
RIDGE

9051 'A

ROS Text Editing
Guide

ROS Text Editing Guide

first edition: 9051 (SEP 84)

RIdge Computers

Santa Clara, CA

© Copyright 1984, Ridge Computers.
All rights reserved.
Printed in the U.S.A.

PUBLICATION HISTORY

Manual TItle: ROS Text Editing Guide

first editon: 9051 (SEP 84)

NonCE

No part of this document may be translated, reproduced, or copied in any form or by any
means without the written permission of Ridge Computers.

The information contained in this document is subject to change without notice. Ridge
Computers shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the use of this material.

ACKNOWLEDGEMENT

This software and documentation is based in part on the fourth Berkeley Software Distribution,
under license from the regents of the University of California. We acknowledge the following
individuals for their part in its development: Ken Arnold, Rick Blau, Earl Cohen, Robert
Corbett, John Foderaro, Mark Horton, Bill Joy, Randy King, Jim Kleckner, Steve Levine,
Colin McMaster, Geoffrey Peck, Rob Pike, Eric Scott, and Eric Shienbrood.

These tutorial guides are based on documents created at Bell Laboratories to describe UNIX
System software, and at the University of California, Berkeley, to describe bsd 4.2. Credits are
given on the first page of each document contained in this volume.

Some text has been changed to more accurately describe Ridge Computers' implementation of
the software. Inappropriate material may have been deleted.

UNIX is a trademark of Bell Laboratories.

-ii- 9051

PREFACE

The ROS Text Editing Guide (manual 9051) is a collection of tutorial documents on text,.
editing software available with the Ridge Operating System. These sections supplement the
editor reference pages in the ROS Reference Manual (9010).

Tab
Label

RED IT
ED
Advanced ED
EX ref
EDIT
EX JED IT
VI
VI ref
SED

TABLE OF CONTENTS

- Ridge Editor
- ED editor
- more on ED
- EX editor reference section
- EDIT editor
- EX and EDIT combined reference
- VI editor introduction
- VI editor reference section
- Stream Editor

9051

ROS Reference
Manual Page

redit(1)
ed(1)
ed(1)
eX(1)
edit(1)
ex(1), edit(1)
vie 1)
vie 1)
sed(1)

-iii-

-iv- 9051

REDIT - Ridge Text Editor
Reference Manual

CHAPTER I
INTRODUCTION

This manual documents redit, the Ridge text editor. An explanation of each of the com­
mands and operations is given, as well as a short tutorial. This manual also explains
differences encountered between the Ridge Monochrome Display and the Text Terminal
(Televideo 950). After having read this document, the reader should be able to create
and edit files using redit, using either type of terminal.

No knowledge of the Ridge 32 system on the reader's part is assumed beyond a minimal
acquaintance with the operating system. The reader is referred to the R£dge Operat£ng
System (ROS) Reference Manual for such basic operating system information as particu­
lars of file and directory structure, and allocation information for discs.

OVERVIEW

The Ridge text editor, redit, is a full-screen, strikeover editor that allows the user to
create and modify text files. This chapter briefly describes redit and discusses file struc­
ture and types, display formats, and selected blocks and windows.

Redit combines the attributes of a screen- and a line-oriented editor in such a way that
the user can define and modify entire blocks of text while retaining control over indivi­
dual line operations. Screen-oriented attributes allow such features as windows and
powerful block commands. The combination of these features allows the user simultane­
ous access into different areas of a file or multiple files (Figure 1). Line-oriented attri­
butes allow the user to perform operations such as insert/delete line or character, or
search-and-replace with various options, as well as to build user-definable command files
that execute complex/repetitive editing functions.

Redit is not a formatting program; post-processing (with nroff, for example) is necessary
to format output. Nor is redit a multiple mode editor; the editor is always in strikeover
mode. Changes or alterations are made by overwriting text directly on the display.

·9051A -1-

Text Editing

Screen Movable Window

Text
File

REDIT

Figure 1. Windows on Text File

Editing is performed using function and other editing keys, and through commands
entered on the command line. (Virtually all keyboard keys function normally with reclit­
-e.g., backspace moves one character left.)

Editing capabilities are thus broken into two groups:

• EDITOR COMMANDS

• PREDEFINED OPERATIONS

GENERAL DESCRIPTION

With this group, the liser enters the command
into the command entry area (top line) of the
screen.

These operations are invoked directly by function
keys. The predefined operations have been imple­
mented using various combinations of the editing
commands, and represent the most commonly
used editing tasks.

This section describes the logical structure of text files, ASCII and work files, screen for­
mats, and the concept of selected blocks and windows.

Logical Structure of Text Files

A text file consists of a set of records referred to as lines. Each line has a length attri­
bute; the length describes the position of the last non-blank character in the line. The
length of a line may range from zero (0) to 128 characters. A length of zero denotes a
blank line.

-2- 9051A

Text Editing REDIT

Each line can be identified by its position relative to the beginning of the file. The posi­
tion (line number) has a value in the range of 0 to 99,999,999, inclusive. Lines are
effectively renumbered if preceding lines are inserted or deleted.

Ascn Files and Work Files

"ASCII file" refers to a file that is directly readable by such Ridge subsystems as the
editor, language compilers, and utility programs. When an existing ASCII file is to be
edited, the file is first copied to a "work file." The work file provides rapid, random
access to any place in the text; this file is not directly readable by other Ridge subsys­
tems. During the editing session, changes to the text are made only to the work file,
not to the ASCII file. At the end of the editing session, the text portion of the work
file is copied to a new ASCII file.

The work file is saved by default between editing sessions, which provides three benefits:
time spent copying the ASCII file to the text file at the beginning of the editing session
is eliminated, some contextual information (such as current position in the file and tab
settings) is maintained across editing sessions, and the work file is an additional backup
to the ASCII file. (Chapter 3 explains how to save a "lost" work file. In the user's
directory, the work file bears a ".e" extension to the original ASCII file name. So, for an
ASCII source file named "prime.s", a work file named "prime.s.e" is created.

Screen Format

The Ridge system supports two terminals: the Ridge Monochrome Display and the
Text Terminal (Televideo TVI-950C). The Monochrome Display is bit-mapped and a
range of font sizes have been developed for it; consequently, the screen format varies
according to font size. While the Monochrome Display does not display exactly 72
increments per inch, the font sizes are close approximations to those of typographic
fonts.

Figure 2 shows the screen format for the Monochrome Display and Figure 3 that of the
Text Terminal.

1 <adv/cmd>
2 <hdr/sel>
3 <text1>
4 <text2>
5 <text3>
49 <text47>
50 <cmd>

1 30 .. 128

+--~-----//----+
I] <advisory> : [<command input area> I
I] <fname> @ <tline> I <sfname> <stline .. > <sbline> I

I [I
I I
I I
I I
IS1:Select S2:Clear S3:Copy S4:Move S5:Break S6:Fill S7:XeqCmd S8:Exit

+---------------------------------~--------------------------//----+

Figure 2. Monochrome Display Screen Format

9051A -3-

Text Editing REDIT

1 30 ; 80

+--//----+
1 <adv/cmd> I]<advisory> : [<command input area> I
2 <hdr/se1> I]<fname> @ <t1ine> I <sfname> <st1ine .. > <sb1ine> I
3 <text1> I [I
4 <text2> I I
5 <text3> I I
24 <text22> I I
25 <cmd> 11:Prev 2~Next 3:Se1 4:Copy 5:Brk 6:Fi11 7:Undo 8:A 9:B 10:C 11:Cmdl

+--//----+

Figure 3. Text Terminal Screen Format

In these illustrations, the following notation is used:

]

[

<adv/cmd>

<hdr/sel>

indent

<textl .. n>

-4-

Denotes the beginning of an area into which the user cannot enter
text (a protected area).

Denotes the beginning of an area into which the user can enter text
(an unprotected area).

Advisory /command area. <advisory> is where error messages are
displayed; <command input area> is where editor commands can be
entered.

Window header and selection status area. The window header con­
sists of three parts:

<fname>

@

<tline>

The name of the file visible in the window.

The currency indicator which is displayed if the window
is current.

The line number of the line at the top of the window.

The selection status area displays the state of the currently selected
block of text (see the SELECT command). The selection status area
consists of three parts:

. <sfname>

<stline>

<sbline>

The name of the file containing the currently selected
block.

The line number of the top line of the currently
selected block. (On the Monochrome Display, <stline>
is used to indicate both the top and bottom lines of a
selected block for sizes 16 and above because the screen
isn't wide enough to accommodate the <sbline> field
for these larger fonts.)

The line number of the bottom line of the currently
selected block.

Area of the screen in which text is displayed. The cursor may be
placed anywhere within this block for editing; entering text over exist­
ing text automatically replaces that text.

9051A

Text Editing

<cmd>

Selected Blocks

REDIT

Shows the editing functions of the keys above the top row of the key­
board, from left to right.

In redit, blocks of text can be defined and manipulated using several of the predefined
operations and editing commands. Essentially, the SELECT command (or predefined
operation) is used to define a block--to set its bounds (top and bottom lines). Simple
keystroke commands can then be used to copy, move, or delete blocks. Editor com­
mands and predefined functions REPEAT command) can be used locally within a block,
thus limiting their actions to just a part of the text file (see the REPEAT command).
The CLEAR SELECT command nullifies the selection of the current block so another
can be selected.

Used in conjunction with the WINDOW capabilities, blocks of text can be passed from
file to file, edited, revised, reinserted, etc. Information about the currently selected
block--the file name in which the current block resides, and its bounds--is displayed in
the selection status area of the screen. (See Figures 2 and 3.)

Windows

Redit offers three scrollable windows (independent, predefined screen areas which act as
mini-screens) in which text can appear simultaneously. Up to three text files can thus be
displayed and edited without having to close or save anyone of them first.

Window A occupies the entire screen area until window B is created. Then, the screen
is split horizontally between the two. If window C is created, the B window area is
then split horizontally between these two. Figure 4 shows the screen when all three win­
dows have been opened. Movement from window to window is easily accomplished via
the WINDOW keys. The sign n@n indicates which window the user is currently work­
mg In.

9051A -5-

Text Editing REDIT

-6-

1

] <advisory> : [<command input area> 1 1
]<fname> @ <tline> 1 <sfname> <stline> <sbline> 1 1
[1 1

1 1

1 1
window A 1 1

1 1

1 1

1 1 1
1--I 1
1]<fname> @ <tline> 1 <sfname> <stline> <sbline> 1 1

1 1 1
1 window B 1 1

1 1 1
1--I I
1]<fname> @ <tline> 1 <sfname> <stline> <sbline> 1 1

1 1 1
1 window ell
1--I 1

--I
Figure 4. Screen Window Format

9051A

Text Editing REDIT

CHAPTER 2
EDITOR COMMANDS AND PREDEFINED OPERATIONS

This chapter defines the editor commands that are entered in the command entry area.
The commands are used singly and in combination with one another to provide exten­
sive editing capabilities.

Syntax Notation

Required keyword characters are indicat.ed in uppercase bold; required arguments are
indicated in bold; all punctuation that is shown is required (except commas used to
separate a series of options).

Arguments are enclosed by "<" and ">". Options are enclosed by "[" and "]". If, within
a group of options, one must be selected, the group is surrounded by "{" and "}"; where
a default exists, it is underlined. Lists are indicated by an ellipsis, " ... ".

The text editor accepts either uppercase or lowercase letters when commands are typed
in. Commands must normally be separated from the other elements by one or more
spaces; otherwise spacing is unimportant.

Range and Line Specification

<range> is used to specify a block of text to be operated on by an editor command or
sequence of commands. <line-spec> is used to specify a single line. The following
shows the syntax for both.

<range> =

<line-spec> =

Where:
@
B
T
F
L
N
P
B
W
E
<offset>

[«filename» .] <line-spec> .. <line-spec>

{ <line-spec,@,B,T,F,L>} [<{+,-} offset> 1
{[F,L,N,P] <'string',"string"> [I,W,B] }

Indicates the current line.
ilottom line of selected block.
Top line of selected block.
First occurrence or line.
Last occurrence or line.
Next occurrence or line.
Previous occurrence or line.
Both upper and lower case are found.
Word only is found (not embedded string).
Exact character string is found.
May be an integer, or the keyword, PAGELEN.
"Pagelen" is the number of lines that can be
displayed simultaneously.

9051A -7-

Text Editing REDIT

ATTACH Command

ATTACH <filename> [, NEW] [, { lA, B, C }]

This command places a file in one of the editing windows (A, B, or C). If the named file
does not currently exist, the NEW option creates it. Normally, this is the first command
executed after entering the editor, but ATTACH is automatically invoked if a file name
is used in calling up the editor itself (see Chapter 4 for details).

Example:

Bugs:

The following sequence opens .an existing file and attaches it to win­
dow B.

ATTACH myfile.s, B

In using the NEW option, no spaces may be inserted between the file
name and NEW--that is, the sequence must look like this:

ATTACH filename,new

CLEAR Command

CLEAR {ISELECT, TEMP}

CLEAR SELECT clears the currently selected block. CLEAR TEMP clears the tem­
porary text stack.

CLOSE Command

CLOSE <filename> [, [NO] { ASCII) SA VE }]

This command detaches the specified file from any window(s) to which it is attached, and
closes the file, but leaves the editor still active. If the ASCII option is specified (by
default), and the text has been modified since the last time the text file was copied, the
work file (".e") is copied to the ASCII file. If NO ASCII is selected, the work file is not
copied to the ASCII file.

If the SAVE option is specified (again, by default), the work file is closed. With the NO
SAVE option, the work file is purged after its contents are copied to the ASCII file. NO
ASCII and NO SAVE cannot be specified simultaneously.

COPY Command

COPY <range>

This command inserts a copy of the specified line(s) just before the current line (the line
the cursor is positioned on).

Example:

-8-

The following command copIes lines 1 through 50 from an open file
back into itself.

COpy 1 .. 50

9051A

Text Editing

Example:

REDIT

The following command positions a copy of lines 1 through 50 of an
open file (named "kit") before the current line of the file in the current
window.

COpy (kit). 1..50

DELETE Command

DELETE

This command deletes the current line. (The RESTORE key does not restore a line so
eliminated.)

DETACH Command

DETACH { A, B, C }

DETACH removes from a specified window, but does not close, a file.

EXIT Command

EXIT

This command terminates the editor. The equivalent of a CLOSE <filename>, ASCII,
SAVE is done for all currently open files.

FIND Command

{ FIND, F } <line-spec>

This command locates a line or string within the text file and makes that the location of
the current line. In general, <line-spec> can be a line number (e.g., 10), a quoted string
(e.g., "String"), or an occurrence (e.g., N = next, P = previous). If a line number is
specified, the cursor is placed within the specified line at the same column position it pre­
viously occupied. If, however, a string is specified, the cursor is positioned on the first
character of the string. Specifying an occurrence by itself is equivalent to specifying the
line number of that occurrence. Specifying an occurrence in combination with a string
locates that string relative to the start (F), end (L), or current position (P or N) in the
file.

FIND only searches forward from the line the cursor is currently on; to search an entire
file quickly, "FIND 1" (go to first line), then use FIND to look for the desired occurrence.

Example:

Example:

The following command makes the previous line the current line.

FIND p

The following command finds the next occurrence of the string "cat",
using the word only option.

F n "abc" w

9051A -9-

Text Editing REDIT

INSERT Command

INSERT [<quoted-string>]

INSERT by itself inserts a blank line prior to the current line. With the <quoted­
string> option, the specified string is inserted as a new line prior to the current line.
The newly inserted line becomes the current line.

Example: The following command inserts the words "Follow these directions." on
a line before the present current line.

INSERT "Follow these directions."

MOVE Command

MOVE <range>

This command inserts a copy of the line(s) specified by <range> just before the current
line (the line the cursor is positioned on), and then deletes the original lines.

Example:

Example:

POP Command

The following command puts a copy of lines 1 through 50 before the
current line and eliminates the original of the lines.

MOVE 1 .. 50

The following command uses the first occurrence of a string to locate
a IO-line block, which is then moved from an open file named "kit," to
before the current line in the current window. The original lines are
deleted from "kit."

MOVE (kit). f "Sec.l" .. f "Sec.l" +10

POP

The user can store up to 21 lines of text in a temporary storage stack (the same stack to
which the line-delete key sends deleted lines). This command lets the user remove lines
from this temporary stack, if the stack is empty, no action takes place.

Use of POP also restores lines into the text that were deleted with the line-delete key,
but not the DELETE command.

The stack is a last-in-first-out storage device. The most recent line to be put on the
stack, via PUSH or the line-delete key, is the first to be POPped off the stack.

-10- 905IA

Text Editing REDIT

PUSH Command

PUSH

The user can store up to 21 lines of text in a temporary storage stack. It is the same
stack to which the line-delete key sends deleted lines.

To copy a line of text to the stack, set the cursor on the line and use the PUSH com­
mand on the REDIT command line. A copy of the line will be put on the stack (the origi­
nal line will stay in place).

The difference between the line-delete key and PUSH is that PUSH does not erase the
line from the text. Doth features put a copy of the line on the stack.

REPEAT Command

REPEAT (<command> [;<command>] ...)
[, {[IN <range>FR], [COUNT <num>]} , [QUIET]]

REPEAT is· used to execute one or more commands repeatedly within an implied or
designated range, or until a specified number of iterations are completed.

IN <range> allows iterations to occur within a defined range (a specified group of text
lines). If IN <range> is omitted, a range of "1" is implied. If IN <range> is specified,
the first line of the range is made the current line prior to the first execution of the corn­
mand list. If a range of one (e.g., a range of 10 .. 10) is defined, the command list executes
one time. If there are no commands that cause the current line to exceed the bounds of
the implied or specified range, the REPEAT sequence will continue indefinitely.

The COUNT <num> parameter specifies a limit on the number of times the command
list can be repeated.

The QUIET parameter suppresses display update until the REPEAT command has
finished iterating.

Example:

Example:

The following command list finds all occurrences of "abc" and deletes
the lines on which they occur. (Note that the EXECUTE/ ENTER
key must be pressed to go from one "FIND-REPLACE" sequence to
the next. However, COUNT -1 can be appended to make this
automatic. If "n" is removed, COUNT -1 acts globally.)

REPEAT (FIND n 'abc' ; DELETE)

The following searches for all occurrences within the currently
selected block of "tadpole" and replaces them with "frog."

REPEAT (f 'tadpole';replace 'frog'), IN B .. T COUNT -1

9051A -11-

Text Editing REDIT

REPLACE Command

REPLACE <quoted-string>

This command replaces the currently selected text with <quoted­
string>. The text can be explicitly replaced by the execution of a
FIND command used in conjunction with REPLACE. Or text can be
implicitly replaced based on the current positon of the cursor: if the
cursor is currently positioned on a string that has just been located by
a FIND string search, that string is replaced by the quoted string.
Otherwise, <quoted-string> is inserted into the current line beginning
at the cursor position. (See REPEAT for an example of using
REPLACE.)

SELECT Command

SELECT

This command uses the current line (where the cursor is positioned) to define the bounds
(top and bottom lines) of a text block, which then becomes the currently selected block.

If no block is currently defined, SELECT defines a block of one line. If the cursor is
moved to a line outside the current bounds, SELECT redefines the block (its first or last
bound is changed). Scrolling up (towards the beginning of the file) causes the top line to
be changed; scrolling down (towards the end of the file) causes the bottom line to be
changed. If the cursor is moved to a line within the defined block, pressing SELECT does
not redefine the current block bounds.

If the current line is not in the same window as the currently selected block, SELECT
nullifies the current selection and sets the bounds for a one-line block.

SET TAB Command

SET TAB <col> [<col>] ...

This command can be used to ove.rride the default display tabs (which are set every eight
spaces). A maximum of 15 tabs can be defined. Since this is a two word command, and
since a series of numbers may be specified, spacing is significant.

Example: The following command sets up three tabs. The first ranges from
column 1 to 10, the next from 10 to 20, the last from 20 to 40.

SET TAB 10 20 40

WINDOW Command

WINDOW { A, B, C }

The WINDOW command selects the current window for editing. The selected window
must have a file attached to it.

-12- 9051A

Text Editing REDIT

XEQ Command

XEQ <filename>

This command is used to execute a series of editor commands that are contained III an
ASCII file.

Example: Assume a file ("tree") in window A is being edited. Then, to create
and edit an XEQ file named "sap" that will open an existing file "leaf"
in window B, insert a text string at a specified line in "leaf," and then
go back to a specified line in "tree," the following sequence could be
used. First, the file "sap" is created. It contains:

ATTACH leaf,b
FIND 4
INSERT 'maple sugar'
WINDOW A
FIND 1

Next, "tree" is attached to window A. Then the command sequence:

XEQ sap

causes the desired search, string insertion, and return to line 1 in "tree."

PREDEFINED OPERATIONS

This section describes the predefined operations for the Monochrome Display and the
Text Terminal. These operations are invoked by pressing one of the terminal editing
keys or one of the functions keys, either unshifted or in combination with the SHIFT
key. The predefined operations have been implemented using combinations of the editor
commands themselves.

On the Monochrome Display, the most frequently used predefined operations appear on
the function keys at the top of the keyboard; less frequently used operations are accessed
from the keypads to the left and right of the main keyboard. The exceptions to this are
the cursor keys, which are grouped together. (See Figure 5 for an illustration of the
Monochrome Display keyboard.) In the Monochrome Display, function keys F1 through
F9 have been assigned editor operations; keys FlO through F15 are unassigned. On the
Text Terminal, all available function keys (F1 through F11) have been assigned editor
operations.

The following descriptions of the predefined operations are arranged alphabetically. Fig­
ure 5 represents the keyboard for the Ridge Display, and Table 3 shows which keys on
the Monochrome Display and the Text Terminal correspond with which operations, as
well as providing the key sequences the terminals will also accept for some operations.

9051A -13-

I
~

~
I

F1
FIRST
PAGE

F4
LAST
PAGE

F7
WINDOW

A

FlO

Fl3

F2 F3
INSERT LINE
BLOCK ERASE

F5 F6
DELETE RESTORE
BLOCK

Fa F9
WINDOW WINDOW

B C

F11 Fl2

F14 F15

SELECT CLEAR SELECT COpy
BLOCK

MOVE
BLOCK

BREAK
LINE

FILL
LINE

ENTER IEXIT EXIT PREY

NEXT

'" -
/

LINE CHAR
INSERT INSERT

LINE CHAR
DELETE DELETE

t /
HOME -"
! ~

Text Editing REDIT

Table 3. Predefined Operations

Text Monochrome Alternate ANSI Termina1
Predefined Terminal Display Key Key
Operation Key Key Sequence Sequence

Backspace Backspace Backspace ctrl-H ctrl-H
Break Line F5 Break Line esc T esc b
Char Delete Char Delete Char Delete esc W ctrl-\V
Char Insert Char Insert Char Insert esc Q ctrl-A
Clear Select F3 Shifted Clear Select esc S
Copy Block F4 Unshifted Copy Block ctrl-AC esc c
Cursor Diagonal,
Left Down ,,-

Cursor Diagonal,
Left Up " Cursor Diagonal,
Right Down ...,..

Cursor Diagonal,

" Right Up
Cursor Down ~ + ctrl-J or V ctrl-J
Cursor Home Home Home ctrl ctrl
Cursor Left .- .- ctrl-H ctrl-I-I
Cursor Right ctrl-L ctrl:·L
Cursor Up t t ctrl-K ctrl-K
Delete Block Line Del Shft Delete Block (FS) esc D
Enter /Execute Fll Unshifted Enter /Execu te ctrl-A J cr* esc x
Exit Fll Shifted Exit ctrl-A j
Fill Line F6 Fill esc J
First Page Fl Shifted First Page (Fl) ?ctrl-A cr esc f
Insert Block Line Ins Shft Insert Block (F2) esc I
Line Delete Line Delete Line Delete esc R esc d
Line Erase Line Erase Line Erase(F3) ctrl-E
Line Insert Line Insert Line Insert esc E esc 1

Last Page F2 Shifted Last Page (F4) esc I
Move Block F4 Shifted Move Block ctrl-A c cr esc m
Next Page F2 Unshifted Next ctrlr-A A ':cr esc n
Previous Page Fl Unshifted Prev ctrl-A @ cr esc p
Restore (Undo)(l) F7 Unshifted Restore (F6) esc u
Restore (Undo) (all) esc U
Return Return Return ctrl-M ctrl-M
Select F3 U nshifted Select ctrl-A B cr esc s
Tab Tab Tab ctrl-I ctrl-I
Window A F8 Window A (F7) ctrl-A G esc 1
Window B F9 Window B (F8) ctrl-A H esc 2
Window C FlO Window C (F9) esc 3

*carriage return

905lA -15-

Text Editing REDIT

BACKSPACE

This operation moves the cursor back one position. If the cursor IS III column 1, it IS

moved to the last column of the previous line.

BREAK LINE

This operation splits the current line at the cursor position, creating a new line contain­
ing the text trailing the cursor.

CHARACTER DELETE

This operation deletes the character at the cursor position. Text to the right of the cur­
sor on the same line is moved to the left.

CHARACTER INSERT

This operation inserts a space just before the cursor position. Text to the right of the
cursor on the same line is moved to the right.

CLEAR SELECT

This operation performs the same function as the editing command, CLEAR SELECT. It
nullifies the currently selected block.

COpy BLOCK

This operation inserts a copy of the currently selected block just before the current line,
and then nullifies the current selection.

CURSOR DIAGONAL LEFT, DOWN

This operation moves the cursor diagonally, down to the next line and left one column.

CURSOR DIAGONAL LEFT, UP

This operation moves the cursor diagonally, up one row and left one column.

CURSOR DIAGONAL RIGHT, DOWN

This operation moves the cursor diagonally, down one row and right one column.

CURSOR DIAGONAL RIGHT, UP

This operation moves the cursor diagonally, up one row and right one column.

CURSOR DOWN

This operation moves the cursor down one line.

CURSOR LEFT

This operation is the same as a backspace.

-16- 9051A

Text Editing REDIT

CURSOR RIGHT

This operation moves the cursor to the right one column. If the cursor IS III the last
screen column, it is moved to column 1 of the next line.

CURSOR UP

This operation moves the cursor up one column.

DELETE BLOCK

This operation deletes the lines in the currently selected block, then nullifies the current
selection.

ENTER/EXECUTE

This operation positions the cursor in the command input area. If the cursor is already
in the command input area, pressing the key becomes a signal to interpret the command
line for execution.

To NOT execute a command sequence that has been entered into the command input
area, and assuming that the cursor is positioned in the area, press the appropriate win­
dow key to move the cursor to the desired current window.

EXIT

This operation performs the same function as the EXIT command: files that are
currently open are copied to disc (ASCII files), work files are saved (".e" files), and the
editing session is terminated.

FILL LINE

This operation attempts to place as many words as possible on a 70 character line. For
short lines, words are taken from the next text line. To truncate a too lengthy line,
words are moved to a new line (which becomes the current line).

FmSTPAGE

This operation moves the window back' to the first page in the text file. A page
represents the number of lines that constitute a "screenful." The first text line becomes
the current line.

HOME

This operation positions the cursor in the upper left-hand corner of the text entry area
(column 1, row 1) of the current window.

INSERT BLOCK

This operation effectively pushes the current line to the bottom of the window by insert­
ing a block of blank lines before it.

9051A -17-

Text Editing RED IT

LAST PAGE

This operation moves the window forward to the last page in the text file. The last text
line becomes the current line.

LINE DELETE

This operation deletes the current line. (RESTORE restores a line deleted by this opera­
tion.)

LINE ERASE

This operation replaces the characters from the cursor position to the end of the line
with blanks.

LINE INSERT

This operation inserts a blank line before the current line. The blank line becomes the
new current line.

MOVE BLOCK

This operation inserts a copy of the currently selected block before the current line,
deletes the lines in the currently selected block, and then nullifies the current selection.

NEXT PAGE

This operation moves the window forward to the next page in the text file. The new
current line occupies the same relative position in the window as did the previous current
line.

PREVIOUS PAGE

This operation moves the window back to the preceding page in the text file. The new
current line occupies the same relative position in the window as did the old current line.

RESTORE (UNDO)

This operation restores the last line deleted by the LINE DELETE key by inserting the
line just before the current line. The restored line becomes the new current line.

RETURN

This operation moves the cursor to the beginning of the next line. If the next line is not
displayed, the window is moved forward by one line.

SELECT

This operation and the SELECT command perform identically. See the Editor Command
section for a full description; briefly, SELECT identifies the current line by line number,
and defines top and bottom lines for a block of text.

-18- 9051A

Text Editing REDIT

TAB

This operation moves the cursor to the next predefined tab position. If TAB is executed
past the last identified tab, the cursor is moved to column 1 of the next line. If the next
line is not displayed, the window is moved forward in the text file one line.

WINDOW A
WINDOWB
WINDOWC

These operations select the specified window as the current window. They are identical
to the WINDOW editing commands.

9051A -19-

Text Editing

INTRODUCTION

CHAPTER 3
RED IT TUTORIAL

REDIT

This tutorial takes the user through the basics of creating and editing a text file. No
attempt is made to illustrate all the features of the text editor, simply some basics.
While the Monochrome Display and the Text Terminal support the text editor in the
same way, display format differences were shown in Chapter 1; and keyboard and func­
tional differences were noted in Chapter 3. In this tutorial a few further differences are
encountered and explained.

INVOKING THE EDITOR

To invoke the text editor on either the Monochrome Display or Text Terminal, type after
the operating system prompt "$":

$ redit

!he screen now displays in the first line (the advisory and command area line) the follow­
Ing:

Ridge Text Editor (07-Sep-83):

The date indicates the version of the editor. The cursor appears after the colon in the
command input area.

ATTACHING A FILE

ATTACH brings an existing file to the screen--or it can be used to create a new file. To
edit an existing file ("stengel"), the command line should look like this:

Ridge Text Editor (07-Sep-83): ATTACH stengel

As is true for all commands entered int9 the command status area, you must press the
ENTER/EXECUTE key when you want the command to be executed.

The file now appears on the screen, in window A by default. Window A occupies the
entire screen unless windows Band/or C are attached; Figure 4 in Chapter 2 illustrates
how the screen is subdivided.

To position the file in one of the other windows, specify ",b" or ",c" after the file name:

Ridge Text Editor (07-Sep-83): ATTACH stengel,b

To create a new file (named "gold"), ",new" must be added after the file name:

Ridge Text Editor (07-Sep-83): ATTACH gold,new

-20- 9051A

Text Editing REDIT

However, the quickest way to start the editor and get going on a file is to use a file name
when invoking the editor. This causes ATTACH to be executed automatically. To
create a new file, type:

$ redit gold,new

Windows can, of course, be specified. To call "stengel" into window C, you would type:

$ redit stengel,c

After the ATTACH command has been executed, a banner appears in the window header
and selection status line (the second screen line) of the display. For the new file "gold",
this line shows the file name, the currency indicator ("@") since the window is the current
one, and the current line number:

Ridge Text Editor (07-Sep-83):ATTACH gold,new
gold@l

Text can now be entered in typewriter fashion. Assume the following three line file IS

entered:

Ridge Text Editor (07-Sep-83):ATTACH gold,new
gold@l
The words of Samual Goldwyn himself, best illustrate the
goldwynism, a type of mixed metaphor: "No oral contract is
worth the paper it's written on."

As a strike-over editor, corrections can be made by simply writing over existing text. On
the Monochrome Display, pressing the REPT key simultaneously with a cursor key speeds
up cursor movement.

BLOCK MANIPULATION

Assume now that the existing "stengel" file should be appended to "gold". Use the
ENTER/EXIT key to enter the command input area and then type:

Ridge Text Editor (07-Sep-83):attach stengel,b

After pressing the ENTER/EXIT key again, the following appears in window B:

(window A)

stengel@l
Named for baseball manager Casey Stengel, a stengelism is
yet another marvelously confused metaphor, to wit: "He's so
lucky he'd fall in a hole and come up with a silver spoon."

(window B)

9051A -21-

Text Editing REDIT

The window's status line gives the file name, currency status indicator (B is now the
current window), and the current line number ("1"). Editing is performed in the Band C
windows in the same way as it is in window A. So the file could be added to, deleted
from, etc.

The easiest way to copy the file to "gold" is to use the COPY command. First, the line
numbers of the text to be copied must be determined. Since window B is the current win­
dow, position the cursor on the first line of the file to be copied (line 1), and press
SELECT. The window A status lines looks like this:

Ridge Text Editor (07-Sep-83):attach stengel,b
goldstengel1 .. 1

Note that the currency indicator is absent from window A and that no top line is indi­
cated for that window. "stengel" is shown to have a current block defined in it (a block
can be one line). The "1.." represents the top line of the block, and "1" the bottom line
of the block. Move the cursor to the last text line to be copied (line 3). Press SELECT.
The window A status line now appears as:

Ridge Text Editor (07-Sep-83):attach stengel,b
gold stengel1..3

The bottom line is now seen to be 3. Next, return to window A by pressing the WIN­
DOW A key, and locating the cursor on the line below which the copied text should
appear (here, it will be line 4). Next, simply press the COPY key. The following now
appears in window A:

Ridge Text Editor (07 -Sep-83):
gold@1
The words of Samual Goldwyn himself, best illustrate the
goldwynism, a type of mixed metaphor: "No oral contract is
worth the paper it's written on."
Named for baseball manager Casey Stengel, a stengelism is
yet another marvelously confused metaphor, to wit: "He's so
lucky he'd fall in a hole and come up with a silver spoon."

If the "stengel" portion of the text should appear before the "gold" portion of the file, the
MOVE <range> command can be used in just the same way as the COpy <range>
was used. The difference between the two is that MOVE deletes the original lines.
MOVE BLOCK could also be used to reorganize the text. It is similar to COpy
BLOCI(except that it deletes the original lines.

If this were a longer file and the word "stengelism" were misspelled throughout, the
REPEAT command could be used to perform a global search and replace. Enter the
command input area and type:

repeat (find "stengalism"; replace "stengelism") count -1

Also, ", quiet" can be added onto the command sequence so that the text manipulation is
done without updating the screen after each change.

-22- 9051A

Text Editing REDIT

LEAVING THE EDITOR

A file can be closed and the editor terminated by using the EXIT key. All open files are
saved, updated, and control is returned to the operating system.

COMMENTS ON ASCII AND WORK FILES

If an ASCII file is lost (for example, moved to another directory), the file may still be
edited in the current directory as long as the work file exists. Do not invoke the file by
its ".e" name, however, since the work file is not readable by the editor; rather, use the
ASCII file name ("prime.s"); make some sort of change to the file; then save the file.
Now, both an ASCII and a work file should appear in the directory.

A work file appears not to be updated if it is manipulated by non-redit commands (e.g.,
with CAT or vi). For instance, assume the "stengel" file, initially created using redit, is
modified using vi. If the file "red" is concatenated out onto the screen, changes made
using vi appear. However, if "stengel" is invoked with redit, the original version appears.
Therefore, to call up the most recent version, first remove the file "stengel.e" from the
directory.

9051A -23-

ED - a text editor

Introduction

Ed is a "text editor", an interactive program for creating and modifying text, that accepts directions
from a user at a terminal. The text is often a document like this one, or a program or perhaps data for a
program.

This introduction simplifies learning ed. Read this document and use ed to follow the examples. (It is
useful to solicit advice from experienced users.)

Do the exercises! They cover material not completely discussed in the actual text. An appendix sum­
marizes the commands.

This is an introduction and a tutorial, and only the most useful and most frequently used parts of ed
are covered here. After you master this tutorial, try Advanced Ed. This tutorial assumes you know the
basic ROS procedures, like logging on and using the file system.

Getti ng Started

Log in to your system and wait for the $ prompt. The easiest way to get ed is to type:

ed (followed by a return)

You are now ready to go - ed is waiting for you to tell it what to do.

Terminology: In ed jargon, the text being worked on is said to be "kept in a buffer." Think of the
buffer as a work space, the piece of paper on which we will write and modify things. Terminology: The
user tells ed what to do to his text by typing instructions called "commands." Most commands consist of
a single letter, which must be typed in lower case. Each command is typed on a separate line. (Some­
times the command is preceded by information about what line or lines of text are to be affected - we
will discuss these shortly.) Ed makes no response to most commands - there is no prompting or typing
of messages like "ready". (This silence is preferred by experienced users, but is sometimes a hangup for
beginners.)

Creating Text - the Append command" a"

Suppose you want to create some text starting from scratch. Perhaps you are typing the very first
draft of a paper (that will undergo modifications later.) This shows how to get some text in. Later, we'll
talk about how to change it.

When ed is first started, it is like working with a blank piece of paper - there is no text or informa­
tion present. This must be supplied by the person using ed,' it is usually done by typing the text.

The first command is append, written as the letter

a

all by itself. It means "append (or add) text lines to the buffer, as I type them in." Appending is like
writing fresh material on a piece of paper.

To enter lines of text into the buffer, just type an a followed by a RETURN, followed by the lines of
text you want, like this:

a
Now is the time
for all good men
to come to the aid of their party.

The only way to stop appending is to type a line that contains only a period. The"." tells ed that you
have finished appending. (Even experienced users forget that terminating" ." sometimes. If ed seems to
be ignoring you, type an extra line with just"." on it. You may then find you've added some garbage
lines to your text, which you'll have to take out later.)

9051 -1-

Text Editing

After the append command has been done, the buffer will contain the three lines

Now is the time
for all good men
to come to the aid of their party.

The" a" and"." aren't there, because they are not text.

To add more text to what you already have, just issue another a command, and continue typing.

Error Messages - "1"

If at any time you make an error in the commands you type to ed, it will tell you by displaying

?

This is about as cryptic as it can be, but with practice, you can usually figure out how you goofed.

Writing text out as a file - the Write command "w"

Ed

It's likely that you'll want to save your text for later use. To write the contents of the buffer onto a
file, use the write command

w

followed by the filename under which you want to store the text. This copies the buffer's contents onto
the speCified file (destroying any previous information in the file). To save the text on a file named
junk, for example, type

w junk

Leave a space between wand the file name. Ed will respond by printing the number of characters it
wrote out. In this case, ed would respond with

68

(Remember that blanks and the return character at the end of each line are included in the character
count.)

Writing a file makes a copy of the text, but the buffer's contents are not disturbed, so you can con­
tinue adding lines to it. This is an important point. Ed at all times works on a copy of a file, not the file
itself. No change in the contents of a file takes place until you give a w command. (Writing out the text
onto a file from time to time as it is being (Writing the text into a file from time to time as it is being
created is a good idea. If the system crashes or if you make a horrible mistake, you will lose all the text
in the buffer, but any text in a file is safe.)

Leaving ed - the Quit command "q"

To terminate a session with ed, save the text you're working on by writing it into a file using the w
command, and then type the command

q

which stands for qut"t. When you quit, the buffer and all its contents vanish. In this rare case, the com­
puter protects you from quitting before you have written the file; you may not quit if the editor detects
that the buffer has been modified since the last use of "w". To override the protection, type "q!" to quit
and lose your buffer.

