OG0
Ul

ROYAL PRECISION ELECTRONIC DIGITAL COMPUTER

=

ACT | COMPILER

ROYAL McBEE CORPORATION ¢ data processing division

PREFACE

THE ACT | SYSTEM

THE ACT | ComPILER (ALGEBRAIC COMPILER AND INTO DETAILED LANGUAGE - (COMPILE TIME) AND
TRANSLATOR) IS A NEW PROGRAMMING DEVELOP- SECOND, THE TIME REQUIRED TO EXECUTE THE
MENT OF THE ROYAL MCBEE CORPORATION. ITs MACHINE LANGUAGE PROGRAM THAT HAS BEEN
PRIME PURPOSE 18 TO FACILITATE THE CODING GENERATED - (COMPUTE TIME).

OF PROBLEMS THROUGH THE USE OF COMMON

MATHEMATICAL TERMINOLOGY, BEARING IN MIND SINCE THE FIRST AND SECOND PHASE MAY BE
SOME BASIC RULES OF ELEMENTARY ALGEBRA. SEPARATE TIMES, THE COMPILER NEED NOT BE IN
FIELD TESTED AND PROVEN, THIS NEW TECH- THE LGP-30 AT COMPUTE TIME. THIS MEANS THE
NIQUE WILL PROVE USEFUL TO BOTH THE ENTIRE COMPUTER MEMORY IS AVAILABLE FOR
INEXPER IENCED AND EXPERIENCED PROGRAMMER IN USEFUL CALCULATIONS AT COMPUTE TIME.

TERMS OF MORE RAPID PROBLEM SOLUTION.
| WISH TO ACKNOWLEDGE MY APPRECIATION TO THE

ONE INSTRUCTION IN ACT | MAY BE THE EQUIVA- MANY PEOPLE WHO OFFERED SUGGESTIONS AND ~/
LENT OF MANY MACHINE LANGUAGE INSTRUCTIONS CRITICISMS OF THE ACT | SYSTEM, IN PARTICULAR
SIMPLIFYING COMMUNICATION WITH THE COMPUTER. DR. HENRY BOWLDEN OF NATIONAL CARBON COMPANY
THROUGH THIS SIMPLIFICATION OF PROBLEM WHO OFFERED SOME OF THE BASIC CONCEPTS AND
EXPRESS10N, MANY HUMAN CODING ERRORS CAN MEL KAYE OF ROYAL MCBEE WHO DID THE BULK OF

ALSO BE OBVIATED, THE PROGRAMMING.

ACT | HAS TWO DISTINCT PHASES. FIRST, THE
TIME SPENT TO TRANSLATE THE COMMON LANGUAGE CLAY S. BOSWELL, JR.

O

Copyright, 1959 by Royal McBee Corporation, Port Chester, N. Y.

11

Vi

Vil

PREFACE

TABLE OF CONTENTS

INTRODUCT I ON

DEFINITIONS AND LIMITATIONS OF TERMS
1. SvymBOLS
2. OPERATIONS
3. CONSTANTS
4, BRACKETS
5. STATEMENT SYMBOLS
6. REGION SymBOLS
SPECIAL STATEMENT FORMS
DIM, INDEX, ITER, SUB
EXAMPLES
1. VARIANCE
2. PRODUCTION & DISTRIBUTION
OPERATIONS
Use
1. PUNCHING PROCEDURE
2. COMPILING PROCEDURE
3. PUNCH OUT PROCEDURE
4. PROCEDURE TO EXECUTE PROGRAM
5. PROCEDURE TO CHECKOUT PROGRAM
6. ERROR CODES
7. PROGRAMMING LIMITATIONS
APPEND I X
1. SCALING TECHNIQUE
2. BRACKETS AND PRECEDENCE
3. SUBROUTINES AND CALLING SEQUENCE

4‘

ASSemBLY FOR ACT |

PAGE

INTRODUCTION

THE ROYAL MCBEE ACT | PROGRAMMING SYSTEM
WAS DESIGNED TO MAKE THE PROGRAMMER'S

JOB OF CODING AS PAINLESS AS POSSIBLE.
PROGRAMMING INFORMATION 1S PRESENTED TO
THE LGP-30 IN MUCH THE SAME MANNER AS
MIGHT BE USED TO EXPLAIN A PROBLEM TO

A COLLEAGUE. THE COMMON BASIS FOR THE
EXCHANGE OF MATHEMATICAL IDEAS IS THE
LANGUAGE OF ALGEBRA. THIS COMMON
LANGUAGE OF ALGEBRA 1S THE BASIC

LANGUAGE OF THE ACT | PROGRAMMING SYSTEM.
IT HAS BEEN AUGMENTED SOMEWHAT BEYOND
BASIC ALGEBRA TO GIVE THE PROGRAMMER THE
POWER TO INSERT LOGICAL DECISIONS INTO
HIS PROGRAM AND TO WORK WITH ARRAYS OR
SETS OF PARAMETERS AS READILY AS HANDLING
ONE VARIABLE OR CONSTANT. THIS NEW
LANGUAGE 1S KNOWN AS THE "SOURCE"
LANGUAGE; IT IS THIS LANGUAGE THAT THIS
MANUAL DEALS WITH.

HOW THE COMPILER WORKS 1S BASICALLY HOW
ELEMENTARY ALGEBRA WAS LEARNED. WHEN
THE FRESHMAN WAS GIVEN THE STATEMENT
THAT FOLLOWS, HE LEARNED TO WORK FROM
THE INNERMOST BRACKETS OUT AND TO
PERFORM FUNCTIONS (SUCH AS SIN, COS,
LOG) BEFORE MULTIPLICATIONS AND
DIVISIONS WHICH, IN TURN, MUST BE DONE
BEFORE ADDITIONS AND SUBTRACTIONS.

c x sin (a + b) + 4

IN ORDER FOR THIS STATEMENT TO MEAN THE
SAME THING TO EVERYONE AND TO THE LGP-30,
THE OPERATIONS MUST BE EXECUTED IN THE
SAME SEQUENCE. THAT 1S:

FIRST a + b BECAUSE IT IS
THE INNERMOST
BRACKET LEVEL

SECOND sin (a + b) BECAUSE IT 18
A FUNCTION

THIRD ¢ x sin (a + b) BECAUSE IT IS
A MULTIPLICATION

FOURTH ¢ x sin(a+b)+ & BECAUSE IT 18
AN ADDITION

THE RESULT OF THE "SOURCE"™ PROGRAM WILL
BE AN EFFICIENT MACHINE LANGUAGE LGP-30
PROGRAM KNOWN AS THE "OBJECT" PROGRAM.

IN MANY CASES THIS RESULTING "OBJECT"
PROGRAM WILL BE AS SHORT AND FAST AS A
HAND PREPARED PROGRAM - IN SOME CASES
SHORTER. THE "OBJUECT" PROGRAM MAY BE
PUNCHED OUT ON TAPE FOR FUTURE USE AND/OR
IT MAY BE EXECUTED IMMEDIATELY.

THE PRIMARY INTEREST OF THIS MANUAL IS THE
"SOURCE" PROGRAM LANGUAGE: A SERIES OF
ALGEBRAIC AND LOGICAL STATEMENTS THAT THE
PROGRAMMER WILL USE TO DEFINE HIS PROBLEM.

IT SEEMS TO BE A SAFE ASSUMPTION THAT THE
PROGRAMMER WILL OCCASIONALLY MAKE AN ERROR

IN LOGIC AND/OR ERROR IN TRANSCRIBING HIS
PROBLEM INTO "SOURCE" LANGUAGE. SINCE

LITTLE WOULD BE GAINED IF THE PROGRAMMER HAD
TO CHECK OUT HIS PROGRAM IN MACHINE LANGUAGE,
PROVISION HAS BEEN MADE FOR THE PROGRAMMER

TO CHECK OUT HIS PROGRAM IN "SOURCE" LANGUAGE.
(THE METHOD USED TO ACCOMPLISH THIS WILL BE
COVERED IN A LATER SECTION).

