Ridge 3200 Processor
Reference Manual

(Preliminary)

December, 1986

| 8]
|

PUBLICATION HISTORY

Manual Title: Ridge 3200 Processor Reference Manual
Preliminary Edition: 9091 (DEC 86)

NOTICE

No part of this document may be translated, reproduced, or copied in any form or by any
means without the written permission of Ridge Computers.

The information contained in this document is subject to change without notice. Ridge Com-
puters shall not be liable for errors contained herein, or for incidental or consequential damages’
in connection with the use of this material.

© Copyright 1983, 1984, 1985, 1986 Ridge Computers.
All rights reserved.
Printed in the U.S.A.

3200 Px_'ocessor Preface

PREFACE

This manual provides an overview of the Ridge 3200 processor.

Chapter 1 lists the characteristics and features of the 3200 processor.

Chapter 2 describes the logical operation of the individual boards that make up the
3200 processor.

Chapter 3 describes the Ridge I/O system.

Chapter 4 describes the Ridge instruction formats and data types.

Chapter 5 describes the hardware components used by the 3200 to manage
processes.

Chapter 6 describes the operation of traps and interrupts.

Chapter 7 describes how the 3200 translates virtual addresses to physical addresses.

Chapter 8 lists the instructions executable in user mode.

Chapter 9 lists the instructions executable in kernel mode.

CONVENTIONS USED IN THIS MANUAL
Italics are used to reference items appearing illustrations.
The 16 general registers are referred to as Rx or Ry. A register pair is referenced as

RPx and consists of Rx and Rx+1 mod 16. Rx holds the most significant bits and Rx-+1
holds the least significant bits.

3200 Processor Preface

3200 Processor ‘ Table of (cntents

TABLE OF CONTENTS

Chapter 1: OVERVIEW

INTRODUCTION......cotiitteiienieecieiiie ettt 1-1
PROCESSOR CHARACTERISTICSooviiiiiii 1-1
KEY FEATURES ..ottt 1-2

Chapter 2: 3200 PROCESSOR ARCHITECTURE

INTRODUGCTION oot ittt eeeeerirtreeeeeeseissateseseesessensssneteessssssnsseeeesssissasesasssssssseses 2-1
INSTRUCTION FETCH UNIToeiiiireeereerinrrereeeseneseimeneeeeseesssrsanasenieeenss 2-3
INSTRUCTION PIPELINEooociiirrrteereceereeeeeeen e 2-3
BRANCH PREDICTION LOGICcoiiiiiiiirirniiieeeeseesnireeeeeeeeerammeaniesneseses 2-4
Conditional Branch Instructions....ccvvivirereeierreririieeeeeeeeereeiineeeerieannn, 2-5
Branch Prediction Example ..o 2-5
Unconditional Branch Instructionscccceeevvvveeceieeeciiceinieneeciineneneeenns 2-7
REGISTER FILE / MULTIPLIER UNIT ...coooiiiiiiinircncccee 2-7
REGISTER FILE LOGIC ... eeeeeecereerierreeesesseeeeeeesssininsnsenanee s 2-7
MULTIPLIER LOGIC......coocvvvveeeeerevecenienes ettt eeeseir————rrereseaantaraaaraaeeesenanaes 2-7
EXECUTION UNIT ...ttt crinrrerereeseesssiiranesseesesessmnsessssssssssnsnssnnanessanes 2-8
REGISTER BYPASS FUNCTION ...ooiiiiiiiiirereeeeieseieeeeeeeecninsnineeeeneneenes 2-9
CACHE / MEMORY CONTROLLER....c.cccevmiimntinieninieeece 2-10
CODE/DATA CACHE.....coiiiititiicieett st 2-10

Chapter 3: RIDGE I/O SYSTEM

INTRODUCTION............ e eeeeeesteessesseeeseeseeestestesseeseeenneer et et e s e a e e e beeareans 3-1
1/O OPERATIONS. ...ccooiiiitttininiitesiii s st 3-2
I/O READ [/ WRITE ...ccooiiiiitiiiercteereises s 3-2
I/O Read Operationcoccceeceicmiiiiimieseiiiissssssssesecsssssss e sssacseinnnes 3-3

I/O Write OPerationccocvverrueuriiuririiinrsisiesiisissisessssseieeseseesce . 3-4

I/O INTERRUPTS.....ctiiiiritiiineie et 3-6
Interrupt OPeration .eoeeeiiveceiiiiiiiiieiiiie et 3-7

DMA READ / WRITE ..ottt 3-8
DMA Read OPeration .occeceeeeceerenreiiiieinieereeniesie st sn et 3-9

DMA Write OPeration .iccveeereereeriieriiiiiirieriieiesieresaeesseeseessenesneens 3-10

BUS CONTENTION ..ottt erecccnnssse st erre s s e s e 3-11
DUAL DAISY-CHAINED SIGNALS...cocootviiiiiiiiircteieieeee e 3-11
EXAMPLE OF BUS CONTENTION ...cccovirriiriirineeceiee i 3-12

Chapter 4: INSTRUCTION FORMATS AND ADDRESSING

INTRODUCTION........... eteeteeaeeesesseesseesteeateenesate et e e it et ettt bs e a b e b e 41
GENERAL REGISTERS ...ttt 4-2
INSTRUCTION FORMATS ..ottt 4-2

9091 (Preliminary) -A-

32ﬁ0 Processor

REGISTER INSTRUCTIONS.......ocoiiiiieiiieitecieeiee et 4-2
Register Instruction Format.......ccccoevviiiiiiiniieiiiiieicc e, 4-2
MEMORY REFERENCE INSTRUCTIONS.......ccccooemiiimiienreeee e 4-3
Memory Reference Instruction Formats.....c..cccevvnvieniviniinnienniiencnennn, 4-4
DATA REPRESENTATION.......cooiiiiiiiiteiienitereere ettt esiae e 4-5
INTEGER REPRESENTATIONoooiiiviiieniereneniesrenreseeseeresveeene s 4-5
REAL NUMBER REPRESENTATIONc.cccooviviiienieieieneeieeieeeieeean 4-5
Single Precision Real Numbers.....oceecvevvevnienvennienecnicnnienieeeiceennn 4-5
Double Precision Real Numbers......cc.ccovivvevieinineccincnienecceenneneneen 4-6
REAL NUMBERS WITH SPECIAL MEANING.....ccccccccomvierrreerieeeveeenne 4-6
Special Numbers as Operands......ccceeiveervervierereeniennieeeneerneeniiessieeesnes 4-7
Special Numbers as Results.....cocoveeeveeieiieeciiiciiccecce e 4-7
REAL NUMBER ROUNDING RULESccceoectvirininieieierece e 4-9
DATA STORAGE IN REGISTERS........ccotiiiinrinieiieeieecireeeie e v 4-9

INTRODUCTION ...coutiiitiieieniecreeteriesteseeestssaeeseseeessesnessesstesbessassvasbsasssasnenas 5-1
CODE AND DATA SEGMENTScooiiiireiieeienrinircieeiensseinesreesesssesseseseenns 5-1
PROCESSOR MODES.......ccoisititineninenenenenanesessessessessosseeessessessssssssnnses 5-1
KERNEL MODEcoutitiiririrenininirenictese s esestessessesaessessesss s eseessesveenes 5-1
USER MODEociiiiiiitiiinieninrtienesssessessesessasessssssennesasssessessasssessenns 5-2
Privileged Process Bit ...o.covveeeeiiiecieeereceeceeeere e 5-2
PROCESSOR CONTROL....coooiriimririinienenreeinneiereeeeseseesessessessssaessesseesenses 5-3
SPECIAL REGISTERS.......ccot ottt st s 5-3
PROCESS CONTROL BLOGKccitoiiiiniiieiieientiesiecteseesneeeresveeene e 5-5

INTRODUCGTION....otrtiteieirieistrsrernesseseessessessessessersesassessessessassassssssesssssnens 6-1
EVENT HANDLING ...ttt stestestaste st e sses s asae e anesnens 6-1
CPU CONTROL BLOGCK.....iteinrieerreeraneetereeesiessesseesessessessssssessesnenes 6-2
CCB DATA AREA ...ttt st stetsessesrestsssesaessasbe st assasae s e sn s ans 6-4
PAGE FAULT ... rteteeteteae st sttt e saeersesse s st asss e ssesta s s beeree s e e g enns 6-4
INTERRUPTS ...t eteeetertrtetetstetesrestetssaessessessassessassessassasssenseseessessasssassesses 6-4
DOUBLE-BIT PARITY ERROR ..ottt 6-5
Double-Bit Parity Error on Instruction Fetch...ooooverieecieecnrieiecns 6-5
Double-Bit Parity Error on Instruction Execute ...occoevveeeevieecenneeennnne... 6-5
EXTERNAL INTERRUPTS ...ttt et eanees 6-5
SWITCH 0......... eeeetesteestessesteeteeteetastaehebae e eate e st eantanseas s e haentaesbebaantsesnenees 6-5
POWER FAIL WARNINGttt eeveeesreneteesieesseesansesseseaneenns 6-6
TIMER INTERRUPTSc ottt cree et teseneesseeessasesaaaeeseeanns 6-6
RESET ..ottt ettt ettt et ae st s sae s st sas e st e sa e be st e sbassan e saannsannnan 6-6
TR A P et ae e re s st e s e e st e sse e s s s e e e e ae s b e e saaeensnaanns 6-7
KERNEL CALLS ..ooiieeteeeerteeteesteeteeseee e esresenesssresssaessnesssaassssessseean 6-7
DATA ALIGNMENT TRAPcoiitiriteteetteneceteesneeereeesreassanssteseseee e 6-7
ILLEGAL INSTRUCGCTION TRAP ...ttt eeecveesreeeneenns 6-7
KERNEL VIOLATION TRAP.....cootiiieeeieeitenrecteesteesiseestsesaeassneessaeanes 6-8
CHECGK TRAP ...oorteteeeereeeereeiee e sreeseeeest e s ressseessaasssaesssasssnassssansnanas 6-8
TRAP INSTRUCTION TRAP...teteeectenteteetesreeesrestra e re e 6-8
ARITHMETIC TRAPSot ieitetnerecreecteerceitentee e eesesae st sabe e 6-9

9091 (Preliminarv)

Table of Contents

3200 Processor Table of Contents

TTaPs WOTd ..ottt e e e stre e e s rararraea e e e e s e e e s aneeas 6-9
Integer OVerflow TTap cocooieeiiiiiiieeeeeeee e 6-10
Integer Divide By Zero Trap ..ccccovvvcieiniiieiniiiiiccieciee e 6-11
Before Trap .ot siiabr e e s s st eeeeee s 6-11
Real Divide by Zero Trap...ieiecciieieceree e enveee e veeens 6-12
Real Underflow Trap....cccceecveeeieieiireeceeccreeece e 6-12
Real OVerflow Trap. .ot sceree s srrer e rreeee e 6-13
Inexact Result TTap cocoocveeeeiiieieeeecceeere et s 6-14

RECOVERY FROM REAL OVERFLOW, UNDERFLOW,

AND INEXACT RESULT TRAPS ...ttt 6-14

Chapter 7: VIRTUAL MEMORY MANAGEMENT

INTRODUCGTION ...ttt sebreeesertre e seratars e sessbets s esiarasessareesessnnnnees 7-1
VIRTUAL ADDRESS ...ttt evtiver e esrrneasesstresseesssnssossaraneessonn 7-1
VIRTUAL TO REAL TRANSLATION HARDWAREcccccccovviviiiiniiiiniine 7-2
TRANSLATION TABLESooeoeiovtrieitireceiirreeensrrree s streeeesnaeeesesananeesssnnnnees 7-2
TRANSLATION SEQUENCEcoioiieeeeeeeteecte et 7-3
VRT TABLE ORGANIZATION....oioottitiiemnttteinnttreeresireessietieesseseesesseeanee 7-4
VRT Entry FOrMat c..oooeoiiiiiiiecreecre et enae e 7-4

VRT Translation Processcoevviviiiivieinieeiecneeeecieeecesnree e seanens 7-5

TMT TABLE ORGANIZATION ...ttt cciaveeessireeees s e e 7-7
TMT EDtry FOTMat..oiieoiiiieeicieeeicrirrereeinirneereerenereesireessesssessssssssessesonns 7-7

TMT Translation Process. .. ittt ee s s ee e eees 7-7

INTRODUGCTTION ...ttt ssiteseesteseeeesesssaestaesaesessesaessseessassssssssneens 8-1
SYNTAX CONVENTIONSotitieierierteenireciteieeseesee et sinesereeeane s 81
MEMORY REFERENCE INSTRUCTIONSoooiirreeirreecreereenireeieeeeaeens 8-2
LOAD INSTRUGTIONS ...ttt eeire et eserne e s vana s e 8-2
STORE INSTRUCTIONSuiiiierieterereeetestrseeseeeseesaessessseeassseasssenns 8-3
LOAD ADDRESS INSTRUCTIONS ...ttt eseeecree et snveens 8-3
REGISTER INSTRUGTIONS ...ttt csnreseire s ssneesevtessseasasvsaeeenns 84
INTEGER ARITHMETIC INSTRUCTIONSotvviirieiereeerreeeeenerene 8-4
LOGICAL OPERATOR INSTRUCTIONS.......coooeeeniinitrcrerneeeerienieene 8-5
INTEGER AND LOGICAL IMMEDIATE INSTRUCTIONS 8-6
EXTENDED PRECISION INTEGER INSTRUCTIONSccocceoiennne 8-7
REAL INSTRUCTIONS ... ceeteetteeteesen et seee e eeateseeassaesssasssneesnaens 8-8
DOUBLE REAL INSTRUCTIONS......ooteiteieerereneerieeeteeeeeereeenaesnnens 8-9
BIT-ORIENTED INSTRUCTIONS....ceeteeteenteeceeeeereereeeererseeneeesnne 8-10
TEST INSTRUCTION ...ootiiiticieritieieseeesereestessneesensessessseessnessssesaseesanes 8-10
COMPARE INSTRUCTIONS. ... eeeeeenrreeirteeereeerreeseresmeeessesesessseas 8-11
SHIFT INSTRUCTIONS ...ttt satesecereeseesanees 8-12
SIGN EXTEND INSTRUCTIONS.....cot o ieeiiteeiecritccctreccnvecevte e 8-13
PROGRAM CONTROL INSTRUCTIONSccovciiiiirneiiciciiciinccaeeeen. 8-14
BRANCH INSTRUCGCTIONS ...ttt secreessereesanessneesssneassssessenes 8-14
LOOP CONTROL INSTRUCTION.......covciiiriiirecrricinicccneeenneeccanee 8-15
SUBROUTINE CALL AND RETURN INSTRUCTIONSc....c.... 816
Call Subroutine InStruCtION ..ccvcveereeervierciieniirceeeiireeceeee e 8-16

Call Subroutine Register and Return Instructions....cccccccveeeeeenenni. 817

an91 (Preliminarv)

3200 Pro>cessor Table of Contents

TRAP INSTRUCTIONSoooiiiiiiiiiiinrce ittt 8-18

Chapter 9: KERNEL MODE INSTRUCTIONS

INTRODUCGCTION ...ttt 9-1
STATE SWITCHING INSTRUCTIONSccooiiiiiiiniicrie 9-1
MAINTENANCE INSTRUCGTIONS.......cooniiiiiiiiiiicnnciiicin 9-3
VIRTUAL MEMORY SUPPORT INSTRUCTIONSccooooviiiiiniine 9-7
INPUT /OUTPUT INSTRUCTIONS......coiiiiiiiniininciiicninns 9-7

APPENDIX A: INSTRUCTION INDEX ..o A-1
APPENDIX B: INSTRUCTION EXECUTION TIMES B-1
APPENDIX C: RIDGE OPCODE MAP..........cccoe... s C-1

_R- a001 (Preliminarv)

Chapter 1
OVERVIEW

INTRODUCTION

The Ridge 3200 is a 32-bit high performance RISC (Reduced Instruction Set Computer) pro-
cessor implemented in MSI and LSI bipolar logic. The The 3200 has a simple, general pur-
pose, microcoded architecture that incorporates paged virtual memory.

The main objective of RISC architecture is to simplify the functions of the machine,
thereby reducing the amount of hardware necessary to implement the processor. The
reduction in logic allows a faster cycle time and permits instructions to complete in one
machine cycle. '

This functional simplification is made possible by reducing the size and complexity of the
processor’s instruction set. With fewer and simpler instructions, the RISC-based computer
is able to execute programs faster and with greater reliability.

PROCESSOR CHARACTERISTICS
The Ridge 3200 is characterized by the following:

Simple addressing modes. The Ridge 3200 uses only three modes which reduces the
amount of logic needed to perform memory references.

Simple instruction formats. The Ridge 3200 uses three instruction formats that
can be decoded with a minimum of logic.

Separated code and data. The Ridge 3200 uses separated code and data eliminating
the need for logic that detects and resolves self-modifying code.

High-level language support. The instructions provided are designed to match the
code generation capabilities of such languages as FORTRAN, C, and Pascal. The
Ridge 3200 instruction set provides simple, quickly-executable instructions which are
assembled into their optimum function sequences by the Ridge compilers.

Regularity. Data types and addressing modes are examples of regularity. For
memory reference instructions there are four operand sizes and three addressing modes.
Each of the addressing modes is available for all operands.

Linear address space. Code and data space are each linear with a byte-addressable
area that is four-gigabytes long.

General registers. All registers are available for use as data, indexing, and address-
ing.

aNqt (Preliminary) 1-1

3200 Processor Overview

KEY FEATURES

Reduced Instruction Set Computer (RISC) Architecture

83-nanosecond Processor Cycle Time

83-nanosecond Cache Cycle Time and 250-nanosecond access time to Main Memory
One-clock Cycle Minimum Instruction Time

4096-byte paged virtual memory

Four-gigabytes Linear Address Space

Separated Code and Data

Branch Prediction Logic _

Single and Double Real Floating Point Instructions

16 General Registers

1-9 0091 (Preliminary)

Chapter 2

3200 PROCESSOR ARCHITECTURE

INTRODUCTION

The Ridge 3200 processor consists of four printed circuit boards. These are:

Instruction Unit
Register File / Multiplier
Execution Unit
Cache / Memory Controller

A private bus to the memory controller provides separate 32-bit address and data lines.
The instruction unit and execution unit can each access main memory through the cache.
Memory access time for a LOAD instruction is 250 nanoseconds, which includes virtual-to-
real memory translation and error correction.

The general organization of the 3200 processor is illustrated in Figure 2-1. A more detailed
block diagram of the processor is illustrated in Figure 2-2. References to the processor
components illustrated in Figure 2-2 appear as ttalics in the course of this chapter.

Micro Instructions

Instruction

Unit

Register
File /
Multiplier

Execution
y Unit

Address / Data Bus

Cache /
Memory
Controller

Main
Memory

4

I/O Bus

Figure 2-1.

General Organization of 3200 Processor

anat (Preliminary) 21

3200 Processor

Processor Architecture

2
19

Figure 2-2. Internal Structure of the 3200 Processor

0nat (Preliminarvy)

3200 Processor Processor Architecture

INSTRUCTION UNIT

The instruction unit (I-UNIT) performs instruction prefetch and decoding. It contains 4
prefetch buffers, decode, address generation, branch prediction, and interrupt logic. The I-
unit also contains a microsequencer with 4 banks of control store to provide four-way
branching.

The I-unit fetches instructions from the cache ahead of the execution unit and stores them
in four word-wide prefetch buffers. Typically, instructions are held in the prefetch buffers
before entering a 3-stage instruction pipeline. However, if the prefetch buffers are empty,
the I-unit can fetch instructions directly from the cache.

INSTRUCTION PIPELINE

The instruction pipeline is composed of three stages: decode/operand fetch, execution, and
store result. Each pipeline stage performs its function in one processor cycle. The stages of
the processor instruction pipeline are illustrated below.

e, . Pipeline Stages
: Cache P
ool -Unit E-Unit REM
Prefetch : : Decode / . Store
B et > Operand > Execution
uffer : Fetch result

When the I-unit places an instruction in the pipeline, the following sequence begins:

Decode & Operand Fetch. This first pipeline stage is performed in the I-unit. The
Rz and Ry operands in the instruction are used to enable the register select logic. The
decoder interprets the instruction to determine what function is to take place. And the
microsequencer begins executing microcode.

Execution. The Ezecution Unit operates on Rx and Ry, the result either passes
through the ALU or the barrel shifter and is stored in the result register.

Store Result. The data is moved from the result register into the RFz and RFy regis-
ter files in the RFM Unit.

ang1 (Preliminarv) 2.3

3200 Processor Processor Architecture

The purpose of the pipeline is to increase machine throughput by using parallelism. In a
single clock cycle, an instruction can be fetched from memory, another instruction can be
decoded, while another instruction is executed and the results produced for another instruc-
tion are stored. By pipelining instructions in this way, results can be produced as fre-
quently as every clock cycle.

Cache or Decode & Store
Cycles Prefetch Operand Execute Result
Buffer Fetch
instruction
1 - - -
1
‘instruction : | instruction
2 : : - -
2 : 1
: instruction : instruction instruction
3 : : -
3 : 2 1
:instruction : | instruction instruction instruction
4 : :
4 : 3 2 1
: ¢ | instruction instruction instruction
5 : - :
4 3 2
: : - instruction instruction
6 : - : -
4 3
: : instruction
7 : - : - - 4

Figure 2-3. Instruction Flow Through Pipeline Stages

BRANCH PREDICTION LOGIC

The implementation of branch instructions is critical to the performance of pipelined
machines. Without branch prediction, a conditional branch instruction would empty the
pipeline, preventing the processor from prefetching the next instruction until the outcome
of the branch has been determined.

For this reason, branches can be among the slowest instructions on high performance
machines. The Ridge processor incorporates branch prediction logic which loads the
instruction that is the most likely result of the branch. This keeps the pipeline full and
reduces the chance that the pipeline will be loaded with instructions on the wrong path.

09091 (Preliminarv)

3200 Processor Processor Architecture

Conditional Branch Instructions

Conditional branch instructions contain a static prediction bit in the instruction displace-
ment field that can be set by a compiler. The branch prediction logic in the instruction
unit then fetches along the predicted path. This keeps the pipeline full and makes condi-
tional branch instructions fast.

Branch Prediction Example

Consider Pascal REPEAT ... UNTIL loops. The loop is constructed by the compiler as a
linear section of code ended with a conditional branch. This branch is part of the UNTIL
expression. Usually these loops are executed more than once, so the compiler marks the
conditional branch at the bottom of the loop to be "predicted.”

