Ridge Pascal _ Reference Manual

RIDGE PASCAL
REFERENCE MANUAL

March 10, 1983

Ridge Pascal Reference Manual

TABLE OF CONTENTS

PREFACE......'....‘..........0."....'.......0..'..'............‘0...5

SECTION 1l: RIDGE PASCAL LANGUAGE NOTES...............................7
IntrodUCtionOO..00..0.'......'......"....Q.IO...O.I."'O.'..?
Listing of DiffErENCESee esososessssosssssssssssseassesssnsseed

Case Statements- ® ®© 00 @@ 00 00 00 8 0 ® 0 0 0 0 0 0 0 0 o0 ® 0 o 0 0 0 08 8 o 9
Character Synonyms...................................9
Commentslitiitﬂ'....0."'0...0..0...0....'.'....."009
Compiler Options....................................10
Declarations..12
External Procedures and FUNCEiONSeeeosssssesosssensssl?
Fileso..ll..'.........'.l.l‘...OI.O.!........QIO'...13
GOTO Statements. ® ® & @ ¢ 0 0 5 0 00 0 @ 00 o ¢ 00 00 0 00 ® ® 0 9 9 08 o0 & 15
Identifierso....l.".....'.....'.Q.'..O"O....Q"l'.ls
Mixed Mode Expressions..............................15
Numbers,..0...'....‘0..l'.l...l..'.'..'......0..0...15
PACKED Types. ® 6 0 9 0 9 O 0 00 00 00 ® © 0 ¢ 00 0 ¢ 8 0 00 e ® 0 0 @ 9 0 0 0 0 17
PACK and UNPACKO ® 0 8 9 0 0 0 00 000 00 o 0 0 ¢ 9 008 00 00 o 0 9 9 09 0 0 00 17
Procedures and Functions as PArameterSesveescssessssll
Reserved Words......................................17
String Literals. ® 0 09 0 00 0 0 00 00 ® 6 0 @ 0 00 @ 00 0 00 ® & ¢ 0o 0 0 & 0 .17
Strings..'.l'0.'.0...0....00.C...l....'...‘..ll‘.l'.l?

Types.........'...:0...".'.'....0"......'.........'19

SECTION 2: THE PASCAL RUNTIME ENVIRONMENT...........................21
Introduction..21
Data Segment Overview.......................................23

Data Segment Memory Diagrams........................23
Absolute MOGC e o v oosoonsssssssssssssssssnensnll

Relocatable MOA€eeeessecsssassososcassoosssssld

Stack Diagrams......................................27

The Mark Stack BlOCKeooeososoocoscsososssssssosscscsssess3l

The Display..o.....“..!.....lI.l...'........'i....'31

The Heap..33

Code Segment OV LV iCWea o 0secesssonsssasssssssssssasnsssossnsssell
Code Segment Memory Diagrams........................33
Preamble and Postamble COACeevesnsoooncsssssonssssss3b
Procedure/Function Entry COACeeesovsvsnnnssedl
Procedure/Function Exit COACeeoeeasesnssssssslB

Program Entry COACeeronnosacsossassasesnsnssdl

Program Exit COACvoeveonasnsssosassnsssensseedl
Miscellaneous...42
Register Use CONVENtiONSeeeessssovossossssssssssenssdl
Procedure/Function Calling CONVentioNSeeeeeessssoessd2

Data Representation and Alignment RUlESeeoessossesssdd

-3

Ridge Pascal Reference Manual

SECTION 3: AN EXAMPLE....O.I..Q...llll....0..0..0000..00.0000000009047
Introduction..l...."t...Q..0..O..Q..C.0000000.0000000.00.0.47
Command Filel...C.0..‘ll.0....'I...O...l.l.....'........l...48
Pascal SourCe Listingl. .C..'QQ.l...I.OQ0.00.....'.......'...48
Assembler Listing of Main ProgramMeccesccecscsccscccosscsocscecdd
Assembler Listing of Called ROULiNES.cecsesssvsssccscncesesedd

copyright 1983 Ridge Computers

Ridge Pascal Reference Manual

PREFACE

This manual documents the Ridge Pascal language, which is based on
the standard language as defined by Jensen and Wirth in the "Pascal
User Manual and Report.” The Ridge language shares various
modifications to the base language, including traditional
improvements to case statements, character synonyms, comments, and
declarations, with other Pascal implementations. These and other
changes arose from the desire for performance trade-offs and the
need to meet implementation requirements, creating a language
suitable for production.

Since a knowledge of Pascal on the part of the reader is assumed,
the differences between the Jensen-Wirth language and the Ridge
language are documented in this manual but not the Pascal 1language
in its entirety.

This manual is divided into three sections:

o Ridge Pascal Language Notes

o The Pascal Runtime Environment

o An Example
The first section describes Ridge Pascal by listing the differences
between it and the Jensen-Wirth language. Topics are arranged
alphabetically.
The second section describes the Pascal runtime environment. Much
of this information is pictorial: memory diagrams are provided that
illustrate the relationships among the various components of a

pascal user process running under the Ridge Operating System (ROS) .

The third section gives an example of how to write an assembly
language routine that can be called by a Pascal program.

Ridge Pascal Reference Manual

SECTION 1

RIDGE PASCAL LANGUAGE NOTES

INTRODUCT ION
This section describes the Ridge Pascal language by citing the
differences between it and standard Pascal (as defined in Kathleen
Jensen and Nicklaus Wirth's "Pascal User Manual and Report").
The reader is referred to the Jensen/Wirth book, second edition,
Springer-Verlag, 1975, for a detailed discussion of the base
language.
The following list gives an overview of where Ridge Pascal differs
from standard Pascal. The list is in alphabetical order for easy
reference, and each item is explained in detail in the remainder of
this section.
o Case Statements
o Character Synonyms
o Comments
o Compiler Options
o Declarations
o External Procedures and Functions
o Files
o EOF and EOLN
o File Manipulations
o OpenFile

o CloseFile

o FileStatus

o File Types

Ridge Pascal Reference Manual

o GET

o PUT

o READ

0 RESET

0 REWRITE

o Standard Predefined Files

0 WRITE

0 GOTO Statements
o Identifiers
0 Mixed Mode Expressions
0 Numbers
o Integers

0 Reals

o PACKED Types
0 PACK and UNPACK
0 Procedures and Functions as Parameters
0 Reserved Words
0 String Literals
o Strings
o How to use

o NewString

o Types

Ridge Pascal Reference Manual

LISTING OF DIFFERENCES

Case Statements

In standard Pascal, if there is no case label equal to the value of
the case expression, the action of the case statement is undefined.
In Ridge Pascal, however, the statement immediately following the
case statement is selected for execution.

The case statement has an optional "otherwise" case label. The
reserved word '"otherwise" may be affixed to the 1last case
alternative rather than a case label, causing control to be
transferred to this last alternative in the event of no prior match
with other case labels.

Character Synonyms

The follwing character synonyms are recognized by the Ridge Pascal
compiler:

o "|" can be substituted for "or".
o "&" can be substituted for "and".

o "*" can be substituted for "not".

