Processor
Reference
Manual

RIDGE

9008

Ridge Processor
Reference Manual

Fourth Edition: 9008-C (SEP 85)

PUBLICATION HISTORY

Manual Title: Ridge Processor Reference Manual

First Edition: 9008 (MAR 83)
Second Edition: 9008-A (FEB 84)
Third Edition: 9008-B (JUN 84)
Fourth Edition: 9008-C (SEP 85)

NOTICE
No part of this document may be translated, reproduced, or copied in any form or by
any means without the written permission of Ridge Computers.
The information contained in this document is subject to change without notice. Ridge

Computers shall not be liable for errors contained herein, or for incidental or consequen-
tial damages in connection with the use of this material.

© Copyright 1983, 1984, 1985 Ridge Computers.
All rights reserved.
Printed in the US.A.

-ii- 9008-C

CONTENTS

Chapter 1: OVERVIEW

KEY FEATURESccooocoomimmmimmiimomeeoeeeoeeeeoeeoe oo 1-1
V1 AND V2 PROCESSORScoooooooommioomomoooooooo 1-1
RISC ARCHITECTUREcooooooooooooooeeeseeoseeoeeoooooooooooo 1-2
INSTRUCTION FORMATSccoooooomvommvomoooeeeoooooo 1-3
PROCESSOR ARCHITECTUREcoooooooocomeo 1-4
INTERNAL STRUCTUREcccooooooooooomivvommoeoooooo 1-5
PIPELINED ORGANIZATIONcooovoomoome 1-5
INSTRUCTION FETCH UNIT ..o 1-9
Branch Prediction............c.cccocoommmvvvvovemivconc 1-9
Conditional Branch Instructions.............ccoooovceemeeee o 1-9
Branch Prediction Examplecooooocooommvvveen 1-10
Unconditional Branch Instructionscooooeeeeevr o 1-12
EXECUTION UNIT.............coommmieoommmmeoeeoeeeooeeeeeeooeooooooooooooo 1-12
MEMORY CONTROLLER..........ccooomvvomoommrcomeem 1-14
DATA TYPESccooooiiiimmeemnrceeoeeeeeeeooeeeeeeoeeeeoeeoeooeooooeooooeoooee 1-15
INTEGERScooooomoiiiiiiiiinninoroooo 1-16
REAL NUMBERS (SINGLE PRECISION)cooovvooveoi 1-16
REAL NUMBERS (DOUBLE PRECISION) ... 1-17
SYNTAX CONVENTIONSooo.ooooooooeemeeeoeomoooooooooooooo 1-17
NAME OF INSTRUCTION OR INSTRUCTION CLASS ..o 1-18
Chapter 2: MEMORY REFERENCE INSTRUCTIONS
INSTRUCTION FORMATS ... 2-1
INSTRUCTION DESCRIPTIONSccooomoommmio 2-3
LOAD INSTRUCTIONScoooooovoooooeomeoooooooooooo 2-3
STORE INSTRUCTIONSccooovomimomomomoo 2-4
LOAD ADDRESS INSTRUCTIONScoocoommemm 2-4

9008-C -i-

Chapter 3: REGISTER FORMAT INSTRUCTIONS

INSTRUCTION FORMAT ..ot 3-1
INSTRUCTION DESCRIPTIONS ..ottt 3-2
INTEGER ARITHMETIC INSTRUCTIONSc.cooooviieiiiieeeeeeeeeee 3-2
LOGICAL OPERATOR INSTRUCTIONSocoovoiiiiiiiiieeeteeeeeeeeenns 3-3
INTEGER AND LOGICAL IMMEDIATE INSTRUCTIONS.........ccceo....... 3-4
EXTENDED PRECISION INTEGER INSTRUCTIONS.cocoovvveerenn. 3-5
REAL INSTRUCTIONS ..ottt 3-6
DOUBLE REAL INSTRUCTIONS.........coovviiiiiieeeeeeeeeeeeeeeeeer e, 3-7
BIT-ORIENTED INSTRUGTIONScoooiuimitiiiieeeeeeeeeeeeeeeeeeeeee e 3-8
TEST INSTRUCTIONccoiiiiiiiiiieee e, 3-8
COMPARE INSTRUCTIONS.........ccoootmiiititiiieeeeeeeeeeeeeeeeeeee e 3-9
SHIFT INSTRUCTIONSc..ccootiiimiiiiieeeeeeeeeeee et 3-10

Chapter 4: PROGRAM CONTROL INSTRUCTIONS
BRANCH INSTRUCTIONS FORMAT AND DESCRIPTIONS....... 4-1

INSTRUCTION DESCRIPTIONS ...t R 4-2
BRANCH INSTRUCTIONS.......ooiiiiiieieeceeeeeeeeeeeeee e 4-2
LOOP CONTROL INSTRUCTION..........cocoouomeeeeoeeeeeeeeeeeeeeeeeeeeee 4-2

SUBROUTINE CALL AND RETURN INSTRUCTIONS.................... 4-3
CALL SUBROUTINE INSTRUGTIONooioteeeeeeeeeeeeeeeeeeeeeeeeeee, 4-3
CALL SUBROUTINE REGISTER AND RETURN INSTRUCTIONS......... 4-4

APPENDIX A: RIDGE OPCODE MAP........cooommmmimmmeeeeee, A-1

ILLUSTRATIONS

Figure 1-1. Instruction Formatscoooviiiiiiiieeieeeeeeeeee 1-3

Figure 1-2. Model of Processor Architecture............ococoveveevveverenine.. 1-4

Figure 1-3. Processor Instruction Pipeline..............cocooovvvevveeeeeein.. 1-6

Figure 1-4. Internal Structure of V1 Processor.........cocovveevevveeveevonn, 1-7

Figure 1-5. Internal Structure of V2 Processor.........ccocoouveeeverveerennnn. 1-8

Figure A-1. Opcode Map

-1v- 9008-C

Chapter 1
OVERVIEW

This manual provides a general description of the processors available on Ridge
32 computers.

The Ridge 32 computer is an engineering workstation with a 32-bit, high perfor-
mance processor implemented in MSI and LSI bipolar logic. Ridge processors
have a simple, general purpose, microcoded architecture that incorporates paged
virtual memory. The processing power of a Ridge 32 computer is equal to
medium performance mainframes and high performance minicomputer systems.

KEY FEATURES

Reduced Instruction Set Computer (RISC) Architecture
125-nanosecond Processor Cycle Time

375-nanosecond Memory Cycle Time

One-clock Cycle Minimum Instruction Time

4096-byte paged virtual memory

Four-gigabytes Linear Address Space

Separated Code and Data

Branch Prediction Logic

Single and Double Real Floating Point Instructions

16 General Registers

V1 AND V2 PROCESSORS

Two processors are available for the Ridge 32:
V1 processor The original, Version 1 Ridge processor.

V2 processor An upgraded version of the V1 with special hardware that
increases the speed of floating point calculations by 20 -
100 percent.

