RIDGE PROCESSOR REFERENCE MANUAL

January 20, 1983

Contents

Introduction
Data Types
Exceptions
Instruction Timings

Memory Reference Instructions
Load Instructions
Store Instructions
Load Address Instruction

Register Format Instructions
Integer Arithmetic Instructions
Logical Register Format Instructions
Extended Precision Integer Instructions
Real Instructions
Double Real Instructions
Register Format Immediate Instructions
Register Format Bit Oriented Instructions
Trap Instructions
Test Instructions
Compare Register Format Instructions
Shift Instructions
Sign Extend Instructions

Branch Instructions

Kernel Mode Instructions
State Switching Instructions
Maintenance Instructions
Virtual Memory Support Instructions
Input/Output Instructions

Exception Handling
Traps
External Interrupts
Timer Interrupts

Virtual Memory Support
Special Register Assignment
Appendices

Instruction Index and Opcode Assignments
Ridge Opcode Map

Page

(Yoo o JEN Ro)) e wWww

INTRODUCTION

The Ridge personal graphics work station contains a proprietary high
performance 32-bit processor implemented with bipolar MSI and LSI
logic technology. It has a simple, general purpose microcoded
architecture and provides processing power equal to medium performance
mainframes and high performance minicomputer systems. This document
describes the instruction set, exception handling, and virtual memory
system architecture of the Ridge processor. In addition, approximate
instruction timings are given. All specifications in this manual are
preliminary and subject to change without notice.

The processor is a 32-bit, byte addressable, general register
computer. The processor operates in either of two modes, user mode or
kernel mode. In Kernel mode, all instructions are allowed, and real
memory addresses are used. Certain privileged instructions are not
allowed in user mode. In user mode, a program's address space is
divided into two parts, called its code segment and its data segment.
Storing is not permitted into the code segment. Each of these
segments contains up to 4 gigabytes of linearly addressed virtual
memory. These segments are divided into 4096 byte pages for efficient
memory manadgement. The processor supports virtual memory by allowing
fetching of pages on demand from external storage devices.

The processor's major clock time is 125 nanoseconds. Minimum
instruction time is one clock, giving a maximum instruction rate of
eight million instructions per second. Memory access time is 375
nanoseconds, which is also the minimum memory reference instruction
time. The processor contains a 256 byte instruction cache designed to
increase the speed of loops. An instruction fetch ahead unit in the
processor allows the processor to buffer two instructions in addition
to the current instruction. The fetch ahead unit attempts to fetch
from the instruction cache, and should there be a cache miss, then
fetches from memory. The fetch ahead unit contains branch prediction
logic that speeds execution of conditional branches and helps keep the
instruction pipe full.

Data Types

Data is manipulated in the processor's sixteen 32-bit general
registers. There are three 32-bit data types for which the processor
has instructions: logical integers, signed integers, and reals. In
addition, 64-bit extended precision real numbers are supported.

The processor has instructions to load and store four different sizes
of operands. The basic addressable unit is the 8-bit byte. The other
operand sizes are the halfword (sixteen bits), the word (32-bits) and
the double word (64-bits).

Logical operations, such as AND, are performed bitwise on logical
integers. Arithmetic operations are performed on signed integers
using two's complement representation. Signed integer format is shown
below:
3
01 1

Integer |s| |

The range of integers which can be represented this way is
~2,147,483,648 through 2,147,483,647.

Real numbers have the format illustrated below. The exponent is eight
bits long, and is in excess 127 notation. The mantissa has an
implicit leading one. For positive numbers, S=0. Zero is represented
by an all zero value. Negative numbers have S=1, using sign magnitude
form,

Real Is| Exp | Mantissa |
D ettt e ————————————— +

Double reals are similar to reals, except that the mantissa is longer
and the exponent is 11 bits long, using excess 1023 notation.

1 1 6

01 1 2 3
T e T o e S ————————— +

Double Real s Exp | Mantissa |
Fed e ————— Fom Y ————— +

Double words occupy register pairs. A register pair, RP(R), consists
of register (R) and register (R + 1) mod 16, with register (R) holding
the most significant bits and register (R + 1) mod 16 holding the
least significant bits. The notation used in this manual is RP(R) for
the register pair, (R) and (R)' for the individual registers in the
pair.

Exceptions

Abnormal execution of an instruction is termed an exception. This may
be caused by an error in the instruction, an interrupt, or some other
unusual condition such as a page fault. Exception handling is
discussed in detail in a later section of this document. Errors that
occur in the execution of the instruction are presented following the
text describing each instruction or group of instructions in the
instruction set. Some exceptions may be enabled or disabled under
control of the traps word -- the traps word determines which
instruction errors result in suspension of the user program. The
exception description for each instruction specifies how the registers
are affected and what action is taken when it occurs.

Inst tion Timi

The instruction timings given were measured by placing the instruction
in a loop, then subtracting the loop overhead. Instruction times may
increase by one clock if the instruction is not word-aligned. Some
instructions have different possible paths through the microcode that
implements them, and in these cases typical instruction time is given.
Computing the actual time of an arbitrary instruction sequence is
difficult due to the overlap of instruction fetching and execution.
All timings are in microseconds with integer overflow traps disabled.

MEMORY REFERENCE INSTRUCTIONS

Memory reference instructions have either of the two formats shown
below. They are distinguished by the lengths of the displacements.

11 11 3
0 6 78 12 56 1
Fm—m— e totmm——— e Fo e —————— +
Short | opcode |x| R | RX | Displacement |
T et e s L +
11 11 4
0 6 7 8 12 56 7
Fmm——————— e e o N +
Long | opcode |x] R | RX | Displacement : |
e tmtm———— t-——— R N ———————— +

32-bit format instructions have a sixteen bit displacement field,
which is sign extended to a full 32-bits. The 48-bit format
instructions have 32-bits for the displacement.

The effective address for a memory reference instruction is calculated
as follows:

Data segment memory reference instructions

X Effective Address
0 Displacement
1l (RX) + Displacement

Code segment memory reference instructions

X Effective Address
0 (PC) + Displacement
1 (PC) + (RX) + Displacement

Indexing for both the code and data segments takes place with full
32-bit signed integers in two's complement notation. Note that all
code segment address modes are program counter (PC) relative thus
allowing relocatable code. No store instructions can store into the
code segment, Loads from the data segment use one set of opcodes
while loads from the code segment are a separate set of opcodes.

Load Instructions

LOADB - Load Byte

LOADH - Load Halfword Unsigned

LOAD - Load Word

LOADD - Load Double Word
Operation:

The register specified in the R field is loaded with the
data stored in memory at the effective address. In the case
of LOADD, the two words are loaded into RP(R). All the
addressing modes described above are supported. The data
element must be aligned on a boundary which is a multiple of
the length of the data element. The LOADB instruction loads
the byte into bits 24..31 of the register and sets bits
0..23 to zero. The LOADH instruction loads the halfword
into bits 16..31 of the specified register and clears bits
0..15.

Exceptions:

A data alignment trap may result from any of the following:

o Attempting to LOADH or LOADHS with the effective
address not on a half-word boundary.

o Attempting to LOAD with the effective address not on a
word boundary.

0 Attempting to LOADD with the effective address not on a
double word boundary.

Instruction Timing:

Instruction Time in Microseconds
LOADB «625
LOADH .625 typical
LOAD .500
LOADD .875

Indexing does not affect execution time. The times for the
PC relative code segment loads are the same as the times
given above.

