace word nj X
— 1 ey
T* o A s set tag on location o
T* i AT o set tag on i words

. starting at location o
where * = 0,1,2,3, or R

SPIREL September, 1967

' CONSOLE COMMUNICATION
6

® Register Commands

Register commands cause machine registers to be loaded. Each

command is input as text followed by 't' which causes the command

to be interpreted and the specified register set. The form of a

register command is

R=4d

where R is the register name and d denotes a single data word

(form explained in later section).

The registers which may be loaded and R for them are:

index registers CC(effects transfer),Bl,B2,B3,B4,B5

@ Special Options

(1)

(2)

Any SPIREL command of the form:

XX i AT n (tu....w)
where XX is any valid command, may be written:

XX n (tu...v) FROM j TO k
where j and k are program order numbers, etc. Thué the
need to know the actual number of words (in octal) being
operated on is eliminated. Note that j must be strictly
less than k. 'For example:

PR 5 AT VIi2 would become

PRV FROM 2 TO 7

a more natural form.
If a GENIE program is compiled with the SL12 option, any
internal variable name or statement label may be used
as a subscript in a SPIREL command. However if a GENIE
program was begun with RSEQ only statement labels may
be used.

For example: if A is an internal constant in
program F, one might say
' PR FlA
which will print the value of A. Or to trace the second
FOR loop of program F: .

TR F FROM ~FOR2 TO «RPT2
thus eliminating the necessity to know either order number

or how many words the loop contains.

SPIREL March, 1968

CONSOLE COMMUNICATION
' 1

e Magnetic Tape Commands

Magnetic tape commands provide communication with the magnetic
tape system with manual control or for reading of the system tape
and tape searching. (See separate section for details on MT System) .
Each command is input as text followed by 't' which causes the
command to be interpreted and obeyed.

The magnetic tape commands are:

command function

PL -read nearest PLACER

MT go to MT 'arrow' halt

MT i ' read block i (octal number) from MT system tape‘

Sp read nearest §E;REL

TS i - search (overlapped with éomputation) to block i (octal

numbers) on MT system tape

SPIREL March, 1968

CONSOLE COMMUNICATION
8

® Data Input Formats
k Data may be input from the console into registers (by the
register commands) and into absolute locations and arrays (by the
SPIREL command to correct)j Each data word specifies the content
of one computer word and may be input in decimal, octal, or al-
phabetic.form.
Decimal integers, as-
1968, -29
may contain up to 18 characters and none may be '.' or '*' or space.
Decimal floating point numbers, as
«l, -2.95678, -0.5%6, 91.7*-9, 5%3
may contain up to 18 characters, no spaces, and either '.'° or '*!
or both must appear.
Octal numbers, such as
+252525, +01.01000.00.4001.77765, +10, +3120.0000.00135
may contain up to 18 digits after the '+' (which designates octal)
and not including any '.' which may be used as a spacer. Leading
zeroes are assumed if fewer than 18 digits are given.
Alphabetic words, such as
A BC DEF,* 123X YZ*
may contain up to 9 characters after the initial '*° (which designates
alphabetic) and not including the final '*', The final '*' may be
omitted if the word ends the command.b Trailing spaces are assumed
if fewer than 9 characters are given.

TThe number data words is found by actual count and any other number
is ignored. For complex arrays or locations the data string is split
in half, (the first half real and the second half imaginary), and the
number of complex pairs is half the number of single words.

SPIREL September,’l967

CONSOLE COMMUNICATION
9

e Type Format (s)

The s type format specifier may be blank, R, I, or C. Blank
means to determine the type, real or complex (double), and perform
the operation accordingly. (Complex can only be implied if a name
~is on the symbol table.) R (real) and I (imaginary) mean perform
the opefation on that half of the complex named location or array.
C (complex) means imply complex type on the name which causes both
real and imaginary parts to be operated on. When a CO (correct) is
used and complex may be implied, refer to page 8, Data Input Formats,
for details. ‘

o Mode Format (f)

A — absolute. If referring directly to a core address and not

a name on the symbol table the A specifier must be used
if the memory location is not to be taken as the location
of a codeword, from which an array would be printed;

TH — hexad (BCD or literai)

To — octal

D — decimal

P — program (only for print)

(1) REFERENCE MADE TO SYMBOLIC NAME NOT ON SYMBOL TABLE

TMeaningful only with print and punch command.

SPIREL March, 1968

A

USE OF SPIREL

Normal Running

The procedure for running with SPIREL is usually as follows:
1) load SPIREL from magnetic tape
2) load private programs and any data which may be outside
the STEX domain from paper tape
3) if data is to be loaded before execution, activate STEX
with the control word
00000 3120 0000 00135
to pack all items previously loaded and relegate all

free storage to dynamic allocation by STEX -- then
load data
4) position "run tape" which contains control word to start

execution, any data to be read under program control,
and perhaps control words for further SPIREL operations

5) CONTINUE to start system running; if STEX has not been
activated, first execution will do so -- pack all items
kpreviously loaded and relegate all free storage to
dynamic allocation by STEX

SPIREL July, 1967

MR

USE OF SPIREL

2
¢ Input Paper Tape Formats
The SPIREL read control words designate the read mode to be
employed in reading the pertinent data from paper tape, For each

read mode there is an appropriate punch format for the data on
paper tape.

The octal format (y=0) prescribes that each word consist of
exactly 18 octal digits and that each word be preceded by a "spill
character", usually a 'carriage return' punch. Octal tapes may be
punched manually on the flexowriter. Also, a punch control word
with y=0 produces octal format on paper tape, but this is ineffi-
cient use of paper tape since only three channels are utilized.

The hexad format (y=1) prescribes that each word consist of
exactly 9 hexads and that each be preceded by a "spill character",
usually a 'carriage return' or 'tab' punch, The hexad format
utilizes all six data channels on paper tape and is equivalent to
the octal format at twice the density. Hexad tapes are usually not
punched manually on the flexowriter but are easily produced through
SPIREL with a punch control word in which y=1.

The hexad with tag and checksum format (y=4) is produced only

by a SPIREL punch control word with y=4. For example, output tapes
from the assembly program and the compiler are in this form. The
advantages of.this format over the plain hexad format are implied
by the name:
e Tags on words are represented on paper tape and reproduced
when the tape is read.
® A sum over all words is formed as the tape is punched and
represented on the tape. This sum is recomputed when the tape
is read and the computed sum is compared to that punched on the
tape. This provides a check on both punching and reading.
The format for one word consists of 9 hexads and one tag triad per
word, where tag representations are
1 for tag 1
2 for tag 2
3 for tag 3
4

for no tag

USE OF SPIREL
2.1
A spill character (25) is always punched before the data.
The physical format of the punched tape is shown below.

“~spill character (25)

® 1st word 2nd- last | checksum
® []]
(9 hexads) |®] word word ® (9 hexads)
®
lst word tag} last word tag
e.g. 4 = tag 0 e.g. 2 = tag 2

The high density hexad with tag, parity, and checksum format

(y=5) is produced only by a SPIREL punch control word with y=5.

The high density is obatined by not punching null hexads and is
preceeded by two hexads of code, tags, and parity. Errors can be

more readily detected since the total odd parity on the word, its tag,
and the code is punched with each word. A spill character (26) is
always punched before the data which is followed by the usual checksum.
Tag 0 is punched as 0 and is added as a 0 to the checksum.

The code in the first two hexads of every word show the position
of the non-null hexads in the original word in order to read the data
back in. The 0's in the nine bit code show the position of the null
hexads. Thus the number of hexads punched is the number of 1l's in
the code. The tapes punched in this format are virtually impossible
to read by hand. The physical format of the high density punched
tape is shown below.

spill character (26)
¥ e

2 hexads for code, tags, and parity

® non-null last checksum
: hexads of word word (9 hexads)
i ist word
p = odd parity bit 7th jhole
xx = tag value p 4
(0 € xx < 3) X 5
1 thru 9 = code bits f g
’ 2 8
3 9

SPIREL September, 1967

USE OF SPIREL
3

The words with tag are not separated by any "spill characters" but
are immediately adjacent to each other. A set of words punched
with a single punch control word is preceded by a single "spill
character' and followed by the checksum, one hexad word which is
the fixed point sum of right half-word plus left half-word plus
tag representation for all words in the set,

The decimal format (y=3) for a single word depends on the in-
ternal representation desired for the number. Tapes in decimal for=-
mat may not be punched by SPIREL, but this is the format most fre-
quently utilized for manually prepared data input tapes. A set of
decimal words to be read due to the execution of a single read
control word with y=3 is begun with a 'lower case' punch., Spaces
and case punches are then ignored, and a punch other than one of

0123456789 .+ =-¢e¢f ¢t *
terminates a number which is being read. The character punched
after each number to terminate it is most frequently a 'carriage
return' punch. 1In the particular formats which follow, the letter
d stands for a decimal digit, one of
01234567 829
The punches 'e' and '#*! may be used interchangeably. If a decimal
point is punched in representing a number, it may begin or end the
number, The particular decimal formats are as follows:
integer 4D of no more than 14 decimal digits, with tag
G=1,2,3,4. G=1,2,3 causes the number to be stored with
tag 1,2,3. G=4 causes the number to be stored without
changing the tag in memory.
+dd dddtG

~
D l——no tag if this field omitted

+ understood if no sign present
The decimal point is assumed to be to the right of the
least significant digit punched and at the right end of the

machine word. Integer arithmetic is to be employed.

USE OF SPIREL
4
. ; +P -78
floating point +Dx10 » in absolute value between 10 and
1074, with tag 6=1,2,3,4

P=0 understood if this
, field is omitted

+dd**"dd.dd" " *ddéxppte

—V" ~

'
D P l
no tag if this

field is omitted

+ understood if
no sign present

Decimal digits in D beyond the 14th are ignored. Floating
point arithmetic is to be employed, The floating point
form is recognized only if D contains a decimal point or
if the field e+pp (or #*tpp) appears.

fixed point fraction ﬂ:DXlO:I:P in absolute value 22-47 and<1,

with tag G=1,2,3,4

this field may
‘ not be omitted

° ™
+dd*°°dd.dd"* " *ddF+ppt
— a4 -~ \PBV

G
D P I
no tag if this

field is omitted

+ understood if
no sign present

Decimal digits in D beyond the 14th are ignored. The rep-
resentation in the machine assumes that the decimal point is
at the left end of the mantissa., Fixed point arithmetic is

to be employed,

USE OF SPIREL
5

e Tracing

Tracing is a means of observing the execution of instructions.
This facility is provided in the SPIREL system. The instructions
to be traced must bear a tag 3. Mode light 3 and trapping light
6 must be turned on prior to a run in which tracing is to occur;
this is the normal ML, TL configuration when SPIREL is initially
loaded. The trace is provided by the SPIREL system program %13
(TRACE) .

Trace options exist to obtain arithmetic register content
(U,R,S) in either octal or decimal and B-register content
(Bl1,...,B6,PF) in octal. For each tagged instruction the first
five fields of trace output are as follows:

(cc): address of the instruction relative to the first
word of the last program tagged with a tagset
control word

(cc'): address of the next instruction to be executed rela-
tive to the first word of the last program tagged
with a tagset control word; printed only for non-
sequential transfer

M"): the final address formed as a result of decoding
field 4 of the instruction

(ATR) : contents. of the arithmetic tag register (1,2, or 3)
after field 4, not after execution of the instruc-
tion; blank if the tag is zero

(TF'): T-flags, if they are on; printed as two octal digits,
the rightmost bit for T7, next for T6, etc.

(1): the instruction executed, formatted into fields

The arithmetic register trace then provides in octal or decimal:
(s): the contents of S as a result of execution of field
4 of the instruction, before the operation in
field 2 is carried out
(u'): contents of U after execution of the instruction

(R"): contents of R after execution of the instruction

And the B-register trace provides (B1l'), (B2'), (B3'), (B4'), (B5'"),

USE OF SPIREL
6
(B6'), (PF') === the contents of the seven B-registers after execu-
tion of the instruction,.

Mode Lights may be used at the console for selections of trace

options.

To erase the tag from each instruction traced, turn on ML15,

To produce trace output only if a branch of control occurs, turn
on ML1l4,

To obtain B-register trace only, turn on MLI13,

To obtain arithmetic trace in decimal, turn on ML10; this op-
tion is effective only if T-flags are not present on T4, T5,
and T6; this option uses the SPIREL print matrix (%*116) and
should not be used on programs which are doing set-ups for
printing.

To obtain both arithmetic and B-register trace (two lines per

instruction traced) turn on ML9 with ML13 off,

The trace procedure saves all machine registers, even the T-flags,
except S and P2, If the contents of S is to be preserved from one
instruction to the next, neither may be traced, Orders which set
P2 or assume that P2 in unchanged may not be traced --- with one
exception, that an order which sets P2 to be used only as a trans-
fer address may be traced, but subsequent orders which assume an ‘
unchanged P2 may not be traced, This exception allows transfers
to the SPIREL programs %136(SAVE) and %137 (UNSAVE) to be traced,
but these routines themselves may not be traced,

An order to be executed in the repeat mode may be tagged for
tracing only if the‘order which causes entry into the repeat mode

is also traced and is of the form

MLN
or SBi ,ERM
or ABi ,ERM

and the instruction executed immediately after the repeated in-
struction is also traced, The trace output for the traced repeated
instruction consists of one printed line in which (CC), (ATR), (I),
and (S) pertain to the first execution and (CC'), (TF'), (M'), (U"),
(R'), and (Bi') pertain to the last execution,

SPIREL February, 1967

USE OF SPIREL

6.1
® Arithmetic Error Monitor

While running with SPIREL the following arithmetic error
conditions may be monitored: mantissa overflow, exponent over-
flow, and improper division. To monitor a condition the correspond-
ing trap light must be set on: respectively MOV, EOV, and +. If
an error which is being monitored occurs, a message is printed.
Information provided includes the error made, the location of the
instruction generating the error, and the name or codeword address
of the program containing that instruction.

SPIREL November, 1966

USE OF SPIREL
6.2
@ Block Bounds Check

While running with SPIREL, addressing into arrays may be monitor-

ed to check that references are not made outside the bounds of the
array. This is accomplished by placing a tag 1 on the primary code-
word for the array and running with trapping light 13 on, as when
SPIREL is initially loaded. Checking is provided by the SPIREL
program *20 (CHECK) .

If a tag 1 is encountered in indirect addressing in field 4 of
an instruction, the program CHECK gets control through a hardware
trap. The index value k at each level of indirect addressing is then
checked to see that

i<k<i+n
where i is the initial index and n is the length in the codeword for
that level. 1If an error is detected, information is printed which
includes the array name, index values at each level, the location of
the offending instruction, and the name or codeword address or the
program containing that instruction. Storing out of bounds is in-
hibited; otherwise, the checked instruction is executed normally.

To successfully check bounds on an array, the tag on the code-
word must be preserved during execution. All SPIREL and library
routines and all Genie-generated code preserve tags on codewords.
Preservation in private code is the responsibility of the user.

The program CHECK uses control trapping on tag 1 after execution
of the checked instruction, but this trapping facility may simul-

taneously be applied to non-checked instructions by the user.

SPIREL November, 1966

USE OF SPIREL
7

e Diagnostic Dump

If a program stops unexpectedly, the contents of machine regis-
ters, the codeword region, the Bé-list, and a map of the STEX domain
may be printed by using the diagnostic dump, SPIREL system program
*120, with entry prefix in machine locations 00027-00036 (octal).
The procedure for obtaining this output is as follows:

--Record, mentally or otherwise, the contents of CC as displayed
on the console if the instruction at which the stop occurred
is of interest.

—-Type 00027 (octal) into CC and FETCH to pass control to the
diaghostic dump routine.

——A programmed halt occurs within the diagnostic dump routine.
Type the recorded (CC) into U and CONTINUE; or simply
CONTINUE if (CC) was not recorded.

—--Diagnostic dump output is provided on the printer:

Register contents, (CC) and (I) given as 0 if nothing was
typed into U at the halt.

Codeword region, with SPIREL address base shown in heading
output.

B6-list.

STEX domain map.

—--Control is returned to the loop for console communication with
SPIREL. .Registers are restored as follows: T-registers
without flags except T7, B-registers except CC and B6 and PF,
special purpose registers except P2, all lights. The SPIREL
address base is set to zero, and B6 is set to the first word
of the B6-list. The user may continue to use SPIREL. '

SPIREL May, 1967

USE OF SPIREL

8
e High-Speed Memory Dump

If a program fails in such a way that the SPIREL system can-
not be reached, a printed record of the memory configuration at
the time of the failure is occasionally of assistance in debugging.
For this purpose a self-loading High-Speed Dump tape is available
at the console,.

To load the tape, position the Dump tape in the reader, depress
RESET, then LOAD. Do not CLEAR., The program loads at 57400. The
contents of machine registers are printed out, and a halt occurs with

(U): 57400 0000 0000 0010
Pushing CONTINUE causes dumping of the contents of memory, from
location 10 to location 57400. To change this dump range type into
U at the halt type the new upper bound in the first five traids and
the new lower bound in the last five traids.

The dump output is printed with four full words per line and
the address of the first word at the left of the line. Each full
word is split into five fields, corresponding to the fields of
the machine instruction. If a word is tagged, an a, b, or c
(corresponding to tag 1, tag 2, or tag 3) is printed immediately

to the right of the tagged word,

Use of SPIREL
9
® Error Messages in SPIREL

There are no error halts in the SPIREL system. Nearly all error
conditions result in an error message being printed and a return
through location 24 to the console communication loop. The print-
ing results in a minimal disturbance to the system so that the source
of the error can better be determined.

The message is printed by ERPR *172. Where possible ERPR
determines the program and order number where the error originated
and prints this information with the message. The possible error
messages are listed below and are self explanatory:

1. CHECKING ERROR ON PAPER TAPE INPUT,

2. INSUFFICIENT SPACE IN MEMORY FOR READ,

3. INSUFFICIENT SPACE IN MEMORY FOR INSERT,

4. IMPROPERLY FORMATTED DECIMAL NUMBER,

5. ORDER TRACED WHICH REQUIRED P2 SAVED,

6. ATTEMPT TO SET ADDRESS BASE TO FIFTH LEVEL,

7. ATTEMPT TO SET ADDRESS BASE BACK TOO MANY LEVELS,

8. ATTEMPT TO SET ADDRESS BASE BACK WHEN SET TO ZERO,
9. ATTEMPT TO TAKE BLOCK OF ZERO LENGTH,

10. ATTEMPT TO EXECUTE NON-EXISTENT PROGRAM,
11. ATTEMPT TO SET ADDRESS BASE TO NULL CODEWORD,

12. ATTEMPT TO SET ADDRESS BASE PAST LAST CODEWORD LEVEL,
13. REFERENCE MADE TO SYMBOLIC NAME NOT ON SYMBOL TABLE,
14, SYMBOL TABLE-VALUE TABLE IS FULL,

15. IMPROPER MEMORY CONFIGURATION.
It is not suggested to use the system after any of the above

error conditions occur without first rectifying the error.

SPIREL July, 1968

USE OF SPIREL
10
e Symbol Table-Value Table Print Format
The SPIREL control word
nnnnn 45y0 rrrr 00000

provides parallel printing of corresponding Symbol Table (ST) and
Value Table (VT) entries, These "tables'" are SPIREL Ssystem standard
vectors *113 and %122 respectively. The output is in seven fields
as follows:
(1) relative address in vector, i.e., index
(2) symbol from bits 1-30 of ST entry
(3) bits 31-39 of ST entry in octal:
000 if VT entry contains a scalar
400 if VT contains a codeword
(4) address field of ST entry, giving the absolute
address of the corresponding VT entry in octal
(5) tag on ST entry: O if item is in context, 1 otherwise
(6) VT entry: decimal value associated with name in ST
entry if it is a single-word quantity; codeword
(in octal) for array associated with name in ST,
empty if the array does not currently exist,
(7) tag on VT entry
nnnnn 46y0 rrrr fffff
provides parallel printing of the ST-VT whose ST codeword is at
fffff. The VT codeword must be in the memory location immediately

following the ST codeword.

SPIREL July, 1968

\ ’/?,

USE OF SPIREL
11

e SPIREL System on Magnetic Tape

Copies of the SPIREL system for 24K memory are located on the
MT System magnetic tape. When one of these copies is read into the
memory, control is in the console communications loop. The Mode
and Trapping Lights are set to permit tracing of tagged instructions
and block bounds checking. Loading of "private" blocks will begin

at about location 10000 (octal) and may extend to location 57400
(octal).

SPIREL May, 1967

5lg

STORAGE CONTROL

@ Linear Consumption by TAKE

The simple storage control algorithm in the SPIREL system is
called TAKE (in program *135). TAKE is given all of inactive storage
as its domain when STEX is deactivated. TAKE operates on the princi-
ple of linear consumption of memory. A pointer to the first inactive
word of storage, address L, is maintained. A request for M words
is satisfied by an allocation of M words at L, and L is incremented
by M. This is an irreversible procedure in that space, once all-
ocated, may not be reclaimed for use in later allocations. L is
stored in the address field of STORAG, location 100 (octal).

The upper bound on allocatable storage is specified by the
contents of location 102 (octal):

LASTEX=last allocatable address +1
In the standard SPIREL only the magnetic tape system communication
routine is above allocatable storage. In producing a SPIREL (see
System Duplicator section) any upper bound may be specified.

TAKE may be utilized "privately" to obtain blocks of memory in
a way compatible with allocation by the SPIREL system. On entry to
program *135, (B2)=number of words desired. On exit (Bl) =address
to first word of block allocated. If the request for a space can-
not be satisfied, (Bl)=0 on exit.

SPIREL July, 1967

i

3/s

STORAGE CONTROL

2
® Activation of STEX and its Domain

The SPIREL Storage Exchange algorithm STEX (in *135) is

activated by the control word
00000 3120 0000 00135

If L is the address of the first word of inactive storage at the time
STEX is activated, the STEX domain is [L, (LASTEX)-1], all inactive
storage. The address of the first word in the STEX domain is stored
in the address field of FIRSTEX, location 101 (octal). Deactivation
of STEX for recourse to.the TAKE system is explained in a later section.
STEX provides optimal use of storage because

) blocks may be freed explicitly, making such space as be-
comes logically'unnecessary available for reassignment to
blocks logically required;

° blocks whose codewords are re-used to label new blocks

are automatically freed for re-use:

° if the total free space in memory is sufficient to satis-

fy a request for a block but the "first" free block (explained-

later) is not large enough, free space is automatically concen-
trated and the alloéation is made.
Any block may be freed at any time. Only if STEX is active and the
block is in the STEX domain will the space be available for re-use
in later allocations.

The first STEX activation in a fresh SPIREL has special effect
if it precedes the use of an execute control word. All memory in
use is first concentrated outside the STEX domain which is defined
as all free memory. Items loaded prior to this first STEX activa-
tion may be moved to fill gaps of free space.

FIRSTEX indicates whether or not STEX is active:

(FIRSTEX) null if STEX is not active
(FIRSTEX) not null if STEX is active
with exponent not null prior to first execute or
activate STEX control word
with exponent null after user activation

SPIREL May, 1967

STORAGE CONTROL
3

® Memory Configuration Generated by STEX

The domain of STEX is divided into active and inactive areas.
Each area is further segmented into blocks, not necessarily adjacent.
Each active block is labelled by a codeword. The first word of an
active block is not a part of the block from the user's point of
view; it is called the back-reference for the block and contains
in its address field the codeword address of the block. One inactive
block may be found from location 100, which contains the total number
of inactive locations in the memory in its first 15 bits and the first
word address of this inactive block in its last 15 bits. Each in-
active block contains in its first word the length of the block it
heads in the first 15 bits. The first word of an inactive block is
inactive in the sense that it may be activated just as any other
word in the block.

An illustration of the STEX memory configuration is given below:

— .
14« N4 codewords:
Ny ¢ M i Aymiy |
Cl
A1 I?l €2 My 1, Ay-iy |
C
NS 2 . Cy M, AiéA A3-13]
2 2
iTEX. 1,41 ¥,
omain ‘NZ STORAG
I, T 100 N1+EgiN3+N4 I]
N3
oy | STEX domain illustrated is of
3 _
+
N y length N1+N2+N3+N4+M1+M2+M3 3
37 3 FIRSTEX
o 101 I,
Ny LASTEX
2 102[I,+N,]

SPIREL June, 1968

STORAGE CONTROL
! 4

In general, the length of the STEX domain is given by

n m
K ==Z‘N. +-2:M. + m
1 J
i=1 J=1

where the domain is divided into n inactive blocks and m active
blocks. Note that K is a constant, determined at the time STEX is
activated, and K = (LASTEX) ~L, where L is the address of the first
word of inactive storage at the time STEX is activated.

The codewords that address the active blocks may be located
anywhere in the memory, but the blocks of every array must lie
wholly inside or outside the domain of STEX.

A duplicate codeword may exist for any array. Its existence
is indicated by a duplicate back-reference stored in the same word
as the normal back-reference but in the 15 bits adjacent to the
address field. Inactivating the duplicate will leave the array
unchanged and clear the duplicate. Inactivating the original code-
word will have the additional effect of clearing the duplicate.

If it is necessary to move a codeword for an active block, the
back-reference for the block must be appropriately altered. For
instance, when the block addressed through codeword A is activated
the back-reference for the block contains the address A; if (a) is
stored at B, back-reference for the block must be changed to B.

STEX offers many advantages for data storage control,vbut
programs may also be loaded into the STEX domain with a few re-
strictions. Since pathfinder settings are absolute and return is
not made through codewords, programs should not be moved in a memory
reorganization which STEX may have to perform. This possibility is
eliminated if programs are loaded before any space is taken for
data that may ever be inactivated. This rule should always be
followed.

SPIREL June, 1968

STORAGE CONTROL

5
® Use of STEX

Once activated, STEX may be used directly by the coder with entry

parameters
(Bl) = codeword address of block on which STEX is to operate,
(B2) = length of block.

STEX first tests the word addressed by (Bl). 1If this codeword is

not null, the storage addressed through this codeword to all sub-
levels is inactivated by STEX and all codewords are made null. If
the codeword is null, no inactivation occurs. Then (B2) is tested.
If (B2) # 0, a block of storage of length (B2) is activated with back-
reference to the address (Bl), the codeword at (Bl) remains null.