Exercise 1:

Enter ed and create some text using

a
. text ...

Write it out using w. Then leave ed with the q command, and print the file, to see that everything
worked. (To print a file, type

pr filename

or

-2- 9051

Text Editing Ed

cat filename

in response to the $ prompt. Try both.)

Reading text from a file - the Edit command "e"

Another common way ro get text into the buffer is to read it from a file that already exists. This is
what you do to edit text that you saved with the w command in a previous session. The edit command e
fetches the entire contents of a file into the buffer. If you had saved the three-line "Now is the time",
file, the ed command

e junk

would fetch the entire contents of the file junk into the buffer, and respond

68

which is the number of characters in junk. If anything was already in the buffer, ,'t is deleted first.

If you use the e command to read a file into the buffer, you need not use a file name after a subse­
quent w command; ed remembers the last file name used in an e command, and w will write to the same
file.
A good way to operate is

ed
e file
[editing session]
w
q

This way, you can simply type w from time to time, and be secure in the knowledge that if you got the
file name right at the beginning, you are writing into the proper file each time.

To find out at any time what file name ed is remembering, type the file command f. In this example,
type

and replies

junk

Reading text from a file - the Read command "r"

Sometimes you want to read a file into the buffer without destroying anything that is already there.
This is done by the read command r.

r junk

reads the file junk into the buffer; it adds it to the end of whatever is already in the buffer. If you do a
read after an edit:

e junk
r junk

the buffer will contain two copies of the text (six lines).

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the wand e commands, r prints the number of characters read in, after the reading operation is
complete.

Generally, r is used less than e.

9051 -3-

Text Editing Ed

Exercise 2:

Experiment with the e command - try reading and printing various files. You may get an error
? name, where name is the name of a file; this means that the file doesn't exist, usually because you
spelled the file name wrong, or because you are not allowed to read or write it. Verify that reading and
appending work similarly. Verify that

ed filename

is exactly equivalent to

ed
e filename

What does

f filename

do?

Printing the contents of the buffer - the Print command "p"

To print or list the contents of the buffer (or parts of it) on the terminal, use the print command

p

The way this is done is as follows. Specify the lines where you want printing to begin and where you
want it to end, separated by a comma, and followed by the letter p. Thus, to print the first two lines of
the buffer, (lines 1 through 2) type

1,2p

Ed will respond with

Now is the time
for all good men

If you want to print all the lines in the buffer, type 1,3p as above if you know there are exactly 3 lines
in the buffer. But in general, you don't know how many there are, so what do you use for the ending
line number? Ed provides a shorthand symbol for "line number of last line in buffer" - the dollar Sign
$. Use it this way:

l,$p

This will print all the lines in the buffer (line 1 to last line.) If you want to stop the printing before it is
finished, push the DEL or Delete key; ed displays

and waits for the next command.

To print the last line of the buffer, you could wpe

$,$p

but ed lets you abbreviate this to

$p

You can print any single line by typing the line number followed by a p. Thus

lp

produces the response

Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further: you can print any single line by typing just the line
number - no need to type the letter p. If you type

$

ed will print the last line of the buffer.

-4- 9051

Text Editing Ed

You can also use $ in combinations like

$- l,$P

which prints the last two lines of the buffer. This helps when you want to see how far you got in typing.

Exercise 3:

As before, create some text using the a. command and experiment with the p command. You will
find, for example, that you can't print line 0 or a line beyond the end of the buffer, and that you cannot
print a buffer in reverse order by entering "3.1p".

The current line - "Dot" or "."

Suppose your buffer still contains the six lines as above, that you have just typed

l,3p

and ed has printed the three lines for you. Try typing just

p

This will display

to come to the aid of their party.

which is the third line of the buffer. In fact, it is the last (most recent) line that you have done anything
with. (You just printed it!) You can repeat this p command without line numbers, and it will continue to

print line 3.

The reason is that ed maintains a record of the last line that you did anything to (in this case, line 3,
which you just printed) so that it can be used instead of an explicit line number. This most recent line is
referred to by the shorthand symbol

(pronounced "dot").

Dot is a line number in the same way that $ is; it means exactly "the current line", or "the line you
most recently did something to." You can use it in several ways - one possibility is to enter

.,$p

This will print all the lines from (including) the current line to the end of the buffer. In our example,
these are lines 3 through 6.

Some commands change the value of dot, while others do not. The p command sets dot to the
number of the last line printed; the last command will set both. and $ to 6.

Dot is most useful when used in combinations like

.. + 2 or .+ Ip

This means "print the next line" and is a handy way to step slowly through a buffer. You can also enter

.- 1 (or .- Ip)

which means "print the line before the current line." This enables you to go backwards .

. -3,.-lp

prints the previous three lines.

Don't forget that all of these change the value of dot. You can find out what dot is at any time by
typing

.=
Ed will respond by printing the value of dot.

Let's summarize some things about the p command and dot. p can be preceded by 0, 1, or 2 line
numbers. If there is no line number given, it prints the "current line", the line that dot refers to. If
there is one line number given (with or without the letter p), it prints that line (and dot is set there); and
if there are two line numbers, it prints all the lines in that range (and sets dot to the last line printed.) If
two line numbers are specified the first can't be bigger than the second.

9051 -5-

Text Editing Ed

Typing a single return will cause printing of the next line. It's equivalent to .+ Ip. Try it. Try typing
a you will find that it's equivalent to .- Ip.

Deleting lines: the "d" command

To get rid of the three extra lines in the buffer, use the delete command

d

Except that d deletes lines instead of printing them, its action is similar to that of p. The lines to be
deleted are specified for d exactly as they are for p:

starting line, ending line d

Thus

4,$d

deletes lines 4 through the end. There are now three lines left, as you can check by using

1,$p

And notice that $ now is line 3! Dot is set to the next line after the last line deleted, unless the last line
deleted is the last line in the buffer. In that case, dot is set to $.

Exercise 4:

Experiment with 8, e, r, w, p and d until you are sure that you know what they do, and until you
understand how dot, $, and line numbers are used.

If you are adventurous, try using line numbers with a, rand W as well. You will find that a wiJI
append lines after the line number that you specify (rather than after dot); that r reads a file in after the
line number you specify (not necessarily at the end of the buffer); and that w will write out exactly the
lines you specify, not necessarily the whole buffer.

These variations are handy. You can insert a file at the beginning of a buffer by entering

Or filename

and you can enter lines at the beginning of the buffer by typing

Oa
. text . ..

Notice that .w is very different from

w

Modifying text: the Substitute command "s"

s

This important command is used to change individual words or letters within a line or group of lines. It
is what you use, for example, for correcting spelling mistakes and typing errors.

Suppose that by a typing error, line 1 says

Now is th time

- The e has been left off the. You can use 8 to fix this up as follows:

Is/th/the/

This says: "in line 1, substitute for the characters th the characters the." To verify that it works (ed will
not print the result automatically) enter

p

and get

- 6- 9051

Text Editing Ed

Now is the time

which is what you wanted. Notice that dot must have been set to the line where the substitution took
place, since the p command printed that line. Dot is always set this way with the s command.

The general way to use the substitute command is

starting-line, ending-line s/ change tMs/to this/

in all the lines between starting-l£ne and ending-line, the string of characters between the first pair of
slashes is replaced by whatever is between the second pair, Only the first occurrence on each line is
changed, however. If you want to change every occurrence, see Exercise 5. The rules for line numbers
are the same as those for p, except that dot is set to the last line changed. (But if no substitution took
place, dot is not changed. This causes an error? as a warning.)

You can enter

1, $s/speling/spe lling/

to correct the first spelling mistake on each line in the text. (This is useful for people who are consistent
misspellers!)

If no line numbers are given, the s command assumes we mean "make the SUbstitution on line dot",
so it changes things only on the current line. This leads to the very common sequence

s/something/something else/p

which makes some correction on the current line, and then prints it, to make sure it worked out right. If
it didn't, you can try again. (Notice that there is a p on the same line as the s command. With few
exceptions, p can follow any command; no other mUlti-command lines are legal.)

It's also legal to enter

s/something/ /

which means "change the first string of characters to "notMng", i.e., remove them. This is useful for
deleting extra words in a line or removing extra letters from words. If you have

Nowxx is the time

you can enter

s/xx/ /p

to get

Now is the time

Notice that / / (two adjacent slashes) means "no characters", not a blank. There is a difference! (See
below for another meaning of / f.)

Exercise 5:

Experiment with the substitute command. See what happens if you substitute for some word on a
line with several occurrences of that word. For example, do this:

a
the other side of the coin

s/the/on tlle/p

You will get

on the other side of the coin

A substitute command changes only the first occurrence of the first string. You can change all
occurrences by adding a g (for "global") to the s command, like this:

s/ something/diiIeren/gp

Try other characters instead of slashes to delimit the two sets of characters in the s command - anything
should work except blanks or tabs.

9051 -7-

Text Editing Ed

You will get funny results using any of the characters

$ * \ 8[,

In the first or second string. read the section on "Special Characters".

Contextsearching- "I··· I"
With the substitute command mastered, you can move on to another highly important idea of ed­

context searching.

Suppose you have the original three line text in the buffer:

Now is the time
for all good men
to come to the aid of their party.

Suppose you want to find the line that contains their so you can change it to the. Now with only three
lines in the buffer, it's pretty easy to keep track of what line the word their is on. But if the buffer con­
tained several hundred lines, you would no longer know what this line number would be. Context
searching is a method of specifying the desired line, regardless of what its number is, by speCifying some
context on it.

The way to say' 'search for a line that contains this particular string of characters" is to type

I string of characters we want to find/

For example, the ed command

Itheir/

is a context search which is sufficient to find the desired line. - It locate the next occurrence of the char­
acters between slashes ("their"). It also sets dot to that line and prints the line for verification:

to come to the aid of their party.

"Next occurrence" means that ed starts looking for the string at line .+ 1, searches to the end of the
buffer, then continues at line 1 and searches to line dot. (That is, the search "wraps around" from $ to
l.) It scans all the lines in the buffer until it either finds the desired line or gets back to dot again. If the
given string of characters can't be found in any line, ed types the error message

?

Otherwise it prints the line it found.

You can do both the search for the desired line and a substitution all at once

Itheir /s/their/the/p

which will yields

to come to the aid of the party.

There were three parts to that last command: context search for the desired line, make the substitution,
print the line.

The expression Itheir/ is a context search expression. In its simplest form, a context search expres­
sion is a string of characters surrounded by slashes. Context searches are interchangeable with line
numbers, so they can be used by themselves to find and print a desired line, or as line numbers for some
other command, like s. They were used both ways in the examples above.

Suppose the buffer contains the three familiar lines

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers

- 8-

INow/+ 1

Igood/
Iparty/- 1

9051

Text Editing Ed

are all context search expressions, and they all refer to the same line (line 2). To make a change in line
2, you could say

/Now/+ Is/good/bad/

or

/good/s/good/bad/

or

/party /- Is/good/bad/

The choice is dictated only by convenience. You could print all three lines by

/Now /,/party /p

or

/Now/,/Now/+ 2p

The basic rule is: a context search expression is the same as a line number, so it can be used wherever
a line number is needed.

Exercise 6:

Experiment with context searching. Try a body of text with several occurrences of the same string of
characters, and scan through it using the same context search.

Try using context searches as line numbers for the substitute, print, and delete commands. (They can
also be used with r, W, and a.)

Try context searching using? text? instead of /textf. This scans lines in the buffer in reverse order
rather than normal. This is sometimes useful if you go too far while looking for a string of characters -
it's an easy way to back up.

(If you get funny results with any of the characters

$ * \ &

read the section on "Special Characters".)

Ed provides a shorthand for repeating a context search for the same string. For example, the ed line
number

/string/

will find the next occurrence of string. It often happens that this is not the desired line, so the search
must be repeated. This can be done by typing merely

//
This shorthand stands for "the most recently used context search expression." It can also be used as the
first string of the substitute command, as in

/stringl/S/ /string2/

which will find the next occurrence of string! and replace it by string2. This can save a lot of typing.
Similarly

means "scan backwards for the same expression."

Change and Insert - "e" and "i"

This section discusses the change command

c

which is used to change or replace a group of one or more lines, and the £nsert command

which is used for inserting a group of one or more lines.

9051 -9-

Text Editing Ed

"Change", written as

c

replaces a number of lines with different text, which are typed in at the terminal. For example, to change
lines .+ 1 through $ to something else, type

.+ 1,$C

... type the lines of text you want here ..

The lines you type between the c command and the • will take the place of the original lines between
start line and end line. This is most useful in replacing a line or several lines which have errors in them.

If only one line is specified in the c command, just that line is replaced. (You can type in as many
replacement lines as you like.) Notice that. ends the input this works just like the. in the append com­
mand and must appear by itself on a new line. If no line number is given, line dot is replaced. The
value of dot is set to the last line you typed in.

"Insert" is similar to append.

/string/i
... type the lz'nes to be inserted here . ..

will insert the given text before the next line that contains string. The text between i and. is inserted
before the specified line. If no line number is specified, dot is used. Dot is set to the last line inserted.

Exercise 7:

"Change" is like a combination of delete followed by insert. Experiment to verify that

start, end d

· text . ..

is almost the same as

start, end c
... text . ..

These are not precisely the same if line $ gets deleted. Check this out. What is dot?

Experiment with a and i, to see that they are similar, but not the same. You will observe that

line-number a.
· text . ..

appends after the given line, while

line-number i
· text . ..

inserts before it. Observe that if no line number is given, i inserts before line dot, while a appends after
line dot.

Moving text around: the "m" command

The move command m lets you move a group of lines from one place to another. If you want to put
the first three lines of the buffer at the end, enter

1,3w temp
$r temp
1,3d

Or a lot easier with the m command

- 10- 9051

Text Editing

1,3m$

The general case is

stan- line, end- line m after- this- line

Of course, the lines to be moved can be specified by context searches; if you have

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

you can reverse the two paragraphs by

/Second/, lend of second/m/First/- 1

Notice the - 1. the moved text goes after the line mentioned. Dot gets set to the last line moved.

The global commands "g" and "v"

Ed

The global command g executes one or more ed commands on all those lines in the buffer that match
some specified string. For example,

g/peling/p

prints all lines that contain peling.

g/peling/s/ /pelling/gp

makes the substitution everywhere on the line, then prints each corrected line. Compare this to

1, $s/peling/pelling/gp

which only prints the last line substituted. Another subtle difference is that the g command does not give
a? if peling is not found, but the s command does.

There may be several commands (including a, c, i, r, W, but not g); in that case, every line except the
last must end with a backslash \

g/xxx/.- Is/abc/def/B
.+ 2s/ghi/jkl/B
.- 2,.p

makes changes in the lines before and after each line that contains xxx, then prints all three lines.

The v command is the same as g, except that the commands are executed on every line that does not
match the string following v:

vi /d

deletes every line that does not contain a blank.

S peci al Characters

You may have noticed that things just don't work right when you used some characters like " *, $,
and others in context searches and the substitute command. The reason is rather complex, although the
cure is simple. Basically, ed treats these characters as special, with special meanings. For instance, z'n a
context search or the first strz'ng of the substz'tute command only, . means" any character," not a period, so

Ix.y/

means "a line with an x, any character, and a y," not just "a line with an x, a period, and a y." A com­
plete list of the special characters that can cause trouble is the following:

$ * \
Warn£ng: The backslash character \ is special to ed. For safety's sake, avoid it. If you have to use one of
the special characters in a substitute command, you can turn off its magic meaning temporarily by preced­
ing it with the backslash. Thus

9051 - 11-

Text Editing Ed

s/\\\.*/backslash dot star/

will change \.* into "backslash dot star".

Here is a hurried synopsis of the other special characters. First, the circumflex A signifies the begin­
ning of a line. Thus

/-string/

finds string only if it is at the beginning of a line: it will find

string

but not

the string ...

The dollar-sign $ is just the opposite of the circumflex; it means the end of a line:

/string$/

will only find an occurrence of string that is at the end of some line. This implies, of course, that

rstring$/

will find only a line that contains just string, and

r·$/

finds a line containing exactly one character.

The character " as we mentioned above, matches anything

/x.y/

matches any of

x+y
x- y

xy
x.y

This is useful in conjunction with *, which is a repetition character; a* is a shorthand for "any number of
a's," so .* matches any number of any things. This is used like this:

s/. * /stufI /

which changes an entire line, or

s/.*,j /

which deletes all characters in the line up to and including the last comma. (Since .* finds the longest
possible match, this goes up to the last comma.)

[is used with] to form" character classes"; for example,

/[0123456789] /

matches any single digit - anyone of the characters inside the braces will cause a match. This can be
abbreviated to [0- 0].

Finally, the & is another shorthand character - it is used only on the second part of a substitute com­
mand where it means' 'whatever was matched on the first part". It saves typing. Suppose the current
line is

Now is the time

and you wantto put parentheses around it. You could retype the line, but this is tedious, Or enter

sr/(/
s/$/)/

using your knowledge of A and $. But the easiest way uses the &:

s/.*/(&)/

This says "match the whole line, and replace it by itself surrounded by parentheses." The & can be used

-12- 9051

Text Editing Ed

several times in a line; consider using

s/.*/&? &!!/

to produce

Now is the time?,. Now is the time!!

You don't have to match the whole line, of course. if the buffer contains

the end of the world

you can type

/world/s/ / & is at hand/

to produce

the end of the world is at hand

Observe this expression carefully, because it illustrates how to take advantage of ed to save typing. The
string /world/ found the desired line; the shorthand / / found the same word in the line; and the & saves
you from typing it again.

The & is a special character only within the replacement text of a substitute command, and has no
special meaning elsewhere. You can turn off the special meaning of & by preceding it with a \:

s/ampersand/\&/

will convert the word "ampersand" into the literal symbol & in the current line.

Summary of Commands and Line Numbers

The general form of ed commands is the command name, perhaps preceded by one or two line
numbers, and, in the case of e, r, and w, followed by a file name. Only one command is allowed per
line, but a p command may follow any other command (except for e, r, wand q).

a: Append, add lines to the buffer (at line dot, unless a different line is specified). Appending continues
until. is typed on a new line. Dot is set to the last line appended.

c: Change the specified lines to the new text which follows. The new lines are terminated by a " as with
a. If no lines are specified, replace line dot. Dot is set to last line changed.

d: Delete the lines specified. If none are specified, delete line dot. Dot is set to the first undeleted line,
unless $ is deleted, in which case dot is set to $.

e: Edit new file. Any previous contents of the buffer are thrown away, so issue a w beforehand.

f: Print remembered filename. If a name follows f the remembered name will be set to it.

g: The command

g/--- /commands

will execute the commands on those lines that contain ---, which can be any context search expression.

i: Insert lines before specified line (or dot) until a . is typed on a new line. Dot is set to last line inserted.

m: Move lines specified to after the line named after m. Dot is set to the last line moved.

p: Print speCified lines. If none specified, print line dot. A single line number is equivalent to lz"ne­
number p. A single return prints .+ 1, the next line.

q: Quit ed. Erases all text in buffer if you enter it twice without first giving a w command.

r: Read a file into buffer (at end unless specified elsewhere.) Dot set to last line read.

s: The command

s/stringl/string2/

substitutes the characters string! into string2 in the specified lines. If no lines are specified, make the
substitution in line dot. Dot is set to last line in which a substitution took place, which means that if no
substitution took place, dot is not changed. s changes only the first occurrence of string! on a line; to
change all of them, type a g after the final slash.

9051 -13-

Text Editing

v: The command

v /--- /commands

executes commands on those lines that do not contain ---.

w: Write out buffer onto a file. Dot is not changed .

• -: Print value of dot. (= by itself prints the value of $.)

!: The line

! command-line

causes command-line to be executed as a ROS command.

Ed

j-----j: Context search. Search for next line which contains this string of characters. Print it. Dot is set
to the line where string was found. Search starts at .+ 1, wraps around from $ to 1, and continues to dot,
if necessary.

7 -----7: Context search in reverse direction. Start search at .- 1, scan to 1, wrap around to $.

-14- 9051

Advanced Ed

This document is based on a paper by Brian W. Kernighan of Bell Laboratories.

1. INTRODUCTION

This is a sequel to Ed - a Text Ed£tor. This assumes the reader is familiar with ROS
basics, and covers topics like special characters in search and substitute commands, line
addressing, global commands, and line moving and copying. Effective use of related file mani­
pulation tools, like grep(1) and sed(1), is discussed briefly.

This document gives you ideas of new editing techniques to try, but you will not learn
them unless you do.

2. SPECIAL CHARACTERS

The next few sections discuss shortcuts and labor-saving devices. Remember, try them
and your confidence in using them will increase.

The List command 'I'

ed provides two commands for printing the contents of the lines you're editing. Most peo­
ple are familiar with p, in combinations like

1,$p

to print all the lines you're editing, or

s/abc/def/p

to change 'abc' to 'def' on the current line. Less familiar is the I£st command I (the letter 'I'),
which gives slightly more information than p. In particular, I makes visible characters that are
normally invisible, such as tabs and backspaces. If you list a line that contains some of these, I
will print each tab as ?> and each backspace as -<. This makes it much easier to correct the sort
of typing mistake that inserts extra spaces adjacent to tabs, or inserts a backspace followed by a
space.

The I command also 'folds' long lines for printing - any line that exceeds 72 characters is
printed on multiple lines; each printed line except the last is terminated by a backslash \, so
you can tell it was folded. This is useful for printing long lines on short terminals.

Occasionally the I command will print in a line a string of numbers preceded by a
backslash, such as \07 or \16. These combinations are used to make visible characters that nor­
mally don't print, like form feed or vertical tab or bell. Each such combination is a single char­
acter. When you see such characters, be wary - they may have surprising meanings when
printed on some terminals. Often their presence means that your finger slipped while you were
typing; you almost never want them.

The Substitute Command's'

Most of the next few sections will be taken up with a discussion of the substitute com­
mand s. Since this is the command for changing the contents of individual lines, it probably
has the most complexity of any ed command, and the most potential for effective use.

As the simplest place to begin, recall the meaning of a trailing g after a substitute com­
mand. With

s/this/that/

and

9051 -1-

Text Editing Advanced Ed

s/this/that/g

the first one replaces the first 'this' on the line with 'that'. If there is more than one 'this' on
the line, the second form with the trailing g changes all of them.

Either form of the s command can be followed by p or I to 'print' or 'list' (as described in
the previous section) the contents of the line:

s/this/that/p
s/this/that/l
s/this/that/gp
s/this/that/gl

are all legal, and mean slightly different things. Make s~re you know what the differences are.

Of course, any s command can be preceded by one or two 'line numbers' to specify that
the substitution is to take place on a group of lines. Thus

1,$s/mispell/misspell/

changes the first occurrence of 'mispell' to 'misspell' on every line of the file. But

1,$s/mispell/misspell/g

changes every occurrence in every line (and this is more likely to be what you wanted in this
particular case).

You should also notice that if you add a p or I to the end of any of these substitute com­
mands, only the last line that got changed will be printed, not all the lines. We will talk later
about how to print all the lines that were modified.

The Undo Command 'u'

Occasionally you will make a substitution in a line, only to realize too late that it was a
ghastly mistake. The 'undo' command u lets you 'undo' the last substitution: the last line that
was substituted can be restored to its previous state by typing the command

u

The Metaeharaeter '.'

As you have undoubtedly noticed when you use ed, certain characters have unexpected
meanings when they occur in the left side of a substitute command, or in a search for a particu­
lar line. In the next several sections, we will talk about these special characters, which are
often called 'metacharacters'.

The first one is the period'.'. On the left side of a substitute command, or in a search
with' / ... /" '.' stands for any single character. Thus the search

/x.y/

finds any line where 'x' and 'y' occur separated by a single character, as in

x+y
x- y
x y

x.y

and so on. (We will use to stand for a space whenever we need to make it visible.)

Since '.' matches a single character, that gives you a way to deal with funny characters
printed by I. Suppose you have a line that, when printed with the I command, appears as

- 2- 9051

Text Editing Advanced Ed

th \07is

and you want to get rid of the \07 (which represents the bell character, by the way).

The most obvious solution is to try

s/\07 I I
but this will fail. (Try it.) The brute force solution, which most people would now take, is to
re-type the entire line. This is guaranteed, and is actually quite a reasonable tactic if the line in
question isn't too big, but for a very long line, re-typing is a bore. This is where the metachar­
acter '.' comes in handy. Since '\07' really represents a single character, if we say

s/th.is/thisl

the job is done. The '.' matches the mysterious character between the 'h' and the 'i', whatever
it is.

Bear in mind that since'.' matches any single character, the command

s/·I,1

converts the first character on a line into a ',', which very often is not what you intended.

As is true of many characters in ed, the '.' has several meanings, depending on its con­
text. This line shows all three:

.s/·I·1

The first'.' is a line number, the number of the line we are editing, which is called 'line dot'.
(We will discuss line dot more in Section 3.) The second'.' is a metacharacter that matches
any single character on that line. The third'.' is the only one that really is an honest literal
period. On the r£ght side of a substitution, '.' is not special. If you apply this command to the
line

Now is the time.

the result will be

.ow is the time.

which is probably not what you intended.

The Backslash '\'

The period'.' means' any character', so what if you really want a period? For example,
how do you convert the line

Now is the time.

into

Now is the time?

The backslash '\' does the job. A backslash turns off any special meaning that the next charac­
ter might have; in particular, '\.' converts the'.' from a 'match anything' into a period, so you
can use it to replace the period in

Now is the time.

like this:

s/\·I? I
The pair of characters '\.' is considered by ed to be a single real period.

The backslash can also be used when searching for lines that contain a special character.
Suppose you are looking for a line that contains

9051 - 3-

Text Editing Advanced Ed

.PP

The search

I·PPI
isn't adequate, for it will find a line like

THE APPLICATION OF ...

because the '.' matches the letter' A'. But if you say

I\.PPI

you will find only lines that contain' .PP'.

The backslash can also be used to turn off special meanings for characters other than'.'.
For example, consider finding a line that contains a backslash. The search

1\1
won't work, because the '\' isn't a literal '\', but instead means that the second 'j' no longer
delimits the search. But by preceding a backslash with another one, you can search for a literal
backs lash . Thus

I\V
does work. Similarly, you can search for a forward slash' j' with

1\11
The backslash turns off the meaning of the immediately following 'I' so that it doesn't ter­
minate the 1 ... 1 construction prematurely.

As an exercise, before reading further, find two substitute commands each of which will
convert the line

into the line

\x\y

Here are several solutions; verify that each works as advertised.

s/\\\·11
s/x··/xl
s/··y/yl

A couple of miscellaneous notes about backslashes and special characters. First, you can
use any character to delimit the pieces of an s command: there is nothing sacred about slashes.
(But you must use slashes for context searching.) For instance, in a line that contains a lot of
slashes already, like

Ilexec Ilsys.fort.go I I etc ...

you could use a colon as the delimiter - to delete all the slashes, type

s:/::g

Second, if # and @ are your character erase and line kill characters, you have to type \#
and \@; this is true whether you're talking to ed or any other program.

When you are adding text with a or i or e, backslash is not special, and you should only
put in one backslash for each one you really want.

-4- 9051

Text Editing Advanced Ed

The Dollar Sign '$'
The next metacharacter, the '$', stands for 'the end of the line'. As its most obvious use,

suppose you have the line

Now is the

and you wish to add the word 'time' to the end. Use the $ like this:

s/$/ time/

to get

Now is the time

Notice that a space is needed before 'time' in the substitute command, or you will get

Now is thetime

As another example, replace the second comma in the following line with a period
without altering the first:

Now is the time, for all good men,

The command needed is

s/,$/./

The $ sign here provides context to make specific which comma we mean. Without it, of
course, the s command would operate on the first comma to produce

Now is the time. for all good men,

As another example, to convert

Now is the time.

into

Now is the time?

as we did earlier, we can use

s/.$/? /

Like'.', the '$' has multiple meanings depending on context. In the line

$s/$/$/

the first '$' refers to the last line of the file, the second refers to the end of that line, and the
third is a literal dollar sign, to be added to that line.

The OrCUIDftex 'A'

The circumfiex (or hat or caret) ,A, stands for the beginning of the line. For example,
suppose you are looking for a line that begins with 'the'. If you simply say

/the/

you will in all likelihood find several lines that contain 'the' in the middle before arriving at the
one you want. But with

rthe/

you narrow the context, and thus arrive at the desired one more easily.

The other use of ,A, is of course to enable you to insert something at the beginning of a
line:

9051 - 5-

Text Editing Advanced Ed

places a space at the beginning of the current line.

Metacharacters can be combined. To search for a line that contains only the characters

.PP

you can use the command

r\.pp$/

The Star '*'
Suppose you have a line that looks like this:

text x y text

where text stands for lots of text, and there are some indeterminate number of spaces between
the x and the y. Suppose the job is to replace all the spaces between x and y by a single space.
The line is too long to retype, and there are too many spaces to count. What now?

This is where the metacharacter ,*, comes in handy. A character followed by a star stands
for as many consecutive occurrences of that character as possible. To refer to all the spaces at
once, say

six *y/x y/

The construction' *, means 'as many spaces as possible'. Thus 'x *y' means 'an x, as many
spaces as possible, then a y' .

The star can be used with any character, not just space. If the original example was
instead

tex t x - - - - - - - - y tex t

then all '- ' signs can be replaced by a single space with the command

s/x- *y/x y/

Finally, suppose that the line was

text x •..•...........•.. y text

Can you see what trap lies in wait for the unwary? If you blindly type

s/x.*y/x y/

what will happen? The answer, naturally, is that it depends. If there are no other x's or y's on
the line, then everything works, but it's blind luck, not good management. Remember that'.'
matches any single character? Then' .*' matches as many single characters as possible, and
unless you're careful, it can eat up a lot more of the line than you expected. If the line was,
for example, like this:

text x text x •••••••••••••••• y text y text

then saying

s/x.*y/x y/

will take everything from the first 'x' to the last 'y', which, in this example, is undoubtedly
more than you wanted.

The solution, of course, is to turn off the special meaning of '.' with '\. ':

s/x\.*y/x y/

Now everything works, for '\.*' means 'as many periods as possible'.

-6- 9051

Text Editing Advanced Ed

There are times when the pattern' .*' is exactly what you want. For example, to change

Now is the time for all good men

into

Now is the time.

use' .*' to eat up everything after the 'for':

sj for.* j.j

There are a couple of additional pitfalls associated with ,*, that you should be aware of.
Most notable is the fact that 'as many as possible' means zero or more. The fact that zero is a
legitimate possibility is sometimes rather surprising. For example, if our line contained

text xy text x y text

and we said

sjx *yjx yj

the first 'xy' matches this pattern, for it consists of an 'x', zero spaces, and a 'y'. The result is
that the SUbstitute acts on the first 'xy', and does not touch the later one that actually contains
some intervening spaces.

The way around this, if it matters, is to specify a pattern like

jx *yj

which says 'an x, a space, then as many more spaces as possible, then a y', in other words, one
or more spaces.

The other startling behavior of '*' is again related to the fact that zero is a legitimate
number of occurrences of something followed by a star. The command

sjx*jyjg

when applied to the line

abcdef

produces

yaybycydyeyfy

which is almost certainly not what was intended. The reason for this behavior is that zero is a
legal number of matches, and there are no x's at the beginning of the line (so that gets con­
verted into a 'y'), nor between the 'a' and the 'b' (so that gets converted into a 'y'), nor '"
and so on. Make sure you really want zero matches; if not, in this case write

sjxx*jyjg

'xx*' is one or more x's.

The Brackets '[]'

Suppose that you want to delete any numbers that appear at the beginning of all lines of a
fil~. You might first think of trying a series of commands like

1,$sjA1*jj
1,$sjA2*jj
1,$sj A3*jj

and so on, but this is clearly going to take forever if the numbers are at all long. Unless you
want to repeat the commands over and over until finally all numbers are gone, you must get all
the digits on one pass. This is the purpose of the brackets [and].

9051 -7-

Text Editing Advanced Ed

The construction

[0123456789]

matches any single digit - the whole thing is called a 'character class'. With a character class,
the job is easy. The pattern' [0123456789] *, matches zero or more digits (an entire number),
so

1,$s/A[0123456789] */ /

deletes all digits from the beginning of all lines.

Any characters can appear within a character class, and just to confuse the issue there are
essentially no special characters inside the brackets; even the backs lash doesn't have a special
meaning. To search for special characters, for example, you can say

Within [...], the' [' is not special. To get a ,] , into a character class, make it the first character.

It's a nuisance to have to spell out the digits, so you can abbreviate them as [0- 9]; simi­
larly, [a- z] stands for the lower case letters, and [A- Z] for upper case.

As a final frill on character classes, you can specify a class that means 'none of the follow­
ing characters'. This is done by beginning the class with a P':

stands for' any character except a digit'. Thus you might find the first line that doesn't begin
with a tab or space by a search like

Within a character class, the circumfiex has a special meaning only if it occurs at the
beginning. Just to convince yourself, verify that

finds a line that doesn't begin with a circumfiex.

The Anlpersand '8t

The ampersand' &' is used primarily to save typing. Suppose you have the line

Now is the time

and you want to make it

Now is the best time

Of course you can always say

s/the/the best/

but it seems silly to have to repeat the 'the'. The' &' is used to eliminate the repetition. On
the right side of a substitute, the ampersand means 'whatever was just matched', so you can say

s/the/& best/

and the '&' will stand for 'the'. Of course this isn't much of a saving if the thing matched is
just 'the', but if it is something truly long or awful, or if it is something like'. *' which matches
a lot of text, you can save some tedious typing. There is also much less chance of making a
typing error in the replacement text. For example, to parenthesize a line, regardless of its
length,

s/.*/(&)/

-8- 9051

Text Editing Advanced Ed

The ampersand can occur more than once on the right side:

s/the/& best and & worst/

makes

Now is the best and the worst time

and

s/.*/&? &!!/

converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand, naturally the backslash is used to turn off the special meaning:

s/ampersand/\&/

converts the word into the symbol. Notice that' &' is not special on the left side of a substi­
tute, only on the right side.

Sub;tituting Newlines

ed provides a facility for splitting a single line into two or more shorter lines by 'substitut­
ing in a newline'. As the simplest example, suppose a line has gotten unmanageably long
because of editing (or merely because it was unwisely typed). If it looks like

text xy text

you can break it between the 'x' and the 'y' like this:

s/Xy/x\
y/

This is actually a single command, although it is typed on two lines. Bearing in mind that '\'
turns off special meanings, it seems relatively intuitive that a '\' at the end of a line would
make the newline there no longer special.

You can in fact make a single line into several lines with this same mechanism. As a
large example, consider underlining the word 'very' in a long line by splitting 'very' onto a
separate line, and preceding it by the roff or nroff formatting command' .ul'.

text a very big text

The command

s/ very /\
.ul\
very\

/
converts the line into four shorter lines, preceding the word 'very' by the line' .ul', and elim­
inating the spaces around the 'very', all at the same time.

When a newline is substituted in, dot is left pointing at the last line created.

Joining Lines

Lines may also be joined together, but this is done with the j command instead of s.
Given the lines

Now is
the time

and supposing that dot is set to the first of them, then the command

9051 -9-

Text Editing Advanced Ed

j

joins them together. No blanks are added, which is why we carefully showed a blank at the
beginning of the second line.

All by itself, a j command joins line dot to line dot-+- 1, but any contiguous set of lines can
be joined. Just specify the starting and ending line numbers. For example,

1,$jp

joins all the lines into one big one and prints it. (More on line numbers in Section 3.)

Rearranging a Line with \(•.• \)

(This section should be skipped on first reading.) Recall that' &' is a shorthand that
stands for whatever was matched by the left side of an s command. In much the same way you
can capture separate pieces of what was matched; the only difference is that you have to specify
on the left side just what pieces you're interested in.

Suppose, for instance, that you have a file of lines that consist of names in the form

Smith, A. B.
Jones, c.

and so on, and you want the initials to precede the name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing commands, but it is tedious and error-prone. (It
is instructive to figure out how it is done, though.)

The alternative is to 'tag' the pieces of the pattern (in this case, the last name, and the
initials), and then rearrange the pieces. On the left side of a substitution, if part of the pattern
is enclosed between \(and \), whatever matched that part is remembered, and available for use
on the right side. On the right side, the symbol '\1' refers to whatever matched the first \(... \)
pair, '\2' to the second \(... \)' and so on.

The command

1,$s/A\([A,] *\)' *\(.*\) /\2 \1/

although hard to read, does the job. The first \(... \) matches the last name, which is any string
up to the comma; this is referred to on the right side with '\1'. The second \(... \) is whatever
follows the comma and any spaces, and is referred to as '\2'.

Of course, with any editing sequence this complicated, it's foolhardy to simply run it and
hope. The global commands g and v discussed in section 4 provide a way for you to print
exactly those lines which were affected by the substitute command, and thus verify that it did
what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is that of line addressing in eel, that is, how you
specify what lines are to be affected by editing commands. We have already used constructions
like

1,$s/x/y/

to specify a change on all lines. And most users are long since familiar with using a single new­
line (or return) to print the next line, and with

/thing/

to find a line that contains 'thing'. Less familiar, surprisingly enough, is the use of

-10- 9051

Text Editing Advanced Ed

?thing?

to scan backwards for the previous occurrence of 'thing'. This is especially handy when you
realize that the thing you want to operate on is back up the page from where you are currently
editing.

The slash and question mark are the only characters you can use to delimit a context
search, though you can use essentially any character in a substitute command.

Address Arithmetic

The next step is to combine the line numbers like ., '$', '/ ... j' and '? ... ?' with '+ ' and
Thus

$- 1

is a command to print the next to last line of the current file (that is, one line before line '$').
For example, to recall how far you got in a previous editing session,

$- 5,$p

prints the last six lines. (Be sure you understand why it's six, not five.) If there aren't six, of
course, you'll get an error message.

As another example,

.- 3,.+ 3p

prints from three lines before where you are now (at line dot) to three lines after, thus giving
you a bit of context. By the way, the '+ ' can be omitted:

.- 3,.3p

is absolutely identical in meaning.

Another area in which you can save typing effort in specifying lines is to use' • and '+ .
as line numbers by themselves.

by itself is a command to move back up one line in the file. In fact, you can string several
minus signs together to move back up that many lines:

moves up three lines, as does '- 3'. Thus

- 3,+ 3p

is also identical to the examples above.

Since '- ' is shorter than'.- 1', constructions like

- , .s/bad/good/

are useful. This changes 'bad' to 'good' on the previous line and on the current line.

'+' and '- ' can be used in combination with searches using' / ... j' and '? ... ?', and with
'$'. The search

/thing/- -

finds the line containing 'thing', and positions you two lines before it.