IN ADDITION TO THE ALGEBRAIC METHOD OF
CODING, BASIC LGP-30 MACHINE LANGUAGE MAY

BE USED. THESE OPERATIONS ARE LISTED IN
TaBLE 11 (FIGURE 4) OF SECTION V. THE
PROGRAMMER MAY USE THE MACHINE. LANGUAGE
INSTRUCTIONS WHEN A SPECIAL FUNCTION THAT

IS NOT REPRESENTED IN TABLE | (FIGURE 3) IS
DESIRED. IF ONLY MACHINE LANGUAGE OPERATIONS
ARE USED IN CODING A PROGRAM, THE ACT |
SYSTEM WOULD THEN BEHAVE IN THE SAME MANNER
AS A SYMBOLIC ASSEMBLY PROGRAM. THE
INSTRUCTIONS IN TABLE Il (FIGURE 4) wiLL NOT
BE EXPLAINED IN DETAIL IN THIS MANUAL.

11 DEFINITIONS AND LIMITATIONS OF TERMS

A SOURCE PROGRAM IS MADE UP OF
STATEMENTS. A STATEMENT, IN TURN,

MAY CONTAIN SYMBOLS, OPERATIONS,
CONSTANTS, BRACKETS, STATEMENT SYMBOLS,
AND REGION SYMBOLS. RATHER THAN
EXPLAIN ALL OF THESE TERMS AT ONCE,
EXAMPLES WILL BE USED TO INTRODUCE
THESE CONCEPTS AS MORE INTRICATE
PROBLEMS ARE PRESENTED.,

SYMBOLS AND OPERATIONS

CONSIDER THE FOLLOWING PROBLEM.

rate x time : dist.

THIS PROBLEM AS STATED COULD BE ENTERED
INTO THE LGP-30 EXACTLY AS IT APPEARS
AND THE ACT | PROGRAM WOULD MAKE AN
®"0BJECT" PROGRAM OF IT. THE PROBLEM
STATEMENT IS THEN SUITABLE AS A "SOURCE"
STATEMENT. ON EXAMINATION OF THE
"SOURCE™ PROGRAM IN MORE DETAIL WE

FIND THAT IT IS MADE UP OF SYMBOLS

érate, time,dist.) AND OPERATIONS
X, :).

A SYMBOL IS DEFINED IN THE ACT | SYSTEM
AS BEING ANY FIVE OR LESS ALPHANUMERIC
CHARACTERS ON THE LGP-30 TAPEWRI TER
WITH THE FOLLOWING RESTRICTIONS.

1. |IT CANNOT BE AN OPERATION
(SEE TABLE - FIGURES 3 AND 4)

2. IT CANNOT BE A CONSTANT
0-99999

3. IT CANNOT BE A BRACKET

4, IT CANNOT BE A STATEMENT
symBoL (SEE DEF. PG. 3)

5. |T CANNOT BE A REGION
symBoL (SEE DEF. Pa. 3)

THIS MAY APPEAR TO PLACE MANY RESTRICTIONS
UPON A SYMBOL, BUT IT IS DOUBTFUL |F ANY-
ONE WILL HAVE ANY TROUBLE REMEMBERING
THESE RULES, IT 1S QUITE UNLIKELY THAT
SOMEONE WOULD WANT TO WRITE AS A SYMBOL

sin + ora+]

PROVISION HAS BEEN MADE FOR 127 SYMBOLS.
|F MORE ARE REQUIRED, A REGION MAY BE
USED FOR THAT PURPOSE (SEE REGION).

ANY OF THE OPERATIONS THAT ARE GIVEN IN
THE TABLES MAY BE USED IN STATEMENTS.
THESE TABLES ARE FLEXIBLE AND CAN BE
EXPANDED AND/OR CHANGED VERY EASILY.
SOME OF THE OPERATIONS MAKE THE ACT |
SYSTEM EXTREMELY POWERFUL AND VERSATILE
OPERATIONS ARE EXPLAINED IN A SEPARATE
SECTION. PROVISIONS HAS BEEN MADE FOR
63 OPERATIONS.

BRACKETS AND CONSTANTS

CONSIDER THE FOLLOWING PROBLEM AND THE
STATEMENT REQUIRED TO EVALUATE IT.

3 + ab

b2-4ac=y

THIS WOULD BE PRESENTED TO THE ACT | SYSTEM
IN THE FOLLOWING "™SOURCE™ LANGUAGE.

B+axy/bxb-4xaxq) sy

THIS STATEMENT AGAIN CONTAINS SYMBOLS
(a, b, o, y) anD OpERATIONS (+, - %, /, :).
IN ADDITION TO THESE TERMS IT CONTAINS

srackets ([)) Anp constants (3, 4).

THE BRACKETS ARE FAIRLY SELF-EXPLANATORYj
THEY ARE USED TO ENCLOSE A PORTION OF A
STATEMENT. |T MAY BE NOTED THAT BRACKETS
MIGHT BE REQUIRED MORE OFTEN IN THE ACT |
SYSTEM THAN IN HANDWR1ITTEN ALGEBRA BECAUSE
THE TAPE TYPEWRITER DOES NOT HAVE SPECIAL
CHARACTERS LIKE n/_ AND FURTHER-
MORE, THE STATEMENT MUST BE PRESENTED IN
ONE LINE OF TYPE. BRACKETS MAY BE NESTED
SIX DEEP.

BRACKETS WILL HAVE SOME EFFECT ON THE TIME
SPENT TO COMPILE THE ™OBJECT" PROGRAM, BUT
THE LENGTH OF THE ™OBJECT PROGRAM AND ITS
TIME OF EXECUTION WILL NOT BE AFFECTED. SO
|F THERE 1S EVER ANY DOUBT IF A BRACKET
SHOULD BE USED OR NOTj USE IT.

THE CONSTANTS (3 AND 4) ARE SELF-EXPLANATORY.

THEY MAY BE ANY FIVE DIGIT POSITIVE NUMBERS.
PROVISION HAS BEEN MADE FOR 39 CONSTANTS.

STATEMENT SYMBOLS

ANOTHER TYPE PROBLEM THAT FREQUENTLY ARISES
IS WHEN A LOGICAL DECISION MUST BE MADE IN
A PROGRAM. IN THE FOLLOWING EXAMPLE IT IS
DESIRED TO EVALUATE A PRESSURE IN THREE
DIFFERENT MANNERS DEPENDING ON WHETHER ("A"
GREATER 50), ("A" LEss 50), or ("A" EQUAL
50). THE "SOURCE"™ LANGUAGE FOR THE ACT |
SYSTEM TO MAKE THIS DECISION AND TRANSFER
TO THE APPROPRIATE PROGRAM WOULD BE AS
FOLLOWS:

when a less 50 trn sl2

when a grt 50 trn sl13
axa="b: pres use s25
sl2 a x a X a : pres use 825
sl3 a—-bxDb : pres

525 pres X (veees

THIS STATEMENT AGAIN CONTAINS SYMBOLS
(a, b, pres), OPERATIONS (less, trn, when
grt, x, =, 3, use) AND A CONSTANT 5O.

NO BRACKETS WERE REQUIRED.

STATEMENT SYMBOLS HAVE BEEN GIVEN TO THE
FOURTH, FIFTH, AND SIXTH STATEMENTS. IN
THE CASE OF THE FIRST STATEMENT, THE
STATEMENT SYMBOL sl2 1S USED TO PROVIDE
A STATEMENT TO TRANSFER TO IN THE EVENT
THE VALUE FOR SYMBOL "A™ 1S LESS THAN

50. |F THE VALUE FOR ™A™ 1S NOT LESS

THAN 50, THE TRANSFER TO STATEMENT STARTING
Wi TH 813 DOES NOT OCCUR AND THE NEXT
SEQUENTIAL STATEMENT 18 EXECUTED.