Comments

In Ridge Pascal, the symbols "(*" and "*)" may be used to delimit
comments; the standard symbols m{n and "}" may also be used.
Comment delimiters must be matched; that is, if a command starts
with "{", then it must end with m}v, if it starts with "(*", then
it must end with "*)". Comments having the the same delimiters may
not be nested. All text appearing between delimiters is ignored by
the compiler; however, if the first symbol after the first
delimiter is "$", the comment is interpreted as a compiler option
(see Compiler Options).

Ridge Pascal Reference Manual

Compiler Options
Compiler options are communicated to the compiler via special
comments (see Comments). The following compiler options are

recognized by the Ridge Pascal compiler when they follow a "S$" at
the beginning of a comment:

o The "E" (eject) option controls pagination of the source
listing. The effect is that the next source line will
appear at the top of a new page.

o The "G" option controls the starting address of the
(static) outer block variables, This option must appear
before the "program" declaration. The "G" option implies
absolute addressing as opposed to relocatable addressing
(see the "R" option).

© The form of the "G" option is "G<n>" where
"<n>" is a decimal integer. For example,
"G16384" would cause the compiler to start
allocating global variables at 16K.

o The default is "G4096".

o The "L" option is for source 1listing control. This

option may appear anywhere in the source program.
o "L+" turns the listing on.
o "L-" turns the listing off.
o "L+" is the default.

o The "O" option instructs the compiler whether or not to
optimize the object code.

o "O+" produces optimized object code.
o "O-" produces unoptimized object code.

o "O+" is the default.

-10-

Ridge Pascal Reference Manual

o The "P" option controls the packing of data. It informs
the compiler that it should pack data closely, which
saves data space but increases execution time. See the
Runtime Environment section for information about the
layout of data and the effect of packing. This option
must appear before the "program" declaration.

o "P+" causes data to be tighty packed.
o "P-" causes nonpacking of data.

o "P-" is the default.

o The "R" option causes the compiler to generate code in
which the outer block variables are allocated 1in a
relocatable segment rather than being assigned to
absolute addresses. This option thus facilitates the
construction of a program consisting of a number of
separate compilations. With this type of construction,
the user will not be burdened with assigning starting
addresses for the separate compilations' outer block
variables since the linker will perform this task.

Accessing relocatable outer block variables generally
causes a slight performance decrease in comparison to
accessing absolute outer block variables. The reason for
the decrease is that an extra instruction must be
executed to determine the base of the separate
relocatable compilations' outer block variables.

The "R" option must appear before the "program"
Yeclaration. Additionally, it is mutually exclusive with
the "G" (outer block variables starting address) and "S"
(string constant starting address) options. That is, if
the "R" is present, then neither a "G" nor "S" option may
appear in the same compilation.

-11-

Ridge Pascal : Reference Manual

o "R+" enables relocatable addressing of global
variables.

o "R-" disables relocatable addressing of global
variables, i.e., causes absolute addressing.

o "R-" is the default.

o The "S" option controls the starting address from which
string constants will be allocated downwards (towards
lower addresses). The "S" option implies absolute
addressing as opposed to relocatable addressing (see the
"R" option). This option must appear before the
"program" declaration.

o The form of the "S" option is "S<n>" where
"<n>" is a decimal integer.

o "S0" is the default.

Declarations

LABEL, CONST, and TYPE declarations may appear in any order and may
be repeated. However, as in standard Pascal, they may not appear
after the first variable, procedure, or function declaration in the
current block.

External Procedures and Functions

The "external" attribute is supported for procedures and functions.
It is similar to the "forward" attribute in that it tells the
compiler that only a procedure heading appears at this point.
However, wunlike the "forward" attribute which indicates that the
body will appear later in the compilation, the "external" attribute
indicates that the body has been compiled separately inside another
program and will not appear in this compilation. The name of the
"external" procedure will be passed on to the linker, which will
resolve the reference at link time.

The names of all procedures and functions are considered global and
may be referenced by other separately compiled programs.,

-12-

Ridge Pascal Reference Manual

Files

o EOF(f) and EOLN(f). EOLN is defined as EOF or (f£° =
chr(13)), where "chr(13)" is the ASCII carriage return,
Return characters are not, as in standard Pascal,
converted to blanks. Nor, unlike standard Pascal, is EOF
defined until after the first GET operation.

o File Initialization

All file variables except the predefined variables
"input", "output", and "stderr" must be explicitly
opened. There are three file manipulation routines for
this purpose, which, since they are not predefined, must
be declared as "external." For more information on these
routines, see the Ridge "Operating System Reference
Manual." The declarations for the routines are as
follows (the string type is described later):

Procedure OpenFile(

var f:Text ;

name:String ;

mode :Char

) : External;
Function FileStatus(var f:Text):Integer;External;
Procedure CloseFile(var f:Text) ;External;

o The function of procedure "OpenFile" is to take
a Pascal file variable and bind it to the ROS
file indicated by the "name" argument. The
argument "mode" must Dbe either "R" for read
access, "W" for write access, "A" for append
access (writing at the end of a file), or "ug"
for update access (reading or writing).

o The function "“"FileStatus" returns the value
zero if no errors were encountered during any
input/output operation on the file; otherwise,
non-zero is returned.

o The function of procedure "CloseFile" 1is to

release the binding between the Pascal file
variable, "f", and the ROS file.

-13-

Ridge Pascal Reference Manual

o File Types. Only "Text" files (Text = File of Char) are
currently supported.

o GET must only be applied to open files, otherwise the
results are undefined. The Ridge Pascal GET differs from
standard Pascal in that the file buffer is not defined
until the first GET is performed. This facilitates
interfacing with interactive files.

0 PAGE outputs an ASCII form-feed, i.e., chr(l2).

o PUT must only be applied to open files. Ridge Pascal PUT
performs as in standard Pascal.

o READ(f, x) is defined as follows:
begin
GET(f)A;

x = £7 ;
end

while standard Pascal's READ(f, x) is defined as:

begin
X 1= £7 ;
get(f) ;
end

o RESET is recognized by the compiler but performs no
operation at this time.

o REWRITE is recognized by the compiler but performs no
operation at this time.

0 Standard Predefined Files.

The files "input", "output", and "stderr" are predefined
in the sense that if they appear in the ‘"program"
declaration they will be opened automatically and bound
to ROS file entities. Specifically, it will appear as if
the following statements had been executed, in which
"inputName" is a string variable containing the
characters "input", "outputName" contains "output", and
"stderrName" contains "stderr".

-14-

Ridge Pascal Reference Manual

OpenFile(input, inputName, 'R') :
penFile (output, outputName, 'W')
OpenFile(stderr, stderrName, 'W')

o WRITE performs as in standard Pascal.

o WRITELN outputs an ASCII carriage return, i.e., chr(l3).

GOTO Statements

GOTO statements may not transfer control out of the current block--
jumping out of procedures or functions is not permitted.

Identifiers

Identifiers may be of any length but only the first 16 characters
are significant: identifiers which differ only after the sixteenth
character position will be regarded as the same identifier.
Identifiers must start with an alphabetic character (a letter), but
thereafter may contain letters, digits, or underscores. Upper case
characters are not distinguished from lower case characters in
identifiers.

Mixed Mode Expressions
Ridge Pascal allows mixed mode expressions (e.g., INTEGER and

REAL); however, a "var" parameter must be of the same type as the
formal parameter.

Numbers

Integer constants in Ridge Pascal differ from standard Pascal in
two respects:

o The base (radix) may be specifed.