When the program is executed, the processor fetches and executes all the instructions in the
linear portion of the loop. As the instruction unit decodes the conditional branch at the
end of the loop, the prediction bit is detected. Instead of fetching the next sequential
instruction as it normally would, the instruction unit fetches the instruction at the top of
the loop, which is the branch target. This prefetching the location of the branch target
allows loops to execute at the same speed as linear sections of code.

As the loop is executed for its last time, the instruction unit incorrectly fetches the instruc-
tion at the top of the loop. This time the UNTIL condition has been reached, and the loop
has ended. Now the instruction unit must flush this instruction, then fetch the next sequen-
tial instruction to be executed.

An incorrectly predicted conditional branch instruction causes a 1 cycle delay. Measure-
ments have shown this to be infrequent and overall program speed to be increased by the
use of the branch prediction logic.

For example, the following PASCAL program:

1:=0;
REPEAT;
- Ji=1
I:=1+1;
UNTIL I=100;

can be represented by the following instructions:

MOVE RO,0 ;I:=0

LADDR R2,100 ; Load 100 into R2 (Loop Terminator)
LOOP: MOVE R1,RO , ; Identify loop start, J :=1

ADD RO,1 ;T :=141

BR RO < R2, LOOP! ; Loop until I =100

; "1" sets branch prediction bit

STORE R1,J ; Store value of R1 at J

9091 (Preliminary)

2
el

3200 Processor

Processor Architecture

The following illustrates the path of each instruction through each stage of the pipeline:

Proc.
Cycles

n+1
n-+2
n+3
n+4
n-+5

n+6

Cache or
Prefetch
Buffer

Decode &

Operand Bxccute pioil
Sl I I
[MOVE | [- | [-
| ADD | | MOVE | [-
| BR | | ADD | | MOVE |
L - | [BR | [ADD |
[wove] =] [=
[0] o] [-
BR | | ADD | | MOVE |
—] [] [0
B‘R]lAl:)D|[MO.VE|
- | [BR | [ADD |
S i I O
rore] [] [=
[~ rome] [=
-~ [Tom] [=

| STORE |

Comments

1st MOVE executed

Prediction bit detected
1st ADD executed

Check Branch Condition
BR target (MOVE) fetched

2nd time through loop -
second MOVE executed

2nd ADD executed

Branch Prediction

I = 100, loop complete
Incorrectly Predicted Branch

Flush pipeline. Fetch
STORE instruction

STORE instruction decoded

Figure 2-4. Branch Prediction Example

ana1 (Preliminary)

3200 Processor Processor Architecture

Unconditional Branch Instructions

Unconditional branch instructions also make use of the branch prediction and decode logic
in the instruction unit. In unconditional branches, the instruction is decoded, the target
location is fetched and placed in the instruction stream.

REGISTER FILE / MULTIPLIER UNIT

The Register File / Multiplier (RFM) unit contains the register file and multiplication logic.
Both the Register File and Multiplier portions are double clocked. In all other respects,
these portions are functionally independent of one another.

REGISTER FILE

The register file portion of the RFM consists of two register files: RFz and RFy. The RFz
register file is made up of 16 general registers, 16 special purpose registers, and a scratch
pad area for storing intermediate results and constants. The contents of the RFz register
file are duplicated in the RFy register file. Duplicating the registers allows both Rx and Ry
to be accessed in a single clock cycle.

During an instruction execution, the register file is accessed in the operand fetch cycle for

- reading the data from a given register(s) and in store cycle for writing the result back into
a given register(s). Since instructions overlap, both read and write capability in a single
cycle is required. This is accomplished by dividing the clock cycle into two halves. The
first half is used for write access and the second half is for read access.

MULTIPLIER

The multiplier operates on integers and the mantissa portion of floating point numbers.

The multiplier is based on a modified version of Booth’s recoded algorithm with overlapped
scanning to process 4 bits during each half-clock cycle. This allows 2 4-bit multiplies to be
done in parallel during each clock cycle.

The RFM unit supports five different modes of multiplication:

Integer Multiply; 32 x 32-bit with 32-bit product.

Integer (Immediate) Multiply; 32 x 4-bit with 32-bit product.

Extended Integer Multiply; 32 x 32-bit with 64-bit product.

Single Precision Real Multiply; 24 x 24-bit with 25-bit mantissa product.
Double Precision Real Multiply; 53 x 53-bit with 54-bit mantissa product.

e ¢ & o

0001 (Preliminarv) 27

3200 Processor Processor Architecture

During floating point multiplication, instructions are unpacked and the exponent portion of
the operands set to the E-unit and the mantissa portion loaded into the RFM operand
registers. The product of the mantissas is then sent to the E-unit, where post normaliza-
tion and rounding are performed. The product is then merged with the exponent.

EXECUTION UNIT

The arithmetic logic units {ALU), barrel shifter, and register bypass hardware are all con-
tained in the Execution Unit (E-UNIT). The 64-bit barrel shifter can shift up to 64 bits left,
right, or circularly in a single clock cycle.

The general data flow for numbers through the execution unit is as follows: Data is fetched
from the RFz and RFy register files in the Register File /| Multiplier (RFM) unit; put into
the z and y registers; operated on by the ALU, then temporarily held in the result register
before being stored in the register files. Should data not yet stored in the RFM unit be
needed in a computation, the register select logic may bypass the RFM unit and use the
data on the bus as input to the ALU.

The execution of floating point instructions is made more efficient by unpacking and send-

ing the exponent to the ezponent ALU and the mantissa to the standard ALU. The 64-bit
barrel shifter packs (reassembles) the results from the registers into floating point values.

a091 {Preliminarv)

3200 Processor Processor Architecture

REGISTER BYPASS FUNCTION

The execution unit incorporates register bypass hardware that avoids the "pipeline inter-
lock"” delay that results when an instruction’s operand is dependent on an instruction still
in the pipe.

The register bypass function can be illustrated by the following two-instruction sequence
that utilizes the register bypass data path in the execution unit. This example also illus-
trates the use of the instruction pipeline discussed earlier.

The following instruction sequence executes as shown in the table below:

ADD R6,R7 ;R6 1s added to R7 and the sum is put in R6.
AND R5,R6 ;R5 logically ANDs with R6 and the result is put in R5.

Instruction Pipeline Stage Operation

Clock
Cycle ADD AND

1 The ADD instruction is fetched.

2 R6 and R7 are fetched The AND instruction is
from the register files. fetched.

3 The ALU ADDs R6 and R7, R5 and R6 are to be fetched,
and puts the new R6 value but the new R6 value is on the
on the bus. bus, not in the register file.

R5 is fetched from the register
file, while the Ry register
select logic bypasses the
register file and uses the

R6 value from the bus.

4 The new R6 value is stored The ALU ANDs R5 with R6
in the register file and puts the new R5 value
on the bus.
5 The new R5 value is stored in

the register file.

During clock cycle 3, the AND instruction must fetch its operand R6. However, the value
of R6 in the RFM unit is outdated due to the ADD instruction computing a new R6 value.
Jonsequently, the register bypass is used. This moves instructions through each pipeline
stage in one clock cycle, and allows the pipeline to complete one instruction each clock
cycle.

anal (Preliminary) 2.9

3200 Processor Processor Architecture

CACHE / MEMORY CONTROLLER

The Cache / Memory Controller (CMC) contains the virtual-to-real translation hardware,
error correction logic, a 16k-byte code/data cache, and handles all memory data for the
processor and I/O devices. All virtual memory accesses from the processor go through the
translation mapping table (TMT) where they are converted to real addresses and presented
to the code/data cache andfor main memory. 1/O devices on the I/O bus use real
addresses and bypass the translation mapping table (TMT).

The memory controller processes four bytes (1 word) per cycle. Cycle time from the cache
is 83 nanoseconds and access time for a LOAD from main memory is 250 nanoseconds. The
CPU memory bus runs at 83 nanosecond clock cycles, giving it a bandwidth of 27.4 Mbytes
per second on read and 19 Mbytes per second on write. The I/O bus uses multiplexed
address and data lines to minimize the use of connector pins on I/O boards. The I/O bus
runs at 125 nanosecond clock cycles. The bandwidth for direct memory access (DMA) is
approximately 14 Mbytes per second on both read and write. Each board on the I/O bus
contains its own DMA logic.

The memory controller can access from 4 to 128 megabytes of main memory. All memory
accesses are single-bit error corrected and double-bit error detected.

See Chapter 3 for details on the Ridge I/O system and Chapter 7 for a complete discussion
of the virtual-to-physical memory translation process.

CODE/DATA CACHE

The memory controller contains a two-way set associative, 16k-byte cache which services
both code and data. This cache allows the CPU to access a 32-bit word in a single 83 ns
clock cycle.

The cache is divided into two sets. Each set contains a separate tag table and data table.
Each data table contains 512 lines consisting of 4 32-bit words, or "quadwords." Lines O -
255 of the data table contain code; lines 256 - 511 contain data. The tag table contains the
physical address of each code or data value located in the data table.

If the data required by the processor is not in the cache, the processor will load the data
from main memory into the cache data table. Whenever the processor reads a word from
memory, the entire quadword in which that word is located is loaded as a single line into
the cache data table.

All writes are write-through, which means data is written to both the cache and main
memory. LOAD instructions require 2 CPU clock cycles and STORE instructions require 3
CPU clock cycles.

2-10 ang1 (Preliminarv)

3200 Processor Processor Architecture

Figure 2-5 illustrates how the virtual address is used to locate data in the cache. Bits
20..27 of the virtual address determine which line to access in the tag and data tables.
Since the cache data table lines are four words across, bits 28..29 of the virtual address
select the word in the line.

When locating data in the cache, bits 0..10 of the virtual address are compared with a tag
field in the TMT. Bits 11..19 of the virtual address are used to index into the TMT, which
translates the virtual address to a physical address (as described in Chapter 7). This value
1s compared to both physical address values located in the tag tables. If the tag field of the
virtual address matches that of the TMT and the physical address produced by the TMT
matches either of the two physical addresses located in the tag tables, then a "cache hit"
occurs. In this event, the code or data value (as identified by the code/data bit) is read
from the data table that corresponds to the tag table containing the matching physical
address.

The main features of the Ridge Code/Data Cache can be illustrated as follows:

0 11 19 20 27 29 31
Virtual Address I tag ITMT indexl cache line ' wd I
|
/8
tagl o datal
N code
' | lameead] bmmmm e
code/data 9,
bit data
1 511
v_ ¥
tag2 data?2
TMT 28 0 a2
code
v data Data
N YV ¥ 511
Y Y Pl
> MUX

data
Figure 2-5. Ridge Code/Data Cache Organization

See Chapter 7 for details on the TMT and the virtual-to-real address translation process.

anal (Preliminary) 2-11

Chapter 3
RIDGE I/O SYSTEM

INTRODUCTION
This chapter describes the basic functions of the Ridge I/O system.

Data and addresses are transferred between the memory controller and the I/O boards by
means of a synchronous bus with multiplexed 32-bit address and data. Communication
between the memory controller and the I/O boards consists of I/O Read/Write, I/ O Inter-
rupts, and Direct Memory Access (DMA) Read/Write operations. I/O board priorities are
resolved by daisy-chained priority signals.

DMA hardware contains a burst mode feature that allows four 32-bit words to be
transferred in a single read or write operation. The number of 125 ns clocks and the result-
ing bandwidths on burst mode and non-burst mode operations are as follows:

Non-Burst Burst
Operation |clocks |Mbytes/sec|clocks |Mbytes/sec
125 ns 125 ns
DMA Write| 5 6.4 9 14
DMA Read 6 5.3 9 14

Figure 3-1 illustrates the basic structure of the Ridge I/O bus.

Address/Data Bus 32

Daisy-Chained

Dev 1 Dev 2 Dev 3 Dev 4 Dev5p o

priority signals

Memory | 1I/O Read/Write
Controlr.| signals

Interrupt Request
signals

DMA Read/Write

signals

Figure 3-1. Ridge I/O Bus

0091 (Preliminarv) 3-1

3200 Processor

Ridge 1/O System

I/O0 OPERATIONS

Each type of I/O operation and its control signals are described below. A minus sign
preceding the signal indicates that signal is asserted when it goes low; a plus sign indicates
that signal is asserted when it goes high.

I/O READ / WRITE

The 1/O read /write operations are used to transfer 32-bit words between the processor and
an individual I/O board. The I/O Read (IOR) operation moves a 32-bit word from an I/0
board to the processor. The I/O Write (IOW) operation moves a 32-bit word from the pro-
cessor to an 1/O board. Both I/O Read and I/O Write are initiated by the memory con-
troller upon execution of a READ or WRITE instruction in the processor.

The 1/O read/write operations use the following signals:

-MCIOREQ

-ACKMCIO

-JODACK

-MCIOW

-IODNVM

-IODATA

Memory Controller I/O Request. The memory controller asserts this signal
to start an 1/O operation. MCIOREQ enables the device number and opera-
tion code of the IO Address Word from the WRITE or READ instruction on
the IODATA bus.

Acknowledge memory controller I/O. This signal is the I/O board’s response
to the MCIOREQ signal. ACKMCIO is an open collector signal.

I/O Data Acknowledge. This signal indicates that the memory controller is
driving data onto the IODATA bus. The memory controller asserts
IODACK along with the I/O Address Word and the Write Data. This signal
is also asserted during memory read operations, as described in the DMA
READ | WRITE section.

Memory Controller I/O Write. The memory controller asserts this signal for
IOW operations. MCIOW is valid while the I/O Address Word is sent.

I/O Data Not Valid Memory. If the data on the bus is invalid, this signal
will be asserted after the I/O board has recognized the MCIOREQ signal
and has responded with ACKMCIO. This signal can be sent with both IOR
and JOW operations. If this signal is asserted during an IOR operation, the
data is read, but indicated as being invalid. During an IOW operation, this
signal can be used by the I/O board if it is not ready to accept the data.
IODNVM is an open collector signal.

I/O data. TODATA is a 32-bit bidirectional, tri-state bus on which data and
the 1/O Address Word are multiplexed. Bit 0 is the most significant and bit
31 is the least significant.

ana1 (Preliminarv)

3200 Processor Ridge 1/O System

I/O Read Operation

An I/O Read (IOR) operation moves one 32-bit word from an I/O board, through the
memory controller, to the processor. When the processor executes a READ instruction, it
issues a request to the memory controller for an I/O read data (IORD) word from the I/O
board specified in the I/O read address (IORA) word.

The I/O read operation can be illustrated by the following:

Memory
Controller 1/0 Board
Processor 10 Read MCIOREQ / oar
READ - ACKMCIO |
' IODACK
Ry| IORA } e dev #
Rx[TORD Jed——— 1 oo :IODATA bus data

Figure 3-2. I/O Read Operation

The timing diagram in Figure 3-3 illustrates the discussion in this section.

The memory controller requires 3 states (P1, P2, P3) of an internal state machine to com-
plete an IOR. During the P1 state, the memory controller asserts an MCIOREQ signal to
request an I/O operation. Bits 0..7 of the I/O Address Word on the IODATA bus contain
the address of the I/O board to be accessed and bits 8..31 contain information unique to
the selected device.

If the value in bits 0..7 of the I/O Address Word match the device number switch on an
1/O board, that I/O board will assert an ACKMCIO. The I/O board is now ready to
transfer data. ACKMCIO must be asserted within 15 clock cycles or the memory con-
troller will timeout. In this event, bit 30 in Rx is set and the timeout error is reported to
software.

The I/O board transfers the read data on the IODATA bus the clock cycle after the
ACKMCIO signal was asserted. If the I/O board does not want to perform the transfer,
IODNVM should be asserted to avoid a timeout error. The P3 state is used internally by
the memory controller.

9091 (Preliminarv) 3-3

3200 Processor

Ridge I/O System

Below is the timing diagram for an I/O read. Note that P1 will be at least 2 clock periods
(up to 15). IODNVM is only asserted to indicate that the data is not valid or to avoid an

[/O timeout.

I/O Read

[PT [Pi | Pz | P3 | idie |

-MCIOREQ
-ACKMCIO
-IODATA

-JODACK

T/
S/

<

address X data)

N/

-IODNVM

A} 7

\ /
| "

-MCIOW

Figure 3-3. I/O Read Timing Diagram

I/O Write Operation

An I/O Write (IOW) operation moves one 32-bit word from the processor, through the
memory controller, to an I/O board. When the processor executes a WRITE instruction, it
issues a request to the memory controller to send an I/O write data (IOWD) word to the
I/O board specified in the I/O write address (IOWA) word.

The I/O write operation can be illustrated by the following:

Processor

10 Write

Memory
Controller

WRITE

Ry[IOWA'}

Rx] 10WD }

Figure 3-4. I/O Write Operation

1/0O Board
MCIOREQ
ACKMCIO
IODACK
d 4L
TODATA bus dev K
ata

The timing diagram in Figure 3-5 illustrates the discussion in this section.

R-4

9091 (Preliminary)

3200 Processor Ridge I/O System

The memory controller requires 3 states (P1, P2, P3) of an internal state machine to com-
plete an IOW. During the P1 state, the memory controller asserts an MCIOREQ signal to
request an 1/O operation. Bits 0..7 of the /O Address Word on the IODATA bus contain
the address of the I/O board to be accessed and bits 8..31 contain information unique to
the selected device.

If the value in bits 0..7 of the I/O Address Word match the device number switch on the
1/O board, the I/O board asserts an ACKMCIO. The I/O board is now ready to receive
data. ACKMCIO must be asserted within 15 clock cycles or the memory controller will
timeout. In this event, bit 30 in Rx is set and the timeout error is reported to the software.

During P3, the memory controller asserts IODACK to indicate that the memory controller
has put the IOW data word is on the IODATA bus.

If the I/O board is not ready to accept the data, it can assert an IODNVM signal on the
clock cycle after ACKMCIO was asserted.

Below is the timing diagram for an I/O write.

I/O Write [PL TPL] P2 | P3 | Idle |
-MCIOREQ \ /
-ACKMCIO \ /
-IODATA —~ address)—--- -

-IODACK \ / \ /

-IODNVM \ /

et
-MCIOW \ /

Figure 3-5. I/O Write Timing Diagram

w3

9091 (Preliminarv)

=1

3200 Processor Ridge I/O System

I/O INTERRUPTS

An 1/O interrupt signals the processor that an I/O board requires service. When an 1/O
interrupt occurs, the interrupt handler returns an I/O Interrupt Read (IOIR) word from
the I/O board, through the memory controller, to the processor. |

The signals needed for an I1/O interrupt read (IOIR) are:

-IOIREQ I/O Interrupt Reguest. This is an open collector signal used by the I/0
" boards to request interrupts. When an IOIREQ signal is active, there
are one or more devices requesting an interrupt. This signal will remain

active until all the requesting devices receive an Acknowledge I1/O Inter-
rupt (ACKIOI, see below).

+ACKIOI Acknowledge I/ O Interrupt. This signal is used by the memory controller
to acknowledge an I/O board’s interrupt request. ACKIOI is daisy-
chained from I/O board to I/O board. This daisy chain exists as an
ACKIOIin and an ACKIOIout signal on each I/O board. When an I/O
board is not making an interrupt request, it will pass ACKIOI«n through
to ACKIOIout. If an I/O board is requesting an interrupt, it is waiting
for the ACKIOIin and will block the ACKIOIout. (see the BUS CON-
TENTION section for details.)

-IODATA I/O Date. The I/O board sends the device number (bits 0..7) and other
device-specific information (IOIR word) on the IODATA bus.

2-A 09091 (Preliminarv)

3200 Processor Ridge I/O System

Interrupt Operation
An interrupt operation requires 3 states (P1, P2, P3). See Figure 3-6, below.

The I/O board asserts an IOIREQ, requesting an interrupt. At the end of the P1 state, the
memory controller acknowledges the interrupt request by generating an ACKIOI. (The P1
state may be longer than one clock cycle.)

The I/O board transfers an IO Interrupt Read word (IOIR) on the IODATA bus in response
to the ACKIOI on the previous clock cycle. Bits 0..7 of the IOIR word contain the address
of the requesting I/O board and bits 8..31 contain device-specific information.

See the BUS CONTENTION section for details on how multiple requests for the I/O bus
are handled.

I/OInterrupt [PI | P1 | P2 | P3 | Idle |

-IOIREQ \ /
+ACKIOI / \
JODATA =——m—mmmmmeee TOIR f------

Figure 3-8. Interrupt Timing Diagram

¥
~1

ang1 (Preliminarv)

3200 Processor

3-R

Ridge I/O System

DMA READ / WRITE

A Direct Memory Access (DMA) operation transfers one or four words of data directly
between the I/O board and the memory controller, with no intervention from the processor.
DMA Read can transfer up to 16 Mbytes of data per second. DMA Write can transfer up
to 18.3 Mbytes of data per second.

The signals needed for an DMA Read or Write are:

-IOMREQ

-IODACK

-MDNVIO

+ACKIOM

-IODATA

-MULTIWD

I/O Memory Request. IOMREQ is an open collector signal used by I/0
boards to request a DMA Read or DMA Write operation.

I/O Data Acknowledge. IODACK is asserted by the memory controller
to transfer data onto the IODATA bus. IODACK is not asserted dur-
ing DMA Writes.

Memory Data Not Valid I/O. MDNVIO is asserted if a double-bit par-
ity error has occurred. MDNVIO is not asserted during DMA Writes.

Acknowledge I/O Memory Request. This signal is used by the memory
controller to respond to an I/O board’s IOMREQ signal. ACKIOM is
daisy-chained from I/O board to I/O board. Like the ACKIOI signal
described in the INTERRUPTS section, the ACKIOM signal will not
be propagated to lower priority I/O boards while a higher priority I/O
board is asserting an IOMREQ signal. (See the BUS CONTENTION
section for details.) :

I/O Data. The 1/O board sends the DMA address and data on the
IODATA bus. Bits 30 and 31 of the address have special meaning. Bit
30 is not used and bit 31 indicates whether the DMA operation is a
read or a write. On DMA Write, address bit 31 is asserted and not
asserted on DMA Read.

Multi-Word Data Transfer. The MULTIWD signal requests four 32-bit
words of data to be transferred over the IODATA bus. On multiple
word data transfers, this signal will be asserted by the I/O board at
the same time the memory address is asserted on the IODATA bus.

anat (Preliminarv)

3200 Processor Ridge 1/0O System

DMA Read Operation

A DMA Read operation transfers data directly from memory to the I/O board. See Figure
3-7.

An I/O board requests a DMA operation by asserting an IOMREQ signal. When the
memory controller recognizes the IOMREQ it asserts an ACKIOM. (The ACKIOM signal
will not be propagated to lower priority I/O boards if a higher priority I/O board has
asserted an IOMREQ.)