Store Instructions

STOREB - Store Byte

STOREH - Store Halfword

STORE - Store Word

STORED - Store Double Word
Operation:

The store instructions move data from the registers into
memory. The STOREB instruction places bits 24..31 of the
specified register into memory at the effective address.
Other bits are ignored. The store half word instruction
stores bits 16..31 and ignores bits 0..15. The effective

address must be a multiple of the length of the data
element.

Exceptions:
A data alignment trap may result from any of the following:

o Attempting to STOREH with the effective address not on
a half-word boundary.

o Attempting to STORE with the effective address not on
a word boundary.

o Attempting to STORED with the effective address not on
a double word boundary.

Instruction Timing:

Instruction Time in Microseconds
STOREB 1.250
STOREH 1.000
STORE «375
STORED .625

Indexing does not affect execution time.

Load Address Instruction
LADDR - Load Address

Operation:

The load address instruction allows all of the code and data
segment memory reference modes described above. It works
just like the LOAD word command except that no memory
reference actually takes place. Instead the effective
address is placed in the specified register. The LADDR
command can be used to load two or four byte immediate
values and in indexed mode it can be used to add a constant

to a register. The indexing operation occurs with full
32-bit signed integer arithmetic.

Instruction Timing:

Instruction Time in Microseconds

s S G S G - - e s G e S G G G Gt G G S Wt S WP Gt B Srw G

LADDR 125

Time is the same for indexed and non-indexed forms.

REGISTER FORMAT INSTRUCTIONS

The arithmetic and logical instructions use the register instruction

format. Two registers are specified and the result generally replaces
(R1) . ‘

Many of the register instructions also have an immediate mode in which
the R2 specification is considered to be an integer in the range from
0 to 15.

-10-

Int Arithmetic Inst i

NEG - Integer Negate (R1) <~ Two's complement of (R2)

ADD - Integer Add (R1l) <= (R1) + (R2)

SUB - Integer Subtract (R1l) <= (R1l) - (R2)

MPY - Integer Multiply (R1) <= (Rl1l) * (R2)

DIV -~ Integer Divide (R1l) <= (R1) / (R2)

REM - Integer Remainder (R1) <= (R1) = ((Rl) / (R2))*(R2)

Operation:
The integer arithmetic instructions operate on 32-bit two's
complement integers. The multiply instruction multiplies
(R1) and (R2) and replaces the contents of (Rl) with the low
order 32 bits of the product. The divide instruction
divides Rl by R2 and puts the quotient in Rl. The
remainder instruction divides Rl by R2 and puts the signed
remainder in Rl. The sign of the remainder is the sign of Rl.

Exceptions:

Integer overflow can occur for the NEG, ADD, SUB, MPY, DIV, and
REM instructions. An integer overflow trap is taken if this trap
is enabled. NEG of 2**3]1 produces an integer overflow. (Rl)
remains unchanged. On integer overflow for ADD, SUB, and MPY,
the 32 least significant bits of the result are placed in (R1l)
and the high order bits are discarded. Integer overflow can
occur for the DIV and REM instructions when the largest negative
integer is divided by -l1. When this occurs, (Rl) is unmodified.

A divide by zero trap can occur for the DIV and REM instructions.
An attempt to divide by zero leaves (Rl) unmodified. A divide by
zero trap is taken if this trap is enabled.

Instruction Timing:

Instruction Time in Microseconds
NEG .125
ADD «125
SUB «125
MPY 2.625 typical
DIV . 4,750 typical
REM 5.000 typical

-11-

Logical Register F t Inst i

MOVE - Move Register (R1)
NOT - Logical Not (R1)
AND - Logical And (R1)
OR - Logical Or (R1)
XOR - Logical Xor (R1)
Operation:

<.—~
=
-
<—
=

The logical instructions operate

result replaces (Rl).

Instruction Timing:

(R2)

One's complement of (R2)
(R1) and (R2)

(R1) or (R2)

(R1l) exclusive or (R2)

on 32 bit registers. The

Instruction Time in Microseconds
MOVE «125
NOT .125
AND .125
OR .125
XOR .250

-12-

Extended Precision Int Instructi

EADD ~ Extended Add (R1) <= (R1) + (R2), 0 <= C
ESUB - Extended Subtract- (Rl1l) <~ (Rl) - (R2), 0 <~ C
EMPY - Extended Multiply RP(R1l) <-= (R1l) * (R2)
EDIV - Extended Divide (R1) <- RP(Rl) / (R2)
(R1)' <~ RP(R1l) REM (R2)
Operation:

The extended integer arithmetic instructions allow multiple
precision integers to be implemented. Carries on add

and subtract operations are saved in register 0 and no
overflow trap occurs. The multiply instruction takes two
unsigned 32-bit numbers and produces an unsigned 64-bit
product which it places in RP(R1). The divide instruction
takes a 32-bit unsigned divisor and a 64-bit unsigned
dividend and produces a 32-bit unsigned quotient and a
remainder.,

Exceptions:

The EDIV instruction can cause an integer overflow if

the result is larger than 32 bits. An integer overflow
trap occurs if this trap is enabled. If an overflow
occurs, RP(R1l) is unchanged. A divide by zero trap can
occur on the EDIV instruction, and is taken if this trap is
enabled. (Rl) is unmodified if divide by zero is
attempted.

Instruction Timing:

Instruction Time in Microseconds
EADD .375 typical
ESUB 375 typical
EMPY 2.875 typical
EDIV 5.125 typical

-13-

Real Instructions

RNEG
RADD
RSUB
RMPY
RDIV

FLOAT

FIXT
FIXR

MAKERD

Operation:

Real Negate

Real Add

Real Subtract

Real Multiply

Real Divide

Make Integer Real
Truncate to Integer
Round to Integer
Real to Long Real

(R1)
(R1)
(R1)
(R1)
(R1)
(R1)
(R1)
(R1)

<= = (R2)

<- (Rl1) + (R2)
<- (R1) - (R2)
<= (R1l) * (R2)
<= (R1) / (R2)
<- FLOAT (R2)
<= TRUNC (R2)
<= RND (R2)

RP(R1l) <- LONG (R2)

The above instructions operate on 32-bit real numbers. They
are all of the register format,
rounds if necessary.

Exceptions:

The FLOAT instruction

The RNEG, RADD, RSUB, RMPY, and RDIV instructions can

overflow or underflow.

When overflow occurs,

(R1) is

set to the largest value real number, with the appropriate

sign bit.

is enabled.

this trap is enabled.
unmodified.

On real underflow, (Rl) is set to zero.
overflow or underflow trap is taken if the appropriate trap
The FIXT and FIXR instructions can cause an
integer overflow, and an integer overflow trap is taken if

Instruction Timing:

Instruction

RNEG
RADD
RSUB
RMPY
RDIV
FLOAT
FIXT
FIXR
MAKERD

Time in Microseconds

.250
1.250
2.000
3.500
6.000
1.250
1.000
1.000
1.500

-14-

On integer overflow (Rl) is

typical
typical
typical
typical
typical
typical
typical
typical

A real

Double Real Instructions

DRNEG - Double Real Negate

DRADD - Double Real Add

DRSUB =~ Double Real Subtract

DRMPY - Double Real Multiply

DRDIV = Double Real Divide

DFLOAT - Integer to Double Real

DFIXT - Double Real Truncate
to Integer

DFIXR - Double Real Round to
Integer

MAKEDR - Round Double Real to
Real

Operation:

RP(R1)
RP(R1)
RP (R1)
RP(R1)
RP(R1)
RP (R1)

<= = RP(R2)

<- RP(R1l) + RP(R2)
<- RP(Rl1l) - RP(R2)
<= RP(R1l) * RP(R2)
<= RP(Rl) / RP(R2)
<- FLOAT (R2)

(R1) <- TRUNC RP(R2)

(R1) <- RND RP(R2)

(R1) <= REAL RP(R2)

The above instructions operate on double real format data.
They use the register instruction format and all work on
Otherwise, their operation is exactly like
their short real counterparts.

register pairs.