-15-

Ridge Pascal

o0 Embedded
readability.

Reference Manual

underscores are allowed for improved

A BNF description of the

integer_number

integer

based_integer

base

extended_digit

allowable forms follows:
integer | based_integer ;
digit {['_'] digit} ;

base '#' extended_digit {['_']
extended_digit} ;

integer ; =-- base must be in 2..36

letter | digit ;

Here are some examples to illustrate based integers and the use
underscores to improve readability.

40_96
65_536

2_147_483_647
-2_146_483_648

2#11111111
2#1111_1111

8%#377
l6#ff

10#2_147_483_647

(* MAXINT *)
(* MININT ¥*)

Ridge Pascal supports 32- and 64-bit real numbers, called REAL

DREAL respectively.

used instead.

pie = 3.1415926535D0

bignum =
maxreal
minreal
maxdreal
" mindreal

1.0D250

of

and

A double real (DREAL) number is denoted in a
fashion similar to the "E" notation except that a "D" or "a"
For example:

6.8056464E38
5.8774728E-39
= 3.595386269724630D308
= 1.,112536929253601D~308

-16-

is

Ridge Pascal Reference Manual

PACKED Types

In Ridge Pascal, the reserved word "PACKED" is accepted but has no
effect. To control storage allocation, the "p" compiler option is
used (see Compiler Options).

PACK and UNPACK

PACK and UNPACK are not currently supported by the Ridge compiler.

Procedures and Functions as Parameters

Ridge Pascal does not allow procedures or functions to be passed as
parameters.

Reserved Words

Ridge Pascal treats upper and lower case characters identically in
reserved words. The only nonstandard reserved word in Ridge Pascal
is "otherwise".

String Literals

Character string literals may be a maximum of 80 characters in
length.

Strings

Ridge Pascal does not have a predefined string type. However, the
Pascal runtime library supports a string type via routines (these
are more fully described in the Ridge "Operating System Reference
Manual"). The following example illustrates how strings are
currently manipulated.

The example opens a file called "data.x," does some processing, and
then closes the file. The procedures and functions in the Pascal
runtime library accept and return strings as defined in the type
declaration section in the program. The two-step method of
allocating an empty string, and then copying the characters

-17-

Ridge Pascal Reference Manual
one-by-one into the string, should be employed since string
constants cannot be assigned directly to the string.

Also, note that the procedures NewString, OpenFile, FileStatus, and

CloseFile are not predefined, and must be declared as external
procedures.

Program Example (stderr) ;

Type
StringBody = Record
length : Integer ;
chars : Array[l..l] of Char ;
end ;
String = “StringBody ;
var

CharArray : Array[l..6] of Char ;
dataFile : Text ;

fileName : String ;

i : Integer ;

Function NewString(length:Integer):String ; External ;

Procedure OpenFile(var f:Text ; name:String ; mode:Char) ; External ;
Procedure CloseFile(var f:Text) ; External ;

Function FileStatus(var f:Text) ; Integer ; External ;

begin
charArray := 'data.x' ;
fileName := NewString(6) ;
for i := 1 to 6 do
fileName”.chars[i] := charArray[i] ;
OpenFile(dataFile, fileName, 'R') ;

if FileStatus (dataFile)<>0 then
WriteIn(stderr,'cannot open data.x') ;

do some processing

CloseFile(dataFile)
end.

-18-

Ridge Pascal Reference Manual

Types

Ridge Pascal differs from standard Pascal with respect to types in
the following ways:

o DREAL (double REAL) is defined in addition to REAL.

o Sets. The maximum number of set elements is limited to
64. In addition, the following restriction applies to
set types and set expressions: in '"set of 1l..u" or
"[l.,.ul", "1" and "u" (or ord(l) and ord(u)) must be in
the range of zero to 63 inclusive.

The rules governing data allocation and storage alignment for
variables of the various types are heavily dependent on the context
of the runtime environment, as well as on the the "P" compiler
option. The section on the Runtime Environment provides complete
details on this subject.

-19-

Ridge Pascal Reference Manual

SECTION 2

THE PASCAL RUNTIME ENVIRONMENT

INTRODUCTION
This section provides a fairly detailed picture of the environment
in which Pascal programs perform their computations. Enough
information is given for the user to perform debugging using the
bootstrap debugger, RBUG.
The Ridge architecture maintains separate data and code spaces, and
this separation forms the basic division of information in this
section. The following topics are covered:
o Data Segment Overview
o Data Segment Memory Diagrams
o Absolute Mode

o Relocatable Mode

o Stack Diagrams
o The Mark Stack Block
o The Display

o The Heap

o Code Segment Overview
o Code Segment Memory Diagrams
o Preamble and Postamble Code
o Procedure/Function Entry Code

o Procedure/Function Exit Code

-21-

Ridge Pascal Reference Manual

0 Program Entry Code

o Program Exit Code

o Miscellaneous
0 Register Use Conventions
0 Procedure/Function Calling Conventions

o Data Representation and Alignment Rules

The following discussion assumes some familiarity with the Ridge
architecture. Information on this subject can be found in the
Ridge "Processor Reference Manual.,"

-22-

Ridge Pascal Reference Manual

DATA SEGMENT OVERVIEW

Data Segment Memory Diagrams

The following two subsections provide information regarding the
modes that affect memory storage: absolute and relocatable.

ABSOLUTE MODE. Figure 1 gives an overview of the data segment of a
Pascal user process when the compiler has been instructed to
generate absolute addressing code (see Compiler Options). The
blocks are not necessarily to scale--there is a very large gap
between the top of the stack and the bottom of the heap.

o ——————— +
FFFFFFFF | |
(or S$8) | string constants |

I l

I |

fmmm e —————————— +
growth | |
| I |
| I I
| | |
\Y | I
I I

| l

| heap |

| |

| I

I |

I |

| l

| I

o —————————————————— e +

| |

| |

I |

I !

(continued on next page)

-23-

Ridge Pascal

$G or 4096

280

144
136
128

64
63
006000000

| |
l l
l |
e ——— e ———————————— +
I |
| |
| stack |
| I
I [
e —————— +
| I
| outer block |
| variables |
| I
e e +
! !
| I
e e ———————_——— +
| |
| Pascal RTL |
I data {
I
o +
! !
I I
e ——————————_———————————— +
I//////////////l stderr file buf |
________________________________ +
I//////////////I output file buf |
________________________________ +
l//////////////! input file buf |
e e +
! !
[|
e ————————————————_———— +
| heap pointer |
e e ———— +
| |
I display {
I
e ——————— +

Reference Manhual

{=== R1l4
(Stack Pointer)

(=== R15
(Frame Pointer)

"stderr™" at 148
"output™" at 140

"input®™" at 132

Figure 1. Data Segment: Absolute Mode

-24-

Ridge Pascal Reference Manual

RELOCATABLE MODE. Figure 2 gives an overview of the data segment
of a Pascal user process when the compiler has been instructed to
generate relocatable addressing code (see Compiler Options).

o e o +
FFFFFFFF } |
l
growth | |
| | heap |
| | |
| | I
\Y% | |
e +
! !
I |
| | <--- R14
. T ———————————————————————————————— T (Stack Pointer)
| | I
| | stack | <=== R15
| | | (Frame Pointer)
growth | |
$STACK | |
o e e +
| |
| |
| SDATA and S$STRING]
| sections |
| |
4096 | |
e —————— e e +
!