9051 -11-

Text Editing Advanced Ed

Repeated Searches
Suppose you ask for the search

/horrible thing/

and when the line is printed you discover that it isn't the horrible thing that you wanted, so it is
necessary to repeat the search again. You don't have to re-type the search, for the construction

//
is a shorthand for 'the previous thing that was searched for', whatever it was. This can be
repeated as many times as necessary. You can also go backwards:

??

searches for the same thing, but in the reverse direction.

Not only can you repeat the search, but you can use '/ /' as the left side of a substitute
command, to mean 'the most recent pattern'.

/horrible thing/
.... ed prints l£ne w£th 'horr£ble th£ng' ...

s//good/p

To go backwards and change a line, say

? ?s/ /good/

Of course, you can still use the '&' on the right hand side of a substitute to stand for whatever
got matched:

//s//& &/p

finds the next occurrence of whatever you searched for last, replaces it by two copies of itself,
then prints the line just to verify that it worked.

Default Line Numbers and the Value of Dot

One of the most effective ways to speed up your editing is always to know what lines will
be affected by a command if you don't specify the lines it is to act on, and on what line you will
be positioned (i.e., the value of dot) when a command finishes. If you can edit without speci­
fying unnecessary line numbers, you can save a lot of typing.

As the most obvious example, if you issue a search command like

/thing/

you are left pointing at the next line that contains 'thing'. Then no address is required with
commands like s to make a substitution on that line, or p to print it, or I to list it, or d to
delete it, or a to append text after it, or c to change it, or i to insert text before it.

What happens if there was no 'thing'? Then you are left right where you were - dot is
unchanged. This is also true if you were sitting on the only 'thing' when you issued the com­
mand. The same rules hold for searches that use '? ... ? '; the only difference is the direction in
which you search.

The delete command d leaves dot pointing at the line that followed the last deleted line.
When line '$' gets deleted, however, dot points at the new line '$'.

The line-changing commands a, c and i by default all affect the current line - if you give
no line number with them, a appends text after the current line, c changes the current line, and
i inserts text before the current line.

a, c, and i behave identically in one respect - when you stop appending, changing or
inserting, dot points at the last line entered. This is exactly what you want for typing and edit­
ing on the fly. For example, you can say

-12- 9051

Text Editing Advanced Ed

a
... text ...
... botch ...

s/botch/correct/
a
... more text ...

(minor error)

(fix botched line)

without specifying any line number for the substitute command or for the second append com­
mand. Or you can say

a
... text ...
... horrible botch ... (major error)

c (replace entire line)
... fixed up line

You should experiment to determine what happens if you add no lines with a, c or i.

The r command will read a file into the text being edited, either at the end if you give no
address, or after the specified line if you do. In either case, dot points at the last line read in.
Remember that you can even say Or to read a file in at the beginning of the text. (You can
also say Oa or 1i to start adding text at the beginning.)

The w command writes out the entire file. If you precede the command by one line
number, that line is written, while if you precede it by two line numbers, that range of lines is
written. The w command does not change dot: the current line remains the same, regardless of
what lines are written. This is true even if you say something like

r\.AB/,r\.AE/w abstract

which involves a context search.

Since the w command is so easy to use, you should save what you are editing regularly as
you go along just in case the system crashes, or in case you do something foolish, like clobber­
ing what you're editing.

The least intuitive behavior, in a sense, is that of the s command. The rule is simple -
you are left sitting on the last line that got changed. If there were no changes, then dot is
unchanged.

To illustrate, suppose that there are three lines in the buffer, and you are sitting on the
middle one:

xl
x2

x3

Then the command

- ,+ six/yip

prints the third line, which is the last one changed. But if the three lines had been

xl
y2
y3

and the same command had been issued while dot pointed at the second line, then the result
would be to change and print only the first line, and that is where dot would be set.

9051 -13-

Text Editing Advanced Ed

Semicolon ';'

Searches with' 1 .. ./' and '1 ... 1' start at the current line and move forward or backward
respectively until they either find the pattern or get back to the current line. Sometimes tbis is
not what is wanted. Suppose, for example, that the buffer contains lines like this:

ab

be

Starting at line 1, one would expect that the command

la/,/b/p

prints all the lines from the cab' to the 'be' inclusive. Actually this is not what happens. Both
searches (for 'a' and for 'b') start from the same point, and thus they both find the line that
contains 'ab'. The result is to print a single line. Worse, if there had been a line with a 'b' in
it before the 'ab' line, then the print command would be in error, since the second line number
would be less than the first, and it is illegal to try to print lines in reverse order.

This is because the comma separator for line numbers doesn't set dot as each address is
processed; each search starts from the same place. In ed, the semicolon ';' can be used just like
comma, with the single difference that use of a semicolon forces dot to be set at that point as
the line numbers are being evaluated. In effect, the semicolon 'moves' dot. Thus in our
example above, the command

/a/;/b/p

prints the range of lines from 'ab' to 'be', because after the 'a' is found, dot is set to that line,
and then 'b' is searched for, starting beyond that line.

This property is most often useful in a very simple situation. Suppose you want to find
the second occurrence of 'thing'. You could say

Ithingl

II
but this prints the first occurrence as well as the second, and is a nuisance when you know very
well that it is only the second one you're interested in. The solution is to say

Ithing/;1 I

This says to find the first occurrence of 'thing', set dot to that line, then find the second and
print only that.

Closely related is searching for the second previous occurrence of something, as in

? something? ;1?

Printing the third or fourth or ... in either direction is left as an exercise.

Finally, bear in mind that if you want to find the first occurrence of something in a file,
starting at an arbitrary place within the file, it is not sufficient to say

1;/thingl

because this fails if 'thing' occurs on line 1. But it is possible to say

- 14- 9051

Text Editing Advanced Ed

o;/thing/

(one of the few places where 0 is a legal line number), for this starts the search at line 1.

Interrupting the Editor

As a final note on what dot gets set 00, you should be aware that if you hit the interrupt
or delete or rubout or break key while ed is doing a command, things are put back oogether
again and your state is resoored as much as possible 00 what it was before the command began.
Naturally, some changes are irrevocable - if you are reading or writing a file or making substi­
tutions or deleting lines, these will be soopped in some clean but unpredictable state in the mid­
dle (which is why it is not usually wise to soop them). Dot mayor may not be changed.

Printing is more clear cut. Dot is not changed until the printing is done. Thus if you
print until you see an interesting line, then hit delete, you are not sitting on that line or even
near it. Dot is left where it was when the p command was started.

4. GLOBAL COMMANDS

The global commands g and v are used 00 perform one or more editing commands on all
lines that either contain (g) or don't contain (v) a specified pattern.

As the simplest example, the command

g/UNIX/p

prints all lines that contain the word 'UNIX'. The pattern that goes between the slashes can be
anything that could be used in a line search or in a substitute command; exactly the same rules
and limitations apply.

As another example, then,

prints all the formatting commands in a file (lines that begin with '.').

The v command is identical 00 g, except that it operates on those line that do not contain
an occurrence of the pattern. (Don't look too hard for mnemonic significance to the letter 'v'.)
So

prints all the lines that don't begin with'.' - the actual text lines.

The command that follows g or v can be anything:

deletes all lines that begin with '.', and

deletes all empty lines.

Probably the most useful command that can follow a global is the substitute command,
for this can be used 00 make a change and print each affected line for verification. For exam­
ple, we could change the word 'Unix' 00 'UNIX' everywhere, and verify that it really worked,
with

g/Unix/s/ /UNIX/gp

Notice that we used' / /' in the substitute command 00 mean 'the previous pattern', in this case,
'Unix'. The p command is done on every line that matches the pattern, not just those on
which a substitution took place.

The global command operates by making two passes over the file. On the first pass, all
lines that match the pattern are marked. On the second pass, each marked line in turn is

9051 -15-

Text Editing Advanced Ed

examined, dot is set to that line, and the command executed. This means that it is possible for
the command that follows a g or v to use addresses, set dot, and so on, quite freely.

prints the line that follows each '.PP' command (the signal for a new paragraph in some for­
matting packages). Remember that '+ ' means 'one line past dot'. And

g/topic/? A\.SH? 1

searches for each line that contains 'topic', scans backwards until it finds a line that begins' .SH'
(a section heading) and prints the line that follows that, thus showing the section headings
under which 'topic' is mentioned. Finally,

prints all the lines that lie between lines beginning with' .EQ' and '.EN' formatting commands.

The g and v commands can also be preceded by line numbers, in which case the lines
searched are only those in the range specified.

Multi-line Global Commands

It is possible to do more than one command under the control of a global command,
although the syntax: for expressing the operation is not especially natural or pleasant. As an
example, suppose the task is to change 'x' to 'y' and 'a' to 'b' on all lines that contain 'thing'.
Then

g/thing/s/x/y /\
s/a/b/

is sufficient. The '\' signals the g command that the set of commands continues on the next
line; it terminates on the first line that does not end with '\'. (As a minor blemish, you can't
use a substitute command to insert a newline within a g command.)

You should watch out for this problem: the command

g/x/s//y/\
s/a/b/

does not work as you expect. The remembered pattern is the last pattern that was actually exe­
cuted, so sometimes it will be 'x' (as expected), and sometimes it will be 'a' (not expected).
You must spell it out, like this:

g/x/s/x/y/\
s/a/b/

It is also possible to execute a, e and i commands under a global command; as with other
mUlti-line constructions, all that is needed is to add a '\' at the end of each line except the last.
Thus to add a' .nf' and' .sp' command before each' .EQ' line, type

g/A\.EQ/i\
.nf\
.sp

There is no need for a final line containing a '.' to terminate the i command, unless there are
further commands being done under the global. On the other hand, it does no harm to put it
in either.

-16- 9051

Text Editing Advanced Ed

5. CUT AND PASTE WITH ROS COMMANDS

Non-programmers often feel unconfident performing tasks like: changing the name of a
file, making a copy of a file somewhere else, moving a few lines from one place to another in a
file, inserting one file in the middle of another, splitting a file into pieces, and splicing two or
more files together.

There operations are easy if you are careful. The next several sections talk about manipu­
lating files with the file system. We will begin with the system commands for moving entire
files around, then discuss ed commands for operating on pieces of files.

Changing the Name of a File

You have a file named 'memo' and you want it to be called 'paper' instead. How is it
done?

The UNIXt command that renames files is called mv (for 'move'); it 'moves' the file from
one name to another, like this:

mv memo paper

That's all there is to it: mv from the old name to the new name.

mv oldname newname

Warning: if there is already a file around with the new name, its present contents will be
silently clobbered by the information from the other file. The one exception is that you can't
move a file to itself -

mv x x

is illegal.

Making a Copy of a File

Sometimes you want a copy of a file - an entirely fresh version. This might be because
you want to work on a file, and yet save a copy in case something gets fouled up, or just
because you're paranoid.

Do it with the ep command, which stands for 'copy'. Suppose you have a file called
'good' and you want to save a copy before you make some dramatic editing changes. Choose a
name - 'savegood' might be acceptable - then type

cp good savegood

This copies 'good' onto 'savegood', and you now have two identical copies of the file 'good'.
(If 'savegood' previously contained something, it gets overwritten.)

Now if you decide at some time that you want to get back to the original state of 'good',
you can say

mv save good good

(if you're not interested in 'savegood' any more), or

cp savegood good

if you still want to retain a safe copy.

In summary, mv just renames a file; ep makes a duplicate copy. Both of them clobber the
'target' file if it already exists, so you had better be sure that's what you want to do before you
do it.

tUNIX Is a Trademark of Bell Laboratories.

9051 -17-

Text Editing Advanced Ed

Removing a File

If you decide you are really done with a file forever, you can remove it with the rm com­
mand:

rm savegood

throws away (irrevocably) the file called 'savegood'.

Putting Two or More Files Together

The next step is the familiar one of collecting two or more files into one big one. This
will be needed, for example, when the author of a paper decides that several sections need to
be combined into one. The cleanest way to do it is with a command called cat which is short
for 'concatenate', which is exactly what we want to do.

Suppose the job is to combine the files 'filel' and 'file2' into a single file called 'bigfile'.
If you say

cat file

the contents of 'file' will get printed on your terminal. If you say

cat flIel file2

the contents of 'filel' and then the contents of 'file2' will both be printed on your terminal, in
that order. So cat combines the files, all right, but it's not much help to print them on the ter ...
minal - we want them in 'bigfile'.

Fortunately, there is a way. You can tell the system that instead of printing on your ter­
minal, you want the same information put in a file. The way to do it is to add to the command
line the character> and the name of the file where you want the output to go. Then you can
say

cat filel file2 > bigfile

and the job is done. (As with cp and mY, you're putting something into 'bigftle', and anything
that was already there is destroyed.)

This ability to 'capture' the output of a program is one of the most useful aspects of the
file system. Fortunately it's not limited to the cat program - you can use it with any program
that prints on your terminal. We'll see some more uses for it in a moment.

Naturally, you can combine several files, not just two:

cat filel file2 file3 ... > bigfile

collects a whole bunch.

Question: is there any difference between

cp good save good

and

cat good >savegood

Answer: for most purposes, no. You might reasonably ask why there are two programs in that
case, since cat is obviously all you need. The answer is that cp will do some other things as
well, which you can investigate for yourself by reading the manual. For now we'll stick to sim­
ple usages.

-18- 9051

Text Editing Advanced Ed

Adding Something to the End of a File

Sometimes you want to add one file to the end of another. We have enough building
blocks now that you can do it; in fact before reading further it would be valuable if you figured
out how. To be specific, how would you use cp, mv and/or cat to add the file 'good1' to the
end of the file 'good'?

You could try

cat good good1 >temp
mv temp good

which is probably most direct. You should also understand why

cat good good1 >good

doesn't work. (Don't practice with a good 'good'!)

The easy way is to use a variant of >, called > >. In fact, > > is identical to > except
that instead of clobbering the old file, it simply tacks stuff on at the end. Thus you could say

cat good1 > > good

and 'good1' is added to the end of 'good'. (And if 'good' didn't exist, this makes a copy of
'good1' called 'good'.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces of files - individual lines or groups of lines.
This is another area where new users seem unsure of themselves.

Filenames

The first step is to ensure that you know the ed commands for reading and writing files.
Of course you can't go very far without knowing r and w. Equally useful, but less well known,
is the 'edit' command e. Within ed, the command

e newfile

says 'I want to edit a new file called newfile, without leaving the editor.' The e command dis­
cards whatever you're currently working on and starts over on newfile. It's exactly the same as
if you had quit with the q command, then re-entered ed with a new file name, except that if
you have a pattern remembered, then a command like / / will still work.

If you enter ed with the command

ed file

ed remembers the name of the file, and any subsequent e, r or w commands that don't contain
a filename will refer to this remembered file. Thus

ed filel
... (editing)

w (writes back in file 1)
e file2 (edit new file, without leaving editor)
... (editing on file2) ...

w (writes back on file2)

(and so on) does a series of edits on various files without ever leaving ed and without typing
the name of any file more than once.

You can find out the remembered file name at any time with the f command; just type f
without a file name. You can also change the name of the remembered file name with f; a use­
ful sequence is

9051 - 19-

Text Editing

ed precious
f junk
... (editing)

Advanced Ed

which gets a copy of a precious file, then uses f to guarantee that a careless w command won't
clobber the original.

Inserting One File into Another

Suppose you have a file called 'memo', and you want the file called 'table' to be inserted
just after the reference to Table 1. That is, in 'memo' somewhere is a line that says

Table 1 shows that ...

and the data contained in 'table' has to go there, probably so it will be formatted properly by
nroff or troff. Now what?

This one is easy. Edit 'memo', find 'Table 1', and add the file 'table' right there:

ed memo
/Table 1/
Table 1 shows that ... [response from ed}
.r table

The critical line is the last one. As we said earlier, the r command reads a file; here you asked
for it to be read in right after line dot. An r command without any address adds lines at the
end, so it is the same as $r.

Writing out Part of a File

The other side of the coin is writing out part of the document you're editing. For exam­
ple, maybe you want to split out into a separate file that table from the previous example, so it
can be formatted and tested separately. Suppose that in the file being edited we have

.TS
... [lots of stuff]

.TE

which is the way a table is set up for the tbl program. To isolate the table in a separate file
called 'table', first find the start of the table (the' . TS' line), then write out the interesting part:

/A\.TS/
• TS fed prints the line it found}
.,/A\. TE/w table

and the job is done. If you are confident, you can do it all at once with

/A\.TS/;r\.TE/w table

The point is that the w command can write out a group of lines, instead of the whole file.
In fact, you can write out a single line if you like; just give one line number instead of two.
For example, if you have just typed a horribly complicated line and you know that it (or some­
thing like it) is going to be needed later, then save it - don't re-type it. In the editor, say

- 20- 9051

Text Editing

a
... lots of stuff .. .
... horrible line .. .

• w temp
a
••• more stuff •••

• r temp
a
••• more stuff •••

This last example is worth studying, to be sure you appreciate what's going on.

Moving Lines Around

Advanced Ed

Suppose you want to move a paragraph from its present position in a paper to the end.
How would you do it? As a concrete example, suppose each paragraph in the paper begins with
the formatting command' .PP'. Think about it and write down the details before reading on.

The brute force way (not necessarily bad) is to write the paragraph onto a temporary file,
delete it from its current position, then read in the temporary file at the end. Assuming that
you are sitting on the '.PP' command that begins the paragraph, this is the sequence of com­
mands:

.,r\.PPj- w temp

.,j j- d
$r temp

That is, from where you are now ('.') until one line before the next '.PP' ('r\.PPj- ') write
onto 'temp'. Then delete the same lines. Finally, read 'temp' at the end.

As we said, that's the brute force way. The easier way (often) is to use the move com­
mand m that ed provides - it lets you do the whole set of operations at one crack, without any
temporary file.

The m command is like many other ed commands in that it takes up to two line numbers
in front that tell what lines are to be affected. It is also followed by a line number that tells
where the lines are to go. Thus

line1, line2 m line3

says to move all the lines between 'line1' and 'line2' after 'line3'. Naturally, any of 'line1' etc.,
can be patterns between slashes, $ signs, or other ways to specify lines.

Suppose again that you're sitting at the first line of the paragraph. Then you can say

That's all.

As another example of a frequent operation, you can reverse the order of two adjacent
lines by moving the first one to after the second. Suppose that you are positioned at the first.
Then

m+

does it. It says to move line dot to after one line after line dot. If you are positioned on the
second line,

m- -

does the interchange.

9051 -21-

Text Editing Advanced Ed

As you can see, the m command is more succinct and direct than writing, deleting and
re-reading. When is brute force better anyway? This is a matter of personal taste - do what
you have most confidence in. The main difficulty with the m command is that if you use pat­
terns to specify both the lines you are moving and the target, you have to take care that you
specify them properly, or you may well not move the lines you thought you did. The result of
a botched m command can be a ghastly mess. Doing the job a step at a time makes it easier for
you to verify at each step that you accomplished what you wanted to. It's also a good idea to
issue a w command before doing anything complicated; then if you goof, it's easy to back up to
where you were.

Marks

ed provides a facility for marking a line with a particular name so you can later reference
it by name regardless of its actual line number. This can be handy for moving lines, and for
keeping track of them as they move. The mark command is k; the command

kx

marks the current line with the name 'x'. If a line number precedes the k, that line is marked.
(The mark name must be a single lower case letter.) Now you can refer to the marked line with
the address

'x

Marks are most useful for moving things around. Find the first line of the block to be
moved, and mark it with 'a. Then find the last line and mark it with 'b. Now position yourself
at the place where the stuff is to go and say

'a,'bm.

Bear in mind that only one line can have a particular mark name associated with it at any
given time.

Copying Lines

We mentioned earlier the idea of saving a line that was hard to type or used often, so as
to cut down on typing time. Of course this could be more than one line; then the saving is
presumably even greater.

ed provides another command, called t (for 'transfer') for making a copy of a group of
one or more lines at any point. This is often easier than writing and reading.

The t command is identical to the m command, except that instead of moving lines it
simply duplicates them at the place you named. Thus

1,t

duplicates the entire contents that you are editing. A more common use for t is for creating a
series of lines that differ only slightly. For example, you can say

a

t.

s/x/y/
t.
s/y/z/

and so on.

-22-

x (long line)

(make a copy)
(change it a bit)
(make third copy)
(change it a bit)

9051

Text Editing Advanced Ed

The Temporary Escape '!'

Sometimes it is convenient to be able to temporarily escape from the editor to do some
other UNIX command, perhaps one of the file copy or move commands discussed in section 5,
without leaving the editor. The 'escape' command! provides a way to do this.

If you say

!any- system- command

your current editing state is suspended, and the UNIX command you asked for is executed.
When the command finishes, ed will signal you by printing another!; at that point you can
resume editing.

You can really do any UNIX command, including another ed (This is quite common, in
fact.) In this case, you can even do another!.

7. SUPPORTING TOOLS

There are several tools and techniques that go along with the editor, all of which are rela­
tively easy once you know how ed works, because they are all based on the editor. In this sec­
tion we will give some fairly cursory examples of these tools, more to indicate their existence
than to provide a complete tutorial. More information on each can be found in the ROS Refer­
ence Manual (9010).

Grep

Sometimes you want to find all occurrences of some word or pattern in a set of files, to
edit them or perhaps just to verify their presence or absence. It may be possible to edit each
file separately and look for the pattern of interest, but if there are many files this can get very
tedious, and if the files are really big, it may be impossible because of limits in ed

The program grep was invented to get around these limitations. The search patterns that
we have described in the paper are often called 'regular expressions', and 'grep' stands for

g/re/p

That describes exactly what gl"ep does - it prints every line in a set of files that contains a par­
ticular pattern. Thus

grep 'thing' file1 file2 file3 ...

finds 'thing' wherever it occurs in any of the files 'file 1', 'file2', etc. grep also indicates the file
in which the line was found, so you can later edit it if you like.

The pattern represented by 'thing' can be any pattern you can use in the editor, since grep
and ed use exactly the same mechanism for pattern searching. It is wisest always to enclose the
pattern in the single quotes ' ... ' if it contains any non-alphabetic characters, since many such
characters also mean something special to the system command interpreter (the 'shell'). If you
don't quote them, the command interpreter will try to interpret them before grep gets a chance.

There is also a way to find lines that don 't contain a pattern:

grep - v 'thing' file1 file2

finds all lines that don't contains 'thing'. The - v must occur in the position shown. Given
grep and grep - v, it is possible to do things like selecting all lines that contain some combina­
tion of patterns. For example, to get allUnes that contain 'x' but not 'y':

grep x file ... I grep - v y

(The notation I is a 'pipe', which causes the output of the first command to be used as input to

the second command; see [2].)

9051 -23-

Text Editing Advanced Ed

Editing Scripts

If a fairly complicated set of editing operations is to be done on a whole set of files, the
easiest thing to do is to make up a 'script', i.e., a file that contains the operations you want to
perform, then apply this script to each file in turn.

For example, suppose you want to change every 'Unix' to 'UNIX' and every 'Gcos' to
'GCOS' in a large number of files. Then put into the file 'script' the lines

g/Unix/s/ /UNIX/g
g/Gcos/s/ /GCOS/g
w
q

Now you can say

ed file I < script
ed file2 <script

This causes ed to take its commands from the prepared script. Notice that the whole job has to
be planned in advance.

And of course by using the system command interpreter, you can cycle through a set of
files automatically, with varying degrees of ease.

Sed

sed ('stream editor') is a version of the editor with restricted capabilities but which is
capable of processing unlimited amounts of input. Basically sed copies its input to its output,
applying one or more editing commands to each line of input.

As an example, suppose that we want to do the 'Unix' to 'UNIX' part of the example
given above, but without rewriting the files. Then the command

sed 's/Unix/UNIX/g' filel file2 ...

applies the command 's/Unix/UNIX/g' to all lines from 'file 1 " 'file2', etc., and copies all lines
to the output. The advantage of using sed in such a case is that it can be used with input too
large for ed to handle. All the output can be collected in one place, either in a file or perhaps
piped into another program.

If the editing transformation is so complicated that more than one editing command is
needed, commands can be supplied from a file, or on the command line, with a slightly more
complex syntax. To take commands from a file, for example,

sed - f cmdfile input- files ...

sed has further capabilities, including conditional testing and branching, which we cannot
go into here.

Acknowledgement

Thanks to Ted Dolatta.

-24- 9051

Ex Reference Manual

This document is based on a paper by William Joy and Mark Horton of the University of
California, Berkeley. For EX version 3.5/2.13.

1. Starting ex

Each instance of the editor has a set of options, which can be set to tailor it to your liking.
The command edit invokes a version of ex designed for more casual or beginning users by
changing the default settings of some of these options. To simplify the description which fol­
lows we assume the default settings of the options.

When invoked, ex determines the terminal type from the TERM variable in the environ­
ment. It there is a TERM CAP variable in the environment, and the type of the terminal
described there matches the TERM variable, then that description is used. Also if the TERMCAP

variable contains a pathname (beginning with a /) then the editor will seek the description of
the terminal in that file (rather than the default /etc/termcap.) If there is a variable EXINIT in
the environment, then the editor will execute the commands in that variable, otherwise if there
is a file. exrc in your HOME directory ex reads commands from that file, simulating a source com­
mand. Option setting commands placed in EXINIT or .exrc will be executed before each editor
session.

A command to enter ex has the following prototype:t

ex [-] [- v] [- t tag] [- r] [- I] [- wn] [- x] [- R] [+ command] name ...

The most common case edits a single file with no options, Le.:

ex name

The - command line option option suppresses all interactive-user feedback and is useful in
processing editor scripts in command files. The - v option is equivalent to using vi rather than
ex. The - t option is equivalent to an initial tag command, editing the file containing the tag
and positioning the editor at its definition. The - r option is used in recovering after an editor
or system crash, retrieving the last saved version of the named file or, if no file is specified,
typing a list of saved files. The - I option sets up for editing LISP, setting the showmatch and
lisp options. The - w option sets the default window size to n, and is useful on dialups to start
in small windows. The - x option causes ex to prompt for a key, which is used to encrypt and
decrypt the contents of the file, which should already be encrypted using the same key, see
crypfi..1). The - R option sets the readonlyoption at the start. + Name arguments indicate files
to be edited. An argument of the form + command indicates that the editor should begin by
executing the specified command. If command is omitted, then it defaults to "$", positioning
the editor at the last line of the first file initially. Other useful commands here are scanning
patterns of the form" /pat" or line numbers, e.g. "+ 100" starting at line 100.

2. File manipulation

2.1. Current file

Ex is normally editing the contents of a single file, whose name is recorded in the current
file name. Ex performs all editing actions in a buffer (actually a temporary file) into which the
text of the file is initially read. Changes made to the buffer have no effect on the file being
edited unless and until the buffer contents are written out to the file with a write command.

The financial support of an IBM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-A03 and MCS78-07291 Is gratefully acknowledged.
t Brackets T 'I' surround optional parameters here.
t Not available In all v2 editors due to memory constraints.

9051 -1-

Text Editing Ex Reference

After the buffer contents are written, the previous contents of the written file are no longer
accessible. When a file is edited, its name becomes the current file name, and its contents are
read into the buffer.

The current file is almost always considered to be ed£ted. This means that the contents of
the buffer are logically connected with the current file name, so that writing the current buffer
contents onto that file, even if it exists, is a reasonable action. If the current file is not ed£ted
then ex will not normally write on it if it already exists.*

2.2. Alternate file

Each time a new value is given to the current file name, the previous current file name is
saved as the alternate file name. Similarly if a file is mentioned but does not become the
current file, it is saved as the alternate file name.

2.3. Filen8.lIle expansion

Filenames within the editor may be specified using the normal shell expansion conven­
tions. In addition, the character '%' in filenames is replaced by the current file name and the
character '#' by the alternate file name.t

2.4. Multiple files and n8.lIled buffers

If more than one file is given on the command line, then the first file is edited as
described above. The remaining arguments are placed with the first file in the argument l£St.
The current argument list may be displayed with the args command. The next file in the argu­
ment list may be edited with the next command. The argument list may also be respecified by
specifying a list of names to the next command. These names are expanded, the resulting list
of names becomes the new argument list, and ex edits the first file on the list.

For saving blocks of text while editing, and especially when editing more than one file, ex
has a group of named buffers. These are similar to the normal buffer, except that only a lim­
ited number of operations are available on them. The buffers have names a through z.+

2.5. Read only

It is possible to use ex in read only mode to look at files that you have no intention of
modifying. This mode protects you from accidently overwriting the file. Read only mode is on
when the readonlyoption is set. It can be turned on with the - R command line option, by the
vz'ew command line invocation, or by setting the readonly option. It can be cleared by setting
noreadonly. It is possible to write, even while in read only mode, by indicating that you really
know what you are doing. You can write to a different file, or can use the! form of write, even
while in read only mode.

3. Exceptional Conditions

3.1. Errors and interrupts

When errors occur ex (optionally) rings the terminal bell and, in any case, prints an error
diagnostic. If the primary input is from a file, editor processing will terminate. If an interrupt
signal is received, ex prints "Interrupt" and returns to its command level. If the primary input
is a file, then ex will exit when this occurs.

* The file command will say "[Not edited!" if the current file is not considered edited.
t This makes It easy to deal alternately with two files and eliminates the need for retyping the name supplied
on an edit command after a No write since last change diagnostic is received.
t It Is also possible to refer to A through Z; the upper case buffers are the same as the lower but commands
append to named buffers rather than replacing if upper case names are used.

-2- 9051

Text Editing Ex Reference

3.2. Recovering from hangups and crashes

If a hangup signal is received and the buffer has been modified since it was last written
out, or if the system crashes, either the editor (in the first case) or the system (after it reboots
in the second) will attempt to preserve the buffer. The next time you log in you should be able
to recover the work you were doing, losing at most a few lines of changes from the last point
before the hangup or editor crash. To recover a file you can use the - r option. If you were
editing the file resume, then you should change to the directory where you were when the crash
occurred, giving the command

ex - r resume

After checking that the retrieved file is indeed ok, you can write it over the previous contents of
that file.

You will normally get mail from the system telling you when a file has been saved after a
crash. The command

ex - r

will print a list of the files which have been saved for you. (In the case of a hangup, the file
will not appear in the list, although it can be recovered.)

4. Editing modes

Ex has five distinct modes. The primary mode is command mode. Commands are entered
in command mode when a ':' prompt is present, and are executed each time a complete line is
sent. In text input mode ex gathers input lines and places them in the file. The append, £nsert,
and change commands use text input mode. No prompt is printed when you are in text input
mode. This mode is left by typing a '.' alone at the beginning of a line, and command mode
resumes.

The last three modes are open and visual modes, entered by the commands of the same
name, and, within open and visual modes text insertion mode. Open and visual modes allow
local editing operations to be performed on the text in the file. The open command displays
one line at a time on any terminal while visual works on CRT terminals with random positioning
cursors, using the screen as a (single) window for file editing changes. These modes are
described (only) in An Introduction to Display Editing with Vi.

5. Command structure

Most command names are English words, and initial prefixes of the words are acceptable
abbreviations. The ambiguity of abbreviations is resolved in favor of the more commonly used
commands.*

5.1. Command parameters

Most commands accept prefix addresses specifying the lines in the file upon which they
are to have effect. The forms of these addresses will be discussed below. A number of com­
mands also may take a trailing count specifying the number of lines to be involved in the com­
mand.t Thus the command" lOp" will print the tenth line in the buffer while "delete 5" will
delete five lines from the buffer, starting with the current line.

Some commands take other information or parameters, this information always being
given after the command name.t

* As an example, the command substitute can be abbreviated 's' while the shortest available abbreviation for
the set command is ·se'.
t Counts are rounded down if necessary.
t Examples would be option names in a set command l.e. "set number", a fHe name in an edit command, a
regular expression in a substitute command, or a target address for a copy command, l.e. "1,5 copy 25".

9051 -3-

Text Editing Ex Reference

5.2. Command variants

A number of commands have two distinct variants. The variant form of the command is
invoked by placing an ',' immediately after the command name. Some of the default variants
may be controlled by options; in this case, the'" serves to toggle the default.

5.3. Flags after commana;

The characters '#', 'p' and 'I' may be placed after many commands.** In this case, the
command abbreviated by these characters is executed after the command completes. Since ex
normally prints the new current line after each change, 'p' is rarely necessary. Any number of
'+ ' or '- ' characters may also be given with these fiags. If they appear, the specified offset is
applied to the current line value before the printing command is executed.

5.4. Comments

It is possible to give editor commands which are ignored. This is useful when making
complex editor scripts for which comments are desired. The comment character is the double
quote:". Any command line beginning with" is ignored. Comments beginning with" may also
be placed at the ends of commands, except in cases where they could be confused as part of
text (shell escapes and the substitute and map commands).

5.5. Multiple oommana; per line

More than one command may be placed on a line by separating each pair of commands by
a ,t character. However the global commands, comments, and the shell escape ',' must be the
last command on a line, as they are not terminated by a ,t.

5.6. Reporting large changes

Most commands which change the contents of the editor buffer give feedback if the scope
of the change exceeds a threshold given by the report option. This feedback helps to detect
undesirably large changes so that they may be quickly and easily reversed with an undo. After
commands with more global effect such as global or visual, you will be informed if the net
change in the number of lines in the buffer during this command exceeds this threshold.

6. Command addressing

6.1. Addressing primitives

n

$

%
+n-n

/pat/? part

The current line. Most commands leave the current line as the last line
which they affect. The default address for most commands is the current
line, thus'.' is rarely used alone as an address.

The nth line in the editor's buffer, lines being numbered sequentially
from 1.

The last line in the buffer.

An abbreviation for "1,$", the entire buffer.

An offset relative to the current buffer line.t

Scan forward and backward respectively for a line containing pat, a regu­
lar expression (as defined below). The scans normally wrap around the
end of the buffer. If all that is desired is to print the next line containing
pat, then the trailing / or ? may be omitted. If pat is omitted or expli­
citly empty, then the last regular expression specified is located.t

** A 'p' or 'I' must be preceded by a blank or tab except In the single special case 'dp'.
t The forms'.+ 3' '+ 3' and '+ + +' are all equivalent; If the current Hne Is line 100 they all address line
103.

f The forms V and \1 scan usIng the last regular expressIon used In a scan; after a substitute / / and!!

-4- 9051

Text Editing Ex Reference

Before each non-relative motion of the current line '.', the previous
current line is marked with a tag, subsequently referred to as ,n,. This
makes it easy to refer or return to this previous context. Marks may also
be established by the mark command, using single lower case letters x
and the marked lines referred to as ' ~x' .

6.2. Combining addressing primitives

Addresses to commands consist of a series of addressing primitives, separated by ',' or ';'.
Such address lists are evaluated leftrto-right. When addresses are separated by ';' the current
line'.' is set to the value of the previous addressing expression before the next address is inter­
preted. If more addresses are given than the command requires, then all but the last one or
two are ignored. If the command takes two addresses, the first addressed line must precede the
second in the buffer.t

7. Command descriptions

The following form is a prototype for all ex commands:

address command! parameters count flags

All parts are optional; the degenerate case is the empty command which prints the next line in
the file. For sanity with use from within visual mode, ex ignores a ":" preceding any com­
mand.

In the following command descriptions, the default addresses are shown in parentheses,
which are not, however, part of the command.

abbreviate word rhs abbr: ab

Add the named abbreviation to the current list. When in input mode in visual, if word is
typed as a complete word, it will be changed to rhs.

(•) append
text

abbr: a

a!
text

args

Reads the input text and places it after the specified line. After the command, '.­
addresses the last line input or the specified line if no lines were input. If address '0' is
given, text is placed at the beginning of the buffer.

The variant fiag to append toggles the setting for the autoindent option during the input of
text.

The members of the argument list are printed, with the current argument delimited by '['
and ']'.

would scan usIng the substitute's regular expression.
t Null address specincatlons are permitted in a Ust of addresses, the default in this case is the curre nt Hne '.';
thus' ,100' is equivalent to .• ,100'. It is an error to give a prenx address to a command which expects none.

9051 -5-

Text Editing Ex Reference

(• , •) change count
text

abbr: c

c!
text

Replaces the specified lines with the input text. The current line becomes the last line
input; if no lines were input it is left as for a delete.

The variant toggles autoindent during the change.

(• , •) copy addr flags abbr: co

A copy of the specified lines is placed after addr, which may be '0'. The current line ' ,
addresses the last line of the copy. The command t is a synonym for copy.

(• , •) delete buffer count flags abbr: d

Removes the specified lines from the buffer. The line after the last line deleted becomes
the current line; if the lines deleted were originally at the end, the new last line becomes
the current line. If a named buffer is specified by giving a letter, then the specified lines
are saved in that buffer, or appended to it if an upper case letter is used.

edit file
ex file

abbr: e

Used to begin an editing session on a new file. The editor first checks to see if the buffer
has been modified since the last write command was issued. If it has been, a warning is
issued and the command is aborted. The command otherwise deletes the entire contents
of the editor buffer, makes the named file the current file and prints the new filename.
After insuring that this file is sensiblet the editor reads the file into its buffer.

If the read of the file completes without error, the number of lines and characters read is
typed. If there were any non-ASCII characters in the file they are stripped of their non­
ASCII high bits, and any null characters in the file are discarded. If none of these errors
occurred, the file is considered edited. If the last line of the input file is missing the trail­
ing newline character, it will be supplied and a complaint will be issued. This command
leaves the current line • .' at the last line read.+

e! file

The variant form suppresses the complaint about modifications having been made and not
written from the editor buffer, thus discarding all changes which have been made before
editing the new file.

e +n file

file

Causes the editor to begin at line n rather than at the last line; n may also be an editor
command containing no spaces, e.g.: "+ /pat".

abbr:f

t I.e., that It Is not a binary file such as a directory, a block or character special fHe other than /devjtty, a
terminal, or a binary or executable file (as Indicated by the first word).
* If executed from wIthin open or visual, the current line Is InItially the first line of the file.

-6- 9051

Text Editing Ex Reference

Prints the current file name, whether it has been '[Modified]' since the last write com­
mand, whether it is read only, the current line, the number of lines in the buffer, and the
percentage of the way through the buffer of the current line.*

file file

The current file name is changed to file which is considered' [Not edited] '.

(1 , $) global /pat/ cmds abbr: g

First marks each line among those specified which matches the given regular expression.
Then the given command list is executed with': initially set to each marked line.

The command list consists of the remaining commands on the current input line and may
continue to multiple lines by ending all but the last such line with a '\'. If cmds (and pos­
sibly the trailing / delimiter) is omitted, each line matching pat is printed. Append, insert,
and change commands and associated input are permitted; the '.' terminating input may
be omitted if it would be on the last line of the command list. Open and visual commands
are permitted in the command list and take input from the terminal.