Exceptions:

The DRNEG, DRADD, DRSUB, DRMPY, and DRDIV instructions can

overflow or underflow.

When overflow occurs, RP(Rl) is set to

the largest value real number, with the appropriate sign bit. On
real underflow, RP(Rl) is set to zero.
underflow trap is taken if the appropriate trap is enabled. The
DFIXT and DFIXR instructions can cause an integer overflow, and
an integer overflow trap is taken if this trap is enabled. On

integer overflow (Rl) is unmodified.

Instruction Timing:

Instruction

- e S See B G P e a—

DRNEG
DRADD
DRSUB
DRMPY
DRDIV
DFLOAT
DFIXT
DFIXR
MAKEDR

Time in Micros

.500
5.000
5.000

11.000
20.000
2.000
2.000
2.000
1.000

-15-

econds

typical
typical
typical
typical
typical
typical
typical
typical
typical

A real overflow or

Req] F t Immediate Inst i

MOVE
NOTI
ADDI
SUBI
ANDI
MPYI

Oper

Exce

I -

ation:

‘Move Immediate

Not Immediate
Add Immediate
Subtract Immediate .
And Immediate
Multiply Immediate

(R1)

(R1)

(R1)
(R1)
(R1)
(R1)

=
<
o
o=
=
=

R2

One's complement of R2
(R1) + R2

(R1) - R2

(R1) and R2

(R1) * R2

These instructions function the same as their register format
counterparts above, except that the second operand is the
value of the four bit R2 field rather than the contents of

the regist

ptions:

er it specifies.

Integer overflow can occur for the ADDI, SUBI, and MPYI

ons. The 32 least significant bits of the result are
placed in (R1l) and the high order bits are discarded. An integer
overflow trap is taken if this trap is enabled.

instructi

Instruction Timing:

Instructi

MOVEI
NOTI
ADDI
SUBI
ANDI
MPYI

ons Time in Microseconds

- - ay S G G - G S G G iy Gty S S Py G e e

125
125
125
125
125

.750 typical

-16-

Regist . t Bit Oriented Inst Y

TBIT - Test Bit

SBIT - Set Bit

CBIT - Clear Bit
Operation:

In the TBIT instruction R2 specifies a bit number from 0..63
which is tested in RP(Rl). The bit to be tested replaces bit 31
of Rl and bits 0..30 of Rl are set to zero. SBIT and CBIT
specify a bit number from 0..63 in R2. The specified bit of
RP(R1l) is set to zero or one respectively.

Instruction Timing:

Instruction 0 <= (R2) <= 31 32 <= (R2) <= 63
TBIT .500 1.000
SBIT .500 .875
CBIT .500 .875

-17-

Trap Instructions

CHK - Check Instruction Trap if (R1l) > (R2)

CHKI - Check Immediate Trap if NOT (0 <= (Rl) <= R2)
Instruction

Operation:

The CHK and CHKI instructions check whether (R1l) is in the above

range. If so, the instruction performs no operation, otherwise
the instruction traps to the kernel.

Instruction Timing:

Instruction Time in Microseconds
CHK «250
CHKI .375

The above times are for the case when no trap occurs.

TRAP - Trap Instruction Trap if trap R2 enabled.

Operation:

There are sixteen traps which can be individually enabled or
disabled under control of the kernel. The TRAP instruction will
trap to the kernel if the bit of the traps word specified by the
four bit R2 field is on. Otherwise it does nothing. It can be
used for optional breakpoints.

Instruction Timing:

Instruction Time in Microseconds

—— e - e G S — - — - e B = — — o R STE W G B B G S Gn

TRAP .500

The above time is for the case when no trap occurs.

-] 8~

T Inst ‘i —— Conti 3
KCALL <Kernel entry point number> - Kernel Call Instruction

Operation:

The Kernel Call instruction is used by a user mode program
to enter the kernel. The Rl and R2 field of the

instruction are catenated (bits 8 through 15), making a
kernel entry point number, which is used to choose one of
256 entry points within the kernel. Special register 15 is
set to user PC + 2 on entry to the kernel. This varies from
all other traps, which set SR15 to PC.

Exceptions:

Executing a KCALL in kernel mode is also invalid and
results in a kernel violation trap.

Instruction Timing:

Instruction Time in Microseconds

—— e G G G T Go G — - —— = S S S PGP B W B S e ot G QA8 W G G

-19-

Test Instructions

TEST (R1) rop (R2) - Test Instruction
TESTI (R1l) rop R2 - Test Immediate Instruction
Operation:

The test instruction compares two values and sets (Rl) to either
0 (false) or 1 (true), depending upon the result of the test.
The second operand is either the contents of the register
specified by the R2 field of the instruction or the four bit
number R2. The comparison is done using signed two's complement
arithmetic. The comparison relational operator (rop) is:

rop

VAAVAL
nnv

Instruction Timing:

Instruction Time in Microseconds
TEST, TESTI rop «250 typical

<' >’ <=, >=
TEST, TESTl1 rop .375 typical

=, <>

-20-

- Register F t Instructi

DCOMP RP(R1), RP(R2) - Double register compare

Operation:

Register pair RP(Rl) and RP(R2) are compared using two's
complement arithmetic. (Rl) is set to -1, 0 or 1 depending

upon whether RP(R1l) is less than, equal to, or greater than
RP(R2), respectively.

Instruction Timing:

Instruction Time in Microseconds
DCOMP .625 average
LCOMP (R1), (R2) - Logical compare

Operation:

Registers (R1) and (R2) are compared using unsigned
arithmetic. (Rl) is set to -1, 0, or +1 depending on

whether (Rl) is less than, equal to, or greater than (R2)
respectively.

Instruction Timing:

Instruction Time in Microseconds

-21-

Compare Register Format Instructions -— Continued

RCOMP (R1), (R2) - Real compare

Operation:
Registers (Rl) and (R2) are compared as real numbers using sign

magnitude form. (Rl) is set to -1, 0, or +1 depending on whether
(R1) is less than, equal to, or greater than (R2) respectively.

Instruction Timing:

Instruction Time in Microseconds
RCOMP .750 typical
DRCOMP RP(R1l) , RP(R2) - Double real compare
Operation:

The register pairs RP(R1l) and RP (R2) are compared as double real
numbers using sign magnitude form. (R1l) is set to -1, 0 or +1
depending upon whether RP(R1l) is less than, equal to, or greater
than RP(R2) respectively.