(continued on next page)

-25-

Ridge Pascal

280

144
136
128

64

00000000

~ ~

|
Pascal RTL |
data [

I

|
+
I
I
I
I
e e +
I
I
I
|

I//////////////I input file buf |
I I

~ ~

t— ot i—t—
I
I
I
]
{
!
]
1
!
]
I
I
1
!
1
1
I
!
1
I
I
1
I
]
]
]
]
I
1
1

+— 1 i — 4 — 4 —

Reference Manual

"stderr™" at 148
"output”™" at 140

"input®™" at 132

Figure 2. Data Segment: Relocatable Mode

-26 -

Ridge Pascal Reference Manual

Stack Diagrams

The Pascal runtime stack expands and contracts as procedures are
entered and exited. Each time a procedure is invoked, it allocates
a new piece of storage, called a stack frame, on top of the stack
for its local variables, context information, parameters, and
temporaries.

Figures 3 through 6 represent snapshots of the stack at four
significant times in a procedure:

o Normal execution of some arbitrary procedure, "p".
o Preparing for a call to another procedure, "q".
o Entering procedure "q".

o Back in procedure "p".

I I
| |
I I
| | <=-- R1l4
o ———— e ———————— + (Stack Pointer)
I [
| local storage for |
~ l for "pll I
| I l
| e ———————————— +
| | mark stack block |
stack | for "p" | <--- R15
growth e ————————— e e e + (Frame Pointer)

(/7177777117777 77/77777//////////]
FAN TR TRV RV VRV VRNV |
I////////////////////////////////}

~ ~

Figure 3. Normal Execution of a Procedure "p"

In Figure 3, some arbitrary procedure "p" is executing. R15, the
Frame Pointer, points to the start of the stack frame for procedure
"p", All of "p"s references to local data are based on the Frame
Pointer.

-27-

Ridge Pascal Reference Manual

| |
| I
| |
I l
e ———————— e ——————————— e +
R14 + 32 | parameter y I
o ———————— e +
R14 + 24 | parameter X |
e —————————— +

/7117777777777 777007/(/7/(//////]
FANTRLL LRV === R14

e T (Stack Pointer)
|
| local storage for |
~ I for tnpn l
I I I
| Fomm e ———— +
| | mark stack block |
stack l for "p" | <--- R15
growth o e + (Frame Pointer)

Ya22220000000000000000000dddeeeda
FANTRRR ALV |
I////////////////////////////////I

~ ~

Figure 4. Procedure "p" Preparing to Call Procedure "q"

In Figure 4, procedure "p" is now preparing to call procedure
"q(x, y)" by pushing the parameters onto the stack. The Stack
Pointer, R14, does not actually move at this time; rather, the
parameters are pushed starting at R14+24, thus leaving a gap for
"q"s mark stack block.

-28-

Ridge Pascal

R15 + 32

R15 + 24

_——

stack
growth

local storage for
for "q"

| mark stack block
| for "gq"

I

| local storage for
| for "p"
|

| mark stack block
I for np"

Yrraaieeeaiieeeieesiiis
ATV RV VAV
/1/777777777777777777777777777

NN
NN

+
1
1
|
1
1
|
!
1
|
i
!
!
t
1
1
!
1
1
]
1
!
|
|
1
I
1
1
1
|
]
1
1

P —— o ——

Figure 5. Entering Procedure "q"

Reference Manual

{--- R1l4

(Stack Pointer)

<==-- R15

(Frame Pointer)

Figure 5 shows procedure "q" immediately after it has performed its
entry code and the following events have taken place:

o R15 <-- Rl4

o0 R14 <=-- Rl4 + <framesize>

o The mark stack block is filled in.

Notice that now "g" will refer to its parameters at "R15+24" and
"R15+32," while the caller referred to them at

"R14+32."

-29-

"R14+24"

and

Ridge Pascal Reference Manual

| I
I I
I I
I I
| | <=-- R1l4
T ———————————————————————————————— + (stack Pointer)
|
| local storage for |
~ | for npn I
I | I
| Y et L L L P L P P E e P +
| | mark stack block
stack l for "p" | <--- R15
growth e e e e e e + (Frame Pointer)

Ve zeseeseseeiiieiidiieeiea
PRI TRV VRV RV RV VRNV |
:////////////////////////////////:

~ ~

Figure 6. Return to Procedure "p"
Figure 6 shows the stack on return from "q". The stack has been
returned to the state it was in just prior to the call to "q".

If "gq" had been a Pascal function, then register RO (or the
register pair (RO, Rl)) would contain the function value.,

The Mark Stack Block

The function of the mark stack block 1is to store information
concerning procedure and function invocations. The mark stack
block, therefore, makes it possible to restore the runtime
environment when a procedure or function returns to its caller.

Figure 7 shows the format of the mark stack block.

-30-

Ridge Pascal

| <==-- R15

w15 + 20 | 2nd word of fumction result |
s + 16 | Tet word of famction result |
ws + 12 /770777077 amased 1111171111071
ws +e | oia mis (oymamic Line) |
ms e 1 o1d static Link |
RLS + 0 I """ BIE-EII_IQZZGiﬁ"REEZZEQ;—--:

Figure 7. The Mark Stack Block Format

The Display

The display is a sixteen word
Figure 8 shows the format for

block which starts at location
the display block.

o ——————————— — e e e +

60 | Current Context for Level 17 |
o o e e +

! !

I |

e ———— +

4 | Current Context for Level 3 |
e o o e e +

0 | Current Context for Level 2 |

Figure 8. The Display Block Format

Reference Manual

(Frame Pointer)

zero.

When the compiler has been directed to generate absolute addressing

code, the display resides at abso

the compiler is generating

relocatable

code,

then

the

resides at location zero relative to the "SDATA" section.

-3]1-

lute virtual location zero. If

display

Ridge Pascal Reference Manual

The Heap

In the case of relocatable addressing, the heap starts at the top
of the data segment and grows down towards the lower addresses; in
the case of absolute addressing, it starts near the top and grows
down. The allocation strateqy can be described as follows:

o First, if the number of bytes asked for is "b", then
round up "b" to the nearest value such that (b mod 8) =
0. This ensures double word alignment for items that
follow it.

o Second, if (b mod 4096) = 0 (i.e., requesting a multiple
of pages), then align the allocated block on a page
boundary. If (b mod 4096) <> 0, then the requested block
will only be aligned on a double word boundry.

-32-

Ridge Pascal Reference Manual

CODE SEGMENT OVERVIEW

Code Segment Memory Diagrams

For the purposes of discussion we will assume the following
program, "test." A source program compiled by the Pascal compiler
is referred to as a "compilation unit."

Program test(...) ?

Procedure a(ees)
begin { of a }

end ; { of a}

-.

Procedure b(ee.)

~e

Procedure C(eee) 3

Procedure Q(eoe) ¢
begin { of 4 }

end ; { of @ }

begin { of ¢ }

end ; { of ¢}

begin { of b }

end ; { of b }

Procedure e(eee)
begin { of e }

end ; { of e }

begin { of test }

end : { of test }

Figure 9 shows how the code segment corresponding to "test" would
look, and represents the output of one compilation. Execution

begins at location zero.