The global command itself may not appear in cmds. The undo command is also not per­
mitted there, as undo instead can be used to reverse the entire global command. The
options autoprint and autoindent are inhibited during a global, (and possibly the trailing /
delimiter) and the value of the report option is temporarily infinite, in deference to a
report for the entire global. Finally, the context mark "~ is set to the value of '.' before
the global command begins and is not changed during a global command, except perhaps
by an open or visual within the global.

g! /pat/ cmds abbr: v

The variant form of global runs cmds at each line not matching pat .

•) insert
text

abbr: i

. ,
1.

text

Places the given text before the specified line. The current line is left at the last line
input; if there were none input it is left at the line before the addressed line. This com­
mand differs from append only in the placement of text .

The variant toggles autoindent during the insert.

(. , .+ 1) join count flags abbr: j

Places the text from a specified range of lines together on one line. White space is
adjusted at each junction to provide at least one blank character, two if there was a '.' at
the end of the line, or none if the first following character is a ')'. If there is already
white space at the end of the line, then the white space at the start of the next line will be
discarded.

* In the rare case that the current HIe Is • [Not edited]' this Is noted also; In this case you have to use the
form w! to write to the HIe, since the editor is not sure that a write wIll not destroy a HIe unrelated to the
current contents of the buffer.

9051 -7-

Text Editing Ex Reference

.,
J.

The variant causes a simpler join with no white space processing; the characters in the
lines are simply concatenated.

(.) k x

The k command is a synonym for mark. It does not require a blank or tab before the fol­
lowing letter.

(• , .) list count flags

Prints the specified lines in a more unambiguous way: tabs are printed as 'AI' and the end
of each line is marked with a trailing '$'. The current line is left at the last line printed.

map Ihs rhs

The map command is used to define macros for use in vi8ual mode. Lhs should be a sin­
gle character, or the sequence "#n", for n a digit, referring to function key n. When this
character or function key is typed in visual mode, it will be as though the corresponding
rhs had been typed. On terminals without function keys, you can type "#n". See section
6.9 of the "Introduction to Display Editing with Vi" for more details.

(.) mark x

Gives the specified line mark x, a single lower case letter. The x must be preceded by a
blank or a tab. The addressing form' x' then addresses this line. The current line is not
affected by this command.

(• , •) move addr abbr: m

next

n!

The move command repositions the specified lines to be after addr. The first of the
moved lines becomes the current line.

abbr: n

The next file from the command line argument list is edited.

The variant suppresses warnings about the modifications to the buffer not having been
written out, discarding (irretrievably) any changes which may have been made.

n filelist
n + command filelist

The specified file/£st is expanded and the resulting list replaces the current argument list;
the first file in the new list is then edited. If command is given (it must contain no
spaces), then it is executed after editing the first such file.

(• , .) number count fla Us abbr: '# or nu

Prints each specified line preceded by its buffer line number. The current line is left at
the last line printed.

(•) open flags abbr: 0

(•) open I pat I flags

Enters intraline editing open mode at each addressed line. If pat is given, then the cursor
will be placed initially at the beginning of the string matched by the pattern. To exit this
mode use Q. See An Introduction to Display Editing with Vi for more details.

+
* Not available In all v2 editors due to memory constraints.

-8- 9051

Text Editing Ex Reference

preserve

The current editor buffer is saved as though the system had just crashed. This command
is for use only in emergencies when a write command has resulted in an error and you
don't know how to save your work. After a preserve you should seek help.

(. , •) print count abbr: p or P

Prints the specified lines with non-printing characters printed as control characters 'AX ';

delete (octal 177) is represented as 'A? '. The current line is left at the last line printed.

(.) put buffer abbr: pu

quit

q!

Puts back previously deleted or yanked lines. Normally used with delete to effect move­
ment of lines, or with yank to effect duplication of lines. If no buffer is specified, then the
last deleted or yanked text is restored.* By using a named buffer, text may be restored that
was saved there at any previous time.

abbr: q

Causes ex to terminate. No automatic write of the editor buffer to a file is performed.
However, ex issues a warning message if the file has changed since the last wr£te command
was issued, and does not qu£t.t Normally, you will wish to save your changes, and you
should give a wr£te command; if you wish to discard them, use the q! command variant.

Quits from the editor, discarding changes to the buffer without complaint.

(.) read file abbr: r

Places a copy of the text of the given file in the editing buffer after the specified line. If
no file is given the current file name is used. The current file name is not changed unless
there is none in which case file becomes the current name. The sensibility restrictions for
the edit command apply here also. If the file buffer is empty and there is no current name
then ex treats this as an edit command.

Address '0' is legal for this command and causes the file to be read at the beginning of
the buffer. Statistics are given as for the edit command when the read successfully ter­
minates. After a read the current line is the last line read.:\:

(•) read ! command

Reads the output of the command command into the buffer after the specified line. This
is not a variant form of the command, rather a read specifying a command rather than a
filename; a blank or tab before the! is mandatory.

recover file

Recovers file from the system save area. Used after a accidental hangup of the phone**
or a system crash** or preserve command. Except when you use preserve you will be
notified by mail when a file is saved.

* But no modIfying commands may Intervene between the delete or yank and the put, nor may lines be
moved between ftles wIthout usIng a named buller.
t Ex will also Issue a dIagnostic If there are more ftles In the argument !lst.
t WIthIn open and visual the current line Is set to the ftrst line read rather than the last.
** The system saves a copy of the ftle you were edIting only If you have made changes to the ftle.

9051 -9-

Text Editing Ex Reference

rewind abbr: rew

The argument list is rewound, and the first file in the list is edited.

rew!

Rewinds the argument list discarding any changes made to the current buffer.

set parameter

shell

With no arguments, prints those options whose values have been changed from their
defaults; with parameter all it prints all of the option values.

Giving an option name followed by a '1' causes the current value of that option to be
printed. The '1' is unnecessary unless the option is Boolean valued. Boolean options are
given values either by the form 'set option' to turn them on or 'set nooption' to turn them
off; string and numeric options are assigned via the form 'set option=value'.

More than one parameter may be given to set; they are interpreted leftrto-right.

abbr: sh

A new shell is created. When it terminates, editing resumes.

source file abbr: so

Reads and executes commands from the specified file. Source commands may be nested.

(. , •) su~titute /pat/repl/ opt£ons count flags abbr: s

stop

On each specified line, the first instance of pattern pat is replaced by replacement pattern
repl. If the global indicator option character 'g' appears, then all instances are substituted;
if the confirm indication character 'c' appears, then before each substitution the line to be
substituted is typed with the string to be substituted marked with 't' characters. By typing
an 'y' one can cause the SUbstitution to be performed, any other input causes no change
to take place. After a subst£tute the current line is the last line substituted.

Lines may be split by substituting new-line characters into them. The newline in repl
must be escaped by preceding it with a '\'. Other metacharacters available in pat and repl
are described below.

Suspends the editor, returning control to the top level shell. If autowrite is set and there
are unsaved changes, a write is done first unless the form stop! is used. This commands
is only available where supported by the teletype driver and operating system.

(• , .) su~titute optz'ons count flags abbr: s

If pat and rep/ are omitted, then the last substitution is repeated. This is a synonym for
the & command.

(. , .) t addr flags

The t command is a synonym for copy.

ta tag

The focus of editing switches to the location of tag, switching to a different line in the
current file where it is defined, or if necessary to another file.t

+ If you have modified the current file before giving a tag command, you must write It out; giving another
tag command, specifying no tag wlll reuse the previous tag.

-10- 9051

Text Editing Ex Reference

The tags file is normally created by a program such as ctags, and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the
tag, the second the name of the file where the tag resides, and the third gives an address­
ing form which can be used by the editor to find the tag; this field is usually a contextual
scan using' /pat/' to be immune to minor changes in the file. Such scans are always per­
formed as if nomagic was set.

The tag names in the tags file must be sorted alphabetically. +

unabbreviate word abbr: una

undo

Delete word from the list of abbreviations.

abbr: u

Reverses the changes made in the buffer by the last buffer editing command. Note that
global commands are considered a single command for the purpose of undo (as are open
and visual.) Also, the commands write and edit which interact with the file system cannot
be undone. Undo is its own inverse.

Undo always marks the previous value of the current line '.' as '##0. After an undo the
current line is the first line restored or the line before the first line deleted if no lines
were restored. For commands with more global effect such as global and visual the
current line regains it's pre-command value after an undo.

unmap lhs

The macro expansion associated by map for lhs is removed.

(1 , $) v /pat/ cmds

A synonym for the global command variant g!, running the specified cmds on each line
which does not match pat.

version abbr: ve

Prints the current version number of the editor as well as the date the editor was last
changed .

.) visual type count flags abbr: vi

Enters visual mode at the specified line. Type is optional and may be '-' '1' or '.' as in
the z command to specify the placement of the specified line on the screen. By default, if
type is omitted, the specified line is placed as the first on the screen. A count specifies an
initial window size; the default is the value of the option window. See the document An
Introduction to Display Editing with Vi for more details. To exit this mode, type Q.

visual file
visual + n file

From visual mode, this command is the same as edit.

(1 , $) write file abbr: w

Writes changes made back to file, printing the number of lines and characters written.
Normally file is omitted and the text goes back where it came from. If a file is specified,
then text will be written to that file.* If the file does not exist it is created. The current
file name is changed only if there is no current file name; the current line is never

t Not available in all v2 editors due to memory constraints.
* The editor writes to a file only if it is the current file and is edited, if the file does not exist, or if the ftle is
actually a teletype, /devjtty, /devjnull. Otherwise, you must give the variant form w! to force the write.

9051 -11-

Text Editing Ex Reference

changed.

If an error occurs while writing the current and ed£ted file, the editor considers that there
has been "No write since last change" even if the buffer had not previously been
modified.

(1 , $) write> > file abbr: w»
Writes the buffer contents at the end of an existing file.

w! name

Overrides the checking of the normal write command, and will write to any file which the
system permits.

(1 , $) w ! command

Writes the specified lines into command. Note the difference between w! which overrides
checks and w ! which writes to a command.

wq name

Like a wr/:te and then a quz"t command.

wq! name

The variant overrides checking on the sensibility of the wr£te command, as w! does.

xit name

If any changes have been made and not written, writes the buffer out. Then, in any case,
quits.

(. , .) yank buffer count abbr: ya

Places the specified lines in the named buffer, for later retrieval via put. If no buffer name
is specified, the lines go to a more volatile place; see the put command description.

(.+1) z count

Print the next count lines, default w£ndow.

(•) z type count

Prints a window of text with the specified line at the top. If type is '- ' the line is placed
at the bottom; a '.' causes the line to be placed in the center.* A count gives the number
of lines to be displayed rather than double the number specified by the scroll option. On a
CRT the screen is cleared before display begins unless a count which is less than the
screen size is given. The current line is left at the last line printed.

command

The remainder of the line after the 'I' character is sent to a shell to be executed. Within
the text of command the characters '%' and '#' are expanded as in filenames and the char­
acter 'I' is replaced with the text of the previous command. Thus, in particular, '!!'
repeats the last such shell escape. If any such expansion is performed, the expanded line
will be echoed. The current line is unchanged by this command.

* Forms 'z=' and 'zj' also exIst; 'z=' places the current line In the center, surrounds it with lines of '- '
characters and leaves the current line at thIs line, The form 'zj' prints the window before 'z- 'would. The
characters '+', 'j' and '- ' may be repeated for cumulative effect. On some v2 editors, no type may be
given.

-12- 9051

Text Editing Ex Reference

If there has been" [No write]" of the buffer contents since the last change to the editing
buffer, then a diagnostic will be printed before the command is executed as a warning. A
single'!' is printed when the command completes.

addr, addr) ! command

($)

Takes the specified address range and supplies it as standard input to command; the resultr
ing output then replaces the input lines.

Prints the line number of the addressed line. The current line is unchanged.

· , .) > count flags
· , .) < count flags

-n

Perform intelligent shifting on the specified lines; < shifts left and > shift right. The
quantity of shift is determined by the shiftwidth option and the repetition of the
specification character. Only white space (blanks and tabs) is shifted; no non-white
characters are discarded in a leftrshift. The current line becomes the last line which
changed due to the shifting.

An end-of-file from a terminal input scrolls through the file. The scroll option specifies
the size of the scroll, normally a half screen of text.

(.+ 1 , .+ 1)

(.+ 1 , .+ 1)

An address alone causes the addressed lines to be printed. A blank line prints the next
line in the file.

(. , .) & options count flags

Repeats the previous substitute command.

• , .) - options count flags

Replaces the previous regular expression with the previous replacement pattern from a
substitution.

8. Regular expressions and substitute replacement patterns

8.1. Regular expressions

A regular expression specifies a set of strings of characters. A member of this set of
strings is said to be matched by the regular expression. Ex remembers two previous regular
expressions: the previous regular expression used in a subst£tute command and the previous reg­
ular expression used elsewhere (referred to as the previous scanning regular expression.) The
previous regular expression can always be referred to by a null re, e.g. '/ /' or '11'.

8.2. Magic and nomagic

The regular expressions allowed by ex are constructed in one of two ways depending on
the setting of the magic option. The ex and vi default setting of magic gives quick access to a
powerful set of regular expression metacharacters. The disadvantage of magic is that the user
must remember that these metacharacters are magic and precede them with the character '\' to
use them as "ordinary" characters. With nomagic, the default for edit, regular expressions are
much simpler, there being only two metacharacters. The power of the other metacharacters is
still available by preceding the (now) ordinary character with a '\'. Note that '\' is thus always
a metacharacter.

9051 -13-

Text Editing Ex Reference

The remainder of the discussion of regular expressions assumes that that the setting of
this option is magic.t

8.3. Basic regular expression summary

The following basic constructs are used to construct magic mode regular expressions.

char An ordinary character matches itself. The characters 't' at the beginning of a
line, '$' at the end of line, '*' as any character other than the first, '.', '\', '[',
and ,-, are not ordinary characters and must be escaped (preceded) by'\, to be
treated as such.

1 At the beginning of a pattern forces the match to succeed only at the begin­
ning of a line.

$

\<

\>

[string]

At the end of a regular expression forces the match to succeed only at the end
of the line.

Matches any single character except the new-line character.

Forces the match to occur only at the beginning of a "variable" or "word";
that is, either at the beginning of a line, or just before a letter, digit, or under­
line and after a character not one of these.

Similar to '\<', but matching the end of a "variable" or "word", i.e. either
the end of the line or before character which is neither a letter, nor a digit, nor
the underline character.

Matches any (single) character in the class defined by string. Most characters
in stnng define themselves. A pair of characters separated by '- ' in string
defines the set of characters collating between the specified lower and upper
bounds, thus '[a- z]' as a regular expression matches any (single) lower-case
letter. If the first character of string is an 't' then the construct matches those
characters which it otherwise would not; thus '[ta- z]' matches anything but a
lower-case letter (and of course a newline). To place any of the characters 't',
'[', or '- ' in string you must escape them with a preceding '\'.

8.4. Combining regular expression primitives

The concatenation of two regular expressions matches the leftmost and then longest string
which can be divided with the first piece matching the first regular expression and the second
piece matching the second. Any of the (single character matching) regular expressions men­
tioned above may be followed by the character '*' to form a regular expression which matches
any number of adjacent occurrences (including 0) of characters matched by the regular expres­
sion it follows.

The character' -, may be used in a regular expression, and matches the text which defined
the replacement part of the last substitute command. A regular expression may be enclosed
between the sequences '\(' and '\)' with side effects in the substitute replacement patterns.

8.5. SubJtitute replacement patterns

The basic metacharacters for the replacement pattern are '&' and '-'; these are given as
'\&' and ,\-' when nomagic is set. Each instance of '&' is replaced by the characters which the
regular expression matched. The metacharacter ,-, stands, in the replacement pattern, for the
defining text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the
escaping character '\'. The sequence '\n' is replaced by the text matched by the n-th regular

t To discern what Is true with nomagic it suffices to remember that the only special characters in this case will
be 'j' at the beginning of a regular expressIon, '$' at the end of a regular expression, and '\'. With nomagic
the characters' -, and '!?l' also lose their specIal meanIngs related to the replacement pattern of a substItute.

-14- 9051

Text Editing Ex Reference

subexpression enclosed between '\(' and '\)'.t The sequences '\u' and '\1' cause the immedi­
ately following character in the replacement to be converted to upper- or lower-case respectively
if this character is a letter. The sequences ,\U' and '\L' turn such conversion on, either until
'\E' or '\e' is encountered, or until the end of the replacement pattern.

9. Option descriptions

autoindent, ai default: noai

Can be used to ease the preparation of structured program text. At the beginning of each
append, change or ,insert command or when a new line is opened or created by an append,
change, £nsert, or subst£tute operation within open or visual mode, ex looks at the line being
appended after, the first line changed or the line inserted before and calculates the
amount of white space at the start of the line. It then aligns the cursor at the level of
indentation so determined.

If the user then types lines of text in, they will continue to be justified at the displayed
indenting level. If more white space is typed at the beginning of a line, the following line
will start aligned with the first non-white character of the previous line. To back the cur­
sor up to the preceding tab stop one can hit AD. The tab stops going backwards are
defined at multiples of the sh£ftwidth option. You cannot backspace over the indent,
except by sending an end-of-file with a AD.

Specially processed in this mode is a line with no characters added to it, which turns into a
completely blank line (the white space provided for the auto£ndent is discarded.) Also spe­
cially processed in this mode are lines beginning with an 't' and immediately followed by
a AD. This causes the input to be repositioned at the beginning of the line, but retaining
the previous indent for the next line. Similarly, a '0' followed by a AD repositions at the
beginning but without retaining the previous indent.

Auto£ndent doesn't happen in global commands or when the input is not a terminal.

autoprint, ap default: ap

Causes the current line to be printed after each delete, copy, jo£n, move, subst£tute, t, undo
or shift command. This has the same effect as supplying a trailing 'p' to each such com­
mand. Autoprint is suppressed in globals, and only applies to the last of many commands
on a line.

autowrite, aw default: noaw

Causes the contents of the buffer to be written to the current file if you have modified it
and give a next, rew£nd, stop, tag, or! command, or a At (switch files) or A] (tag goto)
command in visual. Note, that the edz"t and ex commands do not autowrite. In each case,
there is an equivalent way of switching when autowrite is set to avoid the autowr";te (ed";t
for next, rew£nd! for.I rewind, stop! for stop, tag! for tag, shell for !, and :e =#= and a :ta.!
command from within visual).

beautify, bf default: nobeautify

Causes all control characters except tab, newline and form-feed to be discarded from the
input. A complaint is registered the first time a backspace character is discarded. Beaut~ly

does not apply to command input.

t When nested, parenthesized subexpressions are present, n is determined by counting occurrences of '\(,
starting from the left.

9051 -15-

Text Editing Ex Reference

directory, dir default: dir=/tmp

Specifies the directory in which ex places its buffer file. If this directory in not writable,
then the editor will exit abruptly when it fails to be able to create its buffer there.

edcompatible default: noedcompatible

Causes the presence of absence of g and c suffixes on substitute commands to be remem­
bered, and to be toggled by repeating the suffices. The suffix r makes the substitution be
as in the - command, instead of like 5. **

errorbelIs, eb default: noeb

Error messages are preceded by a bell.* If possible the editor always places the error mes­
sage in a standout mode of the terminal (such as inverse video) instead of ringing the
bell.

hardtabs, ht default: ht=8

Gives the boundaries on which terminal hardware tabs are set (or on which the system
expands tabs).

igno:recase, ic default: noic

All upper case characters in the text are mapped to lower case in regular expression
matching. In addition, all upper case characters in regular expressions are mapped to

lower case except in character class specifications.

lisp default: nolisp

Autoz"ndent indents appropriately for lisp code, and the () { } [[and]] commands in open
and visual are modified to have meaning for lZ"sp.

list default: nolist

All printed lines will be displayed (more) unambiguously, showing tabs and end-of-lines
as in the list command.

magic default: magic for ex and vit

mesg

If nomag£c is set, the number of regular expression metacharacters is greatly reduced, with
only 't' and '$' having special effects. In addition the metacharacters ,-, and '&' of the
replacement pattern are treated as normal characters. All the normal metacharacters may
be made mag£c when nomag£c is set by preceding them with a '\'.

default: mesg

Causes write permission to be turned off to the terminal while you are in visual mode, if

nomesg is set. **
nwnber, nu default: nonumber

Causes all output lines to be printed with their line numbers. In addition each input line
will be prompted for by supplying the line number it will have .

. H VersIon 3 only.
* Bell rIngIng In open and visual on errors Is not suppressed by setting noeb.
t Nomagic for edit.
H Version 3 only.

-16- 9051

Text Editing Ex Reference

open default: open

If noopen, the commands open and visual are not permitted. This is set for ed£t to prevent
confusion resulting from accidental entry to open or visual mode.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal to not do automatic carriage
returns when printing more than one (logical) line of output, greatly speeding output on
terminals without addressable cursors when text with leading white space is printed.

paragraphs, para default: para=IPLPPPQPP Llbp

Specifies the paragraphs for the {and } operations in open and visual. The pairs of charac­
ters in the option's value are the names of the macros which start paragraphs.

prompt default: prompt

Command mode input is prompted for with a':'.

redraw default: noredraw

The editor simulates (using great amounts of output), an intelligent terminal on a dumb
terminal (e.g. during insertions in visual the characters to the right of the cursor position
are refreshed as each input character is typed.) Useful only at very high speed.

remap default: remap

If on, macros are repeatedly tried until they are unchanged. ++ For example, if 0 is
mapped to 0, and 0 is mapped to I, then if remap is set, 0 will map to I, but if noremap is
set, it will map to O.

report default: report=5t

scroll

Specifies a threshold for feedback from commands. Any command which modifies more
than the specified number of lines will provide feedback as to the scope of its changes.
For commands such as global, open, undo, and v£sual which have potentially more far
reaching scope, the net change in the number of lines in the buffer is presented at the end
of the command, subject to this same threshold. Thus notification is suppressed during a
global command on the individual commands performed.

default: scroll= window

Determines the number of logical lines scrolled when an end-or-file is received from a
terminal input in command mode, and the number of lines printed by a command mode z
command (double the value of scroll) .

sections default: sections=SHNHH HU

Specifies the section macros for the [[and]] operations in open and visual. The pairs of
characters in the options's value are the names of the macros which start paragraphs.

shell, sh default: sh=/bin/sh

Gives the path name of the shell forked for the shell escape command'!', and by the shell
command. The default is taken from SHELL in the environment, if present.

U Version 3 only.
t 2 for edit.

9051 -17-

Text Editing Ex Reference

shiftwidth, sw default: sw=8

Gives the width a software tab stop, used in reverse tabbing with AD when using autoz"n­
dent to append text, and by the shift commands.

showmatch, sm default: nosm

In open and v£Sual mode, when a) or } is typed, move the cursor to the matching (or {
for one second if this matching character is on the screen. Extremely useful with lisp.

slowopen, slow terminal dependent

Affects the display algorithm used in v£sual mode, holding off display updating during
input of new text to improve throughput when the terminal in use is both slow and unin­
telligent. See An Introduct£on to Display Editing w£th· Vi for more details.

tabs top, ts default: ts=8

The editor expands tabs in the input file to be on tabstop boundaries for the purposes of
display.

taglength, tl default: tl=O

tags

term

terse

warn

Tags are not significant beyond this many characters. A value of zero (the default) means
that all characters are significant.

default: tags=tags /usr/lib/tags

A path of files to be used as tag files for the tag command. U A requested tag is searched
for in the specified files, sequentially. By default (even in version 2) files called tags are
searched for in the current directory and in /usr/lib (a master file for the entire system.)

from environment TERM

The terminal type of the output device.

default: noterse

Shorter error diagnostics are produced for the experienced user.

default: warn

Warn if there has been '[No write since last change]' before a '!' command escape.

window default: window=speed dependent

The number of lines in a text window in the visual command. The default is 8 at slow
speeds (600 baud or less), 16 at medium speed (1200 baud), and the full screen (minus
one line) at higher speeds.

w300, w1200, w9600

These are not true options but set window only if the speed is slow (300), medium
(1200), or high (9600), respectively. They are suitable for an EXINIT and make it easy
to change the 8/16/full screen rule.

wraps can, ws default: ws

Searches using the regular expressions in addressing will wrap around past the end of the
file.

H VersIon 3 only.

-18- 9051

Text Editing Ex Reference

wrapmargin, wm default: wm=O

Defines a margin for automatic wrapover of text during input in open and visual modes.
See An Introduction to Display Editing with Vi for details.

write any, wa default: nowa

Inhibit the checks normally made before write commands, allowing a write to any file
which the system protection mechanism will allow.

10. Limitations

Editor limits that the user is likely to encounter are as follows: 1024 characters per line,
256 characters per global command list, 128 characters per file name, 128 characters in the pre­
vious inserted and deleted text in open or visual, 100 characters in a shell escape command, 63
characters in a string valued option, and 30 characters in a tag name, and a limit of 250000 lines
in the file is silently enforced.

The visual implementation limits the number of macros defined with map to 32, and the
total number of characters in macros to be less than 512.

Acknowledgments. Chuck Haley contributed greatly to the early development of ex. Bruce
Englar encouraged the redesign which led to ex version 1. Bill Joy wrote versions 1 and 2.0
through 2.7, and created the framework that users see in the present editor. Mark Horton
added macros and other features and made the editor work on a large number of terminals and
Unix systems.

9051 -·19-

Text Editing Ex Reference

-20- 9051

Edit: A Tutorial

This document is based on a paper by Ricki Blau and James Joyce of the University of
California, Berkeley.

Edit is a more powerful version of an editor called EX.

These lessons assume no prior familiarity with computers or with text editing. They con­
sist of a series of text editing sessions which will lead you through the fundamental steps of
creating and revising a file of text. After scanning each lesson and before beginning the next,
you should follow the examples at a terminal to get a feeling for the actual process of text edit­
ing. Set aside some time for experimentation, and you will soon become familiar with using
the computer to write and modify text. In addition to the actual use of the text editor, other
features of ROS will be very important to your work. You can begin to learn about these other
features by reading a tutorial introduction to the system. You will be ready to proceed with this
lesson as soon as you are familiar with your terminal and its special keys, the login procedure,
and the ways of correcting typing errors. Let's first define some terms:

program

ROS

edit

file

filename

disk

buffer

A set of instructions given to the computer, describing the sequence of steps
which the computer performs in order to accomplish a specific task. As an exam­
ple, a series of steps to balance your checkbook is a program.

ROS is a special type of program, called an operating system, that supervises the
machinery and all other programs comprising the total computer system.

edit is the name of a text editor which you will be learning to use, a program that
aids you in writing or revising text. Edit was designed for beginning users, and is
a simplified version of an editor called ex.

Each account is allotted space for the permanent storage of information, such as
programs, data or text. A file is a logical unit of data, for example, an essay, a
program, or a chapter from a book, which is stored on a computer system. Once
you create a file, it is kept until you instruct the system to remove it. You may
create a file during one computer session, log out, and return to use it at a later
time. Files contain anything you choose to write and store in them. The sizes of
files vary to suit your needs; one file might hold only a single number while
another might contain a very long document or program. The only way to save
information from one session to the next is to store it in a file.

Filenames are used to distinguish one file from another, serving the same purpose
as the labels of manila folders in a file cabinet. In order to write or access infor­
mation in a file, you use the name of that file in a ROS command, and the system
will automatically locate the file.

Files are stored on an input/output device called a disk, which looks something
like a stack of phonograph records. Each surface is coated with a material similar
to the coating on magnetic recording tape, on which information is recorded.

A temporary work space, made available to the user for the duration of a session
of text editing and used for building and modifying the text file. We can imagine
the buffer as a blackboard that is erased after each class, where each session with
the editor is a class.

9051 -1-

Text Editing Edit

Session 1: Creating a File of Text

To use the editor you must first make contact with the computer by logging in to ROS.

We'll quickly review the standard ROS login procedure.

If the terminal you are using is directly linked to the computer, turn it on and press car­
riage return, usually labeled "RETURN". If your terminal connects with the computer over a
telephone line, turn on the terminal, dial the system access number, and, when you hear a
high-pitched tone, place the receiver of the telephone in the acoustic coupler. Press carriage
return once and await the login message:

:login:

Type your login name, which identifies you to the system, on the same line as the login
message, and press return. If the terminal you are using has both upper and lower case, enter
your login name in lower case; otherwise ROS assumes your terminal has only upper case and
will not recognize lower case letters later in the session. ROS displays" :login:" and you reply
with your login name, for example "susan":

:login: susan land press carr£age return}

(In the examples, input typed by the user appears in bold face to distinguish it from the system
responses.)

The system now requests a password as an additional precaution to prevent unauthorized
people from using your account. To prevent other people from seeing your password, it will
not appear when you type it. The message is:

Password: (type your password and press carnage return)

If any of the information you gave during the login sequence was mistyped or incorrect, the
system responds

Login incorrect.

:login:

in which case you should start the login process anew. Assuming that you have successfully
logged in, a welcome message is displayed and eventually the $ prompt appears on a new line.
The $ is the ROS symbol which tells you that it is ready to accept a command.

Asking for edit

You are ready to tell ROS that you want to work with edit, the text editor. Now is a con­
venient time to choose a name for the file of text which you are about to create. To begin your
editing session type edit followed by a space and then the filename which you have selected, for
example "text". When you have completed the command, press carriage return and wait for
edit's response:

% edit text (followed by a carr£age return)
"text" No such file or directory

If you typed the command correctly, you will now be in communication with edit. Edit has set
aside a buffer for use as a temporary working space during your current editing session. It also
checked to see if the file you named, "text", already existed. As we expected, it was unable to
find such a file since "text" is the name of the new file that we will create. Edit confirms this
with the line:

"text" No such file or directory

On the next line appears edit's prompt":", announcing that edit expects a command from you.
You may now begin to create the new file.

-2- 9051

Text Editing Edit

The "not found" message

If you misspelled "edit" by typing"editor", your request would be handled as follows:

% editor
editor: not found
%

Your mistake in calling edit "editor" was treated by ROS as a request for a program named
"editor". Since there is no program named "editor", The system reported that the program
was "not found". A new $ indicates that ROS is ready for another command, so you may enter
the correct command.

A summary

Your exchange with ROS as you logged in and made contact with edit should look some­
thing like this:

Entering text

:login: susan.
Password:
Welcome to Ridge Computers
% edit text
"text" No such file or directory

You may now begin to enter text into the buffer. This is done by appending text to what-­
ever is currently in the buffer. Since there is nothing in the buffer at the moment, you are
appending text to nothing; in effect, you are creating text. Most edit commands have two
forms: a word which describes what the command does and a shorter abbreviation of that word.
Either form may be used. Many beginners find the full command names easier to remember,
but once you are familiar with editing you may prefer to type the shorter abbreviations. The
command to input text is "append" which may be abbreviated "a". Type append and press
carriage re turn.

% edit text
: append

Messages from edit

If you make a mistake in entering a command and type something that edit does not
recognize, edit will respond with a message intended to help you diagnose your error. For
example, if you misspell the command to input text by typing, perhaps, "add" instead of
"append" or "a", you will receive this message:

: add
add: Not an editor command

When you receive a diagnostic message, check what you typed in order to determine what part
of your command confused edit. The message above means that edit was unable to recognize
your mistyped command and, therefore, did not execute it. Instead, a new":" appeared to let
you know that edit is again ready to execute a command.

9051 -3-

Text Editing Edit

Text input mode

By giving the command "append" (or using the abbreviation "a"), you entered text z"nput
mode, also known as append mode. When you enter text input mode, edit responds by doing
nothing. You will not receive any prompts while in text input mode. This is your signal that
you are to begin entering lines of text. You can enter pretty much anything you want on the
lines. The lines are transmitted one by one to the buffer and held there during the editing ses­
sion. You may append as much text as you want, and when you wz"sh to stop entering text lines
you should type a period as the only character on the line and press carriage return. When you give
this signal that you want to stop appending text, you will exit from text input mode and reenter
command mode. Edit will again prompt you for a command by printing":".

Leaving append mode does not destroy the text in the buffer. You have to leave append
mode to do any of the other kinds of editing, such as changing, adding, or printing text. If you
type a period as the first character and type any other character on the same line, edit will
believe you want to remain in append mode and will not let you out. As this can be very frus­
trating, be sure to type only the period and carriage return.

This is as good a place as any to learn an important lesson about computers and text: a
blank space is a character as far as a computer is concerned. If you so much as type a period
followed by a blank (that is, type a period and then the space bar on the keyboard), you will
remain in append mode with the last line of text being:

Enter the following lines exactly, including "thiss":

This is some s8.IIlple text.
And thiss is some more text.
Text editing is strange, but nice.

The last line is the period followed by a carriage return that gets you out of append mode. If
while typing the line you hit an incorrect key, recall that you may delete the incorrect character
or cancel the entire line of input by erasing in the usual way. Erasing a character or cancelling
a line must be done before the line has been completed by a carriage return. We will discuss
changes in lines already typed in session 2.

Writing text to disk

You are now ready to edit the text. The simplest kind of editing is to write it to disk as a
file for safekeeping after the session is over. This is the only way to save information from one
session to the next, since the editor's buffer is temporary and will last only until the end of the
editing session. Thus, learning how to write a file to disk is second in importance only to enter­
ing the text. To write the contents of the buffer to a disk file, use the command "write" (or its
abbreviation "w' ') :

: write

Edit will copy the buffer to a disk file. If the file does not yet exist, a new file will be created
automatically and the presence of a "[New file]" will be noted. The newly-created file will be
given the name specified when you entered the editor, in this case "text". To confirm that the
disk file has been successfully written, edit will repeat the filename and give the number of
lines and the total number of characters in the file. The buffer remains unchanged by the
"write" command. All of the lines which were written to disk will still be in the buffer, should
you want to modify or add to them.

Edit must have a filename to use before it can write a file. If you forgot to indicate the
name of the file when you began the editing session, edit will print

No current filename

-4- 9051

Text Editing Edit

in response to your write command. If this happens, you can specify the filename in a new
write command:

: write text

After the "write" (or "w") type a space and then the name of the file.

Signing off

We have done enough for this first lesson on using the text editor, and are ready to quit
the session with edit. To do this we type "quit" (or "q") and press carriage return:

: write
"text" [New file] 3 lines, 90 characters
: quit
%

The $ is from ROS to tell you that your session with edit is over and you may command ROS

further. Since we want to end the entire session at the terminal we also need to exit from ROS.

In response to the ROS prompt of "$" type a "control d". This is done by holding down the
control key (usually labeled "CTRL") and simultaneously pressing the d key. This ends your
session and prepares the terminal for the next user. It is always important to type a "control­
d" at the end of a session to make absolutely sure no one could accidentally stumble into your
abandoned session and thus gain access to your files, tempting even the most honest of souls.

This is the end of the first session on text editing.

9051 -5-

Text Editing Edit

Session 2
Log in as in the first session:

:login: susan (carriage return)
Password: (give password and carriage return)

$

Now when you enter the command to invoke the editor, you can specify the name of the file
you worked on last time. This will start edit working and it will fetch the contents of the file
into the buffer. so that you can resume editing the same file. When edit has copied the file into
the buffer, it will repeat its name and tell you the number of lines and characters it contains .

. Thus,

% edit text
"text" 3 lines, 90 characters

means you asked edit to fetch the file named "text" for editing, causing it to copy the 90 char­
acters of text into the buffer. Edit awaits your further instructions. In this session, we will
append more text to our file, print the contents of the buffer, and learn to change the text of a
line.

Adding more text to the file

If you want to add more to the end of your text you may do so by using the append com­
mand to enter text input mode. Here we'll use the abbreviation for the append command, "a":

Interrupt

:a
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.

Should you press the RUBOUT key (sometimes labeled DELETE) while working with edit, it
will send this message to you:

Interrupt

Any command that edit might be executing is terminated by rubout or delete, causing edit to
prompt you for a new command. If you are appending text at the time, you will exit from
append mode and be expected to give another command. The line of text that you were typing
when the append command was interrupted will not be entered into the buffer.

Making corrections

It is possible to erase individual letters that you have typed. This is done by typing the
designated erase character, usually the number sign (#), as many times as there are characters
you want to erase. If you make a bad start in a line and would like to begin again, this tech­
nique is cumbersome - what if you had 15 characters in your line and wanted to get rid of
them? To do so either requires:

This is yukky tex###############

with no room for the great text you'd like to type, or,

This is yukky tex@ This is great text.

When you type the at-sign (@), you erase the entire line typed so far. You may immediately

-6- 9051

Text Editing Edit

begin to retype the line. This, unfortunately, does not help after you type the line and press
carriage return. To make corrections in lines which have been completed, it is necessary to use
the editing commands covered in this session and those that follow.

Listing what's in the buffer

Having appended text to what you wrote in Lesson 1, you might be curious to see what is
in the buffer. To print the contents of the buffer, type the command:

: 1,$p

The" 1" stands for line 1 of the buffer, the "$" is a special symbol designating the last line of
the buffer, and "p" (or print) is the command to print from line 1 to the end of the buffer.
Thus, "1,$p" gives you:

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.

Occasionally, you may enter into the buffer a character which can't be printed, which is done by
striking a key while the CTRL key is depressed. In printing lines, edit uses a special notation to
show the existence of non-printing characters. Suppose you had introduced the non-printing
character "control-a" into the word "illustrate" by accidently holding down the CTRL key while
typing" a". Edit would display

it does illustrAAte the editor.

if you asked to have the line printed. To represent the control-a, edit shows "AA". The
sequence" A" followed by a capital letter stands for the one character entered by holding down
the CTRL key and typing the letter which appears after the "A". We'll soon discuss the com­
mands which can be used to correct this typing error.

In looking over the text we see that "this" is typed as "thiss" in the second line, as sug­
gested. Let's correct the spelling.

Finding things in the buffer

In order to change something in the buffer we first need to find it. We can find "thiss"
in the text we have entered by looking at a listing of the lines. Physically speaking, we search
the lines of text looking for "thiss" and stop searching when we have found it. The way to tell
edit to search for something is to type it inside slash marks:

: /thiss/

By typing /thiss/ and pressing carriage return edit is instructed to search for "thiss". If we
asked edit to look for a pattern of characters which it could not find in the buffer, it would
respond "Pattern not found". When edit finds the characters "thiss", it will print the line of
text for your inspection:

And thiss is some more text.

Edit is now positioned in the buffer at the line which it just printed, ready to make a change in
the line.

The current line

At all times during an editing session, edit keeps track of the line in the buffer where it is
positioned. In general, the line which has been most recently printed, entered, or changed is
considered to be the current position in the buffer. You can refer to your current position in

\

9051 -7-

Text Editing Edit

the buffer by the symbol period (.) usually known by the name "dot". If you type and
carriage return you will be instructing edit to print the current line:

And thiss is some more text.

