ACT IXXI COMPILER
PRELIMINARY
MANTAL

CHAPTERS

I ACT LANGUAGE
II ARITHMETIC OPERAYIONS

111 SUBSGRIPTED VARIABLES

IV LOGIC OPERATIONS

vV INPUT - OUTPUT OPERATIONS
VI STORAGE PROBLEMS

.. VII SOURCE -~ LANGUAGE SUBROUTINES

VIII DEBUGGING AT RUN _ TIME

IX STANDARD SUBROUTINES

X MACHINE OPERATION

XI 9WHE OVERFLOW LOGIC MODIFICATIONS

Suppletient - Description of the "Standard Systen" Tapes.

TABLES
I EXAMPLE OF ACT - LANGUAGE CONSTANTS
IX ERROR TYPES (COMPILE TIME)
III ARITHMETIC OPERATIONS
IV LOGICAL OPERATIONS
Vv INPUT _ OUTPUT OPERATIONS
VI FUNCTIONS
VII MISCELLANEOUS OPERATIONS
VIII MACHINE OPERATIONS
IX CODES FOR "aread"

CHAPTER I
ACT LANGUAGE

A, 'Types of words.

ACT language consisis of words of five characiers or less,
each word followed by a conditional stop code (').

These words may represent operatione, variables, constants or
statement numbers. ' ‘

A.l1, Constants

Positive numerical constants may be inserted directly in ACT-
language in any of three forms, as follows:

‘ a; Integers of five digits or less. These occupy one word,

b) Integers of more than five digits. These occupy two words;
the first must consist of a + followed by one to four digits, and
the seoond word must be one to five numeric digite, The largest
integer the system can handle is 536,870,911. ‘

¢) Floating point constants occupy four words. If we write
any number ¥ in the form '

. n
y =axl0 ,

36
vhere 0,14a4.0
and - 32<n <31

then this constant in ACT language is represented as follows. The
first word consists of a decimal point followed by the first one to
four digits of a, The second word contains the remaining digits of
a (0 -« 5). The third word is "e" if n; 0. The fourth word contains
the absolute value of n as a one or two digit integer. Note that,
although ae many as nine digits may be given for a, the internal form
of floating point numbers is such that they are rounded to the 24th
binary bit, or roughly 3 in the 8th significant digit.

Table I contains some examples of ACT language constants, with
their translation. Note that the word 0' represents both an integer
and a floating point zerc. Note also: -,9999'90999%e'0' will give’
a more accurate representation of 1.0 than .1"e'l’,

TABLE I
ACT-language Translation
1t 1 iinteger) , .
0! 0 (integer or floating point
56789 | © 56769 (integer)
+1'23456" 1234586 ginteger
+12314567 ‘ 123456 (integer,
31231 1 123 (integer
+123'000' 123000 (integer)
+70001 00000 ' error type 3
Jdrierye 0.1x10 =1 (£i. pt.g
,1'1'at0? . = 0,1 (f£1.pt.
lttgwr]? = 0.01 (f1.pt.)
.1234'56%e*1" = 1.23456 (£1. Pt.)

ACT - Language Translation

.1'%e?34" ‘ ‘ error type 3.
«1'%7@="34" error type 3.

A.2 Statement numbers.

A _statement number is a single word, consisting of the letter s
followed by an integer. Only statement numbers_less than 192 are allowed.

The ACT language program is divided into segments called statements.
For example, a single equation will normally occupy a statement, The
end of a statement is esignalled by a blank word (a conditional gtop with
no preceding characters). A statement number occurring as the first word
of a statement causes this statement to be assigned the given number. A
statement number occurring at any other position in a statement is inter-
preted as a reference to the statement so identified. _A second blank word
at the end of a statenent is interpreted as the physical end of ths program
being compiled. ' .