The I/O board then sends the DMA address to the memory controller on the IODATA bus.
Bit 31 of the address is not asserted, indicating a DMA Read operation.

The memory controller latches the DMA address and reads the specified address in
memory. :

The memory controller asserts IODACK for one or four clock cycles to transfer one or four
words of data onto the IODATA bus. If a double-bit parity error is detected by the
memory controller, then MDNVIO is asserted. :

If the MULTIWD signal was asserted on the same cycle the address was on the IODATA
bus, there will be 4 successive data words on the bus.

The timing diagram in Figure 3-7 shows a DMA Read operation. The last four clock cycles
assume that the MULTIWD signal was asserted during the third clock cycle.

| assuming MULTIWD |

! was asserted]

DMARead [clk | clk | clk | clk | ek | ... | ek | clk | clk | clk | clk

-IOMREQ \ / N J
+ACKIOM /\ TN
-IODATA ------------{address)-~------===-=~ data X data X data Xaddress)
-IODACK _/ J

-MDNVIO* \ \ N\ I\ i

| WP S - - S -

-MULTIWD A\ ;

| WIP— 4

Figure 3-7. DMA Read Timing Diagram

* Active on double-bit errors.

9091 (Preliminary) 3-9

3200 Processor Ridge 1/O System

DMA Write Operation

A DMA Write operation transfers data directly from the I/O board to memory. See Figure
3-8.

An 1/O board requests a DMA operation by asserting an IOMREQ signal. When the
memory controller recognizes the IOMREQ it asserts an ACKIOM. (The ACKIOM signal
will not be propagated to lower priority 1/O boards if a higher priority I/O board has
asserted an IOMREQ.)

The 1/O board then sends the DMA address to the memory controller on the IODATA bus.
Bit 31 of the address is asserted, indicating a DMA Write operation.

If the MULTIWD signal was asserted on the same cycle the address was on the IODATA
bus, there will be 4 successive data words on the bus.

The memory controller latches the DMA address and writes the data.

The timing diagram in Figure 3-8 shows a DMA Write operation. The last six clock cycles
assume that the MULTIWD signal was asserted during the third clock cycle.

X assuming MULTIWD was asserted
DMA Write[clk [clk [clk [clk | ek [clk | ok | ck | . T ck

IOMREQ — \ [N 7
+ACKIOM 7 / \ /’-----\\
-IODATA ---eeeeeeeee ~addressX data)C&Jt%){cfit;xcfa't;} -------- -@id:ré@

—— —— — - —

-MULTIWD) ;

|

Figure 3-8. DMA Write Timing Diagram

3-10 9na1 (Preliminary)

3200 Processor Ridge 1/O System

BUS CONTENTION

The Ridge I/O system’s two acknowledge signals, ACKIOI and ACKIOM, consist of two
wires linked from I/O board to /O board in a configuration referred to as a daisy chain.

When more than one I/O board issues a request to use the I/O bus, the I/O board ack-
nowledged by the memory controller is determined by its position in the daisy chain.

Bus contention is resolved by the ACKin and ACKout actions on each I/O board (see Fig-
ure 3-9). When an acknowledge (ACK) signal is asserted by the memory controller, it is
first received by the highest priority I/O board on the daisy chain. If a request (REQ) sig-
nal is not active for that I/O board, the ACK signal will be propagated on to the next
highest priority board. The ACK signal will be propagated on down the daisy-chained I/O
boards in this manner until it reaches the highest priority board asserting a REQ.

Priority 1 Priority 4 Priority 2 Priority 5 Priority 3

ACK
signal

in = in ! In SEN = in
out out out out out

Figure 3-9. Possible Daisy Chain Configuration

If the memory controller asserts an ACK signal in response to a REQ from a lower priority
I/O board during the same clock cycle a higher priority board asserts a REQ signal, the
ACK signal will be blocked by the higher priority board. Only after the higher priority 1/O
board has completed its operation, will the memory controller reassert the ACK signal for
the lower priority board.

DUAL DAISY-CHAINED SIGNALS

So far, the daisy-chained acknowledge ACKIOI and ACKIOM signals for /O interrupts
and DMA read/write operations have been described as single lines servicing all of the I/O
boards.

However, each signal actually consists of two separate daisy chains, each of which services
a maximum of 8 I/O boards. For I/O interrupts, the ACKIOI signal consists of ACKIOI1
and ACKIOI2; the ACKIOI?2 signal having a higher priority than ACKIOI1. The ACKIOM
signal consists of ACKIOM1 and ACKIOM?2, which have the same priority scheme as the
ACKIOI signals.

Logically, the dual acknowledge signals are the same as a single acknowledge signal.

9091 (Preliminary) 211

3200 Processor Ridge I/O System

EXAMPLE OF BUS CONTENTION

All of the signals described thus far are signals that are either asserted or received by the
memory controller. However, when considering bus contention, it is important to under-
stand the internal signals operating within the individual I/O boards.

The IOIREQ signal, for example, represents the state of the interrupt request signal
received by the memory controller. The state of this signal is the logical OR of the internal
request signals within the individual I/O boards. This means that, when the IOIREQ signal
is asserted, the memory controller knows an interrupt request has been asserted by at least
one I/O board. If more than one board has asserted a request, the board that is ack-
nowledged by the memory controller will depend on its position in the daisy chain.

The ACKIOI signal, on the other hand, is the acknowledge signal asserted by the memory
controller in response to an IOIREQ. This signal is received by the I/O board as an ACK-
IOIén signal. If the I/O board is asserting a request, the ACKIOI:n signal is interpreted as
an internal acknowledge. If no request is asserted, then the I/O board asserts an ACK-
10T out.

The following example of bus contention involves two I/O boards competing for service.
The principles illustrated here can be applied to most situations of bus contention.

The timing diagram in Figure 3-10 illustrates a situation in which two I/O boards assert an
IOIREQ signal to request an interrupt. The IOIREQ signal was initially asserted by the
lower priority I/O board. However, the ACKIOI signal is intercepted by a higher priority
board, which asserts its IOIREQ during the same clock cycle the ACKIOI signal is asserted
by the memory controller.

Note the state of the individual boards’ request and acknowledge signals and their relation-
ship to the corresponding signals at the memory controller.

3-12 9091 (Preliminary)

3200 Processor Ridge I/O System

I/OInterrupt [PL | P1L | P2 | P3 | ... [P1 [P2 |

-IOIREQ /
Memory I\
Jontroller +ACKIOI -/ \
-IODATA -------mmme- IOIR }------=--====== I0IR
I board 1 board 2

-Internal Req. \ -/
Int I Ack / \
1/OBoard1 | Trrermaiac

high iorit
(higher priority) +ACKIOLin _—/—-\ M\
+ACKIOlout / \

-Internal Regq. /

+Internal Ack

I/O Board 2
(lower priority)

/L
+ACKIOI:n / \

+ACKIOlIout

Figure 3-10. Contention for bus during 1/0 interrupt

0091 {Preliminary) 3-13

Chapter 4
INSTRUCTION FORMATS AND DATA TYPES

INTRODUCTION

Instructions operate on the general registers or on a register and a memory location (load
from memory or store to memory). The program counter is manipulated by program con-
trol instructions, such as subroutine call and branch.

All addresses generated by the processor are 32-bit virtual addresses. Memory reference
instructions indicate code or data space by utilizing a bit in the instruction opcode. (Code
and data segments are discussed in Chapter 5.)

The Ridge instruction set uses three instruction formats:

Register-to-register

’;bit opcode‘ Rx | Ry_l

0 15

Short displacement memory address

‘ait opcode‘ Rx \ Ry 1 displacement
0 31

Long displacement memory address

[S-bit opcodel Rx ‘ Ry I displacement l
0 47

Four sizes of operands are loaded and stored by the Ridge processor. The basic addressable
unit is the 8-bit byte. The other operand sizes are the halfword (16-bits), the word (32-bits)
and the double-word (64-bits).

0 7

r Hall-Word

0 16
r Word 41
0 31

‘7 Double-Word
0

The DATA STORAGE IN REGISTERS section at the end of this chapter illustrates how
each type of operand is stored in registers.

6091 (Preliminarv) -1

3200 Processor Instruction Formats and Addressing

GENERAL REGISTERS

There are 16 32-bit general-purpose registers available for use as data, indexing, and
addressing. Any arithmetic or address operation can be performed on any register. Regis-
ters are not specialized for counting or indexing.

INSTRUCTION FORMATS

All Ridge instructions use an eight-bit opcode followed by two four-bit operand specifiers.
The first operand specifier (Rx) names the register, or register pair containing the operand.
The second operand specifier (Ry) names the register(s) or is a four-bit constant.

The type of operand specified depends on which opcode is used.

EGISTER INSTRUCTIONS
Register instructions use the contents of the general registers or a constant as their
operands and, therefore, do not require access to memory. In most register instruction

operations, the contents of Rx are replaced with the result.

There are two types of register instructions:

e Register-to-Register
¢ Register-Immediate

Register-to-register instructions operate on the contents of Rx and Ry. Most register
instructions are of this type.

Register-Immediate instructions interpret the 4-bit value of the Ry register field as the
operand, rather than as the address of the general register containing the operand. The
constant stored in Ry can be an integer in the range from 0 to 15.

tegister Instruction Format

The register instruction format is as follows:

01 7 8 1112 15
0 Rx Ry

A register instruction is specified by bit 0 of the instruction being off.

4.9 anat (Preliminarv)

3200 Processor Instruction Formats and Addressing

MEMORY REFERENCE INSTRUCTIONS

Memory reference instructions transfer code and data between the general registers and
locations in memory.

There are two types of memory reference instructions:

e Direct Address
o Indexed Address

Direct and indexed instructions exist for accessing either code or data space with either
short or long displacement memory address formats discussed below.

The following table describes how the effective addresses for memory reference instructions
are calculated.

Memory Instruction Types and'Eﬁ'ective Addresses

Instr. Address
Type Space Effective Address - Description

Direct Data Displacement The memory address is the displace-

ment field from the instruction. All
memory references are 32-bit
~addresses. This form references
data space.

Code PC + displacement Instructions that reference code
space do so relative to the program
counter (PC). PC is added to the
displacement field and memory is
read from this location. Code space
is never written.

Indexed Data Ry + displacement The contents of register Ry are
added to the displacement field.
Memory is then read or written at
this location.

Code PC + Ry + displacement | PC is added to the displacement
field, the result is added to the con-
tents of Ry. Memory is then read at
this location.

ana1 (Preliminarv) 1-3

3200 Processor Instruction Formats and Addressing

4-4

Indexing takes place with full 32-bit signed integers in two’s-complement notation. Dis-
placements are also treated as 32-bit signed integers in two’s complement notation. Short
displacement memory addresses are sign extended to 32 bits by replicating the MSB into
the upper 16 bits. The resulting effective address is an absolute displacement from location
zero in the data space. Negative addresses (MSB set) are virtual addresses in the range of
two to four billion.

These memory address computations allow indexes to be positive or negative relative to the
displacement, or allow the displacement to be positive or negative relative to the index.
Code space addresses are program counter (PC) relative and thus make code relocatable.

Memory Reference Instruction Formats

Memory reference instructions use either the short displacement or long displacement for-
mats shown below. The short displacement memory address format is used for referencing
addresses within +/- 32K bytes of O (if direct) or Ry (if indexed). The long displacement

memory address format is used for referencing addresses that must be specified in 32 bits.

Short displacement memory address

01 34 67 8 1112 1516 31
1{cd |0 x| Rx Ry displacement
-------- O‘pcode seesssns

Long displacement memory address

01 34 6 7 8 1112 1516 47
lied|1l x| Rx Ry displacement
........ opcode PP

cd = code or data space reference.
code is specified as 00, 11
data is specified as 01, 10

x = 1 is indexed address
0 is direct address

When bit 0 of the instruction opcode is set, the instruction is a memory reference. Bits 1

and 2 in combination indicate code or data space. Bit 3 specifies displacement size (0 =
short, 1 = long). Bit 7 is used to specify that the instruction is indexed.

9001 (Preliminary)

3200 Processor Instruction Formats and Addressing

DATA REPRESENTATION

Instructions interpret data in 32-bit and 64-bit quantities. 32-bit data quantities are two’s
complement signed integers, unsigned integers, and real numbers. 64-bit data quantities
consist of 64-bit unsigned integers, double precision real numbers, and 64-bit sets. Integers
longer than 32 bits may be manipulated using extended precision integer arithmetic
instructions.

The most significant bit (MSB) of any type of signed data is used as the sign bit.

INTEGER REPRESENTATION

Signed integers can range between -2147,483,648 to 2,147,483,647. Unsigned integers can
range between O to 4,294,967,295.

Integer S
01 31

s = sign bit

REAL NUMBER REPRESENTATION

Single Precision Real Numbers

Real numbers (represented in floating-point form) consist of three parts: a sign, a power-
of-two exponent, and a mantissa. The value of a real number is:

(-1)**s x 2**(ezponent-127) x 1.mantissa

For positive numbers, the sign bit (bit 0) is 0. For negative numbers, the sign bit is 1. The
exponent of a real number is 8 bits long, and is biased by +127. The eight bits of the
exponent give a range of 0 through 255. Subtracting the bias yields an exponent range of
-127 through +128. The mantissa has an implicit leading one, and is 23 bits long. Zero is
represented by all zeros.

s| exponent mantissa
01 8 9 31
ezample: 1.2 = 001111111 00110011001100110011010, = 3F'99 999A4,,

ezample: -10.6 = 110000010 01010011001100110011100, = C'129 999C,,

Jt

anat1 (Preliminary) 1.

3200 Processor Instruction Formats and Addressing

4-6

Double Precision Real Numbers

Double reals are similar to reals, except that the mantissa is 52 bits, and the exponent is 11

bits. The exponent is biased by +1023. The eleven exponent bits give a range of O through
2047.

Subtracting the bias yields an exponent range of -1023 through +1024.

L

S exponent mantissa
01 11 12 63

example: 1.2 = 001111111111 00110011001100...001100110011, = 3FF'3 3333 3333 3333,
ezample: -10.6 = 1 10000000010 01010011001100...001100110011, = C025 3333 3333 33334

REAL NUMBERS WITH SPECIAL MEANING

Certain bit patterns in both single and double precision floating point numbers have special
meanings to the processor:

Infinity Exponent value of all 1’s, mantissa = 0. May be + or -.
Infinity is represented by the following hexadecimal values:

Single Precision:
Positive = 7F80 0000
Negative = FF80 0000
Double Precision:

Positive = 7FF0 0000 0000 0000
Negative = FFF0 0000 0000 0000

Not a Number (NaN) Exponent value of all 1’s, mantissa <> 0. May be + or -.

Denormalized Number (DN) Numbers smaller than exponent = 1. Exponent value of all
0’s, mantissa <> 0. May be + or -

Zero Exponent and mantissa all 0’s. May be + or -

9091 {Preliminarv)

3200 Processor Instruction Formats and Addressing

Special Numbers as Operands

If any of the special numbers described above are used in a floating point instruction, a spe-
cial trap, called a beforet trap, is taken (if enabled) and the processor returns a fixed
result.

The combinations of special numbers that will invoke a before trap on input to an instruc-
tion and the resulting outputs are summarized in Table 4-1. Note that Not-a-Number
(NaN) is treated as Infinity (INF). The results with INF as an operand are the same as
those with NaN as an operand. Also note that a denormalized number (DN) is treated as
zero. The results with a DN as an operand are the same as with zero.

Special Numbers as Results

Special numbers can also be the result of an overflow, underflow, or divide-by-zero opera-
tion when the respective trap for that operation is disabled.

e An overflow with the overflow trap disabled will produce infinity.
e An underflow with the underflow trap disabled will produce zero.

e Dividing a floating point number by zero will produce infinity, with the divide-by-
zero trap disabled. '

See Chapter 6, TRAPS AND INTERRUPTS for a detailed discussion on traps.

+ "Before” in the sense that the trap occurs before the instruction is executed. See Chapter 6 for
more information.

ana1 (Preliminarv) (-

3200 Processor Instruction Formats and Addressing

4-R

Table 4-1. Floating Point Results with Special Numbers

(D) RADD (D) RSUB (D) RMPY (D)RDIV
Opl Op2 Sgn Rslt Sgn Rslt Sgn Rslt Sgn Rslt

N Zero S1 Zero S1 Zero XOR Zero Div-by-0
N DN S1 N s1 N XOR Zero Div-by-0
N INF 82 INF -82 INF XOR INF XOR Zero
N NaN S2 INF -S2 INF XOR INF XOR Zero
Zero N s2 N -52 N XOR Zero XOR Zero
Zero Zero (4.) Zero (4.) Zero XOR Zero XOR - Zero
Zero DN (4.) Zero (4.) Zero XOR Zeéro Div-by-0
Zero INF S2 INFE -S2 INF XOR Zero XOR Zero
Zero NaN §2 INF -8S2 1INF XOR Zero XOR Zero
DN N s2 N -82 N XOR Zero XOR Zero
DN Zero (4.) Zero (4.) Zero XOR Zero Div-by-0
DN DN (4.) Zero (4.) Zero XOR Zero Div-by-0
DN INF S2 INF -82 INF XOR Zero XOR Zero
DN NaN 82 INF -82 INF XOR Zero XOR Zero
#INE N S1 1INF S1 INE XOR INF XOR INF
#INE Zero S1 1INF S1 1INE XOR Zero Div-by-0
#INE DN S1 INF S1 1INF XOR Zero Div-by-0O
#INF INF + INFE + INF XOR INF XOR Zero
#INF NaN + INF + INF XOR INE XOR Zero

- NaN here is treated as infinity

{(D)EFIXT - MAKERD

(D)FIXR MAKEDR
Cp2 Sgn Result Sgn Rslt
DN s2 Zero S2 Zero

INE s2 largest integer sS2 INE
NaN s2 largest integer s2 INE

Abbreviations:

Opl = Operand 1 N = Number S1 == Sign Operand 1
Op2 = Operand 2 DN = Denormalized No. S2 = Sign Operand 2
Sgn = Sign of result INF = Infinity XOR = S1 XOR S2
Rsit = Result NaN = Not-a-Number

Notes:

® Div-by-zero is treated as a real divide by zero trap.
e The (D)RNEG and (D)FLOAT instructions have no "before” traps.

ano1 (Preliminarv)

3200 Processor [nstruction Formats and Addressing

REAL NUMBER ROUNDING RULES
The processor will round up when a floating point value has guard bitsi greater than .5

and down when less than .5. However, when the guard bits are ezactly will round up if
this bit is "1" and down if "0".

DATA STORAGE IN REGISTERS

The illustrations below give the notation and memory layout for each type of operand, as
well as how that operand is stored in the general registers.

Byte Half-Word
0 7 0 78 15
o1 (0 [T]
[| | | 0 | L | | 01 1}
Rx Rx
Word Double-Word
0 7 8 1516 31 0 7 8 1516 31 47 63
! 0T 1] 273 |I ’[0] 1 7T 27 3 ! 4 75 7 6 [7 1
|)] n \
1) ! 1 \
1 } I A \
1] L] \ 1
L o0 1T 12138] L 011 -2 13 j[41576717
Rx Rx Rx+1 mod 16

i Guard bits are intermediate values to the right of the mantissa that are held internally in the
processor during computation.

anat (Preliminarv) 1.0

Chapter 5
PROCESS MANAGEMENT

INTRODUCTION

Processes are created and controlled by a coordination of the Ridge hardware and operat-
ing system. This section discusses processes management from the aspect of the Ridge
hardware. For information on process management from the perspective of the Ridge
Operating System, refer to the Ridge Internals Manual.

CODE AND DATA SEGMENTS

Each process in the system is assigned its own unique address space for its code and
another address space for its data. These address spaces are referred to as the process’s
Code Segment and Data Segment.

Segments are addressed in 4096-byte pages and can extend up to 4G-bytes of virtual
memory. The system can address up to 65536 segments.

The Data Segment for a process is not created until execution time.

PROCESSOR MODES

The processor can operate in one of two modes:

¢ Kernel Mode
e User Mode

KERNEL MODE

In kernel mode, all memory references go straight to real memory, bypassing the virtual-
to-real address translation hardware. External interrupts are disabled in kernel mode.

The kernel mode is entered at one of 256 entry points by means of the KCALL instruction,
or by means of an interrupt or trap.

With the exception of the KCALL instruction, all instructions in the Ridge instruction set
can be executed while in kernel mode.

anat (Preliminary) 5-1

3200 Processor Process Management

USER MODE

In user mode, all memory addresses are virtual, and memory references are made to code
space or data space. All memory addresses first pass through the processor’s virtual to real
translation hardware before going to real memory.

Only non-kernel mode instructions can be executed in user mode.

Privileged Process Bit

It is sometimes convenient to execute certain kernel maintenance instructioms, such as
READ or WRITE, while in user mode and without losing the benefit of virtual addressing
and interrupts. This is possible when the privileged process bit, which is bit 31 in a special
register called SR10, is set. (This bit is actually set in a data structure called the Process
Control Block, which is described later in this chapter.)

Kernel mode instructions, as a rule, can only be executed when the processor is in kernel
mode. Some kernel mode instructions, however, can be executed in user mode when the
privileged process bit is set. When a process attempts to execute a kernel instruction, the
microcode checks to see if the processor is executing a user mode or kernel mode process. If
not in kernel mode, bit 31 in SR10 is checked to see if the process has privileged permission.
If the process fails both the kernel mode and privileged process checks, the kernel violation

trap is taken. (Special Registers are described in the next section. Traps are explained in
Chapter 6.) ‘

ana1 (Preliminary)

3200 Proce

Ssor Process Management

PROCESSOR CONTROL

The internal functions of the processor are controlled by a set of 16 special registers and
the Process Control Block (PCB).

SPECIAL REGISTERS

L
The processor maintains 16 special purpose registers to control the processor and to pass
information between the kernel and the hardware. Special registers can only be accessed
by kernel mode instructions.

Register Contents
SRO Kernel flag: user mode = 1, kernel mode = PC or IOIR word
SR1 Opcode / KCALL number / fault type
SR2 segment number / Rx literal field
SR3 virtual address / Ry literal field
SR4 Real addr of link block during send type KCALLs (ROS only)
SR5 Unused
SR6 Unused
SR7 Unused
SR8 Code segment number
SR9 Data segment number
SR10 Traps word
SR11 Address of CPU Control Block (CCB)
SR12 Address of Virtual to Real Translation table (VRT)
SR13 VRMASK Used to perform modulo for VRT main table lookup
SR14 Address of current Process Control Block
SR15 User PC
SRO Kernel flag register. This register is set on entry to a trap or interrupt. When SRO

SR1

SR2

= 1, the trap occurred in user mode. If the trap or interrupt occurred in kernel
mode, SRO will contain the value of the kernel program counter (PC) at the time of
the event. The only exception to this rule occurs when an external interrupt takes
place and SRO is loaded with the I/O Interrupt Read (IOIR) word generated by the
interrupt routine. The most significant byte of the IOIR word contains the device
number of the device that generated the interrupt.