If you want to know the number of the current line, you can type .= and carriage return,
and edit will respond with the line number:

2

If you type the number of any line and a carriage return, edit will position you at that line and
print its contents:

:2
And thiss is some more text.

You should experiment with these commands to assure yourself that you understand what they
do.

Numbering lines (nu)

The number (nu) command is similar to print, giving both the number and the text of
each printed line. To see the number and the text of the current line type

:nu
2 And thiss is some more text.

Notice that the shortest abbreviation for the number command is "nu" (and not "n" which is
used for a different command). You may specify a range of lines to be listed by the number
command in the same way that lines are specified for print. For example, "l,$nu" lists all
lines in the buffer with the corresponding line numbers.

Subltitute command (8)

Now that we have found our misspelled word it is time to change it from "thiss" to
"this". As far as edit is concerned, changing things is a matter of substituting one thing for
another. As a stood for append, so s stands for substitute. We will use the abbreviation "s" to
reduce the chance of mistyping the substitute command. This command will instruct edit to
make the change:

2s/thiss/thisl

We first indicate the line to be changed, line 2, and then type an "s" to indicate we want sub­
stitution. Inside the first set of slashes are the characters that we want to change, followed by
the characters to replace them and then a closing slash mark. To summarize:

2s1 what ~ to be changed 1 what to change to 1

If edit finds an exact match of the characters to be changed it will make the change only in the
first occurrence of the characters. If it does not find the characters to be changed it will
respond:

Substitute pattern match failed

indicating your instructions could not be carried out. When edit does find the characters which
you want to change, it will make the substitution and automatically print the changed line, so
that you can check that the correct substitution was made. In the example,

-8- 9051

Text Editing Edit

: 2s /thiss /this /
And this is some more text.

line 2 (and line 2 only) will be searched for the characters "thiss", and when the first exact
match is found, "thiss" will be changed to "this". Strictly speaking, it was not necessary
above to specify the number of the line to be changed. In

: s /thiss /this /

edit will assume that we mean to change the line where we are currently positioned (... "). In
this case, the command without a line number would have produced the same result because
we were already positioned at the line we wished to change.

For another illustration of substitution we may choose the line:

Text editing is strange, but nice.

We might like to be a bit more positive. Thus, we could take out the characters "strange,
but" so the line would read:

Text editing is nice.

A command which will first position edit at that line and then make the substitution is:

: /strange/s /strange, but / /

What we have done here is combine our search with our substitution. Such combinations
are perfectly legal. This illustrates that we do not necessarily have to use line numbers to iden­
tify a line to edit. Instead, we may identify the line we want to change by asking edit to search
for a specified pattern of letters which occurs in that line. The parts of the above command are:

/strange/ tells edit to find the characters "strange" in the text
s tells edit we want to make a substitution
/strange, but / / substitutes nothing at all for the characters "strange, but"

You should note the space after "but" in "/strange, but I". If you do not indicate the
space is to be taken out, your line will be:

Text editing is nice.

which looks a little funny because of the extra space between "is" and "nice". Again, we real­
ize from this that a blank space is a real character to a computer, and in editing text we need to
be aware of spaces within a line just as we would be aware of an ., a" or a "4" .

Another way to list what's in the buffer (z)

Although the print command is useful for looking at specific lines in the buffer, other
commands can be more convenient for viewing large sections of text. You can ask to see a
screen full of text at a time by using the command z. If you type

: lz

edit will start with line 1 and continue printing lines, stopping either when the screen of your
terminal is full or when the last line in the buffer has been printed. If you want to read the
next segment of text, give the command

:z

If no starting line number is given for the z command, printing will start at the "current" line,
in this case the last line printed. Viewing lines in the buffer one screer. full at a time is known
as paging. Paging can also be used to print a section of text on a hard-copy terminal.

9051 -9-

Text Editing Edit

Saving the modified text

This seems to be a good place to pause in our work, and so we should end the second ses­
sion. If you (in haste) type "q" to quit the session your dialogue with edit will be:

:q
No write since last change (q! quits)

This is edit's warning that you have not written the modified contents of the buffer to disk.
You run the risk of losing the work you have done during the editing session since the latest
write command. Since in this lesson we have not written to disk at all, everything we have
done would be lost. If we did not want to save the work done during this editing session, we
would have to type "q!" to confirm that we indeed wanted to end the session immediately, los­
ing the contents of the buffer. But because we want to preserve our work, we must type:

:w
"text" 6 lines, 171 characters

and then,

:q
% {control d}

and hang up the phone or turn off the terminal when ROS asks for a name. This is the end of
the second session on text editing.

-10- 9051

Text Editing Edit

Session 3

Bringing text into the buffer (e)

Log in to ROS and make contact with edit. You should try to login without looking at the
notes, but if you must then by all means do.

Did you remember to give the name of the file you wanted to edit? That is, did you
enter

% edit text

or simply

% edit

Both ways get you in contact with edit, but the first way will bring a copy of the file named
"text" into the buffer. If you did forget to tell edit the name of your file, you can get it into
the buffer by entering:

: e text
"text" 6 lines, 171 characters

The command edit, which may be abbreviated "e", tells edit that you want to erase anything
that might already be in the buffer and bring a copy of the file "text" into the buffer for edit­
ing. You may also use the edit (e) command to change files in the middle of an editing session
or to give edit the name of a new file that you want to create. Because the edit command clears
the buffer, you will receive a warning if you try to edit a new file without having saved a copy
of the old file. This gives you a chance to write the contents of the buffer to disk before edit­
ing the next file.

Moving text in the buffer (m)

Edit allows you to move lines of text from one location in the buffer to another by means
of the move (m) command:

: 2,4m$

This command directs edit to move lines 2, 3, and 4 to the end of the buffer ($). The format
for the move command is that you specify the first line to be moved, the last line to be moved,
the move command "m", and the line after which the moved text is to be placed. Thus,

: 1,6m20

would instruct edit to move lines 1 through 6 (inclusive) to a position after line 20 in the
buffer. To move just line 4 to a position in the buffer after line 6, the command would be
"4m6".

Let's move some text using the command:

:5,$ml
2 lines moved
it does illustrate the editor.

After executing a command which changes more than one line of the buffer, edit tells how
many lines were affected by the change. The last moved line is printed for your inspection. If
you want to see more than just the last line, use the print (p), z, or number (nu) command to
view more text. The buffer should now contain:

9051 -11-

Text Editing

This is some sample text.
It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.

We can restore the original order by typing:

:4,$ml

or, combining context searching and the move command:

: /And this is some/,/This is text/m/This is some sample/

Edit

The problem with combining context searching with the move command is that the chance of
making a typing error in such a long command is greater than if one types line numbers.

Copying lines (copy)

The copy command is used to make a second copy of specified lines, leaving the original
lines where they were. Copy has the same format as the move command, for example:

: 12,15copy $

makes a copy of lines 12 through 15, placing the added lines after the buffer's end ($). Experi­
ment with the copy command so that you can become familiar with how it works. Note that
the shortest abbreviation for copy is "co" (and not the letter "c" which has another meaning).

Deleting lines (d)

Suppose you want to delete the line

This is text added in Session 2.

from the buffer. If you know the number of the line to be deleted, you can type that number
followed by "delete" or "d". This example deletes line 4:

:4d
It doesn't mean much here, but

Here "4" is the number of the line to be deleted and "delete" or "d" is the command to
delete the line. After executing the delete command, edit prints the line which has become the
curren t line (".").

If you do not happen to know the line number you can search for the line and then delete
it using this sequence of commands:

: /added in Session 2./
This is text added in Session 2.

:d
It doesn't mean much here, but

The" /added in Session 2./" asks edit to locate and print the next line which contains the indi­
cated text. Once you are sure that you have correctly specified the line that you want to delete,
you can enter the delete (d) command. In this case it is not necessary to specify a line number
before the "d". If no line number is given, edit deletes the current line (" ."), that is, the line
found by our search. After the deletion, your buffer should contain:

-12- 9051

Text Editing

This is some sample text.
And this is some more text.
Text editing is nice.
It doesn't mean much here, but
it does illustrate the editor.

To delete both lines 2 and 3:

you type

And this is some more text.
Text editing is nice.

:2,3d

Edit

which specifies the range of lines from 2 to 3, and the operation on those lines - "d" for
delete.

Again, this presumes that you know the line numbers for the lines to be deleted. If you
do not you might combine the search command with the delete command as so:

: /And this is some/,/Text editing is nice./d

A word or two of caution:

In using the search function to locate lines to be deleted you should be absolutely sure
the characters you give as the basis for the search will take edit to the line you want deleted.
Edit will search for the first occurrence of the characters starting from where you last edited -
that is, from the line you see printed if you type dot (.).

A search based on too few characters may result in the wrong lines being deleted, which
edit will do as easily as if you had meant it. For this reason, it is usually safer to specify the
search and then delete in two separate steps, at least until you become familiar enough with
using the editor that you understand how best to specify searches. For a beginner it is not a
bad idea to double-check each command before pressing carriage return to send the command
on its way.

Undo (u) to the rescue

The undo (u) command has the ability to reverse the effects of the last command. To
undo the previous command, type "u" or "undo". Undo can rescue the contents of the buffer
from many an unfortunate mistake. However, its powers are not unlimited, so it is still wise to
be reasonably careful about the commands you give. It is possible to undo only commands
which have the power to change the buffer, for example delete, append, move, copy, substi­
tute, and even undo itself. The commands write (w) and edit (e) which interact with disk files
cannot be undone, nor can commands such as print which do not change the buffer. Most
importantly, the only command which can be reversed by undo is the last "undo-able" com­
mand which you gave.

To illustrate, let's issue an undo command. Recall that the last buffer-changing command
we gave deleted the lines which were formerly numbered 2 and 3. Executing undo at this
moment will reverse the effects of the deletion, causing those two lines to be replaced in the
buffer.

:u
2 more lines in file after undo
And this is some more text.

Here again, edit informs you if the command affects more than one line, and prints the text of
the line which is now "dot" (the current line).

9051 -13-

Text Editing Edit

More about the dot (.) and buffer end ($)
The function assumed by the symbol dot depends on its context. It can be used:

1. to exit from append mode we type dot (and only a dot) on a line and press carriage
return;

2. to refer to the line we are at in the buffer.

Dot can also be combined with the equal sign to get the number of the line currently being
edited:

Thus if we type" .=" we are asking for the number of the line and if we type"." we are ask­
ing for the text of the line.

In this editing session and the last, we used the dollar sign to indicate the end of the
buffer in commands such as print, copy, and move. The dollar sign as a command asks edit to

print the last line in the buffer. If the dollar sign is combined with the equal sign ($=) edit
will print the line number corresponding to the last line in the buffer.

"." and "$" therefore represent line numbers. Whenever appropriate, these symbols can
be used in place of line numbers in commands. For example

: .,$d

instructs edit to delete all lines from the current line (.) to the end of the buffer.

Moving around in the buffer (+ and -)

It is convenient during an editing session to go back and re-read a previous line. To go
back, we could search for some of the text if we remember it, or enter

- 3p

This tells edit to move back to a position 3 lines before the current line (.) and print that line.
We can move forward in the buffer similarly:

+2p

instructs edit to print the line which is 2 ahead of our current position.

You may use "+ .. and "- " in any command where edit accepts line numbers. Line
numbers specified with "+ " or "- " can be combined to print a range of lines. The command

: - 1, + 2copy$

makes a copy of 4 lines: the current line, the line before it, and the two after it. The copied
lines will be placed after the last line in the buffer ($).

Try typing only "- "; you will move back one line just as if you had typed "- 1p". Typ­
ing the command "+ " works similarly. You might also try typing a few plus or minus signs in
a row (such as "+ + + ") to see edit's response. Typing a carriage return alone on a line is the
equivalent of typing "+ 1P"; it will move you one line ahead in the buffer and print that line.

If you are at the last line of the buffer and try to move further ahead, perhaps by typing a
"+ " or a carriage return alone on the line, edit will remind you that you are at the end of the
buffer:

At end-of-file

Similarly, if you try to move to a position before the first line, edit will print one of these mes­
sages:

Nonzero address required on this command
Negative address - first buffer line is 1

The number associated with a buffer line is the line's" address", in that it can be used to locate

-14- 9051

Text Editing Edit

the line.

Changing lines (e)

There may be occasions when you want to delete certain lines and insert new text in their
place. This can be accomplished easily with the ehange (e) command. The change command
instructs edit to delete specified lines and then switch to text input mode in order to accept the
text which will replace them. Suppose we want to change the first two lines in the buffer:

to read

This is some sample text.
And this is some more text.

This text was created with the text editor.

To do so, you can type:

: 1,2e
2 lines changed
This text was ereated with the text editor.

In the command 1,2e we specify that we want to change the range of lines beginning with 1 and
ending with 2 by giving line numbers as with the print command. These lines will be deleted.
After a carriage return enters the change command, edit notifies you if more than one line will
be changed and places you in text input mode. Any text typed on the following lines will be
inserted into the position where lines were deleted by the change command. You will remain
in text input mode until you exit in the usual way, by typing a period alone on a line. Note
that the number of lines added to the buffer need not be the same as the number of lines
deleted.

This is the end of the third session on text editing.

9051 -15-

Text Editing Edit

Session 4
This lesson covers several topics, starting with commands which apply throughout the

buffer, characters with special meanings, and how to issue ROS commands while in the editor.
The next topics deal with files: more on reading and writing, and methods of recovering files
lost in a crash. The final section suggests sources of further information.

Making commands global (g)

One disadvantage to the commands we have used for searching or substituting is that if
you have a number of instances of a word to change it appears that you have to type the com­
mand repeatedly, once for each time the change needs to be made. Edit, however, provides a
way to make commands apply to the entire contents of the buffer - the global (g) command.

To print all lines containing a certain sequence of characters, like the characters "text",
the command is:

:g/text/p

The "g" instructs edit to make a global search for all lines in the buffer containing the charac­
ters "text". The "p" prints the lines found.

To issue a global command, start by typing a "g" and then a search pattern identifying
the lines to be affected. Then, on the same line, type the command to be executed on the
identified lines. Global substitutions are frequently useful. For example, to change all
instances of the word "text" to the word "material" the command would be a combination of
the global search and the substitute command:

: g/text/s/text/material/g

Note the "g" at the end of the global command which instructs edit to change each and every
instance of "text" to "material". If you do not type the "g" at the end of the command only
the first instance of "text" in each line will be changed (the normal result of the substitute
command). The "g" at the end of the command is independent of the "g" at the beginning.
You may give a command such as:

: 14s/text/material/g

to change every instance of "text" in line 14 alone. Further, neither command will change
"Text" to "material" because "Text" begins with a capital rather than a lower-case t.

Edit does not automatically print the lines modified by a global command. If you want
the lines to be printed, type a "p" at the end of the global command:

: g/text/s/text/material/gp

The usual qualification should be made about using the global command in combination with
any other - in essence, be sure of what you are telling edit to do to the entire buffer. For
example,

:g/ /d
72 less line's in file after global

will delete every line containing a blank anywhere in it. This could adversely affect your docu­
ment, since most lines have spaces between words and thus would be deleted. After executing
the global command, edit will print a warning if the command added or deleted more than one
line. Fortunately, the undo command can reverse the effects of a global command. You
should experiment with the global command on a small buffer of text to see what it can do for
you.

-16- 9051

Text Editing Edit

More about searching and substituting

In using slashes to identify a character string that we want to search for or change, we
have always specified the exact characters. There is a less tedious way to repeat the same string
of characters. To change "noun" to "nouns" we may type either

:/noun/s/noun/nouns/

as we have done in the past, or a somewhat abbreviated command:

: /noun/s/ /nouns/

In this example, the characters to be changed are not specified - there are no characters, not
even a space, between the two slash marks which indicate what is to be changed. This lack of
characters between the slashes is taken by the editor to mean "use the characters we last
searched for as the characters to be changed."

Similarly, the last context search may be repeated by typing a pair of slashes with nothing
between them:

:/does/
It doesn't mean much here, but

://
it does illustrate the editor.

Because no characters are specified for the second search, the editor scans the buffer for the
next occurrence of the characters "does".

Edit normally searches forward through the buffer, wrapping around from the end of the
buffer to the beginning, until the specified character string is found. If you want to search in
the reverse direction, use question marks (?) instead of slashes to surround the character
string.

Special characters

Two characters have special meanings when used in specifying searches: "$" and "~".
"$" is taken by the editor to mean "end of the line" and is used to identify strings which
occur at the end of a line.

: g/ing$/s/ /ed/p

tells the editor to search for all lines ending in "ing" (and nothing else, not even a blank
space), to change each final "ing" to "ed" and print the changed lines.

The symbol "~,, indicates the beginning of a line. Thus,

instructs the editor to insert" 1." and a space at the beginning of the current line.

The characters "$" and "~,, have special meanings only in the context of searching. At
other times, they are ordinary characters. If you ever need to search for a character that has a
special meanin.g, you must indicate that the character is to temporarily lose its special
significance by typing another special character, the backslash (\)' before it.

: s/\$/dollar/

looks for the character "$" in the current line and replaces it by the word "dollar". Were it
not for the backslash, the "$" would have represented "the end of the line" in your search,
not necessarily the character "$". The backslash retains its special significance at all times.

9051 -17-

Text Editing Edit

Issuing ROS commands from the editor

After creating several files with the editor, you may want to delete files no longer useful
to you or ask for a list of your files. Removing and listing files are not functions of the editor,
and so they require the use of ROS commands. You can execute ROS commands without exiting
the editor if you type a the system escape character (!) before the command name. To use the
ROS rm command to remove the file named "junk" type:

: !rmjunk

The exclamation mark (!) indicates that the rest of the line is to be processed as a ROS com­
mand. If the buffer contents have not been written since the last change, a warning will be
printed befor,e the command is executed. The editor prints a "!" when the command is com­
pleted.

Filenames and file manipulation

Throughout each editing session, edit keeps track of the name of the file being edited as
the current filename. Edit remembers as the current filename the name given when you entered
the editor. The current filename changes whenever the edit (e) command is used to specify a
new file. Once edit has recorded a current filename, it inserts that name into any command
where a filename has been omitted. If a write command does not specify a file, edit, as we
have seen, supplies the current filename. You can have the editor write onto a different file by
including its name in the write command:

:w chapterS
"chapter3" 283 lines, 8698 characters

The current filename remembered by the editor will not be changed as a result of the wr':te com­
mand unless ":t ill the first filename given in the edt·ting session. Thus, in the next write command
which does not specify a name, edit will write onto the current file and not onto the file
"chapter3" .

The file (f) command

To ask for the current filename, type file (or f). In response, the editor provides current
information about the buffer, including the filename, your current position, and the number of
lines in the buffer:

:f
"text" [Modified] line 3 of 4 --75%-

If the contents of the buffer have changed since the last time the file was written, the editor
will tell you that the file has been" [Modified] ". After you save the changes by writing onto a
disk file, the buffer will no longer be considered modified:

:w
"text" 4 lines, 88 characters
:f
"text" line 3 of 4 --75%-

Reading additional files (r)

The read (r) command allows you to add the contents of a file to the buffer without des­
troying the text already there. To use it, specify the line after which the new text will be
placed, the command f, and then the name of the file.

-18- 9051

Text Editing Edit

: $r bibliography
"bibliography" 18 lines, 473 characters

This command reads in the file bibliography and adds it to the buffer after the last line. The
current filename is not changed by the read command unless it is the first filename given in the
editing session.

Writing parts of the buffer

The write (w) command can write all or part of the buffer to a file you specify. We are
already familiar with writing the entire contents of the buffer to a disk file. To write only part
of the buffer onto a file, indicate the beginning and ending lines before the write command, for
example

: 45,$w ending

Here all lines from 45 through the end of the buffer are written onto the file named endz"ng.
The lines remain in the buffer as part of the document you are editing, and you may continue
to edit the entire buffer.

Recovering files

Under most circumstances, edit's crash recovery mechanism is able to save work to within
a few lines of changes after a crash or if the phone is hung up accidently. If you lose the con­
tents of an editing buffer in a system crash, you will normally receive mail when you login
which gives the name of the recovered file. To recover the file, enter the editor and type the
command recover (rec), followed by the name of the lost file.

: recover chap6

Recover is sometimes unable to save the entire buffer successfully, so always check the con­
tents of the saved buffer carefully before writing it back onto the original file.

Other recovery techniques

If something goes wrong when you are using the editor, it may be possible to save your
work by using the command preserve (pre), which saves the buffer as if the system had
craShed. If you are writing a file and you get the message "Quota exceeded", you have tried to

use more disk storage than is allotted to your account. Proceed with caution because it is likely
that only a part of the editor's buffer is now present in the file you tried to write. In this case,
use the system escape character (!) and the rm command to remove some files you don't need,
and try to write the file again. If this is not possible and you cannot find someone to help you,
enter the command

: preserve

and then seek help. Do not simply leave the editor. If you do, the buffer will be lost, and you
may not be able to save your file. After a preserve, you can use the recover command once the
problem has been corrected.

If you make an undesirable change to the buffer and issue a write command before dis­
covering your mistake, the modified version will replace any previous version of the file.
Should you ever lose a good version of a document in this way, do not panic and leave the edi­
tor. As long as you stay in the editor, the contents of the buffer remain accessible. Depending
on the nature of the problem, it may be possible to restore the buffer to a more complete state
with the undo command. After fixing the damaged buffer, you can again write the file to disk.

9051 -19-

Text Editing Edit

Further reading and other information

Edit is an editor designed for beginning and casual users. It is actually a version of a
more powerful editor called ex. These lessons are intended to introduce you to the editor and
its more commonly-used commands. We have not covered all of the editor's commands, just a
selection of commands which should be sufficient to accomplish most of your editing tasks.

Using ex

As you become more experienced with using the editor, you may still find that edit con­
tinues to meet your needs. However, should you become interested in using ex, it is easy to
switch. To begin an editing session with ex, use the name ex in your command instead of edit.

Edit commands work the same way in ex, but the editing environment is somewhat
different. You should be aware of a few differences that exist between the two versions of the
editor. In edit, only the characters" A", "$", and "\,, have special meanings in searching the
buffer or indicating characters to be changed by a substitute command. Several additional char­
acters have "magic" meanings in ex, as described in the Ex Reference Manual. Another feature
of the edit environment prevents users from accidently entering two alternative modes of edit­
ing, open and visual, in which the editor behaves quite differently than in normal command
mode. If you are using ex and the editor behaves strangely, you may have accidently entered
open mode by typing "0". Type the ESC key and then a "q" to get out of open or visual mode
and back into the regular editor command mode. The document An Introductz"on to Display Edz"t­
z"ng wz"th Vz" provides a full discussion of visual mode.

-20- 9051

Text Editing

addressing, see line numbers
append mode, 4

backslash (\)' 17
buffer, 1
command mode, 4
context search, 7, 9, 13, 17

Index

control characters (" A" notation), 7
control-d, 5
current filename, 18, 19
current line (.), 8, 14
diagnostic messages, 3
disk, 1
documentation, 20
edit (to begin editing session), 2, 6
editing commands:

append (a), 3, 4, 6
change (c), 15
copy (co), 12
delete (d), 12-13
edit (e), 11
file (f), 18
global (g), 16-17
move (m), 11-12
number (nu), 8
preserve (pre), 19
print (p), 7
quit (q), 5, 10
quit! (q!), 10
read (r), 18-19
recover (rec), 19
substitute (s), 8-9, 16, 17
undo (u), 13, 17
write (w), 4-5, 10, 19
z,9

9051

Edit

! (system escape), 18
$=,14
+,14
- , 14
11,7,17
??, 17
., 8, 14
.=, 8, 14

erasing
characters (#), 6
lines (@), 7

ex (text editor), 20
Ex Reference Manual, 20

file, 1

file recovery, 19
filename, 1

Interrupt (message), 6
line numbers, see also current line

dollar sign ($), 7, 14
dot(.), 8,14
relative (+ and -), 14

logging out, 5
login procedure, 2
"magic" characters, 20
non-printing characters, 7
"not found" (message), 3
program, 1
recovery see file recovery
system escape (!), 18
special characters (A, $, \), 17
text input mode, 4

-21-

Text Editing Edit

-22- 9051

ExfEdit Chmmand Summary (Version 2.0)

Ex and edit are text editors, used for creating and
modifying files of text on the UNIX computer system.
Edit is a variant of ex with features designed to make it
less complicated to learn and use. In terms of com­
mand syntax and effect the editors are essentially
identical, and this command summary applies to both.

The summary is meant as a quick reference for
users already acquainted with edit or ex. Fuller expla­
nations of the editors are available in the documents
Edz"t: A Tutorial (a self-teaching introduction) and the
Ex Reference Manual (the comprehensive reference
source for both edit and ex).

In the examples included with the summary, com­
mands and text entered by the user are printed in bold­
face to distinguish them from responses printed by the
computer.

The Editor Buffer
In order to perform its tasks the editor sets aside a

temporary work space, called a buffer, separate from
the user's permanent file. Before starting to work on
an existing file the editor makes a copy of it in the
buffer, leaving the original untouched. All editing
changes are made to the buffer copy, which must then
be written back to the permanent file in order to
update the old version. The buffer disappears at the
end of the editing session.

Editing: Command and Text Input Modes
During an editing session there are two usual

modes of operation: command mode and text input
mode. (This disregards, for the moment, open and
visual modes, discussed below.) In command mode, the
editor issues a colon prompt (:) to show that it is ready
to accept and execute a command. In text input mode,
on the other hand, there is no prompt and the editor
merely accepts text to be added to the buffer. Text
input mode is initiated by the commands append, insert,
and change, and is terminated by typing a period as the
first and only character on a line.

Line Numbers and Command Syntax
The editor keeps track of lines of text in the buffer

by numbering them consecutively starting with 1 and
renumbering as lines are added or deleted. At any
given time the editor is positioned at one of these
lines; this position is called the current line. Generally,
commands that change the contents of the buffer print
the new current line at the end of their execution.

Most commands can be preceded by one or two
line-number addresses which indicate the lines to be
affected. If one number is given the command
operates on that line only; if two, on an inclUsive range
of lines. Commands that can take line-number
prefixes also assume default prefixes if none are given.
The default assumed by each command is designed to
make it convenient to use in many instances without
any line-number prefix. For the most part, a command

9051

used without a prefix operates on the current line,
though exceptions to this rule should be noted. The
print command by itself, for instance, causes one line,
the current line, to be printed at the terminal.

The summary shows the number of line addresses
that can be prefixed to each command as well as the
defaults assumed if they are omitted. For example,
(.,.j means that up to 2 line-numbers may be given,
and that if none is given the command operates on the
current line. (In the address prefix notation, "."
stands for the current line and" $" stands for the last
line of the buffer.) If no such notation appears, no
line-number prefix may be used.

Some commands take trailing information; only the
more important instances of this are mentioned in the
summary.

Open and Vis ual Modes
Besides command and text input modes, ex and edit

provide on some CRT terminals other modes of edit­
ing, open and visual. In these modes the cursor can be
moved to individual words or characters in a line. The
commands then given are very different from the stan­
dard editor commands; most do not appear on the
screen when typed. An Introduction to Display Editing
with Vi provides a full discussion.

Special Characters
Some characters take on special meanings when

used in context searches and in patterns given to the
substitute command. For edit, these are" A" and "$",
meaning the beginning and end of a line, respectively.
Ex has the following additional special characters:

& • []
To use one of the special characters as its simple
graphic representation rather than with its speCial
meaning, precede it by a backslash (\). The backslash
always has a speCial meaning.

-1-

Text Editing

Name

(.)append

(.,.)change

(.,.)copyaddr

('J') delete

edit file
edit! file

file name

(1, $) global
(1, $) global!

(.) insert

(.,.+ l)join

-2-

EX/Edit Summary

Abbr Description Examples

a. Begins text input mode, adding lines to the buffer :&

c

co

d

e
e!

f

after the line specified. Appending continues until Three lines of text
"." is typed alone at the beginning of a new line, are added to the buffer
followed by a carriage return. Oa places lines at the
beginning of the buffer.

Deletes indicated line(s) and initiates text input
mode to replace them with new text which follows.
New text is terminated the same way as with append.

Places a copy of the specified lines after the line
indicated by addr. The example places a copy of
lines 8 through 12, inclusive, after line 25.

Removes lines from the buffer and prints the
current line after the deletion.

Clears the editor buffer and then copies into it the
named file, which becomes the current file. This is a
way of shifting to a different file without leaving the

after the current line.

:5,6c
Lines 5 and 6 are
deleted and replaced by
these three lines.

:8,12co 25
Last line copied is printed

:13,15d
New current line is printed

:e chl0
No write since last change
:e! chl0

editor. The editor issues a warning message if this "chl0" 3 lines, 62 characters
command is used before saving changes made to the
file already in the buffer; using the form e! overrides
this protective mechanism.

If followed by a name, renames the current file to
name. If used without name, prints the name of the
curren t file.

:f ch9
"ch9" [Modified] 3 lines .. ,
:f
"ch9" [Modified] 3 lines .. ,

g global/pattern/ commands :g/nonsense/d
g! or v Searches the entire buffer (unless a smaller range is

j

specified by line-num ber prefixes) and executes com-
mands on every line with an expression matching
pattern. The second form, abbreviated either g! or
v, executes commands on lines that do not contain
the expression pattern.

Inserts new lines of text immediately before the
speCified line. Differs from append only in that text
is placed before, rather than after, the indicated line.
In other words, Ii has the same effect as Oa.

:li
These lines of text will
be added prior to line 1.

Join lines together, adjusting white space (spaces :2,5j
and tabs) as necessary. Resulting line is printed

9051

Text Editing

Name

(., .) list

(.,.)move addr

(.,.) number

(.)open

preserve

(.,.)print

quit
quit!

(.) read file

recover file

(., .)substitute

Abbr

m

nu

o

pre

p

q
q!

r

rec

s

Description

Prints lines in a more unambiguous way than the
print command does. The end of a line, for example,
is marked with a "$", and tabs printed as "AI".

Moves the specified lines to a position after the line
indicated by addr.

Prints each line preceded by its buffer line number.

Too involved to discuss here, but if you enter open
mode accidentally, press the ESC key followed by q to
get back into normal editor command mode. Edit is
designed to prevent accidental use of the open com­
mand.

Saves a copy of the current buffer contents as
though the system had just crashed. This is for use
in an emergency when a write command has failed
and you don't know how else to save your work.t

Prints the text of line(s).

Ends the editing session. You will receive a warning
if you have changed the buff er since last writing its
contents to the file. In this event you must either
type w to write, or type q! to exit from the editor
without saving your changes.

:01

EX/Edit Summary

Examples

This is line 9$

:12,15m 25
New current line is printed

:nu
10 This is line 10

: preserve
File preserved.

:+2,+3p
The second and third lines
after the current line

:q
No write since last change
:q!
%

Places a copy of file in the buffer after the specified :Or newfile
line. Address 0 is permissible and causes the copy "newfile" 5 lines, 86 characters
of file to be placed at the beginning of the buffer.
The read command does not erase any text already
in the buffer. If no line number is specified, file is
placed after the current line.

Retrieves a copy of the editor buffer after a system
crash, editor crash, phone line disconnection, or
preserve command.

substitute/pattern/replacement/
substitute/ pattern/ repla cement/ gc
Replaces the first occurrence of pattern on a line with
replacement. Including a g after the command
changes all occurrences of pattern on the line. The c
option allows the user to confirm each substitution
before it is made; see the manual for details.

9051

:3p
Line 3 contains a misstake
:s/misstake/mistake/
Line 3 contains a mistake

-3-
t Seek assistance from a consultant as soon as possible after saving a file with the presef'tle command, because the file Is saved on system
storage space Cor only one week.

Text Editing

Name

undo

(1, $) write file
(1, $) write! file

(.)z count

!command

control-d

(.+ 1) <cr>

Ipatternl

II

? pattern?

??

-4-

EX/Edit Summary

Abbr Description Examples

u Reverses the changes made in the buffer by the last :1,15d

w
w!

z

buffer-editing command. Note that this example
contains a notification about the number of lines
affected.

Copies data from the buffer onto a permanent file. If
no file is named, the current filename is used. The
file is automatically created if it does not yet exist.
A response containing the number of lines and char­
acters in the file indicates that the write has been
completed successfully. The editor's built-in protec­
tions against overwriting eXisting files will in some
circumstances inhibit a write. The form w! forces
the write, confirming that an existing file is to be
overwritten.

Prints a screen full of text starting with the line indi­
cated; or, if count is specified, prints that number of
lines. Variants of the z command are described in
the manual.

15 lines deleted
new line number 1 is printed
:u
15 more lines in file ...
old line number 1 is printed

:w
"file7" 64 lines, 1122 characters
:w fileS
"file8" File exists ...
:w! fileS
"fileS" 64 lines, 1122 characters

Executes the remainder of the line after! as a UNIX :!date
command. The buffer is unchanged by this, and Fri Jun 9 12:15:11 PDT 1978
control is returned to the editor when the execution
of command is complete.

Prints the next scroll of text, normally half of a
screen. See the manual for details of the scroll
option.

An address alone followed by a carriage return
causes the line to be printed. A carriage return by
itself prints the line following the current line.

Searches for the next line in which pattern occurs
and prints it.

Repeats the most recent search.

Searches in the reverse direction for pattern.

Repeats the most recent search, moving in the
reverse direction through the buffer.

9051

:<cr>
the line after the current line

:/,This pattern I
This pattern next occurs here.

:11
This pattern also occurs here.

An Introduction to Display Editing with Vi

This document is based on a paper by William Joy and Mark Horton of the University of
California, Berkeley.

PREFACE:: Vi (which stands for "visual" and is pronounced "vee-eye") is a display­
oriented, interactive text editor. When using vi, the screen of your terminal acts as a window
into the file which you are editing. Changes which you make to the flle are refiected in what
you see.

Using vi you can insert new text any place in the file quite easily. Most of the commands
to vi move the cursor around in the file. There are commands to move the cursor forward and
backward in units of characters, words, sentences and paragraphs. A small set of operators are
combined with the motion commands to form operations such as delete word or change para­
graph, in a simple and natural way.

The full command set of the more traditional, line oriented editor ex is available within vi;
it is quite simple to switch between the two modes of editing.

1. Getting started

This document provides a quick introduction to vi. You should be running vi on a file
you are familiar with while you are reading this. The first part of this document (sections 1
through 5) describes the basics of using vi. Some topics of special interest are presented in sec­
tion 6, and some nitty-gritty details of how the editor functions are saved for section 7 to avoid
cluttering the presentation here.

There is also a short appendix here, which gives for each character the special meanings
. which this character has in vi. Attached to this document should be a quick reference card.

This card summarizes the commands of va" in a very compact format. You should have the card
handy while you are learning va".

1.1. Specifying terminal type

Before you can start va" you must tell the system what kind of terminal you are using.
Here is a (necessarily incomplete) list of terminal type codes. If your terminal does not appear
here, you should consult with one of the staff members on your system to find out the code for
your terminal. If your terminal does not have a code, one can be assigned and a description for
the terminal can be created.

Chle Full name Type
2621 HewlettrPackard 2621A/P Intelligent
2645 Hewlett-Packard 264x Intelligent
act4 Microterm ACT-IV Dumb
act5 Microterm ACT-V Dumb
adm3a Lear Siegler ADM-3a Dumb
adm31 Lear Siegler ADM-31 Intelligent
cl00 Human Design Concept 100 In te llige n t
dm1520 D atamedia 1520 Dumb
dm2500 Datamedia 2500 Intelligent
dm3025 D atamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
h1500 Hazeltine 1500 Intelligent
h19 Heathkit h19 Intelligent

The financial support of an IBM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-A03 and MCS78-07291 Is gratefully acknowledged.

9051 -1-

Text Editing

ilOO

mime
tl061
vt52

Infoton 100
Imitating a smart act4
Teleray 1061
Dec VT-52

Intelligent
Intelligent
Intelligent
Dumb

VI

Suppose for example that you have a Hewlett-Packard HP2621A terminal. The code used
by the system for this terminal is '2621'. In this case you can use one of the following com­
mands to tell the system the type of your terminal:

% serenv rrERM 2621

This command works with the shell csh on both version 6 and 7 systems. If you are using the
standard version 7 shell then you should give the commands

$ rrERM=2621
$ export TERM

If you want to arrange to have your terminal type set up automatically when you log in,
you can use the tset program. If you dial in on a mime, but often use hardwired ports, a typical
line for your .login file (if you use csh) would be

serenv TERM 'tset- - d mime'

or for your .profile file (if you use sh)

TERM-"tset - - d mime'

Tset knows which terminals are hardwired to each port and needs only to be told that when you
dial in you are probably on a mime. Tset is usually used to change the erase and kill characters,
too.

1.2. Editing a file

After telling the system which kind of terminal you have, you should make a copy of a
file you are familiar with, and run vi on this file, giving the command

%vi name

replacing name with the name of the copy file you just created. The screen should clear and the
text of your file should appear on the screen. If something else happens refer to the footnote.:j:

1.3. The editor's copy: the buffer

The editor does not directly modify the file which you are editing. Rather, the editor
makes a copy of this file, in a place called the buffer, and remembers the file's name. You do
not affect the contents of the file unless and until you write the changes you make back into the
original file.

* If you gave the system an Incorrect terminal type code then the editor may have just made a mess out of
your screen. This happens when It sends control codes for one kind of termInal to some other kind of
terminal. In this case hit the keys :q (colon and the q key) and then hit the RETURN key. This should get you
back to the command level Interpreter. Figure out what you dId wrong (ask someone else If necessary) and
tryagaln.

Another thing which can go wrong Is that you typed the wrong nle name and the editor Just printed an
error diagnostic. In this case you should follow the above procedure for getting out of the editor, and try
agaln this time spelllng the nle name correctly.

If the editor doesn't seem to respond to the commands which you type here, try sending an Interrupt to It
by hitting the DEL or RUB key on your terminal, and then hitting the :q command again followed by a carriage
return.

-2- 9051

Text Editing VI

1.4. Notational conventions

In our examples, input which must be typed as is will be presented in bold face. Text
which should be replaced with appropriate input will be given in italics. We will represent spe­
cial characters in SMALL CAPITALS.

1.5. Arrow keys

The editor command set is independent of the terminal you are using. On most terminals
with cursor positioning keys, these keys will also work within the editor. If you don't have cur­
sor positioning keys, or even if you do, you can use the h j k and I keys as cursor positioning
keys (these are labelled with arrows on an adm9a). *

(Particular note for the HP2621: on this terminal the function keys must be shifted (ick)
to send to the machine, otherwise they only act locally. Unshifted use will leave the cursor
positioned incorrectly.)

1.B. Special characters: ESC, CR and DEL

Several of these special characters are very important, so be sure to find them right now.
Look on your keyboard for a key labelled ESC or ALT. It should be near the upper left corner of
your terminal. Try hitting this key a few times. The editor will ring the bell to indicate that it
is in a quiescent state.t Partially formed commands are cancelled by ESC, and when you insert
text in the file you end the text insertion with ESC. This key is a fairly harmless one to hit, so
you can just hit it if you don't know what is going on until the editor rings the bell.