STATEMENT 2 THEN INTERROGATES TO SEE IF "A"
IS GREATER THAN 50. IF IT IS, THE STATEMENT
STARTING WITH 813 IS EXECUTED$ IF NOT THE
LATTER CASE, STATEMENT 3 IS EXECUTED. THIS
CAN ONLY HAPPEN IF ™A™ 18 NEITHER LESS THAN
50 NOR GREATER THAN 50 — THAT 18 IF "A"™ I8
EQUAL TO 50.

THE "use 525" PART IN THE THIRD AND FOURTH
STATEMENTS UNCONDI TIONALLY TRANSFERS TO THE
STATEMENT STARTING WITH s25. THE PROGRAM
THAN CALCULATES THE VALUE FOR SYMBOL "pres"
IN THREE DIFFERENT MANNERS DEPENDING IF "A"
LESS 50, "A"™ GREATER 50, OR "A™ EQUAL 50.
ALL PATHS OF CALCULATION COME BACK TOGETHER
AT STATEMENT LABELED WITH STATEMENT SYMBOL

s25.

THE STATEMENT SYMBOLS MAY BE SO THROUGH s255.
PROVISION HAS BEEN MADE FOR 256 STATEMENT
SYMBOLS WHICH MUST START WITH AN "s"

FOLLOWED BY 1 TO 3 DIGITS WHICH MUST BE

LESS THAN 256.

REGION SYMBOLS

WHEN ARRAYS OR SETS OF NUMBERS ARE REQUIRED
DURING A CALCULATION, THE COMMON LANGUAGE
OF ALGEBRA BEGINS TO BECOME INADEQUATE
UNLESS MATRIX ALGEBRA METHODS ARE ADOPTED.
THE MATRIX ALGEBRA TERMINOLOGY DOES NOT
ENJOY THE SAME RECOGNITION AS COMMON
ALGEBRA AND FURTHERMORE THE TAPE TYPEWRITER
IS NOT ADAPTED TO EXPRESS IT.

NEVERTHELESS, - PROBLEMS CONTAINING ARRAYS

OR SETS OF NUMBERS STILL EXI1ST., CONSIDER
THE PROBLEM WHERE IT IS DESIRED TO CALCULATE
THE SUM OF 500 NUMBERS. THE STATEMENTS TO
SOLVE THIS PROBLEM COULD BE AS FOLLOWS,

dim a 501

index i

0O : sum

1:1

sl a i+ sum : sum
iter i 1 500 sl
stop

THIS PROGRAM OF STATEMENTS LOOKS MORE
INVOLVED THAN THE FIRST; HOWEVER, THERE
1S ONLY ONE NEW TERM INTRODUCED IN IT.
THE STATEMENTS STILL CONTAIN SYMBOLS

(i sum) opERATIONS (dim, index, :, +,
stop, iter), consTants (0, 1, S500) anp
THE STATEMENT SymBoL (sl).

THE REGION SYMBOL ™A™ HAS BEEN ASSIGNED
TO REFER TO A BLOCK OF 501 LOCATIONS. THE
FIRST STATEMENT

dim a 501

RESERVES 501 LOCATIONS OR WORDS, WHICH WILL
BE DESIGNATED BY THE REGION symBoL "A"™. |IF
THE SELECTION OF ANY WORD IN THE BLOCK I8
DESIRED, A CONSTANT OR A SYMBOL WHICH 18
ASSIGNED AS AN INDEX REGISTER MUST FOLLOW
THE REGION SYMBOL.

THE FIRST WORD IN A REGION IS WORD NUMBER
0. IN THE EXAMPLE 500 NUMBERS ARE TO BE
ADDED. SINCE THE INDEX i HAS BEEN SET TO
1, 501 MEMORY LOCATIONS MUST BE RESERVED
(THE FIRST WORD, WORD NUMBER G 18 NOT
USED IN THE SUM).

EXAMPLES :
dim a 500
index i J SET i AND j AS INDICES
a0+b 1sT WORD OF REGION "A"
ADDED TO B
ald +c 15TH WORD OF REGION ™A™
ADDED TO C
ai+aj |14 (i+1) TH WORD OF REGION

"aA® appED TO THE (J + 1)th
WORD OF REGION "A". |IF
THE FIRST WORD, WORD
NUMBER 0, OF A REGION IS

| GNORED, AS IN THE SUM-
MATION EXAMPLE, 2 1 + a]
WILL REPRESENT THE iTH
WORD ADDED TO THE jth
WORD.

A REGION SYMBOL IS ANY SYMBOL THAT HAS
BEEN DEFINED AS SUCH BY A DIMENSION
STATEMENT (SEE PAGE 5). WHEN USED IN A
STATEMENT IT MUST BE FOLLOWED BY A
CONSTANT OR SYMBOL FOR AN INDEX REGISTER.

PROVISION HAS BEEN MADE FOR 11 REGION

SYMBOLS.

IN THE PREVIOUS EXAMPLE (SHOWN ON PAGE 3)
EACH OF THE STATEMENTS IS EXPLAINED AS
FOLLOWS:

dim a 501 SET ASIDE 501 MEMORY

LOCATIONS WHICH WILL
BE REFERRED TO BY
REGION SymBoL "A".

SET ™1™ AS A SYMBOL
WITH THE SPECIAL
FUNCTION OF AN INDEX

SET THE VALUE FOR
symMBoL "sum®™ EQUAL TO O,

1:1 SET THE VALUE FOR
symBoL ™i" EQUAL TO 1.
sl a 1 + sum: sum TAKE THE ITH VALUE OF
REGION "A" (18T TIME
THRU IT WILL BE A 1) AND
ADD IT TO "sum™ (1lsT TIME
THRU IT WiLL BE 0), AND
STORE THE RESULT IN "summ"
iter i 1 500 sl INCREASE ™1™ By 1. |IF ™"
1S LESS THAN OR EQUAL TO
500, TRANSFER TO
STATEMENT STARTING WITH
sl. IF ™™ |s GREATER
THAN 500, GO ON TO NEXT
STATEMENT

stop STOP COMPUTATION.

111 SPECIAL STATEMENT FORMS

THERE ARE FOUR OPERATIONS LISTED IN THE
OPERATION TABLE THAT REQUIRE A SPECIAL
FORMAT WHEN THEY ARE USED IN A STATEMENT.
WHEN ANY OF THESE FOUR OPERATIONS ARE
USED IN A STATEMENT, 1T MUST BE THE ONLY
OPERATION IN THAT STATEMENT.

dim - DIMENSION

DIM STATEMENTS MUST PRECEDE ALL OTHER
STATEMENTS. THEIR FUNCTION IS TO RESERVE
A BLOCK OF MEMORY TO BE USED AS A REGION.
EACH DIM STATEMENT WILL RESERVE A BLOCK
OF MEMORY AND ASSOCIATE A REGION SYMBOL
TO THAT BLOCK, 1I.E.

dim abc 500

THIS STATEMENT WILL RESERVE 500 MEMORY
LOCATIONS FOR A REGION DESIGNATED abc

THE REGION SYMBOL abC IMMEDIATELY FOLLOWS
THE OPERATION dim, THE REGION SYMBOL

MAY NOT BE USED FOR ANY PURPOSE EXCEPT TO
REFER TO THIS REGION. THERE MAY BE 11
dim STATEMENTS EACH USING A DIFFERENT
REGION SYMBOL. THE dim STATEMENT CREATES
NO INSTRUCTIONS IN THE "OBJECT"™ PROGRAM.

index - SET INDEX REGISTERS

AN index STATEMENT IF USED MUST IMMEDIATELY
FOLLOW THE dim STATEMENTS. THERE MUST BE
ONLY ONE index STATEMENT. AS MANY SYMBOLS
AS DESIRED MAY BE USED FOR INDEX REGISTERS,
HOWEVER, THEY MUST ALL BE LISTED IN THE
SAME index STATEMENT, !.E.

index i j k rate

THIS STATEMENT WILL USE (i j k rate)

FOR INDEX REGISTERS. THESE SYMBOLS, OF
COURSE, CANNOT HAVE BEEN USED FOR REGION
SYMBOLS. FOR EACH SYMBOL IN THE
STATEMENT, THREE INSTRUCTIONS ARE
CREATED IN THE "OBJECT" PROGRAM.

iter - ITERATE
THE iter STATEMENT IS USED TO INCREASE THE
VALUE FOR A SYMBOL BY A FIXED AMOUNT AND
TEST IT AGAINST A LIMIT., FREQUENTLY, THE
SYMBOL [INCREASED WOULD BE ASSIGNED AS AN
INDEX REGISTER, 1.E.

iter 1 1 10 sl1

SYMBOL i BY 1.

symsoL sll.