Opcode. When an illegal instruction is encountered or a kernel violation has
occurred, the opcode of the current instruction is placed in SR1. On a page fault, -1
is placed in SR1 if the page fault occurred because the page was absent from
memory, or SR1 =-2 if the fault occurred because the page was write protected.

Rx field/segment number. When traps occur, this register will either contain the
current instruction’s segment number or the value in its Rx field. See Table 6-1 in
Chapter 6 for details.

9091 (Preliminarv) 5-3

3200 Processor Process Management

5-4

SR3

SR4

Ry field /effective address. When certain traps occur, the Ry field from the instruc-
tion is placed in SR3. On some interrupts or other traps, SR3 contains the effective
address where the event occurred.

Contains the real address of the link block during send-type KCALLs. This special
register is maintained by ROS.

SR5 - SR7 unused.

SR8

SR9

SR10

SR11

SR12

SR13

SR14

SR15

Contains the code segment number of the current process. If no process is active, 1t
contains the code segment number of the last process run.

Contains the data segment number of the current process. If no process is active, it
contains the data segment number of the last process run.

Traps word for the current process. The traps word consists of 32 bits, which can
be set to enable or disable various traps (see Traps Word in the TRAPS Section in
Chapter 6). The traps word is set in the Process Control Block and loaded into
SR10 by means of the LUS instruction. Note that traps can only be enabled or dis-
abled by loading the traps word into SR10 via the LUS instruction; it is insufficient
to use the MOVE instruction to change SR10.

CPU Control Block (CCB) address. This is the real memory address of the CCB,
which is a data structure that points to the trap vectors, interrupt vectors, and
maintains the processor time-keeping facilities (see Chapter 6). If the value in this
special register is odd, no CCB is present.

Virtual to Real Translation (VRT) table address. This points to the base of the
Virtual to Real Translation tables, which is used by the microcode to find the map-
ping records for any virtual page which is resident in main memory.

VRT mask. This is used by the microcode to compute the hash function for VRT
lookups.

Current Process Control Block (PCB) address. Points to the current PCB. It is
used extensively by both microcode and the kernel. The microcode uses this pointer
in the LUS, SUS, and LDREGS instructions. SR14 is also used to do current pro-
cess time accounting. If SR14 contains a 1, then there is no current process.

Program Counter (PC). This register is loaded with the current PC value when a
KCALL instruction is executed, or upon a trap or interrupt in user mode.

9061 (Preliminarv)

3200 Processor Process Management

PROCESS CONTROL BLOCK

The kernel maintains the state of running processes by means of the Process Control Block
(PCB). The current PCB address is located in SR14.

This section only describes those portions of the Process Control Block maintained by
microcode. See the Ridge Internals Guide for a description of the PCB sections maintained
by the ROS kernel.

Process Control Block

(SR14) + 0 General Register 0

General Register 1

Byte No. 3C General Register 15
(Hex) 40 Program Counter
44 Code Segment Data Segment
48 Reserved
4C Traps Word PP le_ Privileged
Process Bit
50 Process Clock

General Registers O through 15, and the Program Counter register are saved / loaded at
context switch time. The Code/Data Segment register consists of two 16-bit segment
numbers. The Traps Word register contains the bits that are used to enable or disable
specific traps. Bit 31 of the Traps Word register is the privileged process bit which, when
enabled, allows some kernel mode instructions to be executed while the processor is in user
mode. The Process Clock register is incremented if the timer ticks while the process is run-
ning.

The PCB registers must be loaded into the special registers before they are used by the
processor. When a Load User State (LUS) instruction is executed, the Processor Control
Block registers are loaded into the special registers as follows:

Program Counter — SR15
Code Segment — SR8
Data Segment =~ — SR9Y

- Traps Word — SR10

The process clock is maintained in SR14 + 50 (Hex).

9091 (Preliminarv) 5.3

Chapter 6
TRAPS AND INTERRUPTS

INTRODUCTION

The normal flow of a process is sometimes altered as a result of some external event.
Events are defined as follows:

e A page fault occurs when the page specified by the virtual address has no correspond-

ing page in memory. Page faults are discussed in Chapter 7.

If an event originates in a source external to the running process, the condition is

termed an ¢nterrupt. In this situation, the current instruction in the user process
completes and the PC value for the next instruction is placed in SR15.

If the event originates in the current instruction, the condition is termed a irap.
When a trap occurs, the current instruction is aborted and the current PC value is

placed in SR15.

EVENT HANDLING

When an event occurs, the following sequence takes place:

1.

If the event is an interrupt, it will not be recognized until the current instruction
has completed. If the event is a trap, the current instruction is aborted.

If the event occurs while in user mode, the contents of the program counter, which
points to the next user mode instruction (in the case of an interrupt) or to the
aborted instruction (in the case of an trap), are placed in SR15 and SRO is set to 1.
On external interrupts, the contents of the I/O Interrupt Word (IOIR) are placed
in SRO.

If the event occurs while in kernel mode, SR15 is left unchanged and the contents
of the program counter are placed in SRO. (This allows traps such as double bit
parity error to occur in both user and kernel mode.)

Special registers SR1, SR2, and SR3 are set as prescribed by the microcode. The
processor then switches to kernel mode and, by means of the CPU Control Block,
executes the kernel function associated with the event. (See the CPU CONTROL
BLOCK section below for details on how the kernel function is selected.)

In the course of a kernel function, the LUS (Load User State) and SUS (Save User State)
instructions might be used to execute another user mode process, or to save the state infor-
mation of the process halted by the event. (LUS and SUS use the value in SR14 as the
pointer to the Process Control Block.)

9nQ1 (Preliminarv) fi-1

3200 Processor "~ Traps and Interrupts

After handling the event, the kernel function may return to executing the process that was
halted by the event. If the event occurred while executing in user mode, the kernel function
will execute the RUM (Resume User Mode). This instruction causes the processor to load
the PC with the value found in SR15 and switch to user mode. If the event occurred while
executing in kernel mode, the kernel function will execute the TRAPEXIT instruction,
which will load the PC with the value found in SRO and resume program execution in ker-
nel mode.

CPU CONTROL BLOCK

The CPU Control Block (CCB) is located at the real memory address specified by SR11.
The CCB contains a vector to each possible kernel function. When an event occurs, the
microcode locates the vector to the appropriate kernel function in the CCB and begins exe-
cuting the kernel function at that address in real memory.

This process can be illustrated as follows:

Kernel Functions

Event
CCB
SR11
Vector into Kernel
> Kernel Code Function

The CCB entry for an event is located by adding SR11 to the event’s offset. Table 6-1
below lists the CCB and the offset accessed for each event. The states of Special Registers
SRO-SR3 and SR15 at entry to the kernel are also given.

9091 (Preliminary)

3200 Processor

Table 6-1. CPU Control Block and Special Register Values

Traps and Interrupts

Offset Event SRO SR1 SR2 SR3 SR15
0 KCALL 0 ne ne ne ne PC+2
4 KCALL 1 nc ne ne ne PC+2
8 KCALL 2 ne nc ne ne PC+2
3FC KCALL 255 ne ne ne ne PC+2
400 Data Alignment see t ne Segment # Virtual or see
Real Address
404 Illegal Instructions: .
Memory Instruction see t Opcode Segment # Virtual Address see }
Reference Instruction see 1 Opcode Rx Field Ry Field see t
408 Double Bit Parity see ne ne Virtual or see
Error - Fetch Real Address
40C Double Bit Parity see § nc ne Virtual or see }
‘ Error - Execute Real Address
410 Page Fault 1 see * Segment # Virtual Address PC
414 Kernel Violation see Opcode Rx Field Ry Field see t
414 Check Trap see } Opcode Rx Field Ry Field see t
41C Arithmetic Traps:
Trap Instruction see 1 Opcode Rx/Ry Fields Ry Field see 1
Integer Overflow 1 Opcode Rx/Ry Fields 16 PC
Integer Divide by 0 1 Opcode Rx/Ry Fields 17 PC
Real Overflow 1 Opcode Rx/Ry Fields 18 PC
Real Underflow 1 Opcode Rx/Ry Fields 19 PC
Real Divide by 0 1 Opcode Rx/Ry Fields 20 PC
Inexact Result 1 Opcode Rx/Ry Fields 24 PC
Before 1 Opcode Rx/Ry Fields 25 PC
420 External Interrupt Device # nc nc ne PC+il
word
424 Switch O Interrupt see } nc ne ne see §
428 Power Fail Warning see } nc ne nc see §
430 Timer 1 Interrupt 1 ne ne nc PC+il
434 Timer 2 Interrupt 1 nc ne ne PC+il
438 Reserved
Data Area:
43C Idle Count
440 Timer 1 Count
444 Timer 2 Count
448 Time of Day in ns
44C
Notes: PC+# The value of PC incremented by the length of the current instruction.
nc The event has not changed the value in the register.
+ If executing instruction in user mode, SRO = 1 and SR15 = PC.
If executing in kernel mode, SRO = PC; SR15 is unchanged.
} If executing instruction in user mode, SRO = 1 and SR15 = PC + length of current instruction.
If executing in kernel mode, SRO = PC + length of current instruction; SR15 is unchanged.
* If the page fault occurs because the page is absent from memory, then SR1 = -1,
If the page fault occurs because the page was write protected, then SR1 = -2.
097 (Preliminarvy) R-3

3200 Processor Traps and Interrupts

CCB DATA AREA

The portion of the CCB pointed to by offsets 43C through 44C contains the timekeeping
facilities used by the processor. These are:

e Idle Count

e Timer 1 Count

e Timer 2 Count

e Time of Day in Nanoseconds

Process time is incremented once each millisecond. When SR1 <> 1, a user process is run-
ning, and the process clock word in the PCB is incremented (see Chapter 5). If no process is
running (SR14 = 1), the idle count in the CCB data area is incremented.

The timer 1 count timer is used by the ROS kernel to keep track of the time-slice intervals
of the running process. The timer 2 count counter is typically used to keep track of sleep-
ing processes and for other non-slicing purposes. These timers are decremented once each
millisecond. If a timer counter goes negative while executing a user process, a timer inter-
rupt will occur. Timer interrupts that occur during kernel mode are ignored. (Timer inter-
rupts will be discussed later in this chapter.)

The time of day in nanoseconds double word keeps track of the time of day. Each mil-
lisecond, this counter is incremented by one million nanoseconds.

PAGE FAULT

A page fault occurs when the page specified in the virtual address has no corresponding
physical page in memory. This fault can never occur in kernel mode, so SRO will always be
set to 1 and SR15 will be set to the current PC.

See the TRANSLATION SEQUENCE Section in Chapter 7 for details.

INTERRUPTS

The following events are termed interrupts:

Double-Bit Parity Error
External Interrupt
Switch O

Power Fail Warning
Timer Interrupts

Reset

e & o ¢ o o

6-4 9091 (Preliminary)

3200 Processor Traps and Interrupts

DOUBLE-BIT PARITY ERROR

A double-bit parity error can occur in either the instruction fetch or instruction execute
stage. The interrupts for both events are discussed below.

Double-Bit Parity Error on Instruction Fetch

A code fetch error may occur when the Instruction Fetch unit reads a word of code from
memory. The address of the parity error is determined as follows:

User Mode: SR8 contains the code segment number, and SR3 contains the virtual
address.
Kernel Mode: SR3 contains the real memory address.

Double-Bit Parity Error on Instruction Execute

An execute error can occur as the CPU executes a memory reference instruction. The
address of the parity error is determined as follows:

User Mode: SR8 contains the segment number. SR15 contains the PC value when
the memory reference instruction failed. The opcode of the instruc-
tion determines whether it is a reference to a code or data segment.
SR8 contains the code segment number, and SR9 contains the data
segment number. The virtual address is in SR3.

Kernel Mode: SRO contains value of the PC when the memory reference instruction
failed. The real address of the parity error is in SR3.

EXTERNAL INTERRUPTS

An external interrupt is an interrupt caused by a peripheral device. When this interrupt
occurs, the kernel places the I/O Interrupt Read word (IOIR) into SRO. The most
significant byte of the IOIR contains the device number of the device that generated the
interrupt; the remainder of this word varies, depending on the device. Interrupts that
occur in kernel mode are suspended until the processor returns to user mode.

SWITCH 0

This interrupt occurs when switch O on the clock board is pressed and released. The switch
0 interrupt stops all currently running processes and traps through CCB offset 424, which
typically enters the RBUG debugger.

9091 (Preliminary) R-5

3200 Processor Traps and Interrupts

f-A

POWER FAIL WARNING

The power fail warning interrupt is caused when the power supply detects that AC power is
being removed. When this occurs, the clock board sets bit 23 in the status word. The ker-
nel then loops while waiting for status bit 23 to go to zero. If the power fails completely,
the processor dies while looping. However, if the power only glitches, the clock board will
eventually drop status bit 23 and the kernel will resume from the point of interruption.

The status bits are described with the ELOGR instruction in the MAINTENANCE
INSTRUCTIONS section in Chapter 9.

TIMER INTERRUPTS

There are two types of timer interrupts:

e Timer1
e Timer 2

Every millisecond the timer 1 count and then the timer 2 count in the CCB data area are
decremented. The timer 1 or timer 2 interrupt will occur when its respective interval timer
contains a value of less than zero.

If both the timer 1 and timer 2 counter become less than zero at the same time, the timer
1 interrupt will occur first. The timer 2 interrupt will be handled when the timer 1 inter-
rupt has completed and the processor returns to user mode.

RESET

Reset is a hard-wired interrupt that occurs when the reset button on the clock board is
pressed. Pressing reset causes the processor to enter kernel mode without going through
the CCB. Once in kernel mode the PC is set to 3E000 (which contains the first page of
data from the boot media), the internal state of the CPU is cleared, and the special regis-
ters are set to the following values:

SR2 =Memory size
SR11 =1 (no CCB)
SR14 =1 (no PCB)

9061 (Preliminarvy)

3200 Processor Traps and Interrupts

TRAPS

The following events are termed traps:

Kernel Calls

Data Alignment Violation
Illegal Instruction Execution
Kernel Violation

Check Instruction Trap
Trap Instruction

Arithmetic Traps

KERNEL CALLS

The kernel call trap is invoked by a KCALL instruction from the user process to perform
some kernel operation during the normal course of execution.

This trap first sets the processor to kernel mode. The 8 bits following the KCALL opcode
are multiplied by 4. This value is added to SR11 to locate the entry in the CCB containing
the address of the kernel entry point. Execution then begins at this address.

An attempt to execute a KCALL instruction while in kernel mode results in a kernel viola-

tion trap.

DATA ALIGNMENT TRAP

LOAD and STORE instructions operating on half-word, word, and double-word operands
require that their addresses be evenly divisible by their lengths in bytes. Otherwise, the
data alignment trap is taken.

The following instructions can cause a data alignment trap:

LOAD LOADP STORE
LOADD LOADDP STORED
LOADH LOADHP STOREH

ILLEGAL INSTRUCTION TRAP

An illegal instruction trap occurs when an attempt is made to execute an undefined instruc-
tion. Upon an illegal instruction trap, the illegal opcode will be placed in SR1. The con-
tents of SR2 are dependent upon the format of the illegal instruction (determined by its
opcode group). If the instruction is a register format instruction (opcode is less than 80
hex), then SR2 will contain the value (i.e., four bits) of the Rx field and SR3 will contain
the value of the Ry field. If the instruction is a memory format instruction (opcode is equal
to or greater than 80 hex), SR2 will contain the segment number and SR3 will contain the
virtual address.

ana1 (Preliminary) A=

3200 Processor Traps and Interrupts

6-8

KERNEL VIOLATION TRAP

If a user attempts to execute a kernel instruction, a kernel violation trap is taken. Some
kernel instructions, such as READ and WRITE, can be executed by a process when the
privileged process bit is set in the traps word (see TRAPS WORD later in this chapter).
When an instruction causes a kernel violation trap, Rx remains unmodified.

The following instructions can cause a kernel violation trap:

CREGIN ITEST MOVESR TRAPEXIT
CREGOUT KCALL (in Kernel Mode) READ TWRITED
DIRT LDREGS RUM VERSION
ELOGR LUS SUS WRITE
ELOGW MACHINEID TRANS

FLUSH MOVERS TRAP

CHECK TRAP

The check trap is taken when a CHK instruction is executed under the following conditions:

Instruction Trap Condition Registers Modified
(trap on or off)
CHK Rx > Ry None
CHKI Rx < Oor None
Rx > Ry field

TRAP INSTRUCTION TRAP

There are 16 bits in the traps word which can be individually enabled or disabled in order
to set breakpoints while using the rbug, debug, or dbx debuggers. The specific bits to be
examined in the traps word are specified by the value in the Ry field of the TRAP instruc-
tion (described in Chapter 8). A trap will occur if the value specified by the Ry field of the
TRAP instruction indicates a bit among the most significant 16 bits (0..15) in the traps
word. If the bit specified by the TRAP instruction is not set in the traps word, no trap will
be taken. (The traps word is discussed in the Traps Word section.)

The TRAP instruction always traps in kernel mode.

9091 (Preliminary)

3200 Processor Traps and Interrupts

ARITHMETIC TRAPS
Arithmetic traps result when an instruction attempts an illegal arithmetic operation.

The following are arithmetic traps:

Integer Overflow
Integer Divide by zero
Real Overflow

Real Underflow

Real Divide by zero
IEEE Inexact Result
IEEE "Before" Trap

Arithmetic traps can be enabled or disabled by setting or clearing bits in the traps word.

Traps Word

The traps word for the current process is contained in SR10. The traps word also exists as
an entry in the Processor Control Block, where its bits can be enabled or disabled by means
of kernel services. This modified traps word can then be loaded into SR10 by means of a
LUS instruction. The format of the traps word is as follows:

0 15 16 17 18 19 20 21 22 23 24 25 26..30 31
trap instruction bits {OV| DO |RO{RU|DZ {Round IR| B PP

The 16 most significant bits of the traps word are used by the TRAP instruction to selec-
tively trap while executing a program. (See the Trap Instruction Trap section.)

OV enables integer overflow trap

DO enables integer divide-by-zero trap
RO enables real overflow trap

RU enables real underflow trap

DZ enables real divide-by-zero trap

Round sets the IEEE rounding modes:
00 - round to nearest
01 - round to plus infinity
10 - round to minus infinity
11 - round to zero

e IR enables the inexact result trap
e B enables "before” traps (must be 0 under ROS)
e PP enables privileged access. See User Mode in Chapter 5.

9091 (Preliminarv) £-9

3200 Processor

Integer Overflow Trap

Traps and Interrupts

The overflow trap can generate a variety of results. In all situations, the process will be
suspended if the integer overflow trap is enabled, or will continue executing if the trap is

disabled.

If, when executing an ADD, MPY or SUB instruction, an integer is too large for the Rx, the

least significant 31 bits of the result will be delivered.

If an overflow occurs during a DIV or EDIV instruction, the dividend will not be modified
and no result will be delivered.

If an overflow occurs during a REM instruction, a result of 0 is delivered.

If an overflow occurs during a ASL instruction, the result is placed in Rx.

Executing the NEG instruction with a value of -2*¥*31 will cause an overflow. If this occurs,

-2%*31 is delivered.

The table below illustrates the instructions and conditions that can cause an integer

overflow trap:

Instruction

Trap Condition

Registers Modified

ADD

ASL

DIV

SUB

Result > 31 bits
any shifted bits = Old Rx[0]

Rx=8000 0000
Ry=FFFF FFFF

Result > 31 bits
Result > 31 bits
-2**3]

Rx=8000 0000
Ry=FFFF FFFF

Result > 31 bits

Rx « least sig. 31 bits
Rx + result

None

None
Rx « least sig. 31 bits
Rx + -2%*31

Rx+—0

Rx +— least sig. 31 bits

6-10

4091 (Preliminarv)

3200 Processor Traps and Interrupts

Integer Divide By Zero Trap

An attempt to divide an integer by zero will leave Rx unmodified and the divide-by-zero
trap will be taken, if enabled.

The table below illustrates the instructions and conditions that can cause an Integer
divide-by-0 trap:

Instruction Trap Condition Registers Modified
DIV Ry =0 None
EDIV Ry =0 None
REM Ry=0 None

Before Trap

Two types of traps can occur when executing real numbers. These trap types are referred
to as before and after traps. A before trap can occur as a result of some condition before
the instruction is executed; after traps can occur after the result has been generated and
put in the Rx register. The before trap is described in this section. After traps consist of
the real number traps described in the following sections.

Before a floating point instruction is executed, its operands are checked for special numbers
(special numbers are described in the REAL NUMBERS WITH SPECIAL MEANING sec-
tion in Chapter 4). If either operand is a special number, the before is taken (if enabled)
and the value in Rx is not modified.

If the before trap is disabled, the result is determined as shown in Table 4-1 in Chapter 4
and processing continues. Note that with the before trap disabled, a denormalized number
is treated as zero and not-a-number is treated as infinity. This trap is disabled by the
Ridge Operation System (ROS).

The following instructions can cause a before trap:

DFIXR DRDIV FIXT RCOMP
DFIXT DRMPY MAKEDR RDIV
DRADD DRSUB MAKERD RMPY
DRCOMP FIXR RADD RSUB

9091 (Preliminarvy) A-11

3200 Processor

Real Divide by Zero Trap

Traps and Interrupts

An attempt to divide a real number by zero or a denormalized number causes a real divide
by zero trap (if enabled), which will suspend the process and leave Rx or RPx unmodified.
If the divide by zero trap is disabled, infinity is returned as a result and the process will
continue executing.

This trap can occur when executing the DRDIV or RDIV instructions.

Real Underflow Trap

When a floating point operation underflows, the generated result will be delivered and the
underflow trap (if enabled) will suspend the process. If the underflow trap is disabled, zero
will be returned as the result and the process will continue executing.

The following instructions and conditions can cause a real underflow trap:

Instruction

Trap Condition

Registers Modified

(trap bit on)

Registers Modified
(trap bit off)

DRADD
DRDIV
DRMPY
DRSUB
MAKEDR
RADD
RDIV
RMPY
RSUB

Result < min real
Result < min real
Result < min real
Result < min real
Result < min real
Result < min real
Result < min real
Result < min real
Result < min real

RPx « result
RPx + result
RPx + result
RPx + result
RX+—+/-0
Rx « result
Rx « result
Rx «+ result
Rx « result

RPx «~—0
RPx «~— 0
RPx «— 0
RPx«—0
Rx «— +/-0
Rx «—0
Rx +— 0
Rx + 0
Rx+~0

ana1 (Preliminarv)

3200 Processor

Real Overflow Trap

Traps and Interrupts

When a floating point number is too large for the destination register(s), the generated
result will be delivered and the overflow trap (if enabled) will suspend the process. If the
overflow trap is disabled, infinity will be returned as the result and the process will con-
tinue executing.