The V1 and V2 processors utilize a register-oriented design incorporating 16 gen-
eral registers. Virtual addressing is accomplished using 4096-byte pages within a
four-gigabyte address space. Simple instructions can be completed in one 125-
nanosecond machine cycle, resulting in a maximum instruction rate of eight-
million instructions per second (8 MIPS).

9008-C 1-1

Processor Reference Overview

RISC ARCHITECTURE

Both the V1 and V2 processors are based on RISC (Reduced Instruction Set
Computer) architecture. The main objective of RISC architecture is to simplify

the

functions of the machine, thereby reducing the amount of hardware neces-

sary to implement the processor. The reduction in logic allows a faster cycle
time and permits instructions to complete in one machine cycle. This results in
a very fast and low-cost computer.

RISC architecture is characterized by the following:

1-2

Simple addressing modes. The Ridge 32 uses only three modes which
reduces the amount of logic needed to perform memory references.

Simple instruction formats. The Ridge 32 uses three instruction formats
that can be decoded with a minimum of logic.

Separated code and data. The Ridge 32 uses separated code and data
eliminating the need for logic that detects and resolves self-modifying code.

High-level language support. The instructions provided are designed to
match the code generation capabilities of such languages as FORTRAN, C,
and Pascal. These languages tend to generate short sequences of the
required functions. Complex instructions and instructions not used by a
compiler are eliminated. Thus, the Ridge 32 instruction set offers the "primi-
tives” which will be assembled by a compiler.

Regularity. Data types and addressing modes are examples of regularity.
For memory reference instructions there are four operand sizes and three
addressing modes. Each of the addressing modes is available for all
operands. To do otherwise complicates the compiler and may slow the-
overall operation of the machine.

Linear address space. Code and data space are each linear with a byte-
addressable area that is four-gigabytes long. Segmentation schemes appear
to save logic to support the full 32-bit address widths, but instead they com-
plicate the hardware and compilers, and slow the processor’s performance.

General registers. All registers are available for use as data, indexing,
and addressing. If registers are specialized, they complicate compilers,
reduce the available fast storage area, and increase code size when data
must be moved to the appropriate register type.

9008-C

Processor Reference Overview

INSTRUCTION FORMATS

The V1 and V2 processors contain 16 32-bit registers. The two-operand instruc-
tion set uses three instruction formats. The instruction formats are register-to-
register (16-bits long), short displacement memory address (32-bits long), and
long displacement memory address (48-bits long). The instruction formats are
shown in Figure 1-1.

Register-to-register

8-bit opcode | Rx Ry

Short displacement memory address

8-bit opcode | Rx Ry displacement

Long displacement memory address

8-bit opcode | Rx Ry displacement
0 7 8 1112 1516 31 47

Figure 1-1. Instruction Formats

All instructions use an eight-bit opcode followed by two four-bit operands. The
first operand always names a register or a register pair. The second operand
names a register or is a four-bit constant. Instructions exist to operate on regis-
ters, load from memory, store to memory, and transfer program control.

The register-to-register format is used for instructions that operate on the con-
tents of one or two registers and do not address memory. The short and long
displacement memory address format instructions are used for memory-
addressing instructions, such as storing and loading. The short displacement -
memory address format is used for referencing addresses that can be specified in
16 bits. The long displacement memory address format is used for referencing
addresses that must be specified in 32 bits.

Any arithmetic or address operation can be performed on any register. Regis-
ters are not specialized for counting or indexing.

9008-C 1-3

Processor Reference Overview

PROCESSOR ARCHITECTURE

A general model of the architecture used by the Ridge processors is shown in
Figure 1-2. The user-visible features of the processor are instructions, general
registers, and the program counter. Instructions operate on the general registers
(register-to-register) or on a register and a memory location (load from memory
or store to memory). The program counter is visible when using program con-
trol instructions such as subroutine call and branch.

Instruction
r Opcode Rx Ry Displacement |—————ﬂ
Instruction Types:
R‘ie'i'et'a' LOAD/STORE
o gisters Register to Register
] No use visible status or
condition codes
> . v
. ———»()4——— Program Counter
32
15 :
ﬂ/ 32 ,1/32 A 32
y v
Code or Memory Virtual
Data Data Memory

Address

Figure 1-2. Model of Processor Architecture

All addresses generated by the processor are 32-bit virtual addresses. Memory
reference instructions indicate code or data space by utilizing a bit in the
instruction opcode. An individual program may access a maximum of four giga-
bytes of code space and a maximum of four gigabytes of data space.

1-4 9008-C

Processor Reference Overview

A status register containing condition codes is purposely missing from this archi-
tecture. Status registers complicate and tend to slow down high-speed proces-
sors. On high-speed machines several instructions are in various stages of execu-
tion at any given moment. Condition codes tend to be generated at various
times during these stages and must be properly propagated from stage to stage.
In virtual machines, there is the additional problem of preserving the condition
codes throughout the stages when an instruction aborts due to a page fauls.

The processor architecture includes the conditional branch instruction that obvi-
ates the need for condition codes. This instruction combines the compare func-
tion and the conditional branch instruction. The compare function generates
the condition code and the conditional branch instruction changes program flow
of control based upon condition code values.

INTERNAL STRUCTURE

Both the V1 and V2 processors consist of two printed circuit boards. The first is
the instruction fetch unit and the second is the execution unit. A private bus to
the memory controller provides separate 32-bit address and data lines. The
instruction fetch unit and execution unit may each independently access main
memory. Memory cycle time is 375 nanoseconds, which includes virtual-to-real
memory translation and error correction.

A block diagram of the V1 processor, memory, and 1/O system are shown in Fig-
ure 1-4. A similar block diagram for the V2 processor is shown in Figure 1-5. In
the following text, the items in bold type are illustrated in both figures.

PIPELINED ORGANIZATION

The V1 and V2 processors uses a pipelined organization. The pipeline is com-
posed of four stages: instruction fetch, operand fetch, execution, and store
result. Each pipeline stage performs its function in one processor cycle. The
stages of the processor instruction pipeline are illustrated below.

Pipeline Stages

store
result

instruction operand .
fetch [| fetch [=] execution

9008-C 1-5

Processor Reference

Overview

The operations performed during each processor cycle are as follows:

Instruction Fetch. The instruction is fetched from the prefetch buffer.
The opcode is used as an index into the control store, which controls instruc-
tion execution. The Rz and Ry operands in the instruction are used to
enable the register select logic.

Operand Fetch. Rx and Ry are fetched from the register files.

Execution. The ALU operates on Rx and Ry, the result passes through the
barrel shifter and is stored in the result register.

Store Result.
Ry register files.