THIS STATEMENT WILL INCREASE THE VALUE OF

|IF THE NEW VALUE OF i

IS LESS THAN Ok EQUAL TO 10 THE NEXT STATE-
MENT TO BE EXECUTED WILL BEGIN WITH STATEMENT
IF THE NEW VALUE OF i IS

GREATER THAN 10, THE NEXT STATEMENT TO BE
EXECUTED WILL BE THE STATEMENT FOLLOWING

THE ITERATION STATEMENT., EITHER THE 1 orR 10
MAY BE A SYMBOL INSTEAD OF A CONSTANT, |.E.

iter 1 1 ab sl4

T iter j i k s27

THERE IS NO LIMIT ON THE NUMBER OF iter
STATEMENTS THAT MAY BE USED. EACH
STATEMENT WILL CREATE SIX INSTRUCTIONS IN
THE "OBUECT" PROGRAM.

sub -~ SUBROUTINE

THE sub STATEMENT WILL ENABLE THE USER OF
THE ACT | SYSTEM TO USE SUBROUTINES THAT
ARE NOT INCORPORATED IN THE BASIC TABLE
OF OPERATIONS, THE USE OF THIS IS BEST
ILLUSTRATED WITH TWO EXAMPLES.

I. ASSUME THE PROGRAMMER WANTED TO
USE A HYPERBOLIC TANGENT
SUBROUTINE AND THIS ROUTINE 18
NOT INCLUDED IN THE BASIC TABLE
OF OPERATIONS. THE PROGRAMMER
WOULD FIRST SET ASIDE A REGION
IN WHICH HE COULD PLACE THE
HYPERBOLIC TANGENT ROUTINE, 1I.E.

dim tanh 173

WHEN THE PROGRAMMER WISHED TO
USE THIS ROUTINE TO EVALUATE THE
HYPERBOLIC TANGENT OF Xy, AND
STORE THE RESULT txy THE STATE-
MENT WOULD BE AS FOLLOWS: |.E.

sub tanh xy txy

2. |F TWO MATRICES a AND b ARE TO BE
MULTIPLIED AND THE RESULT STORED
IN ¢ AND ASSUMING THE MATRIX MULTIPLY
SUBROUTINE REQUIRED THE INITIAL
LOCATIONS OF a, b, AND ¢ AND THEIR
DIMENSIONS, THE sub STATEMENT COULD
LOOK AS FOLLOWS: | ,.E.

submatx a bec i jk

1V EXAMPLES

SEVERAL EXAMPLES HAVE BEEN USED IN THE WITH A LITTLE MORE JUDICIOUS STUDY OF THE

INTRODUCTION AND DEFINITION SECTIONS PROBLEM, THE PROGRAMMER WOULD PROBABLY

OF THIS MANUAL. THE FOLLOWING EXAMPLES COMBINE THE FIRST TWO LOOPS., CALCULATING

ARE USED TO FURTHER ILLUSTRATE THE THE AVERAGE VALUE OF "A™ IN THE SAME LOOP

PROGRAMMING TECHNIQUES WITH SPECIAL AS READING ™A™ INTO THE COMPUTER WOULD

EMPHAS IS ON INDEXING METHODS. RESULT IN FEWER PROGRAM STEPS AND A
FASTER RUNNING PROGRAM. THE PROGRAM

THE FIRST EXAMPLE SHOWS THE PROGRAMMING BELOW WILL USE THE THREE LOOPS AS FIRST

REQUIRED TO CALCULATE THE VARIANCE OF A OUTLINED.

SET OF NUMBERS. THE SET MAY CONTAIN ANY

N NUMBER OF VALUES WITH THE RESTRICTION NOTE THESE TWO POINTS:

N 1S LESS THAN 1000. AFTER THE DIM AND
INDEX STATEMENTS THE VALUE OF N IS

READ INTO THE COMPUTER. THE PROGRAM 1. THE : OPERATION CAN BE USED
THEN CONSISTS OF THREE LOOPS: INSIDE A STATEMENT.
(SEE SECTION ON BRACKETS AND
1. READING THE N VALUES OF A INTO PRECEDENCE)
THE LGP-30
2. 1000 LOCATIONS ARE SET ASIDE FOR
2, CALCULATING THE AVERAGE OF THE REGION A BUT THE a 0 IS NOT
SET "A"™ = A = ABAR. USED. HENCE, ONLY 999 VALUES OF
a, l.E. a2 1 THRU a 999 mAY BE
3. CALCULATING THE VARIANCE. USED.
=\2
VARIANCE VAR = | Z (A - a)
N
dim a 1000 RESERVE 1000 LOCATIONS FOR REGION "A"
index i USE | AS AN INDEX
sl read n READ N = NUMBER OF VALUES IN REGION
nAn
1:13
s10 read a i READ IN THE N VALUES OF "A™"

iter i 1 n s10

sum : sum CALC. A = ABAR

]
e

sum

s3 [a i1 - abar : s J X s + sum : sum CALC. VARIANCE = VAR
iter i 1 n s3

sum / n : var

0 print abar O print var use sl

FiGgure 1

THE SECOND EXAMPLE SHOWS A PROGRAMMING
METHOD FOR A SIMPLIFIED ACCOUNTING FUNCTION,
THAT 1S, THE DISTRIBUTION OF COSTS AND
PIECES PRODUCED FOR THE PAYROLL AND JOB
COSTING DEPARTMENTS. IN THIS EXAMPLE, WE
ASSUME THERE ARE 20 DEPARTMENTS, 300
EMPLOYEES, AND 500 JoBS. THESE ARE
ASSIGNED SEQUENTIAL NUMBERS AND ARE

GIVEN THE NAMES OF DEPT, CLOCK, AND JOB.

FILES MUST BE SET UP FOR THE VARIOUS
INFORMATION THAT IS TO BE ACCUMULATED

AND USED. THEY ARE:
SymBoL
FiLE Size _Usep
VEPARTMENT CoST 20 DepT C
EMPLOYEE EARNINGS 300 EARN
EMPLOYEE RATES 300 RATE
JoB HOuRs 500 JoB H
JoB CosTs 500 JoB C
JoB PIECES 500 Jos P

THE EMPLOYEE WILL GIVE TO THE ACCOUNTING
DEPARTMENT TICKETS FOR EACH JOB HE HAS
WORKED ON DURING THE DAY. THESE TICKETS
WILL CONTAIN THE FOLLOWING INFORMATION:

DEPARTMENT DEPT
EMPLOYEE NUMBER CLOCK
JoB NUMBER JOB
HOURS WORKED HOURS
PIECES PRODUCED PIECES

THE APPROACH USED WILL BE TO SET UP THE
GIVEN FILES WITH DIM STATEMENTS AND USE
DEPT, CLOCK AND JOB AS INDICES (SOMETIMES
CALLED KEYS) TO SELECT THE PARTICULAR |TEM
DESIRED FROM EACH FILE. FOR INSTANCE,

IN STATEMENT 83 THE EMPLOYEE'S CLOCK
NUMBER CLOCK 1S USED TO SELECT HIS RATE
FROM THE RATE FILE AND THIS IS MULTIPLIED
BY THE HOURS WORKED FOR THAT TICKET.