If the o0ld codeword at (Bl) had no a-bit and if sufficient in-
active storage is available in the high order locations adjacent to
the old first word address then the new FWA will be the same as the
old. Note that in the case of a new array of size less than or
equal to the old array addressed through the appropriate codeword
address, the user is assured that the freed space will be reused.
In any case (Bl) is set to the FWA of the block activated.

To take N locations to be addressed through codeword C, set
(Bl) = C, (B2) = N and enter STEX. All space formerly occupied by
array C will be inactivated and all associated codewords cleared.
Exit will be made with (B1l) = FWA of a new block to be addressed
through C and (B2) unchanged. The back-reference for the new block
is supplied by STEX. If the inactive area is not sufficiently large
to meet a request for space, exit is made with (B1l) = 0.

To simply inactivate memory addressed through C, enter STEX
with (Bl) = C and (B2) = 0.

SPIREL June, 1968

STORAGE CONTROL
6

Freeing a block is accomplished by inserting an inactive header

in place of the back-reference word. Activating a block is accomplish-

ed by obtaining space from the inactive block addressed by 100. 1If
the address portion of 100 is null, then a reorganization will occur
before activation. 1In this case all active memory is written to

the low address end of the STEX domain, leaving one inactive block

at the high address end. Space 1s then obtained from this new

(and only) inactive block. Reorganization will also occur if the
block addressed by 100 is not large enough to accommodate the request
for storage.

If reorganization occurs and SL14 is off, the message
REORGANIZATION is printed. If (Bl) = 0 on entry to STEX, reorganiza-
tion is performed and no space is allocated. A reorganization may
also be forced by the control word

00000 3130 0000 00135

When STEX is.used directly, the coder must generate his own
codewords. The alternative of taking space with a "read" control
word provides generation of codewords for the coder.

SPIREL June, 1968

STORAGE CONTROL
7
® Deactivation of STEX
The SPIREL Storage Exchange algorithm STEX may be deactivated
by the control word
00000 3160 0000 00135
If STEX is not active, this control word has no effect. TIf STEX is

active, the following procedure is carried out:
--The STEX domain is reorganized so that all inactive space is
collected in a single block at the high end of the domain.
--The TAKE algorithm is reinstated.
--STORAG is set so that linear consumption will commence from
the beginning of currently inactive storage, and FIRSTEX is
cleared to indicate that there is no STEX domain established.
Two points should be carefully noted:
--Deactivation of STEX involves reorganization, so absolute
addresses in the STEX domain may become meaningless as a re-
sult of this bperation. In particular, a program in the STEX
domain should not ask for deactivation of STEX.
--Items in the STEX domain at the time of deactivation will not
be in the domain if STEX is subsequently reactivated. Each
activation creates a new empty domain beyond all storage in use.
It is difficult to imagine an application of STEX deactivation
while a system is running. But a very useful application is in
maintenance of a system of programs. A collection of system items
may be loaded with STEX active and kept on magnetic tape as a
master. For running, STEX may be deactivated prior to loading
further. But items may be deleted, added, and changed in the
master without any wasted space.

SPIREL July, 1968

SYSTEM COMPONENTS

® Vectors, Print Matrix, B6-List

Any component which is of use to the individual programmer is

denoted by A in the margin next to its name,

A %112, B6-List, LISTB6
Length: 200 (octal)

Function: This block is not B-modified., The area is used
for working push-down storage, called the B6=-list. Index regis-
ter B6 is initially set to point to the first word in the block,
The B6 setting 1is ﬁéintained dynamically as a pointer to the
next word in the block which may be used for push-down storage.,
%113, Symbol Table, ST

Length: 400 (octal)

Function: This is a standard Bl-modified vector. Each
entry contains the name and descriptive parameter for an item in
the total system being run, an item which is identified symboli-
cally rather than by its address or codeword address, The paral-
lel entry in the Value Table, %122, contains the item or code-=
word corresponding to the item name in the Symbol Table., The
index of the last active entry inm the Symbol Table is dynami-
cally maintained at location 117,

o *116, Print Matrix, PM

Length: 200 (octal)

Function: This block is not B-modified. The address of
the first word of %116 is used as the address field in all SPIREL
print orders, except in octal tracing. The print matrix is al-
ways cleared immediately after SPIREL-controlled printing,
%122, Value Table, VT

Length: 400 (octal)

Function: This is a standard Bl-modified vector. Each
entry contains the value of or the codeword for an item in the
total system being run, an item which is identified symbolically

rather than by address or codeword address, The parallel entry

SPIREL November, 1966

T

SYSTEM COMPONENTS
2

in the Symbol Table, *113, contains the name and descriptive
parameter for the item. Thé index of the last active entry in
the Value Table is dynamically maintained at location 117.
*125, Base Address Vector, ADDR

Length: 6

Function: This block is not B-modified. It is used by
SPIREL to dynamically maintain a record of all levels through
which the base address has been set down and to compute effec-
tive addresses from those specified in control words.

*174, Text Vector, TEXT

Length: 14 (octal)

Function: This is a standard Bl-modified vector. It
contains the current text supplied by *171, SAMPLE, which
*173, CONSOLE operates on. The text is in the form of

printer hexads.

SPIREL January, 1968

SYSTEM COMPONENTS
3
® Programs
Since programs *135(STEX), *136(SAVE), and *137 (UNSAVE)
are necessary components of the SPIREL system, they are not included
in the lists of supporting routines.
*13, Trace, TRACE
Length: See SYSTEM DUPLICATOR, P. 4.
Function: The SPIREL trace program receives control through

hardware trapping due to tag 3 on instructions, both before and
after execution of the instruction. Information for each line of
trace output is derived, formatted, and printed by this program.
Registers Not Preserved: P2,S
Supporting Routines: ARITH(*14), SETPM(*127), PM(*116)
for decimal option only
*14, Arithmetic Error Monitor, ARITH
Length: See SYSTEM DUPLICATOR, P. 4.
Function: This program receives control through hardware

trapping due to exponent overflow, mantissa overflow, or im-
proper division. The type and source of error are printed.
Registers Not Preserved: P2,S
Supporting Routines: SETPM(*127), PFTR(*147)
*20, Check Block Bounds, CHECK.
Length: See SYSTEM DUPLICATOR, P. 4.
Function: This program receives control through hardware

trapping due to tag 1 on codewords as they are used in indirectly
addressing. The values of indices on each level of indirect
addressing are checked for being legal. 1If an error is detected,
the source of the error, the array addressed, and index values
are printed.

Registers Not Preserved: P2,S
Supporting Routines: TRACE(*13), SETPM(*127), PFTR(*147)

SPIREL January, 1968

SYSTEM COMPONENTS
3.1
*110, Print Control Word, HDPR
Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program is used in the SPIREL system for
online control word monitoring when SL14 is off.

Supporting Routines: SETPM(*127)
*111, Process Matrix, MATRX

Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program is used in the recursive applica-

tion of SPIREL as explained elsewhere.

Supporting Routines: all SPIREL components, but only those
necessary to perform the specified operation on any particular
utilization; see section on SPIREL Component Linkages.

*120, Diagnostic Dump, DIADMP
Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program is used in the SPIREL system when

control is passed to location 00027 (octal). The diagnostic
dump formats and prints the contents of the fast registers as
exXplained in the section on Use of SPIREL.

SPIREL' January, 1968
?TREL

SYSTEM COMPONENTS
‘ 4

*126, Execute Control Word, XCWD
Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program is the nucleus of the SPIREL
system. It interprets control words and may use other system
programs to carry out specified operations. External communi-
cation to XCWD from paper tape and from the console is provided
within the system and is explained elsewhere. For intérnal
communication, control should be passed to the second word of
*126 if the SPIREL operation specified is to be performed on a
named item; otherwise control is given to the first word of
*126. '

Input: (T7)=SPIREL control word to be executed.

(R)=5 left-adjusted printer hexads (with '25'
fill if necessary) for name of item to be operated on if control
is given.to %126 at the second word; in this case F in the con-
trol word in T7 is empty.

Registers Not Preserved: none (and SPIREL cannot operate on
fast registers)

Supporting Routines: all SPIREL components, but only those
necessary to perform specified the operation on any particular
utilization; see section on SPIREL Component Linkages.

*127, Set Up Print Matrix, SETPM |

Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program will format a single word into the

print matrix for printing at a specified position on a line if
appropriately instructed., It will print the contents of the
ﬁrint matrix and clear the print matrix if appropriately in-
structed. Common usage of SETPM for the printing of a single
line consists of an entry for each word of information to be
printed and an entry'to have the collection printed and the

~print matrix cleared. Thus, SETPM provides a facility for com-

SPIREL January, 1968

SYSTEM COMPONENTS
5

position and output of lines on the printer.
Input: (T7)=information to be set up in print matrix,
if any
(Bl)=parameter which controls operation of SETPM
(B3) =print position, 1-108 (decimal) at which
field set-up should begin, if relevant
(print position < 0 is permitted, in which case nothing set up

to the left of position 1 is printed)

Operation: on the basis of (B1l) on entry:

T(B1)<0, octal format of last 5 triads of (T7)
at print position (B3), and increment (B3) by 5

entry (B3)—1 Jexit (B3)

00000
1~5 octal digits,

filled with leading blanks

T(Bl):O, octal format of (T7) in 18-position
field at print position (B3), and increment

(B3) by 18
entry (B3)—1 exit (B3)
egooooooooooooooog}

1-18 octal digits,
filled with leading blanks

T(B1)=1, hexad format of (T7) in 9-position field
at print position (B3), and increment (B3) by 9
entry (B3)-1 ‘éxit (B3)
hhhhhhhhh
9 hexads

(B1)=2, print and clear PM, (B3) set to one and
(T7) meaningless

T(B1)=3, general long decimal format of (T7) in
18-position field at print position (B3), and
increment (B3) by 18

SYSTEM COMPONENTS
6

floating point --
entry (B3)$ exit (B3)
(-)éigddddddddqgeidd$

— ~
12 decimal exponent,
digits 2 decimal digits

sign of number,
blank if positive

sign of exponent

fixed point =~-

entry (B3)‘ exit (B3)¢
AA(-)SEgddddfddddddi
2-16 1-15 decimal digits
blanks

sign of number,
precedes leading digit,
blank if positive

T(Bl):A, short decimal integer format of mantissa
of (T7) in 6-position field at print position
(B3), and increment (B3) by 6

entry (B3)—1 exit (B3)
(-)ddddd

1-5 decimal digits,
filled with leading blanks

sign of number,
precedes leading digit,
blank if positive

T(Bl):S, general short decimal format of (T7) in
12-position field at print position (B3), and
increment (B3) by 12

floating point --
entry (B3) exit (B3)
+
~-)d.ddddd *+dd
()¥—v——/ ~

6 decimal exponent,
digits 2 decimal digits

sign of number,
blank if positive

sign of exponent

SYSTEM COMPONENTS
7

fixed point -~-

entry (B3)‘ exit (B3)

(-lgdddddddddd*

v
1-11 decimal digits),
filled with leading blanks

sign of number,
precedes leading digit,
blank if positive

T(B1)=6, octal instruction format of (T7) at print
position (B3), and increment (B3) by 22

entry (B3)—1 exit (B3)

eO 00000 00 O0O0OO 00009

18 octal digits
with 4 blanks

T(B1)=10 (octal), format of (T7) on basis of (B2) at
print position (B3):

(B2) <

(B2)

i]

(B2)

I

0

as for (B1l) < 0, short octal but with
leading zeroes printed (no leading blanks)

as for (Bl) = 0, long octal but with
leading zeroes printed (no leading blanks)

as for (Bl) = 1, hexad but with leading
zeroes deleted (filled with leading blanks)

J‘rprint and clear PM after set-up if SETPM entered at second word.

Registers Not Preserved: T7

Supporting Routines: BINDC(%*155) when decimal formatting

is used,

*#130, Find Symbolic Name, SMNAM

Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program is used in the SPIREL system for

operations which are performed on items with symbolic names.

Supporting Routines: TLU(*176)

A *131, Print Date and Time, DATIME

Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program reads the digital clock through

SPIREL January, 1968

SYSTEM COMPONENTS
8

*132 (CLOCK), sets up the l4-character date and time in the
print matrix, and prints the contents of the print matrix if
requested to do so. It is used by XCWD to perform "obtain date
and time'" operations; it may also be used directly.
Input: T7=00000 00p0 rrrr 00000,

where p=0 causes set-up only

p=1 causes set-up, print, and clear

r specifies the print position of the date

r=0 causes set-up for 8 1/2 x 11" pages

(first character in print position 48)

Registers Not Preserved: T7
Supporting Routines: CLOCK(*132), SETPM(%*127)
A *#132, Decode Clock, CLOCK

Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program interrogates the digital clock and
calendar in the machine and translates the coded time and date
into printer hexads., The time is based on a 24-hour clock.
CLOCK is used by DATIME(#*131).

Input: none ‘

Output: Printer hexads in T5, T6. For example, if CLOCK
were executed at 9:45 pm on May 17, 1964, the CLOCK output would
be:

T5=05/17/64_
l T6=21.45_ _

where denotes "space".

' Registers Not Preserved: B2,T4,T5,T6
Supporting Routines: none
%133, Punch Control Word, PCNTRL
| Length: See SYSTEM DUPLICATOR, P. 4.
Function: This program is used in the SPIREL system for

any punch operation executed with z even.

~Supporting Routines: none

SPIREL, January, 1968

SYSTEM COMPONENTS

9
*135, Storage Exchange, STEX
Length: See SYSTEM DUPLICATOR, P. 4.
Function: This program performs storage allocation as
explained in detail in the section on Storage Control.
Input: (Bl) =codeword address of array or block which

is to be freed or for which space is to be allocated; 0 if
reorganization is desired.
(B2)=1length of block to be allocated; 0 to
only free space.
Output: (Bl) =address of first word of block allocated;
0 if allocation requested and insufficient space available;
same as entry if no allocation is requested.
.(B2) same as on entry.
Registers Not Preserved: none
Supporting Routines: SETPM(*127)
*136, Save Fast Registers, SAVE
Length: See SYSTEM DUPLICATOR, P. 4.
Function: This program uses 12 (octal) words on the

B6-list for storage of all fast registers and a word denotlng
the registers to be saved.

Input: (R), bits 46-54, to specify registers to be saved:
45 46 54
/A : T4|T5|T6}|B1|B2|B3 B4|B5| PF

not meéningful to SAVE
The registers are stored on the B6-list in the order shown from
right to left (i.e., PF saved first), and then (R) is itself
storéd on the B6-list. Notice that (R)=-Z on entry causes all
nine registers to be saved.

Use: Control should be passed to SAVE by a TRA (not
a TSR) instruction which may be traced.

Registers Not Preserved: none

Supporting Routines: none

SPIREL January, 1968

SYSTEM COMPONENTS

10
A *137, Unsave Fast Registers, UNSAVE
Length: See SYSETM DUPLICATOR, P. 4.
Function: This program complements SAVE., It obtains from

the B6-1list the (R) stored by the complementary execution of
SAVE, restores all fast registers designated to be éaved, and
decrements B6 by 12(octal). The T-flags are cleared by UNSAVE.

Use: Control should be passed to UNSAVE by a TRA (not a
TSR) instruction, UNSAVE returns via (P2) on entry, and the
instruction

TRA *137

may be traced,

Registers Not Preserved: none

Supporting Routines: none
*140, 1Insert or Delete Space, DELETE

Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program is used in the SPIREL system for
the operation of inserting or deleting words in blocks,

Supporting Routines: TAKE or STEX(*135) for insert
%141, Change Initial Index, CHINDX

Length: See SYSTEM DUPLICATOR P. 4.

Function: This program is used in the SPIREL system for

the operations of changing the initial index of a block and load-
ing cross reference words of programs,

Supporting Routines: TLU(*176) for programs with cross
references
*142, Tagset, TAGSET

Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program is used in the SPIREL system for the

operation of tag setting.

Supporting Routines: none

SPIREL January, 1968

SYSTEM COMPONENTS
10.1

*143, Convert from dec .mal, CNVRT
Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program is used to convert from a general

decimally formatted number to binary.

Input: T6, T7 contain printer hexads representing decimal
number. R = number of hexads. Hexads are assumed
to be left justified.

Error Message: IMPROPERLY FORMATTED DECIMAL NUMBER

Output: Binary number in T7.

Resisters Not Preserved: X, T7.

Supporting Routines: PWRTN(*152)

SPIREL January, 1968

SYSTEM COMPONENTS
11
*144, Print, PRINT
Length: See SYSTEM DUPLICATOR, P. 4.
Function: This program is used in the SPIREL system
for all print oberations.
Supporting Routines: SETPM (*127)
*145, Punch, PUNCH
' Length: See SYSTEM DUPLICATOR, P. 4.
Function: This program is used in the SPIREL system
for all punch operations.
Supporting Routines: CLOCK(*132); PCNTRL(*133) for
I punching tapes with control words (i.e., with z even);
PUNCHK(*157) for punching tapes in the hexad with tag and
checksum format; BINDEC (*155) for punching decimal tapes.
*146, Execute Control Word Sequence, XCWSQ
l Length: See SYSTEM DUPLICATOR, P. 4.
Function: This program is used in the SPIREL system

for the operation of executing a control word sequence.
Supporting Routines: all SPIREL components, but only
those necessary to perform the operations specified by the
control words in the sequence being executed; see section
on SPIREL Component Linkages.
*147, PF Trace, PFTR
Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program is used to determine relative
value of PF in a program with named or numbered codeword.
Supporting Routines: none
*150, Map STEX Domain, MAP
, Length: See SYSTEM DUPLICATOR, P. 4.
| Function: This program prints the structure of all
arrays in the STEX domain, i.e., codewords.
l Supporting Routines: XCWD(*126) ,SETPM(*127).

SPIREL January, 1968

SYSTEM COMPONENTS

12
*151, Print Symbol and Value Tables, PRSYM

Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program is used in the SPIREL system
for the printing and punching of ST and VT in the special
format described elsewhere,

Supporting Routines: SETPM(#%127), CNTXT(*175)

*152, Conversion of Powers of Ten, PWRTN

Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program is used in the SPIREL system
for reading of decimal numbers from paper tape., Given the
floating point number P and the integer Q, this program
computes the floating point number N:leOQ.

Input: (T5)=signed floating point number P

(B2)=integer Q in one's complement form, less
than 75 (decimal) in absolute value
output: (T5)=Px10%, (PF)=0 if |Q|<75
(15)=0, (PF)=1 if |Q|=275
Registers Not Preserved: Bl, T4

Supporting Routines: none

%153, Multiple Read Decimal, MRDDC

Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program is used in the SPIREL systém
for the reading of data in decimal input formats from paper
tape., It may be used directly to read decimal numbers,
convert them as explained elsewhere, and store them.

Input: (Bl)=address at which to begin storing the

numbers read.
(B2)=number of numbers to read

Output: (Bl) same as on input

(B2)=0

SPIREL January, 1968

SYSTEM COMPONENTS
13
Error Message: IMPROPERLY FORMATTED DECIMAIL NUMBER
occurs if an improper decimal number is read, one which is
out of the range permitted for the format used.
Registers Not Preserved: none
Supporting Routines: PWRTN(*152)
*155, Binary to Decimal Conversion, BINDC
Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program is used in the SPIREL system for
conversion of a number from its internal binary representation
to a decimal representation in printer hexads. It may be used
directly for the same purpose.

Input: (T4) = number to be converted, fixed point integer
if exponent empty, floating point otherwise.

Output: (T4) , (T5) = number in decimal printer hexad form,
18 hexads:

floating point
td.ddddddddddde+dd
) decimal — exponent,

digits 2 decimal digits
fixed point integer

+dd" " *ad

2-16 1-15 decimal
blanks digits

Registers Not Preserved: T6,T7,B1,B2,B3
Supporting Routines: none
*156, Read with Checksum, RDCHK
Length: 57 (octal)
Function: This program is used in the SPIREL system for

reading tapes in the hexad with tag and checksum format or
high density hexad with tag, parity and checksum format ex-
plained in the section on Use of SPIREL. It may be used for

the same purpose by an individual.

SPIREL January, 1968

SYSTEM COMPONENTS
14
Input: (Bl) = address at which to store first word read.
(B2) = number of words to read.
Error Message: CHECKSUM ERROR ON ABSOLUTE TAPE
occurs if the checksum computed while reading does not agree

with that read from paper tape.

Registers Not Preserved: T4,T5,T6,T7,B2,B3,B4,B5
((B2)=0 on exit)

Supporting Routines: none

Note: RDCHK determines the hexad format by the value of
the spill character punched by PUNCHK(*157). A 25 is for normal
hexads and a 26 is for high density hexads.

A *157, Punch with Checksum, PUNCHK
Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program is used in the SPIREL system for

punching tapes in the hexad with tag and checksum format at the
normal entry or high density hexad, with parity, tag, and check-
sum format at the second instruction. The "spill character"
(one hexad) that precedes a checksummed sequence is also
provided by this program. It may be used for the same purpose
by an individual. See the section on Use of SPIREL.

Input: (Bl) = address of first word to be punched.

(B2) = number of words to be punched.

Registers Not Preserved: 'T4,T75,T6,T7,B2,B3,B4,B5
((B2)=0 on exit)

Supporting Routines: none

A *170, Plot Character on Scope, PLOT
Length: See SYSTEM DUPLICATOR, P. 4.

Function: This routine plots one character on the display
scope.
Input: (B2)

character as hexad in printer code.
(B5) = position, 03(B5)<21610, for maximum of eight
lines, 27 characters per line. '

SPIREL January, 1968

SYSTEM COMPONENTS
15
Output: (B5) incremented by 1.
Registers Not Preserved: BZ,T4,T5,T6,T7
Supporting Routines: none
*171, Sample Typewriter for Console Input, SAMPLE
Length: See SYSTEM DUPLICATOR, P. 4.

Function: This routine takes input from the console
typewriter, maintains the input text on the scope and in memory,
and exits when control input is received.

Output: return to PF if ‘carriage return' charactér
received, otherwise to PF+l with (B1)=0 for ‘halt', typed 'H'

1 for 'fetch', '"F' or

2 for ‘'cont', ,c,'index'
Every command is displayed on the scope and printed before
exiting. When SAMPLE is ready to receive new input from the
console typewriter, the message *PAUSE* appears on the scope.

Registers Not Preserved: all

Supporting Routines: SETPM(*127), PLOT(*170)

*172, Error Printer, ERPR

Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program prints error messages for the
SPIREL system programs. See USE OF SPIREL, P. 9, for list

of messages and details.

Registers Not Preserved: none

Supporting Routines: SETPM(*127), PFTR(*147)
*173, Interpret Console Input, CONSOL '

Length: See SYSTEM DUPLICATOR, P. 4.

Function: This routine-interprets commands received
through the console typewriter. It will pass control words to XCWD,
communicate with the magnetic tape system, set registers, and
allow the user to communicate with XCWD from paper tape or the
typewriter. _

Input: (CC)=23 gives control to CONSOL, text to be in-
terpreted is in vector TEXT(*174).

Output: One or more control words passed on to XCWD in T7.

SPIREL March, 1968

SYSTEM COMPONENTS
16

Registers Not Preserved: .T7 _

Supporting Routines: XCWD(*126, CNVRT(*143), SAMPLE (*171)
*175, Context Determination, CNTXT .

Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program determines all named programs with
negative ST indices that are necessary for the support of all
numbered programs and named programs with positive ST ‘indices.
Library routines may be loaded with negative indices to -0
and ST entries bearing tag 1. Then all private routines are
loaded. CNTXT will operate on the ST entries with negative
‘indices, leaving tag 1 on those not necessary for support and
clearing the tag on all those "in contéxt".

‘Supporting Routines: none

A *176, Table Look-Up, TLU
' Length: See SYSTEM DUPLICATOR, P. 4.

Function: This program is used in the SPIREL system to
determine the index of the Symbol Table entry for a name. If
the name "looked for" does not appear on the Symbol Table, TLU
adds it and increments the current last active index at location
117 by one.

Input: (T4) = left-adjusted 5 printer hexad representation
of the name to be "looked for" on Symbol Table, *113; the rest
of (T4) is irrelevant to TLU. AEntry at CC+1l will cause the
name looked for not to be placed on the Symbol Table if it
was not found. ‘

Output: (Bl)

(PF) 1 if the entry was added to the active
~portion of the Symbol Table; 0 otherwise.

I

index of ST entry for the name "looked for".

i

Registers Not Preserved: B1l, PF
Supporting Routines: none

SPIREL March, 1968

SYSTEM DUPLICATOR

e Purpose of the Duplicator

When a system of programs has been debugged and extensive
production running is contemplated or when memory space becomes
critical, it may be advantageous to produce a self-loading paper
tape bearing necessary SPIREL components, library routines used,
and the coder's private system elements., The system duplicator
SPIDUP, program %10, is designed for this putrpose, This program
is not itself a SPIREL component, SPIDUP has codeword address

10 (octal) and this will not conflict with normal codeword loca-

tions.
If the amount of space allowed for the SPIREL system is known,

one may determine if the desired SPIREL system can be accommodated.
This is simply done by adding up the lengths of all programs and
vectors needed plus 300 (octal), the normal loading address of
SPIREL. Since the system is being continually modified, the current

lengths of all its components are listed on Page 4 of this section.

SPIREL January, 1968

SYSTEM DUPLICATOR
2

e Use of the Duplicator

A dump tape is used to tell program %10 what system elements

are to be punched. The dump tape consists of a series of dump words,

each preceded by a 'carriage return' punch and consisting of 18

octal digits, The dump word forms are as follows:

00000 0100 0000 fffff for all of the block (program or vector)
with codeword at F,

nnnnn 0000 0000 fffff for N words beginning at machine address F.

nnonn 0120 rrrr ff£Fff for a control word which will cause a block

of N zeros to be created with codeword at F and R in the dump
word at the corresponding position in the codeword. If N in
the dump word is empty, N and R will be obtained from the
codeword at F at time of punching,

nnnnn 1100 rrrr fffff for N words beginning at the Rth element

of the block with codeword at F. A "correct" control word

is punched which is'meaningful at later reading only if the

block has been previously created,
A null dump word (18 'Q! punches preceded by a 'carriage return')
terminates the list of System components to be punched, Hexads
on the dump tape after the null dump word will be reproduced onto
the tape punched, Except for blocks of zeros, all components are
punched in the hexad with tag and checksum format,

The complete system from which components are to be punched
to produce a self-loading system tape should be in the machine,
STEX must not be active. Then execution of program *10 results in
the following steps: |

® A leader is punched., It contains the SPIREL loader and

RDCHK, program %156,

° The programmed stop
A HTR cc
occurs, and the dump tape should be readied in the
reader, '
° CONTINUEing causes the dump tape to be read and the

specified system components to be punched, until the
null dump word is read,

SYSTEM DUPLICATOR

3
The SPIREL system tail is punched.

Any information on the dump tape beyond the null dump

word is duplicated, hexad for hexad.