The data is moved from the result register into the Rx and

The purpose of the pipeline is to increase machine speed by using parallelism.
Each stage of the pipe operates on a separate instruction. Instructions flow
through each of the four stages of the pipe, one cycle at a time. Although com-
plete execution of an instruction takes four machine cycles, one instruction com-
pletes each cycle, thus creating an effective processor speed that is four times
the speed of a non-pipelined operation. The instruction pipeline includes all of
the logic on the execution unit and part of the logic on the instruction fetch

unit.
Instruction Operand Store
Cycles Fetch Fetch Execute Result
mstruction
1 - - -
1
instruction
9 _ -
1
3 instruction | | instruction __
4 instruction instruction
. 2 1
instruction
5 - Cb
2
6 - -
7 - - -

1-6

Figure 1-3. Instruction Flow Through Pipeline Stages

9008-C

Overview

Processor Reference

J0883004J TA JO 9INONI)Q [BUII}U] “F-T InB1

Hup uoynaaxy

HUMN YRy uondNISYY

e -\
|
91607 10jag 21807 198188
1osifisy Ay sasifiay xy
1)sibay
insay
23s/qW8 1 .(J
sng 0/1 A ¥ | { |
eje(/ssaippy
a4 LLiF]
1isibay Ja)sibay
adnag o/t YW [Ay X4
~
Auag
adnaq o/1 YWa [— leuag

Koway
vieW

1ajjonuoy Aowsw || | i :J:

1981409

10113 ‘l_ (1313

wowaseidsig | A4 | xy | apoadg

uoiaipsg youelg pue
iayng yNapeid

J1

I

ajqer 3YPej
Suiddepy 10414g |euieg ug-v9 usnansist)
uonesuelg
z) /]
(,
S ~ "
ejeg _ r Hed J
$Saippy SSaippy

1-7

9008-C

Overview

08830 J ZA JO INIONIGG [BUINU] “G-T 3anB1

i} vopnsaxy U Y9194 uandnasty
v =
[
21607 pajes boy joees
apifiey &y Jasibay xy
sifiay
nsay
99S/qM8 1 _/J
NGO/l _~ v ([)
Bl2Q/SSaIppY
apy 2t
H asifiay wsiiay
aamag 0/1 vwe [e W
N
aa1maQ 0/) _ UL TR — * (- ~ .Mm_mu
L } 3 P 11
m I 4
1ajjonuog Aowasy || | I [l j

juawoneidsig | Ay | xy | epoadg N

| 8 JL v | |avesena] [vrepara] |awouoara] fvwouedsz] [ubis

Processor Reference

i L 1l || 1 Ll
gy b M nw W ey |
1gng isejald -
Koway
uiew Pt
atgey : -
o 1B 191120 49 e

ejeq _ _ ejeg

’)

SsaIppy ssaippy

9008-C

1-8

Processor Reference Overview

INSTRUCTION FETCH UNIT

The instruction fetch unit performs instruction prefetch and decoding. It con-
tains a 256-byte instruction cache and a maximum of 4096 words of 48-bit wide
control store. The instruction fetch unit fetches instructions from the instruc-
tion cache or main memory ahead of the execution unit and stores them in its
eight-byte prefetch buffer.

Branch Prediction

The implementation of branch instructions is critical to the performance of pipe-
lined machines. Without special handling, a conditional branch instruction
would empty the pipeline, preventing the processor from prefetching the next
instruction until the outcome of the branch has been determined.

For this reason, branches can be among the slowest instructions on high perfor-
mance machines. The Ridge processor uses a technique to load the instruction
into the pipe, which is the most likely result of the branch, thus reducing the
chance that the pipeline is loaded with instructions on the wrong path.

Conditional Branch Instructions

Conditional branch instructions contain a static prediction bit in the instruction
displacement field that can be set by a compiler. The branch prediction logic in
the instruction fetch unit then fetches along the predicted path. This keeps the
pipeline full and makes conditional branch instructions fast.

9008-C 1-9

Processor Reference Overview

A

Branch Prediction Example

Consider Pascal REPEAT ... UNTIL loops. The loop is constructed by the com-
piler as a linear section of code ended with a conditional branch. This branch is
part of the UNTIL expression. Usually these loops are executed more than once,
so the compiler marks the conditional branch at the bottom of the loop to be
"predicted."”

When the program is executed, the processor fetches and executes all the
instructions in the linear portion of the loop. As the instruction fetch unit pre-
fetches the conditional branch at the end of the loop, the prediction bit is
detected. Instead of fetching the next sequential instruction as it normally
would, the instruction fetch unit fetches the instruction at the top of the loop,
which is the branch target. This prefetching the location of the branch target
allows loops to execute at the same speed as linear sections of code.

As the loop is executed for its last time, the instruction fetch unit incorrectly
fetches the instruction at the top of the loop. This time the UNTIL condition
has been reached, and the loop has ended. Now the instruction fetch unit must

flush this instruction and fetch the next sequential instruction, which will then
be executed.

This flushing of the instruction pipeline causes a two- to four-cycle delay for the
incorrectly predicted conditional branch instruction. Measurements have shown

this to be infrequent, and consequently program speed is increased by the use of
the branch prediction logic. ’

For example, the following PASCAL program:

I:=0;

REPEAT;,
J.=1I
I:=1+1,

UNTIL I=100;

can be represented by the following AS instructions:

MOVE RO0,0 ; 1:=0

LADDR R2,100 ; Load 100 into R2 (Loop Terminator)
LOOP: MOVE RI1,RO ; Identify loop start, J :=1

ADD RO,1 ;=141

BR RO < R2, LOOP! ; Loop until I = 100

; "I" sets branch prediction bit
STORE R1,]J ; Store value of R1 at J
STORE RO, ; Store value of RO at I

1-10 9008-C

Processor Reference Overview

The following illustrates the path of each instruction through each stage of the
pipeline:

Proc. Instr. Operand Store

Cycles Fetch Fetch Execute Result Comments
1o |MoveE | [- |-]| |
2
3 Prediction bit detected
1st MOVE executed
4 1st ADD executed
5 Branch Prediction. BR
target (MOVE) fetched
6 Check Branch Condition
7 2nd time through loop -
second MOVE executed
8 2nd ADD executed
9
n Incorrectly Predicted Branch
n+l I = 100, loop complete
n42 Pipeline flush - STORE
instruction fetched
n+3 Pipeline flush
i] [
w [[
wo [[

9008-C 1-11

Processor Reference Overview

Unconditional Branch Instructions

Unconditional branch instructions also make use of the branch prediction and
prefetch logic in the instruction fetch unit. In unconditional branches, the
instruction is decoded, the target location is fetched and placed in the instruc-
tion stream, and the unconditional branch is flushed from the prefetch buffer.
This effectively removes the unconditional branches from the program entirely,
and if the instruction fetch unit is ahead of the execution unit, unconditional
branches can be performed with zero instruction time.

EXECUTION UNIT

The execution unit contains the general registers and is responsible for instruc-
tion execution. The arithmetic logic units (ALU) and barrel shifter work in close
association with the execution unit. The barrel shifter is a hardware device that
can shift any number of bits left, right, or circularly in a single clock cycle. The
V1 processor has a 32-bit barrel shifter and the V2 processor has a 64-bit barrel
shifter.

The general registers are found in the Rz register file. A duplicate copy of the
registers Is contained in the Ry register file. Duplicating the registers allows
both Rx and Ry to be accessed in a single clock cycle.