THIS WILL GIVE A COST FOR THAT TICKET
WHICH IS TO BE DISTRIBUTED INTO THE
EMPLOYEE EARNINGS, THE DEPARTMENT COST,
AND THE JOB COST.

THERE ARE NATURALLY MANY MODIFICATIONS
WHICH CAN BE MADE TO A PROGRAM OF THIS
TYPE. IN THIS PROGRAM, A PRINT OF ALL
THE UPDATED FILE INFORMATION WILL OCCUR
IF AN ARTIFICIAL DEPARTMENT NUMBER
(pEPT. = 30) IS GIVEN. THE PRINT OUT OF
THE PROGRAM STARTS AT STATEMENT s20.

COSTS AND DISTRIBUTIONS

dim dpt ¢ 20

dim earn 300

dim rate 300

dim job h 500

dim job ¢ 500

dim job p 500

index clock dept job i

sl read dept READ TICKET

when dept equal 30 trn s20
read clock

read job

read hours

read pcs.

rate clock x hours : cost

cost + earn clock : earn clock DISTRIBUTE COST TO EARNINGS
cost + dpt c dept : dpt c dept DISTRIBUTE COST TO DEPARTMENT

cost + job ¢ job : job c job

hours + job h job : job h Job DISTRIBUTE COST TO JOB

pcs. + job p job : Jjob p job DISTRIBUTE HOURS TO JOB

use sl DISTRIBUTE PIECES PRODUCED TO JOB
. READ ANOTHER TICKET

820 1 : i

s2 O print i 2 print dpt ¢ i cr

iter 1 1 20 s2

cr cr 2 CARRIAGE RETURNS
1:3i

s3 O print 1 2 print earn i cr

iter i 1 300 s3

cr cr 2 CARRIAGE RETURNS
11

s4 O print i 1 print job h i 2 print job c i O print job p i cr
iter 1 1 500 s4

stop

F1GURE 2

SOME OF THE INDEX SYMBOLS ARE
UNDERL INED IN THIS EXAMPLE FOR
THE SAKE OF CLARITY,

V OPERATIONS

THE OPERATIONS IN TABLE | AND 11 (FIGURES
3&4) REPRESENT A SET OF OPERATIONS THAT
MAY BE USED WITH THE ACT | SysTEM. THE
OPERATION SYMBOLS MAY BE CHANGED, DELETED,
OR OTHER OPERATIONS MAY BE ADDED TO THESE
TABLES.

THERE 1S NO ABSOLUTE DISTINCTION BETWEEN

THE FACT THAT TABLE |1 (FIGURE 4) DEALS
PRIMARILY WITH MACHINE LANGUAGE OPERATION
AND THE USE OF THESE OPERATIONS MIGHT BE
CALLED USING A SymBOLIC ASSEMBLY PROGRAM
RATHER THAN A COMPILER. THE OPERATIONS IN
TaBLe | (FIGURE 3) INCLUDE INPUT, OUTPUT,
AND BASIC ARITHRETIC IN FIXED AND FLOATING
POINT AND THE SPECIAL STATEMENT OPERATIONS

TABLE | AND Il (FIGURES 3 & 4) EXCEPT FOR AS PREVIOUSLY DEFINED.
TABLE OF OPERATIONS | J
OPERATION
CODE USE MEANING
: a:b SET VALUE FOR "B"™ EQUAL TO VALUE FOR "A"
+ a+b "g® ADDED TO "A"
- a-b ng" SUBTRACTED FROM "A"
b 4 axb "g" MULTIPLIED BY "A"
/ a/b "g" pjyIDED INTO "A"
when
less when a less b trn s105 A<B GO TO STATEMENT 8105
grt when a grt b trn s40 A>B GO TO STATEMENT 8§40
equal when a equal b trn sl A= B GO TO STATEMENT Sl
trn trn s17 USED AS ABOVE
abs abs a lA’
read read a READ A VALUE FOR SymBoL "A™
print n print a PRINT THE VALUE OF symBoL "A" WiTH N DEC.PLACES
stop stop STOP COMPUTATION
£+ a f+ b A + B IN FLOATING ARITHMETIC
f—- af-1> A - B IN FLOATING ARITHMETIC
fx afxb A X B IN FLOATING ARITHMETIC J
£/ af/b A/ B IN FLOATING ARI THMETIC
finp finp a READ IN FLOATING VALUE FOR SymBOoL "A"
fprt fprt a PRINT THE FLOATING VALUE OF symBoL "A®
flo n flo a CONVERT THE VALUE OF "A™ FROM FIXED TO
FLOATING POINT. ™A™ HAD N DECIMAL PLACES
unflo n unflo a CONVERT THE VALUE OF ™A™ FROM FLOATING TO i
FIXED POINT. ™A™ WILL HAVE N DECIMAL PLACES
iter iter k¥ i n sl4 SEE SPECIAL STATEMENT SECTION Il &
dim dim a 500 SEE SPECIAL STATEMENT SECTION Il
index index 1 j k SEE SPECIAL STATEMENT SECTION 1l
sub sub tanh xy txy SEE SPECIAL STATEMENT SECTION 11
tab tab CARRIAGE TAB
cr cr CARRIAGE RETURN
ret ret s4 SET RETURN ADDRESS IN STATEMENT §4,
STATEMENT §4 MUST BE OF FORM
s4 use S00
use use s8 UNCOND I TIONAL TRANSFER TO STATEMENT S8.

FIGURE 3

OPERATION

CODE

bring

add

subtr

mult

nmult

div

extrt

hold

clear

stadd

ret

use

trn

rdhex

add a

subtr a

mult a

nmult a

extrt a

hold a

clear a

stadd a
stadd sl7

ret a
ret s7

use a
use s4

trn a
trn sll4

rdhex a

TAB L1
MEANING

REPLACE THE CONTEMTS OF THE ACCUMULATOR WITH THE
CONTENTS OF THE MEMORY LOCATION SPECIFIED BY THE
ADDRESS, A.

ADD THE CONTENTS OF A TO THE CONTENTS OF THE ACCUMU-
LATOR AND RETAIN THE SUM IN THE ACCUMULATOR.

SUBTRACT THE CONTENTS OF A FROM THE CONTENTS OF THE
ACCUMULATOR AND RETAIN THE DIFFERENCE IN THE ACCUMU-
LATOR.

MULTIPLY THE NUMBER IN THE ACCUMULATOR BY THE NUMBER
IN MEMORY LOCATION, A, RETAiNING THE MOST SIGNIFICANT
HALF OF THE PRODUCT IN THE ACCUMULATOR.

MULTIPLY THE NUMBER IN THE ACCUMULATOR BY THE NUMBER
IiN MEMORY LOCATiON, A, RETAINING THE LEAST SIGNIFICANT
HALF OF THE PRODUCT IN THE ACCUMULATOR.

DIVIDE THE NUMBER IN THE ACCUMULATOR BY THE NUMBER IN
THE MEMORY LOCATION, A, RETAINING THE QUOTIENT.

THE EXTRACT ORDER OR "LOGICAL PRODUCT™ js A BIT BY BIT
PRODUCT OF THE CONTENTS OF THE ACCUMULATOR BY THE
CONTENTS OF A.

STORE THE CONTENTS OF THE ACCUMULATOR IN A, RETAINING
THE CONTENTS OF THE ACCUMULATOR IN THE ACCUMULATOR.

STORE THE CONTENTS OF THE ACCUMULATOR IN MEMORY LOCATION
A, CLEARING THE ACCUMULATOR TO ZERO.

STORE ONLY THE ADDRESS PORTION OF THE WORD IN THE
ACCUMULATOR IN MEMORY LOCATION A, LEAVING THE REST OF
THE WORD iN A UNDISTURBED.