Instruction Timing:
Instruction Time in Microseconds

—— - ——— - - - —— G ———— T T — G G- o S

DRCOMP 1.000 typical

-22—

SHIFT INSTRUCTIONS

These instructions take the shift count from (R2) and can shift from 0
to 31 bits in the case of single register shifts and from 0 to 63 bits
in the case of double register shifts. Only the low order 5 bits or 6
bits of (R2) are used as the shift count for single or double shifts

respectively. In addition, immediate forms are available which use the
four bits of the R2 field as the shift count thus allowing shifts from

0 to 15 bits. The shift times are independent of the number of bits
shifted,

circular Shift Inst ‘1

CSL (R1), (R2) - Circular shift left (single register)
CSLI (R1), R2 - Circular shift left immediate
Operation:

The CSL instruction shifts the specified register left by

the shift count. Bits shifted out bit 0 are shifted into
bit 31.

Instruction Timings:

Instruction Time in Microseconds
CSL «375
CSLI «125

-23-

sinale Register Logical Shift

LSL (R1), (R2) Logical shift left
LSLI (R1), R2 Logical shift left immediate
LSR (R1), (R2) Logical shift right

LSRI (R1), R2 - Logical shift right immediate

Operation:

The logical shift instructions shift in zero bits and the
bits shifted out are lost.

Instructions Timings:

Instruction Time in Microseconds
LSL .375
LSLI .125
LSR .500
LSRI .500

-24-

cingle Register Arithmetic Shift

Arithmetic left shift

ASLI (R1), R2 Arithmetic left shift immediate
ASR (R1), (R2) Arithmetic right shift

ASRI (R1), R2 - Arithmetic right shift immediate

ASL (R1) , (R2)

Operation:

The arithmetic shift right fills the register shifted with
the value of the sign bit prior to shifting. The ASL keeps
the sign bit constant as bits are shifted out the left.

Exceptions:

In the ASL and ASLI instructions, when a bit different than the
initial sign bit is shifted out of bit one into the sign bit, an
integer overflow trap is taken if the integer overflow trap is
enabled.

Instruction Timing:

Instruction Time in Microseconds
ASL .563
ASLI .438
ASR .563
ASRI +563

-25-

ble Register Logical Shift

DLSL (R1), (R2)
DLSLI (R1), R2
DLSR (R1) , (R2)
DLSRI (R1), R2

Double logical
Double logical
Double logical
Double logical

Operation:

shift
shift
shift
shift

The double logical shift operate on pairs of
registers and are otherwise identical to the

shifts.

Instruction Timings:

Instruction Time in Microseconds
DLSL 1.250
DLSLI .750
DLSR 1.250
DLSRI .750

-26~-

left

left immediate
right

right immediate

adjacent
single logical

cign Extend Instructi

SEB (R1) , (R2) - Sign extend byte.
SEH (R1), (R2) - Sign extend halfword.
Operation:

The sign extend instructions change partial word integers into
full word integers. The SEB instruction makes bits 0..23 in (R1l)
the same as bit 24 in (R2). Bits 24,.31 in (R2) are copied to
(Rl). The SEH instruction makes bits 0..15 in (R1l) the same as
bit 16 in (R2). Bits 16..31 in (R2) are copied to (R1).

Instruction Timings

Instruction Time in Microseconds
SEB .500
SEH .500 typical

: i (NOP) Inst i
NOP This instruction performs no operation.

Instruction Timings:

Instruction Time in Microseconds

-27-

BRANCH INSTRUCTIONS

Branch instructions generally use either of the two memory reference
instruction formats as shown below:

11 11 3
0 7 8 12 56 1l
o ———————— S fm——— Frmm e ———— +
Short | Opcode | R1 | R2 | Displacement|
Fmmmm——— e e e tm——— Frmm e ———— +
11 11 4
0 7 8 12 56 7
fmm e ——— fm———— tm——— frmm————————————— Y —————————— +
Long | Opcode | Rl | R2 | Displacement |
o —————— e e fmm———————————— Y —————————— +

The CALL register form instruction and the RET instruction both use
the register format:

The branch instructions use program counter (PC) relative addressing
which allows self relocating code., The target address of the branch
instruction is computed by adding the displacement (sign extended in
the short form case) to the PC of the beginning of the branch
instruction.

The low order bit of the displacement field is used by the processor
to predict whether or not the branch will be taken. If it is one, the
processor will prefetch the instruction at the target address, and if
it is zero, the processor will prefetch the next sequential
instruction. If the prediction bit turns out to be incorrect the
program will execute correctly, but the next instruction after the
branch will be delayed by one memory cycle.

-28-

Jitional E b Instructi

BR - Displacement

Operation:

An unconditional branch is taken to the target address.
The branch prediction bit is ignored and the target
instruction is prefetched.

Instruction Timing:

Instruction Short Displacement Long Displacement

o Sun G B . W e - S ————— " T — G v S S S —— S — o S S . G WA G GRe G e S Ban SO

BR «250 «375

If the processor fetch ahead unit has fetched the
unconditional branch instruction, the processor advances
the program counter to the branch target, and the
unconditional branch instruction takes zero time.

-29-

g 30!- J E] I ! I-

BR (R1) rop (R2), Displacement - Compare and branch

BR (R1) rop R2, Displacement - Compare immediate and
branch

Operation:

The compare and branch instructions compare (R1) to the
contents of R2 or the four bit immediate value R2.
Comparisons are done using two's complement arithmetic.
The relational operator (rop) for the compare and branch
immediate instruction may be: =, <>, >, < >=, or <=.
The compare and branch rop may be: =, <>, >, or <=.

The < and >= relational operators are accomplished by
reversing (R1l) and (R2).

Instruction Timing:

Instruction Predicted Not Predicted

— - ———— " S S o= ——— — - o — —— ———— —— T S T e -

BR .250 .750

The long displacement form of the branch instruction takes an
additional .125 microseconds.

-30-

Sul ine Call and Re Ingt .

CALL Rl, Displacement - Call instruction

CALLR R1l, R2 - Register Format Call

RET Rl, R2 - Return or Call absolute
Operation:

The CALL instruction puts the address of the next instruction
into R1 and then branches to the effective address. In the case
of the CALLR the relative displacement is taken from (R2) and is
added to the PC at the beginning of the CALLR instruction. The
RET instruction places the address of the next sequential
instruction into (Rl) and branches to the absolute address in R2.
The main use for RET is in returning from subroutines but it can
also be used as a call to a subroutine when the absolute address
is known rather than the relative address. Care must be taken in
using the RET instruction so that the code remains self
relocating.

Instruction Timings:

Instruction Time in Microseconds
CALL .250
CALLR «625
RET .500

The long displacement form of the CALL instruction
takes an additional .125 microseconds.

-3]-

Loop Control Instructions
L,OOP (R1), R2, Displacement - Increment and branch if < 0

Operation:

The LOOP instruction adds the four bit value R2 to the

contents of (Rl) and branches if the result is less than
Zero.

Instruction Timing:

Instruction Predicted Not Predicted

—— e Gy . Sne G —— . ——— -~ — - —————— . o e o

LOOP «250 .750

The long displacement form of the LOOP instruction takes
an additional .125 microseconds.

-32-

KERNEL MODE INSTRUCTIONS

The normal execution of a user mode program may be suspended by either
an interrupt from an external device or a trap resulting from an error
in the program. The term exception is used to include both interrupts
and traps. The occurrence of an exception will cause the processor
operating in user mode to switch to kernel mode and begin execution at
a specific (dependent on the exception) memory location.