-33-

Ridge Pascal Reference Manual

00000000 +=————= == e e +
| Preamble Code to set up Rl4, |
| R15, and the Heap Pointer. I
| Branch to $MAINBLK., |

SMAINBLK: | |

I |
I |
| Code for test |
I I
| I

FALTR TRV RV RV
/777717777777 77777///7/77/////////]
FAR TRV TRRVRRVI RNV |
\///7//777/777777777/7//7777/77/777]

Figure 9. Code Segment

The code segment of a running user process is usually composed of
several compilation wunits which have been consolidated by the
"link" program., Figure 10 shows the overall structure of the code
segment of a user process.

-34-

Ridge Pascal Reference Manual

e ———————————— + \

00000000 | preamble code I\
o ———————— + \
I |
{ procedure/function code | > from "filel"

|

e ————— + /

SMAINBLK: | "main" program code |
e L L R bl \
| preamble code |
o e + \
I |
| procedure/function code | > from "file2"
I I
e —————— + /

SMAINBLK ["main" program code |
EE e st P P T R R R L \
| preamble code |
e ————— + \
I |
| procedure/function code | > from "file3"
| I
e ————— + /

SMAINBLK | "main" program code 4
e + /

Figure 10. Overall Code Segment Structure

Note the following points:

o "link filel file2 file3" was the command used to produce
the illustrated process.

o Since the operating system passes control to the user
process at location =zero, execution will start at the

"main" program in "filel."

o The preamble code for "file2" and "file3" 1is never
executed.

-35-

Ridge Pascal Reference Manual

Preamble and Postamble Code

The Pascal compiler generates code prior to the "begin" and after
the "end" of a program, procedure, or function. This code performs
such miscellaneous housekeeping tasks as stack adjustments and
parameter manipulations. This section explains this code.

The code which follows is meant to be interpreted as a "macro"
notation. The code in the boxes is generated per the Pascal-like
compile~-time instructions., For example:

| ADD RO ,RO | -- double RO

The above "macro" code would cause the instruction "ADD RO,RO0" to
be generated three times.

IF <condition> THEN

o ———————————————————— e +
| <some code> |
o ——————————————————— +
ELSE
e ———— +
| <some other code> |
e ————————————— +

TRUE; otherwise, "<some other code>" would be generated.

In general, the "conditions" of the "macros" refer to attributes of
the current program, procedure, or function being compiled.

-36-

Ridge Pascal Reference Manual

PROCEDURE/FUNCTION ENTRY CODE. The follow1ng code is generated
when a "begin" for a procedure or function is encountered.

IF there are calls THEN

| STORE R11,R14,0 | -- store return address

o —————— e ————————— +
| MOVE R12,R15 | -- save dynamic link
fmmm———— e ————— + in R12
ELSE
e ———————— e ——————— +
| STORE R15,R14,8 | -~ save dynamic link
fommm e m s + in stack

IF it's an intermediate level

procedure THEN -- update the display

IF absolute mode addressing THEN
o e
| LOAD R1l0,4*(level-l) | —— load old static link
| STORE R10,R14,4 | -— store it in the stack
| STORE R14,4*(level-l) | -- store new static link
o ———————————————————— +

ELSE
e +
| LADDR R8,$DATA,L | -- load address of S$SDATA
| LOAD R10,R8,4%(level-l) -- load old static link
| STORE R10,R14,4 | -- store it in the stack
| STORE R14,R8, 4*(level 1) —-- store new static link
o e o e o e e e e

IF absolute addressing OR

static level is not 1 THEN -— allocate local stack
fommmm e + frame

| MOVE R15,Rl4 | —— R15 <-- frame pointer
| LADDR R14,Rl4,size | —— allocate stack frame
o —————————— +

-37-

Ridge Pascal Reference Manual

FOR i := 1 TO number_of_parameters DO =-- copy "value" para-
IF non-VAR array or record THEN meters into local

s + stack frame

| LADDR Rx,R15,disp -=- load dst address

| LOAD Ry,R15,disp -- load src address

| LADDR R8,-(byte_count) —-— # of bytes to copy

| LOADB R9,Ry,0 -- load a byte .

|

I

|

I

+

ADDI Ry,1 -- increment src pointer
ADDI Rx,1 -- increment dst pointer

I
I
|
STOREB R9,Rx,0 | -- store a byte
|
LOOP R8,1,*-12 | -- increment and loop

In the code which manipulates the static link, the "level" refers
to the textual level number of this procedure. The main program is
considered level one; procedures which are declared at the program
level are at 1level two; procedures inside these are considered
level three; etc.

PROCEDURE/FUNCTION EXIT CODE. The following code is generated when
an "end" for a procedure or function is encountered by the
compiler.

IF it's a function THEN -- load function value
| Loap Ro.RiS,i6 | - load first word
IF it 2";'E;S';SEE';;I;;'E&E&"*
1-55;5--£I:;Ig:;5 -------- I -—- load second word

IF it's an intermediate level

procedure THEN —-— restore the display
IF absolute mode addressing THEN
tom e —————————————— +
| LOAD R10,R15,4 | -~ load old static link
| STORE R10,4%*(level-l) | -- store it the display
e ————————————————— +
ELSE
Fmm e —————— +
| LADDR R8,$DATA,L | -- load address of $DATA
| LOAD R10,R15,4 | -- load old static link
| STORE R10,R8,4* (level-1) -~ store into the display
e ————————— +

-38-

Ridge Pascal

IF there were calls THEN

o o e e e e
| MOVE R15,R12
o i e e e
ELSE
e ———————————————
| LOAD R15,R15,8
fomm—————————————————

For an explanation of "level"

Procedure/Function Entry Code.

-39~

see

Reference Manual

load return address

deallocate stack frame

restore old R15

veo from R12

... from stack

return to caller

the preceding section

on

Ridge Pascal Reference Manual

PROGRAM ENTRY CODE. The first three boxes of code are generated
when the compiler encounters the "program" declaration. Then at
"$MAINBLK", in response to the "begin" of the main program, the
standard Procedure/Function Entry Code is generated, followed by
code which is particular to the main program.

IF absolute addressing mode THEN

e ————— e +

00000000| LADDR R10,SHEAP | == load heap start address
| STORE R10,64 | -- store into heap pointer
| MOVEI R14,0 | -- initialize R14
e e +

ELSE
o e e +
| LADDR R14,$STACK,L | ~- initialize stack pointer
| MOVEI R10,0 | -~ R10 <~ 0
| STORE R10,64 | -~ initialize heap pointer
o e +

| MOVEI R15,0 | -~ initialize frame pointer
| BR SMAINBLK | -- branch to main program

iadadiadia Al adiadiadi adiadiadiadiadiadiodio e dledle dlo o, o e dl 0 R R R R R R R R VE R R S W VPSR VP VP VPV N VP PP U U1

Code for all local procedures/functions goes here

SMAINBLK:
R e T T T +
| Proc/Func Entry Code | -— do the same as for
Fo e e e + procedures

P e e +

| MOVE R15,R14 | -- injtialize frame pointer
| LADDR R14,Rl4,size ! -- allocate outer block

P e + variables

| CALL Rl1l,SYSENTRY | -—- initialize Pascal RTL

Ridge Pascal Reference Manual

IF standard "input" file present THEN

| LADDR Rx,132 | —— load file buffer address
| STORE Rx,R14,24 | -~— store file buffer address
| CALL R11,FDF | -- open the file

o —————————————————— e +

| LADDR Rx,140 | -~ load file buffer address
| STORE Rx,R14,24 | -- store file buffer address
| CALL R11l,FDF | -- open the file

o o o +

e ——————————————————— +

| LADDR Rx,148 | —— load file buffer address
| STORE Rx,R14,24 | —— store file buffer address
| CALL R1l1,FDF | -- open the file

o m———————————————————— +

PROGRAM EXIT CODE. The compiler generates the following code when
it encounters the "end" of a main program.