The general data flow through the execution unit for numbers is as follows.
Data is fetched from the Rx and Ry register files, operated on by the ALU, tem-
porarily stored in the result register and then stored in the register files. Should
data not yet stored in the register files be needed in a computation, the register
select logic may bypass the register file and use the data on the bus as input to

the ALU.

On the V2 processor illustrated in Figure 1-5, floating point numbers are
unpacked and sent to the sign and exponent hardware and to the exponent ALU.
This makes execution of floating point instructions more efficient. In addition to
the exponent ALU and its hardware, double precision floating point numbers-
make use of the extended ALU for a 64-bit data path. The barrel shifter packs
(reassembles) the results from the three ALU’s and the sign hardware into float-
ing point values.

1-12 9008-C

Processor Reference Overview

The following is an example of a two-instruction sequence that utilizes the regis-
ter bypass data path in the execution unit. This bypass avoids the "pipeline
interlock” delay that results when an instruction’s operand is dependent on an
instruction still in the pipe. The example also illustrates the use of the instruc-
tion pipeline shown in Figure 1-3.

ADD R6, R7 (operation: R6 is added to R7 and the sum is put in R6.)

AND R5,R6 (operation: R5 logically ANDs with R6 and the result is put in R5.)

Instruction Pipeline Stage Operation
Cycle
| Clock ADD AND

1 The ADD instruction is
fetched.

2 R6 and R7 are fetched The AND instruction is
from the register files. fetched.

3 The ALU ADDs R6 and R7, R5 and R6 are to be fetched,
and puts the new R6 but the new R6 value is on the
value on the bus. bus, not in the register file.

R5 is fetched from the register
file, while the Ry register
select logic bypasses the
register file and uses the

R6 value from the bus.

4 The new R6 value is The ALU ANDs R5 and R6
stored in the register puts the new R5 value on
file. the bus.

5 The new R5 value is stored in

the register file.

During clock cycle 3, the AND instruction must fetch its operand RS. However,
the value of R6 in the register file is outdated due to the ADD instruction com-
‘puting a new R6 value. Consequently, the register bypass is used. This moves
instructions through each pipeline stage in one clock cycle, and allows the pipe-
line to complete one instruction each clock cycle.

9008-C 1-13

Processor Reference Overview

MEMORY CONTROLLER

The memory controller provides virtual-to-real address translation and error
correction while handling all memory data for the processor and 1/O devices.
All memory accesses from the processor are virtual and go through the transla-
tion mapping table where they are converted to real addresses and presented to
main memory. 1/O devices on the I/O bus use real addresses and bypass the
translation mapping table.

Main memory cycle time is 375 nanoseconds, and the memory controller
processes four bytes per cycle. The CPU memory bus runs at full memory speed
giving this bus a bandwidth of 10.7 megabytes per second. The I/O bus uses
multiplexed address and datae lines to minimize the use of connector pins on I/0
boards. The 1/O bus cycles in 500 nanoseconds and provides eight megabytes
per second of direct memory access (DMA) bandwidth for 1/O devices. Each
board on the I/O bus contains its own DMA logic.

The memory controller can access from one to eight megabytes of main memory.
All memory accesses are single-bit error corrected and double-bit error detected.

1-14 9008-C

Processor Reference

DATA TYPES

Overview

Both processors have instructions to load and store four different sizes of
operands. The basic addressable unit is the 8-bit byte. The other operand sizes
are the halfword (16-bits), the word (32-bits) and the double word (64-bits). The
illustrations below give the notation and memory layout for each type of
operand. Below each operand is an illustration showing how that operand is
stored in registers.

Byte
MSB LSB
0 7 .. .
MSB = most significant bit
[Il LSB = least significant bit
L l l [o]
Rx
Half-Word
MSB LSB
0 78 15
L0] 1
L l | o [1 7
Rx
Word
MSB LSB
0 7 8 1516 31
[T T 1 = 135
L0 | | 2 [3 7]
Rx
Double-Word
MSB LSB
0 7 8 1516 31 47 63
I S N Y O A |
Lo | | 2 [38 J[4 T35 1T % 1 7]
Rx Rx+1 mod 16

9008-C 1-15

Processor Reference Overview

There are instructions that manipulate registers as 32-bit and 64-bit data types.
The three 32-bit data types are: two’s complement signed integers, unsigned
integers, and real numbers. The 64-bit data types consist of 64-bit unsigned
integers, double precision real numbers, and 64-bit sets. Integer data types

longer than 32 bits may be manipulated using extended precision integer arith-
metic instructions.

INTEGERS

Integers are represented in two’s-complement form and are in the range
-2147,483,648 to 2,147,483,647, or unsigned in the range 0 to 4,294,967,295. The
MSB of any data type is referred to as the sign bit, as shown below.

Integer S
01 31

s = sign bit

REAL NUMBERS (SINGLE PRECISION)

Real numbers (represented in floating-point form) consist of three parts: a sign,
a power-of-two exponent, and a mantissa. The value of a real number is:

(-1)**s x 2**(ezponent-127) x 1.mantissa

For positive numbers, the sign bit (bit 0) is 0. For negative numbers, the sign
bit is 1. The exponent of a real number is 8 bits long, and is biased by +127.
The eight bits of the exponent give a range of 0 through 255. Subtracting the
bias yields an exponent range of -127 through +128. The mantissa has an impli-
cit leading one, and is 23 bits long. Zero is represented by all zeros.

s| exponent mantissa

01 8 9 31

ezample: 1 = 0 01111111 00000000000000000000000, = 3F'80 0000,
ezample: -10 = 110000010 01000000000000000000000, = C'120 0000,

1-16 9008-C

Processor Reference Overview

REAL NUMBERS (DOUBLE PRECISION)

Double reals are similar to reals, except that the mantissa is 52 bits, and the -
‘exponent is 11 bits. The exponent is biased by +1023. The eleven exponent bits
give a range of O through 2047.

Subtracting the bias yields an exponent range of -1023 through +1024.

S exponent mantissa
01 11 12 63

example: 1 =001111111111 00000000000000...000000000000, = 3FF0 0000 0000 00004
example: -10 = 1 10000000010 01000000000000...000000000000, = C024 0000 0000 0000,

SYNTAX CONVENTIONS

In the descriptions of instructions, the 16 general registers are referred to as Rx
or Ry. Registers O through 15 are referred to as RO through R15.

Double words occupy register pairs. A register pair, RPx, consists or Rx and
Rx+1 mod 16. Rx holds the most significant bits of RPx, and Rx+1 holds the
least significant bits. Example: RP5 refers to R5 and R6, with the most

significant bits of the pair in R5, and the least significant bits in R6. RP15
refers to R15 and RO.

The program counter is referred to as PC. Bit 0 is the most significant bit of a
data type. For 32-bit data types, bit 31 is the least significant bit. For 64-bit
data types, bit 63 is the least significant bit.

Specific bits of a register or word are enclosed in brackets. For example, bit 3 of
a register is referred to as Rx[3], or Ry[3]. The symbol ".." denotes a range of

bits. For example, consecutive bits 6 through 9 of a register are referred to as
Rx[6..9], or Ry[6..9].