The CR or RETURN key is important because it is used to terminate certain commands. It
is usually at the right side of the keyboard, and is the same command used at the end of each
shell command.

Another very useful key is the DEL or RUB key, which generates an interrupt, telling the
editor to stop what it is doing. It is a forceful way of making the editor listen to you, or to
return it to the quiescent state if you don't know or don't like what is going on. Try hitting the
• /' key on your terminal. This key is used when you want to specify a string to be searched for.
The cursor should now be positioned at the bottom line of the terminal after a • /' printed as fa
prompt. You can get the cursor back to the current position by hitting the DEL or RUB key; try
this now.* From now on we will simply refer to hitting the DEL or RUB key as "sending an
interrupt."**

The editor often echoes your commands on the last line of the terminal. If the cursor is
on the first position of this last line, then the editor is performing a computation, such as com­
puting a new position in the file after a search or running a command to reformat part of the
buffer. When this is happening you can stop the editor by sending an interrupt.

1.7. Getting out or the editor

After you have worked with this introduction for a while, and you wish to do something
else, you can give the command ZZ to the editor. This will write the contents of the editor's
buffer back into the file you are editing, if you made any changes, and then quit from the edi­
tor. You can also end an editor session by giving the command :q!CR;t this is a dangerous but
occasionally essential command which ends the editor session and discards all your changes.
You need to know about this command in case you change the editor's copy of a file you wish

* As we wlll see later, h moves back to the left (llke control-h which Is a backspace), j moves down (In the
same column), k moves up (In the same column), and I moves to the right.
t On smart terminals where It Is possible, the editor will quietly flash the screen rather than ringing the bell.
* BackspaCing over the' /' wlll also cancel the search.
** On some systems, this Interruptlblllty comes at a price: you cannot type ahead when the editor Is
computing with the cursor on the bottom llne.
t All commands which read from the last display line can also be terminated with aE'3C as well as an CR.

9051 -3-

Text Editing VI

only to look at. Be very careful not to give this command when you really want to save the
changes you have made.

2. Moving around in the file

2.1. Scrolling and paging

The editor has a number of commands for moving around in the file. The most useful of
these is generated by hitting the control and D keys at the same time, acontrol-D or 'AD'. We
will use this two character notation for referring to these control keys from now on. You may
have a key labelled' A, on your terminal. This key will be represented as '1' in this document;
,A, is exclusively used as part of the' AX' notation for control characters.t

As you know now if you tried hitting AD, this command scrolls down in the file. The D
thus stands for down. Many editor commands are mnemonic and this makes them much easier
to remember. For instance the command to scroll up is AU. Many dumb terminals can't scroll
up at all, in which case hitting AU clears the screen and refreshes it with a line which is farther
back in the file at the top.

If you want to see more of the file below where you are, you can hit AE to expose one
more line at the bottom of the screen, leaving the cursor where it is. tt The command Ay
(which is hopelessly non-mnemonic, but next to AU on the keyboard) exposes one more line at
the top of the screen.

There are other ways to move around in the file; the keys AF and AB t move forward and
backward a page, keeping a couple of lines of continuity between screens so that it is possible to
read through a file using these rather than AD and AU if you wish.

Notice the difference between scrolling and paging. If you are trying to read the text in a
file, hitting AF to move forward a page will leave you only a little context to look back at.
Scrolling on the other hand leaves more context, and happens more smoothly. You can con­
tinue to read the text as scrolling is taking place.

2.2. Searching, goto, and previous context

Another way to position yourself in the file is by giving the editor a string to search for.
Type the character / followed by a string of characters terminated by CR. The editor will posi­
tion the cursor at the next occurrence of this string. Try hitting n to then go to the next
occurrence of this string. The character? will search backwards from where you are, and is
otherwise like j. t

If the search string you give the editor is not present in the file the editor will print a diag­
nostic on the last line of the screen, and the cursor will be returned to its initial position.

If you wish the search to match only at the beginning of a line, begin the search string
with an t. To match only at the end of a line, end the search string with a $. Thus /tsearchCR
will search for the word 'search' at the beginning of a line, and /last$CR searches for the word
'last' at the end of a line.*

t If you don't have a .~, key on your termInal then there is probably a key labelled 'j'; In any case these
characters are one and the same.
tt VersIon 3 only.
t Not available in all v2 editors due to memory constraints.
t These searches will normally wrap around the end of the Hie, and thus Hnd the string even if It Is not on a
line In the direction you search provided it is anywhere else in the Hie. You can disable this wraparound in
scans by giving the command :se nowrapscanCR, or more brieHy :se DOWSCR.
*Actually, the string you give to search for here can be a regular expression In the sense of the editors eX(l)
and etl(1). If you don't wish to learn about thIs yet, you can disable this more general faclUty by doing
:se DOmagiCCR; by putting this command in EXINIT in your environment, you can have this always be In
effect (more about EXINITlater.)

-4- 9051

Text Editing VI

The command G, when preceded by a number will position the cursor at that line in the
file. Thus IG will move the cursor to the first line of the file. If you give G no count, then it
moves to the end of the file.

If you are near the end of the file, and the last line is not at the bottom of the screen, the
editor will place only the character' -, on each remaining line. This indicates that the last line
in the file is on the screen; that is, the' -, lines are past the end of the file.

You can find out the state of the file you are editing by typing a AG. The editor will show
you the name of the file you are editing, the number of the current line, the number of lines in
the buffer, and the percentage of the way through the buffer which you are. Try doing this
now, and remember the number of the line you are on. Give a G command to get to the end
and then another G command to get back where you were.

You can also get back to a previous position by using the command" (two back quotes).
This is often more convenient than G because it requires no advance preparation. Try giving a
G or a search with / or? and then a " to get back to where you were. If you accidentally hit n
or any command which moves you far away from a context of interest, you can quickly get
back by hitting ".

2.3. Moving around on the screen

Now try just moving the cursor around on the screen. If your terminal has arrow keys (4
or 5 keys with arrows going in each direction) try them and convince yourself that they work.
(On certain terminals using v2 editors, they won't.) If you don't have working arrow keys, you
can always use h, j, k, and l. Experienced users of v£ prefer these keys to arrow keys, because
they are usually right underneath their fingers.

Hit the + key. Each time you do, notice that the cursor advances to the next line in the
file, at the first non-white position on the line. The - key is like + but goes the other way.

These are very common keys for moving up and down lines in the file. Notice that if you
go off the bottom or top with these keys then the screen will scroll down (and up if possible) to
bring a line at a time into view. The RETURN key has the same effect as the + key.

V£ also has commands to take you to the top, middle and bottom of the screen. H will
take you to the top (home) line on the screen. Try preceding it with a number as in 3H. This
will take you to the third line on the screen. Many v£ commands take preceding numbers and
do interesting things with them. Try M, which takes you to the middle line on the screen, and
L, which takes you to the last line on the screen. L also takes counts, thus 5L will take you to
the fifth line from the bottom.

2.4. Moving within a line

Now try picking a word on some line on the screen, not the first word on the line. move
the cursor using RETURN and - to be on the line where the word is. Try hitting the w key .

. This will advance the cursor to the next word on the line. Try hitting the b key to back up
words in the line. Also try the e key which advances you to the end of the current word rather
than to the beginning of the next word. Also try SPACE (the space bar) which moves right one
character and the BS (backspace or AH) key which moves left one character. The key h works
as AH does and is useful if you don't have a BS key. (AlSO, as noted just above, I will move to
the right.)

If the line had punctuation in it you may have noticed that that the w and b keys stopped
at each group of punctuation. You can also go back and forwards words without stopping at
punctuation by using Wand B rather than the lower case equivalents. Think of these as bigger
words. Try these on a few lines with punctuation to see how they differ from the lower case w
and b.

The word keys wrap around the end of line, rather than stopping at the end. Try moving
to a word on a line below where you are by repeatedly hitting w.

9051 -5-

Text Editing VI

2.5. Summary

SPACE advance the cursor one position
AB backwards to previous page
AD scrolls down in the file
AE exposes another line at the bottom (v3)
AF forward to next page
AG tell what is going on
AH backspace the cursor
AN next line, same column
AP previous line, same column
AU scrolls up in the file
Ay exposes another line at the top (V3)

+ next line, at the beginning
previous line, at the beginning

/ scan for a following string forwards
? scan backwards
B back a word, ignoring punctuation
G go to specified line, last default
H home screen line
M middle screen line
L last screen line
W forward a word, ignoring punctuation
b back a word
e end of current word
n scan for next instance of / or ? pattern
w word after this word

2.6. View +
If you want to use the editor to look at a file, rather than to make changes, invoke it as

vz'ew instead of vi. This will set the readonly option which will prevent you from accidently
overwriting the file.

3. Making simple changes

3.1. Inserting

One of the most useful commands is the i (insert) command. After you type i, every­
thing you type until you hit ESC is inserted into the file. Try this now; position yourself to
some word in the file and try inserting text before this word. If you are on an dumb terminal it
will seem, for a minute, that some of the characters in your line have been overwritten, but
they will reappear when you hit ESC.

Now try finding a word which can, but does not, end in an's'. Position yourself at this
word and type e (move to end of word), then a for append and then 'SESC' to terminate the
textual insert. This sequence of commands can be used to easily pluralize a word.

Try inserting and appending a few times to make sure you understand how this works; i
placing text to the left of the cursor, a to the right.

It is often the case that you want to add new lines to the file you are editing, before or
after some specific line in the file. Find a line where this makes sense and then give the com­
mand 0 to create a new line after the line you are on, or the command 0 to create a new line
before the line you are on. After you create a new line in this way, text you type up to an ESC

t Not available in ail v2 editors due to memory constraints.

-6- 9051

Text Editing VI

is inserted on the new line.

Many related editor commands are invoked by the same letter key and differ only in that
one is given by a lower case key and the other is given by an upper case key. In these cases,
the upper case key often differs from the lower case key in its sense of direction, with the
upper case key working backward and/or up, while the lower case key moves forward and/or
down.

Whenever you are typing in text, you can give many lines of input or just a few charac­
ters. To type in more than one line of text, hit a RETURN at the middle of your input. A new
line will be created for text, and you can continue to type. If you are on a slow and dumb ter­
minal the editor may choose to wait to redraw the tail of the screen, and will let you type over
the existing screen lines. This avoids the lengthy delay which would occur if the editor
attempted to keep the tail of the screen always up to date. The tail of the screen will be fixed
up, and the missing lines will reappear, when you hit ESC.

While you are inserting new text, you can use the characters you normally use at the sys­
tem command level (usually AH or #) to backspace over the last character which you typed,
and the character which you use to kill input lines (usually @, AX, or AU) to erase the input
you have typed on the current line. t The character AW will erase a whole word and leave you
after the space after the previous word; it is useful for quickly backing up in an insert.

Notice that when you backspace during an insertion the characters you backspace over are
not erased; the cursor moves backwards, and the characters remain on the display. This is
often useful if you are planning to type in something similar. In any case the characters disap­
pear when when you hit ESC; if you want to get rid of them immediately, hit an ESC and then a
again.

Notice also that you can't erase characters which you didn't insert, and that you can't
backspace around the end of a line. If you need to back up to the previous line to make a
correction, just hit ESC and move the cursor back to the previous line. After making the
correction you can return to where you were and use the insert or append command again.

3.2. Making small corrections

You can make small corrections in existing text quite easily. Find a single character
which is wrong or just pick any character. Use the arrow keys to find the character, or get near
the character with the word motion keys and then either backspace (hit the BS key or AH or
even just h) or SPACE (using the space bar) until the cursor is on the character which is wrong.
If the character is not needed then hit the x key; this deletes the character from the file. It is
analogous to the way you x out characters when you make mistakes on a typewriter (except it's
not as messy).

If the character is incorrect, you can replace it with the correct character by giving the
command re, where e is replaced by the correct character. Finally if the character which is
incorrect should be replaced by more than one character, give the command s which substitutes
a string of characters, ending with ESC, for it. If there are a small number of characters which
are wrong you can precede s with a count of the number of characters to be replaced. Counts
are also useful with x to specify the number of characters to be deleted.

3.3. More corrections: operators

You already know almost enough to make changes at a higher level. All you need to
know now is that the d key acts as a delete operator. Try the command dw to delete a word.
Try hitting. a few times. Notice that this repeats the effect of the dw. The command. repeats
the last command which made a change. You can remember it by analogy with an ellipsis' ••• '.

t In fact, the character AH (backspace) always works to erase the last Input character here, regardless of what
your erase character is.

9051 -7-

Text Editing VI

Now try db. This deletes a word backwards, namely the preceding word. Try mPAcE.

This deletes a single character, and is equivalent to the x command.

Another very useful operator is e or change. The command cw thus changes the text of a
single word. You follow it by the replacement text ending with an ESC. Find a word which you
can change to another, and try this now. Notice that the end of the text to be changed was
marked with the character '$' so that you can see this as you are typing in the new material.

3.4. Operating on lines

It is often the case that you want to operate on lines. Find a line which you want to

delete, and type dd, the d operator twice. This will delete the line. If you are on a dumb ter­
minal, the editor may just erase the line on the screen, replacing it with a line with only an @

on it. This line does not correspond to any line in your file, but only acts as a place holder. It
helps to avoid a lengthy redraw of the rest of the screen which would be necessary to close up
the hole created by the deletion on a terminal without a delete line capability.

Try repeating the e operator twice; this will change a whole line, erasing its previous con­
tents and replacing them with text you type up to an ESC.t

You can delete or change more than one line by preceding the dd or ee with a count, Le.
5dd deletes 5 lines. You can also give a command like dL to delete all the lines up to and
including the last line on the screen, or d3L to delete through the third from the bottom line.
Try some commands like this now.* Notice that the editor lets you know when you change a

. large number of lines so that you can see the extent of the change. The editor will also always
tell you when a change you make affects text which you cannot see.

3.5. Undoing

Now suppose that the last change which you made was incorrect; you could use the insert,
delete and append commands to put the correct material back. However, since it is often the
case that we regret a change or make a change incorrectly, the editor provides a u (undo) com­
mand to reverse the last change which you made. Try this a few times, and give it twice in a
row to notice that an u also undoes a u.

The undo command lets you reverse only a single change. After you make a number of
changes to a line, you may decide that you would rather have the original state of the line back.
The U command restores the current line to the state before you started changing it.

You can recover text which you delete, even if undo will not bring it back; see the section
on recovering lost text below.

3.6. Summary

erase
kill

o
U
a
e

advance the cursor one position
backspace the cursor
erase a word during an insert
your erase (usually ~H or #), erases a character during an insert
your kill (usually @, ~X, or ~U), kills the insert on this line
repeats the changing command
opens and inputs new lines, above the current
undoes the changes you made to the current line
appends text after the cursor
changes the object you specify to the following text

t The command S Is a convenient synonym for for ce, by analogy with s. Think of S as a substitute on
lInes, while s Is a su bstltute on characters.
* One subtle point here Involves using the / search after a d. This wlll normally delete characters from the
current position to the point of the match. If what Is desired Is to delete whole lInes Including the two pOints,
give the pattern as /pat/+O, a lIne address.

-8- 9051

Text Editing

d

o
u

deletes the object you specify
insertB text before the cursor
opens and inputs new lines, below the current
undoes the last change

4. Moving about; rearranging and duplicating text

4.1. Low level character motions

VI

Now move the cursor to a line where there is a punctuation or a bracketing character such
as a parenthesis or a comma or period. Try the command Ix where x is this character. This
command finds the next x character to the right of the cursor in the current line. Try then hit­
ting a ;, which finds the next instance of the same character. By using the I command and then
a sequence of ;'s you can often get to a particular place in a line much faster than with a
sequence of word motions or SPACES. There is also a F command, which is like I, but searches
backward. The; command repeatB F also.

When you are operating on the text in a line it is often desirable to deal with the charac­
ters up to, but not including, the first instance of a character. Try dfx for some x now and
notice that the x character is deleted. Undo this with u and then try dtx; the t here stands for
to, i.e. delete up to the next x, but not the x. The command T is the reverse of t.

When working with the text of a single line, an t moves the cursor to the first non-white
position on the line, and a $ moves it to the end of the line. Thus $a will append new text at
the end of the current line.

Your file may have tab (AI) characters in it. These characters are represented as a number
of spaces expanding to a tab stop, where tab stops are every 8 positions.* When the cursor is at
a tab, it sitB on the last of the several spaces which represent that tab. Try moving the cursor
back and forth over tabs so you understand how this works.

On rare occasions, your file may have nonprinting characters in it. These characters are
displayed in the same way they are represented in this document, that is with a two character
code, the first character of which is 'A'. On the screen non-printing characters resemble a ,A,

character adjacent to another, but spacing or backspacing over the character will reveal that the
two characters are, like the spaces representing a tab character, a single character.

The editor sometimes discards control characters, depending on the character and the set­
ting of the beautify option, if you attempt to insert them in your file. You can get a control
character in the file by beginning an insert and then typing a AV before the control character.
The AV quotes the following character, causing it to be inserted directly into the file.

4.2. Higher level text objects

In working with a document it is often advantageous to work in terms of sentences, para­
graphs, and sections. The operations (and) move to the beginning of the previous and next
sentences respectively. Thus the command d) will delete the rest of the current sentence; like­

. wise d(will delete the previous sentence if you are at the beginning of the current sentence, or
the current sentence up to where you are if you are not at the beginning of the current sen­
tence.

A sentence is defined to end at a '.', '!' or '1' which is followed by either the end of a
line, or by two spaces. Any number of closing ')', ']', '"' and ,.., characters may appear after
the '.', '!' or '?' before the spaces or end of line.

The operations { and } move over paragraphs and the operations [[and]] move over sec­
tions·t

* This Is settable by a command of the form :se ts zffi, where z Is 4 to set tabstops every four columns.
This has effect on the screen representation within the editor.
t The [(and]) operations require the operation character to be doubled because the,Y can move the cursor far

9051 -9-

Text Editing VI

A paragraph begins after each empty line, and also at each of a set of paragraph macros,
specified by the pairs of characters in the definition of the string valued option paragraphs. The
default setting for this option defines the paragraph macros of the - ms and - mm macro pack­
ages, i.e. the '.IP', '.LP', '.PP' and '.QP', '.P' and' .LI' macros.:f: Each paragraph boundary is
also a sentence boundary. The sentence and paragraph commands can be given counts to
operate over groups of sentences and paragraphs.

Sections in the editor begin after each macro in the sections option, normally '.NH', '.SH',
'.H' and '.HU', and each line with a formfeed AL in the first column. Section boundaries are
always line and paragraph boundaries also.

Try experimenting with the sentence and paragraph commands until you are sure how
they work. If you have a large document, try looking through it using the section commands.
The section commands interpret a preceding count as a different window size in which to
redraw the screen at the new location, and this window size is the base size for newly drawn
windows until another size is specified. This is very useful if you are on a slow terminal and
are looking for a particular section. You can give the first section command a small count to
then see each successive section heading in a small window.

4.3. Rearranging and duplicating text

The editor has a single unnamed buffer where the last deleted or changed away text is
saved, and a set of named buffers a- z which you can use to save copies of text and to move
text around in your file and between files.

The operator y yanks a copy of the object which follows into the unnamed buffer. If pre­
ceded by a buffer name, "xy, where x here is replaced by a letter a- z, it places the text in the
named buffer. The text can then be put back in the file with the commands p and P; p puts
the text after or below the cursor, while P puts the text before or above the cursor.

If the text which you yank forms a part of a line, or is an object such as a sentence which
partially spans more than one line, then when you put the text back, it will be placed after the
cursor (or before if you use P). If the yanked text forms whole lines, they will be put back as
whole lines, without changing the current line. In this case, the put acts much like a 0 or 0
command.

Try the command YF. This makes a copy of the current line and leaves you on this copy,
which is placed before the current line. The command Y is a convenient abbreviation for yy.
The command Yp will also make a copy of the current line, and place it after the current line.
You can give Y a count of lines to yank, and thus duplicate several lines; try 3YP.

To move text within the buffer, you need to delete it in one place, and put it back in
another. You can precede a delete operation by the name of a buffer in which the text is to be
stored as in "a5dd deleting 5 lines into the named buffer a. You can then move the cursor to
the eventual resting place of the these lines and do a "ap or "aP to put them back. In fact, you
can switch and edit another file before you put the lines back, by giving a command of the form
:e nameCR where name is the name of the other file you want to edit. You will have to write
back the contents of the current editor buffer (or discard them) if you have made changes
before the editor will let you switch to the other file. An ordinary delete command saves the
text in the unnamed buffer, so that an ordinary put can move it elsewhere. However, the
unnamed buffer is lost when you change files, so to move text from one file to another you
should use aJ Iinamed buffer.

from where It currently Is. While It Is easy to get back wIth the command ", these commands would stlll be
frustrating If they were easy to hit accidentally.
t You can easily change or extend this set of macros by assigning a different string to the paragraphs option
In your EXINIT. See section 6.2 for details. The' .bp' dIrective Is also considered to start a paragraph.

-10- 9051

Text Editing

4.4. Summary.

t
$
)
}
]]
(
{
[[
fx
p
y
tx
Fx
P
Tx

first non-white on line
end of line
forward sentence
forward paragraph
forward section
backward sentence
backward paragraph
backward section
find x forward in line
put text back, after cursor or below current line
yank operator, for copies and moves
up to x forward, for operators
f backward in line
put text back, before cursor or above current line
t backward in line

5. High level commands

5.1. Writing, quitting, editing new files

VI

So far we have seen how to enter vi and to write out our file using either ZZ or :WCR.

The first exits from the editor, (writing if changes were made), the second writes and stays in
the editor.

If you have changed the editor's copy of the file but do not wish to save your changes,
either because you messed up the file or decided that the changes are not an improvement to
the file, then you can give the command :q!CR to quit from the editor without writing the
changes. You can also reedit the same file (starting over) by giving the command :e!cR. These
commands should be used only rarely, and with caution, as it is not possible to recover the
changes you have made after you discard them in this manner.

You can edit a different file without leaving the editor by giving the command :e nameCR .
. If you have not written out your file before you try to do this, then the editor will tell you this,
and delay editing the other file. You can then give the command :WCR to save your work and
then the :e nameCR command again, or carefully give the command :e! namecR, which edits
the other file discarding the changes you have made to the current file. To have the editor
automatically save changes, include set a'Utowrite in your EXINIT, and use :n instead of :e.

5.2. Escaping to a shell

You can get to a shell to execute a single command by giving a vi command of the form
:! cmdcR. The system will run the single command cmd and when the command finishes, the
editor will ask you to hit a RETURN to continue. When you have finished looking at the output
on the screen, you should hit RETURN and the editor will clear the screen and redraw it. You
can then continue editing. You can also give another : command when it asks you for a
RETURN; in this case the screen will not be redrawn.

If you wish to execute more than one command in the shell, then you can give the com­
mand :shcR. This will give you a new shell, and when you finish with the shell, ending it by
typing a AD, the editor will clear the screen and continue.

On systems which support it, AZ will suspend the editor and return to the (top level)
shell. When the editor is resumed, the screen will be redrawn.

9051 -11-

Text Editing VI

5.3. Marking and returning

The command returned to the previous place after a motion of the cursor by a com­
mand such as I, 1 or G. You can also mark lines in the file with single letter tags and return to
these marks later by naming the tags. Try marking the current line with the command mx,
where you should pick some letter for x, say 'a'. Then move the cursor to a different line (any
way you like) and hit "a. The cursor will return to the place which you marked. Marks last
only until you edit another file.

When using operators such as d and referring to marked lines, it is often desirable to
delete whole lines rather than deleting to the exact position in the line marked by m. In this
case you can use the form "x rather than "x. Used without an operator, "x will move to the first
non-white character of the marked line; similarly n moves to the first non-white character of
the line containing the previous context mark

5.4. Acijusting the screen

If the screen image is messed up because of a transmission error to your terminal, or
because some program other than the editor wrote output to your terminal, you can hit a AL,
the ASCII form-feed character, to cause the screen to be refreshed.

On a dumb terminal, if there are @ lines in the middle of the screen as a result of line
deletion, you may get rid of these lines by typing AR to cause the editor to retype the screen,
closing up these holes.

Finally, if you wish to place a certain line on the screen at the top middle or bottom of
the screen, you can position the cursor to that line, and then give a z command. You should
follow the z command with a RETURN if you want the line to appear at the top of the window, a
• if you want it at the center, or a - if you want it at the bottom. (z., Z-, and z+ are not avail­
able on all v2 editors.)

6. Special topics

6.1. Editing on slow terminals

When you are on a slow terminal, it is important to limit the amount of output which is
generated to your screen so that you will not suffer long delays, waiting for the screen to be
refreshed. We have already pointed out how the editor optimizes the updating of the screen

. during insertions on dumb terminals to limit the delays, and how the editor erases lines to @

when they are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by the s/owopen option. You
can force the editor to use this mode even on faster terminals by giving the command :se
SIOWCR. If your system is sluggish this helps lessen the amount of output coming to your ter­
minal. You can disable this option by :se noslowcR.

The editor can simulate an intelligent terminal on a dumb one. Try giving the command
:se redrawcR. This simulation generates a great deal of output and is generally tolerable only
on lightly loaded systems and fast terminals. You can disable this by giving the command
:se noredrawcR.

The editor also makes editing more pleasant at low speed by starting editing in a small
window, and letting the window expand as you edit. This works particularly well on intelligent
terminals. The editor can expand the window easily when you insert in the middle of the
screen on these terminals. If possible, try the editor on an intelligent terminal to see how this
works.

You can control the size of the window which is redrawn each time the screen is cleared
by giving window sizes as argument to the commands which cause large screen motions:

: /1 [[]] .. ,.
Thus if you are searching for a particular instance of a common string in a file you can precede

-12- 9051

Text Editing VI

the first search command by a small number, say 3, and the editor will draw three line windows
around each instance of the string which it locates.

You can easily expand or contract the window, placing the current line as you choose, by
giving a number on a z command, after the z and before the following RETURN, • or -. Thus
the command z5. redraws the screen with the current line in the center of a five line window.t

If the editor is redrawing or otherwise updating large portions of the display, you can
interrupt this updating by hitting a DEL or RUB as usual. If you do this you may partially con­
fuse the editor about what is displayed on the screen. You can still edit the text on the screen

. if you wish; clear up the confusion by hitting a AL; or move or search again, ignoring the
current state of the display.

See section 7.8 on open mode for another way to use the vi command set on slow termi-
nals.

6.2. Options, set, and editor startup files

The editor has a set of options, some of which have been mentioned above. The most
useful options are given in the following table.

Name

autoindent
autowrite
ignorecase
lisp
list
magic
number
paragraphs
redraw
sections
shiftwidth
showmatch
slowopen
term

Default

noai
noaw
noic
nolisp
nolist
nomagic
nonu
para=IPLPPPQPbpP LI
nore
sect=NHSHH HU
sw=8
nosm
slow
dumb

Desai ption

Supply indentation automatically
Automatic write before :n, :ta, At, !
Ignore case in searching
({) } commands deal with S-expressions
Tabs print as AI; end of lines marked with $
The characters . [and * are special in scans
Lines are displayed prefixed with line numbers
Macro names which start paragraphs
Simulate a smart terminal on a dumb one
Macro names which start new sections
Shift distance for <, > and input AD and AT
Show matching (or { as) or } is typed
Postpone display updates during inserts
The kind of terminal you are using.

The options are of three kinds: numeric options, string options, and toggle options. You
can set numeric and string options by a statement of the form

set opt=val

and toggle options can be set or unset by statements of one of the forms

set opt
set noopt

These statements can be placed in your EXINIT in your environment, or given while you are
running vi by preceding them with a : and following them with a CR.

You can get a list of all options which you have changed by the command :setcR, or the
value of a single option by the command :set opt! CR. A list of all possible options and their
values is generated by :set alIcR. Set can be abbreviated se. Multiple options can be placed on
one line, e.g. :se ai aw nUCR.

Options set by the set command only last while you stay in the editor. It is common to
want to have certain options set whenever you use the editor. This can be accomplished by
creating a list of ex commandst which are to be run every time you start up ex, edit, or vi. A

t Note that the command liz. has anentirely different effect, placing line 5 in the center of a new window.
t All commands which start with: are ex commands.

9051 -13-

Text Editing VI

typical list includes a set command, and possibly a few map commands (on v3 editors). Since
it is advisable to get these commands on one line, they can be separated with the I character, for
example:

set ai aw terse PtaP @ ddPtap # x

which sets the options autoindent, autowrite, terse, (the set command), makes @ delete a line,
(the first map), and makes # delete a character, (the second map). (See section 6.9 for a
description of the map command, which only works in version 3.) This string should be placed
in the variable EXINIT in your environment. If you use csh, put this line in the file .Iog£n in
your home directory:

setenv EXINIT set ai aw tersepmp @ ddPtap # x'

If you use the standard v7 shell, put these lines in the file .profile in your home directory:

EXINIT set ai aw tersepmp @ ddPtap # x'
export EXINIT

On a version 6 system, the concept of environments is not present. In this case, put the line in
the file. exrc in your home directory.

set ai aw tersePtap @ ddpmp # x

Of course, the particulars of the line would depend on which options you wanted to set.

6.3. Recovering lost lines

You might have a serious problem if you delete a number of lines and then regret that
they were deleted. Despair not, the editor saves the last 9 deleted blocks of text in a set of
numbered registers 1- 9. You can get the n'th previous deleted text back in your file by the
command "np. The" here says that a buffer name is to follow, n is the number of the buffer
you wish to try (use the number 1 for now), and p is the put command, which puts text in the
buffer after the cursor. If this doesn't bring back the text you wanted, hit u to undo this and
then • (period) to repeat the put command. In general the • command will repeat the last
change you made. As a special case, when the last command refers to a numbered text buffer,
the • command increments the number of the buffer before repeating the command. Thus a
sequence of the form

"lpu.u.u.

will, if repeated long enough, show you all the deleted text which has been saved for you. You
can omit the u commands here to gather up all this text in the buffer, or stop after any • com­
mand to keep just the then recovered text. The command P can also be used rather than p to
put the recovered text before rather than after the cursor.

6.4. Recovering lost files

If the system crashes, you can recover the work you were doing to within a few changes.
You will normally receive mail when you next login giving you the name of the file which has
been saved for you. You should then change to the directory where you were when the system
crashed and give a command of the form:

%vi - r name

replacing name with the name of the file which you were editing. This will recover your work
to a poin t near where you left off. t

t In rare cases, some of the lines of the Ole may be lost. The editor will give you the numbers of these lines
and the text of the lines wlll be replaced by the string 'LOST'. These lInes will almost always be among the
last few which you changed. You can either choose to discard the changes which you made (If they are easy
to remake) or to replace the few lost lines by hand.

-14- 9051

Text Editing

You can get a listing of the files which are saved for you by giving the command:

%vi - r

VI

If there is more than one instance of a particular file saved, the editor gives you the newest
instance each time you recover it. You can thus get an older saved copy back by first recover­
ing the newer copies.

For this feature to work, vi must be correctly installed by a super user on your system,
and the mail program must exist to receive mail. The invocation" vz' -r" will not always list all
saved files, but they can be recovered even if they are not listed.

6.5. Continuous text input

When you are typing in large amounts of text it is convenient to have lines broken near
the right margin automatically. You can cause this to happen by giving the command :se
wm IOCR. This causes all lines to be broken at a space at least 10 columns from the right
hand edge of the screen.*

If the editor breaks an input line and you wish to put it back together you can tell it to
join the lines with J. You can give J a count of the number of lines to be joined as in 3J to
join 3 lines. The editor supplies white space, if appropriate, at the juncture of the joined lines,
and leaves the cursor at this white space. You can kill the white space with x if you don't want
it~

6.6. Features tor editing programs

The editor has a number of commands for editing programs. The thing that most distin­
guishes editing of programs from editing of text is the desirability of maintaining an indented
structure to the body of the program. The editor has a auto£ndent facility for helping you gen­
erate correctly indented programs.

To enable this facility you can give the command :se ;UCR. Now try opening a new line
with 0 and type some characters on the line after a few tabs. If you now start another line,
notice that the editor supplies white space at the beginning of the line to line it up with the pre­
vious line. You cannot backspace over this indentation, but you can use AD key to backtab
over the supplied indentation.

Each time you type AD you back up one position, normally to an 8 column boundary.
This amount is settable; the editor has an option called shiftwz'dth which you can set to change
this value. Try giving the command :se sw=4CR and then experimenting withautoindent
again.

For shifting lines in the program left and right, there are operators < and >. These shift
the lines you specify right or left by one shiftwz'dth. Try < < and> > which shift one line left
or right, and <L and >L shifting the rest of the display left and right.

If you have a complicated expression and wish to see how the parentheses match, put the
cursor at a left or right parenthesis and hit % This will show you the matching parenthesis.
This works also for braces { and }, and brackets [and] .

If you are editing C programs, you can use the [[and]] keys to advance or retreat to a
line starting with a {, i.e. a function declaration at a time. When]] is used with an operator it
stops after a line which starts with }; this is sometimes useful with y]].

* This feature Is not avallable on some v2 editors. In v2 editors where It Is avallable, the break can only
occur to the right of the speclfied boundary Instead of to the left.

9051 -15-

Text Editing VI

6.7. Filtering portions of the buffer

You can run system commands over portions of the buffer using the operator!. You can
use this to sort lines in the buffer, or to reformat portions of the buffer with a pretty-printer.
Try typing in a list of random words, one per line and ending them with a blank line. Back up
to the beginning of the list, and then give the command ! }sorteR. This says to sort the next
paragraph of material, and the blank line ends a paragraph.

6.8. Commands for editing LIspt

If you are editing a LISP program you should set the option lisp by doing :se IiSpeR. This
changes the (and) commands to move backward and forward over s-expressions. The { and}
commands are like (and) but don't stop at atoms. Thes~ can be used to skip to the next list,
or through a comment quickly.

The autoindent option works differently for LISP, supplying indent to align at the first argu­
ment to the last open list. If there is no such argument then the indent is two spaces more
than the last level.

There is another option which is useful for typing in LISP, the showmatch option. Try set­
ting it with :se smCR and then try typing a '(' some words and then a ')'. Notice that the cur­
sor shows the position of the '(' which matches the ')' briefly. This happens only if the match­
ing '(' is on the screen, and the cursor stays there for at most one second.

The editor also has an operator to realign existing lines as though they had been typed in
with lisp and autoindent set. This is the = operator. Try the command %at the beginning of
a function. This will realign all the lines of the function declaration.

When you are editing LISP" the [[and]] advance and retreat to lines beginning with a (,
and are useful for dealing with entire function definitions.

6.9. Ma.erost

Vi has a parameterless macro facility, which lets you set it up so that when you hit a single
keystroke, the editor will act as though you had hit some longer sequence of keys. You can set
this up if you find yourself typing the same sequence of commands repeatedly.

Briefly, there are two flavors of macros:

a) Ones where you put the macro body in a buffer register, say x. You can then type @ x to
invoke the macro. The @ may be followed by another @ to repeat the last macro.

b) You can use the map command from vi (typically in your EXINI'I) with a command of the
form:

:map lhs rhscR

mapping Ihs into rhs. There are restrictions: Ihs should be one keystroke (either 1 charac­
ter or one function key) since it must be entered within one second (unless noi£meout is
set, in which case you can type it as slowly as you wish, and vi will wait for you to finish it
before it echoes anything). The lhs can be no longer than 10 characters, the rhs no longer
than 100. To get a space, tab or newline into lhs or rhs you should escape them with a AV.
(It may be necessary to double the AV if the map command is given inside v~ rather than
in ex.) Spaces and tabs inside the rhs need not be escaped.

Thus to make the q key write and exit the editor, you can give the command

:map q :wqAVAVCR CR

which means that whenever you type q, it will be as though you had typed the four characters
:wqCR. A AV'S is needed because without it the CR would end the : command, rather than

t The LISP features are not available on some v2 edItors due to memory constraints.
* The macro feature is avaIlable only In versIon 3 edItors.

-16- 9051

Text Editing VI

becoming part of the map definition. There are two AV'S because from within vi, two AV'S must
be typed to get one. The first CR is part of the rhs, the second terminates the: command.

Macros can be deleted with

unmap lhs

If the Ihs of a macro is "#0" through "#9", this maps the particular function key instead
of the 2 character "#" sequence. So that terminals without function keys can access such
definitions, the form "#x'" will mean function key x on all terminals (and need not be typed
within one second.) The character "#" can be changed by using a macro in the usual way:

to use tab, for example. (This won't affect the map command, which still uses #, but just the
invocation from visual mode.

The undo command reverses an entire macro call as a unit, if it made any changes.

Placing a 'l' after the word map causes the mapping to apply to input mode, rather than
command mode. Thus, to arrange for AT to be the same as 4 spaces in input mode, you can
type:

where)S is a blank. The AV is necessary to prevent the blanks from being taken as white space
between the Ihs and rhs.

7. Word Abbreviations tt
A feature similar to macros in input mode is word abbreviation. This allows you to type a

short word and have it expanded into a longer word or words. The commands are :abbreviate
and :unabbreviate (:ab and :una) and have the same syntax as : map. For example:

:ab eecs Electrical Engineering and Computer Sciences

causes the word 'eecs' to always be changed into the phrase 'Electrical Engineering and Com­
puter Sciences'. Word abbreviation is different from macros in that only whole words are
affected. If 'eecs' were typed as part of a larger word, it would be left alone. Also, the partial
word is echoed as it is typed. There is no need for an abbreviation to be a single keystroke, as
it should be with a macro.

7.1. Abbreviations

The editor has a number of short commands which abbreviate longer commands which we
have introduced here. You can find these commands easily on the quick reference card. They
often save a bit of typing and you can learn them as convenient.

8. Nitty-gritty details

8.1. Line representation in the display

The editor folds long logical lines onto many physical lines in the display. Commands
which advance lines advance logical lines and will skip over all the segments of a line in one
motion. The command \ moves the cursor to a specific column, and may be useful for getting
near the middle of a long line to split it in half. Try 80\ on a line which is more than 80
columns long. t

The editor only puts full lines on the display; if there is not enough room on the display
to fit a logical line, the editor leaves the physical line empty, placing only an @ on the line as a

U VersIon 3 only.
t You can make long Hnes very easUy by usIng J to joIn together short Hnes.

9051 -17-

Text Editing VI

place holder. When you delete lines on a dumb terminal, the editor will often just clear the
lines to @ to save time (rather than rewriting the rest of the screen.) You can always maximize
the information on the screen by giving the AR command.

If you wish, you can have the editor place line numbers before each line on the display.
Give the command :se nUCR to enable this, and the command :se nonucR to turn it off. You
can have tabs represented as AI and the ends of lines indicated with '$' by giving the command
:se listeR; :se nolisteR turns this off.