The only instructions not subject to this rule are the MAKEDR, (D)FIXR and (D)FIXT
instructions, which will return a fixed result with the overflow trap on or off.

The following instructions and conditions can cause a real overflow trap:

Instruction Trap Condition Registers Modified Registers Modified
{(trap bit on) (trap bit off)
DFCXR Result > integer Rx « 7FFF FFFF (if positive) same
Rx «— 8000 0000 (if negative)
DFIXT Result > integer Rx + 7FFF FFFF (if positive) same
Rx «+— 8000 0000 (if negative)
DRADD Result > max real RPx « result RPx « +/- infinity
DRDIV Result > max real RPx +— result RPx « +/- infinity
DRMPY Result > max real RPx « result RPx <« +/- infinity
DRSUB Result > max real RPx + result RPx « +/- infinity
FIXR Result > integer Rx <« 7FFF FFFF (if positive) same
Rx «~— 8000 0000 (if negative)
FIXT Result > integer Rx < 7FFF FFFF (if positive) same
Rx + 8000 0000 (if negative)

MAKEDR Result > single precision Rx «— +/- infinity same
RADD Result > max real Rx « result Rx « +/- infinity
RDIV Result > max real Rx « result Rx «+ +/- infinity
RMPY Result > max real Rx «— result Rx «— +/- infinity
RSUB Result > max real Rx « result Rx «— +/- infinity

ana1 (Preliminarv)

3200 Processor Traps and Interrupts

Inexact Real Results Trap

If a floating point result has been rounded, the inexact trap is taken if enabled. (See the
REAL NUMBER ROUNDING RULES section in Chapter 4.)

The following instructions can cause an inexact result trap:

FIXR DRADD DRSUB RDIV
FLOAT DRDIV MAKEDR RMPY
DFIXR DRMPY RADD RSUB

RECOVERY FROM REAL OVERFLOW, UNDERFLOW, AND INEX-
ACT RESULT TRAPS

When a floating point number overflows or underflows, the value delivered in the result
register has been truncated by 1 bit. Since the largest result from any 31-bit computation
is a 32-bit value (sign bit excluded), you can determine the correct result by looking at the
value in the result register and logically inserting a bit value between the sign bit and the
most significant bit of the exponent. On overflow, insert a "1" if the most significant bit
(MSB) in the exponent is "0", or a "0" if the MSB is "1". On underflow, insert a "1" if the
MSB for the exponent is "1", or a "0" if the MSB is "0".

The following examples illustrate these operations:

If you multiply 7F000000 by 40800000 an overflow will occur and the delivered result will be
00000000. Since the MSB of the exponent is "0", adding a "1" between the sign bit and the
most significant bit of the exponent will produce 80000000 (positive), which is the correct
value.

If you divide 00800000 by 41000000 an underflow will occur and the delivered result will be

7F000000. Since the MSB of the exponent is "1", adding a "1" between the sign bit and the
most significant bit of the exponent will produce the correct value, FF000000 (positive).

R-T4 an9t (Preliminarv)

Chapter 7
VIRTUAL MEMORY MANAGEMENT

INTRODUCTION

User mode processes operate on virtual memory addresses. The Ridge processor has a
unique virtual memory design made up of instructions, microcode and hardware. This sec-
tion describes the virtual memory system used by the processor.

VIRTUAL ADDRESS

Virtual addresses are generated when the processor is in user mode. Virtual addressing is
accomplished by means of a 16-bit segment number and a 32-bit virtual address.

The format of the Ridge segment number and virtual address appears below:

16 32

Segment Number Virtual Address

e 90 ceeeneenns T 19 ...t
Virtual Page No. Byte in Page

Figure 7-1. Segment Number and Virtual Address Formats
The Segment Number identifies the code or data segment for the process. The maximum
number of addressable segments is 65536, and each segment is addressable up to 4G-bytes.

The 32-bit Virtual Address consists of a 20-bit virtual page number (VPN) and a 12-bit
byte offset that identifies the address’s location within the page.

The 32-bit virtual address is generated in the instruction stream (or, "contained” within the

instruction), while the segment number is located in a special register. SR8 contains the
code segment number, and SR9 contains the data segment number.

68091 (Preliminarv) 7-1

3200 Processor Virtual Memory Management

VIRTUAL TO REAL TRANSLATION HARDWARE

The virtual address is sent to the memory controller, where the 20-bit virtual page number
and a code/data reference bit are translated to a 15-bit physical page number by a 1024-
entry cache of virtual address/real address pairs called the Translation Mapping Table
(TMT). The physical address is completed by joining the physical page generated by the
TMT with the virtual address’s 12-bit page offset.

The Ridge 3200 virtual memory hardware can be illustrated as follows:

Memory Controller

/ : Byte

7 s

virtual : . n Page
memory ! Virt.

Processor address : Page Phys. :
: Page :

= RAM

1 :
£ —» TMT
code/data bit ;.

Figure 7-2. Ridge Virtual Memory Hardware

The TMT is controlled by microcode and does not require software intervention. This
translation method results in virtual memory overhead that is roughly equivalent to the

cpu cycles lost to memory refresh for the MOS main memory parts, which is approximately
one percent.

TRANSLATION TABLES

The Ridge processor uses two mechanisms to translate virtual addresses to real addresses:

e Virtual to Real Translation (VRT) Table
e Translation Mapping Table (TMT)

Ridge’s virtual memory translation tables are the inverse of traditional page tables.
Instead of creating a page table whose number of entries is based on the virtual memory
size, Ridge creates a table whose number of entries is based on the size of main memory.
This table is called the Virtual to Real Translation (VRT) table.

The VRT is a microcode-interpreted table containing 48-bit virtual addresses that are asso-

ciated with specific pages of main memory. A VRT entry exists for each page currently in
main memory.

T2 angt (Preliminarv)

3200 Processor Virtual Memory Management

The TMT is a hardware cache for the most active VRT memory references, allowing vir-
tual (user mode) addressing to be accomplished in the same cycle time as real (kernel mode)
addressing. The TMT is bypassed for real, or non-virtual memory operations and is invali-
dated by the LUS instruction.

TRANSLATION SEQUENCE

The VRT table is accessed when the address cannot be found in the TMT. When a virtual
address is sent from the processor to the memory controller, the TMT is searched to deter-
mine the real address. If no entry is found in the TMT, a page fault occurs. The micro-
code then searches the VRT. If the VRT contains an entry for the page, it is loaded into
the TMT and the processor begins the operation over again. If the VRT does not contain
an entry for the page, the processor aborts the current instruction and a page fault trap is
taken.

See the ROS Internals Manual for more information on VRT page faults.

Ridge virtual to real translation can be illustrated as follows:

Memory Controller

virtual _ Byte |
address | s_-ii?a"gg'{-- RAM
Processor - Virt. 1
. code/data : Pa'ge Ph‘ys.
! P
:] 4 i
- \
page | _____. L
page fault | not found IMT found"
fault X
virtual \
address |
1
not T
found
Load
TMT Entry
VRT found I

Figure 7-3. Virtual-to-Real Translation Sequence

o091 (Preliminary) 7-3

3200 Processor Virtual Memory Management

VRT TABLE ORGANIZATION

The VRT is organized in main memory as a hash table of pointers which point to VRT
entries that identify the pages currently in memory. The processor uses microcode to
efficiently search the VRT without software intervention.

The VRT hash table’s address is stored in SR12 (see the SPECIAL REGISTERS section in
Chapter 5). The size of the VRT hash table is stored in special register SR13. Under ROS,

* the hash table size is determined by the size of main memory. The formula for determining
this is:

Hash Table Size = # pages of memory2

VRT Entry Format

The format of a VRT entry is as follows:

16 16
Segment No. VRT Tag Match Word
Next Entry Pointer Link Word
U| Phys. Page # TMT Tag |RI{LIWIV|D TMT Word
1 15 11 11111
Segment No. Code or data segment number.
VRT Tag High order 16-bits (0:13) of the virtual address.
Next Entry Pointer Pointer to next VRT entry.
U Unused. Must be 0.
Phys. Page Real page in memory associated with the virtual address.
TMT Tag High order 11-bits (0:10) of the virtual address.
Referenced Bit.

Locked Bit (Used only by Kernel).
Write Allowed Bit (1 = write allowed). -
Valid Bit (Must = 1).

Dirty Bit (1 = dirty).

U<dgtw

=4 9091 (Preliminarv)

3200 Processor Virtual Memory Management

VRT Translation Process
When the processor needs to search the VRT, it proceeds as follows:

The virtual address is run through a hash function which adds the current segment number
(contained in SR8 or SR9) to the virtual page number (bits 0:19 of the virtual page offset).
This sum is ANDed with the contents of VRMASK (located in SR13). The result is shifted
left 2 bits and added to the VRT table base address (located in SR12).

The 32-bit value produced by the hash function points to an address in the VRT hash table
which, in turn, points to a VRT entry in memory. (If a zero is located at the VRT hash
table address, a page fault is generated.)

Several segment number / virtual address pairs may generate the same hash value.
Because of this, VRT entries sharing the same hash function value are chained together
into a linked list. If there is no match between the segment number / virtual address value
and the first VRT entry’s Match Word, the Link Word in that entry is used to locate the
address of the next VRT entry sharing the same hash value.

The chain of VRT entries will be followed until either a matching VRT entry is found, or
the end of the chain is encountered. If a match is made between a VRT entry and the vir-
tual address, the VRT entry’s TMT Word is loaded into the TMT and the VRT entry’s
referenced bit is set. If the end of the linked list is reached without locating a matching
VRT entry, a page fault is generated.

001 (Preliminary)

3200 Processor

Virtual Memory Management

A successful search through the VRT can be illustrated as follows:

Virtual Address

SR13 —l

16 12
Segment Number Virtual Page Number | Byte in Page
16
120
VRT Entries in Memory

Hyéh
Function

7-f

VRT Hash
Table

27 | SR12

VRT Entry #2

No Match — Next Entry

> Pointer

VRT Entry #1

No Match -- Next Entry

=]

VRT Entry #n

Match
Load TMT
‘Word
\ i
Translation

Mapping Table

Figure 7-4. VRT Translation Sequence

9061 (Preliminary)

3200 Processor Virtual Memory Management

TMT TABLE ORGANIZATION

The Translation Mapping Table (TMT) consists of a cache of 1024 registers. Each register
(or entry) logically contains a virtual page number and its corresponding real page address.
512 of the TMT’s registers are reserved for code and 512 are reserved for data.

T™T
0 31
Cod‘e '
511
Data
1023

Figure 7-5. TMT Table

The addresses stored in the TMT are for the current active process. When a new process is
dispatched by means of a LUS instruction, the entries for the previous process are flushed
from the TMT. The TMT flush operation is executed in a single clock cycle.

TMT Entry Format

The format of a TMT entry is identical to that of the TMT Word in the corresponding
VRT entry. Bits 0, 27, and 28 are ignored.

Phys. Page _ Tag
1 15 11

TMT Entry

-~
-] ~

WV
1

=~ O

The TMT entry fields are described under TMT Word in the VRT Table Section.

TMT Translation Process

The TMT table translates a virtual address into a physical address in the following
manner:

Bits 20:31 of the virtual address offset determine the byte offset within the physical page
and do not require translation. Bits 11:19 are used as an index for a specific TMT entry. If
the entry is valid (determined by the V bit being set), bits 0:10 of the virtual address offset
are then compared with the TMT Tag field. If these values match, the value contained in
the Phys. Page field specifies the physical page to complete the physical address.

ana1 (Preliminarv) -

3200 Processor Virtual Memory Management

The TMT translation sequence can be illustrated as follows:

0 1011 19 20 31
Virt. Tag |[TMT Index| Byte in Page Virtual Address
: : :
: 5 !
: ! et |
| | |
; Find TMT !
] Entry I
| ! I
' ! I
' : Translation Mapping Table !
l) l
! ! !
I] I
] ' i
! 1 !
!] 1
1 1l :
! l cemoo__Mftagsmatch ____ - !
! : " use phys. page 17 |
\ code/ | : : :
! data -+s/| Phys. Page TMT Tag |/|/MVID| | :
1 bit ! !
! 4 : :
bememe-----pcOmpare _________ J ! ;
tags] I
I I
I i
I I
i I
! I
1 1
) I
I I
1 !
! !
I I
] 1
r---- '
0 ¥ 1415
. | Physical Page Byte
Physical Address Number in Page

Figure 7-6. TMT Translation Sequence

T-R anal (Praliminary)

Chapter 8
USER MODE INSTRUCTIONS

INTRODUCTION

The Ridge instruction set is divided into user mode instructions and kernel mode instruc-
tions. This chapter describes the user mode instructions. Kernel mode instructions are
described in Chapter 9.

SYNTAX CONVENTIONS

In the descriptions of instructions, the 16 general registers are referred to as Rx or Ry.
Registers 0 through 15 are referred to as RO through R15. And the program counter 18
referred to as PC.

Double words occupy register pairs. A register pair, RPx, consists or Rx and Rx+1 mod 16.
Rx holds the most significant bits of RPx, and Rx+1 holds the least significant bits. Exam-
ple: RPS refers to R5 and R6, with the most significant bits of the pair in R5, and the least
significant bits in R6. RP15 refers to R15 and RO.

Bit 0 is the most significant bit of a data type. For 32-bit data types, bit 31 is the least
significant bit. For 64-bit data types, bit 63 is the least significant bit.

Specific bits of a register or word are enclosed in brackets. For example, bit 3 of a register
is referred to as Rx[3], or Ry[3]. The symbol ".." denotes a range of bits. For example, con-
secutive bits 6 through 9 of a register are referred to as Rx[6..9], or Ry(6..9].

Some instructions can optionally specify the 4-bit value in the Ry register field instead of
the contents of Ry. This is indicated by using Ry-field instead of "Ry".

The instructions in the following sections are documented in the format shown below.

Instruction Summary:

Instruction Imstruction Syntactical

Mnemonic Function Description

TYP Typical This is a typical instruction
Operation:

The TYP instruction has no operation; it is an example of syntax conventions. -

ang1 {Preliminarv) &1

3200 Processor User Mode Instructions

MEMORY REFERENCE INSTRUCTIONS

Memory reference instructions use either the short displacement or long displacement for-
mats described in Chapter 4. These instructions either load data from memory to a regis-
ter or store data in a register to memory.

In the following descriptions of memory instructions, optional items are surrounded by
parentheses.

LOAD INSTRUCTIONS

Instruction Summary:

LOADB Load Byte Rx[24..31] + contents of (Ry +) displacement
Rx[0..23] « 0

LOADH Load Halfword Rx[16..31] + contents of (Ry +) displacement
Rx[0..15] « 0

LOAD Load Word Rx «— contents of (Ry +) displacement

LOADD Load Doubleword RPx +— contents of (Ry +) displacement

Operation:

The register Rx is loaded with the data stored in memory at the effective address. Ry
may optionally be used as an index register. The data element must be aligned on a
boundary that is a multiple of the length of the data element.

The LOADB instruction loads the byte into bits 24-31 of the specified register and sets
bits 0-23 to zero.

The LOADH instruction loads the halfword into bits 16-31 of the specified register and
sets bits 0-15 to zero.

The LOAD instruction loads the word into the specified register.

The LOADD instruction loads two words into RPx.

The instructions shown above are for loading data from data space. A load-from-code-
space form for each of the above instructions adds PC to the effective address. The
Ridge assembler, AS, distinguishes between the instruction forms by noting that the dis-

placement is in code or data space. See the AS section in the ROS Programmer’s Guide
for details.

anQ1 (Preliminarv)

3200 Processor User Mode Instructions

STORE INSTRUCTIONS

Instruction Summary:

STOREB Store Byte Rx[24..31] — (Ry +) displacement
STOREH Store Halfword Rx[16..31] — (Ry +) displacement
STORE Store Word Rx — contents of (Ry +) displacement

STORED Store Doubleword RPx = — contents of (Ry +) displacement

Cperation:

The store instructions move data from the registers into memory. The effective address
must be a multiple of the length of the data element.

The STOREB instruction places bits 24-31 of the specified register into memory at the
effective address. Other bits (0-23) are ignored.

The STOREH instruction places bits 16-31 of the specified register into memory at the
effective address. Other bits (0-15) are ignored.

The STORE instruction places the word into memory at the effective address.

The STORED instruction places the double words into memory at the effective address.
LOAD ADDRESS INSTRUCTIONS

Instruction Summary:

LADDR Load Address Rx + (contents of Ry) + constant
LADDR Load Code Address Rx <« PC (+ contents of Ry) + constant

Operation:

The load address instructions store the effective address into Rx. These instructions do
not perform memory references, but instead load a constant from the instruction
stream into a code- or data-relative register.

The LADDR instruction can be used to load two- or four-byte immediate values and, in
indexed mode, can be used to add a constant to a register.

The operation of LADDR is varied by specifying Ry or a code-relative constant. If con-
stant is data-relative, LADDR either loads register Rx with constant or loads register
Rx with the sum of the contents of Ry and constant.

If the constant is code-relative, LADDR either loads register Rx with PC + constant or
loads register Rx with the sum of the contents of Ry and PC + constant.

9091 (Preliminarv) Q2

3200 Processor User Mode Instructions

REGISTER INSTRUCTIONS

Register instructions process data taken from a specified general register. These instruc-
tions use the register instruction format described in Chapter 4. Most general register
instructions specify two registers and the result usually replaces Rx.

The following pages describe the register instructions.

INTEGER ARITHMETIC INSTRUCTIONS

Instruction Summary:

ADD Integer add Rx «+— Rx + Ry
DIV Integer divide Rx «— Rx/Ry
MPY Integer multiply Rx «— Rx*Ry
NEG Integer negate Rx + 2’s complement of Ry
REM Integer remainder Rx + Rx - ((Rx/Ry)*Ry)
SUB Integer subtract Rx « Rx- Ry

Operation:

The integer arithmetic instructions operate on 32-bit two’s complement integers.
The ADD instruction adds Rx and Ry and puts the sum in Rx.
The DIV instruction divides Rx by Ry and puts the quotient in Rx.

The MPY instruction multiplies Rx and Ry and replaces the contents of Rx with the
low order 32 bits of the product.

The NEG instruction puts the 2’s complement of Ry in Rx.

The REM instruction divides Rx by Ry and puts the signed remainder in Rx. The sign
of the remainder will be the sign of the divisor.

The SUB instruction subtracts Rx from Ry and puts the difference in Rx.

004t (Preliminary)

3200 Processor User Mode Instructions

LOGICAL OPERATOR INSTRUCTIONS

Instruction Summary:

AND Logical And Rx «— Rx AND Ry

MOVE Move Register Rx « Ry

NOT Logical Not Rx < 1’s complement of Ry
OR Logical Or Rx «+— Rx OR Ry

XOR Logical Xor Rx + Rx XOR Ry

NOP No operation Rx «— Rx

Operation:

The logical operator instructions operate on 32-bit unsigned integers in registers. The
result replaces the contents of Rx.

The AND instruction performs logical AND on the contents of Rx and Ry and puts the
result in Rx.

The MOVE instruction copies the contents of Ry into Rx.
The NOT instruction 1’s complements the contents of Ry and puts the result in Rx.

The OR instruction performs logical OR on the contents of Rx and Ry and puts the
result in Rx.

The XOR instruction performs logical XOR on the contents of Rx and Ry and puts the
result in Rx.

The NOP instruction performs no operation and is sometimes used to fill instruction
space. It supplies padding between modules to allow for proper alignment.

9091 (Preliminarv)]

pol

3200 Processor User Mode Instructions

R-6

INTEGER AND LOGICAL IMMEDIATE INSTRUCTIONS

Instruction Summary:

MOVE Move immediate Rx + Ry field
NOT Not immediate Rx « 1's complement of Ry field
ADD Add immediate Rx + Rx + Ry field
SUB Subtract immediate Rx «+ Rx - Ry field
AND And immediate Rx «— Rx AND Ry field
MPY Multiply immediate Rx «— Rx*Ry field
Operation:

The integer and logical immediate instructions share the same format and perform the
same operations as the integer arithmetic and logical operator instructions previously
described. The immediate instructions differ in that the four-bit value of the Ry field is

used instead of the contents of the Ry register. The value in Ry can be any integer
between O and 15.

6091 (Preliminarv)

3200 Processor User Mode Instructions

EXTENDED PRECISION INTEGER INSTRUCTIONS

Instruction Summary:

EADD Extended Integer Add Rx «— Rx + Ry + RO[31]
RO[31] < carry
RO[30] « overflow -

EDIV Extended Integer Divide Rx «— RPx/Ry.
Rx+1 < unsigned remainder

EMPY Extended Integer Multiply RPx <+ Rx*Ry

ESUB Extended Integer Subtract Rx «— Rx 1’s complement + Ry + RO[31]
RO[31] + carry
RO[30| +— overflow

Operation:

The extended precision integer instructions can be used to implement multiple-word
arithmetic.

The EADD instruction adds the two’s-complement integers in Rx and Ry, and at the
same time adds the carry-in from RO[31], and puts the least significant 32 bits of the
sum in Rx. The carry-out (most significant) bit is put in RO[31]. Overflow is indicated
in RO[30]. The upper 30 bits of RO are set to zero.

The typical use of the EADD instruction to implement multiple-word arithmetic is used
as follows: RO[31] is set to zero. The least significant words are EADDed, the next-
most significant words are EADDed, and so on to the most significant words. Overflow
can then be checked after the last EADD.

The EDIV instruction divides the 64-bit unsigned contents of RPx by the unsigned 32-
bit contents of Ry, and places the unsigned quotient in Rx and the unsigned remainder
in Ry.

The EMPY instruction takes two unsigned 32-bit integers and produces an unsigned
64-bit product and places it in RPx.

The ESUB instruction one’s complement subtracts the two’s-complement integers in Rx
and Ry, and at the same time adds the carry-in from RO[31], then puts the least
significant 32-bit two’s complement difference in Rx. The carry-out (most significant) bit
is put in RO[31]. Overflow is indicated in RO[30]. The upper 30 bits of RO are set to
Zero.

The typical use of the ESUB instruction to implement multiple-word arithmetic is used
as follows: RO[31] is set to one. The least significant words are ESUBed, the next-most
significant words are ESUBed, and so on to the most significant words. Overflow can
then be checked after the last ESUB.