Some instructions can optionally specify the 4-bit value in the Ry register field

instead of the contents of Ry. This is indicated by using Ry-field instead of
"Ry",

9008-C 1-17

Processor Reference Overview

The instructions in the following sections are documented in the format shown

below.

NAME OF INSTRUCTION OR INSTRUCTION CLASS

Instruction Summary:

Instruction Instruction Syntactical
Mnemonic Function Description
TYP Typical This is a typical instruction

Operation:

The TYP instruction has no operation; it is an example of syntax
conventions.

1-18 9008-C

Chapter 2
MEMORY REFERENCE INSTRUCTIONS

INSTRUCTION FORMATS

Memory reference instructions use either the short displacement or long dis-
placement formats shown below. These instructions either load data from
memory to a register or store data in a register to memory.

Short displacement memory address

01 34 67 8 1112 1516 31
cd |0 x| Rx Ry displacement
oooooo Opcode Peesee

Long displacement memory address

01 34 67 8 1112 1516 47
cd |0 x| Rx Ry displacement
...... opcode secsan

cd = code or data space reference.
code is specified as 00, 11
data is specified as 01, 10

x = indexed

The Ridge 32 processors have two addressing modes, direct and indexed. These
modes may be used in accessing either code or data space with either short or
long displacement memory address formats. One bit of the opcode is used to
specify that the instruction is indexed, another bit is used to specify long dis-
placement, and another two bits in combination indicate code or data space.

The 32-bit short displacement memory address format instructions have a 16-bit

displacement field which is sign extended to a full 32 bits. The 48-bit long dis--
placement memory address format instructions have a 32-bit displacement field.

9008-C 2-1

Processor Reference Memory Reference Instructions

The effective address for a memory reference instruction is calculated as follows.

Address
Space Indexed Effective Address
Data No Displacement
Data Yes Ry + displacement
Code No PC + displacement
Code Yes PC + Ry + displacement

Each effective address for a memory reference instruction is explained below.

Displacement. The memory address is the displacement field from the
instruction. All memory references are 32-bit virtual addresses. This form
references data space.

Ry + displacement. The contents of register Ry are added to the displace-
ment field. Memory is then read or written at this location.

PC + displacement. Instructions that reference code space do so relative
to the program counter (PC). PC is added to the displacement field and
memory is read from this location. Code space is never written.

PC + Ry + displacement. PC is added to the displacement field, the
result is added to the contents of Ry. Memory is then read at this location.

Indexing takes place with full 32-bit signed integers in two’s-complement nota-
tion. Displacements are also treated as 32-bit signed integers in two’s comple-
ment notation. Short displacement memory addresses are sign extended to 32
bits by replicating the MSB into the upper 16 bits. The resulting effective
address is an absolute displacement from location zero in the data space. Nega-
tive addresses (MSB set) are virtual addresses in the range of two to four billion.

These address computations allow indexes to be positive or negative relative to
the displacement, or allow the displacement to be positive or negative relative
to the index. Code space addresses are program counter (PC) relative and thus
make relocatable code.

All addressing formats have the same instruction execution time. Instructions
referencing data space optionally add Ry to the displacement as the address is
presented to memory. Instructions referencing code space optionally add Ry to
the precomputed PC + displacement. The fetch unit contains logic that per-
forms this function as part of the instruction prefetch.

2-9 9008-C

Processor Reference Memory Reference Instructions

INSTRUCTION DESCRIPTIONS

Descriptions of load, store, and load address memory instructions follow.
Optional items are surrounded by parentheses.

LOAD INSTRUCTIONS

Instruction Summary:

LOADB Load Byte Rx[24..31] « contents of (Ry +) displacement
Rx[0.23] « 0

LOADH Load Halfword Rx[16..31] + contents of (Ry +) displacement
Rx[0.15] « 0

LOAD Load Word Rx + contents of (Ry +) displacement

LOADD Load Double RPx + contents of (Ry +) displacement

Word
Operation:

The register Rx is loaded with the data stored in memory at the effective
address. Ry may optionally be used as an index register. The data element

must be aligned on a boundary that is a multiple of the length of the data ele-
ment.

The LOADB instruction loads the byte into bits 24-31 of the specified register
and sets bits 0-23 to zero.

The LOADH instruction loads the halfword into bits 16-31 of the specified regis-
ter and sets bits 0-15 to zero.

The LOAD instruction loads the word into the specified register.

The LOADD instruction loads two words into RPx.

The instructions shown above are for loading data from data space. A load-
from-code-space form for each of the above instructions adds PC to the effective
address. The Ridge assembler, AS, distinguishes between the instruction forms
by noting that the displacement is in code or data space. See the AS section in
the ROS Programmer’s Guide for details.

9008-C .23

Processor Reference Memory Reference Instructions

STORE INSTRUCTIONS

Instruction Summary:

STOREB Store Byte Rx[24..31] — (Ry +) displacement

STOREH Store Halfword Rx{16..31] — (Ry +) displacement

STORE Store Word Rx — contents of (Ry +) displacement

STORED Store Double RPx — contents of (Ry +) displacement
Word

Operation:

The store instructions move data from the registers into memory. The effective
address must be a multiple of the length of the data element.

The STOREB instruction places bits 24-31 of the specified register into memory
at the eflective address. Other bits (0-23) are ignored.

The STOREH instruction places bits 16-31 of the specified register into memory
at the effective address. Other bits (0-15) are ignored.

The STORE instruction places the word into memory at the effective address.
The STORED instruction places the double words into memory at the effective
address.

LOAD ADDRESS INSTRUCTIONS

Instruction Summary:

LADDR Load Address Rx « (contents of Ry) + constant
LADDR Load Code Address Rx += PC (+ contents of Ry) + constant

Operation:

The load address instructions store the effective address into Rx. These instruc-
tions do not perform memory references, but instead load a constant from the
instruction stream into a code- or data-relative register.

The LADDR instruction can be used to load two- or four-byte immediate values
and, in indexed mode, can be used to add a constant to a register.

The operation of LADDR is varied by specifying Ry or a code-relative constant.
If constant is data-relative, LADDR either loads register Rx with constant or
loads register Rx with the sum of the contents of Ry and constant.

If the constant is code-relative, LADDR either loads register Rx with PC + con-
stant or loads register Rx with the sum of the contents of Ry and PC + constant.

2.4 9008-C

Chapter 3
REGISTER FORMAT INSTRUCTIONS

INSTRUCTION FORMAT

Register-to-register format instructions process data taken from a specified gen-
eral register. These instructions use the register-to-register instruction format
shown below. Generally, two registers are specified and the result usually
replaces Rx.

Register-to-register
0 78 1112 15

8-bit opcode | Rx Ry

A few register-to-register format instructions also have an immediate mode. In
immediate mode the 4-bit value of the Ry register field is used to specify an
integer in the range from 0 to 15.

9008-C 3-1

Processor Reference Register Format Instructions

INSTRUCTION DESCRIPTIONS

The following pages describe the register-to-register format instructions.