Finally, lines consisting of only the character' -, ate displayed when the last line in the file
is in the middle of the screen. These represent physical lines which are past the logical end of
file.

8.2. Counts

Most vi commands will use a preceding count to affect their behavior in some way. The
following table gives the common ways in which the counts are used:

:/7 [[]]
AD AU

zGI

new window size
scroll amount
line/column number
repeat effect most of the rest

The editor maintains a notion of the current default window size. On terminals which run
at speeds greater than 1200 baud the editor uses the full terminal screen. On terminals which
are slower than 1200 baud (most dialup lines are in this group) the editor uses 8 lines as the
default window size. At 1200 baud the default is 16 lines.

This size is the size used when the editor clears and refills the screen after a search or
other motion moves far from the edge of the current window. The commands which take a
new window size as count all often cause the screen to be redrawn. If you anticipate this, but
do not need as large a window as you are currently using, you may wish to change the screen
size by specifying the new size before these commands. In any case, the number of lines used
on the screen will expand if you move off the top with a - or similar command or off the bot­
tom with a command such as RETURN or AD. The window will revert to the last specified size
the next time it is cleared and refilled. t

The scroll commands AD and AU likewise remember the amount of scroll last specified,
using half the basic window size initially. The simple insert commands use a count to specify a
repetition of the inserted text. Thus 10a+- - - - ESC will insert a grid-like string of text. A
few commands also use a preceding count as a line or column number.

Except for a few commands which ignore any counts (such as AR), the rest of the editor
commands use a count to indicate a simple repetition of their effect. Thus 5w advances five
words on the current line, while 5RETURN advances five lines. A very useful instance of a

. count as a repetition is a count given to the • command, which repeats the last changing com­
mand. If you do dw and then 3., you will delete first one and then three words. You can then
delete two more words with 2 •.

8.3. More file manipulation eommancE

The following table lists the file manipulation commands which you can use when you are
in vi. All of these commands are followed by a CR or ESC. The most basic commands are :w
and :e. A normal editing session on a single file will end with a ZZ command. If you are edit­
ing for a long period of time you can give :w commands occasionally after major amounts of
editing, and then finish with a ZZ. When you edit more than one file, you can finish with one

t But not by a AL whIch Just redraws the screen as It Is.

-18- 9051

Text Editing

:w
:wq
:x
:e name
:e!
:e + name
:e +n
:e #
:w name
:w! name
: x, '!fW name
:r name
:r ! cmd
:n
:n!
:n args
:ta tag

write back changes
write and quit
write (if necessary) and quit (same as ZZ).
edit file name
reedit, discarding changes
edit, starting at end
edit, starting at line n
edit alternate file
write file name
overwrite file name
write lines x through y to name
read file name into buffer
read output of cmd into buffer
edit next file in argument list
edit next file, discarding changes to current
specify new argument list
edit file containing tag ta g, at tag

VI

with a :w and start editing a new file by giving a :e command, or set autowrite and use :n
<file> .

If you make changes to the editor's copy of a file, but do not wish to write them back,
then you must give an ! after the command you would otherwise use; this forces the editor to
discard any changes you have made. Use this carefully.

The :e command can be given a + argument to start at the end of the file, or a + n argu­
ment to start at line n. In actuality, n may be any editor command not containing a space, use­
fully a scan like + /pat or +? pat. In forming new names to the e command, you can use the
character %which is replaced by the current file name, or the character # which is replaced by
the alternate file name. The alternate file name is generally the last name you typed other than
the current file. Thus if you try to do a :e and get a diagnostic that you haven't written the file,
you can give a :w command and then a :e # command to redo the previous :e.

You can write part of the buffer to a file by finding out the lines that bound the range to
be written using AG, and giving these numbers after the : and before the w, separated by ,'s.
You can also mark these lines with m and then use an address of the form 'x,'y on the w com­
mand here.

You can read another file into the buffer after the current line by using the :r command.
You can similarly read in the output from a command, just use! cmd instead of a file name.

If you wish to edit a set of files in succession, you can give all the names on the command
line, and then edit each one in turn using the command :n. It is also possible to respecify the
list of files to be edited by giving the :n command a list of file names, or a pattern to be
expanded as you would have given it on the initial vi command.

If you are editing large programs, you will find the :ta command very useful. It utilizes a
database of function names and their locations, which can be created by programs such as
ctags, to quickly find a function whose name you give. If the :ta command will require the edi­
tor to switch files, then you must :w or abandon any changes before switching. You can repeat
the :ta command without any arguments to look for the same tag again. (The tag feature is not
available in some v2 editors.)

8.4. More about searching for strinw;

When you are searching for strings in the file with / and? , the editor normally places you
at the next or previous occurrence of the string. If you are using an operator such as d, c or y,
then you may well wish to affect lines up to the line before the line containing the pattern.

9051 -19-

Text Editing VI

You can give a search of the form /pat/- n to refer to the n'th line before the next line con­
taining pat, or you can use + instead of - to refer to the lines after the one containing pat. If
you don't give a line offset, then the editor will affect characters up to the match place, rather
than whole lines; thus use "+ 0" to affect to the line which matches.

You can have the editor ignore the case of words in the searches it does by giving the
command :se iecR. The command :se noiecR turns this off.

Strings given to searches may actually be regular expressions. If you do not want or need
this facility, you should

set nomagic

in your EXINIT. In this case, only the characters t and $ are special in patterns. The character
\ is also then special (as it is most everywhere in the system), and may be used to get at the an
extended pattern matching facility. It is also necessary to use a \ before a / in a forward scan
or a ? in a backward scan, in any case. The following table gives the extended forms when
magie is set.

t at beginning of pattern, matches beginning of line
$ at end of pattern, matches end of line

matches any character

\<
\>
[stfj
[t stfj
[x- 1/]

*

matches the beginning of a word
matches the end of a word
matches any single character in str
matches any single character not in str
matches any character between x and 1/
matches any number of the preceding pattern

If you use nomagie mode, then the • [and * primitives are given with a preceding \.

8.5. More about input mode

There are a number of characters which you can use to make corrections during input
mode. These are summarized in the following table.

erase
kill

\
ESC

DEL
CR
AD
OAD

rD
AV

deletes the last input character
deletes the last input word, defined as by b
your erase character, same as AB
your kill character, deletes the input on this line
escapes a following AH and your erase and kill
ends an insertion
interrupts an insertion, terminating it abnormally
starts a new line
backtabs over autoindent
kills all the autoindent
same as OAD, but restores indent next line
quotes the next non-printing character into the file

The most usual way of making corrections to input is by typing AH to correct a single
character, or by typing one or more AWS to back over incorrect words. If you use # as your
erase character in the normal system, it will work like AB.

Your system kill character, normally @, AX or AU, will erase all the input you have given
on the current line. In general, you can neither erase input back around a line boundary nor
can you erase characters which you did not insert with this insertion command. To make
corrections on the previous line after a new line has been started you can hit ESC to end the
insertion, move over and make the correction, and then return to where you were to continue.

-20- 9051

Text Editing VI

The command A which appends at the end of the current line is often useful for continuing.

If you wish to type in your erase or kill character (say # or @) then you must precede it
with a \. just as you would do at the normal system command level. A more general way of
typing non-printing characters into the file is to precede them with a AV. The AV echoes as a 1
character on which the cursor rests.' This indicates that the editor expects you to type a control
character. In fact you may type any character and it will be inserted into the file at that point.*

If you are using auto":ndent you can backtab over the indent which it supplies by typing a
AD. This backs up to a shiftwidth boundary. This only works immediately after the supplied
autoindent.

When you are using autoindent you may wish to place a label at the left margin of a line.
The way to do this easily is to type 1 and then AD. The editor will move the cursor to the left
margin for one line, and restore the previous indent on the next. You can also type a 0 fol­
lowed immediately by a AD if you wish to kill all the indent and not have it come back on the
next line.

8.6. Upper ease only terminals

If your terminal has only upper case, you can still use vi by using the normal system con­
vention for typing on such a terminal. Characters which you normally type are converted to
lower case, and you can type upper case letters by preceding them with a \. The characters { - }
I' are not available on such terminals, but you can escape them as \(\1 \) \! V. These charac­
ters are represented on the display in the same way they are typed.:f: :f:

8.7. Vi and ex

Vi is actually one mode of editing within the editor ex. When you are running vi you can
escape to the line oriented editor of ex by giving the command Q. All of the : commands
which were introduced above are available in ex. Likewise, most ex commands can be invoked
from vi using:. Just give them without the: and follow them with a CR.

In rare instances, an internal error may occur in vi. In this case you will get a diagnostic
and be left in the command mode of ex. You can then save your work and quit if you wish by
giving a command x after the: which ex prompts you with, or you can reenter vi by giving ex a
vi command.

There are a number of things which you can do more easily in ex than in vi. Systematic
changes in line oriented material are particularly easy. You can read the advanced editing docu­
ments for the editor ed to find out a lot more about this style of editing. Experienced users
often mix their use of ex command mode and vi command mode to speed the work they are
doing.

8.8. Open mode: vi on hardcopy terminals and "glass tty's" :f:

If you are on a hardcopy terminal or a terminal which does not have a cursor which can
move off the bottom line, you can still use the command set of vi, but in a different mode.
When you give a vi command, the editor will tell you that it is using open mode. This name
comes from the open command in ex, which is used to get into the same mode.

The only difference between visual mode and open mode is the way in which the text is

* This is not quite true. The implementation of the editor does not allow the NULL (A@) character to appear
in Oles. Also the LF (llnefeed or AJ) character is used by the editor to separate Hnes in the Ole, so it cannot
appear in the mIddle of a Hne. You can Insert any other character, however, If you walt for the editor to
echo the i before you type the character. In fact, the edItor wlll treat a followIng letter as a request for the
correspondIng control character. ThIs Is the only way to type AS or AQ. sInce the system normally uses them
to suspend and resume output and never gIves them to the edItor to process.
t The \ character you gIve wlll not echo untll you type another key.
t Not avaIlable In all v2 edItors due to memory constraints.

9051 -21-

Text Editing VI

displayed.

In open mode the editor uses a single line window into the file, and moving backward and
forward in the file causes new lines to be displayed, always below the current line. Two com­
mands of vi work differently in open: z and AR. The z command does not take parameters, but
rather draws a window of context around the current line and then returns you to the current
line.

If you are on a hardcopy terminal, the AR command will retype the current line. On such
terminals, the editor normally uses two lines to represent the current line. The first line is a
copy of the line as you started to edit it, and you work on the line below this line. When you
delete characters, the editor types a number of \,s to show you the characters which are deleted.
The editor also reprints the current line soon after such changes so that you can see what the
line looks like again.

It is sometimes useful to use this mode on very slow terminals which can support vi in the
full screen mode. You can do this by entering ex and using an open command.

Acknowledgements

Bruce Englar encouraged the early development of this display editor. Peter Kessler
helped bring sanity to version 2's command layout. Bill Joy wrote versions 1 and 2.0 through
2.7, and created the framework that users see in the present editor. Mark Horton added macros
and other features and made the editor work on a large number of terminals and Unix systems.

-22- 9051

Text Editing VI Appendix

Vi Appendix

. Appendix: charaeter functions

This appendix gives the uses the editor makes of each character. The characters are
presented in their order in the ASCII character set: Control characters come first, then most
special characters, then the digits, upper and then lower case characters.

For each character we tell a meaning it has as a command and any meaning it has during
an insert. If it has only meaning as a command, then only this is discussed. Section numbers
in parentheses indicate where the character is discussed; a 'f' after the section number means
that the character is mentioned in a footnote.

Not a command character. If typed as the first character of an insertion it is
replaced with the last text inserted, and the insert terminates. Only 128 char­
acters are saved from the last insert; if more characters were inserted the
mechanism is not available. A A@ cannot be part of the file due to the editor
implementation (7 .5f).

Unused.

Backward window. A count specifies repetition. Two lines of continuity are
kept if possible (2.1, 6.1,7.2).

Unused.

As a command, scrolls down a half-window of text. A count gives the number
of (logical) lines to scroll, and is remembered for future AD and AU commands
(2.1, 7.2). During an insert, backtabs over autoindent white space at the begin­
ning of a line (6.6, 7.5); this white space cannot be backspaced over.

Exposes one more line below the current screen in the file, leaving the cursor
where it is if possible. (Version 3 only.)

Forward window. A count specifies repetition. Two lines of continuity are
kept if possible (2.1, 6.1, 7.2).

Equivalent to :fcR, printing the current file, whether it has been modified, the
current line number and the number of lines in the file, and the percentage of
the way through the file that you are.

Same as left arrow. (See h). During an insert, eliminates the last input char­
acter, backing over it but not erasing it; it remains so you can see what you
typed if you wish to type something only slightly different (3.1, 7.5).

Not a command character. When inserted it prints as some number of spaces.
When the cursor is at a tab character it rests at the last of the spaces which
represent the tab. The spacing of tabstops is controlled by the tabstop option
(4.1, 6.6).

Same as down arrow (see j).

Unused.

The ASCII formfeed character, this causes the screen to be cleared and redrawn.
This is useful after a transmission error, if characters typed by a program other
than the editor scramble the screen, or after output is stopped by an interrupt
(5.4, 7 .2f) .

A carriage return advances to the next line, at the first non-white position in
the line. Given a count, it advances that many lines (2.3). During an insert, a
CR causes the insert to continue onto another line (3.1).

Same as down arrow (see j) .

9051 -23-

Text Editing

SPACE

-24-

VI Appendix

Unused.

Same as up arrow (see k).

Not a command character. In input mode, "Q quotes the next character, the
same as AV, except that some teletype drivers will eat the AQ so that the editor
never sees it.

Redraws the current screen, eliminating logical lines not corresponding to phy­
sical lines (lines with only a single @ character on them). On hardcopy termi­
nals in open mode, retypes the current line (5.4, 7.2, 7.8).

Unused. Some teletype drivers use AS to suspend output until AQis

Not a command character. During an insert, with autoindent set and at the
beginning of the line, inserts shiftwidth white space.

Scrolls the screen up, inverting AD which scrolls down. Counts work as they
do for AD, and the previous scroll amount is common to both. On a dumb ter­
minal, AU will often necessitate clearing and redrawing the screen further back
in the file (2.1, 7.2).

Not a command character. In input mode, quotes the next character so that it
is possible to insert non-printing and special characters into the file (4.2, 7.5).

Not a command character. During an insert, backs up as b would in command
mode; the deleted characters remain on the display (see AH) (7.5).

Unused.

Exposes one more line above the current screen, leaving the cursor where it is
if possible. (No mnemonic value for this key; however, it is next to AU which
scrolls up a bunch.) (Version 3 only.)

If supported by the Unix system, stops the editor, exiting to the top level shell.
Same as :stoPCR. Otherwise, unused.

Cancels a partially formed command, such as a z when no following character
has yet been given; terminates inputs on the last line (read by commands such
as : / and ?); ends insertions of new text into the buffer. If an ESC is given
when quiescent in command state, the editor rings the bell or flashes the
screen. You can thus hit ESC if you don't know what is happening till the edi­
tor rings the bell. If you don't know if you are in insert mode you can type
Esca, and then material to be input; the material will be inserted correctly
whether or not you were in insert mode when you started (1.5, 3.1, 7.5).

Unused.

Searches for the word which is after the cursor as a tag. Equivalent to typing
:ta, this word, and then a CR. Mnemonically, this command is "go right to"
(7.3) .

Equivalent to :e #CR, returning to the previous position in the last edited file,
or editing a file which you specified if you got a 'No write since last change
diagnostic' and do not want to have to type the file name again (7.3). (You
have to do a :w before At will work in this case. If you do not wish to write
the file you should do :e! #CR instead.)

Unused. Reserved as the command character for the Tektronix 4025 and 4027
terminal.

Same as right arrow (see I).

An operator, which processes lines from the buffer with reformatting com­
mands. Follow! with the object to be pr~cessed, and then the command name
terminated by CR. Doubling! and preceding it by' a count causes count lines to
be filtered; otherwise the count is passed on to the object after the!. Thus

9051

Text Editing

$

%

&

(

)

•
+

VI Appendix

2! }/mtcR reformats the next two paragraphs by running them through the pro­
gram Imt. If you are working on LISP, the command !%7rindcR,* given at the
beginning of a function, will run the text of the function through the LISP

grinder (6.7, 7 .3). To read a file or the output of a command into the buffer
use :r (7.3). To simply execute a command use :! (7.3).

Precedes a named buffer specification. There are named buffers 1- 9 used for
saving deleted text and named buffers a- z into which you can place text (4.3,
6.3)

The macro character which, when followed by a number, will substitute for a
function key on terminaJ.s without function keys (6.9). In input mode, if this
is your erase character, it will delete the last character you typed in input
mode, and must be preceded with a \ to insert it, since it normaJ.ly backs over
the last input character you gave.

Moves to the end of the current line. If you :se listeR, then the end of each
line will be shown by printing a $ after the end of the displayed text in the
line. Given a count, advances to the count'th following end of line; thus 2$
advances to the end of the following line.

Moves to the parenthesis or brace { } which baJ.ances the parenthesis or brace
at the current cursor position.

A synonym for :&cR, by analogy with the ex & command.

When followed by a ' returns to the previous context at the beginning of a
line. The previous con text is set whenever the current line is moved in a
non-relative way. When followed by a letter a- z, returns to the line which
was marked with this letter with a m command, at the first non-white character
in the line. (2.2, 5.3). When used with an operator such as d, the operation
takes place over complete lines; if you use " the operation takes place from the
exact marked place to the current cursor position within the line.

Retreats to the beginning of a sentence, or to the beginning of a LISP s­
expression if the lisp option is set. A sentence ends at a • ! or ? which is fol­
lowed by either the end of a line or by two spaces. Any number of closing)]
"and ' characters may appear after the. ! or ? , and before the spaces or end of
line. Sentences aJ.so begin at paragraph and section boundaries (see { and [[
below). A count advances that many sentences (4.2, 6.8).

Advances to the beginning of a sen tence. A count repeats the effect. See (
above for the definition of a sentence (4.2, 6.8).

Unused .

Same as CR when used as a command.

Reverse of the last r F t or T command, looking the other way in the current
line. Especially useful after hitting too many; characters. A count repeats the
search.

Retreats to the previous line at the first non-White character. This is the
inverse of + and RETURN. If the line moved to is not on the screen, the
screen is scrolled, or cleared and redrawn if this is not possible. If a large
amount of scrolling would be required the screen is aJ.so cleared and redrawn,
with the current line at the center (2.3).

*Both fmt and grind are Berkeley programs and may not be present at all installations.

9051 -25-

Text Editing

/

o

1- 9

<

>

?

@

A

-26-

VI Appendix

Repeats the last command which changed the buffer. Especially useful when
deleting words or lines; you can delete some words/lines and then hit. to
delete more and more words/lines. Given a count, it passes it on to the com­
mand being repeated. Thus after a 2dw, 3. deletes three words (3.3, 6.3, 7.2,

7.4).

Reads a string from the last line on the screen, and scans forward for the next
occurrence of this string. The normal input editing sequences may be used
during the input on the bottom line; an returns to command state without ever
searching. The search begins when you hit CR to terminate the pattern; the
cursor moves to the beginning of the last line to indicate that the search is in
progress; the search may then be terminated with a DEL or RUB, or by back­
spacing when at the beginning of the bottom line, returning the cursor to its
initial position. Searches normally wrap end-around to find a string anywhere
in the buffer.

When used with an operator the enclosed region is normally affected. By men­
tioning an offset from the line matched by the pattern you can force whole
lines to be affected. To do this give a pattern with a closing a closing / and
then an offset + n or - n.

To include the character / in the search string, you must escape it with a
preceding \. A t at the beginning of the pattern forces the match to occur at
the beginning of a line only; this speeds the search. A $ at the end of the pat­
tern forces the match to occur at the end of a line only. More extended pat­
tern matching is available, see section 7.4; unless you set nomagie in your
.exrc file you will have to preceed the characters. [lie and - in the search pat­
tern with a \ to get them to work as you would naively expect (1.5, 2,2, 6.1,

7.2,7.4).

Moves to the first character on the current line. Also used, in forming
numbers, after an initial 1- 9.

Used to form numeric arguments to commands (2.3,7.2).

A prefix to a set of commands for file and option manipulation and escapes to
the system. Input is given on the bottom line and terminated with an CR, and
the command then executed. You can return to where you were by hitting
DEL or RUB if you hit: accidentally (see primarily 6.2 and 7.3).

Repeats the last single character find which used f F t or T. A count iterates
the basic scan (4.1).

An operator which shifts lines left one shzltwz"dth, normally 8 spaces. Like all
operators, affects lines when repeated, as in < <. Counts are passed through
to the basic object, thus 3< < shifts three lines (6.6, 7.2).

Reindents line for LISP, as though they were typed in with /iBp and autoz"ndent
set (6.8).

An operator which shifts lines right one shijtwZ"dth, normally 8 spaces. Affects
lines when repeated as in > >. Counts repeat the basic object (6.6, 7.2).

Scans backwards, the opposite of l See the / description above for details on
scanning (2.2, 6.1, 7.4).

A macro character (6.9). If this is your kill character, you must escape it with
a \ to type it in during input mode, as it normally backs over the input you
have given on the current line (3.1, 3.4, 7.5).

Appends at the end of line, a synonym for $a (7.2) .

9051

Text Editing

B

C
"D

E

F

G

H

I

J

K

L

M

N

o

p

Q

R

s

T

VI Appendix

Backs up a word, where words are composed of non-blank sequences, placing
the cursor at the beginning of the word. A count repeats the effect (2.4).

Changes the rest of the text on the current line; a synonym for e$.

Deletes the rest of the text on the current line; a synonym for d$.

Moves forward to the end of a word, defined as blanks and non-blanks, like B
and W. A count repeats the effect.

Finds a single following character, backwards in the current line. A count
repeats this search that many times (4.1).

Goes to the line number given as preceding argument, or the end of the fHe if
no preceding count is given. The screen is redrawn with the new current linp.
in the center if necessary (7.2).

Home arrow. Homes the cursor to the top line on the screen. If a count is
given, then the cursor is moved to the count'th line on the screen. In any case
the cursor is moved to the first non-white character on the line. If used as the
target of an operator, full lines are affected (2.3, 3.2).

Inserts at the beginning of a line; a synonym for ti.
Joins together lines, supplying appropriate white space: one space between
words, two spaces after a 0, and no spaces at all if the first character of the
joined on line is). A count causes that many lines to be joined rather than the
default two (6.5, 7 .If).

Unused.

Moves the cursor to the first non-white character of the last line on the screen.
With a count, to the first non-White of the count'th line from the bottom.
Operators affect whole lines when used with L (2.3).

Moves the cursor to the middle line on the screen, at the first non-White posi­
tion on the line (2.3).

Scans for the next match of the last pattern given to / or ! , but in the reverse
direction; this is the reverse of n.

Opens a new line above the current line and inputs text there up to an ESC. A
count can be used on dumb terminals to specify a number of lines to be
opened; this is generally obsolete, as the slowopen option works better (3.1).

Puts the last deleted text back before/above the cursor. The text goes back as
whole lines above the cursor if it was deleted as whole lines. Otherwise the
text is inserted between the characters before and at the cursor. May be pre­
ceded by a named buffer specification "x to retrieve the contents of the buffer;
buffers 1- 9 contain deleted material, buffers a- z are available for general use
(6.3) .

Quits from vi to ex command mode. In this mode, whole lines form com­
mands, ending with a RETURN. You can give all the: commands; the editor
supplies the : as a prompt (7.7).

Replaces characters on the screen with characters you type (overlay fashion).
Terminates with an ESC.

Changes whole lines, a synonym for ee. A count substitutes for that many
lines. The lines are saved in the numeric buffers, and erased on the screen
before the substitution begins.

Takes a single following character, locates the character before the cursor in
the current line, and places the cursor just after that character. A count
repeats the effect. Most useful with operators such as d (4.1).

9051 -27-

Text Editing

,u
V

W

x

y

zz

[[

\
]]

t

a

b

c

d

e

f

-28-

VI Appendix

Restores the current line to its state before you started changing it (3.5).

Unused.

Moves forward to the beginning of a word in the current line, where words are
defined as sequences of blank/non-blank characters. A count repeats the effect
(2.4) .

Deletes the character before the cursor. A count repeats the effect, but only
characters on the current line are deleted.

Yanks a copy of the current line inoo the unnamed buffer, 00 be put back by a
later p or P; a very useful synonym for yy. A count yanks that many lines.
May be preceded by a buffer name 00 put lines in that buffer (7.4).

Exits the edioor. (Same as :XCR.) If any changes have been made, the buffer is
written out 00 the current file. Then the edioor quits.

Backs up to the previous section boundary. A section begins at each macro in
the sections option, normally a • .NR' or • .SR' and also at lines which which
start with a formfeed AL. Lines beginning with { also soop [[; this m~es it
useful for looking backwards, a function at a time, in C programs. If the
option lisp is set, soops at each (at the beginning of a line, and is thus useful
for moving backwards at the oop level LISP objects. (4.2, 6.1, 6.6, 7.2).

Unused.

Forward 00 a section boundary, see [[for a definition (4.2, 6.1, 6.6, 7.2).

Moves to the first non-white position on the current line (4.4).

Unused.

When followed by a ' returns 00 the previous context. The previous context is
set whenever the current line is moved in a non-relative way. When followed
by a letter a- z, returns 00 the position which was marked with this letter with
a m command. When used with an operaoor such as d, the operation takes
place from the exact marked place to the current position within the line; if
you use " the operation takes place over complete lines (2.2, 5.3).

Appends arbitrary text after the current cursor position; the insert can continue
onoo multiple lines by using RETURN within the insert. A count causes the
inserted text to be replicated, but only if the inserted text is all on one line.
The insertion terminates with an ESC (3.1, 7.2).

Backs up to the beginning of a word in the current line. A word is a sequence
of alphanumerics, or a sequence of special characters. A count repeats the
effect (2.4).

An operator which changes the following object, replacing it with the following
input text up to an ESC. If more than part of a single line is affected, the text
which is changed away is saved in the numeric named buffers. If only part of
the current line is affected, then the last character 00 be changed away is
marked with a $. A count causes that many objects to be affected, thus both
3c) and c3) change the following three sentences (7.4).

An operator which deletes the following object. If more than part of a line is
affected, the text is saved in the numeric buffers. A count causes that many
objects to be affected; thus 3dw is the same as d3w (3.3,3.4,4.1,7.4).

Advances to the end of the next word, defined as for b and w. A count
repeats the effect (2.4, 3.1).

Finds the first instance of the next character following the cursor on the
current line. A count repeats the find (4.1).

9051

Text Editing

g

h

j

k

I

m

n

o

p

q

r

s

t

u

v

w

x

y

z

VI Appendix

Unused.

Arrow keys h, j, k, I, and H.

Left arrow. Moves the cursor one character to the left. Like the other arrow
keys, either h, the left arrow key, or one of the synonyms (AH) has the same
effect. On v2 editors, arrow keys on certain kinds of terminals (those which
send escape sequences, such as vt52, c100, or hp) cannot be used. A count
repeats the effect (3.1, 7.5).

Inserts text before the cursor, otherwise like a (7.2).

Down arrow. Moves the cursor one line down in the same column. If the
position does not exist, vi comes as close as possible to the same column.
Synonyms include A J (linefeed) and AN.

Up arrow. Moves the cursor one line up. AP is a synonym.

Right arrow. Moves the cursor one character to the right. SPACE is a
synonym.

Marks the current position of the cursor in the mark register which is specified
by the next character a- z. Return to this position or use with an operator
using' or ~ (5.3).

Repeats the last / or? scanning commands (2.2).

Opens new lines below the current line; otherwise like 0 (3.1).

Puts text after/below the cursor; otherwise like P (6.3).

Unused.

Replaces the single character at the cursor with a single character you type.
The new character may be a RETURN; this is the easiest way to split lines. A
count replaces each of the following count characters with the single character
given; see R above which is the more usually useful iteration of r (3.2) .

Changes the single character under the cursor to the text which follows up to
an ESC; given a count, that many characters from the current line are changed.
The last character to be changed is marked with $ as in e (3.2).

Advances the cursor upto the character before the next character typed. Most
useful with operators such as d and e to delete the characters up to a following
character. You can use. to delete more if this doesn't delete enough the first
time (4.1).

Undoes the last change made to the current buffer. If repeated, will alternate
between these two states, thus is its own inverse. When used after an insert
which inserted text on more than one line, the lines are saved in the numeric
named buffers (3.5).

Unused.

Advances to the beginning of the next word, as defined by b (2.4).

Deletes the single character under the cursor. With a count deletes deletes
that many characters forward from the cursor position, but only on the current
line (6.5).

An operator, yanks the following object into the unnamed temporary buffer. If
preceded by a named buffer specification, "x, the text is placed in that buffer
also. Text can be recovered by a later p or P (7.4).

Redraws the screen with the current line placed as specified by the following
character: RETURN specifies the top of the screen, • the center of the screen,
and - at the bottom of the screen. A count may be given after the z and
before the following character to specify the new screen size for the redraw. A

9051 -29-

Text Editing

{

}

-30-

VI Appendix

count before the z gives the number of the line to place in the center of the
screen instead of the default current line. (5.4)

Retreats to the beginning of the beginning of the preceding paragraph. A para­
graph begins at each macro in the paragraph8 option, normally • .IP', • .LP',
• .PP·, • .QP· and • .bp·. A paragraph also begins after a completely empty line,
and at each section boundary (see [[above) (4.2,6.8,7.6).

Places the cursor on the character in the column specified by the count (7.1,
7.2).

Advances to the beginning of the next paragraph. See { for the definition of
paragraph (4.2, 6.8, 7.6).

Unused.

Interrupts the editor, returning it to command accepting state (1.5, 7.5)

9051

Vi Command & Function Reference

This document is based on a paper by Alan Hewett and Mark Horton of the University of
California, Berkeley. Revised for version 2.12.

1. Disclaimer

This document is a partial listing of vi capabilities; probably the most common or useful.
Experimentation is recommended.

2. Notation

[option] is used to denote optional parts of a command. Many vi commands have an optional
count. [ent] means that an optional number may precede the command to multiply or iterate
the command. {variable item} is used to denote parts of the command which must appear, but

. can take a number of different values. <character [-character] > means that the character or
one of the characters in the range described between the two angle brackets is to be typed. For
example <esc> means the escape key is to be typed. <a-z> means that a lower case letter is
to be typed. A <character> means that the character is to be typed as a contzol character, that
is, with the <entl> key held down while simultaneously typing the specified character. In this
document control characters will be denoted using the upper case character, but A <uppercase
chr> and A<lowercase chr> are equivalent. That is, for example, <AD> is equal to <Ad>.
The most common character abbreviations used in this list are as follows:

<esc> escape, octal 033

<cr> carriage return, AM, octal 015

<If> linefeed AJ, octal 012

<nl> newline, AJ, octal 012 (same as linefeed)

<bs> backspace, AH, octal 010

<tab> tab, AI, octal 011

<bell> bell, AG, octal 07

<ff> formfeed, AL, octal 014

<sp> space, octal 040

 delete, octal 0177

3. Basics

To run vi the shell variable 'lERM must be defined and exported to your environment. How
you do this depends on which shell you are using. You can tell which shell you have by the
character it prompts you for commands with. The Bourne shell prompts with '$', and the C
shell prompts with '0/8. For these examples, we will suppose that you are using an HP 2621
terminal, whose termcap name is "2621".

3.1. Bourne Shell

To manually set your terminal type to 2621 you would type:

TERM=2621
export TERM

There are various ways of having this automatically or semi-automatically done when you
log in. Suppose you usually dial in on a 2621. You want to tell this to the machine, but still
have it work when you use a hardwired terminal. The recommended way, if you have the tset
program, is to use the sequence

9051 -1-

Text Editing

tset - s - d 2621 > tset$$
. tset$$
rm tset$$

VI Command Ref

in your .login (for csh) or the same thing using • .' instead of 'source' in your .profile (for sh).
The above line says that if you are dialing in you are on a 2621, but if you are on a hardwired
terminal it figures out your terminal type from an on-line list.

3.2. The C Shell

To manually set your terminal type to 2621 you would type:

setenv TERM 2621

There are various ways of having this automatically or semi-automatically done when you
log in. Suppose you usually dial in on a 2621. You want to tell this to the machine, but still
have it work when you use a hardwired terminal. The recommended way, if you have the tset
program, is to use the sequence

tset - s - d 2621 > tset$$
source tset$$
rm tset$$

in your .login.* The above line says that if you are dialing in you are on a 2621, but if you are
on a hardwired terminal it figures out your terminal type from an on-line list.

4. Normal Commands

Vi is a visual editor with a window on the file. What you see on the screen is vi's current
notion of what your file will contain, (at this point in the file), when it is written out. Most
commands do not cause any change in the screen until the complete command is typed.
Should you get confused while typing a command, you can abort the command by typing an
 character. You will know you are back to command level when you hear a <bell>.
Usually typing an <esc> will produce the same result. When vi gets an improperly formatted
command it rings the <bell>. Following are the vi commands broken down by function.

4.1. Entry and Exit

To enter vi on a particular file, type

vi file

The file will be read in and the cursor will be placed at the beginning of the first line. The first
screenfull of the file will be displayed on the terminal.

To get out of the editor, type

zz
If you are in some special mode, such as input mode or the middle of a multi-keystroke com­
mand, it may be necessary to type <esc> first.

4.2. Cursor and Page Motion

NOTE: The arrow keys (see the next four commands) on certain kinds of terminals will not
work with the PDP-II version of vi. The control versions or the hjkl versions will work on any
terminal. Experienced users prefer the hjkl keys because they are always right under their
fingers. Beginners often prefer the arrow keys, since they do not require memorization of
which hjkl key is which. The mnemonic value of hjkl is clear from looking at the keyboard of

* On a version 6 system without environments, the Invocation of tset Is Simpler, just add the line "tset - d
2621" to your .login or .profile.

-2- 9051

Text Editing VI Command Ref

an adm3a.

[cnt] <bs> or [cnt]h or [cnt]~
Move the cursor to the left one character. Cursor stops at the left margin of
the page. If cnt is given, these commands move that many spaces.

[cnt] ~N or [cnt]j or [cnt]! or [cnt] <If>

.
Move down one line. Moving off the screen scrolls the window to force a
new line onto the screen. Mnemonic: Next

[cnt] ~p or [cnt] k or [cntlt
Move up one line. Moving off the top of the screen forces new text onto the
screen. Mnemonic: Previous

[cnt] <sp> or [cnt] I or [cnt]-+

[cnt]-

Move to the right one character. Cursor will not go beyond the end of the
line.

Move the cursor up the screen to the beginning of the next line. Scroll if
necessary.

[cnt]+ or [cnt]<cr>

[cnt] $

o

[cnt] I

[cnt]w

[cnt]W

[cnt]b

[cnt]B

[cnt]e

[cnt]E

[line number] G

Move the cursor down the screen to the beginning of the next line. Scroll up
if necessary.

Move the cursor to the end of the line. If there is a count, move to the end
of the line "'cnt" lines forward in the file.

Move the cursor to the beginning of the first word on the line.

Move the cursor to the left margin of the current line.

Move the cursor to the column specified by the count. The default is column
zero.

Move the cursor to the beginning of the next word. If there is a count, then
move forward that many words and position the cursor at the beginning of
the word. Mnemonic: next-word

Move the cursor to the beginning of the next word which follows a "white
space" (<sp>, <tab>, or <nl». Ignore other punctuation.

Move the cursor to the preceding word. Mnemonic: backup-word

Move the cursor to the preceding word that is separated from the current
word by a "white space" «sp>,<tab>, or <nl».

Move the cursor to the end of the current word or the end of the "cnt"'th
word hence. Mnemonic: end-of-word

Move the cursor to the end of the current word which is delimited by "white
space" «sp>, <tab>, or <nl».

Move the cursor to the line specified. Of particular use are the sequences
"IG" and "G", which move the cursor to the beginning and the end of the file
respectively. Mnemonic: Go-to

NOTE: The next four commands (~D, ~U, ~F, ~B) are not true motion commands, in that they
. cannot be used as the object of commands such as delete or change.

[cnt] ~D Move the cursor down in the file by "cnt" lines (or the last "cnt" if a new
count isn't given. The initial default is half a page.) The screen is simultane­
ously scrolled up. Mnemonic: Down

9051 -3-

Text Editing

[cnt] AU

[cnt] AF

[cnt] AB

[cnt] (

[cnt))

[cnt] }

[cnt] {

]]

[[

%

[cnt]H

[cnt]L

M

m<a-z>

~<a-z>

'<a-z>

-4-

VI Command Ref

Move the cursor up in the file by "cnt" lines. The screen is simultaneously
scrolled down. Mnemonic: Up

Move the cursor to the next page. A count moves that many pages. Two
lines of the previous page are kept on the screen for continuity if possible.
Mnemonic: Forward-a-page

Move the cursor to the previous page. Two lines of the current page are kept
if possible. Mnemonic: Backup-a-page

Move the cursor to the beginning of the next sentence. A sentence is defined
as ending with a , "!", or "1" followed by two spaces or a <nl>.

Move the cursor backwards to the beginning of a sentence.

Move the cursor to the beginning of the next paragraph. This command
works best inside nroff documents. It understands two sets of nroff macros,
- IllS and - 1Il.IIl, for which the commands ".IP", ".LP", ".PP", ".QP", "P", as
well as the nroff command ".bp" are considered to be paragraph delimiters. A
blank line also delimits a paragraph. The nroff macros that it accepts as para­
graph delimiters is adjustable. See paragraphs under the Set Commands sec­
tion.

Move the cursor backwards to the beginning of a paragraph.

Move the cursor to the next "section", where a section is defined by two sets
of nroff macros, - IllS and - mm, in which ".NH", ".SH", and ".H" delimit a
section. A line beginning with a <tf><nl> sequence, or a line beginning
with a ,,{ .. are also considered to be section delimiters. The last option makes
it useful for finding the beginnings of C functions. The nroff macros that are
used for section delimiters can be adjusted. See sections under the Set Com­
mands section.

Move the cursor backwards to the beginning of a section.

Move the cursor to the matching parenthesis or brace. This is very useful in
C or lisp code. If the cursor is sitting on a () {or} the cursor is moved to
the matching character at the other end of the section. If the cursor is not
sitting on a brace or a parenthesis, vi searches forward until it finds one and
then jumps to the match mate.