SYSTEM DUPLICATOR
4
® SPIREL Generation

A complete SPIREL system is produced by use of a dump tape as

follows:
dump words components and length (octal)
00001 0000 0000 00102 +° LASTEX
00000 0120 0000 0OO112 + LISTB6 200
00000 0120 0000 00113 ST 400
00000 0120 0000 00l1l1le + PM 200
00000 0120 0000 00122 VT 400
00000 0120 0000 00174 + TEXT 14
00000 0100 0000 00013 TRACE 335
00000 0100 0000 00014 ARITH 125
00000 0100 0000 00020 CHECK 263
00000 0100 0000 00110 HDPR 106
00000 0100 0000 00111 MATRX 213
00000 0100 0000 00120 DIADMP 130
00000 0100 0000 00125 + ADDR 6
00000 0100 0000 00126 + XCWD 433
00000 0100 0000 00127 + SETPM 155
00000 0100 0000 00130 SMNAM 57
00000 0100 0000 00131 DATIME 14
00000 0100-0000 00132 CLOCK 55
00000 0100 0000 00133 PCNTRL 14
00000 0100 0000 00135 + STEX 364
00000 0100 0000 00136 SAVE 7
00000 0100 0000 00137 + UNSAVE 36
00000 0100 0000 00140 DELETE 277
00000 0100 0000 00141 CHINDX 52
00000 0100 0000 00142 TAGSET 15
00000 0100 0000 00143 CNVRT 53
00000 0100 0000 00144 PRINT 113
00000 0100 0000 00145 PUNCH 160
00000 0100 0000 00146 XCWSQ 27
00000 0100 0000 00147 PFTR 46
00000 0100 0000 00150 MAP 141
00000 0100 0000 00151 PRSYM 152
00000 0100 0000 00152 PWRTN 41
00000 0100 0000 00153 MRDDC 154
00000 0100 0000 00155 BINDC 103
00000 0100 0000 00157 PUNCHK 56
00000 0100 0000 00170 + PLOT 141
00000 0100 0000 00171 + SAMPLE 203
00000 0100 0000 00172 ERPR 225
00000 0100 0000 00173 + CONSOL 1035
00000 0100 0000 00175 CNTXT 54
00000 0100 0000 00176 TLU 43
00000 0000 0000 00000 null word to end dump
77777 1160 0000 00172 correct index of ERPR
77776 1160 0000 00173 correct index of CONSOL

Tcomponents which must be included in minimal SPIREL.

SPIREL July, 1968

3/

SYSTEM DUPLICATOR
5

°The dump word for LASTEX may be omitted; the end of allocatable
memory will then be set to E-377 (where E is the last word in memory)
to exclude only the magnetic tape system programs. A small setting

will provide private absolute storage if such is desired.

For determination of a sufficient set of SPIREL components to satisfy
the requirements of a private system, reference should be made to the
diagram of SPIREL component linkages. If HDPR, program *110, is to
be eliminated, all control words must be executed with SL14 on unless
location 110 routes control immediately to the program using *110.
Set '

(110) : 00000 0000 0001 00000
before execution of *10 and include the dump word

00001 0000 0000 00110

in the dump tape.
To alter the initial SPIREL loading address (normally octal 300)
or the message printed upon completion of paper tape reading,
refer to the symbolic listing of SPIDUP in the SPIREL reference
notebook.

SPIREL April, 1967

¥/
j‘ '

BACKING STORAGE SYSTEM

e Purpose

Backing storage can be used as an extension of effective memory
space or as a fast alternative to paper tape for input and output.
For such applications the SPIREL-compatible backing storage system
(SBSS) is provided. Data created and processed by SPIREL in memory
may be output onto magnetic tape by SBSS; data input from magnetic
tape by SBSS may be processed by SPIREL.

The SPIREL backing storage system uses codeword addresses

160-167 and 177. It may be loaded with any SPIREL. STEX must be
active for use of SBSS.

SPIREL March, 1967

M

BACKING STORAGE SYSTEM
2

e Use

The SPIREL backing storage system, SBSS, provides a data
transmission link between memory and a device. For transmission to
occur the logical device (numbered 0-7) must be attached to a tape
unit (numbered 0-3). A unit must be detached before it is manipulated
other than under SBSS control, by programs or manually.

The logical unit of information on a device is a file. While

a unit is in use for output an output file is open on the device; while

it is in use for input an input file is open. Physically, a file con-

sists of a sequence of records of uniform length. For an open file
there exists a buffer area in memory which contains the last record
read or the accumulation for the next record to be written. An out-
put file must be closed to assure that all data output to the file is
actually out of the buffer.

Output files are written sequentially on a device and are number-
ed 1 to 25210; files may not be overwritten. A device may be position-
ed at any file. For input, the file at which the device is positioned
is the one read.

SBSS maintains status and control information about each device
in a device status block.

There are three levels of SBSS usage:

1) On the array level the user may read and write SPIREL arrays by
simply specifying the codeword address and the device number to
the program ARRAY(*166). All buffering is handled automatically
on input and output. Storage allocation for arrays is provided
on input.

2) On the buffered level the user may read and write any memory area
by specifying the first word address, the number of words, and
the device number to the programs GET(*160) for input and
PUT(*161) for output. All buffering is handled automatically.

SPIREL March, 1967

BACKING STORAGE SYSTEM
3

3) On the direct level the user may read and write buffer loads
(records) by specifying the device number to the programs
READ(*162) for input and WRITE(*163) for output.

On all levels, the program CONTRL(*167) is used for logical (non-

transmission) operations:
to attached and detached devices;
to open and close input and output files;
to specify buffer length for a device;
to position a device at a specified file, by rewinding, by

backspacing one file or record, or near the end of in-
formation on the device;
to obtain status information about a device;
to set control options for a device;
to reposition after restart
Various comments on the use of SBSS are appropriate. Exercise
of the system will no doubt suggest more.

e Files need not be explicitly open by the user. They will be
opened when data transmission occurs.

e Output files should be closed as soon as possible after they
are completed. While an output file is open, there is constant
danger of transport misbehavior causing a file to become unreadable.

¢« When attaching a device to a tape unit, the exact number of
files on the tape must be given or all sorts of bad things can

happen. .

e Never have more than one device attached to the same unit. It

leads to immense confusion and almost certain file destruction.

SPIREL March, 1967

BACKING STORAGE SYSTEM
4

e Tape Format

Marker allocation on an SBSS written magnetic tape is as

follows:
marker 0 -- unused
markers 1—3748 -- file markers so that 25210 files are allowed
marker 375 -- end-of-information marker
marker 376 -- record marker
marker 377 -- space marker

A new reel of tape containing no files, but ready to be written,

bears only a leader and an end-of-information marker.

space markers|end marker
32 M377 M375

L——-tape position to write

A reel containing k files bears k file markers and an

end-of-information marker.

32 |file marker}data of|file marker
M377 M1l file 1 M2

tape position to read file 2

file marker |data of}end marker
Mk file k M375

tape position to write

SPIREL March, 1967

BACKING STORAGE SYSTEM
5

The kth file on a reel begins with a file marker and contains

any number of record markers and records, all of the same length.

file marker|record marker |data of|record marker

Mk M376 first M376
record

record marker|data of|file marker Mk+l
LR last

M376 or end marker M375
record

The ith record in the kth

file on a reel begins with a record
marker and contains n words of which the first two describe the

record.

record marker}lword 1

I |
‘word 2 |words 3 ton

containing data
|of record

| l

M376 of record|of record

Word 1 contains
n(l5 bits), length of the record;
k(9 bits), file number;
number of data words used (15 bits), null if this is not the
last record in file k so that n-2 words are used;
i(15 bits), record sequence number.

Word 2 contains a symmetric difference checksum for the record.

SPIREL March, 1967

e Or

ganization

BACKING STORAGE SYSTEM
6

The SPIREL backing storage system, SBSS, uses codewords as

follows:

160 GET
161 PUT
162 READ
163 WRITE
164 BUFFER
165 STATUS
166 ARRAY
167 CONTRL
177 ERRT

SPIREL Marxrch, 1967

read (B2) words to memory starting at address
(Bl) from device (B3)

write (B2) words from memory starting at address
(B1l) to device (B3)

read one record from device (B3) into buffer
for that device

write buffer for device (B3) as one record on
that device

buffer matrix with row i as the buffer for device
i (i=0,1,...,7) and row -1 as the check buffer
for all open output files needing one

device status matrix with row i containing status
for device i (i=0,1,...,7)

read or write array with codeword address (Bl),
relative to SPIREL address base setting, to
or from device (B3)

for device (B3), perform non-transmission opera-
tion specified by (Bl), with parameters
specified in B2 and B4

tape error routine

BACKING STORAGE SYSTEM
7

The levels of SBSS usage and interconnection of components is
shown in the following diagram.

input: array buffered level direct level
level

non-transmission
for all levels

-
L

CONTRL

/

4—pul STATUS

| BUFFER

+

PUT j\

|
|
|
|
|

output: array buffered level direct level
level '

SPIREL, September, 1967

BACKING STORAGE SYSTEM
8

e SBSS Programs

All programs preserve registers except T7 which are not used
for input or output.

*160, Input from Device to Memory, GET
Length 63 (octal)

Function: This routine transmits data from a device buffer

to the user's memory locations, opening an input file if necessary
and causing the buffer to be filled from the device as required.
Input: (Bl)=address at which to begin storing the data read
(B2) =number of words to read
(B3)=device number
Special entry: at second order to simply skip over data;
transmission suppressed and input (Bl) irrelevent.
Output: (T7)=number of words transmitted (or skipped)
Return: to PF+1 normally
to PF if end-of-file encountered before specified
number of words transmitted (or skipped) or input (B2)=0 and end-
of-file encountered
Errors: none
Supporting Routines: READ(*162), CONTRL(*167)

*¥*161, Output from Memory to Device, PUT
Length: 42 (octal)

Function: This routine transmits data from the user's memory

- locations to a device buffer, opening an output file on the device
if necessary and causing the buffer to be emptied to the device as

required.

SPIREL March, 1967

BACKING STORAGE SYSTEM

9
Input: (Bl)=address at which to begin obtaining data
to write

(B2) =number of words to write

(B3)=device number
Return: to PF
Errors: none
Supporting Routines: WRITE(*163), CONTRL(*167)

*162, Input from Device to Buffer, READ

Length: 77 (octal)
Function: This routine reads the next record of the current

input file on a device into the buffer for that device, opening
an input file if necessary.

Input: (B3)=device number

Special entry: at second order to obtain first word of next
record as output in T7 but remain positioned at same next record.

Return: to PF if no errors

Errors: 01 record sequence error detected

02 cannot read record in 8 attempts
Supporting Routines: CONTRL(*167), ERRT (*177)

*163, Output from Buffer to device, WRITE
Length: 103 (octal)
Function: This routine writes the buffer for a device into

the current output file for that device and checks what is written.
An output file must be open on the device.
Input: (B3) =device number

Return: to PF if no errors

SPIREL March, 1967

Errors:

'BACKING STORAGE SYSTEM
10

03 no open output file
04 UME in memory
05 cannot write record in 8 attempts

Supporting Routines: ERRT(*177)

*166, Transmit

Array to or from Device, ARRAY

Length:

Function:
between memory
necessary.
Write

Entry:

Input:

Return:
Errors:
Read

Entries:

Input:

Return:

Errors:

SPIREL March,

204 (octal)
This routine transmits a SPIREL array, with tagw,

and a device, opening an input or output file as

at first order

(Bl) =codeword address of array to be written,
relative to SPIREL address base setting

(B3) =device number

to PF

none

at second order to read an array

at third order to skip an array

(Bl)=+0 to fead array with same codeword address
(or name) as when written

=codeword address (#+0) at which to read array,

relative to SPIREL address base setting

to PF+1 normally

to PF if there is no data to be read from the file

upon entry

06 end-of-file encountered before read (or skip)

complete

1967

BACKING STORAGE SYSTEM
11

Write and Read

On Tape:

primary codeword

ihitial o codeword
length index modifiers address
S name in BCD
zero if no name zero if there is a name
subsidiary codeword
initial . relative
length index modifiers codeword e
address

runs from 1 to length——

Supporting Routines: XCWD(*126), GET(*160), PUT(*1le6l),
CNTRL(*167), ERRT(*177)

*167, Control for Tape System, CONTRL
Length: 430 (octal)

Function: This routine performs non-transmission functions

in the SPIREL backing storage system; file control, logical operations,
and positioning.
Input: (Bl) to specify operation
(B3) =device number
(B2) , (B4) may contain parameters
Output: may be in T7
Return: to PF if no error

Operations: on the basis of (Bl)8 on entry

SPIREL March, 1967

BACKING STORAGE SYSTEM
12

(Bl)=0, open input file

If device (B3) is not attached to a unit, no operation
is performed.

Any open file is first closed

If device (B3) is positioned at the end of information,
an input file cannot be opened and error 07 occurs.

If all is well, the next input file on device (B3) is
opened and a buffer is created if necessary. If there is not

memory space for the buffer, error 13 occurs.

(Bl)=1, close input file

If device (B3) is not attached to a unit or there is no
input file open on the device, no operation is performed.

Otherwise, the current input file on device (B3) is
closed; the associated buffer is freed if the switch in the
device status block dictates.

(Bl)=2, open output file

If device (B3) is not attached to a unit, no operation
is performed.

Any open file is first closed.

If the tape is full (252lO files), error 10 occurs.

If the switch in the device status block indicates that
the device is write-protected, error 11 occurs.

If all is well, a new output file is opened on device (B3)
and a buffer is created if necessary. If there is not memory
space for the buffer, error 13 occurs. On exit (T7)=number of

file opened.

SPIREL March, 1967

BACKING STORAGE SYSTEM
13

(B1)=3, close output file
If device (B3) is not attached to a unit or there is no

output file open on the device, no operation is performed.

Otherwise, the buffer for device (B3) is emptied if
necessary and the current output file is closed. The buffer
is freed if the switch in the device status block dictates,
and the check buffer may be freed also. On exit (T7)=number
of file closed.

(Bl) =4, attach device
and (B4)=logical tape unit, 0-3

(B2) =number of files on the tape, 0 for a new output-tape

If device (B3) is already attached to a unit, no operation
is performed.

If a non-existent unit is specified in B4, error 12 occurs.

Otherwise, device (B3) is attached to unit (B4). The tape

is rewound and a leader is written if input (B2)=0 (new tape) .

(Bl) =5, set buffer length
and (B2)=length, number of words

If a file is open on device (B3), no operation is per-
formed. Buffer length may be set only when no file is open,
but a buffer is not created until it is needed for transmission.
If no buffer is specified, devices 0-3 have buffer length
4008' devices 4-7 have buffer length 10008.

SPIREL March, 1967

BACKING STORAGE SYSTEM
14

(B1l)=6, detach device

If device (B3) is not attached to a unit, no operation
occurs.

Any open file is first closed.

Device (B3) is detached from its unit; the tape is re-

wound, and the device is left positioned at file 1.

(B1)=7, rewind

If device (B3) is not attached to a unit, no operation
is performed.

Any open file is first closed.

If there are files on device (B3), the tape is rewound

and left positioned at file 1.

(B1)=10, backspace file

If device (B3) is not attached to a unit, no operation

is performed.
Any open file is first closed.
Then the tape is positioned at the beginning of a file.
On exit
(T7)=-1 if tape was at beginning of file 1 and could not
be backspaced
=0 if tape was positioned within a file and was back-
spaced to the beginning of that file, or was
backspaced to the beginning of the preceding file.

SPIREL March, 1967

BACKING STORAGE SYSTEM
15

(B1)=11, backspace record

On exit
(T7)=-1 if device (B3) is not attached to a unit or no file
is open on the device and no positioning is done
=0 if tape was positioned at the beginning of a file
and could not be backspaced within the file
=1 1if tape was backspaced one record in the current file

(Bl)=12, position at file
and (B2)=file number

On exit

(T7)=-1 if device (B3) is not attached to a unit or a file
is open on the device and no positioning is done
=0 if tape is positioned at the beginning of file (B2)

=1 if file (B2) does not exist on the device and no

positioning is done

(Bl)=13, position near end-of-information

On exit
(T7)=-1 if device (B3) is not attached to a unit or a file
is open on the device and no positioning is done
=0 if the tape is positioned at the last file

(Bl)=14, get field from device status block
and (B2)8 specifies the field, as explained in the section on

device status:

(B2)=1, LEFT (B2)=4, FILE NO. (B2)=7, FILES
=2, NEXT =5, LAST =10, UNIT
=3, LENGTH =6, REC NO. =11, SWITCH

On exit, (T7)=field value for device (B3), 0 if (B2) is not

meaningful.

SPIREL March, 1967

BACKING STORAGE SYSTEM
16

(B1l)=15, set switches

and (B4) specifies switches to turn off

(B2) specifies switches to turn on

Switches,

as explained in the section on device status,

for device (B3) are turned on for 1l's in (B4), then off for

l's in (B2). System switches are immune from setting by this

operation.

(Bl)=16, re-position after restart

If device (B3) is not attached to a unit, no operation

is performed.

Otherwise, the tape is rewound and then positioned as

designated in the device status block for device (B3).

Errors: 07
10
11
12
i3

cannot open input file

cannot open output file

attempt to output on protected device

attempt to attach device to non-existent unit

insufficient space for buffer

Supporting Routines: STEX(*135), READ(*162), WRITE(*163)

ERRT (*177)

SPIREL March, 1967

BACKING STORAGE SYSTEM

17
e Device Status and Control
The device status matrix, STATUS(*165), contains one device
status block per row, row i for device i, i=0,1,...,7. B3 is the
row modifier, and there is no column modifier.
Each device status block is three words long and contains
information about the device and its buffer:
DEVICE STATUS BLOCK ,
Frrrrrrr P rrT
LEFT NEXT
word 1 : | J
1 1
‘ FILE
word 2 ‘LENGTH NO. LAST REC NO.
L L 1
l [. {
FILES ERROR SWITCH
word 3
Pt bttt b1
Word 1 describes buffer status:
LEFT -- number of words in the buffer yet to be obtained for

input or subplied for output

NEXT -- relative location of the next word in the buffer to
be obtained for input or supplied for output

Word 2 duplicates the first word of a record on tape:
LENGTH* -- number of words in the buffer, and number of words
in a record (data words +2)

FILE NO. -- number of file at which currently positioned

LAST -- non-zero only for the last record of a file and then
gives number of data words in the record

REC NO. -- number of the record at which currently positioned

*If not specified through use of CONTRL(*167), buffer length is
4008 for devices 0-3, 10008 for devices 4-7.

SPIREL March, 1967

BACKING STORAGE SYSTEM
18

Word 3 contains control information:

FILES -- number of files currently on the tape

UNIT -- logical tape unit number to which the device is
attached, if at all

ERROR -- codeword address for user's error routine -- not
used now

SWITCH -- set of binary switches to describe status and
prescribe user options -- see below for details

The twelve bits of SWITCH are shown in detail:

A\SHN SN

\ PBF /VRI/ word 3 of

o \\);7422///4 device status
RDCK\ LNF\\ READ / block

— \\\\Q\\\\ MO0 ///,;{// ///

\ WRPT\ KPCK\ % ATCI—%

AR R 0 /02/ 77

User option switches -- all off initially
WRPT, write protect -- if on, do not permit output to this unit
RDCK, read check -- if off, check output by read without store

if on, check output by word-for-word com-
parison in check buffer

KPCK, keep check buffer -- if on, do not free check buffer when
output file is closed

KPBF, keep data buffer -- if on, do not free buffer for device
when file is closed

LNFT, length from tape -- if off, use LENGTH in status block as
buffer length for input

if on, get buffer length from tape on

input

SPIREL March, 1967

BACKING STORAGE SYSTEM
19

System status switches -- may not be set by user

WRIT, write -- if on, output file open on device
READ, read -- if on, input file open on device
ATCH, attach -- if on, device is attached to unit

SPIREL March, 1967

BACKING STORAGE SYSTEM
20

e Buffers

The buffer matrix, BUFFER(*164), contains one device buffer
per row, row i for device i, i=0,1,...,7. Row -1 is used as a
check buffer for all devices requiring one. BUFFER is modified by
B3=-1,0,...,7 for rows and B5=1,... for columns.

A device buffer is created, if necessary, when a file is opened
on a device. It is freed when a file is closed, unless the device
status block specifies to keep the buffer.

The check buffer is created or lengthened, if necessary, when
an output file is opened on a device for which read checking is
specified in the device status block. The check buffer is freed
when an output file is closed on a device for which the device status
block specifies not to keep the check buffer and no other device is
using it.

A device buffer is just a copy of a record on tape. The
first two words are for control; the first is the same as word 2
of the device status block, the second the symmetric difference

checksum. The remaining words contain user data.

DEVICE BUFFER

FILE
word 1 'LENGTH NO. LAST REC NO.
word 2 CHECKSUM
.data

SPIREL March, 1967

e Errors

BACKING STORAGE SYSTEM
21

SBSS errors occur when conditions arise due to physical tape

problems or logical programming errors from which the system can-

not recover.

An error message is printed giving the error number,

device, and information from the device status block including the

unit and current tape position.

number and 'TAPE' in

Error
01

02

03

04
05
06
07
10
11
12

13

SPIREL

Program
162 ,READ

162 ,READ

163, WRITE

163 ,WRITE
163 ,WRITE
166 ,ARRAY
167 ,CONTRL
167 ,CONTRL
167 ,CONTRL
167 ,CONTRL

167 ,CONTRL

March, 1967

Then a halt occurs with the error

Condition

.record sequence numbers out of order -

probably missed a marker

tape cannot be read - tried to read
record 8 times

trying to write without output file
open - can occur only on direct
access level

WMTE light came on while writing,
signifying UME in memory

tape cannot be written - tried writing
twice in each of 8 spots

end-of-file encountered while reading
an array

cannot open input file because
positioned at end of information

cannot open output file because
maximum number (252) exist already

cannot open output file because device
is write-protected

cannot attach device to non-existent
unit

insufficient space in memory for buffer

LIBRARY

Purpose.;]. . - [3 . . 3 [. . . 3 L] L] . . . e

Library Content., o+ « o o o o o o o o .9 o o o o s o o s o o o o o =
Scalar Routines
Complex Scalar Routines
Matrix Routines
Complex Matrix Routines
Software Routines
Debug Routines
Cons tants

Programmed Use of Library Routines . . ¢« & & ¢ ¢ o o o« o o o o o &
Types of Routines
Use in the Genie Language
Use in Assembly Language

Runningo « o e« o . * o o 0 ¢ o
Compression
Diagnostic Procedures

Library Routines . o & o o o o o o o o o o o o o o o o o s o o o

System Maintenance . o« o« ¢ o o ¢ o o o o s o o o o o 4 s 4 s e e s
Punching -
Editing

LIBRARY May, 1967

PURPOSE

The SPIREL System is composed of the SPIREL operating system
plus a library. The library is a collection of néﬁed programs and
constants which may be utilized by a user system loaded into SPIREL.

The names of all library items are known to the Genie compiler.
The user does not have to make any declarations about library items
in a Genie program.

The names of library items are not known to the assembly
program. The user must use pseudo-orders to establish linkage to
library items from APl programs.

Memory space for the full library is required while user programs
are being loaded. But then the library may be compressed to just
those programs required for support of the user programs, the decision
about what is necessary being made automatically. Dynamically, memory
space is required for only the essential library items.

LIBRARY May, 1967

LIBRARY CONTENT

° Scalar Routines

These programs are mathematical functions, taking a single
floating point argument and giving a floating point result. De-
tailed explanations are given in the Library Routines section.

All programs are for implicit execution, as discussed in

Programmed Use of Library Routines.

NAME DESCRIPTION
SQR~r square root
argument = 0; if argument < 0, gives result = 0 and
prints error message
EXPJr exponential
' |argument| < 170.0; if argument < -170.0, gives
result = 0; if argument > 170.0, gives result for
" argument = 170.0 and prints error message
LOG natural logarithm
argument > 0; if argument < 0, gives result = argument
and prints error message
LOG10 logarithm, base 10
argument > 0; if argument < 0, gives result = 0 and
prints error message
SIN-r sine
COS: cosine
TANT tangent
COT cotangent
.f-
ASIN arc sine .
|result] < mw/2, largument| < 1.0; if |argument]| > 1.0,
gives result = 0 and prints error message
.r-
ATAN arc tangent
|resu1t| < n/2
SINHT hyperbolic sine
Targumentl < 170.0; if |argument| > 170.0, gives
result for |argument| = 170.0 and prints error message
COSHT hyperbolic cosine
|argument| < 170.0; if |argument| > 170.0, gives
result for |argument| = 170.0 and prints error message
TANH-1L hyperbolic tangent
argument| < 170.0; if ‘argument| > 170.0, gives
result| = 1.0
‘ASINHT arc hyperbolic sine
‘ACOSH.r arc hyperbolic cosine

argument > 1.,0; if argument < 1.0, gives result = 0
and prints error message

GENIE SPIREL September, 1966

i

'
I
I

I

LIBRARY CONTENT
2

NAME DESCRIPTION

ATANHT arc hyperbolic tangent
|argument < 1.0; if jargument| = 1.0, gives
result = 0 and prints error message

GAMMA gamma function

=27 .0 < argument < 55.0 and argument
integer; if argument out of range or
integer, gives result = 0 and prints

LGAMMA log gamma

argument = 0; if argument < 0, gives
prints error message

not a negative
a negative
error message

result = 0 and

+
In the Genie language, if argument is complex, corresponding

complex routine will be used.

"LIBRARY July 1967

LIBRARY CONTENT
3

e Complex Scalar Routines

These programs are functions of a single complex argument,
giving a real or complex result. Detailed explanations are given
in the Library Routines section.

All programs are for implicit execution, as discussed in

Programmed Use of Library Routines.