9091 (Preliminary) Q.7

3200 Processor User Mode Instructions

0

REAL INSTRUCTIONS

Instruction Summary:

FIXR Round Real to Integer Rx +«+ ROUND Ry
FIXT Truncate Real to Integer Rx <+ TRUNC Ry
FLOAT Convert Integer to Real Rx + FLOAT Ry
MAKERD Convert Real to Double Real RPx «— DOUBLE Ry
RADD Real Add Rx <« Rx+Ry
RDIV Real Divide Rx <« Rx/Ry
RMPY Real Multiply Rx <+ Rx*Ry
RNEG Real Negate Rx <+ -Ry
RSUB Real Subtract Rx <+ Rx-Ry
Cperation:

These instructions operate on 32-bit real numbers.

The FIXR instruction converts the single-precision real contents of Ry into a two’s-
complement integer in Rx. Values are rounded as described in the AS section of the
RQOS Programmer’s Guide.

The FIXT instruction converts the single-precision real number in Ry into a 32-bit
integer in Rx. All bits to the right of the decimal point are lost.

The FLOAT instruction converts the integer in Ry into a real number in Rx and rounds
if necessary.

The MAKERD instruction converts the real number in Ry into a double precision real
number in RPx.

The RADD instruction adds the 32-bit real numbers in Rx and Ry and puts the sum in
Rx. :

The RDIV instruction divides the 32-bit real number in Rx by the 32-bit real number in
Ry and puts the result in Rx.

The RMPY instruction multiplies the 32-bit real numbers in Rx and Ry and puts the
product in Rx.

The RNEG instruction negates the real number in Ry and puts the result in Rx.

The RSUB instruction subtracts the real number in Ry from the real number in Rx and
puts the difference in Rx.

ana1 (Preliminarv)

3200 Processor

DOUBLE REAL INSTRUCTIONS

Instruction Summary:

DFIXR Round Double Real to Integer Rx
DFIXT Truncate Double Real to Integer Rx
DFLOAT Convert Integer to Double Real RPx
DRADD Double Real Add RPx
DRDIV Double Real Divide RPx
DRMPY Double Real Multiply RPx
DRNEG Double Real Negate RPx
DRSUB Double Real Subtract RPx
MAKEDR Round Double Real to Real Rx
Operation:

User Mode Instructions

— ROUND RPy

+— TRUNC RPy

«— DOUBLE FLOAT Ry
+— RPx + RPy

«— RPx/RPy

+— RPx*RPy

+— -RPy

+<— RPx - RPy

+— REAL RPy

The double real instructions perform the same operations as the real instructions previ-
ously described, except the double real instructions operate on double real format data,

working on register pairs.

9091 (Preliminarv)

lfJ
o]

3200 Processor User Mode Instructions

BIT-ORIENTED INSTRUCTIONS

>

Instruction Summary:

CBIT Clear Bit RPx[Ry mod 64} «+— 0

SBIT Set Bit RPx[Ry mod 64] « 1
TBIT Test Bit Rx[31] « 1if RPx [Ry mod 64} =1
0 if RPx [Ry mod 64| =0
Rx[0..30] «— 0
Operation:

The CBIT instruction specifies a bit number from 0-63 in Ry and the specified bit of
RPx is set to zero.

The SBIT instruction specifies a bit number from 0-63 in Ry and the specified bit of
RPx is set to 1.

In the TBIT instruction Ry specifies a bit number from 0-63, which is tested in RPx.
The tested bit is duplicated in bit 31 of Rx, and bits 0-30 of Rx are set to zero.

TEST INSTRUCTION

Instruction Summary:

TEST Test Values Rx + 1 1if Rx relop Ry is true
0 if Rx relop Ry is false
or
Rx — 1 if Rx relop Ry-field is true
0 if Rx relop Ry-field is false

Operation:

The TEST instruction uses a relational operator (relop) to compare two values and sets
Rx to either O or 1, depending on the result of the test. The second operand is either
the contents of the register Ry, or the 4-bit value of the Ry register field. The com-
parison is done using signed two’s complement arithmetic. The comparison relop may
be one of the following: equal to (=), less than (<), greater than (>), not equal to (<>),
less than or equal to (<=), or greater than or equal to (>=).

Q.10 0091 (Preliminarv)

3200 Processor User Mode Instructions

COMPARE INSTRUCTIONS

Instruction Summary:

LCOMP Logical Compare Rx + -1, if Rx <Ry
Rx «+— 0, if Rx =Ry
Rx «— 1,if Rx > Ry

DCOMP Double Integer Compare Rx + -1, if RPx < RPy
. Rx « 0, if RPx =RPy
Rx « 1, if RPx > RPy

RCOMP Real Compare Rx + -1, if Rx <Ry
Rx « 0, if Rx =Ry
Rx «— 1,if Rx > Ry

DRCOMP Double Real Compare Rx « -1, if RPx < RPy
Rx « 0, if RPx =RPy
Rx « 1, if RPx > RPy

Operation:

The LCOMP instruction compares registers Rx and Ry using unsigned arithmetic.
Register Rx is set to -1, 0, or +1, depending on whether Rx is less than, equal to, or
greater than Ry, respectively.

The DCOMP instruction compares register pairs RPx and RPy using two’s complement
arithmetic. Register Rx is set to -1, 0, or +1, depending on whether RPx is less than,
equal to, or greater than RPy, respectively.

The RCOMP instruction compares real numbers in registers Rx and Ry using sign mag-
nitude form. Register Rx is set to -1, 0, or +1, depending on whether Rx is less than,
equal to, or greater than Ry, respectively.

The DRCOMP instruction compares double real numbers in register pairs RPx and RPy

using sign magnitude form. Register Rx is set to -1, 0, or +1, depending on whether
RPx is less than, equal to, or greater than RPy, respectively.

ana1 (Preliminary) .11

3200 Processor User Mode Instructions

SHIFT INSTRUCTIONS

The shift instructions take the shift count from the contents of register Ry or from the 4-
bit value of the Ry field. All shift execution times are independent of the number of bits
shifted due to the use of the barrel shifter.

Single register shifts shift the value in Rx from 0 to 31 bits. Double register shifts shift the
value in RPx from O to 63 bits. Only the low order 5 bits (6 bits for double shifts) of Ry
are used as the shift count. The immediate shift forms allow shifts from O to 15 bits using
the four bits of Ry field as the shift count.

Instruction Summary:

CSL Circular Shift Left Rx circularly shifted left by Ry or Ry-field
LSL Logical Shift Left Rx shifted left by Ry or Ry-field

LSR Logical Shift Right Rx shifted right by Ry or Ry-field

ASL Arithmetic Shift Left Rx shifted left by Ry or Ry-field

ASR Arithmetic Shift Right Rx shifted right by Ry or Ry-field,

. filling with sign bit
DLSL Double Logical Shift Left RPx shifted left by Ry or Ry-field
DLSR Double Logical Shift Right RPx shifted right by Ry or Ry-field

Operation:

The CSL instruction circularly shifts bits left in Rx. Bits shifted out of bit 0 are shifted
into bit 31.

The LSL instruction shifts bits left in Rx and fills emptied positions with zeros.

The LSR instruction shifts bits right in Rx and fills emptied positions with zeros.
The ASL instruction shifts left.

The ASR instruction shifts right and fills the left bits with duplicates of the sign bit.

The DLSL and DLSR instructions correspond to LSL and LSR, except that RPx is
treated as a single 64-bit register.

R-12 a0a1 (Preliminarv)

3200 Processor

User Mode Instructions

SIGN EXTEND INS TRUCTIONS

Instruction Summary:

SEB Sign Extend Byte
SEH Sign Extend
Halfword
Operation:

Rx[0.23] < Ry[24],
Rx[24..31] « Ry|24..31]
Rx[0..15] « Ry([16],
Rx[16..31] « Ry|[16..31]

The sign extend instructions change 8- or 16-bit integers into full word integers.

The SEB instruction makes bits 0-23 in register Rx the'same as bit 24 in register Ry.

Bits 24-31 in Ry are copied to Rx.

The SEH instruction makes bits 0-15 in register Rx the same as bit 16 in register Ry.

Bits 16-31 in Ry are copied to Rx.

201 (Preliminarv) Q.13

3200 Processor User Mode Instructions

PROGRAM CONTROL INSTRUCTIONS

Program control instructions consists of branch, loop, and subroutine call/return instruc-
tions.

BRANCH INSTRUCTIONS

Branch instructions use either the short or long displacement memory address instruction
formats described in Chapter 4. When the least significant bit of the displacement is set,
the branch is predicted to be taken.

Branch instructions either switch execution to the instruction at the branch target address,
or have no effect. If the branch instructions have no eflect then the next sequential instruc-
tion following the branch is executed. Branch instructions affect the value of the program
counter (PC) as shown below.

Next PC «— PC + branch instruction length . (next sequential instruction)
or
Next PC « PC + displacement (branch target address)

The branch instructions use program counter (PC) relative addressing, which allows self-
relocating code. The target address of the branch instruction is computed by adding the
32-bit signed displacement (sign extended to 32 bits in the short form case) to the PC at
the beginning of the branch instruction.

The least significant bit of the displacement field is used by the processor to predict
whether or not the branch will be taken. If the bit is one, the processor will prefetch the
instruction at the target address. If the bit is zero, the processor will prefetch the next
sequential instruction. If the bit is incorrect, the program will execute correctly, but the
next instruction after the branch will be delayed by two to four cycles to fill the pipeline.

Instruction Summary:
BR Unconditional Branch PC <« PC + displacement

BR Conditional Branch PC «— PC + displacement, if Rx relop Ry
or Rx relop Ry-field

Operation:

The unconditional branch instruction changes PC to the target address, PC + displace-

ment. The branch prediction bit is ignored and the target instruction is always pre-
fetched.

The conditional branch instruction compares Rx to the contents of Ry or to the 4-bit
value of the Ry-field, then may conditionally branch to the target location. The condi-
tional branch instruction comparisons are made using two’s complement arithmetic.
The comparison uses the relational operator (relop), which may be: equal to (=), less
than (<), greater than (>>), not equal to (<>), less than or equal to (<=), or greater
than or equal to (>=).

Q.14 anat (Preliminary)

3200 Processor User Mode Instructions

LOOP CONTROL INSTRUCTION

Instruction Summary:

LOOP Increment and Branch Rx + Rx + Ry-field
PC « PC + displacement, if Rx <0,

Operation:

The LOOP instruction is similar to the conditional branch described above. The LOOP
instruction adds the 4-bit value of the Ry field to the contents of Rx and branches to
the target location if the result is less than zero. If Rx is equal to or greater than zero,
the next sequential instruction is executed.

an91 (Preliminary)

n
1

vy
I

3200 Processor User Mode Instructions

SUBROUTINE CALL AND RETURN INSTRUCTIONS

There are three subroutine call and return instructions: call subroutine, call subroutine
register and return from subroutine. ’

Call Subroutine Instruction
Instruction Format:
The call subroutine instruction uses the short and long displacement memory address

instruction format shown below. The second operand field, Ry, is not used in this
instruction.

Short displacement memory address

CALL Rx | Do° displacement
used

Long displacement memory address

CALL Rx nov displacement
used
0 7 8 1112 1516 31 47

Instruction Summary:
CALL Call Subroutine Rx <« PC + instruction length,
PC + PC + displacement
Operation:
The call instruction places the address of the next instruction in Rx and transfers exe-
cution to the target location (PC + displacement). Short displacement memory

addresses are sign extended. Like the branch instructions, the call instruction uses pro-
gram counter (PC) relative addressing, which allows self-relocating code.

Q-18 9091 (Preliminarv)

3200 Processor User Mode Instructions

Call Subroutine Register and Return Instructions

The CALLR and RET instructions use the register instruction format described in Chapter
4. :

Instruction Summary:

CALLR Call Subroutine Register Rx « PC + 2
PC «~ PC + Ry
RET Return from Subroutine Rx «+~ PC + 2
PC «— Ry
Operation:

The CALLR instruction stores the address of the next sequential instruction, PC + 2 in
Rx, and branches to the location PC + Ry.

The RET instruction stores the address of the next sequential instruction, PC + 2 in Rx
and branches to the absolute address in Ry. The main use of RET is in returning from
subroutines, but it can also be used as a call to a subroutine when the absolute rather
than the relative address is known. Care must be taken in using the RET instruction
for this purpose so that the code remains self-relocating. ‘

9091 (Preliminarv) R-17

3200 Processor User Mode Instructions

bl

TRAP INSTRUCTIONS

Trap instructions can be used by a user process to trap to the kernel and execute specific
event handling routines in real memory.

Instruction Summary:

CHK Check Rx range Trap if Rx > Ry

CHKI Check Immediate Rx range Trap if NOT (0 <= (Rx) <= Ry)

TRAP Trap Trap if Ry enabled in traps word

KCALL Kernel call Trap to specified location
Operation:

J1R

The CHK and CHKI instructions check whether Rx is larger than Ry. If so, the

instruction performs no operation, otherwise the instruction traps to the kernel (see the
CHECK TRAP Section in Chapter 6)

The TRAP instruction is used to set breakpoints in debuggers, and other purposes that
require user-specified traps to be selectively enabled or disabled.

There are 16 instruction traps which can be individually enabled or disabled in order to
set breakpoints while using the rbug, debug, or dbx debuggers. The specific trap to be
taken is specified by the Ry field of the TRAP instruction. When the TRAP instruction
is executed, its Ry field is loaded into SR3. A trap will occur if the 4-bit value in SR3
indicates a set bit among the most significant 16 bits (0..15) in the traps word (SR10). If
the bit specified by the TRAP instruction is not set in the traps word, no trap will be
taken. (See the TRAP INSTRUCTION TRAP in Chapter 6.)

The KCALL instruction is used to trap to specific memory locations in order to perform
some kernel operation, such as process creation or modification of a particular data
structure. The CPU Control Block (see Chapter 6) contains KCALL vectors to 25572
memory locations. The kernel operation to be performed is specified by the KCALL
instruction followed by a number that identifies that operation. (See the KERNEL

CALLS section in Chapter 6 and the Ridge Internals Manual for more detail on the
KCALL instruction.)

aNA1 (Praliminare)

Chapter 9
KERNEL MODE INSTRUCTIONS

INTRODUCTION

Kernel mode instructions handle process communication, process creation and deletion,
interrupts, traps, and faults. Kernel mode is used to provide all privileged activity that
involves data sharing or synchronization.

As described in Chapter 5, kernel mode is distinguished from user mode in that real, rather
than virtual, memory addresses are used. When in kernel mode, external interrupts are dis-
abled and a broader range of instructions are available.

Some of the kernel mode instructions discussed in this chapter can be executed in user
mode if the privileged process bit is set (see Chapter 5). However, when executed in user
mode, kernel instructions will use virtual addresses and all interrupts will be enabled. As a
consequence, it is impractical to execute some of the kernel instructions in user mode.

The same syntax conventions described in the SYNTAX CONVENTIONS section in
Chapter 8 are used for the instructions discussed in this chapter.

STATE SWITCHING INSTRUCTIONS

These instructions are executable in kernel mode only and cannot be executed in user mode
by the privileged process.

Instruction Summary:

SUS Save User State PCB «+ PC, process clock, (Ri)
LUS Load User State (SRi) « PC, code & data seg #’s,
traps word
LDREGS Load Registers (Rx) «— (Ry)
RUM Resume User Mode user PC + (SR15)
MOVE Move Gereral to Special Register Rx < Ry;
(SR1) « Ry;
- Rx « (SR2)

8091 (Preliminarv) 9.1

3200 Processor Kernel Instructions

Operation:

The SUS instruction stores the user program counter and the process clock into the
PCB pointed to by special register SR14. In addition, the general-purpose registers are
stored beginning with Rx and ending with Ry. The instruction can store from 1 to 16 of
the general-purpose registers.

If the Rx specification is greater than Ry then only Rx is stored (ie., register numbers
do not wrap around). If SR14 = 1, no registers are stored and the instruction performs
no operation.

The LUS instruction is the inverse of the SUS instruction. It loads the user program
counter, the code and data segment numbers, and the traps word from the PCB pointed
to by SR14 into SR15, SR8, SR9, and SR10, respectively. From 1 to 16 general registers
can also be loaded.

If Rx is greater than Ry, only Rx is loaded (i.e., register numbers do not wrap around).
The instruction cache and translation mapping table (see the section of virtual memory
which follows)) are flushed. If SR14 = 1, no registers are loaded and the instruction
performs no operation.

The LDREGS instruction loads from 1 to 16 registers from the PCB pointed to by
SR14. It provides a faster method for loading registers than the LUS instruction and is
useful in restoring the user state after a kernel operation that does not cause a process
context switch.

The LDREGS instruction differs from LUS in that the program counter, code and data
segments, and traps word are not read from the PCB, and the instruction cache and
translation mapping table are left unchanged.

If Rx is greater than Ry, then only Rx is loaded (i.e., there is no register wrap around).
If SR14 =1, no registers are loaded and the instruction performs no operation.

The RUM instruction switches the processor from kernel to user mode, loading the pro-
gram counter from SR15. The user program begins executing at the location indicated
in SR15.

If SR14 = 1, the processor pauses until an interrupt occurs. At this point the kernel is
entered, and SRO is set to the kernel’s program counter. The kernel interrupt handler
may then LUS and RUM to a new user program, or if SR14 remains set to one, the LUS
has no effect and the RUM again causes the processor to pause.

The MOVE instruction moves a general-purpose register to a special-purpose register,
Or vice-versa.

anal (Preliminary)

3200 Processor

MAINTENANCE INSTRUCTIONS

Kernel Instructions

Maintenance instructions are register format instructions that use the Ry field as part of
the opcode ("subop"). In these instructions, Rx or RPx is used for both input and output.
These instructions are kernel mode instructions that can also be executed in user mode
with the privileged process set.

Instruction Format:

MAINT

Where:

0

ELOGR
ELOGW
TWRITED
FLUSH
TRAPEXIT
ITEST
MACHINEID
VERSION
CREG

RDLOG

78 11 12 15
opcode Rx Subop
Subop Maintenance
(decimal) | Instruction

0 ELOGR
1 ELOGW
5 TWRITED
6 FLUSH
7 TRAPEXIT
8 ITEST

10 MACHINEID

11 VERSION

12 CREG

13 RDLOG

Instruction Summary:

Read Processor Status

Write Memory Error Logging Data
External Interrupt Enable/Disable
Flush Translation Buffer

Exit From Trap Instruction
Interrupt Test

Machine Identification Word
Microcode Version Number

Clock Register In/Out

Read Memory Error Logging Data

9091 (Preliminarv)

Rx +— processor status
Rx — error logging data
Rx — interrupt mask

RPx « interrupt, IOIR data

Rx « machine ID

Rx «— microcode version #
Rx[30,31] = clock board output reg.
Rx—+1 « clock board input reg.

Rx « error logging data

Q.3

3200 Processor Kernel Instructions

a4

Operation:

ELOGR

The ELOGR instruction reads the processor status, regardless of the input Rx value.

Bits 16..31 of Rx are the status bits used by the processor. Only bit 23 (the power fail
warning flag) and bit 31 (loaf enable) can be interpreted, the rest are manipulated by
microcode and will always be zero when the ELOGR instruction is executed.

ELOGW

The ELOGW instruction writes up to 16 single-bit errors into a logging area in
hardware. Before execution of ELOGW, the low order bit in the Rx register will con-
tain a 1 if the entire logging area is to be reset. A zero in bit 31 indicates no reset.

TWRITED

The TWRITED instruction enables or disables external interrupts from I/O devices.
Two masks, Mask 1 and Mask 2, control the two daisy-chained signals discussed in
Chapter 3.

Bits 24-25 control Mask 1. 01 sets and 00 resets the mask.
Bits 26-27 control Mask 2. 01 sets and 00 resets the mask.
Bits 28-29 must be 1’s to set or reset either mask.

Mask 2 controls IOIREQ2, which is used by real-time devices. Mask 1 controls
IOIREQ1, which is used by all other non-real-time devices.

When Mask 1 is set, all interrupts over IOIREQL are ignored. When Mask 2 is set, all
interrupts over IOIREQ1 and IOIREQ2 are ignored. When neither mask is set and a
real-time I/O board asserts an JOIREQ? signal, all interrupts requested over IOIREQ1
are ignored, as are IOIREQ2 signals from any device of a lower priority than that of
current interrupting device. Devices asserting an IOIREQ2 with a higher priority than
that of the current interrupting device are acknowledged.

FLUSH

The FLUSH instruction causes the entire cache (both code and data) to be flushed.
This instruction may be executed in user mode with the privileged process bit set as
well as in kernel mode.

9091 (Preliminary)

3200 Processor Kernel Instructions

TRAPEXIT

The TRAPEXIT instruction sets PC to the value contained in SRO and begins executing
at that address.

The TRAPEXIT instruction is used by the kernel to resume execution in the kernel
after hitting a TRAP instruction (see Chapter 8). The TRAP instruction is used to set
breakpoints, TRAPEXIT is used to exit kernel breakpoints, and resume user mode
(RUM) is used to exit user breakpoints. (The RUM instruction clears kernel mode, so it
can’t be used to resume executing in the kernel.)

The TRAPEXIT instruction flushes the cache and the TMT. An attempt to execute
this instruction when not in kernel mode results in a kernel violation trap.

ITEST

The ITEST instruction is used in kernel mode to test for the presence of an interrupt.
ITEST returns the I/O Interrupt Read (IOIR) word if an interrupt is present in Rx+1
and Rx is set to zero. If there is no interrupt, Rx is set to one and Rx+1 is left
unchanged.

Bits 0..7 of the I/O word contain the interrupting device number and the remaining bits
contain device dependent data.

MACHINEID -
The MACHINEID instruction is used to read the serial number assigned to the machine.

The number returned in Rx contains the encoded serial number, the machine model
number, and the maximum user configuration.

The two 8-bit values: Rx[8..15] and Rx[24..31] can be joined together to determine a 16-
bit model number. Adding this value to a serial number base produces the serial
number of the machine. The maximum user configuration is determined by bits
Rx[20..23]. If Rx[20..23] are all 1’s, there is no maximum user configuration.

Specific hardware options can be determined by bits Rx[28..31]. These are:

31 = Not used. (Formerly copy-on-write
memory controller present. Obsolete,
but still returned by some versions
of microcode.)

30 = Enhanced floating point present.
(Set to 1 for 3200 processor.)

29 = old/new VRT layout. Old VRT was limited
to 8 Mbytes of memory. New VRT is limited
to 128 Mbytes.

28 = 3200 processor present.