INTEGER ARITHMETIC INSTRUCTIONS

Instruction Summary:

ADD Integer add Rx «— Rx + Ry

DIV Integer divide Rx +— Rx/Ry

MPY Integer multiply Rx «— Rx*Ry

NEG Integer negate Rx < 2’s complement of Ry
REM Integer remainder Rx « Rx - ((Rx/Ry)*Ry)
SUB Integer subtract Rx «— Rx - Ry

Operation:

The integer arithmetic instructions operate on 32-bit two’s complement integers.
The ADD instruction adds Rx and Ry and puts the sum in Rx.
The DIV instruction divides Rx by Ry and puts the quotient in Rx.

The MPY instruction multiplies Rx and Ry and replaces the contents of Rx with
the low order 32 bits of the product.

The NEG instruction puts the 2’s complement of Ry in Rx.

The REM instruction divides Rx by Ry and puts the signed remainder in Rx.
The sign of the remainder will be the sign of the divisor.

The SUB instruction subtracts Rx from Ry and puts the difference in Rx.

3-2 9008-C

Processor Reference Register Format Instructions

LOGICAL OPERATOR INSTRUCTIONS

Instruction Summary:

AND Logical And Rx « Rx AND Ry

MOVE Move Register Rx « Ry

NOT Logical Not Rx « 1’s complement of Ry
OR Logical Or Rx « Rx OR Ry

XOR Logical Xor Rx « Rx XOR Ry
-NOP No operation Rx + Rx

Operation:

The logical operator instructions operate on 32-bit unsigned integers in registers.
The result replaces the contents of Rx.

The AND instruction performs logical AND on the contents of Rx and Ry and
puts the result in Rx.

The MOVE instruction copies the contents of Ry into Rx.

The NOT instruction 1’s complements the contents of Ry and puts the result in
Rx.

The OR instruction performs logical OR on the contents of Rx and Ry and puts
the result in Rx.

The XOR instruction performs logical XOR on the contents of Rx and Ry and
puts the result in Rx.

The NOP instruction performs no operation and is sometimes used to fll

instruction space. It supplies padding between modules to allow for proper
alignment.

9008-C 33

Processor Reference Register Format Instructions

INTEGER AND LOGICAL IMMEDIATE INSTRUCTIONS

Instruction Summary:

MOVE Move immediate Rx « Ry field

NOT Not immediate Rx « 1’s complement of Ry field
ADD Add immediate Rx « Rx + Ry field

SUB Subtract immediate Rx « Rx - Ry field

AND And immediate Rx « Rx AND Ry field

MPY Multiply immediate Rx « Rx*Ry field

Operation:

The integer and logical immediate instructions share the same format and per-
form the same operations as the integer arithmetic and logical operator instruc-
tions previously described. The immediate instructions differ in that the four-bit
value of the Ry field is used instead of the register contents of Ry. The integer
and logical immediate register-to-register instruction format is shown below.

Register-to-register
0 234 78 1112 15

1 Rx Ry

The Ry field is treated as a 4-bit integer constant.

3-4 9008-C

Processor Reference Register Format Instructions

EXTENDED PRECISION INTEGER INSTRUCTIONS

Instruction Summary:

EADD Extended Integer Add Rx + Rx + Ry + RO[31]
RO{31] « carry
RO[30] « overflow

EDIV Extended Integer Divide Rx +— RPx/Ry
Ry +— the remainder

EMPY Extended Integer Multiply RPx + Rx*Ry

~ ESUB Extended Integer Subtract Rx + Rx I's complement + Ry + RO[31]

RO[31] + carry
RO[30] + overflow

Operation:

The extended precision integer instructions can be used to implement multiple-
word arithmetic.

The EADD instruction adds the two’s-complement integers in Rx and Ry, and at
the same time adds the carry-in from RO[31], and puts the least significant 32
bits of the sum in Rx. The carry-out (most significant) bit is put in RO[31).
Overflow is indicated in RO[30]. The upper 30 bits of RO are set to zero.

The typical use of the EADD instruction to implement multiple-word arithmetic
is used as follows: RO[31] is set to zero. The least significant words are EAD-
Ded, the next-most significant words are EADDed, and so on to the most
significant words. Overflow can then be checked after the last EADD.

The EDIV instruction divides the 64-bit unsigned contents of RPx by the
unsigned 32-bit contents of Ry, and places the unsigned quotient in Rx and the
unsigned remainder in Ry.

The EMPY instruction takes two unsigned 32-bit integers and produces an
unsigned 64-bit product and places it in RPx.

The ESUB instruction one’s complement subtracts the two’s-complement
integers in Rx and Ry, and at the same time adds the carry-in from RO[31], then
puts the least significant 32-bit two’s complement difference in Rx. The carry-
out (most significant) bit is put in RO[31]. Overflow is indicated in RO[30]. The
upper 30 bits of RO are set to zero.

The typical use of the ESUB instruction to implement multiple-word arithmetic
is used as follows: RO[31] is set to one. The least significant words are ESUBed,
the next-most significant words are ESUBed, and so on to the most significant
words. Overflow can then be checked after the last ESUB.

9008-C 3-5

Processor Reference Register Format Instructions

REAL INSTRUCTIONS

Instruction Summary:

FIXR Round Real to Integer Rx «+ ROUND Ry
FIXT Truncate Real to Integer Rx <+ TRUNC Ry
FLOAT Convert Integer to Real Rx + FLOAT Ry
MAKERD Convert Real to Double Real RPx «+ DOUBLE Ry
RADD Real Add Rx « Rx +Ry
RDIV Real Divide Rx <+ Rx/Ry
RMPY Real Multiply Rx «+ Rx*Ry
RNEG Real Negate Rx <« -Ry

RSUB Real Subtract Rx <« Rx-Ry
Operation:

These instructions operate on 32-bit real numbers.

The FIXR instruction converts the single-precision real contents of Ry into a
two’s-complement integer in Rx. Values are rounded as described in the AS sec-
tion of the ROS Programmer’s Guide.

The FIXT instruction converts the single-precision real number in Ry into a 32-
bit integer in Rx. All bits to the right of the decimal point are lost.

The FLOAT instruction converts the integer in Ry into a real number in Rx and
rounds if necessary.

The MAKERD instruction converts the real number in Ry into a double preci-
sion real number in RPx.

The RADD instruction adds the 32-bit real numbers in Rx and Ry and puts the
sum in Rx.

The RDIV instruction divides the 32-bit real number in Rx by the 32-bit real
number in Ry and puts the result in Rx.

The RMPY instruction multiplies the 32-bit real numbers in Rx and Ry and puts
the product in Rx.

The RNEG instruction negates the real number in Ry and puts the result in Rx.

The RSUB instruction subtracts the real number in Ry from the real number in
Rx and puts the difference in Rx.