NAME DESCRIPTION

RET real part of a complex number

IMJr imaginary part of a complex number

CARTN.r conversion of complex number from polar to Cartesian form

POLARJr conversion of complex number from Cartesian to polar form

MOD modulus of a complex number

CONJ.r conjugate of a complex number

ITIMEST i times a complex number

CSQR complex square root

CEXP complex exponentiation
|rea1 part of argument| < 170.0; if real part < -170.0,
gives result = 0; if real part > 170.0, gives result
for real part = 170.0 and prints error message

CLOG complex log

“argument + O0; if argument = 0, gives result = 0 and

prints error message

CSIN complex sine .
|ima inary part of argumentl < 170.0; if |imaginary
partT > 170.0, gives result for |imaginary partl = 170.0
and prints error message

CCOS complex cosine
|imaginary part of argument| < 170.0; if |imaginary
part| > 170.0, gives result for limaginary part\ = 170.0
and prints error message

CTAN complex tangent
Iima inary part of argumentl < 8.0; if !imaginary
partT > 85.0, gives result for Iimaginary partl = 8.0
and prints error message; if argument near singularity,
gives result = tangent of real part of argument and
prints error message

CCOT complex cotangent
‘ima inary part of argument| < 8.0; if |imaginary
part? > 85.0, gives result for |imaginary partl = 85.0

and prints error message

LIBRARY July, 1967

LIBRARY CONTENT

3.1
NAME DESCRIPTION
CASN complex arc sine
CATN complex arc tangent

argument # *i; if argument = +i, gives result = 0 and
prints error message

CSNH complex hyperbolic sine
|real part of argument| < 170.0; if |real part| > 170.0,
gives result for |real part| = 170.0 and prints error
message

CCSH complex hyperbolic cosine
|real part of argument| < 170.0; if |real part| > 170.0,
gives result for |real part| = 170.0 and prints error
message

CTNH complex hyperbolic tangent
|real part of argument| < 85.0; if |real part| > 85.0,
gives result for |real part| = 85.0 and prints error

message; if argument near singularity, gives result =
tangent of real part and prints error message

CASNH complex arc hyperbolic sine
CACSH complex arc hyperbolic cosine
CATNH complex arc hyperbolic tangent

argument + +1l; if argument = *1, gives result = 0 and
prints error message

tIn the Genie language, if argument is vector or matrix, corresponding

complex matrix routine will be used.

GENIE SPIREL April, 1967

® Matrix Routines

LIBRARY CONTENT

4

These programs operate on standard vectors and matrices in the

STEX domain.

section.

Detajiled explanations are given in the Library Routines

A matrix routine prints an error message if a non-scalar operand

does not exist and then performs no operation.

The EXECUTION column below gives the type of routine as explained

in Programmed Use of Library Routines.

NAME
MCOPY
MADD

MSUB
MM PY

INV

TRAN
SMM PY

SMDIV
MFLT
MCMPL
MINDEX
MINSERT

MPATCH

LIBRARY

DESCRIPTION

copy of vector or matrix

addition of two vectors or ma
if dimensions not compatibl
error message

subtraction of two vectors or
if dimensions not compatibl
error message

multiplication of two vecotrs
or a vector and a matrix --
not compatible, prints erro

inverse of matrix
if matrix contains more row
or is singular,
prints error message

transpose of matrix

multiplication of scalar and
matrix

division of vector or matrix
if scalar = 0, performs no
prints error message

floating point equivalent of

complex equivalent of real f1
matrix

change initial index and B-mods for a vector

or matrix

delete elements of
columns of a matrix

insert or
rows or

of one vector or ma
vector or matrix

move part
another

July, 1967

trices
e, prints

matrices
e, prints

, two matrices,

if dimensions
r message

s than columns

performs no operation and

vector or

by a scalar
operation and

integer matrix

oating point

a vector or

trix into

EXECUTION

special

special

special

special

implicit

implicit

special

special

special

special

explicit

explicit

explicit

NAME
MPOWER

DIAG

ORTHOG

SOLN

DET

STNDV
CHISQ

QCONF

CRCOR

CMCON

FTRAN

LIBRARY

LIBRARY CONTENT

DESCRIPTION

matrix to an integer power
if matrix not square and power 2 0, prints
error message and uses square portion; if

matrix not square and power < 0, prints error

message and performs no operation; if
power < 0 and matrix singular, performs no
operation and prints error message

diagonalization of a matrix, with eigen-
vectors if desired

Gram-Schmidt orthonormalization of the
rows of a matrix -- if rows not linearly
independent, prints error message and
performs no operation

solution of a system of linear equations
if dimensions not proper or solution
not defined, prints error message and
performs no operation

determinant of a matrix
if matrix not square, gives result = 0
and prints error message

standard deviation of a vector

2
X for two vectors
if vectors not the same length, gives
result = 0 and prints error message

XZ confidence level between two vectors
if vectors not the same length, gives
result = 1.0 and prints error message;
if lengths < 2, gives result = 0 and
prints error message

vector cross-correlation or auto-correlation
if length of result > sum of input
lengths - 1 for cross=-correlation or
> length of input for auto-correlation,
prints error message and performs no
operation

construct complex vector or matrix
if parts do not have same dimensions
prints error message and performs no
operation

Fourier transform of a real vector
if arguments are not meaningful, prints
error message and performs no operation

July, 1967

5

EXECUTION

special

explicit

implicit

implicit

implicit

implicit

implicit

implicit

implicit

special

LIBRARY CONTENT

5.1

NAME DESCRIPTION EXECUTION
ITRAN inverse Fourier transform of a complex implicit

vector -- if arguments are not meaningful,

prints error message and performs no

operation
VREV _order reversal of vector elements explicit
CONVL convolution of two vectors implicit

+
In the Genie language, if argument is complex, corresponding complex

routine will be used.

LIBRARY August, 1967

LIBRARY CONTENT
6

¢ Complex Matrix Routines

These programs operate on standard complex vectors and matrices
in the STEX domain. Detailed explanations are given in the Library
Routines section,

A complex matrix routine prints an error message if a non-
scalar operand does not exist and then performs no operation.

The EXECUTION column below gives the type of routine as

explained in Programmed Use of Library Routines.

NAME DESCRIPTION EXECUTION
CMCPY copy of a complex vector or matrix special
CMADD addition of two complex vectors or special

matrices =-- if dimensions not com-
patible, prints error message

CMSUB subtraction of two complex vectors special
or matrices =-- if dimensions not
compatible, prints error message

CMMPY multiplication of two complex vectors, special
two complex matrices, or a complex
vector and a complex matrix -~ if
dimensions not compatible, prints
error message

CINV inverse of complex matrix implicit
if matrix contains more rows than
columns or is singular, performs no
operation and prints error message

CTRAN transpose of complex matrix implicit
CDET determinant of complex matrix implicit
if matrix not square, gives result = 0

and prints error message
CSOLN solution of a system of linear equations implicit
with complex coefficients =-- if dimensions

not proper or solution not defined, prints
error message and performs no operation

CSMMP multiplication of a complex scalar and special
a complex vector or matrix

CSMDV division of a complex vector or matrix special
by a complex scalar -- if scalar = 0,
performs no operation and prints error’
message

LIBRARY CONTENT

7
NAME DESCRIPTION EXECTUION
MRE real part of a complex vector or matrix implicit
MIM imaginary part of a complex vector or implicit
matrix
MCARTN conversion of a complex vector or matrix implicit
from polar to Cartesian form
MPOLAR conversion of a complex vector or matrix implicit
from Cartesian to polar form
MCONJ conjugate of a complex vector or matrix implicit
MITIMES i times a complex vector or matrix implicit

LIBRARY July, 1967

LIBRARY CONTENT
8

@ Software Routines

These programs perform miscellaneous operations on data. De-
tailed explanations are given in the Library Routines section.
The EXECUTION column below gives the type of routine as explained

in Programmed Use of Library Routines.

NAME ‘'DESCRIPTION EXECUTION
LENGTI{)r length of a vector implicit
CLENGTH length of a complex vector implicit
ROWJr number of rows in a matrix implicit
CROW number of rows in a complex matrix implicit
COLT number of columns in a matrix implicit
CCOL number of columns in a complex matrix implicit
MAX index of maximum element in vector implicit
MIN index of minimum element in vector implicit
VSPACET dynamic creation of standard vector of explicit
zeroes
CVSPACE dynamic creation of a standard complex explicit
vector of zeroes
+
MS PACE dynamic creation of standard matrix of explicit
zeroes
CMS PACE dynamic creation of a standard complex explicit
matrix of zeroes
MTAKET dynamic creation of n-dimensional array explicit
of zeroes
CMTAKE dynamic creation of n-dimensional complex explicit
array of zeroes
FXEXP integer or floating point number to an special
integer power -- if base = 0 and
exponent < 0, gives result = 0 and
prints error message
FLEXP floating point number to a floating point special
power -- if base < 0, gives result = 0
and prints error message
EVEN test integer for being even implicit
FIX integer nearest to floating point number . implicit
if argumentl = 16383.5, gives result =0
and prints error message
FLOAT floating point equivalent of integer implicit

LIBRARY July, 1967

LIBRARY CONTENT

9
NAME DESCRIPTION EXECUTION
RANDM floating point random number between 0,0 implicit
and 1.0
CADD addition of complex scalars special
CSUB subtraction of complex scalars special
CMPY multiplication of complex scalars special
CDIV division of complex scalars special
CXEXP complex scalar to an integer power =-- if special
~ base = 0 and exponent < 0, gives result
= 0 and prints error message
CFEXP complex scalar to a real floating point special
power == if base = 0, gives result = 0
and prints error message
CCEXP complex scalar to a complex power special
if base = 0, gives result = 0 and
prints error message
CONTROL+ application of SPIREL to non-complex explicit
item
CCONTROL application of SPIREL to complex item explicit
SCRIBE formatted line printing explicit
(Genie pro-
grams only)
PRESCRIBE formatted line printing with page control explicit
(Genie pro-
grams only)
PLOT Plot on printer of one vector versus explicit
another or of a vector versus its
indices

TIn the Genie language, if argument is complex, corresponding

complex routine will be used.

GENIE SPIREL September, 1966

LIBRARY CONTENT
10
© Debug Routines

These utility programs are never used in assembly language

coding. Detailed explanations are given in the Library Routines

section.

NAME DESCRIPTION EXECUTION

~COMP library compression internal library
use only

<INOUT input/output from compiled programs used only by
Genie-generated
code

<ERPR prints error message internal library
use only

EDIT communication for compression and console use only

system maintenance

<ENTRY records information for error print internal library
use only

INPUT user's input routine used only by
Genie-generated
code

OUTPUT user's output routine used only by

' Genie—generated

code

GENIE SPIREL November, 1966

LIBRARY CONTENT

o Constants

NAME

LINCT

PAGCT

«~TEMP
CMPLX

<ELOC

DESCRIPTION

number of lines used on current page
updated by SCRIBE and PRESCRIBE
number of page being printed
updated by PRESCRIBE
used for storage control by EDIT only

complex scalar accumulator, double word
operand with name "ditto" (««~ee«) on
second part

information used in printing error message

11

PROGRAMMED USE

e Types of Routines

The library routines may be classified by execution

characteristics.

Functions are programs which accept arguments by the follow-
ing rules:
for a single scalar argument, its value in T7 -- may not be
output
for a 'single non-scalar argument, *%* codeword address in T7 --
may be input, output, or both
for N arguments, N > 1, the address of a scalar and * code-
word address of a non-scalar on the B6-list at B6-N,...,
B6-1 -=- any may be input, output, or both (B6 decre-
mented by N on exit)

A function which provides no output or has one or more output

arguments is for explicit execution only.

A function which provides a single output which is not speci-

fied as an argument is for implicit execution. The single output

is provided as follows:
real scalar in U and T7
complex scalar in the complex scalar accumulator, CMPLX
real non-scalar (vector or matrix) in the real non-scalar
accumulator, *10 (octal)
complex non-scalar (vector or matrix) in the complex non-
scalar accumulator, CSTAR
Note: Each complex argument is actually two arguments:
the real part, then the imaginary part. Thus, for a function
with one or more complex arguments, the number of arguments
N =2 2 always. Two words are used on the B6-1list for each

complex argument,

Programs which do not accept arguments in T7 or on the B6-list
by the above rules are not functions. They require special set-up

for execution, e.g,, arguments may be given in index registers.

LIBRARY May, 1967

M

PROGRAMMED USE
2

e Use in the Genie Language

In the Genie language only function execution may be
specified.

Explicit execution of the function EXPLC with arguments

A,B, and C is specified by the command
EXECUTE EXPLC(A ,B,C)
Example:
EXECUTE VSPACE(V ,K)
to execute the program VSPACE for dynamic creation of the vector
V of length K.

Implicit execution of the function IMPLC with arguments A,B,

and C is specified on the righthand side of an equation, alone or
in an expression:
eee = ...IMPLC(A,B,C)...
Example:
P = (SIN(X2)+SIN(Y2))/(X-Y)
involving two executions of the SIN program,

An argument which is input only may be an expression. An
output argument must be given as a simple name, scalar (not an
element of a vector or matrix) or non-scalar as appropriate.

Scalar input arguments may be specified numerically, e.g.,-5.39.
Non-scalar arguments must be specified by name, not by number, e.g.,
the vector with codeword at +200 (octal) may not be referred to as
+200 but must be assigned the value by

LET #V = +200
and then be referred to as V.
Genie language may cause code to be generated which calls for

execution of library routines which are not functions.

Example: For scalar S and matrix M, the command
Q = 53M2
causes execution of FXEXP, MPOWER, and SMMPY which are library
routines for special execution. The command
PRINT S M,Q

causes execution of the library routine ~INOU.

PROGRAMMED USE
3

o Use in Assembly Language

In either APl or AP2 execution of any library routine may
be specified by code to set up arguments and then TSR to the pro-
gram,

In an APl program every named item which is referenced, in-
cluding library routines and constants, must be given a cross-
reference word through which it is indirectly addressed. This is
accomplished with a REF pseudo-order as explained in the assembly
language literature. Cross-reference words are set up automa-
tically in Genie programs for all external named items referenced
in the Genie language or AP2, including library routines and

constants,

RUNNING

e Compression

The set of Iibrary routines may be reduced to just that set
necessary for support of any user system. This compression is
provided by execution, from the console, of the program EDIT. All
memory space occupied by unnecessary programs is made available for
user storage.

Library routines have negative Symbol Table indices (...,-2,
-1,-0), and their Symbol Table entries bear a tag 1 initially.

Private named items receive positive Symbol Table indices
(1,2,...).

Printing or punching ST-VT through SPIREL and execution of
the library program EDIT cause context to be determined. This
just means that all ST entries with negative indices have tag 1
changed to tag 0 (no tag) if the item represented is required for
support of private programs loaded (on the basis of reference only,
not dynamic use). Thus, only library items not in context bear
tag 1 when a ST-VT print-out is obtained through SPIREL. All
private named and numbered items are always in context.

To use EDIT, obtain SPIREL and load private programs and any
data which may be located outside the STEX domain. Do not activate
STEX or execute any program. Execute the named program EDIT with
a control word to SPIREL from the console (manually or off paper
tape). Context is determined, and space occupied by all items not
in context is freed. All free space is consolidated into a single
area. If SL14 is off, a print-oﬁt is given of ST-VT entries for
items in context.

The "compressed" system may be written on tape for future use
or may be used immediately for a run. Activate STEX, if desired,
and load items into the STEX domain. Use an execute control word
to start the system running.

A "compressed" system (one in which EDIT has been exeguted)
may not be compressed again. This would be meaningless and is

impossible since the EDIT routine "erases" itself.

LIBRARY July, 1967

RUNNING
2

e Diagnostic Procedures

The first version of a program should contain ample print
outs that provide display of intermediate results. These may be
edited out of the final version of the program or they may be
executed conditionally on the basis of sense light settings.

A program should be tested with sense light 14 off. This
causes monitoring on the printer of all SPIREL operations, all
input-output operations, and all space taking operations. Such
information is often a valuable debugging aid.

All the SPIREL diagnostic features available: tracing,
arithmetic error monitoring, block bounds checking, diagnostic dump,
memory dump. In addition, improper input to many library routines
will cause an error message on the printer. Information provided
includes the error made, the location of the transfer to the

program detecting the error, and the name or codeword address of

the calling program.

LIBRARY May, 1967

LIBRARY ROUTINES

In this section the library routines are listed in alpha-
betical order. The details of input, output, and operation are
given for each program. The programs <ERPR and <ENTRY and the
constant <ELOC may be used by any routine; they are not mentioned

as support.

LIBRARY May, 1967

LIBRARY ROUTINES

2

ACOSH, arc hyperbolic cosine

Function: This routine computes the arc hyperbolic cosine
of a number,

Execution: implicit

ACOSH(A)
where argument A is floating point scalar input
result is floating point scalar
Errors: If A < 1.0, ACOSH gives result = 0 and prints error

message,

Support: programs LOG, SQR

LIBRARY ROUTINES
3

ASIN, arc sine

Function: This routine computes the arc sine of a number.
Execution: implicit
ASIN(A)

where argument A is floating point scalar input
result is floating point scalar, ‘ASIN(A)‘ < m/2
Errors: If |A‘ > 1.0, ASIN gives result = 0 and prints
error message.

Support: program SQR

LIBRARY ROUTINES
4

ASINH, arc hyperbolic sine

Function: This routine computes the arc hyperbolic sine

of a number,
Execution: implicit
ASINH(A)
where argument A is floating point scalar input
result is floating point scalar

Errors: none

Support: programs LOG, SQR

LIBRARY ROUTINES
4.1

ATAKE, array take

Function: This routine creates an m-dimensional array, the lowest
level of which contains primary codewords addressing n-dimensional
arrays of zeroes.

Execution: explicit

ATAKE (A,Dy...D_,%,Dy...D_,N)

where argument A is the real array to be created,

argument D, is the length in the ith dimension,

argument Z indicates the break between m and n, and

argument N < 6 is the number of dimensions (m+n)+1.
Space formerly addressed as A is freed. An array of size Dlx...xDm
is created, to be indexed by registers Bl...Bm. Then arrays of size
Dyx...xD (with primary codewords at level Dm) are created, to be
indexed by registers Bl...Bn.

Errors: If N > 6, or if any Di < 1l, or if the Z parameter is
missing or improperly located, an error message is printed.

Support: MTAKE

LIBRARY May, 1968

LIBRARY ROUTINES
5

ATAN, arc tangent

Function: This routine computes the arc tangent of a number,

Execution: implicit
ATAN(A)
where argument A is floating point scalar input

result is floating point scalar, |ATAN(A)| < /2

Errors: none

Support: none

LIBRARY ROUTINES
6

ATANH, arc hyperbolic tamngent

Function: This routine computes the arc hyperbolic tangent

of a number.
Execution: implicit
ATANH(A)
where argument A is floating point scalar input
result is floating point scalar

Errors: If |A| = 1.0, ATANH gives result = 0 and prints

error message.

Support: program LOG

LIBRARY ROUTINES

6.1
CACSH, complex arc hyperbolic cosine

Function: This routine computes the complex arc hyperbolic
cosine of a complex number.
Execution: implicit
CACSH(A)
where argument A is complex scalar input
result is complex scalar in CMPLX
In the Genie language, same execution is specified by
ACOSH (A)
for complex argument A.
Errors: none

Support: program CASNH

GENIE SPIREL April, 1967

LIBRARY ROUTINES

7
CADD, complex add

Function: This routine forms the sum of tWwo complex scalars.

Execution: special
input (B1)

1]

address of real part of first operand

(B2) = address of real part of second operand

result in U, R and in complex scalar accumulator, CMPILX.

Complex scalars must occupy consecutive

memory 1ocations, real part
followed by imaginary part,

Errors: none

Support: scalar CMPLX

LIBRARY ROUTINES
8

CARTN, polar to Cartesian conversion

Function: This routine converts a double word scalar
in polar form to a complex scalar in Cartesian form.
Execution: implicit
CARTN(A)
where argument is double word scalar input in polar form, i.e.,
represented by floating point scalars r and 6 such that
A = reie
result is complex scalar in standard Cartesian form, i.e.,
represented by floating point scalars x and y such that
A = reie =X + iy
The polar form of a complex operand is a complex operand in the
Genie language, but the arithmetic operations are not defined for
this representation; input, output, and storage across an equals
are meaningful for the polar form and useful,
Exrrors: none

Support: program SIN; scalar CMPLX

LIBRARY ROUTINES
8.1

CASN, complex arc sine

Function: This routine computes the complex arc sine of a
complex number.

Execution: implicit
CASN (A7)
where argument A is complex scalar input
result is complex scalar in CMPLX
In the Genie language, same execution is specified by
ASIN (A)
for complex argument A.
Errors: none

Support: program CASNH; scalar CMPLX

GENIE SPIREL April, 1967

LIBRARY ROUTINES
8.2

CASNH, complex arc hyperbolic sine

Function: This routine computes the complex arc hyperbolic
sine of a complex number.

Execution: implicit
CASNH (A)
where argument A is complex scalar input
result is complex scalar in CMPLX
In the Genie language, same execution is specified by
ASINH(A)
for complex argument A.
Errors: none

Support: programs CADD, CLOG, CMPY, CSQR; scalar CMPLX

GENIE SPIREL April, 1967

LIBRARY ROUTINES
8.21

CATAKE, complex array take

Function: This routine creates an m dimensional complex array;
the lowest level of which contains codewords addressing n-dimensional
arrays of zeroes.

Execution: explicit

CATAKE (A,Dy...D_,%,Dy...D ,N)

where argument A is the complex array to be created,

argument D, is the length in the ith dimension,

argument Z indicates the break between m and n, and

argument N < 6 is the number of dimensions (m+n)+l.
Space formerly addressed as A is freed. A complex array of size
Dyx...D is created, to be indexed by registers Bl...Bm. Then complex
arrays of size Dix...xD (with primary codewords at level Dm) are
created, to be indexed by registers Bl...Bn.

Errors: If n > 6, or any Di < 1l, or if the Z parameter is either
missing or improperly located, an error message is printed.

Support: ATAKE,6 MTAKE

LIBRARY May, 1968

LIBRARY ROUTINES
8.3

CATN, complex arc tangent

Function: This routine computes the complex arc tangent of
a complex number. ‘
Execution: implicit
CATN (A)
where argument A is complex scalar input
result is complex scalar in CMPLX
In the Genie language, same execution is specified by
ATAN (A)
for complex argument A.
Errors: If A = 0+/1.0, CATN gives result = 0 and prints error
message.
Support: programs CASN, CATNH; scalar CMPLX

GENIE SPIREL April, 1967

LIBRARY ROUTINES
8.4

CATNH, complex arc hyperbolic tangent

Function: This routine computes the complex arc hyperbolic
tangent of a complex number.
Execution: implicit
CATNH (A)
where argument A is complex scalar input
result is complex scalar in CMPLX
In the Genie language, same execution is specified by
ATANH (A)
for complex argument A.
Errors: If A = *#1.0, CATNH gives result = 0 and prints error
message.
Support: programs CDIV, CLOG; scalar CMPLX

GENIE SPIREL April, 1967

LIBRARY ROUTINES
9

CCEXP, complex=-complex exponentiation

Function: This routine computes the exponentiation of a
complex scalar to a complex power.
Execution: special
input address portion of (U) = address of real part of complex
scalar to be raised to power
address portion of (R) = address of real part of complex
power

result in U,R and in complex scalar accumulator, CMPLX.

Complex scalars must occupy consecutive memory locations, real
part followed by imaginary part.

Errors: If base = 0, CCEXP gives result = 0 and prints
error message.

Support: programs CEXP, CLOG, CMPY; scalar CMPLX

- el

LIBRARY ROUTINES
10

CCOL, number of columns in a complex matrix

Function: This routine provides the number of columns in
a complex matrix.

Execution: implicit

' CCOL (A)
where argument A is complex matrix input

result is the integer number of columns in matrix A.
In the Genie language the same execution is specified by
COL (A)

for complex argument A.

Errors: If A does not exist, result = 0 and an error message
is printed. .

Support: program COL

LIBRARY March, 1968

[-

LIBRARY ROUTINES
11

CCONTROL, application of SPIREL to complex operand

Function: This routine composes control words and applies
SPIREL to the real then the imaginary part of a named complex
quantity..

Execution: Explicit

CCONTROL(N ,WXYZ ,R ,CNAME)
where arguments N, WXYZ, and R are control word fields as for
CONTROL
argument CNAME is the complex scalar or non=-scalar to which
the SPIREL operation is to be applied
See description of CONTROL for further details and examples, 1In
the Genie language the same exeuction is specified by
CONTROL(N ,WXYZ ,R ,CNAME)
for complex argument CNAME.
Errors: none

Support: program CONTROL

LIBRARY ROUTINES
12

CCOS, complex cosine

Function: This routine computes the cosine of a complex
number.
Execution: implicit
CCOS (A)

where argument A is complex scalar input
result is complex scalar in CMPLX
In the Genie language, same execution is specified by
COS (A)
for complex argument A,
Errors: If |imaginary part of A| > 170.0, CCOS gives result
for \IM(A)| = 170.0 and prints error message.

Support: programs SIN, SINH; scalar CMPLX

LIBRARY September, 1967

LIBRARY ROUTINES
13

CCOT, complex cotangent

Function: This routine computes the cotangent of a complex

number,
Execution: implicit
CCOT(A)
where argument A is complex scalar input
result is complex scalar in CMPLX
In the Genie language, same execution is specified by
COT (A)
for complex argument A,
Errors: 1f Iimaginary part of A‘ > 85.0, CCOT gives result
for |IM(A)| = 85.0 and prints error message.,
[Support: programs COT, SIN, SINH; scalar CMPLX

GENIE SPIREL September, 1966

LIBRARY ROUTINES
13.1

CCSH, complex hyperbolic cosine

Function: This routine computes the complex hyperbolic cosine
of a complex number.
Execution: implicit
CCSH(A)

‘where argument A is complex scalar input

result is complex scalar in CMPLX
In the Genie language, same execution is specified by
COSH (A)

' for complex argument A.

Aresult for

Errors: If |real part of A| > 170.0, CCSH gives

RE(A)| = 170.0 and prints error message.
Support: programs SIN, SINH; scalar CMPLX

GENIE SPIREL September, 1966

LIBRARY ROUTINES
14

CDET, complex determinant

Function: This routine computes the determinant of a square
standard complex matrix in the STEX domain,
Execution: implicit
CDET (A)
where argument A is square complex matrix input
result is complex scalar in CMPLX
SPIREL monitoring for creation of intermediate results is provided
if SL14 is off. 1In the Genie language the same execution is
specified by
DET (A)
for complex argument A.
Errors: If A does not exist, CDET prints an error message
and performs no operation., If A is not square, CDET gives result
= 0 and prints an error message.