60481 (Preliminarv) a-5

3200 Processor Kernel Instructions

VERSION

The VERSION instruction returns the current microcode version number in Rx.

CREG

The CREG instruction is used to both write data to the clock board output register and
to read data from the clock board input register.

The processor initiates requests by setting bit 31 in the Rx register. Bit 30 in the Rx
register is used for data-out.

The clock board acknowledges requests by setting bit 31 in register Rx+1. Bit 30 in the
Rx+1 register is used for data-in.

Acknowledge and data-in bits are latched before the request and data-out are given to
the clock board.:

RDLOG

The RDLOG instruction either reads the contents of any of the 16 logout data locations
or returns the number of valid logout entries.

To return the number of valid logout entries, bit O must be turned on. All other bits in
Rx are ingored.

To retuin the contents of a logout area location, the low order 4 bits of Rx must con-
tain the desired logout area address and bit O must be turned off.

After execution, Rx will contain the logout data from the specified location, or the
number of valid logout entries.

9091 (Preliminary)

3200 Processor Kernel Instructions

VIRTUAL MEMORY SUPPORT INSTRUCTIONS

These instructions are executable in kernel mode only and cannot be executed in user mode
by the privileged process.

Instruction Summary:

TRANS Translate Virtual Address (Rx) + Real RPy
DIRT Translate Virtual Address and Mark Page Dirty (Rx) +— Real RPy
Operation:

The TRANS instruction takes the segment number in Ry and the virtual address in Ry’
and replaces Rx with the corresponding real address. If the address is not translatable
with the current Virtual to Real Translation (VRT) table, then Rx is set to -1. If the
address is translatable, then the reference bit is set in the VRT for this address. (The
VRT is discussed in Chapter 7.)

The DIRT instruction is the same as the TRANS instruction except that the modified
bit in the VRT for the page containing the virtual address is also set.

INPUT/OUTPUT INSTRUCTIONS

I/O is accomplished by the READ and WRITE instructions. These instructions can be exe-
cuted in user mode when the privileged process bit is set.

Register formats for read, write, and I/O status words are as follows:

Instruction Formats:

READ Instruction

0 7 8 31
Ry I/O Read - ’ : Sent to
Address device # device dependent data Devi
. , evice
Word
R 0 31
e 1/O Read data read from device
Data Word

ana1 (Preliminary) a.-T

3200 Processor Kernel Instructions

WRITE Instruction

i 31
o I/O N : s Sent to
Address device # device dependent data Device
Word
Rx ‘ 0 31
])I?{g VV\GISES data written to device

I/O STATUS returned in Rx

0 30 31
TN

"0" is ok, "1" is device timed out and did not respond.
"0" is ok, "1" is I/O device not ready to accept command.

Instruction Summary:

READ Read Data from Device device <« IORA from (Ry),
(Rx) «— status from device,
(Rx+1) < IORD from device

WRITE Write Data to Device device <« IOWA from (Ry) and
IOWD from (Rx),
(Rx) « status from device
Operation:

The READ instruction sends the contents of Ry as an I1/O read address (IORA) word to the
device number specified in the most significant byte of Ry. (The least significant bytes of Ry
are device dependent data.) Rx is set to the I/O status and Rx+1 (mod 16) contains the
I/O read data (IORD) word from the device.

The WRITE instruction sends Ry as an I/O write address (IOWA) word and Rx as an I/O

write data (IOWD) word to the device specified in the most significant byte of Ry. Rx is
then set to the I/O status.

G-R an91 (Preliminarv)

Appendix A
INSTRUCTION INDEX

In the following instruction definitions, disp refers to a 16- or 32-bit displacement, val
refers to a 4-bit value, and num refers to an 8-bit value.

ADD Rx, Ry Integer Addooceeiiieciiiniecieniceinnreie e e 8-4
ADD Rx, val Add IMMEAIBEE .eevieriiriirieenriieeeereeeiirrtrreeessesnceeesssssinanssesasaseessesnes 8-6
AND Rx, Ry Logical AN ...cverveerieceereenmniininiiiniiieneseerens et a s as e sneens 8-5
AND Rx, val And IMMEAIALE .vvvieerrrrrererirnreieerireeererreesesseessieesesiireeesssareesessnnnenes 8-6
ASL Rx, Ry Arithmetic Shift Left ...ccoccevverriennienniennienieieirciinncnncnenesnee, 8-12
ASR Rx, Ry Arithmetic Shift Right ..c.cccceviinniiiiiiniininenine 812
BR Rx relop Ry, disp Conditional Branchceeeeeiiciiniiiiinieni e 8-14
BR disp Unconditional Branchccceevveevieiveencnnennienenecrniccnncnnnens 8-14
CALL Rx, disp Call SUDFOUINE vvvvveriieirreniieeeerreeeereeretneeee e sesiaresessnraeesssrnnns 8-16
CALLR Rx, Ry Call Subroutine RegiSterccccevveereevreereriinieiiiinienene i 8-17
CBIT Rx, Ry CIEAT Bt civvveriiciriieiiireeercriaescesieresesvasssssesesessueesassesessossaneessssenens 8-10
CHK Rx, Ry Check RX TANEE ..iceerrvrerrerreccrinrisiinieiicsssiite it ssesresssessnessnens 8-18
CHKI Rx, val Check Immediate Rx rangeccccovevvvrienenicninseneneccneccnennen. 8-18
CREG Rx Clock Register IN/OUb ..ccceereerevcnisinrininiiseiiiisereseseeierens 9-6
CSL Rx, Ry Circular Shift Left ..ccoceeoiieireneeeeiircirrneeeeererncesneccreesesnes eveeeeereaas 812
DCOMP Rx, Ry Double Integer COmMPATe .cccccecivvrecrnrmnmeniiiiniiieeienne e, 811
DFIXR Rx, Ry Round Double Real to Integerccoeverereeerecrreerneeecneeneceennnnnes 8-9
DFIXT Rx, Ry Truncate Double Real t0 INteger ...cocevevreevivcvnccenincennineninerinne, 8-9
DFLOAT Rx, Ry Convert Integer to Double Real ..ooccovvvinriiiiiieiiiiiiines 8-9
DIRT Rx, Ry Translate Virtual Address and Mark Page Dirtyccoueeeeeee 9-7
DIV BEx, Ry Integer divide ...ocecceercrremeerircininiiiises sttt 84
DLSL Rx, Ry Double Logical Shift Left .occevvercercnnnnceineniiicnenceecneneneens 8-12
DLSR Rx, Ry Double Logical Shift RIght .ccecocevuiiisuiniiriiriiininccnieccnv e, 812
DRADD Rx, Ry Double Real Addcoveeieeieiireceeccerreceeeceeeretesreeeeeeseeessesecsecanes 89
DRCOMP Rx, Ry Double Real COmMPATE ..ceeeeeceiercerrecercrreersriecseeisetisseessesseesssanesennee 811
DRDIV Rx, Ry Double Real Divide ..cococeeivrceeciiincrrenerrscccincsinsinniensssnesssssscsssnnes 8-9
DRMPY Rx, Ry Double Real MULIPLY .iicieeceecrererreernercereerenesesseeneracsnsesnssnmsneesscones 89
DRNEG Rx, Ry Double Real Negateccccvveeecieeniccienncnienicniinicseceneeveseneennees 8-9
DRSUB Rx, Ry Double Real SUbtract ..cccceoveeeereeccmeenciiineenceceeciaeeccssnaeenenns 89
EADD Rx, Ry Extended Integer Add .coocereevvoivneroerniinrineccecrce e 8-7
EDIV Rx, Ry. Extended Integer Divide .ccoeeeecevveeineiinniinncinniicnrrensnreseeesenens 87
ELOGR Rx Read Processor Statls .eeecceveceeecrcceserssrccerecneinssececsssereeesesserssssasens 9-4
ELOGW Rx Write Memory Error Logging Dataccvnvvnvicnnnicninininnninnnn. 9-4
EMPY Rx, Ry Extended Integer MUultiply ...cccccceneerecrcosenscnicnsnnsnmsncesnecsensnss 8-7
ESUB Rx, Ry Extended Integer Subtractcccovvviiniiniiiinnccincnnicneennrenee. 8-7
FIXR Rx, Ry Round Real t0 INTEEET ..cccvvreeveerrercvmecncsseesenicnersnecsnee s 8-8
FIXT Rx, Ry Truncate Real to INTEET cccvvveiieeirieniiniencncrnncereecrnee 8-8
FLOAT Rx, Ry Convert Integer to Realccccoeviveirvcinvviiivnininniniinnccnncnnccneens 8-8
FLUSH Flush Translation Buffercoocoeeeeeeicoiennciiniiiiiiiccceccinennen, 9-4
ITEST Rx TNEEITUPL TSt woouereiiecieeieererie e ceseetesneeet et s e ane st e sessnee s 9-5
KCALL num Kernel Call cuvviiierieiiererenrrereeeaeesceenaeestesne st esteaesan s snn e sasenaens 8-18
LADDR Rx [Ry] ,disp L0ad Data AdATeSS ...ccoveeverereererecieeeereeneneesesesesseeeserensesseessseessoees 8-3
LCOMP Rx, Ry Logical COmMPATe ..ccocieveeiiitiiiiiticieeeneer e 811
LDREGS Rx, Ry Load RegISTEIS ..ccvevrrreicrecciiiiiiiieicneesitee e enras e enne e reeeens g9-1
LOAD Rx [Ry] ,disp L0ad WOTA ceieiiiieereiererrere et e ae sttt e seesteseesaeesesmeneomensaeseresanas 8-2

9091 (Preliminary) A-1

LOADB Rx [Ry] ,disp
LOADD Rx [Ry] ,disp
LOADH Rx [Ry]| ,disp
LOOP Rx, val, disp
LSL Rx, Ry

LSR Rx, Ry

LUS Rx, Ry
MACHINEID
MAKEDR Rx, Ry
MAKERD Rx, Ry
MOVE Rx, Ry
MOVE Rx, val
MOVE Rx, SRy
MOVE SRx, Ry
MPY Rx, Ry
MPY Rx, val
NEG Rx, Ry
NOP

NOT Rx, Ry
NOT Rx, val

OR Rx, Ry
RADD Rx, Ry
RCOMP Rx, Ry
RDIV Rx, Ry
RDLOG Rx
READ Rx, Ry
REM Rx, Ry
RET Rx, Ry
RMPY Rx, Ry
RNEG Rx, Ry
RSUB Rx, Ry
RUM

SBIT Rx, Ry

SEB Rx, Ry

SEH Rx, Ry
STORE Rx, disp
STOREB Rx, disp
STORED Rx, disp
STOREH Rx, disp
SUB Rx, Ry

SUB Rx, val

SUS Ex, Ry
TBIT Rx, Ry
TEST Rx relop Ry
TRANS Rx, Ry
TRAP wal
TRAPEXIT
TWRITED Rx
VERSION Rx
WRITE Rx, Ry
XOR Rx, Ry

A2

Load BYte .cccccvierviieniiererrenreenersiitissnissnesensneesinssersssssinessanes 8-2
Load DoubleWordcccieeeiiiinienniieenniireneeensieensnneceersennee e 8-2
Load HalfWword ...c..cccoveeviercieeneenieeniicsnicniessiesniesnnesssnnesenees 8-2
Increment and Branchcivvercvenniennenencenn, 8-15
Logical Shift Leftccovcvverrrceriiiiniiiiiiiiiiriiieienesisesinenns 8-12
Logical Shift Right ...ccccvvevvenniiniiiniicirieeeeee, 8-12
L0ad USEr SEate ..occvvecreeerierieeeeeeennnsnieesssnennessseecssseresssnssssssneennns 9-1
Machine Identification WOrdcccccceeeeviininiiinnnineinnnneneenensinnna. 9-5
Round Double Real to Realcccvcivveecnencniinnininiimnnennieninnne 8-9
Convert Real to Double Realcococevciviviinninnniinininneennnn. 8-8
MOVe REGISLET cvcvereriiiriiniciiiiinirinniiinirennriersinstseseesscssesssnnsssasenss 8-5
Move IMMEAIALE .icvvveeerreereeerrerecerreerserereriesessreessrneessresessaanessranens 8-6
‘Move General Register to Special Registerccocooovevnennnnine 9-1
Move Special Register to General Registerccooeivviiinnnnnn. 9-1
Integer Multiply cocooeveeeriiiiniicieii 8-4
Multiply immediatecccccervieiiiiiiiciiniiiniee e 8-6
INteger NEGALE .coccvivrecieieiieiecciii et 8-4
INO OPEIALION 1evvvvevererereerenerereseesnsaesessesersesesessensssenesseseasansessssensesens 8-5
L0gIcal INOL .eviiririeiereecrerrrericiiee it ssat s ssrreesssnesas 8-5
Not IMMEAIALE .eveerereveerreeerrerreeveriresiissiresieeeesseessesssssresssaesesanes 8-6
LOZICal OF i srcereecscsennesseseerreseneseeesseneseanessessonensenens 8-5
Real Add covevecrereiieeetcnrcree et esceiee e sreeeceaneeesssananeessesnneesesnen 8-8
Real COmMPATecocciiiiniiniritiiiniienrnrcnrnrcnienees s eenrenessns 8-11
Real DIVIAE .ovvvreeieeieiieeiensieniesieesieessessesesensressssessaesssnesssesssnesasasas 8-8
Read Memory Error Logging Datacccoeeveirivecinviiiiiiiiciiienes 9-6
Read Data from Device ..ocviiiiiciiiicriiiiieeinnciinreceeccessseesenenneneens 9-7
Integer remainderccoccvviiiiiiieiiintiieie s 8-4
Return from Subroutineccccoecvcermveeinrenceenicrreenicneeee e 8-17
Real Multiply .ooocicoiiiiicieeiiniier ettt 8-8
Real NEBate .cvvirvveeiiirreeriinnrerenrernerescnneeteestessesteessssasesssesseesseees 8-8
Real Subtract ...ttt 8-8
Resume User Mode ...c.oecvceveecreenneeceincsnenniinienienesesecsessneeeeeees 9-1
St Bt vieeiiiiciirciiececestcesnereeeesenressnreesaesser e sssnessseassssanessanesssrens 8-10
Sign Extend Byte cccccceeecieeriinereeeenieesesnneeinscsisessssaeesssasessssssssssens 813
Sigh EXtend ..oooveeieereeerereeneeerereesaneneesreesteeeesetessae s senesae s s esseas 813
StOTE WOTA cioeeeiiireeeceerccrrieteeceneeerrsneeneseesssseessassssssseserersnannesssssens 8-3
STOTE BYTE cooeeieiiereeritiectee ettt et see s 83
Store DoubleWordoceieviiirnrieeieeeiiccencee ettt ee e e 8-3
Store Halfwordcocoovveeeirinreeeirieecnentiiennerceetnccsseeessecsanesesesesnne 8-3
Integer SUBLTACt .oooveieeieeeeee 84
Subtract IMMEAIAtE ..ovveeveecreeerrrerreecerecetereceee e erremee e s et e e s 2-6
Save USET STALE ..uiivrerrcrreerireceecetrerete e eeresreeeereeasessscsssnrassennes 9-1
TSt Bt oo ccerectreceee et es st e ene s e e s ses e s sss s sanesenane s 8-10
Test VAIUES occverrriicrrinnrererscreeeeetesssntessisreseessteesecsmecerssssoncasosssnnes 8-10
Translate Virtual Addressccccceeeerreenrrnceecrerrcrrmecreeneereersecsrnne 9-7
TTAD weeerereeceeecereroteresrtieseessreseesseesereessssessssessssssrssesssstesssnsesssanssssaness 8-18
Exit From Trap INStTUCtion ...cocceeeerereereereeeccccreneneneeeneereencennne 9-5
External Interrupt Enable/Disable ...ccccccovvviinniinniiinininninnnnnne. 9-4
Microcode Version NUMDETcoiiriviiiiiveieeiencceren e 9-6
/Tite Data t0 DeVICE .ccvieiieeeiccctrrtrer et e s rercereee s e s neees 9-8
LogIeal XOT .uvvvereerrreneereceniieee st seestsset s s e san e 8-5

9091 (Preliminary)

Appendix B
INSTRUCTION EXECUTION TIMES

In the following instruction definitions, disp refers to a 16- or 32-bit displacement, val
refers to a 4-bit value, and num

* Opcode Assembler Mnemonic Execution time (# of cycles)

Simple Instructions

add ADD Rx, Ry 1

addi ADD Rx, Imm 1

and AND Rx, Ry 1

cndi AND Rx, Imm 1

lcomp LCOMP Rx, Ry 2-Rx <Ry
3-Rx>=Ry

moverr MOVE Rx, Ry 1

moveri MOVE Rx, Imm 1

movesr MOVE SRx, Ry 2

movers MOVE Rx, SRy 2

neg NEG Rx, Ry 2

nop NOP 0,0 1

not NOT Rx, Ry 1

noti NOT Rx, Imm 1

or OR Rx, Ry 1

seb SEB Rx, Ry 2

seh SEH Rx, Ry 2

sub SUB Rx, Ry 1

subi SUB Rx, Imm 1

xor XOR Rx, Ry 1

Shift Instructions

asl . ASL Rx, Ry - 2 - Kernel
4 - TNK

ash ASL Rx, Imm Same as ASL

asr ASR Rx, Ry 2

asri ASR Rx, Imm 2

1sl LSL Rx, Ry 1

Isli LSL Rx, Imm 1

Isr LSR Rx, Ry 1

Isri LSR Rx, Imm 1

csl CSL Rx, Ry 2

esli CSL Rx, Imm 2

dlsl DLSL Rx, Ry 3

dish DLSL Rx, Imm 3

dlsr DLSR Rx, Ry 3

dlsri DLSR Rx, Imm 3

9091 (Preliminary) B-1

Branch/Call/Return

br
brl
br>

br>>1
br=
br=l
br<=
br<=]
br<>
br<>1
bri>
bri>1
bri<
bri<]
bri=
bri=l
bri<==
bri<=
bri>==
bri>==]
bri<>>
bri<>>1
call
calll
callr
loop

loopl
ret

BR unc, short
BR unc, long
BR Rx > Ry, short

BR Rx > Ry, long

BR Rx = Ry, short
BR Rx = Ry, long

BR Rx <= Ry, short
BR Rx <= Ry, long
BR Rx <> Ry, short
BR Rx <> Ry, long
BR Rx > imm, short
BR Rx > imm, long
BR Rx < imm, short
BR Rx < imm, long
BR Rx = imm, short
BR Rx = imm, long
BR Rx <= imm, short
BR Rx <= imm, long
BR Rx >= imm, short
BR Rx >= imm, long
BR Rx <> imm, short
BR Rx <> imm, long
CALL Rx, label (short)
CALL Rx, label, L
CALLR Rx, Ry
LOOP Rx, imm, label

LOOP Rx, imm, label, L
RET Rx, Ry

Bit Instructions

cbit
sbit
tbit

Loads

load
loadl
loadx
loadlx
loadp
loadpl
loadpx
loadplx
loadh
loadhl
loadhx
loadhlx

B-2

CBIT Rx, Ry
SBIT Rx, Ry
TBIT Rx, Ry

LOAD Rx, <Addr>
LOAD Rx, <Addr>, L
LOAD Rx, Ry + <Addr>

LOAD Rx, Ry+<Addr>, L

LOADP Rx, <Addr>
LOADP Rx, <Addr>,L

LOADP Rx, Ry + <Addr>
LOADP Rx, Ry+<Addr>, L

LOADH Rx, <Addr>
LOADH Rx, <Addr>,L

LOADH Rx, Ry + <Addr>
LOADH Rx, Ry+<Addr>, L

1

1

2 - correct prediction
4 - incorrect prediction
Same as BR >
Same as BR >
Same as BR >
Same as BR >
Same as BR >
Same as BR >
Same as BR >
Same as BR >
Same as BR >
Same as BR >
Same as BR >
Same as BR >
Same as BR >
Same as BR >
Same as BR >
Same as BR >
Same as BR >
Same as BR >
Same as BR >
2

2

4

2 - sign xor ovfl
4 - otherwise
Same as LOOP
4

W w

019D MDD NN

9091 (Preliminary)

loadhp
loadhpl
loadhpx
loadhplx
loadb
loadbl
loadbx
loadblx
loadbp
loadbpl
loadbpx
loadbplx
loadd
loaddl
loaddx
loaddlx
loaddp
loaddpl
loaddpx
loaddplx

Stores

store
storel
storex
storelx
storeh.
storehl
storehx
storehlx
storeb
storebl
storebx
storeblx
stored
storedl
storedx
storedix

Load Address

laddr
laddrx
laddrl
laddrlx
laddrp
laddrpx
laddrpl
laddrplx

LOADHP Rx, <Addr>
LOADHP Rx, <Addr>, L
LOADHP Rx, Ry + <Addr>
LOADHP Rx, Ry+<Addr>, L
LOADB Rx, <Addr>

LOADB Rx, <Addr>, L
LOADB Rx, Ry + <Addr>
LOADB Rx, Ry+<Addr>, L
LOADBP Rx, <Addr>
LOADBP Rx, <Addr>, L
LOADBP Rx, Ry + <Addr>
LOADBP Rx, Ry+<Addr>, L
LOADD Rx, <Addr>
LOADD Rx, <Addr>, L
LOADD Rx, Ry + <Addr>
LOADD Rx, Ry+<Addr>, L
LOADDP Rx, <Addr>
LOADDP Rx, <Addr>, L
LOADDP Rx, Ry + <Addr>
LOADDP Rx, Ry+<Addr>, L

STORE Rx, <Addr>

STORE Rx, <Addr>, L
STORE Rx, Ry + <Addr>
STORE Rx, Ry+<Addr>, L
STOREH Rx, <Addr>
STOREH Rx, <Addr>, L
STOREH Rx, Ry + <Addr>
STOREH Rx, Ry+<Addr>, L
STOREB Rx, <Addr>
STOREB Rx, <Addr>, L
STOREB Rx, Ry + <Addr>
STOREB Rx, Ry+<Addr>, L
STORED Rx, <Addr>
STORED Rx, <Addr>, L
STORED Rx, Ry + <Addr>
STORED Rx, Ry+<Addr>, L

LADDR Rx, <Addr>
LADDR Rx, Ry, <Addr>
LADDR Rx, <Addr>, L
LADDR Rx, Ry, <Addr>, L
LADDR Rx, <Addr>
LADDR Rx, Ry, <Addr>
LADDR Rx, <Addr>, L
LADDR Rx, Ry, <Addr>, L

CO LW W WWWWNNNNMNNMNNNDNNDN

ST ST ST ST LW W WWWR W W W

T T S W

9091 (Preliminary)

B-3

Load/Store User State

lus LUS Rx, Ry 17 + 2(#regs - 1)
sus SUS Rx, Ry 10 + 3(#regs - 1)
rum RUM 0,0 5 (resume case)
ldregs LDREGS Rx, Ry 5 + 2(#regs - 1)

Check and Trap

trap TRAP 0,<4 bit> 4 - No Trap
4 + Trap routine - Trap
chk CHK Rx, Ry 2 - No Trap
2 + Trap routine - Trap
chki CHK Rx,<4 bit> 2 - No Trap
2 + Trap routine - Trap
Dirt/Trans
trans TRANS Rx, RPy 24 - typical
dirt DIRT Rx, Ry 25 - typical
Read/Write
read READ Rx, Ry 15
write WRITE Rx, Ry 14
Keall
keall KCALL <8 bit> 8
Maint
flush FLUSH 0,6 13
trapexit TRAPEXIT 0,7 12
Extended
dcomp DCOMP RPx, RPy 2 - Rx(h.o.) < Ry(h.o.)
3 - Rx(h.o.) > Ry(h.o.)
3 - 4 others
eadd EADD Rx, Ry 5
esub ESUB Ex, Ry 5
B-4 9091 (Preliminary)

SP Converts

fixt FIXT Rx, Ry 4-Ry >0

8 - Ry = max neg.
fixr FIXR Rx, Ry 4-Ry=0

5-Ry<>0

8 - Ry = max neg.
float FLOAT Rx, Ry 3-Ry=0

4-Ry >0

7-Ry <0
makedr MAKEDR Rx, RPy 3

DP Converts

dfixt DFIXT Rx, Ry 4 - typical

dfixr DFIXR RX, Ry 5 - typical

dfloat DFLOAT Rx, Ry 4-Ry=0
5-Ry >0
7-Ry <0

makerd MAKERD RPx, Ry 4

SP Simple

radd RADD Rx Ry 5 - typical

rsub RSUB Rx,Ry 5 - typical

rneg RNEG Rx,Ry 3

rcomp RCOMP RxRy 4 - X>=Y & sign(X)=sign(Y) (no spec-

in)
3 - others (no spec-in)

DP Simple

dradd DRADD Rx Ry 7 - typical

drsub DRSUB Rx Ry 7 - typical

drneg DRNEG Rx Ry 4

drcomp DRCOMP RxRy 5 - X>=Y and sign(X)=sign(Y) (no
spec-in)

4 - others {no spec-in)

9091 (Preliminary) B-5

Multiply’s

mpyr MPYR Rx,Ry 10
mpyi MPYI Rx,<imm> 6 - no overflow

7 - overflow, trap off
empy EMPY RPx,Ry 11 - no overflow

12 - overflow, trap off
rmpy RMPY Rx,Ry 10 - normal

13 - ovf/unf, trap off

14 - inexact, trap off
drmpy DRMPY RPx,RPy 16 - normal

20 - ov{/unf, trap off

19 - inexact, trap off

NOTE: "no spec-in" means no special case floating point numbers (e.g. NaN, denorm’s, etc.)
used as operands in the instruction.