3-6 9008-C

Processor Reference Register Format Instructions

DOUBLE REAL INSTRUCTIONS

Instruction Summary:

DFIXR Round Double Real to Integer Rx <+« ROUND RPy

DFIXT Truncate Double Real to Integer Rx « TRUNC RPy
DFLOAT Convert Integer to Double Real RPx + DOUBLE FLOAT Ry
DRADD Double Real Add RPx «+ RPx + RPy

DRDIV Double Real Divide RPx « RPx/RPy

DRMPY Double Real Multiply RPx <+ RPx*RPy

DRNEG Double Real Negate RPx « -RPy

DRSUB Double Real Subtract RPx « RPx - RPy
MAKEDR Round Double Real to Real Rx <« REAL RPy
Operation:

The double real instructions perform the same operations as the real instruc-
tions previously described, except the double real instructions operate on double
real format data, working on register pairs.

9008-C 3.7

Processor Reference Register Format Instructions

BIT-ORIENTED INSTRUCTIONS
Instruction Summary:

CBIT Clear Bit RPx[Ry mod 64] « 0

SBIT Set Bit RPx[Ry mod 64] « 1
TBIT Test Bit Rx[31] « 1if RPx [Ry mod 64] = 1
0 if RPx [Ry mod 64] =0
Rx[0..30] «+ 0
Operation:

The CBIT instruction specifies a bit number from 0-63 in Ry and the specified
bit of RPx is set to zero.

The SBIT instruction specifies a bit number from 0-63 in Ry and the specified bit
of RPx is set to 1.

In the TBIT instruction Ry specifies a bit number from 0-63, which is tested in
RPx. The tested bit is duplicated in bit 31 of Rx, and bits 0-30 of Rx are set to
zZero.

TEST INSTRUCTION
Instruction Summary:

TEST Test Values Rx « 1 if Rx relop Ry is true
0 if Rx relop Ry is false
or
Rx « 1 if Rx relop Ry-field is true

0 if Rx relop Ry-field is false
Operation:

The TEST instruction uses a relational operator (relop) to compare two values
and sets Rx to either O or 1, depending on the result of the test. The second
operand is either the contents of the register Ry, or the 4-bit value of the Ry
register field. The comparison is done using signed two’s complement arithmetic.
The comparison relop may be one of the following: equal to (=), less than (<),
greater than (>), not equal to (<>), less than or equal to (<=), or greater than
or equal to (>=).

3-8 9008-C

Processor Reference Register Format Instructions

COMPARE INSTRUCTIONS
Instruction Summary:

LCOMP Logical Compare Rx « -1, if Rx <Ry
Rx «+ 0, if Rx =Ry
Rx «~ 1,if Rx > Ry

DCOMP Double Integer Compare Rx « -1, if RPx < RPy
Rx « 0, if RPx = RPy
Rx « 1,if RPx > RPy

RCOMP Real Compare Rx « -1, if Rx <Ry
Rx « 0, if Rx =Ry
Rx « 1,if Rx > Ry

DRCOMP Double Real Compare Rx « -1, if RPx < RPy
Rx « 0, if RPx = RPy
Rx « 1, if RPx > RPy

Operation:

The LCOMP instruction compares registers Rx and Ry using unsigned arith-

metic. Register Rx is set to -1, 0, or +1, depending on whether Rx is less than,
equal to, or greater than Ry, respectively.

The DCOMP instruction compares register pairs RPx and RPy using two’s com-
plement arithmetic. Register Rx is set to -1, 0, or +1, depending on whether
RPx is less than, equal to, or greater than RPy, respectively.

The RCOMP instruction compares real numbers in registers Rx and Ry using
sign magnitude form. Register Rx is set to -1, 0, or +1, depending on whether
Rx is less than, equal to, or greater than Ry, respectively.

The DRCOMP instruction compares double real numbers in register pairs RPx

and RPy using sign magnitude form. Register Rx is set to -1, 0, or +1, depend-
ing on whether RPx is less than, equal to, or greater than RPy, respectively.

9008-C 3-9

Processor Reference Register Format Instructions

SHIFT INSTRUCTIONS

The shift instructions take the shift count from the contents of register Ry or
from the 4-bit value of the Ry field. All shift execution times are independent of
the number of bits shifted due to the use of the barrel shifter.

Single register shifts shift the value in Rx from O to 31 bits. Double register
shifts shift the value in RPx from O to 63 bits. Only the low order 5 bits (6 bits
for double shifts) of Ry are used as the shift count. The immediate shift forms
allow shifts from O to 15 bits using the four bits of Ry field as the shift count.

Instruction Summary:

CSL Circular Shift Left Rx circularly shifted left by Ry or Ry-field
LSL Logical Shift Left Rx shifted left by Ry or Ry-field

LSR Logical Shift Right Rx shifted right by Ry or Ry-field

ASL Arithmetic Shift Left Rx shifted left by Ry or Ry-field

ASR Arithmetic Shift Right Rx shifted right by Ry or Ry-field,

filling with sign bit
DLSL Double Logical Shift Left RPx shifted left by Ry or Ry-field
DLSR Double Logical Shift Right RPx shifted right by Ry or Ry-field

Operation:

The CSL instruction circularly shifts bits left in Rx. Bits shifted out of bit O are
shifted into bit 31.

The LSL instruction shifts bits left in Rx and fills emptied positions with zeros.
The LSR instruction shifts bits right in Rx and fills emptied positions with zeros.
The ASL instruction shifts left and preserves the sign bit.

The ASR instruction shifts right and fills the left bits with duplicates of the sign_
bit.

The DLSL and DLSR instructions correspond to LSL and LSR, except that RPx
is treated as a single 64-bit register.

3-10 9008-C

Processor Reference Register Format Instructions

SIGN EXTEND INSTRUCTIONS
Instruction Summary:

SEB Sign Extend Byte Rx[0..23] + Ry|[24],
Rx[24..31] + Ry|[24..31]

SEH Sign Extend Rx
Halfword Rx

0.15] «— Ry[16],
16.31] « Ry|[16..31]

Operation:
The sign extend instructions change 8- or 16-bit integers into full word integers.

The SEB instruction makes bits 0-23 in register Rx the same as bit 24 in register
Ry. Bits 24-31 in Ry are copied to Rx.

The SEH instruction makes bits 0-15 in register Rx the same as bit 16 in register
Ry. Bits 16-31 in Ry are copied to Rx.

9008-C 3-11

Chapter 4
PROGRAM CONTROL INSTRUCTIONS

BRANCH INSTRUCTION FORMAT AND DESCRIPTION

Branch instructions use either the short or long displacement memory address
instruction formats shown below. When the least significant bit of the displace-
ment is set, the branch is predicted to be taken.

Short displacement memory address

8-bit opcode | Rx Ry displacement

Long displacement memory address

8-bit opcode | Rx Ry displacement
0 7 8 1112 1516 31 47

Branch instructions either switch execution to the instruction at the branch tar-
get address, or have no effect. If the branch instructions have no effect then the
next sequential instruction following the branch is executed. Branch instructions
affect the value of the program counter (PC) as shown below.

Next PC « PC + branch instruction length (next sequential instruction)
or

Next PC « PC + displacement (branch target address)

The branch instructions use program counter (PC) relative addressing, which
allows self-relocating code. The target address of the branch instruction is com-
puted by adding the 32-bit signed displacement (sign extended to 32 bits in the
short form case) to the PC at the beginning of the branch instruction.