{ always do this }

e +

| MOVEI Rx,0 | -- O=successful completion
| STORE Rx,R14,24 | -~ store RO

| CALL R11l,SYSEXIT I -- program stops, SYSEXIT
et + doesn't return

e ——————————————— +

| proc/func exit code | -- same as standard exit
o + code

-4]1-

Ridge Pascal Reference Manual

MISCELLANEOQOUS

This section discusses miscellaneous runtime issues that do not fit
readily into one of the preceding categories. These include
register use conventions, procedure/function calling conventions,
and data representation and alignment rules.

Register Use Conventions

RO \

R1 \

R2 \

R3 \ register stack to

R4 / evaluate expressions
R5 [/

R6 /

R7 /

R8 \

R9 > scratch registers

R10 /

R11 return address register

R12 \ "with" and "for" temporaries
R13 /

R14 Stack Pointer

R15 Frame Pointer

RO (or the register pair (RO, Rl)) is also used to return the
result of a function call.

Procedure/Function Calling Conventions

The general rules for a procedure or function call are as follows:

p(plf le e e e r pN)

-42-

Ridge Pascal Reference Manual

o Evaluate parameter 1. Store it at R14,24.
o Evaluate parameter 2., Store it at R14,32.

o Evaluate parameter N, Store it at R14,24+(N-1) *8

The process of evaluating a parameter entails the following:
o Code is generated to evaluate the parameter expression.

o Depending on whether or not the corresponding formal
parameter is a "var", there are two cases:

o "var". 1In this case the parameter's ADDRESS is
stored at R14,24+(j-1)*8, where 3j 1is the
parameter number, 1 <= j <= N,

o Non-"var". This case is broken down into two
subcases depending on whether the actual
parameter is an array or a record.

o The actual parameter is an array or a
record. Pass the ADDRESS as
described above.

o The actual parameter is neither an

array nor a record. The VALUE of the
parameter is passed.

If "p" is a Pascal function (as opposed to a procedure) then the
caller will expect to find the function value in either register RO
(or the register pair (RO,Rl).

Data Representation and Alignment Rules

The compiler packing option "P+" or "P-" controls the amount of
storage allocated to a variable of the following standard types:

o BOOLEAN: One byte if "P+", four bytes if "P-".

o CHAR: One byte always.

-43-

Ridge Pascal Reference Manual

o DREAL: Eight bytes always.

o Enumerated Types: the minimum number of bytes depends on
the number of identifiers in the type:

o One byte for 1 to 255 elements,
o Two bytes for 256 to 65,535 elements.
o Four bytes for more than 65,535 elements.
o FILE or TEXT: Eight bytes always. The last byte, 1i.e.,
E?guoone with the highest address, is the file variable
o INTEGER: Four bytes always.
o POINTER: Four bytes always.
o REAL: Four bytes always.
o SET: Eight bytes always.
o Subranges:

o If the packing option is set to "P-" then all
subranges occupy four bytes.

o If the packing option is set to "P+" then the
minimum number of bytes is used. This depends
on the lower and upper bounds of the subrange,
as the following explains:

o Negative lower bound always results
in four bytes.

o Lower bound of zero or more results
in the following:

o Upper bound of 1 to 255
results in 1 byte.

o Upper bound of 256 to
65,535 results in 2 bytes,

o Upper bound that is more

than 65,535 results in four
bytes.

-44-

Ridge Pascal Reference Manual

The rules for Ridge Pascal data alignment are as follows:

o Half-word items must'be aligned on a hal f-word

boundary, i.e., their addresses must be evenly
divisible by two.

o Word items must be aligned on a word boundary,
i.e., their addresses must be evenly divisible
by four.

o0 Double-word items must be aligned on a
double-word boundary, i.e., their addresses
must be evenly divisible by eight.

To optimize use of space, the preceding rules should be observed.
For example, in declaring variables (or fields in a record) the
order of the items may have an impact on the total amount of
storage used.

ch : Char ; { 1 byte data }

i ¢ Integer ; { 3 bytes padding, 4 bytes data }
b : Boolean ; { 1 byte data }

d : Dreal ; { 7 bytes padding, 8 bytes data }
k ¢+ 1..1000 ; { 2 bytes data }

Storage would be used more efficiently if the items were arranged
as follows:

ch : Char ; { 1 byte data }
b : Boolean ; { 1 byte data 1}
k ¢+ 1..1000 ; { 2 bytes data }
i : Integer ; { 4 bytes data }
d : Dreal : { 8 bytes data }

-45-

Ridge Pascal Reference Manual

Declarations of the following sort are also inefficient:

a : Array[l..100000] of Integer ;
ch : Char ;

i : Integer ;

An improvement would be to declare the large array last, then short
offsets could be used in the code that accesses "“ch", "i", and
other scalar variables. Refer to the "Ridge Processor Reference
Manual" for more information on this topic.

-46 -

Ridge Pascal Reference Manual

SECTION 3

AN EXAMPLE

INTRODUCT ION

This section illustrates how to write assembly language programs
that are Pascal callable. A program written in Ridge Pascal can be
compiled into an intermediate form called P-code by the Ridge
Pascal compiler, "pasc." The P-code can then be translated into an
object module by the translator, "ptrans," and finally linked with
other object modules by the linker, "link." (For more information
on the compiling process, Ssee the Ridge "Operating System Reference
Manual.")

Included in this section are the listings for four files:

o The command file which compiles, assembles, and links the
program.

o The Pascal source listing of the main program.
o The assembler listing of the compiler's generated code.,

o The assembler listing of the called routines.

The key items to be observed are:

o how the assembler programs are declared in the Pascal
program as "external" functions,

o how the assembler programs access their parameters and
how they return their values,

o that Pascal compilation is a two step process involving:
o running the Pascal compiler, "pasc" whose input
is "example.s" and whose outputs are
"example.l" and "example.p",
o running the P-code translator, "ptrans" whose

input is "example.p" and whose outputs are
"example.a" and "example.o".

-47-

Ridge Pascal Reference Manual

COMMAND FILE LISTING

pasc -1 example.l example.s

ptrans -1 example.a example.p

rasm -1 asmfuncs.l asmfuncs.s

link -1 example.ll example.o asmfuncs.o /lib/rtl.o

PASCAL SOURCE LISTING

{sA+}
{

This program reads real numbers and computes
their square roots using Newton's method. Two assembler
language routines are called to manipulate parts of the
real numbers.,

The routines are part of a suite of routines defined
in the book "Software Manual for the Elementary Functions"
by Cody and Waite, Prentice-Hall (1980).