ADD ¥ONE™ TO THE ADDRESS HELD IN THE COUNTER REGISTER,
C, AND RECORD IT IN THE ADDRESS PORTION OF THE WORD IN
MEMORY LOCATION, A. THE COUNTER REGISTER C, NORMALLY
CONTAINS THE ADDRESS OF THE NEXT INSTRUCTION TO BE
EXECUTED. THIS COMMAND IS USED IN SETTING A SUB-ROUTINE
EXIT,

TRANSFER CONTROL TO A UNCCNDITIONALLY, |.E., GET THE
NEXT INSTRUCTION FROM MEMORY LOCATION, A.

CONDI TIOMAL. TRANSFER, TRANSFER CONTROL TO MEMORY
LOCATION A, ONLY IF THE NUMBER IN THE ACCUMULATOR I8
NEGATIVE. OTHERWISE, THE TEST COMMAND IS |GNORED.,

READ A HEXIDECIMAL VALUE FOR SYMBOL A.

F1GURE 4

VI USE

1.

2.

RULES FOR PUNCHING ™SOURCE™ PROGRAM
TAPE.

A. A CONDITIONAL STOP (') MUST FoLLOW
EACH SYMBOL, OPERATION, CONSTANT,
BRACKET, STATEMENT SYMBOL, AND
REGION SYMBOL.

B. A CONDITIONAL STOP (*') MUST FoLLoOW
EACH STATEMENT.

C. ANOTHER CONDITIONAL sTop (') MUST
FOLLOW THE FINISHED "SOURCE™ LANGUAGE
PROGRAM, | .E. 3.

a'+'b's'c'!
O'print'c''’

D. THE LGP-30 MAKES NO DISTINCTION
BETWEEN UPPER AND LOWER CASE ON
THE TYPEWRITER, THEREFORE:

: IS THE
? 1S THE
{ s tHE
) 1s THE

ETC.

SAME AS ;
SAME AS /
SAME AS ,
SAME AS .

USE THE
EASIER OR MORE

THE PROGRAMMER MAY
CHARACTER WHICH 18
APPEALING TO HIM.,

PROCEDURE TO COMPILE A PROGRAM. 5.
A. LoaD THE ACT | SYSTEM INTO THE
LGP-30 WiTH THE PROGRAM INPUT

ROUTINE (10.4)

I. COMPILER (HEX TAPE)
2. OPERATION CODES (HEX TAPE)

B. PLACE THE "SOURCE"
INTO THE READER.

PROGRAM TAPE

C. TRANSFER TO 4000 TO READ AND COMPILE
THE ™SOURCE™ PROGRAM.

D. DEPRESS SIX BIT INPUT BUTTON.

E. AFTER CREATING THE "OBJECT" PROGRAM,
THE ACT | SYSTEM PRINTS THE FOLLOWING
INFORMAT I ON,

1. INITIAL LOCATION TO TRANSFER TO
EXECUTE THE "OBJECT" PROGRAM

i 0322

2. FINAL LOCATION OF THE "OBJECT®
PROGRAM. f 0734
3. STATEMENT SYMBOLS AND THE LOCATION
ASSIGNED TO EACH.
PUNCH OUT PROCEDURE
THE COMPUTER WILL STOP AFTER PRINTING THE
STATEMENT SymMBOL TABLES. RAISE THE TRANSFER
CONTROL BUTTON. TO PUNCH THE "OBJECT"
PROGRAM AND NECESSARY |INFORMATION FROM THE
LGP-30, TURN THE PUNCH ON AND DEPRESS THE
START BUTTON, IF HIGH-SPEED PUNCH IS USED,
DEPRESS BREAKPOINT BUTTON #32.

PROCEDURE TO EXECUTE COMPILED PROGRAM.

INTO THE
INPUT ROUTINE

A. LOAD THE SUBROUTINE TAPE
LGP=-30 WITH THE PROGRAM
(10.4)

B. LoAD THE TAPE FROM (3) INTO THE LGP-30
WITH THE PROGRAM INPUT ROUTINE (10.4)
THIS 18 NOT NECESSARY IF PROGRAM WAS
JUST COMPILED).

PROCEDURE TO CHECKOUT PROGRAM.

A. DEPRESS TRANSFER CONTROL BUTTON ON
LGP-30 CONSOLE BEFORE TRANSFERRING
TO 4000 TO READ AND COMPILE THE
"SOURCE" PROGRAM. THIS WILL ADD TWO
INSTRUCTIONS AT THE END OF EACH
STATEMENT WHICH WILL BE EXECUTED
DURING "COMPUTE" TIME.

B. DURING "COMPUTE" TIME, A PROGRAM
COMPILED UNDER THE ABOVE CONDITION
WILL BEHAVE IN THE FOLLOWING MANNER.

1. TRANSFER CONTROL BUTTON UP- NO EFFECT.

2. TRANSFER CONTROL BUTTON DOWN —

A. THE LOCATION OF THE FIRST

INSTRUCTION IN THE NEXT
STATEMENT WIiLL BE PRINTED,
THIS LOCATION CAN BE

B. THE RESULTS OF THE LAST
OPERATION PERFORMED IN THE
STATEMENT WILL BE PRINTED.

COMPARED WITH THE PRINT 6. THE FOLLOWING ERROR CODES INDICATE THE
OUT OF THE STATEMENT TYPE OF ERROR THAT HAS BE N DETECTED
SYMBOLS AND THE IR CORRE=- BY THE ACT | SYSTEM AND ANY CORRECTIVE
SPOND ING LOCATIONS, TO ACTION THAT MAY BE TAKEN.
DETERMINE WHICH STATEMENT
1S BEING COMPUTED.
ERROR CODE MEANING CORRECTIVE ACTION
el 6-B1T BUTTON 1S UP DEPRESS 6-BIT BUTTON AND START
e 2 PROGRAM TOO LARGE - CORRECT PROGRAM AND RESTART
OVERLAPS REGIONS
e 3 VALUE IN DIM STATEMENT CORRECT STATEMENT AND RESTAR
NOT NUMBER
e 4 TWO INDEX STATEMENTS CORRECT PROGRAM AND RESTART
e 5 BRACKET COUNT IN CORRECT STATEMENT AND RESTART
ERROR
e 6 STATEMENT IS TOO CORRECT STATEMENT AND RESTART
LARGE
e 7 STATEMENT SYMBOL NOT CORRECT PROGRAM AND RESTART
DEFINED
e 8 INCORRECT REG!ONAL CORRECT STATEMENT AND RESTART
DESIGNATION
e 9 INCORRECT LEFT CORRECT STATEMENT AND RESTART
OPERAND
FIGURE 5

7.

PROGRAMMING LIMITATIONS.

1.

NO OPERATION 1S TO BE ASSUMED.
BRACKETS DO NOT IMPLY MULTIPLICATION.,

THERE 1S A MAX.OF 63 STOP CODES IN
ANY STATEMENT,

THERE MUST BE AN EQUAL NUMBER OF
FRONT AND BACK BRACKETS IN EACH
STATEMENT,

EACH STATEMENT SYMBOL USED IN A
STATEMENT MUST BE USED AT THE
BEGINNING OF SOME STATEMENT.

IF A REGION SYMBOL IS USED IN
ANY STATEMENT (EXCEPT A SUB
STATEMENT), IT MUST BE FOLLOWED
BY A CONSTANT OR A SYMBOL WHICH
1S ASSIGNED AS AN INDEX REGISTER,

A TYPEWRITER "SPACE"™ MAY BE USED AS
ANY OF THE OTHER ALPHABETICAL
CHARACTERS. |IT MUST NOT BE USED TO
SEPARATE SYMBOLS, OPERATIONS, ETC.

ALL INDEXED VARIABLES (REGIONS)
MUST APPEAR IN DIMENSION STATEMENTS,

9.

10.