Kernel mode is distinct from user mode in three important ways.
First, the processor operates with real memory addresses instead of
virtual addresses. Second, interrupts are disabled. And lastly,
certain instructions become available which cause an illegal
instruction trap in user mode.

In addition to the 16 general registers the system also contains 16
32-bit special registers which may be used as high speed scratch pad
areas by the kernel. These special registers are also used to pass
the kernel information about exceptions.,

The addresses of the exception handling routines are in the CPU
Control Block (CCB), which is in an area of memory pointed to by
special register 11 (SR1ll). When an exception occurs the following
sequence of events occurs. The current instruction is completed if
the exception is an interrupt, or terminated if the exception is a
trap. The contents of the program counter, which points to the next
user mode instruction in the case of an interrupt or to the aborted
instruction in case of a trap, are placed in SR15. If the trap
occurred in kernel mode, SR15 is left unchanged and the program
counter is placed in SRO. This allows traps such as double bit parity
error to occur in both user and kernel mode. SRO is set to 1 if the
exception occurs in user mode.

Special registers SR1, SR2 and SR3 are set by the processor to
describe the type of exception., The processor then switches to kernel
mode, and begins execution at the location pointed to by the exception
table.

The processor may be returned to user mode by executing the Resume
User Mode instruction. This instruction causes the processor to load
the program counter with the value found in SR15 and switch to user
mode.

Note that neither exceptions nor the Resume User Mode instruction have
any effect on the contents of the general registers, the code and data
segment numbers, or the traps word. These, together with the user
program's program counter value form the Process Control Block (PCB),
the format of which is given below. Two instructions, Load User
State, and Save User State, are used to prepare the processor for the
execution of another user mode process, or to save the state
information of the one that was just halted by the exception. These
two instructions take the pointer to the process control block from
SR14.

-33-

0 1l

0 | Register 0 |
o e e e +

4 | Register 1 |
e —————————— e e e e +

8 !
| |

o e o e e e e e e e +

60 | Register 15 |
ey +

64 | Program Counter |
e ————————————— e e +

68 | Code Segment | Data Segment |
e —————————————_—— e e e +

72 | Reserved |
e T +

76 | Traps Word |
o o e e e e e e e +

80 | Process Clock |

e v G S . G — S Gt S 2 SR S G G GOR SRR G Gmn S Sem Se B56 M0 Shs B S0 Guv G S S G

Process Control Block (PCB)

All of the kernel mode instructions use the register format.
privil i Mod

The least significant bit of the traps word (bit 31) is used as a
privileged mode indicator. Certain kernel mode instructions (such as
the I/O instructions), can be executed in user mode if the privileged
mode bit in the traps word is set. All the kernel mode instructions
require either kernel mode or privileged user process to be executed,
and cause a kernel violation trap when not in the appropriate mode.

-34-

ctate Switching Inst "

sus Rl, R2 - Save user state

Operation:

The Save User State instruction stores the user program
counter and the process clock into the PCB pointed to by
special register SR14. 1In addition, the general registers
are stored beginning with Rl and ending with R2. The
instruction can store from one to 16 of the general purpose
registers. If the Rl specification is greater than R2 then
only Rl is stored (i.e. register numbers do not wrap

around). If SR14 = 1, no registers are stored and the
instruction performs no operation,

Exceptions:

An attempt to execute this instruction when not in kernel
mode results in a kernel violation trap.

Instruction Timing:

Instruction Time in microseconds

SuUS 0.750 + .375n

where "n" is the number of registers saved.

-35-

state Switching Inst i —— Copti ;

LUS Rl, R2 - Load User State

Operation:

The Load User State instruction is the inverse of the SUS
instruction. It loads the user program counter, the code
and data segment numbers, and the traps word from the PCB
pointed to by SR14 into SR15, SR8, SR9, and SR10,
respectively. From one to 16 general registers can

also be loaded. If Rl is greater than R2, then only Rl is
loaded (i.e., register numbers do not wrap-around). The
instruction cache and translation mapping table (see
virtual memory section below) are flushed. If SR14 =1, no
registers are loaded and the instruction performs no

operation.

Exceptions:

An attempt to execute this instruction when not in kernel
mode results in a kernel violation trap.

Instruction Timing:

Instruction Time in microseconds

- — - G — . Sun o S G G W S S B G G S S e G W S . S

LUS 10.125 for 5 or fewer registers,
10,125 + .375(n-5) for greater than
5 registers, where "n" is the number
of registers loaded.

-36-

: cwitching Inst ‘1 —— Contj 3

LDREGS R1,R2 - Load Registers

Operation:

The LDREGS instruction loads from one to 16 registers from
the PCB pointed to by SRl4. The LDREGS instruction differs
from LUS in that the program counter, code and data segments
and traps word are not read from the PCB, and the
instruction cache and translation mapping table are
unchanged. This instruction provides a faster method for
loading registers than the LUS instruction. This
instruction is useful in restoring user state after a Kernel
operation which does not cause a process context switch., If
Rl is greater than R2, then only Rl is loaded (i.e., no
register wrap—around). IF SR14 = 1, no registers are loaded
and the instruction performs no operation.

Exceptions:

An attempt to execute this instruction when not in kernel
mode results in a kernel violation trap.

Instruction Timing:

Instruction Time in microseconds

LDREGS «750 + ,375n

where "n" is the number of registers loaded.

-37-

State Switching Instructions -- Continued

RUM - Resume User Mode

Operation:

The processor switches from kernel to user mode, loading
the program counter from SR15. The user program begins
executing at the location in SR15. If SR14 = 1, the
processor pauses until an interrupt occurs, at which
time the kernel is entered. SRO is then set to the
kernel's program counter. The kernel interrupt handler
may then LUS and RUM to a new user program, or if SRl4
remains set to one, the LUS has no effect and the RUM
again causes the processor to pause.

Exceptions:
An attempt to execute this instruction when not in kernel

mode results in a kernel violation trap.

Instruction Timing:

Instruction Time in microseconds
RUM 1.125
MOVE (SR1l), (R2) - Move general register to special register

MOVE (Rl1) , (SR1) - Move special register to general register

Operation:
The above forms of move transfer data between the special
registers and the general registers.

Exceptions:

An attempt to execute these instructions when not in Kkernel
mode results in a kernel violation trap.

Instruction Timing:

Instruction Time in microseconds
MOVE S-R .375
MOVE R-S «375

-38-

Maint Instructi

Maintenance instructions are register format instructions that use the
R2 field as part of the opcode. In these instructions, (Rl), or
RP(Rl) are used for both input and output. The format of the
maintenance instructions is shown below:

MAINT | Opcode | Rl | Subop |
fmmm e ———— Fmmm——— tm e —— +

Subop is an extension of the opcode:

Subop Maintenance Instruction
0 ELOGR
1 ELOGW
6 FLUSH
7 TRAPEXIT
8 ITEST

-39-

Mai T __ Coptinued

ELOGR - Memory Error Logging RAM Read
Operation:

The ELOGR instruction reads the memory error logging RAM,
using (Rl) as an address. The logging RAM data is returned
as a bit in (Rl). Output (Rl) also contains the processor
status, regardless of the input (Rl) value. The pertinent
status bits are described below.

Status Description Bit No.
Memory error logging RAM data 16
External interrupt 27
Secondary/primary boot device 30
Load enable switch set 31

Exceptions:
An attempt to execute this instruction when not in kernel
mode or a privileged user process (bit 31 in SR10) results
in a kernel violation trap.