Support: program CINV; non-scalar CSTAR

LIBRARY ROUTINES
15

CDIV, complex divide

Function: This routine forms the quotient of two complex

scalars.,
Execution: special
input (Bl) = address of real part of numerator

address of real part of denominator

1]

(B2)
result in U,R and in complex scalar accumulator, CMPLX.

Complex scalars must occupy consecutive memory locations, real

part followed by imaginary part.

Errors: none

Support: scalar CMPLX

LIBRARY ROUTINES
16

CEXP, complex exponential

Function: This routine computes the exponential of a
complex number.
Execution: implicit
CEXP (A)
where argument A is complex scalar input
result is complex scalar in CMPLX
In the Genie language, same execution is specified by
EXP (A)
for complex argument A.
Errors: If real part of A < -170.0, CEXP gives result = 0;
if real part of A > 170.0, CEXP gives result for RE(A) = 170.0 and
prints error message.

Support: programs EXP, SIN; scalar CMPLX

GENIE SPIREL April, 1967

LIBRARY ROUTINES
17

CFEXP, complex=-floating point exponentiation

Function: This routine computes the exponentiation of a
complex scalar to a real floating point power.
Execution: special
input address portion of (U) = address of real part of complex

scalar to be raised to power

(R) = floating point scalar power
result in U,R and in complex scalar accumulator, CMPLX

Complex scalars must occupy consecutive memory locations, real
part followed by imaginary part.
Errors: If base = 0, CFEXP gives result = 0 and prints

error message,
Support: programs CARTN, FLEXP, POLAR; scalar CMPLX

LIBRARY ROUTINES

17 .1
2
CHISQ, ¥
Function: This routine computes xz, measure of fit, for two

floating point vectors of equal length.
Execution: implicit
CHISQ(A ,B)
where argﬁment A is the theoretical distribution, real floating
.point vector input
argument B is the observed distribution, real floating
point vector input

result is real scalar, computed as

n (Bi'Ai)z
1;< t1

)

where vectors are of length n

Errors: TIf A and B are not equal in length or if either does
not exist, CHISQ prints an error message and gives result = 0.
Support: none

LIBRARY July, 1967

LIBRARY ROUTINES
18

CINV, complex matrix inverse

Function: This routine forms the inverse of a standard complex
matrix in the STEX domain.

Execution: implicit

CINV(A)
where argument A is standard complex matrix input
result is in complex non-scalar accumulator, CSTAR

Input matrix is not destroyed. SPIREL monitoring for creation of
the result is provided if SL14 is off.

The usual application of CINV is to compute the inverse of a
square matrix. CINV will work on a matrix containing more columns
than rows, say n rows and m columns with m > n. In this case m - n

systems of linear equations are represented

(Ay Xt otAy X Ay L= 0
th
p system
An'1Xl+...+An’an-An’n+p =0
for p=1,...,m~-n. Column p of the result matrix contains the

solution of the pthsystem:

X1 in Al,n+p,...,Xn in An,n+p

The left square portion (n Columns) of the matrix result is the
inverse of the left square portion of the input. In the Genie
language the same execution is specified by
INV(A)

for complex argument A.

Errors: If A does not exist or if A contains more rows than
columns, CINV prints an error message and performs no operation.
If A is singular, no result is given, and CINV prints an error
message.

Support: programs CADD, CDIV, CMCPY, CSUB, MOD; scalar CMPLX,

non-scalar CSTAR

GENIE SPIREL September, 1966

LIBRARY ROUTINES
19

CLENGTH, 1length of a complex vector

Function:

This routine provides the length of a complex vector.
Execution: implicit

CLENGTH(A)
where argument A is complex vector input
I ‘result is integer length of vector A.
In Genie programs the same execution is Spécified by
LENGTH (A)

for complex argument A.

Error: If A does not exist, result = 0 and an error message
is printed.

Support: program LENGTH

LIBRARY March, 1968 <

N} . -~

LIBRARY ROUTINES
20

CLOG, complex natural logarithm

Function: This routine computes the natural logarithm of a
complex number,
Execution: implicit
CLOG(A)
where argument A is complex scalar input

result is complex scalar in CMPLX with imaginary part =2 0

In the Genie language, same execution is specified by
LOG (A)
for complex argument A,
Errors: If A = 0 (both real and imaginary parts = 0),
CLOG gives result = O and prints error message.

Support: programs LOG, POLAR; scalar CMPLX

LIBRARY ROUTINES
21

CMADD, complex matrix add

Function: This routine forms the sum of two standard complex

vectors or two standard complex matrices in the STEX domain.

Execution: special
input (Bl) = codeword address of real part of first operand
(B2) = codeword address of real part of second operand

result in complex non-scalar accumulator, CSTAR

If either (Bl) or (B2) null on entry, the corresponding operand
is taken as the complex non=-scalar accumulator, CSTAR. An operand
which is not CSTAR is not destroyed. The two codewords for a com-
plex non=-scalar must occupy consecutive memory locations, real part
followed by imaginary part, SPIREL monitoring for creation of the
result is provided if neither operand is CSTAR and SL14 is off,

Errors: If either operand does not exist, CMADD prints
error message and performs no operation. If dimensions of the
two operands are not the same, CMADD uses the subset of the
larger which corresponds to the smaller, performs the addition,
and prints error message.

Support: programs MADD, MSUB; non-scalar CSTAR

GENIE SPIREL September, 1966

LIBRARY ROUTINES
22

CMCON, complex matrix construction

Function: This routine forms a standard complex vector
or matrix from two standard vectors or matrices in the STEX domain.,
The operands must be of the same dimensions and should contain

floating point elements,

Execution: special
input (Bl) = codeword address of real part
(B2) = codeword address of imaginary part

result in complex non-scalar accumulator, CSTAR
If either (Bl) or (B2) null on entry, the corresponding operand
is taken as the non-scalar accumulator, *10. An operand which
is not %10 is not destroyed., SPIREL monitoring for creation of
the result is provided if SL14 is off.

Errors: If either operand does not exist or if the operands

are not of the same dimension, CMCON prints error message and
performs no operation.

Support: program MCOPY, non-scalar CSTAR

LIBRARY ROUTINES
23

CMCPY, complex matrix copy

Function: This routine copies a standard vector or matrix in
the STEX domain.
Execution: Special
Input: (Bl)
(B2)

codeword address of real part of copy

codeword address of real part of vector or matrix
to be copied.

If (Bl) is null on entry, (B2) is copied into CSTAR, the complex
non-scalar accumulator. (B2) is never erased after the copy. If
(B1) = (B2), (B2) is assumed to be a duplicate codeword (see SPIREL
section on Storage Control). Then an actual copy is made of (B2)
and the duplicate backreference is removed. SPIREL monitoring for
creation of the copy is provided if SL14 is off.

Errors: If the complex non-scalar (B2) to be copied does not
exist, CMCPY prints an error message and performs no operation.

Support: program MCOPY; non-scalar CSTAR.

LIBRARY July, 1968

LIBRARY ROUTINES
24
CMMPY, complex matrix multiply

Function: This routine forms the product of two standard
complex vectors (dot product, a scalar), a standard complex vec-
tor and a standard com?lex matrix (a vector), or two standard
complex matrices (a matrix). Operands must be in the STEX domain.

Execution: special

input (B1l)

(B2) = codeword address of real part of righthand operand

codeword address of real part of lefthand operand

scalar result in CMPLX; non-scalar in CSTAR
If either (Bl) or (B2) null on entry, the corresponding operand is
taken as the complex non-scalar accumulator, CSTAR. An operand
which is not CSTAR is not destroyed. Note that vector X matrix
treats the vector as a one-column matrix. The dot product given by
vector A X vector B is defined as FA;B; where Ei is the conjugate
of Bi' The two codewords for a complex non-scalar must occupy con-
secutive memory locations, real part followed by imaginary part.
SPIREL monitoring for creation of the result is provided if SL14 is
off.

Errors: If either operand does not exist, CMMPY prints error
message and performs no operation. If the non-scalar operands do
not have dimensions compatible for multiplication, CMMPY uses the
subset of the operand with the larger pertinent dimension which
corresponds to the operand with the smaller pertinent dimension,
performs the multiplication, and prints an error message.

Support: programs MADD, MMPY, MSUB; scalar CMPLX; non-
scalar CSTAR

GENIE SPIREL November, 1966

LIBRARY ROUTINES
25

CMPY, complex multiply

Function: This routine forms the product of two complex

scalars,

Execution: special
input (B1l) = address of real part of first operand
(B2) = address of real part of second operand

result in U,R and in complex scalar accumulator, CMPLX

Complex scalars must occupy consecutive memory locations, real
part followed by imaginary part.
Errors: none

Support: scalar CMPLX

LIBRARY ROUTINES
26

CMSPACE, complex matrix space

Function: This routine creates a standard complex matrix
of zeroes in the STEX domain.
Execution: explicit
CMS PACE (A ,B,C)
where argument A is complex matrix to be created
argument B is integer number of rows in A
argument C is integer number of columns in A
Storage addressed formerly as A is freed; then, if both B > 0 and
C >0, a complex matrix (two matrices with adjacent codewords)
with B rows and C columns is created, SPIREL monitoring for free-
ing or creating is provided if SL14 is off. 1In the Genie language
the same execution is specified by
MS PACE (A ,B ,C)
for complex argument A.
Errors: none

Support: program MSPACE

LIBRARY ROUTINES
27

CMSUB, complex matrix subtract

Function: This routine forms the difference of two standard
complex vectors or two standard complex matrices in the STEX domain,
Execution: special

input (B1)

codeword address of real part of operand to be

subtracted from

{1

(B2) codeword address of real part of operand to be
subtracted
result in complex non-scalar accumulator, CSTAR

If either (B1) or (B2) null on entry, the corresponding operand
is taken as the complex non-scalar accumulator, CSTAR. An operand
which is not CSTAR is not destroyed. The two codewords for a com-
plex non-scalar must occupy consecutive memory locations, real part
followed by imaginary part. SPIREL monitoring for creation of the
result is provided if neither operand is CSTAR and SL14 is off,

Errors: 1If either operand does not exist, CMSUB prints
error message and performs no operation., If dimensions of the
two operands are not the same, CMSUB uses the subset of the
larger which corresponds to the smaller, performs the subtraction,
and prints error message,

Support: program CMADD

GENIE SPIREL September, 1966

LIBRARY ROUTINES
27.1
CMTAKE, complex matrix take

Function: This routine creates an n-dimensional complex array
of zeroes.
Execution: explicit
CMTAKE (A,Dy, ... ,Dg,N)
where argument A is complex array to be created

th dimension

argument D. is length in the i

argument N < 5 is the number of dimensions
Space addressed formerly as A is freed; then an array of size
Dlx...xDN is created, to be indexed by registers Bl,...,BN. SPIREL
monitoring for creating A is provided if SL14 is off. In the Genie
language the same execution is specified by

MTAKE(A,Dl,...,DN,N)
for complex argument A.
Errors: If any Di <1, N<1, or N> 5, CMTAKE gives no result

and prints an error message.

Support: program MTAKE

GENIE SPIREL November, 1966

LIBRARY ROUTINES

28

COL, number of columns in a matrix

Function: This routine provides the number of columns in
a matrix.

Execution: implicit

COL(A)
where -argument A is a matrix input
result is the integer number of columns in matrix A.
Errors: If A does not éxist, result = 0 and an error message

is printed.

Support: none

LIBRARY March, 1968

1 . . -8

LIBRARY ROUTINES
29

CONJ, conjugate of complex scalar

Function: This routine provides the conjugate of a complex
scalar,
Execution: implicit
CONJ(A)

where argument A is complex scalar in standard Cartesian form
result is complex scalar in CMPLX

Errors: none

Support: scalar CMPLX

LIBRARY ROUTINES
30

CONTROL, application of SPIREL

Function: This routine composes a control word and applies
SPIREL to a named quantity.
Execution: explicit
CONTROL(N ,WXYZ ,R ,NAME)
where argument N is an integer, the "N" field (first five traids)
of the control word to be executed
argument WXYZ is an integer, the "wxyz" field (next four
triads) of the control word to be executed, usually
given as an octal configuration
argument R is an integer, the "“R" field (next four triads)
of the control word to be executed
argument NAME is the scalar or non-scalar to which the
SPIREL operation is to be applied
If NAME is a scalar, the N field in the control word must be 1,
the x triad in the control word must = 0 so that WXYZ would be
given as +wOyz in Genie. If NAME is a non-scalar (vector, matrix,
or program), the x triad in the control word should = 4 so that
WXYZ would be given as +w4yz in Genie.
Examples:
EXECUTE CONTROL(n,+4400,k,BLOCK)
in the Genie language would cause SPIREL to print n words of the
vector or program BLOCK in octal, starting at the kth.
EXECUTE CONTROL(O0,+5440,0 ,DATA)
in the Genie language would cause SPIREL to punch all data of the
array DATA in hexad with tag and checksum format.
EXECUTE CONTROL(1,+4030,0,RATE)
in the Genie language would cause SPIREL to print the scalar RATE
in decimal.
Errors: none

Support: none

LIBRARY ROUTINES
30.1

CONVL, convolution
Function: This routine computes the convolution of two real

floating point vectors.
Execution: implicit
CONVL (A,B)
where argument A is the shorter (filter) input vector
argument B is the longer (data) input vector
result is real floating point vector in the non-scalar
accumulator, *10, of length = (length of B)-(length of
A)+1
In computing dot products, CONVL does not extend the filter beyond
the ends of the data; but "slow start-up” may be obtained by having
sufficient zeroes at the ends of the data.
Errors: If A or B does not exist, CONVL prints an error
message and performs no operation,

Support: program VREV

LIBRARY August, 1967

LIBRARY ROUTINES
31

COS, cosine

Function: This routine computes the cosine of a number.
Execution: implicit
COS (A)

where argument A is floating point scalar input

result if floating point scalar
Also, (R) = SIN(A) on exit. '

Errors: If |A[2‘247, COS gives result = 0 and prints an error
message. / l

Support: program SIN

LIBRARY March, 1968

« . ~5

LIBRARY ROUTINES
32

COSH, hyperbolic cosine

Function: This routine computes the hyperbolic cosine of a
number,

Execution: implicit

COSH(A)
where argument A is floating point scalar input
result is floating point scalar

Also, (R) = SINH(A) on exit.

Errors: If |A| > 170.0, COSH gives result for |a] = 170.0
and prints error message,

Support: program SINH

LIBRARY ROUTINES
33

COT, cotangent

Function: This routine computes the cotangent of a number.
Execution: implicit
COT (A)
where argument A is floating point scalar input
result is floating point scalar
Error: 1If [A[= multiple of 3n/2, COT gives result = 0 and
prints an error message.

Support: program TAN

LIBRARY March, 1968

LIBRARY ROUTINES

33.1
CRCOR, cross-correlation or auto-correlation

Function: This routine performs the cross=-correlation of two
vectors of equal length or auto-correlation on a single vector.
Execution: implicit
CRCOR(A ,B,C)
where argument A is real floating point vector input
argument B is real floating point vector input, B*A for
cross-correlation, B=zA for auto-correlation
argument C is integer specifying length of result,
< 2(input length)-1 for cross-correlation, < input length
for auto-correlation, C=Z for maximum length result
result is standard floating point vector in the non-scalar
accumulator, *10
Errors: If C > 2(input length)-1 for cross~-correlation or
C > input length for auto-correlation, CRCOR prints an error message
and gives maximum length result. If A and B are not equal in length
or either does not exist, CRCOR prints an error message and per-
forms no operation.

Support: none

LIBRARY July, 1967

LIBRARY ROUTINES
34

CROW, number of rows in a complex matrix

Function: .This routine provides the number of rows in a
complex matrix.

Execution: implicit

CROW (A)
where argument A is complex matrix input
result is integer number of rows in matrix A.
In the Genie language the same execution is specified by
"~ ROW(A)

for complex argument A.

Error: If A does not exist, result = 0 and an error message
is printed.

Support: program CLENGTH

LIBRARY March, 1968

LIBRARY ROUTINES
35

CSIN, complex sine

Function: This routine computes the sine of a complex
number,
Execution: implicit
CSIN(A)

where argument A is complex scalar input

result is complex scalar in CMPLX

In the Genie language, same execution is specified by
SIN(A)
for complex argument A,
Errors: If |imaginary part of A| > 170.0, CSIN gives result
for ‘IM(A)‘ = 170.0 and prints error message.
Support: programs COS, SINH; scalar CMPLX

GENIE SPIREL September, 1966

LIBRARY ROUTINES
35.1

CSNH, complex hyperbolic sine

Function: This routine computes the complex hyperbolic sine
of a complex number.
Execution: implicit
CSNH (A)
where argument A is complex scalar input
result is complex scalar in CMPLX
In the Genie language, same execution is specified by
SINH(A)
for complex argument A.
Errors: If |real part of A| > 170.0, CSNH gives result
for |RE(A)| = 170.0 and prints error message.
Support: programs SIN, SINH; scalar CMPLX

GENIE SPIREL September, 1966

LIBRARY ROUTINES

36
CSMDV, complex scalar-matrix divide
Function: This routine divides a standard complex vector
or matrix in the STEX domain by a complex scalar,
Execution: special
input (Bl) = codeword address of real part of non-scalar operand
(U) = address of real part of scalar operand

result in complex non=-scalar accumulator, CSTAR

If (B1l) null on entry, the non-scalar operand is taken as CSTAR.,
A non-scalar which is not CSTAR is not destroyed. The two words
for a complex scalar and the two codewords for a complex
non-scalar must occupy consecutive memory locations, real part fol-
lowed by imaginary part. SPIREL monitoring for creation of the
result is provided if SL14 is off.

Errors: 1If the non-scalar operand does not exist or if the
scalar = 0, CSMDV prints error message and performs no operation.

Support: programs CMCPY, CDIV; scalar CMPLX; non-scalar CSTAR

GENIE SPIREL September, 1966

LIBRARY ROUTINES
37

CSMMP, complex scalar-matrix multiply

Function: This routine forms the product of a complex scalar
and a standard complex vector or matrix in the STEX domain.
Execution: special

input (B1)

1

codeword address of real part of non-scalar operand
(U) = address of real part of scalar operand

result in complex non=-scalar accumulator, CSTAR
If (Bl) null on entry, the non-scalar operand is taken as CSTAR.
A non-scalar which is not CSTAR is not destroyed. The two words
for a complex non=-scalar must occupy consecutive memory locations,
real part followed by imaginary part. SPIREL monitoring for
creation of the result is provided if SL14 is off.

Errors: If non-scalar operand does not exist, CSMMP prints

error message and performs no operation.

Support: programs CMCPY, CMPY; non-scalar CSTAR

LIBRARY ROUTINES
38

CSOLN, complex linear equations solution

Function: This routine provides the solution to a system
of linear equations represented by a square standard complex
matrix of coefficients and a standard complex vector of constants.
The operands must be in the STEX domain.

Execution: implicit

CSOLN (A, B)
where argument A is square complex matrix of coefficients
argument B is complex vector of constants

representing a system of n equations of the form

Ai,lxl+"'+Ai,an = Bi ’ i=1,2,...,n

result is complex vector in the complex non-scalar accumula-
tor, CSTAR, with the value of Xi as the ith element
SPIREL monitoring for creation of the result is provided if SL14
is off. In the Genie language the same execution is specified by
SOLN (A)

for complex argument A. In assembly language coding the argument
B may be a matrix of m columns representing m systems of equations
of the form

Ai,lxl,j+"'+Ai,an,j = Bi,j , i=1,2,...ynand j=1,2,...,m
Then the result in CSTAR is a matrix with the solution to the jth
system as the jth column

X, . X, . X .
1,3,72,3,¢¢., 10,3

Errors: If A or B does not exist or if dimensions are not
proper of if a solution is not defined, CSOLN prints an error
message and performs no operation.

Support: program CINV; non-scalar CSTAR

GENIE SPIREL September, 1966

LIBRARY ROUTINES
39

CSQR, complex square root

Function: This routine computes the square root a complex

number.,
Execution: implicit
CSQR(A)
where argument A is complex scalar input

result is complex scalar in CMPLX with imaginary part = 0

In the Genie language, same execution is specified by
SQR(A)
for complex argument A,
Errors: none

Support: programs CARTN, POLAR, SQR; scalar CMPLX

GENIE SPIREL September, 1966

LIBRARY ROUTINES
40

CSUB, complex subtract

Function: This routine forms the difference of two complex

scalars.
Execution: special

input (B1l) = address of real part of the operand to be sub-

tracted from

(B2)

address of real part of the operand to be sub-

tracted

result in U,R and in complex scalar accumulator, CMPLX

Complex scalars must occupy consecutive memory locations, real
part followed by imaginary part.

Errors: none

Support: scalar CMPLX

LIBRARY ROUTINES

41
CTAN, complex tangent
Function: This routine computes the tangent of a complex
number,
Execution: implicit
CTAN(A)
where argument A is complex scalar input
result is complex scalar in CMPLX
In the Genie language, same exeuction is specified by
TAN(A)
for complex argument A.
Errors: If Iimaginary part of A| > 85.0, CTAN gives result
for |IM(A)| = 85.0 and prints error message., If A is near singula-
rity of complex tangent, CTAN gives result = tangent of real part

of A and prints error message,

Support: programs SIN, SINH, TAN; scalar CMPLX

GENIE SPIREL September, 1966

LIBRARY ROUTINES
41.1

CTNH, complex hyperbolic tangent

Function: This routine computes the complex hyperbolic
tangent of a complex number.

Execution: implicit

CTNH (A)
where argument A is complex scalar input
result is complex scalar in CMPLX
In the Genie language, same execution is specified by
TANH (A)
for complex argument A.

Errors: If |real part of A| > 85.0, CTNH gives result for
IRE(A)l = 85.0 and prints error message. If A is near singularity,
CTNH gives result = tangent of real part of A and prints error
message.

Support: programs CASN, CTAN; scalar CMPLX

GENIE SPIREL April, 1967

LIBRARY ROUTINES
42
CTRAN, complex matrix transpose

Function: This routine forms the transpose of a standard
complex matrix in the STEX domain.
Execution: implicit
CTRAN (A)
where argument A is standard complex matrix input
result is in complex non-scalar accumulator, CSTAR
Note that CTRAN forms the matrix B, transpose of A, such that
Bi,j=Aj,i‘ SPIREL monitoring for creation of the result is pro-
vided if SL14 is off. 1In the Genie language the same execution is
specified by
TRAN (A)
for complex argument A.
Errors: If A does not exist, CTRAN prints an error message
and performs no operation.

Support: programs CMCPY, TRAN; non-scalar CSTAR

GENIE SPIREL November, 1966

LIBRARY ROUTINES
43

CVSPACE, complex vector space

Function: This routine creates a standard complex vector
of zeroes in the STEX domain.
Execution: explicit
CVSPACE (A ,B)
where argument A is complex vector to be created
argument B is integer length of A
Storage addressed formerly as A is freed; then, if B > 0, a
complex vector (two vectors with adjacent codewords) of length
B is created. SPIREL monitoring for freeing or creation of A
is provided if SL14 is off. 1In the Genie language the same
execution is specified by
VSPACE (A ,B)
for complex argument A,
Errors: none

Support: program VS PACE

LIBRARY ROUTINES

44

CXEXP, complex-fixed point exponentiation

Function: This routine computes the exponentiation of a

complex scalar to an integer power.

Execution: special

input address portion of (U)

= address of real part of complex
scalar to be raised to power

(R) = integer power

result in U,R and in complex scalar accumulator, CMPLX, zero if

base = 0 and input (R) > O

Complex scalars must occupy consecutive memory locations, real
part followed by imaginary part.

Errors: If base = 0 and input (R) < 0, CXEXP gives
result = 0 and prints error message,.

Support: programs CARTN, FXEXP, POLAR; scalar CMPLX

LIBRARY ROUTINES
45

DET, determinant

Function: This routine computes the determinant of a square
standard matrix of floating point type.

Execution: implicit

DET (A)
where argument A is square floating point matrix input
result is floating point scalar

A is destroyed only if it is the non-scalar accumulator, ¥10.
In any case *10 is freed. SPIREL monitoring is provided for
creation of an intermediate non-scalar if SL14 is off.

Errors: If A does not exist, DET prints an error message
and performs no operation., If A is not square, DET gives
result = 0 and prints an error message,

Support: program INV

LIBRARY ROUTINES
46

DIAG, matrix diagonalization

Function: This routine diagonalizes a symmetric matrix of

floating point type in the STEX domain. The initial indices of

the matrix must be one. It also provides eigenvectors if desired.
Execution: explicit
DIAG(A ,B,C)

where argument A is the matrix to be diagonalized and will contain

the result

argument B is the matrix to contain eigenvectors as rows,

null if no eigenvectors desired
argument C floating point scalar to be used as upper bound

on off-diagonal elements of diagonalized matrix, null
for upper bound as 2 times smallest diagonal element
in result

The input matrix may be stored in upper triangular form, initial

row indices 1,2,...,n for an n X n matrix

Exrrors: none

Support: program SQR

LIBRARY ROUTINES
47

EDIT, library edit

Function: This routine performs library maintenance operations

and is executed for library compression.

Execution: from the console only -- from word 1 for com-
pression (see RUNNING section), from word 2 for punching (see
MAINTENANCE section), from word 3 for initialization only (see
MAINTENANCE section).

| Errors: none

Support: program <COMP

LIBRARY May, 1967

LIBRARY ROUTINES
48

EVEN, test integer even

Function: This routine tests an integer for being even.
Execution: implicit
EVEN(A)

where argument A is integer input
result is Boolean value TRUE (represented by integer =-0)
if A is even, Boolean value FALSE (represented by
integer =-1) if A is odd
Errors: none

Support: none

LIBRARY ROUTINES
49

EXP, exponential

Function: This routine computes the exponential of a number.
Execution: implicit
EXP(A)
where argument A is floating point scalar input
result is floating point scalar
Errors: If A < -170.0, EXP gives result = 0., If A > 170.0,
EXP gives result for A = 170,0 and prints error message.

Support: none

LIBRARY ROUTINES
49,1
FFT, fast Fourier transform

Function: This program does a discrete Fourier transform or
inverse, as directed by the parameters; it is also used by FFTC.