If there is no count move the cursor to the top left position on the screen. If
there is a count, then move the cursor to the beginning of the line "cnt" lines
from the top of the screen. Mnemonic: Home

If there is no count move the cursor to the beginning of the last line on the
screen. If there is a count, then move the cursor to the beginning of the line
"cnt" lines from the bottom of the screen. Mnemonic: Last

Move the cursor to the beginning of the middle line on the screen.
Mnemonic: Middle

This command does not move the cursor, but it marks the place in the file
and the character "<a-z>" becomes the label for referring to this location in
the file. See the next two commands. Mnemonic: mark NOTE: The mark
command is not a motion, and cannot be used as the target of commands
such as delete.

Move the cursor to the beginning of the line that is marked with the label
"<a-z>".

Move the cursor to the exact position on the line that was marked with with
the label "<a-z>".

9051

Text Editing

4.3. Searches

VI Command Ref

Move the cursor back to the beginning of the line where it was before the last
"non-relative" move. A "non-relative" move is something such as a search or
a jump to a specific line in the file, rather than moving the cursor or scrolling
the screen.

Move the cursor back to the exact spot on the line where it was located
before the last "non-relative" move.

The following commands allow you to search for items in a file.

[cnt] f {chr}

[cnt] F{chr}

[cnt] t{chr}

[cnt] T{chr}

[cnt] ;

[cnt] ,

Search forward on the line for the next or "cnt"'th occurrence of the character
"chr". The cursor is placed at the character of interest. Mnemonic: find char­
acter

Search backwards on the line for the next or "cnt"'th occurrence of the char­
acter "chr". The cursor is placed at the character of interest.

Search forward on the line for the next or "cnt"'th occurrence of the character
"chr". The cursor is placed just preceding the character of interest.
Mnemonic: move cursor up to character

Search backwards on the line for the next or "cnt"'th occurrence of the char­
acter "chr". The cursor is placed just preceding the character of interest.

Repeat the last "f", "F", "t" or "T" command.

Repeat the last "f", "F", "t" or "T" command, but in the opposite search direc­
tion. This is useful if you overshoot.

[cnt] I[string] I<nl>
Search forward for the next occurrence of "string". Wrap around at the end
of the file does occur. The final <I> is not required.

[cnt]? [string]? <nl>

n

Search backwards for the next occurrence of "string". If a count is specified,
the count becomes the new window size. Wrap around at the beginning of
the file does occur. The final <? > is not required.

Repeat the last I[string] I or ? [string]? search. Mnemonic: next occurrence.

N Repeat the last I[string] I or ? [string]? search, but in the reverse direction.

:g/[string] I[editor command] <nl>

Using the: syntax it is possible to do global searches ala the standard UNIX
"ed" editor.

4.4. Text Insertion

The following commands allow for the insertion of text. All multicharacter text insertions are
terminated with an <esc> character. The last change can always be undone by typing a u.
The text insert in insertion mode can contain newlines.

9051 -5-

Text Editing VI Command Ref

a{text}<esc> Insert text immediately following the cursor position. Mnemonic: append

A{text}<esc> Insert text at the end of the current line. Mnemonic: Append

i{text}<esc> Insert text immediately preceding the cursor position. Mnemonic: insert

I {text} < esc > Insert text at the beginning of the current line.

o {text}< esc > Insert a new line after the line on which the cursor appears and insert text
there. Mnemonic: open new line

o {text}< esc > Insert a new line preceding the line on which the cursor appears and insert
text there.

4.5. Text Deletion

The following commands allow the user to delete text in various ways. All changes can always
be undone by typing the u command.

[cnt]x

[cnt]X

D

[cnt] d {motion}

Delete the character or characters starting at the cursor position.

Delete the character or characters starting at the character preceding the cur­
sor position.

Deletes the remainder of the line starting at the cursor. Mnemonic: Delete
the rest of line

Deletes one or more occurrences of the specified motion. Any motion from
sections 4.1 and 4.2 can be used here. The d can be stuttered (e.g. [cnt]dd)
to delete cnt lines.

4.6. Text Replacement

The following commands allow the user to simultaneously delete and insert new text. All such
actions can be undone by typing u following the command.

r<chr> Replaces the character at the current cursor position with <chr>. This is a
one character replacement. No <esc> is required for termination.
Mnemonic: replace character

R{text}<esc> Starts overlaying the characters on the screen with whatever you type. It does
not stop until an <esc> is typed.

[cnt]s{text}<esc>Substitute for "cnt" characters beginning at the current cursor position. A "$"
will appear at the position in the text where the "cnt"'th character appears so
you will know how much you are erasing. Mnemonic: substitute

[cnt] S{text}<esc > Substitute for the entire current line (or lines). If no count is given, a "$"
appears at the end of the current line. If a count of more than 1 is given, all
the lines to be replaced are deleted before the insertion begins.

[cn t] c {motion }{text}< esc>
Change the specified "motion" by replacing it with the insertion text. A "$"
will appear at the end of the last item that is being deleted unless the deletion
involves whole lines. Motion's can be any motion from sections 4.1 or 4.2.
Stutt.ering the. c (e.g. [cnt] cc) changes cnt lines.

4.7. Moving Text

. Vi ·provides a number of ways of moving chunks of text around. There are nine buffers into
which each piece of text which is deleted or "yanked" is put in addition to the "undo" buffer.
The most recent deletion or yank is in the "undo" buffer and also usually in buffer 1, the next
most recent in buffer 2, and so forth. Each new deletion pushes down all the older deletions.
Deletions older than 9 disappear. There is also a set of named registers, a-z, into which text
can optionally be placed. If any delete or replacement type command is preceded by "<~Z>,
that named buffer will contain the text deleted after the command is executed. For example,

-6- 9051

Text Editing VI Command Ref

"a3dd will delete three lines starting at the current line and put them in buffer "&.* There are
two more basic commands and some variations useful in getting and putting text into a ftle.

["<a-z>] [cnt]y{motion}

Yank the specified item or "cnt" items and put in the "undo" buffer or the
specified buffer. The variety of "items" that can be yanked is the same as
those that can be deleted with the "d" command or changed with the "c" com­
mand. In the same way that "dd" means delete the current line and "cc"
means replace the current line, "yy" means yank the current line.

["<a-z>][cnt]Y Yank the current line or the "cnt" lines starting from the current line. If no
buffer is specified, they will go into the "undo" buffer, like any delete would.
It is equivalent to "yy". Mnemonic: Yank

["<a-z>]p

["<a-z>]P

Put "undo" buffer or the specified buffer down after the cursor. If whole lines
were yanked or deleted into the buffer, then they will be put down on the line
following the line the cursor is on. If something else was deleted, like a word
or sentence, then it will be inserted immediately following the cursor.
Mnemonic: put buffer

It should be noted that text in the named buffers remains there when you
start editing a new file with the :e file<esc> command. Since this is so, it is
possible to copy or delete text from one file and carry it over to another file in
the buffers. However, the undo buffer and the ability to undo are lost when
changing files.

Put "undo" buffer or the specified buffer down before the cursor. If whole
lines where yanked or deleted into the buffer, then they will be put down on
the line preceding the line the cursor is on. If something else was deleted,
like a word or sentence, then it will be inserted immediately preceding the
cursor.

[cnt] > {motion} The shift operator will right shift all the text from the line on which the cur­
sor is located to the line where the motion is located. The text is shifted by
one shiftwidth. (See section 6.) > > means right shift the current line or
lines.

[cnt] < {motion} The shift operator will left shift all the text from the line on which the cursor
is located to the line where the item is located. The text is shifted by one
shiftwidth. (See section 6.) < < means left shift the current line or lines.
Once the line has reached the left margin it is not further affected.

[cnt] = {motion } Prettyprints the indicated area according to lisp conventions. The area should
be a lisp s-expression.

4.8. Miscellaneous Commands

Vi has a number of miscellaneous commands that are very useful. They are:

zz This is the normal way to exit from vi. If any changes have been made, the
file is written out. Then you are returned to the shell.

Redraw the current screen. This is useful if someone "write"s you while you
are in "vi" or if for any reason garbage gets onto the screen.

On dumb terminals, those not having the "delete line" function (the vt100 is
such a terminal), vi saves redrawing the screen when you delete a line by just
marking the line with an "@" at the beginning and blanking the line. If you

* Referring to an upper case letter as a buffer name (A-Z) is the same as referring to the lower case letter,
except that text placed in such a buffer is appended to it instead of replacing it.

9051 ':'7-

Text Editing

u

U

[cnt]J

Q

VI Command Ref

want to actually get rid of the lines marked with .. @ .. and see what the page
looks like, typing a AR will do this.

"Dot" is a particularly useful command. It repeats the last text modifying
command. Therefore you can type a command once and then to another
place and repeat it by just typing

Perhaps the most important command in the editor, u undoes the last com­
mand that changed the buffer. Mnemonic: undo

Undo all the text modifying commands performed on the current line since
the last time you moved onto it.

Join the current line and the following line. The <nl> is deleted and the
two lines joined, usually with a space between the end of the first line and the
beginning of what was the second line. If the first line ended with a "period",
then two spaces are inserted. A count joins the next cnt lines. Mnemonic:
Join lines

Switch to ex editing mode. In this mode vi will behave very much like ed.
The editor in this mode will operate on single lines normally and will not
attempt to keep the "window" up to date. Once in this mode it is also possible
to switch to the open mode of editing. By entering the command [line
number]open<nl> you enter this mode. It is similar to the normal visual
mode except the window is only one line long. Mnemonic: QUit visual mode

An abbreviation for a tag command. The cursor should be positioned at the
beginning of a word. That word is taken as a tag name, and the tag with that
name is found as if it had been typed in a :tag command.

[cnt] !{motion}{UNIX cmd}<nl>

. z{cnt}<nl>

Any UNIX filter (e.g. command that reads the standard input and outputs
something to the standard output) can be sent a section of the current file and
have the output of the command replace the original text. Useful examples
are programs like cb, sort, and nroft'. For instance, using sort it would be
possible to sort a section of the current file into a new list. Using!! means
take a line or lines starting at the line the cursor is currently on and pass
them to the UNIX command. NO'lE: To just escape to the shell for one
command, use :!{cmd}<nl>, see section 5 .

This resets the current window size to "cnt" lines and redraws the screen.

4.9. Special Insert Cllaraeters

There are some characters that have special meanings during insert modes. They are:

-8-

During inserts, typing a AV allows you to quote control characters into the
file. Any character typed after the AV will be inserted into the file.

< AD> without any argument backs up one shiftwidth. This is necessary to
remove indentation that was inserted by the autoindent feature. A< AD>
temporarily removes all the autoindentation, thus placing the cursor at the
left margin. On the next line, the previous indent level will be restored. This
is useful for putting "labels" at the left margin. 0 < AD > says remove all
autoindents and stay that way. Thus the cursor moves to the left margin and
stays there on successive lines until <tab>'s are typed. As with the <tab>,
the < AD > is only effective before any other "non-autoindent" controlling
characters are typed. Mnemonic: Delete a shiftwidth

If the cursor is sitting on a word, < AW> moves the cursor back to the begin­
ning of the word, thus erasing the word from the insert. Mnemonic: erase
Word

9051

Text Editing

<bs>

5. : Commands

VI Command Ref

The backspace always serves as an erase during insert modes in addition to
your normal "erase" character. To insert a <bs> into your file, use the
< AV> to quote it.

Typing a ":" during command mode causes vi to put the cursor at the bottom on the screen in
preparation for a command. In the ":" mode, vi can be given most ed commands. It is also
from this mode that you exit from vi or switch to different files. All commands of this variety
are terminated by a <nl>, <cr>, or <esc>.

:w[!) [file) Causes vi to write out the current text to the disk. It is written to the file you
are editing unless "file" is supplied. If "tile" is supplied, the write is directed
to that file instead. If that file already exists, vi will not perform the write
unless the "r' is supplied indicating you really want to destroy the older copy
of the file.

:q[!) Causes vi to exit. If you have modified the file you are looking at currently
and haven't written it out, vi will refuse to exit unless the 'T' is supplied.

:e[!) [+ [cmd)) [file)

:n[!)

Start editing a new file called "file" or start editing the current file over again.
The command ":e!" says "ignore the changes I've made to this file and start
over from the beginning". It is useful if you really mess up the file. The
optional "+ " says instead of starting at the beginning, start at the "end", or, if
"cmd" is supplied, execute "cmd" first. Useful cases of this are where cmd is
"n" (any integer) which starts at line number n, and "/text", which searches
for "text" and starts at the line where it is found.

Switch back to the place you were before your last tag command. If your last
tag command stayed within the file, AA returns to that tag. If you have no
recent tag command, it will return to the same place in the previous file that
it was showing when you switched to the current file.

Start editing the next file in the argument list. Since vi can be called with
multiple file names, the ":n" command tells it to stop work on the current file
and switch to the next file. If the current file was modifies, it has to be writ­
ten out before the ":n" will work or else the "I" must be supplied, which s~ys
discard the changes I made to the current file.

:n[!) file [file file ...)

:r file

:r !cmd

:!cmd

:ta[!) tag

Replace the current argument list with a new list of files and start editing the
first file in this new list.

Read in a copy of "file" on the line after the cursor.

Execute the "cmd" and take its output and put it into the file after the current
line.

Execute any UNIX shell command.

Vi looks in the file named tags in the current directory. Tags is a file of lines
in the format:

tag filename vi-search-command

If vi finds the tag you specified in the :ta command, it stops editing the
current file if necessary and if the current file is up to date on the disk and
switches to the file specified and uses the search pattern specified to find the
"tagged" item of interest. This is particularly useful when editing multi-file C

9051 -9-

Text Editing VI Command Ref

programs such as the operating system. There is a program called etags
which will generate an appropriate tags file for C and f77 programs so that by
saying :ta funeUon<nl> you will be switched to that function. It could also
be useful when editing multi..,file documents, though the tags file would have
to be generated manually.

6. Special Arrangements for Startup

Vi takes the value of $'IERM and looks up the characteristics of that terminal in the file
/ek./tA!rmeap. If you don't know vi's name for the terminal you are working on, look in
/ ek./termeap.

When vi starts, it attempts to read the variable EXINIT from your environment.* If that
exists, it takes the values in it as the default values for certain of its internal constants. See the
section on "Set Values" for further details. If EXINIT doesn't exist you will get all the normal
defaults.

Should you inadvertently hang up the phone while inside vi, or should the computer
crash, all may not be lost. Upon returning to the system, type:

vi - r file

This will normally recover the file. If there is more than one temporary file for a specific file
name, vi recovers the newest one. You can get an older version by recovering the file more
than once. The command "vi -r" without a file name gives you the list of files that were saved
in the last system crash (but not the file just saved when the phone was hung up).

7. Set Commands

Vi has a number of internal variables and switches which can be set to achieve special affects.
These options come in three forms, those that are switches, which toggle from off to on and
back, those that require a numeric value, and those that require an alphanumeric string value.
The toggle options are set by a command of the form:

:set option <nl>

and turned off with the command:

:set nooption < nl >

Commands requiring a value are set with a command of the form:

:set option=value <nl>

To display the value of a specific option type:

:set option? <nl>

To display only those that you have changed type:

:set<nl>

and to display the long table of all the settable parameters and their current values type:

:set all <nl>

Most of the options have a long form and an abbreviation. Both are listed in the follow­
ing table as well as the normal default value.

To arrange to have values other than the default used every time you enter vi, place the
appropriate set command in EXINIT in your environment, e.g.

* On version 6 systems Instead of EX IN IT, put the startup commands in the Ole .exrc in your home
directory.

-10- 9051

Text Editing VI Command Ref

EXINIT 'set ai aw terse sh=/bin/csh'
export EXINIT

or

setenv EXINIT 'set ai aw terse sh=/bin/csh'

for sh and csh, respectively. These are usually placed in your .profile or .login. If you are run­
ning a system without environments (such as version 6) you can place the set command in the
file .exrc in your home directory.

autoindent ai

autoprint ap

autowrite aw

beautify bf

directory dir

errorbells eb

hardtabs ht

ignorecase ic

lisp

list

magic

. number nu

open

optimize opt

Default: noai Type: toggle
When in autoindent mode, vi helps you indent code by starting each line in
the same column as the preceding line. Tabbing to the right with <tab> or
< AT> will move this boundary to the right, and it can be moved to the left
with <AD>.

Default: ap Type: toggle
Causes the current line to be printed after each ex text modifying command.
This is not of much interest in the normal vi visual mode.

Default: noaw type: toggle
Autowrite causes an automatic write to be done if there are unsaved changes
before certain commands which change files or otherwise interact with the
outside world. These commands are :!, :tag, :next, :rewind, AA, and A].

Default: no bf Type: toggle
Causes all control characters except <tab>, <nl>, and <ff> to be dis­
carded.

Default: dir=/tmp Type: string
This is the directory in which vi puts its temporary file.

Default: noe b Type: toggle
Error messages are preceded by a <bell>.

Default: hardtabs=8 Type: numeric
This option contains the value of hardware tabs in your terminal, or of
software tabs expanded by the Unix system.

Default: noic Type: toggle
All upper case characters are mapped to lower case in regular expression
matching.

Default: nolisp Type: toggle
Autoindent for lisp code. The commands () [[and]] are modified appropri­
ately to affect s-expressions and functions.

Default: nolist Type: toggle
All printed lines have the <tab> and <nl> characters displayed visually.

Default: magic Type: toggle
Enable the metacharacters for matching. These include •• < > [string]
[Astring] and [<chr>-<chr>] .

Default: nonu Type: toggle
Each line is displayed with its line number.

Default: open Type: toggle
When set, prevents entering open or visual modes from ex or edit. Not of
interest from vi.

Default: opt Type: toggle
Basically of use only when using the ex capabilities. This option prevents
automatic <cr>s from taking place, and speeds up output of indented lines,
at the expense of losing typeahead on some versions of UNIX.

9051 -11-

Text Editing VI Command Ref

paragraphs para Default: para=IPLPPPQPP bp Type: string

prompt

redraw

report

scroll

sections

shell sh

shiftwidth sw

Each pair of characters in the string indicate nrofl' macros which are to be
treated as the beginning of a paragraph for the { and } commands. The
default string is for the -ms and -mm macros. To indicate one letter nrofl'
macros, such as .P or .H, quote a space in for the second character position.
For example:

:set paragraphs=P\ bp<nl>

would cause vi to consider .P and .bp as paragraph delimiters.

Default: prompt Type: toggle
In ex command mode the prompt character: will be printed when ex is wait­
ing for a command. This is not of interest from vi.

Default: noredraw Type: toggle
On dumb terminals, force the screen to always be up to date, by sending great
amounts of output. Useful only at high speeds.

Default: report=5 Type: numeric
This sets the threshold for the number of lines modified. When more than
this number of lines are modified, removed, or yanked, vi will report the
number of lines changed at the bottom of the screen.

Default: scroll={1/2 window} Type: numeric
This is the number of lines that the screen scrolls up or down when using the
<AU> and <AD> commands.

Default: sections=SHNHH HU Type: string
Each two character pair of this string specify nroff macro names which are to
be treated as the beginning of a section by the]] and [[commands. The
default string is for the -ms and -1IlIIl macros. To enter one letter nroff mac­
ros, use a quoted space as the second character. See paragraphs for a fuller
explanation.

Default: sh=from environment SHELL or /bin/sh Type: string
This is the name of the sh to be used for "escaped" commands.

Default: sw=8 Type: numeric
This is the number of spaces that a < AT> or < AD > will move over for
indenting, and the amount < and > shift by.

showmatch sm Default: nosm Type: toggle
When a) or } is typed, show the matching (or { by moving the cursor to it
for one second if it is on the current screen.

slowopen slow Default: terminal dependent Type: toggle

tabstop ts

taglength tl

term

On terminals that are slow and unintelligent, this option prevents the updat­
ing of the screen some of the time to improve speed.

Default: ts=8 Type: numeric
<tab>s are expanded to boundaries that are multiples of this value.

Default: tl=O Type: numeric
If nonzero, tag names are only significant to this many characters.

Default: (from environment TERM, else dumb) Type: string
This is the terminal and controls the visual displays. It cannot be changed
when in "visual" mode, you have to Q to command mode, type a set term
command, and do "vi." to get back into visual. Or exit vi, fix $ TERM , and
reenter. The definitions that drive a particular terminal type are found in the
file /ek/termeap.

9051

Text Editing

terse

warn

window

VI Command Ref

Default: terse Type: toggle
When set, the error diagnostics are short.

Default: warn Type: toggle
The user is warned if she/he tries to escape to the shell without writing out
the current changes.

Default: window={s at 600 baud or less, 16 at 1200 baud, and screen size -
1 at 2400 baud or more} Type: numeric
This is the number of lines in the window whenever vi must redraw an entire
screen. It is useful to make this size smaller if you are on a slow line.

w300, w1200, w9600

wrapscan ws

These set window, but only within the corresponding speed ranges. They are
useful in an EXINIT to fine tune window sizes. For example,

set w300=4 w1200=12

causes a 4 lines window at speed up to 600 baud, a 12 line window at 1200
baud, and a full screen (the default) at over 1200 baud.

Default: ws Type: toggle
Searches will wrap around the end of the file when is option is set. When it is
off, the search will terminate when it reaches the end or the beginning of the
file.

wrapmargin wm Default: wm=O Type: numeric

writeany wa

Vi will automatically insert a <nl> when it finds a natural break point (usu­
ally a <sp> between words) that occurs within "wm" spaces of the right mar­
gin. Therefore with "wm=O" the option is off. Setting it to 10 would mean
that any time you are within 10 spaces of the right margin vi would be look­
ing for a <sp> or <tab> which it could replace with a <nl>. This is con­
venient for people who forget to look at the screen while they type. (In ver­
sion 3, wrapmargin behaves more like nroff, in that the boundary specified by
the distance from the right edge of the screen is taken as the rightmost edge
of the area where a break is allowed, instead of the leftmost edge.)

Default: nowa Type: toggle
Vi normally makes a number of checks before it writes out a file. This
prevents the user from inadvertently destroying a file. When the "writeany"
option is enabled, vi no longer makes these checks.

9051 -13-

Text Editing VI Command Ref

-14- 9051

SED - A Non-interactive Text Editor

This document is based on a paper by Lee E. McMahon of Bell Laboratories.

Introduction

Sed (a descendent of ed) is a non-interactive context editor designed to be especially useful in
three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too complicated to

be comfortably typed in: interactive mode;
3) To perform multiple 'global' editing functions efficiently in one pass through the

input.

Since only a few lines of the input reside in core at one time, and no temporary files are used,
the effective size of file that can be edited is limited only by the requirement that the input and
output fit simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is much more efficient than any interactive editor known to the author, even if
that editor can be driven by a pre-written script.

The principal loss of functions compared to an interactive editor are lack of relative addressing
(because of the line-atra-time operation). and lack of immediate verification that a command
has done what was intended.

Sed is a lineal descendant of the ED editor. Because of the differences between interactive and
non-interactive operation, considerable changes have been made between ed and sed; even
confirmed users of ed will frequently be surprised (and probably chagrined), if they rashly use
sed without reading Sections 2 and 3 of this document~ The most striking family resemblance
between the two editors is in the class of patterns ('regular expressions') they recognize; the
code for matching patterns is copied almost verbatim from the code for ed, and the description
of regular expressions in Section 2 is copied almost verbatim from the ROS Reference Manual
(9010) .

1. Overall Operation

Sed by default copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may· be
modified by fiags on the command line; see Section 1.1 below.

The general format of an editing command is:

[addressl,address2] [function] [arguments]

One or both addresses may be" omitted; the format of addresses is given in Section 2. Any
. number of blanks or tabs may separate the addresses from the function. The function must be
present; the available commands are discussed in Section 3. The arguments may be required or
optional, according to which function is given; again, they are discussed in Section 3 under each ..
individual function.

Tab characters and spaces at the beginning of lines are ignored.

1.1. Command-line Flags

Three flags are recognized on the command line:
-n: tells sed not to copy all lines, but only those specified by p functions or p flags after

s functions (see Section 3.3);
-e: tells sed to take the next argument as an editing command;

9051 -1-

Text Editing SED

-f: tells Bed to take the next argument as a file name; the file should contain editing
commands, one to a line.

1.2. Oxder of Application of Ediung Chmmands

Before any editing is done (in fact, before any input file is even opened), all the editing com~
mands are compiled into a form which will be moderately efficient during the execution phase
(when the commands are actually applied to lines of the input file). The commands are com­
piled in the order in which they are encountered; this is generally the order in which they will
be attempted at execution time. The commands are applied one at a time; the input to each
command is the output of all preceding commands.

The default linear order of application of editing commands can be changed by the fiow-of­
control commands, t and b (see Section 3). Even when the order of application is changed by
these commands, it is still true that the input line to any command is the output of any previ­
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one
line of the input text, but more than one line can be read into the pattern space by using the N
command (Section 3.6.).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
D own to a sunless sea.

(In no case is the output of the Bed commands to be considered an improvement on Coleridge.)

Example:

The command

2q

will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing

Lines in the input file(s) to which editing commands are to be applied can be selected by
addresses. Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by
grouping the commands with curly braces ('{ }')(Sec. 3.6.).

2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line~number counter
is incremented; a line~number address matches (selects) the input line which causes the inter­
nal counter to equal the address line-number. The counter runs cumulatively through multiple
input files; it is not reset when a new input file is opened.

-2- 9051

Text Editing SED

As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern ('regular expression') enclosed in slashes (' /'). The regular
expressions recognized by sed are constructed as follows:

I} An ordinary character (not one of those discussed below) is a regular expression,
and matches that character.

2} A circumfiex ,A, at the beginning of a regular expression matches the null character
at the beginning of a line.

3} A dollar-sign '$' at the end of a regular expression matches the null character at the
end of a line.

4} The characters '\n' match an embedded newline character, but not the newline at
the end of the pattern space.

5} A period'.' matches any character except the terminal newline of the pattern space ..
6} A regular expression followed by an asterisk '*' matches any number (including 0)

of adjacent occurrences of the regular expression it follows.
7} A string of characters in square brackets '[]' matches any character in the string,

and no others. If, however, the first character of the string is circumflex' A',

the regular expression matches any character except the characters in the string
and the terminal newline of the pattern space.

8} A concatenation of regular expressions is a regular expression which matches the
concatenation of strings matched by the components of the regular expression.

9} A regular expression between the sequences '\(' and '\)' is identical in effect to the
unadorned regular expression, but has side-effects which are described under
th~ s command below and specification IO} immediately below.

IO} The expression '\d'means the same string of characters matched by an expression
enclosed in '\(' and '\)' earlier in the same pattern. Here d is a single digit; the
string specified is that beginning with the dth occurrence of '\(' counting from
the left. For example, the expression' A\(.*\) \1' matches a line beginning with
two repeated oc~urrences of the same string.

II} The null regular expression standing alone (e .g., '/ /') is equivalent to the last reg-
ular expression compiled.

To use one of the special characters (A $. * [] \ /) as a literal (to match an occurrence of itself
in the input), precede the special character by a backslash '\'. .

For a context address to 'match' the input requires that the whole pattern within the address
match some portion of the pattern space.

2.3. Number of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each command the
maxiinum number'of allowed addresses is given. For a command to have more addresses than
the maximum allowed is considered an error.

If a command'has no addresses, it is applied to every line in the input.

If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address,
and to all subsequent lines until (and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first address,
and the process is repeated.

Two addresses are separated by a comma.

9051 -3-

Text Editing SED

Examples:

Ian I
lan.*anl
IAanl

matches lines 1, 3, 4 in our sample text
matches line 1

matches no lines

1·1
I\.I
Ir*anl

matches all lines
matches line 5

I\{ an\) .*\11
matches lines 1,3, 4 (number = zero!)
matches line 1

3. FUNCTIONS

All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then the single character func­
tion name, possible arguments enclosed in angles (< », an expanded English translation of
the single-character name, and finally a description of what ,each function does. The angles
around the arguments are not part of the argument, and should not be typed in actual editing
commands.

3.1. 'Whole-line Oriented Functions

(2) d -- delete lines

The d function deletes from the file (does not write to the output) all those
lines matched by its address{ es).

It also has the side effect that no further commands are attempted on the
corpse of a deleted line; as soon as the d function is executed, a new line is
read from the input, and the list of editing commands is re-started from the
beginning on the new line.

(2)n -- next line

{ l)a\

The n function reads the next line from the input, replacing the current line.
The current line is written to the output if it should be. The list of editing
commands is continued following the n command.

< text> -- append lines

{ l)i\

The a function causes the argument <text> to be written to the output after
the line matched by its address. The a command is inherently multi-line; a
must appear at the end of a line, and <text> may contain any number of
lines. To preserve the one-command-to-a-line fiction, the interior newlines
must be hidden by a backslash character ('\') immediately preceding the new­
line. The <text> argument is terminated by the first un hidden newline (the
first one not immediately preceded by backslash).

Once an a function is successfully executed, <text> will be written to the out­
put regardless of what later commands do to the line which triggered it. The
triggering line may be deleted entirely; <text> will still be written to the out­
put.

The <text> is not scanned for address matches, and no editing commands are
attempted on it. It does not cause any change in the line-number counter.

<text> -- insert lines

The i function behaves identically to the a function, except that <text> is
written to the output before the matched line. All other comments about the "a

9051

Text Editing SED

function apply to the i function as well.

(2)c\
<text> -- change lines

The c function deletes the lines selected by its address(es), and replaces them
with the lines in <text>. Like a and ~ c must be followed by a newline hid­
den by a backslash; and interior new lines in <text> must be hidden by
backslashes.

The c command may have two addresses, and therefore select a range of lines.
If it does, all the lines in the range are deleted, but only one copy of < text> is
written to the output, not one copy per line deleted. As with a and ~~ <text>
is not scanned for address matches, and no editing commands are attempted on
it. It does not change the line-number counter.

After a line has been deleted by a c function, no further commands are
attempted on the corpse.

If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the c function will be placed before the text of the
a or r functions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disap­
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the

. first desired blank or tab by a backslash; the backslash will not appear in the output.

Example:

The list of editing commands:

n
a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
XXXX
Where Alph, the sacred river, ran
XXXX
D own to a sunless sea.

In this particular case, the same effect would be produced by either of the two following com­
mand lists:

n
i\
XXXX
d

n
c\
XXXX

3.2. Substitute Function

One very important function changes parts of lines selected by a context search within the line.

(2)s<pattern> <replacement> <flags> -- substitute

The s function replaces part of a line (selected by <pattern» with <replace­
ment>. It can best be read:

Substitute for <pattern>, <replacement>

The <pattern> argument contains a pattern, exactly like the patterns in

9051 -5-

Text Editing

Examples:

SED

addresses (see 2.2 above). The only difference between <pattern> and a con­
text address is that the context address must be delimited by slash (' /') charac­
ters; <pattern> may be delimited by any character other than space or new­
line.

By default, only the first string matched by <pattern> is replaced, but see the
g flag below.

The <replacement> argument begins immediately after the second delimiting
character of <pattern>, and must be followed immediately by another instance
of the delimiting character. (Thus there are exactly three instances of the
delimiting character.)

The <replacement> is not a pattern, and the characters which are special in
patterns do not have special meaning in <replacement>. Instead, other char­
acters are special:

& is replaced by the string matched by <pattern>

\d (where d is a single digit) is replaced by the dth substring matched
by parts of <pattern> enclosed in '\(' and '\)'. If nested sub­
strings occur in <pattern>, the dth is determined by counting
opening delimiters ('\(').

As in patterns, special characters may be made literal by
preceding them with backslash ('\').

The <flags> argument may contain the following flags:

g -- substitute <replacement> for all (non-overlapping) instances of
<pattern> in the line. After a successful substitution, the
scan for the next instance of <pattern> begins just after the
end of the inserted characters; characters put into the line from
<replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub­
stitution was actually made by the s function. Notice that if
several s functions, each followed by a p flag, successfully sub­
stitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution.

w <filename> -- write the line to a file if a successful replacement was
done. The w flag causes lines which are actually substituted by
the s function to be written to a file named by <filename>. If
<filename> exists before sed is run, it is overwritten; if not, it
is created.

A single space must separate w and <filename>.

The possibilities of multiple, somewhat different copies of one
input line being written are the same as for p.

A maximum of 10 different file names may be mentioned after
w flags and w functions (see below), combined.

The following command, applied to our standard input,

s Ito Iby Iw changes

-6- 9051

Text Editing

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
D own by a sunless sea.

and, on the flle 'changes':

Through caverns measureless by man
D own by a sunless sea.

If the nocopy option is in effect, the command:

s/[.,;?:] /*P&*/gp

produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

Finally, to illustrate the effect of the g flag, the command:

/X/s/an/AN/p

produces (assuming nocopy mode) :

In XANadu did Kubhla Khan

and the command:

/X/s/an/AN/gp

produces:

In XANadu did Kubhla KhAN

3.3. Input-output Functions

(2) P -- print

SED

The print function writes the addressed lines to the standard output flle. They
are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

(2)w <filename> -- write on <filename>

The write function· writes the addressed lines to the file named by < filename> .
If the file previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.

Exactly one space must separate the w and < filename> .

A maximum of ten different files may be mentioned in write functions and w
flags after 8 functions, combined.

(1)r <filename> -- read the contents of a file

The read function reads the contents of <filename>, and appends them after
the line matched by the address. The file is read and appended regardless of
what subsequent editing commands do to the line which matched its address.
If r and a functions are executed on the same line, the text from the a func­
tions and the r functions is written to the output in the order that the functions
are executed.

Exactly one space must separate the r and <filename>. If a file mentioned by
a r function cannot be opened, it is considered a null file, not an error, and no

9051 -7-

Text Editing SED

diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care
should be taken that no more than ten files be mentioned in w functions or fIags; that number

. is reduced by one if any r functions are present. (Only one read file is open at one time.)

Examples

Assume that the file 'notel' has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

Then the following command:

/Kubla/r notel

produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
D own to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces containing
imbedded newlines; they are intended principally to provide pattern matches across lines in the
input.

(2) N -- Next line

The next input line is appended to the current line in the pattern space; the two
input lines are separated by an imbedded newline. Pattern matches may extend
across the imbedded newline(s).

(2)D -- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern
spaCe. If the pattern space becomes empty (the only newline was the terminal
newline), read another line from the input. In any case, begin the list of edit­
ing commands again from its beginning.

(2)P -- Print first part of the pattern space

Print up to and including the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded
newlines in the pattern space.

3.5. Hold and Get Functions

Four functions save and retrieve part of the input for possible later use.

-8-

(2)h -- hold pattern space

The h functions copies the contents of the pattern space into a hold area (des­
troying the previous contents of the hold area).

(2)H -- Hold pattern space

9051

Text Editing SED

The H function appends the contents of the pattern space to the contents of the
hold area; the former and new contents are separated by a newline.

(2) g -- get contents of hold area

The 9 function copies the contents of the hold area into the pattern space (des­
troying the previous contents of the pattern space).

(2) G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the
pattern space; the former and new contents are separated by a newline.

(2)x -- exchange

The exchange command interchanges the contents of the pattern space and the
hold area.

Example

The commands

1h
1s/ did.*/ /
Ix
G

s/\n/ :/

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Chn1:.ro1 Functions

These functions do no editing on the input lines, but control the application of functions to the
lines selected by the address part.

(2)! -- Don't

The Don't command causes the next command (written on the same line), to
be applied to all and only those input lines not selected by the address part.

(2) { -- Grouping

The grouping command '{' causes the next set of commands to be applied (or
not applied) as a block to the input lines selected by the addresses of t.he group­
ing command. The first of the commands under control of the grouping may
appear on the same line as the '{' or on the next line.

The group of commands is terminated by a matching'}' standing on a line by
itself.

Groups can be nested.

(0) :<label> -- place a label

The label function marks a place in the list of editing commands which may be
referred to by b and t functions. The <label> may be any sequence of eight
or fewer characters; if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempted.

9051 -9-

Text Editing SED

(2)b<label> -- branch to label

The branch function causes the sequence of editing commands being applied to

the current input line to be restarted immediately after the place where a colon
function with the same <label> was encountered. If no colon function with
the same label can be found after all the editing commands have been com­
piled, a compile time diagnostic is produced, and no execution is attempted.

A b function with no <label> is taken to be a branch to the end of the list of
editing commands; whatever should be done with the current input line is
done, and another input line is read; the list of editing commands is restarted
from the beginning on the new line.

(2) t<label> -- test substitutions

The t function tests whether any successful substitutions have been made on
the current input line; if so, it branches to <label>; if not, it does nothing.
The flag which indicates that a successful substitution has been executed is
reset by:

1) reading a new input line, or
2) executing a t function.

3.7. Miscellaneous Functions

(1)= -- equals

-10-

The = function writes to the standard output the line number of the line
matched by its address.

(1)q -- quit

The q function causes the current line to be written to the output (if it should
be), any appended or read text to be written, and execution to be terminated.

9051

•

Ridge Computers
Corporate Headquarters

2451 Mission College Blvd.
Santa Clara, California 95054
Phone: (408) 986-8500
Telex: 176956

	000
	001
	002
	003
	004
	01_01_redit
	01_02
	01_03
	01_04
	01_05
	01_06
	01_07
	01_08
	01_09
	01_10
	01_11
	01_12
	01_13
	01_14
	01_15
	01_16
	01_17
	01_18
	01_19
	01_20
	01_21
	01_22
	01_23
	02_01_ed
	02_02
	02_03
	02_04
	02_05
	02_06
	02_07
	02_08
	02_09
	02_10
	02_11
	02_12
	02_13
	02_14
	03_01
	03_02
	03_03
	03_04
	03_05
	03_06
	03_07
	03_08
	03_09
	03_10
	03_11
	03_12
	03_13
	03_14
	03_15
	03_16
	03_17
	03_18
	03_19
	03_20
	03_21
	03_22
	03_23
	03_24
	04_01_ex
	04_02
	04_03
	04_04
	04_05
	04_06
	04_07
	04_08
	04_09
	04_10
	04_11
	04_12
	04_13
	04_14
	04_15
	04_16
	04_17
	04_18
	04_19
	04_20
	05_01_edit
	05_02
	05_03
	05_04
	05_05
	05_06
	05_07
	05_08
	05_09
	05_10
	05_11
	05_12
	05_13
	05_14
	05_15
	05_16
	05_17
	05_18
	05_19
	05_20
	05_21
	05_22
	06_01
	06_02
	06_03
	06_04
	07_01_vi
	07_02
	07_03
	07_04
	07_05
	07_06
	07_07
	07_08
	07_09
	07_10
	07_11
	07_12
	07_13
	07_14
	07_15
	07_16
	07_17
	07_18
	07_19
	07_20
	07_21
	07_22
	07_23
	07_24
	07_25
	07_26
	07_27
	07_28
	07_29
	07_30
	08_01
	08_02
	08_03
	08_04
	08_05
	08_06
	08_07
	08_08
	08_09
	08_10
	08_11
	08_12
	08_13
	08_14
	09_01_sed
	09_02
	09_03
	09_04
	09_05
	09_06
	09_07
	09_08
	09_09
	09_10
	xBack