Instruction Timing:

Instruction Time in microseconds

ELOGR 1.125 in kernel mode
1.500 in privileged user mode

-40-

Maint Instructions == Continued

ELOGW Memory Error Logging RAM Write.

Operation:
The ELOGW instruction writes one bit into the memory error
logging RAM. The logging RAM address and data bit are
both contained in (R1l).

Exceptions:

An attempt to execute this instruction when not in kernel
mode or a privileged user process (bit 31 in SR10) results
in a kernel violation trap.

Instruction Timing:

Instruction Time in microseconds

—— o o w— S - —— . — G R G Go G . G Gn S S G G S G

ELOGW 0.750 in kernel mode
1.125 in privileged user mode

FLUSH - Flush Translation Buffer

Operation:
The processor's virtual to real translation mapping table
js invalidated and the instruction cache is emptied. This

instruction may be executed in Privileged mode as well as
kernel mode.

Exceptions:

An attempt to execute this instruction when not in kernel
or privileged mode results in a kernel violation trap.

Instruction Timing:

Instruction Time in microseconds

—— e S v G G - — . s G e e Gua Gum v Gun Gmn G S G G Gu=

-41-

Main Instructi _ Continued

TRAPEXIT Exit From Trap Instruction in Kernel Mode.

Operation:

The TRAPEXIT instruction is used to start executing in the
kernel at the location contained in SRO. The instruction
cache and translation mapping table are flushed. This
instruction is intended to be used with the TRAP
instruction to set breakpoints in the kernel. TRAPEXIT
may be used in lieu of the RUM instruction in order to
resume executing in kernel mode rather than user mode.

Exceptions:

An attempt to execute this instruction when not in kernel
mode results in a kernel violation trap.

Instruction Timing:

Instruction Time in microseconds

TRAPEXIT 9,000

ITEST RP(R1) <- interrupt, IOIR data
Operation:

The ITEST instruction tests for the presence of an interrupt, and
returns the I/0 Interrupt Read (IOIR) word if an interrupt is
present in (Rl)'. (Rl) is set to zero to indicate the presence
of an interrupt. If there is no interrupt, (R1) is set to one

and (R1l) is unchanged.

Exceptions:

An attempt to execute this instruction when not in kernel

mode results in a kernel violation trap.

Instruction Timings:

Instruction Time in Microseconds

—— o — - ———— — - — G " - G S DA Gun G B St S G G

ITEST 1.000 if no interrupt,
1.785 if interrupt.

-42-

Virtual M ; t Instructid

TRANS (Rl) <- real RP(R2). - Translate virtual address to real.
DIRT (R1) <- real RP(R2). Translate virtual address and mark
page dirty.

Operation:

The TRANS instruction takes the segment number in (R2) and
the virtual address in (R2)' and replaces (R1) with the
corresponding real address. If the address is not
translatable with the current VRT, then (R1) is set to

-1. 1If the address is translatable, then the reference bit
is set in the VRT for this address. The DIRT instruction is
the same as the TRANS instruction except that the modified

bit in the VRT for the page containing the virtual address
is also set.

Exceptions:

An attempt to execute this instruction when not in kernel
mode results in a kernel violation trap.

Instruction Timing:

Instruction Time in microseconds

o n - G G G G —— ——— s G - S G e S GV G e o S S S B

TRANS,DIRT 3,0 typical

-43 -

Input/Output Instructions

READ Read data from device
WRITE Write data to device

Operation:

The READ instruction sends (R2) as an 1/0 read address word to
the device number specified in the most significant byte of (R2).
The least significant bytes of (R2) are device dependent data.
(R1) is set to the I/0 status and (R1)' contains the I/0 read
data word from the device. The WRITE instruction sends (R2) as
an I/0 write address word and (R1) as an I/O write data word to
the device specified in the most significant byte of (R2). (R1)
is set to the I/O status. Register formats for read, write and
I/0 status are as follows:

‘READ Instruction

0 7 8 31
(R1) I/0 Read +-=—==—===== frm s e e s + Sent to
Address | device # | device dependent data | Device
Word - fomm—————————————— e +
0 31
(R1)' I1/0 Read #==m==———==—=—oosooossssomosomsesss +
Data Word | data read from device |
o o +
WRITE Instruction
0 7 8 31
(R2) I/0 Write +-=====———- ettt btttk + Sent to
Address | device # | device dependent data | Device
Word tomm - e i +
0 31
(R1) I/0 Write +-==—=-——--==———m——o—o——ssssmoossmEe s +
Data Word | data written to device |
o ————— e e e e e +

-44-

Input/0 i -

I/0 STATUS returned in (R1)

T = "0" is ok, "1" is device timed out and did
not respond.

N = "0" is ok, "1" is I/O device not ready to
accept command.

Instruction Timing:

Instruction Time in microseconds
READ 1.250
WRITE 0.875
Exceptions:

An attempt to execute this instruction when not in kernel
mode or a privileged user process (bit 31 of SR10) results
in a kernel violation trap.

-45-

EXCEPTION HANDLING

This section describes the processor's functions upon exceptions to
instructions. This activity includes traps, external interrupts and
timer interrupts, each of which are described below.

Iraps

The table below lists the CPU Control Block and the address referenced
by each trap (offset from SR11). The values of SRl, SR2 and SR3 upon
entry to the kernel are also given. SRO is used as a flag to indicate
kernel or user mode when the trap occurs. If the trap occurred in
user mode, SRO is set to 1, otherwise SRO contains the value of the

kernel's program counter. SR15 contains the value of the user program
counter.

-46-

CPU Control Block (CCB)

Trap Hex Addr SR1 SR2 SR3
KCALL 0 0
KCALL 1 4
KCALL 2 8
KCALL 255 3FC
Data Alignment 400 Segment # Virt Addr
Illegal Instr 404 Opcode Rl Field R2 Field or
virt Addr
Double Bit Parity 408 Virt Addr or
Error - Code Fetch Real Addr
Double Bit Parity 40C Virt Addr or
Error - Execute Real Addr
Page Fault 410 Segment # Virt Addr
Kernel Violation 414 Opcode Rl Field R2 Field
Check Trap 414 Rl Field R2 Field
Traps Word Traps 41C
Trap Instruction R2 Field
Integer Overflow 16
Integer Div by zero 17
Real Overflow 18
Real Underflow 19
Real Div by Zero 20
External Interrupt 420 Dev # word

Switch 0 Interrupt 424

Power Fail Warning 428
End Power Glitch 42C
Timer 1 Interrupt 430
Timer 2 Interrupt 434
Reserved 438
Data Area
Clock Tick While
Paused Count 43C
Timer 1 Count 440
Timer 2 Count 444
Time of Day in 44 8-
Nanoseconds 44C

-47 -

Noteg on Traps:
1. KCALL. SR15 is set to PC + 2 on entry (rather than PC).

2. Illegal Instruction. The contents of SR2 is dependent upon
the format of the illegal instruction (determined by which
opcode group it is in). If it is a register format
instruction then SR2 contains the value (i.e. four bits) of
the R2 field. Otherwise it contains the virtual address.

3. Double Bit Parity Error — Code Fetch. A code fetch error
can occur when the CPU fetch-ahead unit reads a word of code
from memory. The address of the parity error is determined
as follows: '

o User Mode. SR8 contains the code segment number, and
SR3 contains the virtual address.

o Kernel Mode. SR3 contains the real memory address.