J

W=

NZlAke (exponent sign is + for an inverse)
k=0
Execution: explicit
FFT(A,B,C)
where argument A is the input/output vector (complex)
| B is the real scale constant
C is a Boolean variable: true if the sign of the
exponent is negative, false otherwise.
result is stored in A since the computation is done in place.
FFT is most efficient for highly composite N, that is, if
N = nl.n2.23...;.nm. If N is prime the running time is on the
order of N, otherwise it is on the order of

m
N(iglni).

Errors: if A is non-existent, or the values require too much
scratch storage, an error message is printed.
Support: program COS.

LIBRARY April, 1968

LIBRARY ROUTINES
49.2

FFTC, fast Fourier transform control program

Function:

This program causes a discrete Fourier transform

or inverse to be done on an original input vector, as directed by

the combination of input parameters. See FFT and RTRAN.

Execution:

where argument

explicit

FFTC(A,B,C,D,E)

A is the input

vector

is the output vector

B
C is the real scale constant
D

is a Boolean
false for an
E is a Boolean

is conjugate

variable: true for a transform,
inverse
variable: true if the complex vector

symmetric (i.e., only the right half

of the vector is supplied) false, if not.

The Fourier transform requires a complex input; therefore if input A

is real, FFTC makes it complex under the following conditions:

1. if a) input A has odd length N, and output B is specified

as symmetric,

or b) output B is specified as non-symmetric (parameter

E false),

FFTC makes A complex by creating an imaginary part: a’

vector of zeroes N long. The output is complex vector B,

each part of which is N long.

2. If input A has even length N and B is spe01f1ed as

symmetric (E true), FFTC saves time by creating a complex

vector from A:

the real part is the odd elements of A and

the imaginary part is the even elements. This complex vector

is N/2+1 long (the +1 being a zero added by the program to

provide necessary working space for RTRAN). FFT is then

entered at the third instruction, causing the transform to

LIBRARY April,

1968

LIBRARY ROUTINES
49.3
be done on N/2 elements. RTRAN is done next, on N/2+1
elements and the result is complex vector B (each part of
which is N/2+1 long).
If the input A is already complex, FFTC does the following:

1. if A is N long and not symmetric, the transform or in-
verse is done directly and the output is a complex vector
N long (the input and output vectors may both be A if the
input doesn't need to be saved).

2. If A is symmetric, FFTC considers its length N to represent
one half of the vector plus 1 (the mid-point), and the real
output B will be 2(N-1) long. (This case is the reverse of
2 above, i.e., it does RTRAN first, followed by FFT entered
at the third instruction. By definition then, this case is
an inverse and parameter D must be false).

The scale constant for a transform is usually 1.0; for an inverse
1.0/length N. If the input and output vectors are different lengths,
use the length of the one which is real.

Errors: The following combinations of parameters produce

error messages:

1. A real, B real, C,D,E

2. A complex, B complex, C,D,E true

3. A complex, B real, C,D,E false v

Support: programs FFT, RTRAN, MCOPY, CMCPY; non-scalars

~CSTAR, USTAR, “DUMY.

LIBRARY April, 1968

LIBRARY ROUTINES
50

FIX, convert to integer

Function: This routine computes the integer closest to a
floating point scalar,.
Execution: implicit
FIX(A)
where argument A is floating point scalar input
result is integer closest to A, rounded up in absolute value

Errors: if \Al > 16383.5, FIX gives result = O and prints

error message,

Support: none

LIBRARY ROUTINES
51

FLEXP, floating point exponentiation

Function: This routine computes exponentiation of a floating
point number to a floating point power.
Execution: special
input (U)
(R) floating point scalar power

result in U and T7 which is (u) ‘R

]

floating point scalar to be raised to power

1

Errors: If input (U) < O, FLEXP gives result = 0 and

prints error message,

Support: programs EXP, LOG

LIBRARY ROUTINES
52

FLOAT, convert to floating point

Function: This routine provides the floating point equivalent

of an integer,
Execution: implicit
FLOAT(A)
where argument A is scalar input, integer or floating point
result is floating point equivalent of A, just A if A is
floating point
Errors: none

Support: none

LIBRARY ROUTINES
52.1
FTRAN, Fourier transform

Function: This routine computes the complex frequency (Hz)
spectrum of a real function of time. The discrete time series must
be stored in a floating point vector in the STEX domain, and the
values must be equally spaced in time.

Execution: implicit

FTRAN(A,B,C,D,E,F)

where argument A is the real time series vector input,
argument B is the upper time limit, floating point scalar
argument C is the lower time limit, floating point scalar
argument D is the upper frequency limit, floating point scalar
argument E is the lower frequency limit, floating point scalar
argument F is the frequency increment, floating point scalar

result is complex vector in CSTAR, the complex non-scalar
accumulator

The Fourier integral is approximated by the trapezoidal quadrature
formula. SPIREL monitoring for creation of the result is provided
if SL14 is off.

Errors: If A does not exist or B-C < 0 or D-E < 0, FTRAN
prints an error message and performs no operation.

Support: programs CVSPACE, SIN; non-scalar CSTAR

GENIE SPIREL November, 1966

LIBRARY ROUTINES
53

FXEXP, fixed point exponentiation

Function:

This routine computes exponentiation of a number

to an integer power,

Execution:

input (U)

it

(R)

result in U

Errors:
result = 0 and

Support:

special
floating point or integer scalar to be raised to
power
integer power
and T7 which is (U)(R) and of same type as input (U),
zero if input (U) is integer and I(U)| > 1 and
input (R) < 0, zero if input (U) = O and input
(R) > 0 '
If input (U) = 0 and input (R) < O, FXEXP gives
prints error message.

none

LIBRARY ROUTINES
53.1
GAMMA, gamma function

Function: This routine computes the gamma function of a real
floating point number.
Execution: implicit
GAMMA (A)
where argument A is real floating scalar input
result is real floating point scalar computed by Stirling's
logarithmic approximation
Errors: TIf A<-27, A>55.0, or A is a negative integer, GAMMA
gives result=0 and prints an error message.

Support: programs EXP, LOG

LIBRARY July, 1967

LIBRARY ROUTINES
54

IM, imaginary part

Function: This routine provides the imaginary part of a
complex scalar,
Execution: implicit
IM(A)
where argument A is complex scalar input

result is real floating point scalar

If coded in the Genie language, the library routine is not used;
but the routine may be used in assembly language coding. IM may
be used on any double word scalar argument to provide the second
part as a single word scalar.

Errors: none

Support: none

LIBRARY ROUTINES
54.1
INPUT, special input

Function: This routine is supplied by the user for special
input to programs written in the Genie language.
Execution: in Genie language only, by the command
INPUT list
where the program INPUT is entered once for each named variable in
the list. A complex variable is treated as two items, the real
part with the name of the variable and the imaginary part with the
name "ditto". The program INPUT must be coded in the assembly
language, APl. Information is given in T7 on entry to INPUT as
follows:
bits 1-30 name in BCD as given in list
31-33 not used
34-36 octal 0 for scalar
2 for vector
4 for matrix
39-41 not used

40-54 address of scalar, codeword address for non-scalar

GENIE SPIREL November, 1966

LIBRARY ROUTINES
55

INV, matrix inverse

Function: This routine forms the inverse of a standard matrix
in the STEX domain., The matrix must be of floating point type.
Execution: implicit
INV(A)
where argument A is floating point standard matrix input
result is floating point standard matrix in the non-scalar
accumulator, %10
Input matrix which is not %10 is not destroyed. SPIREL monitoring
for creation of the result is provided if SL14 is off, The
determinant of A is given in T7 on exit, floating point scalar,
The usual application of INV is to compute the inverse of a
square matrix. INV will work on a matrix containing more columns
than rows, say n rows and m columns with m > n, In this case m - n

systems of linear equations are represented

o Ay aXateeothy XA ngp =0
) system
An,1X1+"'+An,nxn-An,n+p =0
for p = 1,...,m-n, Column p of the result matrix contains the

solution of the pth system:

X1 in Al,n+p""’xn in An,n+p

The left square portion (n columns) of the matrix result is the

inverse of the left square portion of the input, and the determi-~-

nant computed is that of the left square portion of the input.
Errors: If A does not exist or if A contains more rows than

columns, INV prints an error message and performs no operation.

If A is singular, no result is given, and INV prints an error

message.

Support: program MCOPY

LIBRARY ROUTINES

55.0
ITIMES , i times complex scalar
Function: This routine computes i times a complex scalar.
Execution: implicit
ITIMES (A)

where argument A is complex scalar, x+iy
result is complex scalar in CMPLX, -y+ix
Errors: none

Support: scalar CMPLX

LIBRARY July, 1967

LIBRARY ROUTINES
55.1

ITRAN, Inverse Fourier Transform

Function: This routine computes the real time spectrum of a

complex function of frequency (HZ), where F(HZ)=F(-HZ). The pos-

itive ‘portion of the frequency domain must be stored in a complex,

floating point vector in the STEX domain.

Execution:

where argument A
argument B
argument C
argument D
argument E
argument F

implicit
ITRAN(A,B,C,D,E,F)

is

is

is
is
is

is

the

the
the
the
the
the

complex frequency vector input,

upper frequency limit, fioating point scalar,
lower frequency limit, floating point scalar,
upper time limit, floating point scalar,
lower time limit, floating point scalar,

time increment, floating point scalar,

result is real vector in the real non-scalar accumulator, *10.

Thé Fourier integral is approximated by the trapezoidal quadrature

formula. SPIREL monitoring for creation of the result is provided

if SLl14 is off.

Errors: If A does not exist or B-C<0 or D-E<0, ITRAN prints an

error message and performs no operation.

Support: programs SIN, VSPACE.

'LIBRARY March,

1968

LIBRARY ROUTINES

56

LENGTH, length of vector

Function: This routine provides the length of a vector.

Execution: implicit

LENGTH (A)

where argument A is vector input

‘result is integer length of vector A.

Errors: If A does not exist, result = 0 and an error message

is printed. «
Support: none

LIBRARY March, 1968

< -8

LIBRARY ROUTINES
56.1
LGAMMA, log gamma

Function: This routine computes the logarithm of the gamma

function of a non-negative real floating point number.
Execution: implicit
LGAMMA (A)
where argument A is real floating point scalar input
result is real floating point scalar
Error: If A<O, LGAMMA gives result=0 and prints an error
message .

Support: programs GAMMA , LOG

LIBRARY July, 1967

LIBRARY ROUTINES
57

1L0G, mnatural logarithm

Function: This routine computes the natural logarithm of
a number,

Execution: implicit

LOG (A)
where argument A is floating point scalar input
result is floating point scalar

Errors: If A < 0, LOG gives result = argument and prints

error message.,

Support: none

LIBRARY ROUTINES

58

LOG10, 1logarithm, base 10

Function: This routine computes the common logarithm of a
number.,

Execution: implicit

LOG10 (A)
where argument A is floating point scalar input
result is floating point scalar
Errors: If A < 0, LOG1O gives result w 0 and prints error

message.,

Support: program LOG

LIBRARY ROUTINES
59

MADD, matrix add

Function: This routine forms the sum of two standard vectors
or two standard matrices in the STEX domain. The operands must
agree in type, floating point or integer, and the result will be of

the same type.

Execution: special
input (Bl) = codeword address for first operand
(B2) = codeword address for second operand

result in non-scalar accumulator, %10
If either (B1l) or (B2) null on entry, the corresponding operand is
taken as the non-scalar accumulator, *10. An operand which is
not *10 is not destroyed. SPIREL monitoring for creation of the
result is provided if neither operand is %10 and SL14 is off.

Errors: If either operand does not exist, MADD prints error

message and performs no operation. If dimensions of the two
operands are not the same, MADD uses the subset of the larger which
corresponds to the smaller, performs the addition, and prints

error message.

Support: none

LIBRARY ROUTINES

59.1
MAX, vector maximum

Function: This routine computes the index of the element with
the largest numeric value in a vector of floating point numbers.
Execution: implicit
_ MAX(A)
where argument A is floating point vector input

result is integer

Errors: If A does not exist, MAX prints an error message and
gives result=0.

Support: none

LIBRARY July, 1967

LIBRARY ROUTINES
h 60

MCARTN, matrix polar to Cartesian conversion

Function: This routine converts a double word vector or
matrix in the STEX domain in polar form to a complex vector or
matrix in Cartesian form.

Execution: implicit

MCARTN (A)
where argument is double word vector or matrix input in polar form,
i.e., each element represented by floating point scalars
r and 6 such that the element = reie
result is complex vector or matrix in CSTAR in standard
Cartesian form, i.e., each element represented by floating
point scalars x and y such that the element = reie = xX+iy
SPIREL monitoring for creation of the result is given if SL14 is off.
The polar form of a complex operand is a complex operand in the Genie
language, but the arithmetic operations are not defined for this
representation; input, output, and storage across an equals are
meaningful for the polar form and useful. In the Genie language
same execution is specified by
CARTN (A)
for non-scalar argument.

Errors: If A does not exist, MCARTN prints an error message
and performs no operation A.

Support: programs CARTN, CMCPY, POLAR; scalar CMPLX;
non-scalar CSTAR

GENIE SPIREL September, 1966

LIBRARY ROUTINES

60.0
MCMPL, matrix complex

Function: This routine provides the complex equivalent of a
real floating point vector or matrix in the STEX domain.
Execution: special
input (Bl)=codeword address for operand
result in complex non-scalar accumulator, CSTAR
If (Bl) null on entry, the operand is taken as the real non-scalar
accumulator, %10.
Errors: If operand does not exist, MCMPL prints error message
and performs no operation,

Support: program MCOPY; non-scalar CSTAR

LIBRARY July, 1967

LIBRARY ROUTINES
60.1

MCONJ, matrix conjugate

Function: This routine provides the conjugate of a complex
vector or matrix.
Execution: implicit
MCONJ (A)
where argument A is complex vector or matrix input
result is complex vector or matrix in CSTAR, each element
being the conjugate of the corresponding element of A
SPIREL monitoring for creation of the result is given if SL14 is
off. 1In the Genie language same execution is specified by
CONJ (A)
for non-scalar argument A.
Errors: If A does not exist, MCONJ prints an error message
and performs no operation.

Support: program CMCPY; non-scalar CSTAR

GENIE SPIREL September, 1966

LIBRARY ROUTINES
61

MCOPY, matrix copy

Function: This routine copies a standard vector or matrix in
the STEX domain.

Execution: Special

Input: (Bl) = codeword address for copy,

(B2) = codeword address of vector or matrix to be copied.

If (Bl) is null on entry, (B2) is copied into *10, the non-
scalar accumulator. (B2) is never erased after the copy. If (Bl) =
(B2), (B2) is assumed to be a duplicate codeword (see SPIREL section
on Storage Control). Then an actual copy is made of (B2) and the
duplicate backreference is removed. SPIREL monitoring for creation
of the copy is provided if SL14 is off.

Errors: 1If the non-scalar (B2) to be copied does not exist,
MCOPY prints an error message and performs no operation.

Support: programs MSPACE and VSPACE.

LIBRARY July, 1968

LIBRARY ROUTINES
61.1

MEAN, Average Values

Function: This routine computes the mean of a standard vector.
Execution: implicit ‘
MEAN (A)
where argument A is a floating point vector
result is a floating point scalar
Errors: If A does not exist, MEAN gives result = 0 and prints
an error message. ‘

Support: none

LIBRARY March, 1968

LIBRARY ROUTINES

62
MFLT , matrix float

Function: This routine provides the floating point equivalent
of an integer vector or matrix in the STEX domain.
Execution: special
input (Bl)=codeword address for operand
result in non-scalar accumulator, %10
If (B1l) null on entry, the operand is taken as the non-scalar
accumulator, *10.
Errors: If operand does not exist, MFLT prints error message
and performs no operation,

Support: program MCOPY

LIBRARY July, 1967

LIBRARY ROUTINES
63

MIM, matrix imaginary part

Function:
a complex vecto

Execution:

where argument
result is
MIM may be used
the second part
for creation of

Genie language

for non=-scalar
Errors:
performs no ope

Support:

This routine provides the imaginary part of
r or matrix,
implicit
MIM(A)
A is complex non=-scalar input
in non-scalar accumulator, %10
on any double word non=-scalar argument to provide
as a single word non-scalar. SPIREL monitoring
the result is provided if SL14 is off. 1In the
the same exeuction is specified by
IM(A)
argument A,
If A does not exist, MIM prints error message and
ration.

program MCOPY

LIBRARY ROUTINES

63.1
MIN, vector minimum

Function: This routine computes the index of the element with
the smallest numeric value in a vector of floating point numbers.
Execution: implicit
MIN(A)
where argument A is floating point vector input

result is integer

Errors: 1If A does not exist, MIN prints an error message and

gives result=0.

Support: program MAX

LIBRARY July, 1967

LIBRARY ROUTINES

64
MINDEX, matrix index
Function: This routine changes the initial indices and
B-mods for a vector or matrix in the STEX domain.
" Execution: explicit
MINDEX(i,b,V) for vector
where argument i is integer, initial index (for i = zero, use -Z)

argument b is integer (=1,2,...,7) for B-mod or zero to not
change B-mod ‘
argument V is vector operand A
If both i and b are zero, the vector V is changed to standard form
(initial index = 1 and Bl-mod).
MINDEX(ir,br,ic,bc,M) for matrix
where arguments ir and ic are integers, row and column initial
indices respectively
arguments b_ and bc are integers (=1,2,...,7) for row and
column B-mods respectively or zero to not change B-mod
argument M is matrix operand
If arguments ir’br’ic’ and bC are zero, the matrix M is changed to
standard form (initial indices = 1 and Bl-mod for rows, B2-mod
for columns).
Errors: If operand does not exist, MINDEX prints error

message and performs no operation.

Supportf none

LIBRARY ROUTINES
65

MINSERT, matrix insert

Function: This routine inserts or deletes elements of a
vector in the STEX domain or rows or columns of a matrix in the
STEX domain,

Execution: explicit

MINSERT(n,r,V) for vector
where argument n is integer, number of elements to insert as
zeroes if > 0, number of elements to delete if < 0
argument r is integer, index of first element inserted or
deleted

argument V is vector operand

MINSERT(n,r ,k,M) for matrix
where argument n is integer, number of rows or columns to insert
as zeroes if > 0, number of rows or columns to delete
if <0
argument r is integer, index of first row or column inserted
or deleted
argument k is integer, k = 1 to operate on rows, k = 2 to
operate on columns
If argument n is zero, MINSERT deletes element, row, or column r
and all following. If argument r is null, MINSERT inserts n
elements, rows, or columns after the last,
Errors: none

Support: none

LIBRARY ROUTINES

4 65.1
MITIMES, i times complex matrix

.Function: This routine computes i times a complex vector or
matrix.

Execution: implicit

MITIMES (A)
where argument A is complex vector or matrix input
result is complex vector or matrix in CSTAR, each element
being i times the corresponding element of A
SPIREL monitoring for creation of the result is given if SL14 is
off. 1In the Genie languate same execution is specified by
ITIMES (A)
for non-scalar argument A.
Errors: If A does not exist, MITIMES prints an error message

and performs no operation

Support: program MCONJ; non-scalar SCTAR

LIBRARY July, 1967

LIBRARY ROUTINES
66

MMPY, matrix multiply

Function: This routine forms the product of two standard
vectors (dot product, a scalar), a standard vector and a standard
matrix (a vector), or two standard matrices (a matrix). Operands
must be in the STEX domain; they must agree in type, floating
point or integer, and the result will be of the same type.

Execution: special

input (Bl)
(B2)

scalar result in U and T7; non=scalar in accumulator, %10

codeword address for lefthand operand

codeword address for righthand operand

If either (B1l) or (B2) null on entry, the corresponding operand
is taken as %10, An operand which is not %10 is not destroyed.
Note that vector X matrix treats the vector as a one-row matrix,
and matrix X vector treats the vector as a one~column matrix.
SPIREL monitoringAfor creation of the result is provided if SL14
is off.

Errors: If either operand does not exist, MMPY prints
error message and performs no operation, If the non-scalar
operands do not have dimensions compatible for multiplication,
MMPY uses the subset of the operand with the larger pertinent
dimension which corresponds appropriately to the operand with
the smaller pertinent dimension, performs the multiplication,
and prints an error message,

Support: none

LIBRARY ROUTINES
67

MOD, modulus of complex scalar

Function: This routine computes the modulus of a complex

scalar.,
Execution: implicit
MOD (A)
where argument A is complex scalar input
result is real floating point scalar
Errors: none

Support: program SQR

LIBRARY ROUTINES
67.1

MODUL, Compute Remainder

Function: This routine computes A modulo B
Execution: implicit
MODUL (A, B)
where A and B are integers.
result is an integer
Errors: none

Support: none

LIBRARY July, 1968

LIBRARY ROUTINES
’ 68

MPATCH, matrix patch

Function: This routine moves part of one vector or matrix
in the STEX domain into another vector or matrix in the STEX domain.
Execution: explicit
MPATCH([what],[from],[to])
where [from] arguments are i, FV to move from vector FV starting
at element i (integer)
[from] arguments are i, j, FM to move from matrix FM starting
at element i, j (integers)
[to] arguments are k, TV to move to vector TV starting at
element k (integer)
[to] arguments are k, £, TM to move to matrix TM starting
at element k, £ (integers)

[what] arguments are given by the chart:

to
from TVk TMk,L
= e e L RS
m elements m elements into row k
l Fvi’ [what] as m [what] as 1,m
‘ n elements into col 4
' [what] as n,l
m elements from row ifn rows X m cols -
l FM, ; [what] as 1,m - [what] as n,m
3
n elements from col j
I [what] as n,l
Errors: none
Support: none

LIBRARY August, 1967

LIBRARY ROUTINES
69

MPOLAR, matrix Cartesian to polar conversion

Function: This routine converts a complex vector or matrix
in the STEX domain in Cartesian form to a double word vector or
matrix Iin polar form,

Execution: implicit

MPOLAR(A)
where argument A is complex vector or matrix input in standard
Cartesian form, i.,e., each element represented by floating
point scalars x and y such that the element = x + iy
result is double word vector or matrix in CSTAR in polar
form, i.e., each element represented by floating point
scalars r and © such that the element = x+iy = reie;
0 £ 8<2nm; if x =y =0, thenr =06 =0
SPIREL monitoring for creation of the result is given if SL14 is
off, The polar form of a complex operand is a complex operand in
the Genie language, but the arithmetic operations are not defined
for this representation; dinput, output, and storage across an
equals are meaningful for the polar form and useful, 1In the Genie
language the same execution is specified by
POLAR(A)

for non-scalar argument A,

Errors: If A does not exist, MPOLAR prints an error message
and performs no operation.
Support: program MCARIN

GENIE SPIREL September, 1966

LIBRARY ROUTINES

70
MPOWER, matrix power
Function: This routine raises a square standard matrix in
the STEX domain to an integer power, generating a unit matrix
for zero power, inverting for a negative power, and multiplying
for powers > 1 in absolute value. The matrix must be of floating
point type.
Execution: special
input (U) = codeword address of matrix
(R) = integer power
result in non-scalar accumulator, %10
If (U) null on entry, the input matrix is taken as *10. A matrix

which is not %10 is not destroyed. SPIREL monitoring for creation
of the result is provided if SL14 is off and the input is not %10
with power one.

Errors: If matrix does not exist, MPOWER prints error
message and performs no operation. If power 2 0 and matrix is
not square, MPOWER uses square portion, performs operation, and
prints error message. If power < 0 and matrix is not square,
MPOWER prints error message and performs no operation. 1If
power < 0 and matrix is singular, no result is given, and MPOWER
prints error message.

Support: programs INV, MCOPY, MMPY

LIBRARY ROUTINES
71

MRE, matrix real part

Function: This routine provides the real part of a complex
vector or matrix,
Execution: implicit
MRE (A)
where argument A is complex non-scalar input
result is in non=-scalar accumulator, %10
MRE may be used on any double word non-scalar argument to provide
the first part as a single word non-scalar, SPIREL monitoring
for creation of the result is provided if SL14 is off. In the
Genie language the same execution is specified by
RE (A)
for non-scalar argument A.
Errors: If A does not exist, MRE prints error message and
performs no operation.

Support: program MCOPY

LIBRARY ROUTINES
72
MSPACE, matrix space

Function: This routine creates a standard matrix of zeroes

in the STEX domain.

Execution: explicit

MS PACE (A ,B ,C)

where argument A is matrix to be created

argument B is integer number of rows in A

argument C is integer number of columns in A
Storage addressed formerly as A is freed; then, if both B > 0
and C > 0, a matrix with B rows and C columns is created.
SPIREL monitoring for freeing or creating A is provided if SL14

is off, If SL14 is on, MSPACE takes "fast" space by bypassing
XCWD(*126) .

Errors: none

Support: none

LIBRARY July, 1968

LIBRARY ROUTINES
73

MSUB, matrix subtract

Function: This routine forms the difference of two standard
vectors or two standard matrices in the STEX domain. The operands

must agree in type, floating point or scalar, and the result will

be of the same type.
Execution: special

input (Bl) = codeword address for the operand to be sub-

tracted from
(B2)

codeword address for the operand to be sub-
tracted
result in non-scalar accumulator, %10
If either (Bl) or (B2) null on entry, the corresponding operand is
taken as the non-scalar accumulator, *%10. An operand which is not
*10 is not destroyed. SPIREL monitoring for creation of the re-
sult is provided if neither operand is %10 and SL14 is off,
Errors: If either operand does not exist, MSUB prints
error message and performs no operation., If dimensions of the
two operands are not the same, MSUB uses the subset of the larger
which corresponds to the smaller, performs the subtraction, and
prints error message.

Support: program MADD

LIBRARY ROUTINES
73.1

MTAKE, matrix take

Function: This routine creates an n-dimensional array of
zeroes.
Execution: explicit
MTAKE (A,Dy, ... ,Dyg,N)
where argument A is array to be created

th .. .
dimension

argument D, is length in the i
argument N < 5 is the number of dimensions
Space addressed formerly as A is freed; then an array of size
DlX...XDN is created, to be indexed by registers Bl,...,BN. SPIREL
monitoring for creating A is provided if SL14 is off. If SL1l4 is

on, MTAKE takes "fast" space by bypassing XCWD(*126).
Errors: If any Di <1l, n<1l, or n >5, MTAKE gives no
result and prints an error message.