}
program example (input, output) ;
var
z : real ;
iterations : integer ;
{ .
'intxp' returns the unbiased exponent of 'x'.
}

function intxp(x : real) : integer ; external ;

{
'setxp' returns a real number whose mantissa is
that of 'x' and whose exponent is 'n'.

}
function setxp(x : real ; n : integer) : real ; external :
{SE}

function sqroot(x : real) : real ;

labei 99 ;

-48-

Ridge Pascal Reference Manual

const

EPSILON = 1.0E-30 ;
var

i : integer ;

yn, ynminusl : real ;

begin {******* begin of function sqroot kkkxk%k}

iterations := 0 ;
if x = 0.0 then
sqroot := 0.0
else
begin
if x < 0.0 then
X := =X ;
ynminusl := setxp(x, intxp(x) div 2)
while TRUE do
begin
yn := (ynminusl + x/ynminusl) / 2.0 ;
iterations := iterations + 1 ;
if abs(yn - ynminusl) <= EPSILON then
goto 99 ;
ynminusl := yn ;
end ;
99: sqroot := yn ;
end ;
end ; {******* end of function sqroot kkkkkkk}]

begin {****%** begin of program example khkkkhhk}

while not eof (input) do

begin
readln(input, z) :
writeln(output, 'sqroot(', 2z, ') = ', sqroot(z),
', iterations = ', iterations) ;
end ;

end. {******* end of program example hkkkkkk]

ASSEMBLER LISTING OF MAIN PROGRAM

SOURCE LINE 41SL=P, ABS_AD=T, $5=0

00000000 DEAOFFFFFFFF LADDR R10,-1

00000006 A6A00040 STORE R10,64
0000000~ 11EO MOVEI R14,0
0000000C 11FO MOVEI R15,0

~-49-

Ridge Pascal

0000000E 9BOOFFFFFFFF BR SMAINBLK

SQROOT:
00000014 A7BEOO0OO STORE R11,R14,0
00000018 A7FE0008 STORE R15,R14,8
0000001C O1FE MOVE R15,R14
0000001E DFEEFFFFFFFF LADDR R14,R14,-1
00000024 1100 MOVEI RO,0
00000026 A6001004 STORE R0 ,4100

SOURCE LINE 42
0000002Aa C71F0018 LOAD R1,R15,24
0000002E 1120 MOVEI R2,0
00000030 B8Al2FFFF BR R1<>R2,E3

SOURCE LINE 44
00000034 1130 MOVEI R3,0
00000036 A73F0010 STORE R3,R15,16
00000032 B8BOOFFFF BR L4

E3:

SOURCE LINE 46
0000003E 1130 MOVEI R3,0
00000040 2A13 RCOMP R1,R3
00000042 5510 TESTLT R1,0
00000044 B8Ell1FFFF BR R1<>1,E5

SOURCE LINE 47
00000048 C74F0018 LOAD R4,R15,24
0000004C 2254 RNEG R5,R4
0000004E A75F0018 STORE R5,R15,24

E5:

L6:

SOURCE LINE 48
00000052 C70F0018 LOAD RO,R15,24
00000056 A70E0018 STORE RO,R14,24
0000005A CFEE(0020 LADDR R14,R14,32
0000005E A70E0018 STORE RO,R14,24
00000062 93BOFFFFFFFF CALL R11,INTXP
00000068 0180 MOVE R8,R0O
0000006A 5580 TESTLT RS8,0
0000006C 0308 ADD RO,R8
0000006E 7301 ASRI RO,1
00000070 A70E0000 STORE RO,R14,0
00000074 CFEEFFEO LADDR R14,R14,-32
00000078 93BOFFFFFFFF CALL R11,SETXP
0000007E A70F0028 STORE RO,R15,40
00000082 01CO MOVE R12,R0

VARIABLE AT 2,40 ASSIGNED TO REGISTER 12
00000084 C71F0018 LOAD R1,R15,24
00000088 01D1 MOVE R13,R1

VARIABLE AT 2,24 ASSIGNED TO REGISTER 13

W7:

SOURCE LINE 49
SOURCE LINE 51

0ooo0008A
0000008C

0locC
011D

MOVE
MOVE

-50-

RO,R12
R1,R13

Reference Manual

Ridge Pascal

0000008E 0120
00000090 2612
00000092 2310
00000094 DE3040000000
0000009A 2613
0000009C A71F0024
SOURCE LINE 52
000000A0 C6401004
00000024 1341
000000A6 A6401004
SOURCE LINE 53
000000AA 2410
000000AC 7011
000000AE 7111
000000B0O DE500DA24260
000000B6 2Al5
000000B8 5C10
000000BA 8EL1FFFF

SOURCE LINE 54
000000BE A7CF0028
000000C2 A7DF0018
000000C6 B8BOOFFFF

ES:

L10:

SOURCE LINE 55
000000CA C70F0024
000000CE 01CO

SOURCE LINE 56
000000D0 8BOOFFBB

L8:
000000D4 A7CF0028
000000D8 A7DF0018

X2:

SOURCE LINE 57
000000DC C70F0024
000000E0 A70F0010

Ld:

SOURCE LINE 59
000000E4 C70F0010
000000E8 C7BF0000
000000EC OlEF
0000COEE C7FF0008

000000F2 57BB

SOURCE LINE 63

SMAINBLK:
000000F4 A7BE0000O
000000F8 A7FE0008
000000FC OlFE
000000FE DFEEFFFFFFFF
00000104 93BOFFFFFFFF
0000010A CE00008C
0000010E A70E0018

MOVE
RDIV
RADD
LADDR
RDIV
STORE

LOAD
ADDI
STORE

RSUB
LSLI
LSRI
LADDR
RCOMP
TESTLE
BR

STORE
STORE
BR

LOAD
MOVE

BR

STORE
STORE

LOAD
STORE

LOAD
LOAD
MOVE
LOAD
RET

STORE
STORE
MOVE

LADDR
CALL

LADDR
STORE

-51-

Reference Manual

R2,R0

Rl ,RZ

R1,RO
R3,1073741824
R1,R3
R1,R15,36

R4,4100
R4,1
R4,4100

R1,RO

Rl,1

R1l,1
R5,228737632
R1,R5

R1,0
R1<>1,E9

R12,R15,40
R13,R15,24
X2

RO,R15,36
R12,R0

W7

R12,R15,40
R13,R15,24

RO,R15,36
RO,R15,16

RO,R15,16
R11,R15,0
R14,R15
R15,R15,8
R11,R1l1

R11,R14,0
R15,R14,8
R15,R14

R14 ,Rl4 ,‘l
R11,SYSENTRY
RO ,140
RO,R14,24

Ridge Pascal

Wd:

SOURCE LINE 65

SOURCE LINE 66

00000112
00000118
0000011C
00000120

00000126
0000012Aa
0000012E
00000132
00000134
00000136
00000138
0000013A
0000013C

00000140
00000144
00000148
0000014cC
00000150
00000156
0000015A
0000015E

00000164
00000168
0000016C
00000172
00000176
0000017C
00000180
00000182
00000184
00000188
0000018C
00000190
00000194
0000019A
0000019E
000001A2
000001274
000001A6
000001AA
000001AE
000001B2
000001B6
000001BC
000001CO
000001C4
ooooolca
000001CE
000001DO