4. Double Bit Parity Error - Execute. An execute error can
occur as the CPU executes a memory reference instruction,
The address and type of the parity error is determined as
follows:

o0 User Mode. Special registers 8 and 15 contain the
segment number and virtual address of the memory
reference instruction that failed. The opcode of the
instruction determines whether it is a reference to a
code or data segment. Special register 8 contains the
code segment number, and SR9 contains the data segment
number. The virtual address is in SR3.

o Kernel Mode. SRO contains the address of the memory
reference instruction that failed. The real address of
the parity error is in SR3.

5. Page Fault. This fault can never occur in kernel mode.

-48-

Notes on Traps, Continued

Trap Word Traps. These traps are under control of the traps
word, which has the format given below.

1 1 1 1 1 2 3

0 5 6 7 8 9 0 1
tm————— Tm————— e L L L PP P Yt
| Trap Instr | O] DO|] RO| RU|RDO] | PM|
ettt T e e T et

Trap Instr - These sixteen bits control the trap
instruction., The R2 field from the trap instruction is
placed in SR3.

0 - Integer Overflow.

DO Integer Divide by zero.
RO - Real Overflow.

RU - Real Underflow.

RD0 - Real Divide by Zero.

PM - Privileged Mode. An attempt to execute an instruction
which requires privileged mode results in a kernel
violation.

Switch 0 Interrupt. This interrupt occurs when switch 0 on
the clock board is depressed and released.

Power Fail Warning. This interrupt is caused when the power
supply detects that AC power is being removed.

End Power Glitch., When AC power is removed only
momentarily, and not lost, first a power fail warning
interrupt occurs, which is then followed by an end power
glitch interrupt.

-49-

External Interrupts

An external interrupt is an interrupt caused by a peripheral device.
Special register 0 contains the I/O Interrupt Read word from the
device. The data in this word is device dependent except that the
device number is contained in the most significant byte. Interrupts
that occur in kernel mode are held off until the process returns to
user mode,

Timer Interrupts

The processor has four timekeeping facilities. One is process time,
which is incremented once each millisecond. When SR14 <> 1, a user
processor is running, and the process clock word in the PCB is
incremented. If SRl4=1, the processor is paused, and the "clock tick
while paused count" in the CCB data area is incremented.

The second facility is time of day. Once each millisecond one million
nanoseconds is added to the "time of day in nanoseconds" double word
in the CCB data area.

Two interval timers are also provided. Once each millisecond the
timer 1 count and then the timer 2 count in the CCB data area are
decremented. If either timer is less than zero, the kernel is entered
at the appropriate timer trap.

-=50-

VIRTUAL MEMORY SUPPORT

The processor supports demand paged virtual memory using 4096 byte
pages. The memory system has a Translation Mapping Table (TMT) which
contains virtual-to-real address mapping entries for 32 pages.

Sixteen of these entries are dedicated to code segment pages and
sixteen are dedicated to data segment pages. When the processor is in
user mode it communicates with the memory using virtual addresses and
indicates whether each reference is for code or data. The TMT is
searched to determine the real address of the data. The TMT search is
overlapped with memory access 8O that no time penalty is incurred when
the mapping information is in the TMT,

When no entry is found in the TMT, a microcode interrupt occurs in the
processor which causes it to search the Virtual to Real Translation
table (VRT). If the VRT table contains the entry, it is loaded into
the TMT and processing continues. If not, the current macro
instruction is aborted and a software page fault interrupt is
generated. When the processor is executing in kernel mode, real
addresses are used and the TMT search is bypassed. Direct memory
access by I/0 devices also uses real addresses.

The VRT performs the same function as the page table in conventional
virtual memory machines. Because of the very large virtual address
range supported by the Ridge processor, using this standard technique
would likely result in very large page tables. For this reason the
VRT is organized as a hash table with one entry for each real page.
The processor has firmware support for efficiently searching the VRT
and this is done automatically without the user programmer's
knowledge. The VRT is kept in main memory and its size is dependent
upon the amount of memory in the system.

When the processor needs to search the VRT, it proceeds as follows
(Please refer to figures containing VRT table entries and VRT layout
on the following pages):

1. The segment number of the code or data segment to be
referenced is added to bits 0..19 of the virtual address.

2. This sum is logically ANDed with the contents of VRMASK
which is kept in special register SR13.

3. The result is shifted left 3 bits and added to the VRT
table base address which is stored in SR12.

4. The VRT entry is fetched and the tag and segment number
parts are compared with virtual address and segment
number desired.

5. If they match, the real page number, virtual address,

and modify bits are loaded into the TMT and the
referenced bit is set.

-51-

6. If not, the link pointer is followed (added to SR12) to
the next VRT entry. If a link pointer of zero is found
the end of the chain has been reached and a page fault
interrupt is generated.

The average time to search the VRT is approximately 2 microseconds.
Special registers SR11, SR12, and SR13 are involved in virtual memory
address translation and must be properly set before the first VRT
search is performed.

The VRT table entries are defined below:

11 3
0 56 1
————————————————— +—_—_——-—-—————-————-————
| Seqg # | Tag |
11 2 2 3
0 56 01 1
_________________ o e e e e e
| Link ° | RVVVM | Real Page |
Seg # - Uniquely defines a particular code or
data segment.
Tag - High order bits of the virtual address
(bits 0..15).
Link * - Pointer to next VRT entry with the same
hash code.
R - Referenced bit.
AATAY - 000 indicates entry is invalid
111 indicates entry is valid.
M - Modified bit.
Real Page - Real page number containing the virtual

page.

-52=

Main VRT Hash Table

VRT Main Table VRT Main Table Size
Address in SR12 is SR13 + 1

fm e —————— Fo e —————————— +

I Seg # I Tag |

- = - - = = = = = - 0
! Link ° |RVVVM | Page |

o o o e e e +

| I

| | 1

I I

oo o o e e e e +

| |

| | 2
| I

o o e e e e e +

| Seg # | Tag I

[= = = = = = = = = -1 3
| Link ” |RVVVM | Page |

o e e +

! : !

| : |

o e e +

| Seq # | Tag |

- - -~ - - = = = = - n
| |

o o e e o +

-53-

Notes on VRT

1. SR12 is full 32-bit pointer, so the Main VRT Hash Table can
reside anywhere in real memory.

2. All VRT link pointers are 16-bit unsigned quantities. When
a link is followed, its 16-bit value is added to the Main
VRT base (SR12) to get the real address of the linked object.
Thus, chained VRT entries can be no more than 65535 bytes
away from the VRT base. :

3. There is no method for constructing an invalid VRT entry.
Kernel software must select one segment number to indicate
an invalid entry, then take care to never use this number
as a segment number, in SR8, SR9, or as input to the TRANS
or DIRT instructions. ‘

4. VRMASK must be a right justified mask of 1's. VRT main
hach table sizes must be a power of 2, with VRMASK set
to hash table size minus one.

5. The smallest value for VRMASK (SR13) is 15 (O00OF in Hex).

Smaller values would allow collisions in the hash table
which have identical tag fields.