11,

ALL OPERATIONS ARE IN THE
NUMERATOR WITH THE EXCEPTION
OF THE SYMBOL OR GROUPING
ENCLOSED IN BRACKETS IM=
MEDIATELY FOLLOWING THE
DIVISION OPERATION.

AT LEAST ONE OPERATION SHOULD
BE IN EACH SET OF BRACKETS.

ALGEBRAIC OPERATIONS SHOULD NOT
BE MIXED WITH DECISION OR PRINT

OPERAT]ONS UNLESS THE ALGEBRA

1S BRACKETED.
THE FIRST STATEMENT SHOULD BE
dim'comp'512'"

THIS STATEMENT WILL RESERVE 512
LOCATIONS FOR THE SUBROUTINE
PACKAGE. |IF THE SUBROUTINE PACKAGE
1S RELOCATED OR ADDITIONS ARE MADE,
THE NUMBER OF LOCATIONS TO RESERVE
SHOULD REPLACE 512. THE NUMBER OF
LOCATIONS TO RESERVE 1S THE NUMBER
OF LOCATIONS BETWEEN THE FIRST ONE
TO RESERVE AND LOCATION 5800.

Vit

1.

APPEND I X

SCALING

THE ACT | SYSTEM WILL GENERATE A FIXED
AND FLOATING POINT PROGRAM. IT IS THE
RESPONSIBILITY OF THE PROGRAMMER TO
KEEP THESE TWO FORMATS SEPARATE.

AO

FLOATING POINT

SCALING AS SUCH 1S NO PROBLEM WHEN
ALL ARITHMETIC IS DONE IN THE
FLOATING POINT MODE. THE ONLY
CONCERN TO THE PROGRAMMER 1S THE
FORMAT OF THE NUMBERS THAT ARE TO
BE PRESENTED TO THE COMPUTER.
FLOATING POINT NUMBERS ARE ENTERED
IN THE FOLLOWING MANNER.

NUMBER PRESENTED AS

123.45 1234500¢ 03!
.000781 7810000t =03
.123 -1230000°* 00!

NOTE s

1. SEVEN (7) DIGITS ARE ALWAYS
ENTERED IN THE MANTISSA.

2. |F THE NUMBER IS NEGATIVE,
THE (=) MINUS SI1GN PRECEDES
THE 7 DIGITS.

3. A CONDITIONAL sTOP (') FoLLOWS
THE MANTISSA.

4, THE CHARACTERISTIC MAY VARY
BETWEEN 30 T0 0 AND -01 TO =30.

5. A CONDITIONAL STOP (') FoLLOWS
THE CHARACTERISTIC.

FIXED POINT
THE PRIMARY PURPOSE FOR FIXED POINT

ARITHMETIC IN THE ACT | SYSTEM I8
FOR THE MANIPULATION OF THE INDEX

SYMBOLS.

THERE WILL ARISE CASES,
SUCH AS THE TWO EXAMPLES IN THIS
MANUAL, WHERE FIXED POINT
ARITHMETIC WILL BE MORE DESIRABLE
THAN FLOATING POINT.

To THE ACT | SYSTEM ALL FIXED POINT
NUMBERS ARE THOUGHT OF AS INTEGERS.
ANY SCALING 1S DONE EXTERNALLY BY

THE PROGRAMMER WHO DECIDES ARBI TRARILY

HOW MANY FRACTIONAL POSITIONS WILL
BE CARRIED TO THE RIGHT OF THE

DEC IMAL POINT. 1.E., THE COMPUTER
MIGHT CONTAIN 1378 AS AN INTEGER,
BUT THE PROGRAMMER MAY WISH TO
THINK OF THIS As 1.378.

IN THIS CASE HE 1S CARRYING THE
NUMBER WITH 3 DECIMAL PLACES.

THE PROGRAMMER MAY EFFECTIVELY
CHANGE THE DECIMAL POS!TION BY
MULTIPLYING OR DIVIDING THE NUMBER
BY A POWER OF 10.

l1.E., a HAS 3 DECIMAL PLACES
b HAS 2 DECIMAL PLACES

TO ADD:

a+ (bx10) :c

TO CARRY THIS EXAMPLE FURTHER

a/b : d AT | DECIMAL PLACE
axb ¢+ e AT 5 DECIMAL PLACES

THE FOLLOWING STATEMENTS WiLL
PRINT THE VALUES OF (c, d, €)WITH
THEIR PROPER DECIMAL POINT.

3 print c
1 print d
5 print e

A FEW NOTES OF CAUTION ON FIXED POINT
PROGRAMMI NG 2

1. THE MAXIMUM INTEGER THAT CAN BE
DEVELOPED THROUGH MULTIPLICATION
Is 134 217 727 REGARDLESS OF
SCALING.

2. IN DIVISION THE NUMERATOR MUST BE
LARGER THAN THE DENOMINATOR IF A
QUOTIENT LARGER THAN ZERO 18§
DESIRED.

1.E. 13784/100 = 138,

2 .,BRACKETS AND PRECEDENCE

IN THE PREFACE AN EXAMPLE 1S GIVEN TO
ILLUSTRATE THE IMPORTANCE OF UNIFORMITY
OF ORDER OF EXECUTING OPERATIONS IN A
STATEMENT. THIS ORDERING 1S FURTHER
EXPLAINED SO THAT THE PROGRAMMER CAN
CALCULATE THE MANNER IN WHICH THE

ACT | SYSTEM WILL SYNTHESIZE EACH
STATEMENT AND CREATE THE OBJECT PROGRAM.

RULE 1. THE ACT | SYSTEM WILL WORK
FROM THE INNER MOST BRACKETS
oUT, 1.E., 2 + [b +d)

b +c

a+ (]

RULE 2. WITHIN A BRACKET LEVEL,
OPERATIONS ARE DONE IN ORDER
OF THEIR PRECEDENCE. |.E.,
[axsinb+ é]

sin b

a
a

M

sin b

sin b + ¢

GENERALLY FUNCTIONS WILL BE
PRECEDENCE 3, MULTIPLICATION

AND DIVISION WILL BE PRECEDENCE
2, ADDITION AND SUBTRACTION WILL

BE PRECEDENCE 1, AND SUBSTITUTION

WITH BASIC MACHINE LANGUAGE WILL

BE PRECEDENCE 0. A TABLE OF CODES

BY ASSIGNED PRECEDENCE FOR

OPERATIONS USED IN THE MANUAL
ARE AS FOLLOWS:

PRECEDENCE 3 — less, grt, equal, abs,

print, read, cr, tab,
flo, unflo, finp, fprt

PRECEDENCE 2 - X, /, £x, £/

PRECEDENCE 1 - +, —, f+, f—

PRECEDENCE 0 - : when, trn, stop, ret, use,

bring, add, subtr, mult, div,
extrt, hold, clear, stadd,
rdhex.,

RULE 3.WITHIN A BRACKET LEVEL AND

OPERATIONS OF THE SAME
PRECEDENCE, THE OPERATIONS ARE
DONE IN ORDER FROM LEFT TO
RIGHT. l.E., {2 /b xd]

9o

EXAMPLES :

lO

a+bz:c O print c

NOTE THE FIRST OPERATION TO BE
PERFORMED WILL BE O print c WHICH
WILL PRINT OUT WHAT WAS IN C BEFORE
a + b IS STORED THERE. THIS MAY BE
CORRECTED IN EITHER OF THE FOLLOWING
WAYS:

a+bz:c

O print ¢

[? + b d] O print c
a+bgrtc+dxf trn sl7
NoTE THE grt Is PRECEDENCE 3 80 IT
WILL NOT HAVE ENOUGH INFORMATION TO
MAKE THIS TEST UNTIL (a + b) AND

(c + dxf) 1S CALCULATED. THIS MAY
BE CORRECTED IN THE FOLLOWING MANNER:

fa + B) grt [c + axf] trn s17

3. SUBROUTINES

A. THE BASIC PACKAGE OF SUBROUTINES THAT 5303 - FLOATING - DIVISION BY ZERO.
1S USED WITH THE ACT | SYSTEM 1IS:
5429 - FLOATING - CHARACTERISTIC 18 32.