Support: none

LIBRARY July, 1968

LIBRARY ROUTINES
73.2

ODD, test integer odd

Function: This routine tests an integer for being odd.
Execution: implicit
ODD(A)
where argument A is the integer input
result is Boolean value TRUE (represented by integer-0) if A
is odd; Boolean value FALSE (represented by -1) if A is even.
Errors: none

Support: none

LIBRARY May, 1968

LIBRARY ROUTINES
74

ORTHOG, matrix orthonormalization

Function: This routine orthonormalizes (by the Gram-Schmidt
method) the rows of a standard matrix in the STEX domain. The
matrix must be of floating point type.

Execution: implicit

ORTHOG (A)
where argument A is floating point standard matrix input
result is floating point standard matrix in the non-scalar
accumulator, %10
Input matrix which is not #*10 is not destroyed. SPIREL monitoring
for creation of result is provided if input is not *10 and SL14
is off.

Errors: If A does not exist or if the rows are not linearly
independent, ORTHOG prints an error message and performs no opera-
tion. ‘

Support: programs MCOPY, SQR

OUTPUT, special output

Function:

LIBRARY ROUTINES
74.1

This routine is supplied by the user for special

output from programs written in the Genie language.

Execution:

in the Genie language only, by the command

OUTPUT 1list

where the program OUTPUT is entered once for each named variable

in the list. A complex variable is treated as two items, the real

part with the name of the variable and the imaginary part with the

name "ditto".

language, APl.

follows:
bits 1-30
31-33
34-36
39-41
40-54

name in BCD
not used
octal 0 for
2 for
4 for
not used
address for

GENIE SPIREL November, 1966

The program OUTPUT must be coded in the assembly

Information is given in T7 on entry to OUTPUT as

as given in list
scalar
vector

matrix

scalar, codeword address for non-scalar

LIBRARY ROUTINES
75
PLOT, plot on the printer

Function: This routine plots on the printer one floating

point vector versus another or a floating point vector versus its

indices.
Execution: explicit
PLOT(A ,B)
where argument A is a vector of x-values to be plotted across the
page from min on the left to max on the right
argument B is a vector of y-values to be plotted down the

page from max at the top to min at the bottom

result is one-page plot of points Tincreéging Bi
(Ak,Bk), k in the index range " .
of both A and B . f
- > g - v, e 4'
] —
Y *lincreasing A,
. .
L 4 ¥

PLOT(Z,B)
where argument Z (actually zero on the B6-list) specifies
use of indices for x-values to be plotted across the
page from min on the left to max on the right
argument B is a vector of y-values to be plotted down the

rage from max at the top to min at the bottom

result is one-page plot of points - T
increasing B,
(k,Bk),k in the index range 1
. .
%
of B R ;
.
[4
. s
—
. <
, , |lincreasing i

" LIBRARY ROUTINES

PLOT (continued) 76

PLOT(A ,Z)
where argument A is a vector of x-values to be plotted across the
page from min on the left to max on the right
argument Z (actually zero on the B6-list) specifies use of
indices for y-values to be plotted down the page from

min at the top to max at the bottom

result is plot on one or more N Ed

pages of points (Ak’k)’ "lincreasing Ai
.
k in the index range of A, .
: P
one point per index value . T
k]

(Ak ,k) -

- - lincreasfhg i

No vector operands are destroyed.

Errors: If both arguments are Z, an error message is printed.

‘Support: none

LIBRARY March, 1968

@ s

LIBRARY ROUTINES
77

POLAR, Cartesian to polar conversion

Function: This routine converts a complex scalar in Carte-
sian form to a double word operand in polar form,
Execution: implicit
POLAR(A)
where argument A is complex scalar input in standard Cartesian
form, i.e.,'represented by floating point scalars x and
y such that A = x + iy
result is double word operand in polar form, i.e., represent-
ed by floating point scalars r and 6 such that
A =x 4+ iy = reie; 0 <08 < 2m; if x =y =0, then r = 6 =0

The polar form of a complex operand is a complex operand in the
Genie language, but the arithmetic operations are not defined for
this representation; input, output and storage across an equals
are meaningful for the polar form and useful.

Errors: none

Support: programs ASIN, MOD; scalar CMPLX

LIBRARY ROUTINES
78

PRESCRIBE, line print with format and page control

Function: This routine is used in Genie programs only instead
of SCRIBE to produce printed SCRIBE output with page control, head-
ings, and page numbers.

Execution: explicit*

PRESCRIBE(Al,...,AK,F N ,TITLE ,LIMIT)
where argument F is the name of the format to be used __1

arguments Al,...,AK are variables whose values exactly
as for
are to be substituted successively for SCRIBE
dummy variables in the format I

argument N is the number of spaces after output
of SCRIBE (Al,...,AK,F)

argument TITLE is either the name of a format containing
only text or the name of a vector containing hexad
data, to be used for title on pages (may be more than
108 characters to exceed one line)

argument LIMIT is the number of lines to be printed per
page of output

and *

one additional argument is supplied automatically by the
Genie compiler -- minus the number of arguments
Al,...,AK,N,TITLE ,LIMIT stored directly on the B6-1list
as a negative integer after the arguments
Al,...,AK ,N,TITLE ,LIMIT
If LINCT exceeds LIMIT on entry, PRESCRIBE prints a heading con-~-
taining the specified title at the top of the next page. Then
SCRIBE(Al,...,AK,F) is executed., Finally, N spaces are provided.
LINCT is updated to reflect all printing and spacing by PRESCRIBE,.

The heading is provided by PRESCRIBE after incrementing PAGCT
by 1. It consists of a 1/2 inch margin (3 blank lines) at the top
of the page, then the lines:

...data and time... «sepage No...

.oo.title supplied by user...

...blank line...

PAGCT is used as the page number, and LINCT is set to 5 plus the

LIBRARY ROUTINES

PRESCRIBE (continued) 79
number of lines in the title after a heading print.

In a fresh Genie SPIREL, LINCTR = PAGCTR = 0. Either may be
used within private programs. Both should be updated if printing
is done other thanm through SCRIBE or PRESCRIBE. Setting LINCTR = 0
forces a new page on the next entry to PRESCRIBE. LIMIT = 60 pro-
vides a 1/2 inch margin at the bottom of the page to match the mar-
gin at the top.

Errors: same as for SCRIBE

Support: program SCRIBE; constants LINCT, PAGCT

LIBRARY ROUTINES
79.1
QCONF , XZ confidence

Function: This routine computes the X2 confidence level
between two floating point vectors of equal length,
Execution: implicit
_ QCONF (A ,B)
where argument A is the theoretical distribution, real floating
point vector input
argument B is the observed distribution, real floating point
vector input
result is real scalar, computed as
® v,
X’ Iw=[e 2 t* ar
2
X
with degrees of freedom y=vector length -1
Errors: 1If A and B are not equal in length or if either does
not exist, QCONF prints an error message and gives result=1.0. If
vector length <2, QCONF prints an error message and gives result=0.

Support: programs CHISQ, EXP, SQR

LIBRARY July, 1967

LIBRARY ROUTINES
80

RANDM, random number generator

Function: This routine computes the first or the next in a
sequence of pseudo-random floating point numbers evenly distributed
between 0.0 and 1.0.

Execution: implicit

RANDM(A)
where argument A + 0 causes generation of the first random number,
i.,e., restarts the generation procedure
argument A = Z causes generation of the next random number
(starts the generation procedure on first execution)
result is floating point scalar
Errors: none

Support: none

LIBRARY ROUTINES
81

RE, 7real part

Function: This routine provides the real part of a complex

scalar,
Execution: implicit
RE (A)
where argument A is complex scalar input

result is real floating point scalar

If coded in the Genie language, the library routine is not used;
but the routine may be used in assembly language coding. RE may
be used on any double word scalar argument to provide the first
part as a single word scalar.

Errors: none

Support: none

LIBRARY ROUTINES
82

ROW, number of rows in a matrix

Function: This routine provides the number of rows in a
matrix. ‘

Execution: implicit

ROW (A)
where argument A is matrix input
result is integer number of rows in matrix'A.

Errors: If A does not exist, result = 0 and an error

message 1is printed.. ‘ | .

Support: program LENGTH

LIBRARY March, 1968

LIBRARY ROUTINES
82.1

RTRAN, real fast Fourier transformation

Function: this program is used in conjunction with FFT by FFTC
in those cases where 1) the complex input is conjugate symmetric
and the output real; or 2) the input is real and even in length,
and the output is complex and conjugate symmetric.

Execution: explicit (see FFTC)

RTRAN(A,B,C)
where argument A is the input/output vector (complex)
B is a Boolean variable: true if the sign of the
exponent is negative, otherwise false.
C is a Boolean variable: true for a transform,
otherwise false.
Errors: If A doesn't exist, an error message is printed.

Support: programs COS, SIN.

LIBRARY April, 1968

LIBRARY ROUTINES
83

SCRIBE, 1line print with format

Function: This routine substitutes variables for dummy fields
in a line skeleton called a format and prints the result. It may
be used in Genie programs only.

Execution: explicit®

SCRIBE (Al,...,AK,F)
where argument F is the name of the format to be used

argument Al,...,AK are variables whose values are to be
substituted successively for dummy variables in the
format

and * one additional argument is supplied automatically by

the Genie compiler =-- minus the number of arguments
Al,...,AK,F stored directly on the B6-list as negative
integer after the arguments Al,...,AK F

result is that printing occurs and the constant LINCT 1is

incremented by 1 for each line.

A format is a line skeleton written as a FORMAT statement
in the Genie language, as a BCD pseudo-order in APl, A format

contains text and dummy variables. Special characters are used to

form dummy variables: lower case letters 'a,b,c,d,e.f'. the
y D ,C,4,e,

3

characters '+,-,.' with 'd' and 'e', and the digits 'O' thru '9'

with '£'., A dummy variable is any consecutive sequence of special

characters in the format. All other characters in the format are
characters of text. The use of special characters to form dummy
variables is explained below.

SCRIBE operates by transferring text directly to the printed
output and substituting argument values for dummy variables. The
number of arguments need not equal the number of dummy variables in
the specified format. If the number of arguments is less than the
number of dummy variables, Processing will cease when a dummy
variable is encountered for which there is no argument. If the

number of arguments is greater than the number of dummy variables,

LIBRARY ROUTINES
84

SCRIBE (continued)
the format will be used as many times as necessary to substitute
all arguments, and each re-use of the format will cause a new line
of printing to be initiated. The processing of a non-scalar
argument is handled by replacement of successive dummy variables
in the specified format with successive array elements -- all
words of a program, all vector elements, all matrix elements by
row, and generally all data words of any array.
One or more lines may be printed on a single entry to SCRIBE.
Line termination occurs due to:
e special position notation 'fOf'
-- causes printing and initialization of the next line
at print position 1 (as on entry), but scan of the for-
mat continues,
e end of format
-- if no arguments remain to be processed, causes
printing and exit
-- if more arguments remain to be processed, causes
printing, initialization of the next line at print
position 1, and reinitialization of the format scan.
e dummy variable in formdt and no arguments remain to be
processed

-=- causes printing and exit

A dummy variable consists of a string of special characters
with no embedded blanks., The representation determines the type
of conversion to be applied to an argument and the appearance of
the output. The types of dummy variables are as follows:

A hexad dummy is formed by a string of 'a's with possibly

embedded 'c's. The occurrence of any 'a' specifies hexad con-

version of the argument. Each 'a' specifies the position of a

hexad character, and each 'c'

specifies a space within the field.
Hexads are taken from the left end of the word: a hexad dummy

with three 'a's will cause the three leftmost hexads of the argu-

LIBRARY ROUTINES
SCRIBE (continued) 852

ment specified to be printed. A machine word contains nine hexads;
if there are more than nine 'a's in single hexad dummy, then more
than one word of input must be used. If the argument is a scalar,
successive words in memory will be used. If the argument is a
non-scalar, successive array elements will be used.

An octal dummy is formed by a string of 'b's with possibly
embedded 'c's. The occufrence of any 'b' specifies octal conver-
sion of the argument., Each 'b' specifies the position of an oc-

tal digit, and each 'c'

specifies a space within the field. A
machine word contains eighteen octal digits, so no more than
eighteen 'b's in a dummy variable are meaningful. Octal digits
are taken from the right end of the word: a dummy variable with
four 'b's will cause the four rightmost octal digits of the argu-
ment specified to be printed.

A decimal dummy is formed by a string of 'd's with possibly
embedded 'c's, and perhaps the special characters '+,-,.,e'. The
occurrence of any 'd' specifies decimal conversion of the argu-

ment. Each character in the dummy specifies a position in the

decimal output. The general form of a decimal dummy is:

:[:d...d.d...de:*:d...d

The decimal point '.' will appear in the output as in

the dummy. It must appear to get the fractional part of a
floating point argument, and then the fractional part is
rounded in the last digit. If no decimal point appears, the

last digit in the integer is rounded.

1 1

The character 'e' appears in the printed output and

indicates that the integer following it is the power of ten

for the number in front of it. The 'e' causes output of a full

field of decimal digits before the decimal point and an appro-
priate exponent,

Each 'd' specifies a decimal digit position in the out-
put, before or after the decimal point or in the exponent.

] 1

A character '+' or '-' specifies a sign position in

} LIBRARY ROUTINES
SCRIBE (continued) 86

the output, either on the number or on its exponent, '-'
specifies to print a sign (minus) only if the number which
follows is negative. '+' specifies to always print a sign
(plus or minus). A sign is always printed immediately to
the left of the most significant digit of the number to which
it applies. ‘

A decimal dummy without 'e' may be overflowed by an
argument value. The number will then be truncated on the left,
X being printed as the leftmost character. Thus with a dummy

-dd.ddd the value 5763.4587 will be printed as X63.459.

A position dummy does not use an argument; it is formed

by a pair of 'f's which bracket an unsigned integer which is the
print position to move to in forming the line of output, The 'f's
and the bracketed number do not appear on the printed output. The
print positions are numbered from 1 to 108 from left to right.

Any number of pairs of 'f's may appear anywhere except within
variables on a dummy line. As a special case, FIT causes

printing and initialization of the next line at print position 1.

Examples: [Note _ denotes space]
dummy variable argument value ‘ output
aaa hexad ABCDEFGHI ABC
aacaa hexad ABCDEFGHI | AB_CD
aaaaaaaaa hexad THE_END_ _ THE_END_ _
bb ‘ octal .,..461 v 61
bb octal 0...01 1
bbcb octal ,..461 46_1
d.d decimal 3.59 3.6
dd.d decimal 3.51 : 3.5
d decimal 3.5 4
dd decimal 3 | | _
dd.d decimal 3 3.0
-d.d v decimal 3,52 3.5

GENIE SPIREL February, 1967

LIBRARY ROUTINES

SCRIBE (continued) 87
dummy variable argument value output
~-dd.d decimal -0.52 _~0.5
+d.d decimal 3,52 +3.5
+d.d decimal -0.52 -0.5
d.d decimal =-3.52 3.5
d.d decimal 35,67 5.7 or X.7
ddcddd decimal 1024 _1 024
-dd.ddde+dd decimal 45784.734 _45.785e_+3
+dd.ddde~-dd decimal 45,784834 +45.785e_ 0
+dd.dddce-dd decimal 45.784734 +45.785_e_ 0O

In Genie, the format given by the statement
SKEL FORMAT
FIRST RESULTS aaaacaaa A=bbbcbbb B=~d.dddd C=~dd.ddce+d

might be used in the explicit execution command

EXECUTE SCRIBE (ALPHA ,AONE ,BTWO ,A+B ,SKEL)

to cause the printed output

FIRST RESULTS TRUE END A=147 003 B= 4,5969 =-47 .594 e~-1
Errors: X in decimal field as explained under decimal
dummy .

Support: constant LINCT

LIBRARY ROUTINES

SIN, sine

Function: This routine computes the sine of a number,
Execution: implicit
SIN(A)

where argument A is floating point scalar input

result is floating point scalar
Also, (R) = COS(A) on exit,

Errors: If |A|_2,247, SIN gives result = 0 and prints
error message.

Support: none

LIBRARY March, 1968

88

an

LIBRARY ROUTINES

89

SINH, hyperbolic sine

Function: This routine computes the hyperbolic sine of a
number.

Execution: implicit

SINH(A)
where argument A is floating point scalar input
result is floating point scalar

Also, (R) = COSH(A) on exit.

Errors: If |A| > 170.0, SINH gives result for lA[= 170.0

and prints error message,

Support: program EXP

LIBRARY ROUTINES
90

SMDIV, scalar-matrix divide

Function: This routine divides a standard vector or matrix
in the STEX domain by a scalar. The operands must agree in type,
floating point or integer, and the result will be of the same

type.

Execution: special
input (Bl) = codeword address for non-scalar operand
(U) = scalar operand

result in non-scalar accumulator, %10
If (Bl) null on entry, the non=-scalar operand is taken as %10,
A non-scalar operand which is not %10 is not destroyed. SPIREL
monitoring for creation of the result is provided if the non-
scalar operand is not %10 and SL14 is off,
Errors: If the non-scalar operand does not exist or if the
scalar = 0, SMDIV prints an error message and performs no opera-

tion,.

Support: program SMMPY

LIBRARY ROUTINES
91

SMMPY, scalar-matrix multiply

Function: This routine forms the product of a scalar and a
standard vector or matrix in the STEX domain. The operands must
agree in type, floating point or integer, and the result will be

of the same type.

Execution: special
input (Bl) = codeword address for non-scalar operand
(U) = scalar operand

result in non=~scalar accumulator, %10
If (Bl1) null on entry, the non-scalar operand is taken as %*10.
A non-scalar operand which is not %10 is not destroyed. SPIREL
monitoring for creation of the result is provided if the non-
scalar operand is not %10 and SL14 is off.
Errors: If non-scalar operand does not exist, SMMPY prints
an error message and performs no operation,

Support: program MCOPY

LIBRARY ROUTINES
92

SOLN, linear equations solution

Function: This routine provides the solution to a system of
linear equations represented by a square standard matrix of co-
efficients and a standard vector of constants, both of floating
point type and in the STEX domain.

Execution: implicit

SOLN(A ,B)
where argument A is a square floating matrix of coefficients
argument B is a floating point vector of constants
representing a system of n equations of the form

A + ... + A, X =B, i=1,2,...,n

i,1%1 i,n%n
result is floating point vector inm the non-scalar accumula-
tor, %10, with the value of Xi as the ith element,
An operand which is not %10 is not destroyed. SPIREL monitoring
for creation of the result is provided if SL14 is off.
Errors: If A or B does not exist or if dimensions are not
proper or if a solution is not defined, SOLN prints an error message

and performs no operation.

Support: program INV

SQR, square root

Function: This routine computes the square
Execution: implicit
SQR(A)

where argument A is floating point scalar input
result is floating point scalar
Errors: If A < 0, SQR gives result = 0 and
message.

Support: none

LIBRARY ROUTINES
93

root of a number,

prints error

LIBRARY ROUTINES

94
STNDV, standard deviation
Function: This routine computes the standard deviation of
any vector of floating point numbers.
Execution: implicit
STNDV(A)
where argument A is floating point vector input
result is floating point scalar
Errors: If A does not exist, STNDV prints an error message

and performs no operation,

Support: program SQR

LIBRARY ROUTINES
95

TAN, tangent

Function: This routine éomputes the tangent of a number. .
Execution: implicit
TAN (A) |
where argument A is floating point scalar input
result is floating point scalar
Errors: If |A]| = 247, or if |A| is a multiple of /2, TAN
gives result = 0 and prints an error message.

Support: ° none

" LIBRARY March, 1968

LIBRARY ROUTINES

96
TANH, hyperbolic tangent
Function: This routine computes the hyperbolic tangent of a
number.
Execution: implicit

TANH(A)
where argument A is floating point scalar input
result is floating point scalar
1f [A]| > 170.0, TANH gives |result| = 1.0.
Errors: none

Support: program EXP

LIBRARY ROUTINES
97

TRAN, matrix transpose

Function: This routine forms the transpose of a standard
matrix in the STEX domain.

Execution: implicit

TRAN(A)
where argument A is standard matrix input
result is standard matrix in the non-scalar accumulator,*10

Input matrix which is not %10 is not destroyed., SPIREL monitoring
for creation of the result is provided if SL14 is off.

Errors: If A does not exist, TRAN prints an error message
and performs no operation,

Support: none

LIBRARY ROUTINES
97.05

TTAKE, Triangular Matrix Take

Function: This routine creates an upper triangular matrix
of zeroes in the STEX domain.

Execution: explicit

TTAKE (A,N)
where argument A is the matrix to be created
argument N is the size of the matrix (NXN)

Storage formerly addressed as A is freed; then, if N > 0, a
triangular matrix is created. If N = 0, any storage for A is
freed and A is cleared.

Errors: none

Support: none

LIBRARY March, 1968

LIBRARY ROUTINES
97.1

VREV, vector reversal

Function: This routine reverses the order of the elements
of a vector.

Execution: explicit
VREV (A)
where argument A is vector input
result replaces vector A
Errors: If A does not exist, VREV prints an error message
and gives no result.

Support: none

LIBRARY August, 1967

LIBRARY ROUTINES

98

VSPACE, vector space

Function: This routine creates a standard vector of zeroes in
the STEX domain,

Execution: explicit

VS PACE (A ,B)

where argument A is vector to be created

argument B is integer length of A
Storage addressed formerly as A is freed; then, if B > 0, vector

A of length B is created. SPIREL monitoring for freeing or crea-
tion of A is provided if SL14 is off. If SL14 is on, VSPACE takes
"fast" space by bypassing XCWD(*126).

Errors: none

Support: None

LIBRARY July, 1968

LIBRARY ROUTINES
98.1

<CDUP, duplicate U, R to CSTAR
Function: This routine takes a complex codeword in U, R and

duplicates it into CSTAR, the complex non-scalar accumulator. It
is used when complex arrays are subscripted to one level in GENIE.

Support: CSTAR, complex non-scalar

LIBRARY July, 1968

LIBRARY ROUTINES
99

+<COMP, compression

Function: . This routine performs compression of the library.
It is never executed by a user, either manually or under program
control.

Execution: internal library use only -- receives control
from EDIT

Errors: none

Support: none

LIBRARY May, 1967

LIBRARY ROUTINES
99.05

+<CSAV, save CSTAR on B6 1list
Function: This routine saves or duplicates CSTAR, the complex

non-scalar accumulator, on to the B6 list. It is used for compli-
cated complex non-scalar expressions in GENIE.

Support: CSMT, complex non-scalar

LIBRARY July, 1968

LIBRARY ROUTINES
99.06

«CSWP, swap (Bl), (B2), or (Bl) + 1 to CSTAR
This routine swaps the codeword in CSTAR to (Bl),

(Bl), (B2) is erased first
In the

It is

Function:
(B2) , and changes the backreference.
if normal entry is used but not so if entry is at order 2.

latter case, the input is assumed to be (Bl) and (Bl) + 1.

used in complex non-scalar stores in GENIE.

Support: CSTAR, complex non-scalar

LIBRARY July, 1968

LIBRARY ROUTINES

99.1
<ENTRY, entry to library

Function: This routine records information about entry to a
library routine, the name of the routine and the PF setting.

Execution: internal library use only

Errors: none

Support: constant <ELOC

GENIE SPIREL November, 1966

LIBRARY ROUTINES
100

<ERPR, error print
This routine prints error message containing text

Function:
from the calling program and information about the PF setting at

time of the error.
Execution: internal library use only, from all programs

supplying error messages
Errors: none

Support: constant «ELOC

GENIE SPIREL November, 1966

LIBRARY ROUTINES
100.1

~EXEC, Arithmetic Evaluator .
Function: This routine carries out arithmetic operations
called for by arithmetic statements input to CONSOL

Execution: internal system use only, called by <IFE

Errors: none
Support: <«TYPE, vector «CT, FXEXP, FLEXP, ~INOU

" LIBRARY March, 1968

LIBRARY ROUTINES
101

<INOUT, input/output

Function: This routine does input and output from compiled
programs to carry out DPUNCH, READ, PRINT, PUNCH, DATA, INPUT,
oUTPUT, DISPLAY, and ACCEPT commands in the Genie language.

Execution: from Genie-generated code only -- by TRA (not
TSR) which may be traced

input (Bl) specifies operation: 0,1,2,3,4,5,6,7,10 for DPUNCH
READ, PRINT, PUNCH, DATA, INPUT, OUTPUT, DISPLAY, ACCEPT
respectively ‘
list of arguments one per word following TRA, terminated by
null word; each word containing name in BCD and
addressing information
return to location following null word
Monitoring of the input/output operation is provided if SL14 is
off.
Errors: none

Support: programs INPUT, OUTPUT

LIBRARY July, 1968

LIBRARY ROUTINES
102

«FETC, Interpreter Fetch

Function: Used by <IFE to fetch characters from *TEXT (174).
Execution: Internal system use only.
Errors: none

Support: none

LIBRARY March, 1968

LIBRARY ROUTINES
103

«IFE, Interpretive Formula Evaluator

Function: This routine performs statement scanning of
arithmetic expressions input to CONSOL. |

Execution: Internal system use only.

Errors: If illegal syntactic expreésion found, prints error
messaée and returns to CONSOL.

Support: <«LASC, «<LOOK, .<TYPE, +FETC

vector <CT.
e Description of Use:

Names: The name of any library subroutine may not be used
for a private name. Also any 2 character sSequence
which is the mnemonic for a SPIREL command may not

- be used as a private name. All names are external
system quantities, as they are on the Symbol
~ Table (*113).
Type of Results: Floating point always takes precedence

over fixed point. The type of a variable be-
comes fixed when it first appears on the L.H.S.
of an equation. Storing of an integer R.H.S. to
a floating point L.H.S. will cause the integer
to be floated before the store. However, a float-
ing point R.H.S. will always be stored that way
regardless of the type of the L.H.S.

Arithmetic operators: The standard set of operators are

available:

binary: +, -, /, x(lowér case x)
Mﬁltiplication may be implied as in GENIE, when
unambiguous. However if Al and B are names, AlB
will not be taken as Al x B; but Al B will be,
where the ' ' represents a space.

unary: -, |](abs,&alue bars), and +(indicates what

follows is to be interpreted as an octal number).

LIBRARY March, 1968

LIBRARY

LIBRARY ROUTINES
104

Superscripts and subscripts are allowed following
the standard GENIE conventions.
NOTE: Genie interprets -aP as (—A)B. «IFE in-
terprets it the way it looks: —(AB)
Functions: Any library or user function may be executed’
implicitly in an “IFE statement. Arguments may

be scalar or non-scalar, but in no case may they

be complex. <+IFE cannot operate in any case on

- complex quantities.