93BOFFFFFFFF
CE100084
A71E0018
93BOFFFFFFF2

CE000084
C710FFFC
C7110000
7811
0181
7811
0918
1B11
86 11FFFF

CE200084
CE301000
A72E0018
A73E0020
93BOFFFFFFFF
C70E0018
A70E0018
93BOFFFFFFFF

CE10008C
CE20FFF8
DE807371726F
A680FFF8
DEB06F742827
A680FFFC
1137

1147
A71E0018
A72E0020
A73E0028
A74E0030
93BOFFFFFFFF
C70E0018
C6101000
112E

1130
A70E0018
A71E0020
A72E0028
A73E0030
93BOFFFFFFFF
C70E0018
CE10FFF4
DE8029203D20
A680FFF4
1124

1134

CALL
LADDR
STORE
CALL

LADDR
LOAD
LOAD
CSLI
MOVE
CSLI
OR
ANDI
BR

LADDR
LADDR
STORE
STORE
CALL
LOAD
STORE
CALL

LADDR
LADDR
LADDR
STORE
LADDR
STORE
MOVEI
MOVEI
STORE
STORE
STORE
STORE
CALL

LOAD

LOAD

MOVEI
MOVEI
STORE
STORE
STORE
STORE
CALL

LOAD

LADDR
LADDR
STORE
MOVEI
MOVEI

-52-

R11,FDF
R1,132
R1,R14,24
R11,FDF

R0O,132
Rl ,RO '-4
R1,R1,0
R1l,1
R8,R1
R1l,1
R1,R8
R1l,1
Rl1=1,L5

R2,132
R3,4096
R2,R14,24
R3,R14,32
R11,RDR
RO,R14,24
RO,R14,24
R11,RLN

R1,140

R2 '-8
R8,1936814703
R8'-8
R8,1869883431
R8’—4

R3,7

R4,7
R1,R14,24
R2,R14,32
R3,R14,40
R4,R14,48
R11,WRS
RO,R14,24
R1,4096
R2,14

R3,0
RO,R14,24
R1,R14,32
R2,R14,40
R3,R14,48
R11,WRR
RO,R14,24

Rl ,-12
R8,689978656
R8,-12

R2,4

R3,4

Reference Manual

Ridge Pascal

000001D2
000001D6
000001DA
000001DE
000001E2
000001E8
000001EC
000001F0
000001F2
000001F6
000001FA
000001FE
00000200
00000202
00000206
00000208
0000020C
00000210
00000214
00000218
0000021E

SOURCE LINE 67

00000222
00000224
00000228
0000022C
00000232
00000236
0000024C
0000024E
00000250
00000254
00000258
0000025C
00000260
00000266
0000026A
0000026E
00000270
00000274
00000278
0000027C
00000282
00000286
0000028A

A70E0018
A71E0020
A72E0028
A73E0030
93BOFFFFFFB2
C70E0018
A70E0000
13E8
C6101000
A71E0018
83BOFELB
111E
1120
C73EFFF8
14E8
A73E0018
A70E0020
A71E0028
A72E0030
93BOFFFFFFIE
C70E0018

188F
CE10FFE4
E7980024
B798FFFFFFF4
8784FFF7
8B000016
112F

113F
A70E0018
A71E0020
A72E0028
A73E0030
93BOFFFFFF82
C70E0018
C6101004
112C
A70E0018
A71E0020
A72E0028
93BOFFFFFFFF
C70E0018
A70E0018
93BOFFFFFFFF

SOURCE LINE 68

00000290
L5:

SOURCE LINE 70

00000294
00000296
0000029A

8BOOFE97

1100
A70E0018
93BOFFFFFFFF

STORE
STORE
STORE
STORE
CALL
LOAD
STORE
ADDI
LOAD
STORE
CALL
MOVEI
MOVEI
LOAD
SUBI
STORE
STORE
STORE
STORE
CALL
LOAD

NOTI
LADDR
LOADP
STORE
LOOP
BR
MOVEIL
MOVEI
STORE
STORE
STORE
STORE
CALL
LOAD
LOAD
MOVEI
STORE
STORE
STORE
CALL
LOAD
STORE
CALL

BR

MOVEIL
STORE
CALL

-53-

RO,R14,24
R1,R14,32
R2,R14,40
R3,R14,48
R11,WRS
RO,R14,24
RO,R14,0
R14,8
R1,4096
R1,R14,24
R11,SQROOT
R1,14
R2,0
R3,R14,-8
R14,8
R3,R14,24
RO,R14,32
R1,R14,40
R2,R14,48
R11,WRR
RO,R14,24

R8,15

Rl "'28
R9,R8,36
R9 ,R8,~l2
R8,4 '*"10

R2,15
R3,15
RO,R14,24
R1,R14,32
R2,R14,40
R3,R14,48
R11,WRS
RO,R14,24
R1,4100
R2,12
RO,R14,24
R1,R14,32
R2,R14,40
R11 ,WRI
RO,R14,24
RO,R14,24
R11 ,WLN

w4
RO,0

RO,R14,24
R11,SYSEXIT

Reference Manual

Ridge Pascal Reference Manual

000002A0 C7BF0000 LOAD R11,R15,0
00000224 OlEF MOVE R14,R15
000002A6 C7FF0008 LOAD R15,R15,8
000002AA 57BB RET R11,R11

NUMBER OF BYTES OF CODE GENERATED = 684

ASSEMBLER LISTING OF CALLED ROUTINES

SHEXQUT

;

H function intxp(x : real) : integer ;

i

7 INTXP returns the unbiased exponent of the given

; argument, i.e. returns (exponent - 127).

i

} input : R14,24 - X

H

; output: RO -- the answer

H
GLOBAL INTXP

INTXP:
LOAD RO,R14,24 +R0 <- REAL NUMBER, I.E., LOAD x
CSLI RO,9 sSHIFT EXPONENT INTO POSITION
LADDR R1,0FFH ;LOAD MASK
AND RO,R1 sMASK OUT MANTISSA AND SIGN BIT
LADDR RO ,127 sLOAD EXPONENT BIAS
SUB RO,R1 sUNBIAS EXPONENT
RET R11,R11 +sRETURN TO CALLER

H

; function setxp(x : real ; n : integer) : real ;

i

; SETXP returns the real whose mantissa is that of x

: and whose exponent is n.

H

; input: R1l4,24 -- X

H R14,32 -- n, unbiased exponent

7

; output: RO -- the answer

i
GLOBAL SETXP

SETXP:
LOAD RO,R14,24 +R0 <- REAL NUMBER, I.E., LOAD x
LADDR R1,0807FFFFFH,L ;LOAD MASK
AND RO,R1 ;CLEAR EXPONENT
LOAD R1,R14,32 sLOAD EXPONENT, I.E. LOAD n
LADDR R2,127 sLOAD EXPONENT BIAS
ADD R1,R2 ;ADD IN EXPONENT BIAS

-54-

Ridge Pascal

—e we we

LADDR R2,0FFH
AND Rl,R2
CSLI R1,15
CSLI R1,8

OR RO,R1
RET R11,R11l

END OF SOURCE FILE

END

Reference Manual

;LOAD MASK

; ISOLATE 8-BIT EXPONENT
;SHIFT INTO POSITION

: <eo IN TWO SHIFTS
;'"OR' IN NEW EXPONENT
;RETURN TO CALLER

-55=

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56