PROGRAM STORAGE LOAD
$000xxXX
TRACE, FLOAT, 2 TRACKS /000xxXX
UNFLOAT
B. SUBROUTINES THAT ARE USED WITH STATEMENTS
FLOATING POINT 6 TRACKS $000xxxx + 200 l1.E. SUB XYZ A B C
OPERAT 10ONS /000xxxx + 200
THIS INDICATES THAT ARGUMENT A AND B ARE
FIXED POINT INPUT- 2 TRACKS 3000xxxx + 800 TO BE USED WITH SUBROUTINE XYZ AND THAT
OUTPUT /000xxxx + 800 THE RESULT IS TO BE PLACED IN C. THE
ACT | COMPILER WILL BUILD THE FOLLOWING
THE TAPES OF ACT | THAT ARE SET OF INSTRUCTIONS:
DISTRIBUTED HAVE xxxx = 5000.
THE SUBROUTINE PACKAGE CAN BE B A
RELOCATED TO OTHER POSITIONS IN
MEMORY BY CHANGING THE "START FILLS" XR 0310
AND "SET MODIFIERS"., THE PACKAGE
MUST BE IN 10 CONSECUTIVE TRACKS u () FIRST LOCATION OF REGION
AND IN THE SAME ORDER AS ABOVE. XYz
IF THE SUBROUTINE PACKAGE IS RE-
LOCATED, THE TRANSFER ADDRESSES Z (B)
OF THE OPERATION CODES MUST BE
CHANGED. z (¢c)
SUBROUTINE PACKAGE PROGRAM STOPS. THE XYZ SUBROUTINE WILL FIND THE FIRST
ARGUMENT IN THE ACCUMULATOR. THE OTHER
5110 - UNFLOAT - NUMBER OF DECIMAL ARGUMENT(8), THE LOCATION TO PLACE THE
DIG!TS 1S TOO RESULT AND THE EXIT LOCATION MAY BE
LARGE CALCULATED FROM LOCATION (0310).

4, ASsemBLY FOR ACT |

GENERATE OPERATION CODES FOR ACT |

A.

C.

FUNCTION:

TO GENERATE AND STORE ALL NECESSARY
CODES, SYMBOLS, AND INSTRUCTIONS
FOR AN OPERATION TABLE TO BE USED
By THE ACT | COMPILER.

INPUT: (ALL IN 6-BIT MODE)

1. FOR EACH ACT | OPERATION:

A. THE SYMBOL OF THE OPERATION.

8. THE PRECEDENCE (0, 1, 2, OR 3).

C. SYMBOLIC INSTRUCTIONS TO BE
CoDED BY ACT |. THERE WILL BE
N OF THESE, AND THEY MUST BE IN
ONE OF THE FOLLOWING FORMATS:

1. flo' - DENOTES LEFT OPERAND
NEEDED.

2. ffro' - DENOTES RIGHT OPERAND
NEEDED.

3. fio*' - DENOTES INTERMEDIATE
OPERAND NEEDED.

»4, foa! - DENOTES CONSTANT
ADDRESS

#5. PiA' - DENOTES JUMP ADDRESS

#6. fta® — DENOTES TRANSFER
ADDRESS

D. AN EXTRA STOP CODE TO DENOTE THE
END OF THE OPERATION.

* THE 4-DIG!T ADDRESS MUST FOLLOW
THE CORRESPONDING SYMBOLIC
INSTRUCTION.

2. A STOP CODE TO INDICATE THE END OF
THE OPERATION TABLE.

3, For ITER AND SUB, ONLY THE SYMBOLS
ARE ENTERED (OMIT INPUT B,C, & D)

QUTPUT:

HEX. PUNCHOUT OF THE FOLLOWING PARTS
OF MEMORY (WITH CHECK sums). ACT |
MUST BE IN LGP-30.

A.

B.

IN TRACK 36: THE 6-BIT SYMBOLS AS
READ UNDER INPUT SHIFTED LEFT ONE
BIT. A (-1) @Q OF 3 FOLLOWS THE
LAST SYMBOL.

IN TRACK 37: IN SECTORS CORRESPONDING
TO SYMBOLS OF TRACK 36, CODE WORDS IN
THE FOLLOWING BIT FORMAT.

RESERVED FOR
ZERO
4-5 PRECEDENCE (0 -3)

6 OPERATION INDICATOR

7 LEFT OP. INDICATOR O MEANS NO

1 MEANS YES

INSTRUCTIONS TO GENERATE)
(LocATION OF IST. INSTRUCTION
FOR ACT | TO CODE -3800)E.G.
(1000000), 1s 3900

TRANSFER ADDRESS—~LOCATION OF
THE TRANSFER TO A SUBROUTINE.

8+11 N-1
12-18

19-30

ITER AND SUB ARE IDENTICAL WITH THEIR
TRACK 36 COUNTERPARTS. THE ABOVE
TRACK 37 BIT FORMAT IS IGNORED.

IN TRACKS 38 AND 39: THE ACTUAL
INSTRUCTIONS TO BE CODED BY THE ACT |
COMPILER, WITH BITS TO THE LEFT OF
THE OPERATION BITS AS FOLLOWS:

"op"., HEX
REQUIRED SIGN 7 8 9 10 _INSTRUCTION
LEFT op 0 0 00O # 0000
RIGHT oP 0 1 0 0 0 10 g 0000
INTERMED OP 0 1 1 o 0 18 g 0000
Jump oP. 0 1 11 0 WLJfFTT58,
ABs.ADDRESS 0 1 1 1 1 1Q § T1725152
TRANSFER OP, 1 0 0 0 0 800g 0000
NOTHING 1S PUT IN TRACKS 38 OR 39 FOR

ITER orR SUB.

ERROR HALTS:

ERROR
NUMBER LOCATION MEANING

1 Lo + 04 6~BIT BUTTON NOT DEPRESSED
2 120 PRECEDENCE 1S INCORRECT
3 17 OP.SYMBOL TABLE IS FULL
4 259 TRACKS 38 AND 39 ARE FULL
5 324 SYMBOLIC INSTRUCTION IS
NOT IN CORRECT FORMAT (SEE
INPUT PARAGRAPH 4, A THRU F)
PROGRAMMED

Stops LOCATION MEANING

Lo + 40
Lo + 209

TURN PUNCH ON
FINISHED-DEPRESS START
FOR NEXT DATA.

EXAMPLE

THE TAPE OF OPERATIONS CODES CONTAINS THE
OPERATIONS (+,cr) AND THE NECESSARY IN-
FORMATION FOR PROGRAM GENERATION.
+'1*'blo'aro'hio"’
cr'3'pca'l600tzca'o’ '

THESE HAVE INPUT MEANINGS DESCRIBED IN 4.B.1

,8,0,C,C,D
+B,C, (ADDRESS), C, (ADDRESS), D

THE OUTPUT IN HEX. 1S AS FOLLOWS:

IN TRAck 37

IN TRACK 36 IN TRACK 38
00000016 07200000 00080000
00001F9F 0210J000 010A0000¢ For +
W0000000 018H0000
01QP1000} For CR
01020000

STORAGE: 4 TRACKS OF INSTRUCTIONS AND

CONSTANTS.
LOCATABLE.

PROGRAM MAY BE RE-

TRACK 63 IS USED FOR TEMP.

STORAGE. THE ACT | COMPILER MUST
BE IN 4000 THRU 5763 FOR THE PUNCH-
OUT PORTION OF THIS PROGRAM.

ROYAL MCBEE . /. processing division

PORT CHESTER, N. Y.

$520—R1

OFFICES COAST-TO-COAST, IN CANADA AND ABROAD

i e i g e Ui L n