For convenience of notation, functions may be raised
to a power immediately after the function name and

~ preceeding the-'(args)'. For example
A= SIN() 2 + oS (x)2
may be written as
A = SIN?(X) + COS2(X).

However, this operation is meaningful only if the

function has a single, non-complex, scalar result.
NOTE: For any function which has a single scalar

parameter, that parameter will be floated before

execution takes place. Therefore the function
FLOAT may not be used in the «IFE language.

Explicit .execution: A function may be explicitly ex-

ecuted with args in the following manner. A

dummy variable is used on the L.H.S. of a state-
ment that would otherwise call for implicit

March, 1968

LIBRARY ROUTINES
105

. execution. For example:
A = TTAKE (B,5)

will create a triangular matrix at B.

If a function executed in this manner has a

non-scalar result, and does not work in. place,

the resulting array will be in USTAR (*10).
Summary and Further Comments:

1) Type of variables: real or integer scalar only,
except that real non-scalars may appear in
function arguments. (A single element of a
non-scalar is a scalar).

2) Rank of operations:

+, -, x, /, -(unary), | l, function call, {, t.
3) Number format:

integer: 5, 376

real: .5, 5.1, 5.3*-3

octal: +533

'4) Statement length: May not exceed four (4) lines
on the display scope. ; |

5) Special Display Option: If the L.H.S. is a
non-subscripted variable, an equal sign ('="')
if placed at the end of the statement will cause
the value stored to be displayed on the scope.
An HTR -- Will occur. Press continue to return
to CONSOL COMMUNICATION LOOP.

6) More than one statement may be.included in a line,
provided they are separated by a comma ','. No

interdependencies are accounted for. The statements

. LIBRARY March, 1968

LIBRARY March,

7)

8)

9)

LIBRARY ROUTINES
106

will be evaluated in the order in which they

appear. For example:
A =B+C =, F = SIN(A) =, G =G =

will display A(=B+C) and then compute and
display F, and display G. '
Other I-0: |

Printing must be done with the standard SPIREL
print command. There is no «IFE equivalent

to the GENIE-DATA statement.

«IFE statements and SPIREL commands may not
appear on the same line.

<IFE and all associated programs are edited out
of the library with EX EDIT. To keep them in
such a system, a dummy APl program must be in-
cluded with a single REF to «IFE.

1968

LIBRARY ROUTINES
107

«LASC, Statement Scanner

Function: Performs confersion to reverse polish of an
arithmetic expression of the form accepted by ~IFE.

Execution: internal system use only.

Errors: none

Support: «EXEC, vector «CT

' LIBRARY March, 1968

LIBRARY ROUTINES
108

«LOOK, check for special command

Function: 'Used by +IFE to look for special command sequences.
Execution: internal system use only.
Errors: none

Support: none

LIBRARY March, 1968

LIBRARY ROUTINES

108.1
<RDUP, duplicate U to *10

Function: This routine takes a codeword in U and duplicates it

into *10, the non-scalar accumulator. It is used when arrays are
subscripted to one level in GENIE.
Support: none

LIBRARY July, 1968

LIBRARY ROUTINES
108.2

+<RSAV, save *10 on B6 list

Function: This routine saves or duplicates *10, the non-scalar

accumulator, on to the B6 list. It is used for complicated non-
scalar expressions in GENIE.

Support: none

LIBRARY July, 1968

LIBRARY ROUTINES
108.3

<RSWP, swap (Bl) to *10

Function: This routine swaps the codeword in 10 to (Bl) and
changes the backreference. (Bl) is erased first if normal entry
is used but not so if entry is at order 2. It is used in non-
scalar stores in GENIE.

Support: none

LIBRARY July, 1968

LIBRARY ROUTINES
109

<TYPE, determine shape of ST entry

Function: .Used by «IFE and <EXEC to determine shape of
symbol table entry. '

Execution: internal system use only

Exrror: none

Support: none

- LIBRARY March, 1968

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

MAINTENANCE

Punching

The program EDIT is used for punching all library items.

The punch procedure is:

Load SPIREL from paper tape or magnetic tape.

Load all necessary updates to the library routines -- correc-
tions, new versions of programs and new programs.

Erase (ER at console) any programs to be deleted from the package.

Do not activate STEX or execute any program other than EDIT.

Execute from word 2 of the program EDIT with a control word
to SPIREL, manually or off paper tape.

Initialization occurs -- ST and VT indices set so that all
entries have tag 1 and negative indices and last entry in
use is at -0. ST and VT are alphabetized.

Punching of the package starts. Interrupt by turning on SL15
when enough tape is punched. CONTINUE to resume punching.
EDIT exits when punching is finished.

To check new punched tapes, load with SL15 on.

LIBRARY January, 1968

i

MAINTENANCE

2
e Editing
The program EDIT is used for updating the SPIREL library in
memory or on magnetic tape.
The edit procedure is:
(1) Load SPIREL from paper tape or magnetic tape.
(2) Load all necessary updates to library routines, named and
numbered -- corrections, new versions of programs, and new

programs.

(3) Do not activate STEX or execute any program other than EDIT.

(4) Execute from word 3 of the program EDIT with a control word
to SPIREL, manually or off paper tape.

(5) 1Initialization occurs -- ST and VT indices set so that all
entries have tag 1 and negative indices and last entry in
use is at -0.

(6) Control returns to the console communications loop, and the
library is updated in memory.

(7) Write on magnetic tape, if desired.

LIBRARY May, 1967

MAGNETIC TAPE

Introduction . , . .
Usage e e e e o e &
Manual READ

Manual WRITE

Programmed READ

Programmed WRITE
System Organization
Public Systems Tape
Dynamic Dumping , .
Tape Format « e e .
Tape Preparation ., .

MARK
COPY

MAGNETIC TAPE

SYSTEM

INTRODUCTION

The magnetic tape system provides areas on magnetic tape for
storage of 24K memory loads of SPIREL-compatible systems, Reading
and writing may be done both manually (from the console) and under
program control, as for dynamic dumping of production runs,

The tape is pre-marked into blocks numbered from 1 to 40
(octal), each containing a full 24K memory load. Reading and
writing operations are carried out by the magnetic tape system
programs which are located at the high end of memory. There
are four means of communication with the magnetic tape system:

e in the SPIREL system (and the PLACER systems) from the con-
sole entry at location 37 for manual read or manual
write =-=- set (CC) = 37 and fetch

e with the console bootstrap tape, BOOT, for manual read or
manual write

e by transferring to an octal location (57700) for programmed
reading

e by transferring to an absolute location (57701) for pro-

grammed writing.

T

USAGE
e Manual READ

From the console a memory load may be obtained from magnetic
tape by the following procedure:

1) Give the "MT i" command from the console or FETCH from location
37 (octal) if the appropriate tape routines are in memory,
or LOAD the bootstrap tape for the tape unit to be used.

The magnetic tape system programs are read from tape, and .
the machine halts with an arrow in U. The current position
(block number) is displayed in IL. »

2) If IL addresses the block desired, simply CONTINUE; otherwise,
set SL to the desired block number and CONTINUE.

The block will be read from tape and checksummed. All lights
and registers (except T7) will be restored to their values at
the time the block was written. The control word, if any,
provided when the block was written will be executed. Control
will be returned to the console communication loop if the block
was written with a manual WRITE or to the location immediately
following the transfer to 57701 for a programmed WRITE.

3) If an invalid block number is set into SL, SL will be cleared
and the machine will halt again with the arrow in U.

Go back to step 2).
4) If the designated block cannot be read, the machine will halt

with NO in U. Go back to step 1) to try again.

MAGNETIC TAPE July, 1967

I

USAGE

e Manual WRITE

From the console a memory load may be written onto magnetic tape.
Obtain the memory load by reading from magnetic tape or LOADing the

"CLEAR" tape, then reading from paper tape as desired. All lights

(except IL 10, 11, 12, 13 -- the tape search lights) and registers
(except T7) will be stored on tape with the memory load and should
be set as desired. The manual WRITE procedure is as follows:

1) Give the "MT" command from the console or FETCH from location

‘37 (octal) if the appropriate tape routines are in memory,
or LOAD the bootstrap tape for the unit to be used.

The magnetic tape system programs are read from tape, and the
machine halts with an arrow in U, The current position (block
number) is displayed in IL.

2) Turn off "NOT WRITE" light on the transport to be used.

3) Turn on SLl.

4) If you wish to have a control word executed when the block is
read from tape, type it into U.

5) If IL addresses the block desired, simply CONTINUE: otherwise,
.set the desired block number into the right end of SL and
CONTINUE. '

The memory will be written at the designated block and control
will be returned to the console communication loop. The control
word to be executed when the block is read is not executed at
this time.

6) If an invalid block number is set into SL, SL will be cleared
and the machine will halt again with the arrow in U.

Go back to step 3). ‘

7) If the block cannot be written without error, the machine halts
with NO in U. The memory load is not destroyed. Go back
to step 3) to try again.

8) Turn on "NOT WRITE" light on the transport used.

MAGNETIC TAPE July, 1967

USAGE

e¢ Programmed READ

From a program,control may be passed to the magnetic tape
system to read a memory load or to go into the manual READ

procedure,

1) To read block K from magnetic tape, set (T7)=K and TRA to
the programmed READ location, 57700.

Operation continues as for manual READ, step 2) =-=- and

halt with NO in U will show block which could not be read

as current position in IL,

2) To pass control to the manual READ procedure, set (T7)<0
and TRA to the programmed READ location, 57700,
Operation continues at step 2) in manual READ, with an

arrow in U and current position (block number) in IL,

USAGE

¢ Programmed WRITE

From a program, the magnetic tape system may be used to dump
a memory load, control then being returned to program after the

write. The procedure is as follows:

1) Code set (T7)
TRA 57701
[return after read]

[return after write]

2) The value (T7) = K, K> 0 will cause block K to be written

(T7) <= 0 will cause halt with arrow in U and
current position (block number) in IL;
then set block number for write in SL
and CONTINUE
3) Control after write returns to second order beyond TRA to

57701 with all registers restored, except (T7) which
indicates action taken:

(T7) = 0 if write was successful

(T7) =-1 if invalid block number given

(T7) =-2 if successful write could not be per-

formed

4) Control upon subsequent READ of block goes to first order
beyond TRA to 57701 =-- no control word being executed
and all registers but T7 as before WRITE.

SYSTEM ORGANIZATION

The magnetic tape system consists of the programs BOOT, CALL,
MAIN, MARK, and COPY,

BOOT is used to initialize the system from the console. With

the LOAD switch it goes into memory at location 57400, searches
tape backward to the nearest copy of CALL, reads CALL and trans-

fers to it.

CALL normally remains in memory at locations 57700 to 57777.
The entry points for programmed operations are in CALL, as is the
entry from BOOT. CALL saves all registers except T7, CC, P2, and
S, then reads MAIN from magnetic tape and transfers control there.
CALL tries five times to read the nearest MAIN without error; if

this fails, it searches backward for the next MAIN to try again.

MAIN normally remains in memory at locations 57400 to 57677.
It controls the logic of positioning, reading, writing, handling
tape errors, and unsaving. As in CALL, five attempts are made to
do each read or write correctly. MAIN does not have to remain in
memory. The standard end of allocatable memory for SPIREL is set
at 57377. 1If the 300 words occupied by MAIN are required for dyna-
mic allocation in a SPIREL system, the end of memory may be set to
57700, allowing MAIN to be overwritten., In this case, a SPIREL
REORGANIZATION of the STEX domain should be requesfed and location
100 checked before writing to ensure that no information will be
over~-stored when MAIN is brought in for the WRITE operation,
The memory arrangement used by the magnetic tape system is
as follows:
10-57377 dumped on and read from magnetic tape
40-77 used by MT system to store fast and
special registers
57400-57677 MAIN program
57700-57777 CALL program

(I

PUBLIC SYSTEMS TAPE

A public systems tape for transport 3 is maintained by the
Computer Project. It contains copies of the programming systems:
SPIREL and PLACER. Each user is assigned a block for storage of
a private system. For the protection of all users, programmed
writing is inhibited on the public systems tape.

System tape maintenance involves three system tape reels.
Tape A is in current use and is copied once a week. Tape B is
0 - 1 week 0l1d, and tape C is 1 - 2 weeks old.

Once a week tape A becomes tape B, tape B becomes tape C, and
tape C is used for the new tape A. As much as possible of tape B
is copied onto tape A. Blocks which cannot be read from tape B
are written as zeros on tape A.

If tape A becomes unusable, a new tape A will be copied from
tape B. 1If tape A becomes unusable and tape B cannot be copied,
tape C becomes tape B, and tape B may be copied as tape C to have
three reels on hand.

It may be necessary for a user to fill or update his block on
a new system tape A. Users have access to tapes B and C for
reading, NOT FOR WRITING, but this will not solve all problems.

A user should always be able to regenerate his block from paper
tape. _ | :

At the time a new tape A is written re-allocation of blocks
may be made on the basis of coméuter usage; watch for this so
that you are. always writing in your own block.

MAGNETIC TAPE August, 1967

DYNAMIC DUMPING

The magnetic tape system programs are easily used in a dump-~-
restart procedure for a production package. Dumping may be cycled
through a series of blocks, so that the past several dumps are
always available.

At each dump the date, time, and number of the dump along
with any results of interest may be printed., P2 and T7 may be
‘saved if these are necessary in the running program, After each
dump control returns to the second order beyond the TRA to 57701,
and the system may continue to run.

Restart is accomplished by a manual READ, and control returns
to the first order beyond the TRA to 57701. Initialization of any

sort may be done, and then the system may continue to run,

TAPE FORMAT

The present system provides 40 blocks written in sub-blocks
of about 10,000 words separated by markers as shown below., The
number of blocks on the tape, the size of the segments, the total
amount of memory written, and the logical transport on which the

system runs may be changed by simple edits of the symbolic programs,

[200 B rerer
MAIN —\

MT system programs

CALL —J/

10-7777 — data sub-block

.10000-17777

20000-27777

30000-37777

40000-47777

50000-57377

MAIN

i 1
CARA
i

e MARK

TAPE PREPARATION

The MARK program loads at location 57300, marks a system tape

in the format described, fills all blocks with the same content,

does not check for bad areas on the tape or for unsuccessful writ-

ing.

The system used as content for the blocks may not have memory

in use above location 57277.

1)

2)

3)

4)

5)

To prepare a tape with MARK:

either a) clear memory with the "CLEAR" tape and load

SPIREL from paper tape

or b) load SPIREL from magnetic tape

or c) 1load some other system, which you wish to have

written in all blocks on the tape.

Self-load CALL for the transport to be used; machine will

stop with
(1): Z HTR

Z

Self-load MAIN for the transport to be used; machine will

stop with
(I): z HTR

Z

Self-load MARK for the transport to be used; machine will

stop with
(1): HTR

Turn off "NOT WRITE" 1light
and machine will halt
40 (octal) blocks are

being written is kept

57300

and CONTINUE. Tape will be marked,
as for manual READ, Normally
provided, The number of the block

in Bl, and the program may be

stopped short of 40 blocks.

Paper tape copies of CALL, MAIN, and MARK for transports 2

and 3 are available in the programming office.

T

TAPE PREPARATION
2

e COPY

The COPY program loads at location 7000 and marks a tape in the
format described, It writes each block on the new tape as directed
by a control paper tape =-- as a copy of a block on the old tape or
blank. As each block on the new tape is written, it is checked for
being written correctly and for being readable. "Bad spots" on
the tape are detected and avoided,

To prepare a tape with COPY:

1) Mount the old tape as logical tape 3.

2) Mount the new tape as logical tape 2 with the "NOT WRITE"
light OFF.

3) Self-load CALL for the logical unit on which the new tape
will be used,

4) Self-load MAIN for the logical unit on which the new tape
will be used,

5) Self-load COPY, and a HTR to the first instruction of COPY
(at location 7000) will occur.

6) Position control paper tape (format described below) in the
reader,

7) CONTINUE to location 7000 to rewind both tapes and start the
copy procedure. Bypass the order at location 7000 to
avoid rewinding the old tape which must be positioned
before the first block to be copied. Bypass the order
at location 7001 to avoid rewinding the new tape, In
any case, the copy procedure is begun at location 7002
by writing leader of markers 201 on the new tape.

8) The copy procedure reads from the control paper tape for
each block of the new tape. The number of the block
being written is maintained in PF,

9) If there is no paper tape in the reader, COPY will hang on a
a read order and the control information for the block
number shown in PF may be typed into U as it would have

been read from the control paper tape,

TAPE PREPARATION
3

10) All reads from the old tape are checked for parity and checksum;
they are repeated until both are correct. Five read
failures on the same sub-block (there are six in each
block) will cause COPY to halt; three options are then
available:

(a) Pushing CONTINUE will cause writing of a sub-
block of zeros instead of the copy from the
old tape. The block will be readable, and
the checksum correct.

(b) Typing a number into B6 and fetching from FO
will causé that number of further read
attempts to be made, If they all fail, COPY
%ill return .to the same halt,

(c) Typing a number into U and fetching from F3
will cause the block with that number on the
old tape to be written instead of the one
found unreadable,

11) All writes on the new tape are checked for parity and word-to-
word correspondence to what should have been written.
After five unsuccessful writes, COPY fills the unwritable
section with markers 200 and tries again.

12) The copy procedure is terminated by simply letting COPY hang

on a read paper tape order,

The COPY control tape contains a directive for each block to
be written on the new tape, these being given for blocks 1,2,...
in order, Each directive consists of exactly three punches:
cr NN
where NN is the two-digit octal block number of the block to be

i

copied from the old tape. If a block on the new tape is not to
contain a copy of a block from the old tape but is to be written

as zeros, punch NN as 00,

	01-001_Programming_Systems
	01-01
	01-02
	01-03
	02-001_Placer
	02-002
	02-003
	02-01.01
	02-01.02
	02-02.01
	02-03.01
	02-03.02
	02-04.01
	02-05.01
	02-06.01
	02-07.01
	02-07.02
	02-08.01
	02-08.02
	02-08.03
	02-09.01
	03-001_Assembly_Language
	03-002
	03-01
	03-02
	03-03.01
	03-03.02
	03-04.01
	03-04.02
	03-04.03
	03-04.04
	03-05.01
	03-05.02
	03-05.03
	03-05.04
	03-05.05
	03-05.06
	03-05.07
	03-05.08
	03-05.09
	03-05.10
	03-05.11
	03-05.12
	03-05.13
	03-05.14
	03-05.15
	03-05.16
	03-05.17
	03-05.18
	03-05.19
	03-05.20
	03-05.21
	03-06.01
	03-06.02
	03-06.03
	03-06.04
	03-06.05
	03-06.06
	03-06.07
	03-06.08
	03-07.01
	03-07.02
	03-07.03
	03-07.04
	03-07.05
	03-07.06
	03-07.07
	03-07.08
	03-07.09
	03-07.10
	03-07.11
	03-08.01
	03-08.02
	03-08.03
	03-09.01
	03-09.02
	03-09.02a
	03-09.02b
	03-09.02c
	03-09.02d
	03-09.02e
	03-09.02f
	03-09.03
	03-09.04
	03-09.05
	03-09.05a
	03-09.05b
	03-09.05c
	03-09.05d
	03-09.05e
	03-09.05f
	03-09.05g
	04-001_Genie
	04-002
	04-003
	04-01
	04-02.01
	04-02.02
	04-03.01
	04-03.02
	04-04.01
	04-04.02
	04-05.01
	04-05.02
	04-06.01
	04-06.02
	04-07.01
	04-07.02
	04-07.03
	04-08.01
	04-08.02
	04-09.01
	04-10.01
	04-11.01
	04-11.02
	04-11.03
	04-11.04
	04-11.05
	04-11.06
	04-12.01
	04-12.02
	04-13.01
	04-13.02
	04-14.01
	04-15.01
	04-15.02
	04-16.01
	04-16.02
	04-17.01
	04-18.01
	04-18.02
	04-18.04
	04-18.05
	04-18.06
	04-19.01
	04-20.01
	04-20.02
	04-21.01
	04-22.01
	04-22.02
	04-23.01
	04-23.02
	04-24.01
	04-24.02
	04-25.01
	04-26.01
	04-26.02
	04-26.02a
	04-26.02b
	04-26.02c
	04-26.02d
	04-26.02e
	04-26.02f
	04-26.02g
	04-26.02h
	04-26.03
	04-26.04
	04-26.05
	04-26.05a
	04-26.05b
	04-26.05c
	04-26.05d
	04-26.05e
	04-26.05f
	04-26.05g
	04-26.06
	04-26.07
	04-26.07a
	04-26.07b
	04-26.07c
	04-26.07d
	04-26.07e
	04-27.01
	04-27.02
	04-27.03
	04-27.04
	04-27.05
	04-27.06
	04-27.07
	04-27.08
	04-27.09
	04-27.10
	04-27.11
	04-27.12
	04-27.13
	04-27.14
	04-27.15
	04-27.16
	04-27.17
	04-27.18
	04-27.19
	04-27.20
	04-27.21
	04-27.22
	05-001_Spirel
	05-002
	05-01.01
	05-01.02
	05-01.03
	05-01.04
	05-02.01
	05-02.02
	05-02.03
	05-02.04
	05-03.01
	05-03.03
	05-03.04
	05-03.05
	05-04.01
	05-04.02
	05-04.03
	05-04.04
	05-04.05
	05-04.06
	05-04.07
	05-04.08
	05-04.09
	05-04.10
	05-04.11
	05-04.12
	05-04.13
	05-04.14
	05-04.15
	05-04.16
	05-04.19
	05-04.20
	05-04.21
	05-04.22
	05-04.23
	05-04.24
	05-04.25
	05-04.26
	05-04.27
	05-04.28
	05-04.29
	05-04.30
	05-04.31
	05-04.32
	05-04.33
	05-04.34
	05-04.35
	05-04.36
	05-04.37
	05-05.01
	05-05.02
	05-05.03
	05-05.04
	05-05.05
	05-05.06
	05-05.07
	05-05.08
	05-05.09
	05-06.01
	05-06.02
	05-06.02a
	05-06.03
	05-06.04
	05-06.05
	05-06.06
	05-06.06a
	05-06.06b
	05-06.07
	05-06.08
	05-06.09
	05-06.10
	05-06.11
	05-07.01
	05-07.02
	05-07.03
	05-07.04
	05-07.05
	05-07.06
	05-07.07
	05-08.01
	05-08.02
	05-08.03
	05-08.03a
	05-08.04
	05-08.05
	05-08.06
	05-08.07
	05-08.08
	05-08.09
	05-08.10
	05-08.10a
	05-08.11
	05-08.12
	05-08.13
	05-08.14
	05-08.15
	05-08.16
	05-09.01
	05-09.02
	05-09.03
	05-09.04
	05-09.05
	05-10.01
	05-10.02
	05-10.03
	05-10.04
	05-10.05
	05-10.06
	05-10.07
	05-10.08
	05-10.09
	05-10.10
	05-10.11
	05-10.12
	05-10.13
	05-10.14
	05-10.15
	05-10.16
	05-10.17
	05-10.18
	05-10.19
	05-10.20
	05-10.21
	06-001_Library
	06-002
	06-01
	06-02.01
	06-02.02
	06-02.03
	06-02.03a
	06-02.04
	06-02.05
	06-02.05a
	06-02.06
	06-02.07
	06-02.08
	06-02.09
	06-02.10
	06-02.11
	06-03.01
	06-03.02
	06-03.03
	06-04.01
	06-04.02
	06-05.001
	06-05.002
	06-05.003
	06-05.004
	06-05.004a
	06-05.005
	06-05.006
	06-05.006a
	06-05.007
	06-05.008
	06-05.008a
	06-05.008b
	06-05.008c
	06-05.008d
	06-05.008e
	06-05.009
	06-05.010
	06-05.011
	06-05.012
	06-05.013
	06-05.013a
	06-05.014
	06-05.015
	06-05.016
	06-05.017
	06-05.017a
	06-05.018
	06-05.019
	06-05.020
	06-05.021
	06-05.022
	06-05.023
	06-05.024
	06-05.025
	06-05.026
	06-05.027
	06-05.027a
	06-05.028
	06-05.029
	06-05.030
	06-05.030a
	06-05.031
	06-05.032
	06-05.033
	06-05.033a
	06-05.034
	06-05.035
	06-05.035a
	06-05.036
	06-05.037
	06-05.038
	06-05.039
	06-05.040
	06-05.041
	06-05.041a
	06-05.042
	06-05.043
	06-05.044
	06-05.045
	06-05.046
	06-05.047
	06-05.048
	06-05.049
	06-05.049a
	06-05.049b
	06-05.049c
	06-05.050
	06-05.051
	06-05.052
	06-05.052a
	06-05.053
	06-05.053a
	06-05.054
	06-05.054a
	06-05.055
	06-05.055a
	06-05.055b
	06-05.056
	06-05.056a
	06-05.057
	06-05.058
	06-05.059
	06-05.059a
	06-05.060
	06-05.060a
	06-05.060b
	06-05.061
	06-05.061a
	06-05.062
	06-05.063
	06-05.063a
	06-05.064
	06-05.065
	06-05.065a
	06-05.066
	06-05.067
	06-05.067a
	06-05.068
	06-05.069
	06-05.070
	06-05.071
	06-05.072
	06-05.073
	06-05.073a
	06-05.073b
	06-05.074
	06-05.074a
	06-05.075
	06-05.076
	06-05.077
	06-05.078
	06-05.079
	06-05.079a
	06-05.080
	06-05.081
	06-05.082
	06-05.082a
	06-05.083
	06-05.084
	06-05.085
	06-05.086
	06-05.087
	06-05.088
	06-05.089
	06-05.090
	06-05.091
	06-05.092
	06-05.093
	06-05.094
	06-05.095
	06-05.096
	06-05.097
	06-05.097a
	06-05.097b
	06-05.098
	06-05.098a
	06-05.099
	06-05.099a
	06-05.099b
	06-05.099c
	06-05.100
	06-05.100a
	06-05.101
	06-05.102
	06-05.103
	06-05.104
	06-05.105
	06-05.106
	06-05.107
	06-05.108
	06-05.108a
	06-05.108b
	06-05.108c
	06-05.109
	06-06.01
	06-06.02
	07-001_Magnetic_Tape
	07-002
	07-01
	07-02.01
	07-02.02
	07-02.03
	07-02.04
	07-03
	07-04
	07-05
	07-06
	07-07.01
	07-07.02
	07-07.03

