RIDGE ASSEMBLER REFERENCE MANUAL
(RASM)
August 30,1982

The Ridge assembler (RASM) accepts source lines of Ridge instructions,
pseudo instructions and assembler directives, and produces either
executable object code or object code suitable for input by the
linker. Following is a list of rules for the assembler source syntax.

Syntax Notation

Register numbers are indicated by (R1) or (R2). Registers are
specified by Rn where "n" can be 0 - 15. Usage of "R2" indicates a
literal value from 0 -15, rather than the register number. Items

enclosed by braces, "{", and "}" indicate one token must be selected.
Items enclosed by brackets, "[", and "]" are optional.

1. Source line input is free-form, with the restriction that the
first character of a line is reserved for labels. Labels are either
jump targets, pseudo instructions or assembler directives.
Instructions may begin following a jump target label, or after one or
more leading blanks on a line.

2. Jump targets must be followed by a o
3. Blank lines are ignored.
4, 1Input following a ";" is ignored.

5. Expressions used may contain decimal numbers, hex numbers or label
names. "+4", "=", "k ®/% and "(...)" may be used in expressions.

/6. Hex numbers must begin with the digits 0 - 9 and must end with
IIHII o

7. Labels must start with A - Z and may contain digits 0 - 9. Labels
may be an arbitrary length, but only the first 16 characters are used
to uniquely identify a label. :

8. The assembler accepts both upper and lower case input, but does
not distinguish between tokens that are of different case.

» bler Directi

The assembler directives are listed below (all directives must start
‘as the first character on a line):

LIST Assembler displays each source line as it
is read. This is the assembler default.

NOLIST Assembler does not print source lines.
Errors are still displayed, however.

HEXOUT Assembler output is an object file suitable
for linking. EXTERNAL and GLOBAL names
are placed in the output file.

ALIGN {2} The next instruction assembled is placed
{4} on a 2, 4, or 8-byte boundary, as
{8} specified.

PAGE Places a form feed in the output file.

Pseudo Instructions

label CODE expression

This equates a label with an expression
that can be used in instructions that
reference the code segment., "label"
must be the first character of a line.

label DATA expression

ORIGIN n

BLOCK count,byte

EXTERNAL name

GLOBAL name

This equates a label with an expression
that can be used in instructions that
reference the data segment. "label"
must be the first character of a line,

The next instruction assembled is placed
at byte "n" in the object code. The
assembler default places the first
instruction assembled in the first byte
of the object file.

"pbyte" is an expression that is placed in
the object code. "count" is a replication
factor that must be a positive integer.

This places the label "name" in the

HEXOUT object file. All references

to "name" can be resolved by the linker
program., EXTERNAL must be used in the
source text before any occurrences of
"name".

This places the label "name" in the

HEXOUT object file. This permits labels
used in the assembled code module to be
bound by the linker to EXTERNAL references
in other code modules,

Instruction Syntax
The syntax for Ridge instructions is listed below.

7ero Register Format Instructions

{FLUSH }
{TRAPEXIT}
{RUM }
One Register Format Instructions
{ELOGR}
{ELOGW} (R1)
{ITEST}

Two Regist P t Tnst i
instr (R1) , (R2)

Where "instr" is one of the following (as they appear in the opcode
chart):

NEG SuUS

ADD LUS

SUB LDREGS

MPY TRANS

DIV DIRT

REM READ

NOT WRITE

OR

XOR CALLR

AND RET

CBIT

TBIT LSL

SBIT LSR

CHK ASL
ASR

NOP DLSL
DLSR

FIXT CSL

FIXR

RNEG

RADD

RSUB

RMPY

RDIV

MAKERD

LCOMP

FLOAT

RCOMP

EADD

ESUB

EMPY

EDIV

DFIXT
DFIXR
DRNEG
DRADD
DRSUB
DRMPY
DRDIV
MAKEDR
DCOMP
DFLOAT
DRCOMP

MOVE { (R1) , (R2) }
{ (SRl) , (R2) }
{ (R1) , (SR2) }
KCALL n where "n" is an expression that results
in an integer from 0 -255
TRAP n where "n" is an expression that results
in an integer from 0 - 15
TEST Register Format
TEST (R1) lop {(R2)} where lop is : >, < =¢ <=y
{ R2 } >=, O
Branch Format
Unconditional branch:
BR target [,L] where L indicates long (32-bit)
displacement
target is an expression
Call:
CALL (Rl) , target [,L] where L indicates long (32-bit)
displacement

target is an expression
Conditional branches:

{BBop} (R1) lop f (R2) 1}« target[] [rL]

where
lop is one of: >, <, =, <=y >=, <>

(no space following target name) set branch
targ?gdiction bit in target displacement

L indicates long (32-bit) displacement

Memory Reference Format

{LOADB }
{LOADH }
{LOADHS }
{LOAD }
{LOADD }
{LADDR } (R1) { , (R2) [, address [, L] 1}
{ } {[, (R2)] , address [, L]]}
{STOREB }

{STOREH }

{STORE }

{STORED. }

{
{LOADBP }
{ LOADHP }
{ LOADHSP}
{LOADP
{LOADDP }
{LADDRP }

where
"address" is an expression

L indicates long (32-bit displacement)

Load instructions followed by "P" reference the code
segment; those without reference the data segment.

	01
	02
	03
	04
	05
	06
	07
	08