B-6 9091 (Preliminary)

(u ‘oug‘uxgl«ud} 16uUo

INSTRUCTION FORMATS:

Te N2

18

OPCODE

T
18t 2nd
OPENIANDS

REGISTER FORMAT
78 12

1B18 i

OPCODE

T
1t 2nd
OPEHIANDS

OFFSET

e, 1112

MEMORY REFERENCE, SHORT FORMAT

1518 a7

OPCODE

T
st 2nd
OPENIANDS

OFFSET

MEMORY REFERENCE, LONG FORMAT

Memory
Relerence
Format

Segment

Referenced

(Code

Code

Data

Data

Data

Dala

Code

\ Code

Register
Format

Format
Length

Short

Long

Short

Long

Short

Long

Short

Long

Most Signiticant Nibble (Hex). Opcode (0:3)

RIDGE OPCODE MAP

Leasi Significant Nibble {Hex), Opcode (4:7)

[} 1 2 3 4 5 6 7 8 9 A : [D E F
MOVE NEG ADD suB MPY Dy REM NOT OR XOR AND ceirr S8IT TBIT CHK
NOP MOVE ADD sue MPY NOT AND CHK
Immed immed | Immed | immed Immed immed immed
FIXT FIXR RNEG RADD Rsua AMPY RDWV MAKERD{ LCOMP | FLOAT | RCOMP EADD ESUB EMPY EDIV
DFIXT DFIXA | DANEG | DRADD | DRSUB | DAMPY | DRDIV | MAKEDR| DCOMP | DFLOAT DRCOMP| TRAP
MOVE
sus Lus ARUM LDREGS | TRANS DIAT ! MAINT READ WRITE
sR—R ' Re~sSA
T T
: TEST ! CALLR TEST Immediate RET ! testr ! KCALL TEST immediate
I [I |
> < = > = < = > = <> <= L 2= <>
LsL LSR ASL ASR DLSL DLSR CcsL SEB
Lst LSR ASL ASR DLSL OLSR csL SEH
Immed | immed | Immed | immed | Immed | Immed Immed
T T
> = > < = <= <> <='>="!'<>
1
-~ BR - - BR - CALL -+ - - BRImmediste — — —- LOOP-1- BR — - BA —+- BR - — — BR Immediate — —
! l 1
> = > < = < = <> <= , > =) <>
fl ¢ 1
| t ! '
| i b |
X x x x
- —~ STOREB - - STOREH - - - - STORE — -+ — STORED - -
' ! 1 o
| 1 | i
| X 1 X | X 1 X
1 T T T T
| | | [
| | | ' t
| X ' X ' X i x 1 X
e e e — . AR SR L - L4 - .
i] 1 |
' ! ! 1 1
\ . , 1 1
X X X X
— ——LOADS——~}-—- LOADH - — }—— ~LOAD— — —— —-LOADD — — —— LADDR ——]
1 | | | 1
I | 1 1 U
' x : x SR SUNE, 3 R SO S 1 x
I Y A SR . ' T T
i | 1 1 !
| I 1 I 1
1 X | X A X Y X L x

X = Indexed {L.e., \argel address is further olfsel by a regisier named in the second operand field)
Immediate {Immed) = the second operand field contsins a value.

A

ACKIOI signal, 3-6

ACKIOM signal, 3-8

ACKMCIO signal, 3-2

ADD instruction, 8-4, 8-6

ALU, 2-8

AND instruction, 8-5, 8-6

Arithmetic traps, 6-7, 6-9
before trap, 6-9, 6-11
inexact result, 6-9, 6-14
integer divide by zero, 6-9, 6-11
integer overflow, 6-9, 6-10
real divide by zero, 6-9, 6-12
real overflow, 6-9, 6-13, 6-14
real underflow, 6-9, 6-12, 6-14

ASL instruction, 8-12

ABSR instruction, 8-12

B

Bandwidth, 2-10
Barrel shifter, 2-3, 2-8
Before trap, 4-7, 6-9, 6-11
Bit-oriented instructions, 8-10
Booth’s recoded algorithm, 2-7
BR. instruction, 8-14
Branch, conditional, 2-5
Branch instructions, 814
Branch prediction, 2-4, 8-14
prediction bit, 2-5
_example, 2-5
incorrect, 2-5
logic, 2-3
Branch, unconditional, 2-7
Burst mode, 3-1
Bus contention, 3-11
Bus contention example, 3-12
Bus, 1/0, 2-10, 3-1
Bus, processor, 2-1
Bypassing the RFM unit, 2-8
Byte operand, 4-1, 4-9

C

Cache, 2-3, 2-10
code/data, 2-10
flushing, 9-4

Cache cycle time, 2-10

Cache data table, 2-10

Index

Cache hit, 2-11
Cache tag table, 2-10
CALL instruction, 8-16
CALLR instruction, 8-17
CBIT instructions, 8-10
CCB, 6-2
CCB address register, 5-4
CCB contents and SR states, 6-3
CCB table, 6-3

data area, 6-3, 6-4

interrupt offsets, 6-3

trap offsets, 6-3
Check trap, 6-7, 6-8
CHK instruction, 8-18
CHKI instruction, 8-18
Clock board registers, 9-6
Code segment, maximum number addressable,

7-1
Code segment register, 5-4
Code segments, 5-1
Code/data cache, 2-10, 2-10
Compare instructions, 8-11
Conditional branch, 2-5, 8-14
Control store, 2-3, 2-3
Controlling processes, 5-1
CPU control block, 6-2
CPU memory bus, 2-10
Creating processes, 5-1
CREG instruction, 9-3, 9-6
CSL instruction, 8-12
Cycle time, 2-10

cache, 2-10

1/0 bus, 2-10

main memory, 2-10

D

Daisy-chain, 3-1

Daisy-chained 1/0 signals, 3-11
dual, 3-11

Data alignment, 6-7

Data alignment violation, 6-7

Data in registers, 4-9

Data representation, 4-5

Data segment, maximum number addressable,
7-1

Data segment register, 5-4

Data segments, 5-1

Data sharing, 9-1

Data storage, 4-9

Data table, cache, 2-10

Index-1

3200 Processor

[aata types, x| Lxiting trap, 9-5

DCOMP instruction, 8-11 Exponent ALU, 2-8

Denormalized number, 4-6 Extended integer instructions, 8-7
DFIXR instruction, 8-9 ‘ Extended precision arithmetic, 4-5
DFIXT instruction, 8-9 External interrupt, 6-4, 6-5
DFLOAT instruction, 8-9 disabling/enabling, 9-4

Direct address instructions, 4-3
Direct memory access, 2-10

DIRT instruction, 9-7 F

Dirty page, 9-7

Disabled interrupts, 5-1, 9-1 FIXR instruction, 8-8
Disabling traps, 5-5, 6-9 FIXT instruction, 8-8

DIV instruction, 8-4 FLOALT instruction, 8-8
Divide-by-zero trap, 4-7 Floating point execution, 2-8
DLSL instruction, 8-12 FLUSH instruction, 9-3, 9-4
DLSR instruction, 8-12 Flushing, cache, 9-4

DMA bandwidth, 2-10 TMT, 9-4

DMA Logic, 2-10 Flushing pipeline, 2-5

DMA read operation, 3-9 Flushing TMT table, 7-7
DMA read/write, 3-8 Format, TMT entry, 7-7
DMA signals, 3-8 VRT entry, 7-4

DMA transfer rate, 2-10, 3-1, 3-8 Four-way branching, 2-3
DMA write operation, 3-10

DN, 4-6

Double clocking, 2-7 _ G

Double precision real numbers, 4-6

Double real instructions, 8-9 General registers, 2-7, 4-1, 4-2, 8-1
Double words, 8-1 Guard bits, 4-9

Double-bit error detection, 2-10
Double-bit parity error, 6-4, 6-5

on instruction execute, 6-5 H

on instruction fetch, 6-5
Double-word operand, 4-1, 4-9 Halfword operand, 4-1, 4-9
DRADD instruction, 8-9 Hash table, 7-4

DRCOMP instruction, 8-11
DRDIV instruction, 89

DRMPY instruction, 8-9 I

DRNEG instruction, 89

DRSUB instruction, 8-9 Idle count, 6-4
Dual daisy-chained signals, 3-11 IEEE traps, 6-9

Illegal instruction, 6-7, 6-7
Immediate instructions, 8-6

E Incorrect branch prediction, 2-5
Index register, 8-2

EADD instruction, 87 Indexed address instructions, 4-3

EDIV instruction, 8-7 Inexact result trap, 6-9, 6-14, 6-14

ELOGR instruction, 9-3, -4 INF, 4-6

ELOGW instruction, 9-3, 9-4 Infinity, 4-6

EMPY instruction, 8-7 Instruction, conditional branch, 8-14

Enabling traps, 5-5, 6-9 loop control, 815

Error correction, 2-1 syntax, 81

Error correction logic, 2-10 unconditional branch, 8-14

ESUB instruction, 8-7 Instruction unit, 2-1, 2-3

Event handling, 6-1 Instruction addressing, 4-1

Example of bus contention, 3-12 Instruction decoding, 2-3

Exceptions, 6-1 Instruction formats, 4-1

Executing floating point numbers, 2-8 Instruction pipeline, 2-3

Execution unit, 2-1, 2-8 Instruction prefetch, 2-3

Index-2

Index

Instruction types, 4-2
Instructions, bit-oriented, 8-10
branch, 8-14
compare, 8-11
double real, 8-9
extended integer, 8-7
immediate, 8-6
integer, 8-4
1/0, 9-7
kernel mode, 9-1
load, 8-2
load address, 8-3
logical operator, 8-5
maintenance, 9-3
memory reference, 8-2
program control, 8-14
read, 9-7
real, 8-8
register, 8-4
shift, 8-12
sign extended, 8-13
state switching, 9-1
store, 8-3
subroutine, 8-16
test, 8-10
virtual memory, 9-7
write, 9-7
Integer divide by zero trap, 6-9, 6-11
Integer instructions, 8-4
Integer overflow trap, 6-9, 6-10
Integer representation, 4-5
Interrupt, testing for, 9-5
Interrupts, 6-1
defined, 6-1
described, 6-4
disabled, 5-1, 9-1
double-bit parity error, 6-4
external, 6-4
instruction fetch page fault, 6-4
power fail warning, 6-4
reset, 6-4
switch 0, 6-4
timer, 6-4
I/O acknowledge signals, 3-11
I/0 board priorities, 3-1, 3-11
1/0 bus, 2-10, 3-1
I/0 bus cycle time, 2-10
I/0 interrupt read signals, 3-6
I/0 interrupt read word, 3-6
1/0O interrupts, 3-6
I/O operations, 3-2
1/0O read address word, 3-3
I/O read data word, 3-3
I/O read operation, 3-3
1/0O read/write, 3-2
I/O read/write signals, 3-2
1/0 status, 9-8
I/O system, 3-1

I/O write address word, 3-4
I/O write data word, 3-4
I/O write operation, 3-4
IODACK signal, 3-2, 3-8
IODATA signal, 3-2, 3-6, 3-8
IODNVM signal, 3-2

IOIR word, 3-6

IOIREQ signal, 3-6
IOMREQ signal, 3-8

IOR operation, 3-2, 3-3
IORA word, 3-3

IORD word, 3-3

IOW operation, 3-2, 3-4
IOWA word, 3-4

IOWD word, 3-4

ITEST instruction, 9-3, 9-5

K

KCALL instruction, 5-1, 8-18
Kernel calls, 6-7

Kernel function, 6-1

Kernel mode, 5-1

Kernel mode instructions, 9-1

" Kernel violation, 6-7, 6-8

L

LADDR instruction, 8-3
LCOMP instruction, 8-11
LDREGS instruction, 9-1

Link block address register, 5-4
Link word, 7-5

LOAD instructions, 82
Logical operator instructions, 85
Long displacement, 4-3

Long displacement format, 4-4
Loop control instruction, 815
LOOP instruction, 815

LSL instruction, 812

LSR instruction, 812

LUS instruction, 5-5, 6-1, 9-1

M

MACHINEID instruction, 9-3, 9-5
Maintenance instructions, 9-3
MAKEDR instruction, 89
MAKERD instruction, 8-8
Mantissa, 2-8, 4-5

Mapping hardware, 7-2
Maximum user configuration, 9-5
MCIOREQ signal, 3-2

MCIOW signal, 3-2

MDNVIO signal, 3-8

Index-3

8200 Processor

Memory controlier. 2-10
Memory controller unit, 2-1
Memory cycle time, 2-1, 2-10
Memory instruction formats, 4-4
Memory mapping hardware, 7-2

Memory reference instructions, 4-3, 8-2

Microcode version, 9-6

Model number, 9-5

MOVE instruction, 8-5, 8-6, 9-1
MPY instruction, 8-4, 8-6
Multiplexed address/data, 2-10, 3-1
Multiplication logic, 2-7

Multiplier, 2-7

MULTIWD signal, 3-8

N,‘

NaN, 4-6

NEG instruction, 8-4

Negative indexes, 4-4

NOP instruction, 8-5

NOT instruction, 8-5, 8-6

Not a number, 4-6

Number of addressable segments, 7-1

O

Opcode register, 5-3
Operand fetch cycle, 2-7
Operand memory layout, 4-9
Operand specifiers, 4-2
Operand types, 4-9

OR instruction, 85
Overflow trap, 4-7
Overlapped scanning, 2-7

P4

Page fault, 6-4

Page fault, defined, 6-1
Parallel multiplication, 2-7
Parallelism, 2-4

PC register, 5-4

PCB, 5-5

PCB address register, 5-4
Physical page field, TMT, 7-7
Pipeline, 2-3

Pipeline flushing, 2-5

Pipeline interlock, 2-9
Pipeline stages, 2-3

Positive indexes, 4-4

Post normalization, 2-8
Power fail warning interrupt, 6-4, 6-6
Power-of-two exponent, 4-5
Prediction bit, 2-5

Index-4

Prefetch butler, 2-3

Prefetch buffers, 2-3

Priority signals, 9-4

Privileged process bit, 5-2, 5-5, 9-1
Process clock, 5-5, 6-4

Process control, 5-1

Process control block, 5-5

Process management, 5-1

Process time, incrementing, 6-4
Processor boards, 2-1

Processor bus, 2-1

Processor components, 2-1
Processor modes, 5-1

Program control instructions, 8-14
Program counter, 4-1, 8-1
Program counter register, 5-4

Q

Quadword, 2-10

R

RADD instruction, 8-8
RCOMP instruction, 8-11
RDIV instruction, 8-8
RDLOG instruction, 9-3, 9-6
READ instruction, 9-7
Real addressing, 9-1
Real divide by zero trap, 6-9, 6-12
Real instructions, 8-8

double, 8-9
Real memory references, 5-1
Real number representation, 4-5
Real numbers, 4-5

rounding, 4-9

special, 4-6
Real overflow trap, 6-9, 6-13, 6-14
Real underflow trap, 6-9, 6-12, 6-14
Real-time devices, 9-4
Register bypass function, 2-9
Register bypass hardware, 2-8
Register file logic, 2-7
Register file/multiplier, 2-1
Register files, 2-3, 2-7
Register instruction format, 4-2
Register instructions, 4-2, 8-4
Register select logic, 2-3, 2-8
Register-Immediate instructions, 4-2
Register-to-register instructions, 4-2
Relocatable code, 4-4
REM instruction, 8-4
Reset interrupt, 64, 6-6
Result register, 2-3
RET instruction, 817
RFM unit, 2-7

Index

RFx and RFy. 2-3 TN, 7-2

RFx and RFYy files, 2-7 flushing, 9-4

RISC defined, 1-1 TMT table, 7-7

RMPY instruction, 8-8 entry lormat, 7-7

RNEG instruction, 8-8 flushing, 7-7

Rounding, 2-8 physical page field, 7-7

Rounding real numbers, 4-9 tag field, 7-7

RPx and RPy, 8-1 translation process, 7-7
SUB instruction, 8-8 TMT word, 7-5

RUM instruction, 6-2, 9-1 TRANS instruction, 9-7

Rx field /segment register, 5-3 Transfer rate, DMA, 3-8

Ry field/eflective address register, 5-4 Transferring data, 4-3

Translation mapping table, 2-10, 7-2, 7-7
Translation process, TMT, 7-7

S Trap instruction, 6-7, 6-8
TRAP instruction, 8-18, 8-18

SBIT instructions, 8-10 TRAPEXIT instruction, -3, 9-5

Scratch pad, 2-7 Traps, 6-1, 6-7

SEB instruction, 8-13 arithmetic, 6-7

Segments, code and data, 5-1 before, 4-7

SEH instruction, 8-13 check, 6-7, 6-8

Self-relocating code, 8-14 data alignment, 6-7, 6-7

Serial number, 9-5 defined, 6-1

Shift instructions, 8-12 divide-by-zero, 4-7

Short displacement, 4-3 illegal instruction, 6-7, 6-7

Short displacement format, 4-4 instruction execute page fault, 6-7

Sign and exponent hardware, 2-8 kernel calls, 6-7, 6-7

Sign bit, 4-5 kernel violation, 6-7, 6-8

Sign extended instructions, 8-13 overflow, 4-7

Single-bit error correction, 2-10 trap instruction, 6-7, 6-8

Special numbers, as operands, 4-7 underflow, 4-7

Special numbers, as results, 4-7 Traps word, 5-5, 6-9

Special real numbers, 4-6 Traps word register, 5-4

Special registers, 2-7, 5-3 Two’s complement signed integers, 4-5

Special registers, states of on events, 6-3 Two’s-complement notation, 4-4

State switching instructions, 9-1 Two-way set associative, 2-10

Static prediction bit, 2-5 TWRITED instruction, $-3, 9-4

Store cycle, 2-7
STORE instructions, 8-3

SUB instruction, 8-4, 8-6 U

Subroutine instructions, 8-16

SUS instruction, 6-1, 9-1 Unconditional branch, 2-7, 814
Switch 0 interrupt, 6-4, 6-5 Underflow trap, 4-7

Syntax, instruction, 81 Unsigned integers, 4-5

User configuration, maximum, 9-5
User mode, 51, 5-2
T instructions, 8-1

Tables, virtual-to-real translation, 7-2

Tag field, TMT, 7-7 VvV

Tag table, cache, 2-10

TBIT instructions, 8-10 VERSION instruction, 9-3, 9-6
TEST instructions, 8-10 Virtual address, bits, 2-11
Time of day counter, 6-4 format, 7-1

Timeout error, 3-3, 3-5 offset, 7-1

Timer 1 count, 64 page number, 7-1

Timer 2 count, 6-4 translation, 9-7

Timer interrupts, 6-4, 6-6 Virtual addresses, 4-1

Index-5

3200 Processor

Virtual memory mstroctons, 9-7
Virtual memory management, 7-1
Virtual memory references, 5-2
Virtual-to-real translation, 2-1, 2-10, 5-2, 7-1
bypassing, 5-1
hardware, 7-2
sequence, 7-3

table, 7-2, 7-4
tables, 7-2
VPN, 7-1

VRT hash table, 7-4
VRT hash table address, 7-5
VRT mask register, 5-4
VRT, searching, 9-7
VRT table, 7-2, 7-4
VRT table, address register, 5-4
entry format, 7-4
hash table address, 7-5
link word, 7-5
location of, 7-4
referenced bit, 7-5
searching, 7-4, 7-5
TMT word, 7-5
VRT translation process, 7-5

W

‘Word operand, 4-1, 4-9
WRITE instruction, 9-7
‘Write-through, 2-10

X

XOR instruction, 8-5

Z

Zero, as special number, 4-6

Index-6

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	5-01
	5-02
	5-03
	5-04
	5-05
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	A-1
	A-2
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	C-1
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6