The least significant bit of the displacement field is used by the processor to
predict whether or not the branch will be taken. If the bit is one, the processor
will prefetch the instruction at the target address. If the bit is zero, the proces-
sor will prefetch the next sequential instruction. If the bit is incorrect, the pro-
gram will execute correctly, but the next instruction after the branch will be
delayed by two to four cycles to fill the pipeline.

9008-C 4-1

Processor Reference Program Control Instructions

INSTRUCTION DESCRIPTIONS

The following pages describe the branch instructions.

BRANCH INSTRUCTIONS
Instruction Summary:
BR Unconditional Branch ~ PC « PC + displacement

BR Conditional Branch PC + PC + displacement, if Rx relop Ry
or Rx relop Ry-field

Operation:

The unconditional branch instruction changes PC to the target address, PC +
displacement. The branch prediction bit is ignored and the target instruction Is
always prefetched.

The conditional branch instruction compares Rx to the contents of Ry or to the
4-bit value of the Ry-field, then may conditionally branch to the target location.
The conditional branch instruction comparisons are made using two’s comple-,
ment arithmetic. The comparison uses the relational operator (relop), which
may be: equal to (=), less than (<), greater than (>), not equal to (<>), less
than or equal to (<=), or greater than or equal to (>=).

LOOP CONTROL INSTRUCTION

Instruction Summary:

LOOP Increment and Branch Rx « Rx + Ry-field
PC « PC + displacement, if Rx < 0,

Operation:

The LOOP instruction is similar to the conditional branch described above. The
LOOP instruction adds the 4-bit value of the Ry field to the contents of Rx and
branches to the target location if the result is less than zero. If Rx is equal to
or greater than zero, the next sequential instruction is executed.

4-2 9008-C

Processor Reference Program Control Instructions

SUBROUTINE CALL AND RETURN INSTRUCTIONS

There are three subroutine call and return instructions: call subroutine, call
subroutine register and return from subroutine.

CALL SUBROUTINE INSTRUCTION
Instruction Format:

The call subroutine instruction uses the short and long displacement memory
address instruction format shown below. The second operand field, Ry, is not
used in this instruction.

Short displacement memory address

CALL Rx displacement

Long displacement memory address

CALL Rx displacement
0 78 15 16 31 47

Instruction Summary:

CALL Call Subroutine Rx « PC + instruction length,
PC « PC + displacement

Operation:

The call instruction places the address of the next instruction in Rx and
transfers execution to the target location (PC + displacement). Short displace-
ment memory addresses are sign extended. Like the branch instructions, the
call instruction uses program counter (PC) relative addressing, which allows
self-relocating code.

9008-C 4-3

Processor Reference Program Control Instructions

CALL SUBROUTINE REGISTER AND RETURN INSTRUCTIONS
Instruction Format:

The CALLR and RET instructions use the register-to-register instruction format
shown below.

Register-to-register
0 78 1112 15

8-bit opcode | Rx Ry

Instruction Summary:

CALLR Call Subroutine Register ~ Rx « PC + 2
PC «— PC + Ry
RET Return from Subroutine Rx «+— PC + 2
PC « Ry
Operation:

The CALLR instruction stores the address of the next sequential instruction, PC
+ 2 in Rx, and branches to the location PC + Ry.

The RET instruction stores the address of the next sequential instruction, PC +
2 in Rx and branches to the absolute address in Ry. The main use of RET is in
returning from subroutines, but it can also be used as a call to a subroutine
when the absolute rather than the relative address is known. Care must be
taken in using the RET instruction for this purpose so that the code remains
self-relocating.

4-4 9008-C

‘A B n:_-.:\oo P13t} puviado puodas ay) = (Pawwy) ajepawy
‘(P191 puesado puodes ayl us pawery 1ais1Bas B AQ 13540 JayuN) S| $531pPE |aB1e) a'1) paxapuj = X

T

X X ! X X v X +
' | l i i
! | t { {
[)

L]] SRR TR D B
X T X 1 X T X ' X [1
| | { | I
i | | | |
— dHagavy — - ——agv0l- — ——— —gyoy— — — - — - HOYO) - — 4+ ——80V01— — —4

X | X X X X
) , , |
| | i | t
D - R I | - S N N B
X | X [X ! X ' X |
§ | | |
i | i |
1 | | . 4
X i X ! X T X '
| ' I |
1 1
L - gawois — + — 3¥oLs — | - N]
. y ~ Havols - @3dols
| i i |
| | i
T T
| |
<>, =< => <> = > = > < = <
F— — swpswunyg — — 1 Y8 —+ HE - w8 1400711 — — awpewwiyg - - + TWI 4+ uE - ue —
! i
<> | =< = > <> = > = . > < = <
1
uas pawwy powwi | poww) | pawwl | pawwy | paww) | pewuy
150 usia | sa usv Isv s 151
a3s 15 us1a | 1s1a usv Isv us? 181
T
<> = < = > <> L= < .= > = . > | < = > 4 <
awipaww 1531 TIvoN =T i3y awpawwy 1S3 Y10 FLETH
1 1l
HS—H , H—US
auum | avau INIVW X 1uia | sNvuL |soawal]| wny s sns
AAON
dvil |dWooua| 1v014a | dwW02a [HQaXVA | AlQua | Adwua | ensua | aavda | oanua | wxida | ixida
ma3 | adwa | ansa | aava dNOoY | LvOTd | dwoD1 [auadvin| Alow | Adww | ansu | aave | oany | was 1Xtd
paww pawwy pawug powwy | pawu | pawwy paww)
WHO aNv LON AdW ans aav anow | dON
WHD gL | wuss 1@ | anv Hox ¥o 10N way Alg AdW | ans aav oaN | 3now
4 3 a) 8 v 3 g L 9 s v 3 z L 0

(1:p) 3po2dQ ‘(xaH) a1gqIN JwedNpUBIS 1sea

dVIN HQOOdO HOAIYd

'y xipuaddy

~

(£:0) 3p0adQ ‘(xaH) a1qqIN JueIRILGIS 150K

Buor apo) 44
uoys 3po)d
Buoq ejeq
Hoys eleq
jewo4
V ADUDIDjOY
Kiowd|
buoy eleqg N
Hoys eeq
Buoq apod
uoys apoY Y,
yibuan pasuaiazjay
jewsoy juawbag
1VNHOZ DNOT ‘'3ONIHIITH AHONIN
1
SANVYIdO
138440 Pz o 300940
jewsog w s Tk Tz 0
1918160y LVINHO4 LHOHS ‘3ONIHI4IY AHOWINW
* T
SANVHIJO
138340 Pz i 3000d0
e SLSk W 8L 0
AVNHOL Y31S193Y
T
SANVHIdO
wz w 3002d0
St T 82 0
'SLVINHOZ NOLLONULSNI

Ridge Computers
Corporate Headquarters

2451 Mission College Blvd.
Santa Clara, California 95054
Phone: (408) 986-8500

Telex: 176956