-54-

SPECIAL REGISTER ASSIGNMENT

Register Function
SRO Kernel flag. Set on trap. SRO =1,
trapped in user mode, otherwise SRO =
kernel PC.
SR1 KCALL no./opcode. Set on trap.
SR2 Segment no.,/Rl1 field. Set on trap.
SR3 Virtual address/R2 field. Set on trap.
SR4 - SR7 Unused.
SR8 Code segment number.
SR9 Data segment number.
SR10 Traps word.
SR11 Address of CPU Control Block in memory.
SR12 Address of VRT table in memory.
SR13 VRMASK used for hash generation (set

to one less than hash table size)

SR14 Current process pointer. (if SR14=1, then
there is no current process)

SR15 User program counter (PC)

-55-

ocC
OF
1F
68
78

2C
2F

2E
2D

INSTRUCTJION INDEX AND OPCODE ASSIGNMENTS

Name Page

ADD [2N BN BN BN BN BN KN N AN J
ADDI 20 9 000 e v oo
AND LN BN BN IR B BN BN BN BN BN J
ANDI ® 0 @00 W O o0
ASL ® ¢ 0000 0OV OO
ASLI L2 B N B B B BN BN N J
ASR ® @000 600 00
ASRI * 0 000 000 00

BR ® ¢ 0 @000 O

CALL LK BN BE BN B B BN BN BN J
CALLR L2 BN BN BN B BN BN AN J
CB IT ® e 606008 00
CHK ® o 00 00000 00
CHKI LR BN B B AN BN BN AN
CSL ® 000 800 0800
CSL I o0 8 09 00000

DCOMP LR 2N BN BN BN BN BN SN J
DFIXT ® 900 ¢ 00 00
DFIXR ® 900 s 60 00
DFLOAT L BN B B B BN AN J
DIRT ® 000" 0000
DIV L B B BN B B BN BN B BN J
DLSL ® 00 00 000 00
DLSL I ® o669 60000
DLSR ® ® ¢ ¢ 0009 00
DLSRI 0000090 00
DRADD e 00000 0
DRCOMP ® o000 00
DRDIV LN 2B IR IR B BN BN BN J
DRMPY ® ® o ¢ e 00 o0
DRNEG ¢eoceeose
DRSUB L N BN BN BN BN BN N

EADD ® 9 000 8090 0o
EDIV ® 9 @80 000 ¢
ELOGR ® © 00 00000
ELOGW 0 ¢ 000 00
EMPY e 0000 0000
ESUB ® O @ o0 00 0 0

11
16
12
16
25
25
25
25

29

31
31
17
18
18
23

23.

21
15
15
15
43
11
26
26
26
26
15
22
15
15
15
15

13
13
40
41
13
13

Hex
Op

— ——

20
21
29

5B

28
43

Name Page

FIXT ® 00900 09900
FIXR ® ® 9 0 ¢ 090
FLOAT LR B B BN BN B BN BN 2 4
FLUSH L N B BN BN B BN BN IR AN J

ITEST o ® 09 900 o0

KCALL L K 2R BN BN BR 2R B AN J

LADDR ® ® 0 09 00000
LCOMP ® 00 e 0000
LDR EG S ® 9 s e 00000
LOAD LR BN BN BN BN BN BN BN BN BN J
LOADB ® O ¢ 000 0000
LOADD LK 2N 2N BN BN B BN AN AN J
LOADH ® 9 06 @ 9 9 000
LOOP ® ® *9 000 ¢ 0000
LSL 0 9 ¢ 0 0 0 ¢ 0 o
LSL I ® ® 00 0000 0o
LSR ® 9 000 ¢0 00900
LSRI ® ® 09S¢ OO C0
LUS L K BK AR BN BN N BN BN BN BN BN J

MAKEDR ceeeeccen
MAKERD ®® 00 00000
MOVE o & 60 0000 000
MOVE R=S ecoeevee
MOVE S-R cccccee
MOVEI cecevaccon
MPY ® ® 5 0 @ 00 o " 0o o0
MPYI cecevevcces

NEG ® ¢ 00 0 0o 0 000
NOT & 600 0000 0o
NOTI o0 00 0000000
NOP ® 0 0 0 &9 0 Q@0 00O

OR 0 ¢ 000 000G 00 e

RADD ® O 000000000
RCOMP ® O o0 000000
RDIV ®® 000 900000
READ e 00 000000
REM ® % 0 00000 b0
RET ® 9% 08 00850 000
RMPY ® ¢ ®0 o000 00 o0
RNEG ® 0 9 0000 0o
RSUB ®® 000005000
RUM ¢ ® 060 00 00 0 80

14
14
14
41

42
19

9
21
37

7

7

7

7
32
24
24
24
24
36

15
14
12
38
38
16
11
16

11
12
16
27

12

14
22
14
44
11
31
14
14
14
38

Hex
Op Name Page

OD SBIT * ¢ 00060000 17
6A SEB ® 60 005 00 000 6A
7A SEH ® ¢ 0 Q0000 0 00 7A
STORE e o000 0 090 0 8
STOREB ee¢coeees 8
STORED sc¢eeceee 8
STOREH .seceeee 8
04 SUB ® 0 & 00009 000 ll
14 SUBI 0 ¢ 00 0000 16
41 SUS ® 60000000 o0 35

OE TBIT coececesss 17
TEST ceeoeeeses 20
TESTI eeeesesee 20

44 TRANS LN BN BN BN BN BN B BN J 43

3B TRAP ceveceeees 18
TRAPEXIT eeeeoee 42

4F WRITE ® o 000009 00 44

OA XOR * 008 00 00 00 12

Segment

Referenced

Data

Data

Code

Code

Register Format

Length

Short

Long

Short

Long

Short

Long

Short

Long

Most Significant Nibble --- Opcode(0:3)

I

o

(o]

~J

e o]

{Xe

=

RIDGE OPCODE MAP

Least Significant Nibble --- Opcode (4:7)

0 1 2 3 4 5 6 7 8 9 A B c D E F
MOVE |NEG | ADD | SuB | MPY | DIV | REM | NOT | OR | XOR |AND |CBIT |SBIT | TBIT jCHK
NOP | MOVEI ADDI | SUBI |MPYI NOTI ANDI CHKI
FIXT | FIXR | RNEG | RADD |RSUB |RMPY | RDIV {MAKERD|LCOMP | FLOAT | RCOMP EADD | ESUB {EMPY [EDIV
DFIXT | DFIXR | DRNEG [DRADD | DRSUB | DRMPY |DRDIV [MAKEDRIDCOMP DFLOAT |DRCOMP| TRAP |
SUS | LUS | RUM |LDREGS| TRANS | DIRT MOVESRIMOVERS MAINT READ | WRITE |
TEST CALLR TESTI RET TEST KCALL TESTI
> < = > Y 4 = £ =) = [$) (= = <2
LsL | LSR | ASL | ASR ‘}oLsL | DLSR CcSL SEB
LSLI | LSRI | ASLI | ASRI | DLSLI JDLSRI CSLI SEH
BR BR | CALL| BR IMM LOOP | BR BR BR | BR IMM
-+ + + + + + + . -+ + +
) = b ¢ = (= 4 UNC | &= D= 194
H 1 H H
STOREB STOREH STORE STORED
X X . N .
et ot T s P--+ ('
i | i !
1
(X by L X =
N B T ¥
!) | i
I i 1 '
X | X X X X
R s et e R e it A I - - -+ - -
LOADB LOADH LOAD , | LOADD LADDR
R R it G St e
] |] !
boox ! X boox (I X
} ' | { -)
{ 1
box boooX) ooy boox . L X

Indexed

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58