A.3 Operations

The words listed in Tables IV -VIII are operations in the standard
ACT III systen. It nust be emphasized here that this is not an inflexible
list; it may be augmented or diminished as desired. This is disocussed in
detail in Volume 2 of the present manual. The individual operations are
discussed more fully elsewhere; they may be classified roughly as arith-
metic, input-output, functions, logical, bookkeeping, and machine opera-
tions, For present purposges, it will suffice to note that the standard
ACT IIX tables regard all the words of Tables III - VIII as operations;
if a given subroutine implementing it has not been included, its use
causes an error indication (type 8). A statement nust contain at least
one operation; otherwise, it will produce no inetructions in the machine
language program,

"A.4 Machine Language Operations

Although ACT III is primarily an algebraic compiler, provision is made
to code in symbolic machine language for the comvenience of users familiar
with machine language who desire to perform special operations not other-
wigse available. Table VIII 1ists the machine language operation codes
available. This fincludes all the codes except "p" and "i"; basic input
and output may be obtained by the codes "daprt”, and "rdéhex", and "hxpeh"
described in Chapter V., ' - :

It is possible to incorporate library subroutines already available
in machine language. This procedure is desoribed in Volume 2.

A.5 Remarks

Remarks may be included in an/ACT IIIl scurce program in the following
form. The remark must contain ati/least 6 characters: the sixth from the
last character must be one of the letters z, b, y, r, i, 4, ny, n, p, e,

u, t, h, ¢, a, 8. (The "command" letters). The remark must be the first
"word" in a statement (or it may follow the statement nuuber) and is
followed by a single conditional stop. In counting ocharacters for the
above purpose, do not ocount carriage return, upper and lower case, color
shift, backspace. "Tab" counts as a character usually; it is wise to
avoid using it in this context.

B, Errors in ACT-language programsgi

This manual contains a number of rules which constitute the syntax
of ACT-language. Some of these rules have been stated above; others will
be found in oonnection with the treatuent of special topics of ACT- g
grammar. I1f one of these rules of syntax is violated, an error indication
is given, consisting of a carriage return, the letter "e", a space, and a
digit giving the error type. These types are sumnmarized im Table II, and
are discussed in greater detail at the appropriate place in the text.

After such a display, the computer will stop. In all cases except
the type 7 error at the end of a program, and type 2 indication, 1t is
possible to correct the statement being processed and reprocess it by
‘pressing "start",

qT%#

*®

WABLE IX

ZRRORS AT COMPILE TIMB

Symbol table full (max, 126)
Too many corstanie {max. 63)
Storage excesded

Incorrect constent

Inproper use of "enter",
"end", or "exit®

Invalid bracket count

Statenent toos large

- Too many arguments in an

Titer? statonent

Statenent nunber 191

Undefined stotement

6-bit bution wp
Invalid subscript

Operation Code mot included im
this package

Invalid operand

Put some variables into regions,
Read in some as data |
See Chapter VI

Correct tape and restart at
beginning of statement

L

it

Segment siatement and restart
at begimnirg of siatement

Correct tape and restart at
beginning of statenent

Correct tape and restart at
beginning of statenent

Correct tape and recompile

Reatart at beginning of giate-
nentd

Correct tape and reatart at
beginning of statenent

Correct tape and regtart at
beginning of statement or
recompile uaing correct T-tape

Correct tape and restart aw
beginning of statenent

See Supplement for speecial error displays

TABLE III
ARITHMETIC OPERATIONS

Code Prec. Operands Reference Package Error
Iype Meaning
;, 0 loro II—cal‘v P.O
]
+ 1 l.r.a. I1-C.2, P-1 1 fl.pt. overflow
- 1 l.r.a. I1-C.2, P~l 1 fl.pt. overflow
x 2 l.r.a I11-C.2, P~1 1 f1.pt. overflow
/ 2 l.r.a. I1I-¢.2. P-1 1 £1.pt. overflow
IV-E , 2 rt. operand zero
abs 3 r.a. II-C.2. P~1
11’ 1 laroao 11'0030 ' P“‘O
i- 1 1.r.a. 11-C,3. P-0
ix 2 l.r.a. 1I-C.3, P~2 3 - integer overflow
i/ 2 l.r.a; I1-C.3. P-2 3 rt. operand zero
L ,) (usually)
nx 2 l.r.a. II-C.3, Pl
iabs 3 r.a. I1-C.3, P~0
prev 3 a. I1-C.1, P-0
flo 3 l.r.a. II-C.4 P-2 1 fl.pt. overflow
untlo 3 lir.a. II-C.4. P=2 3 integer overflow
fix 3 l.r.a. II-C.4. P-2 3 integer overflow
x10p 3 l.r.a. II-C.4. P-2 1 f£1.pt. overflow
pwr 3 l,r.a, I1-CG.2, PELL 1 fl.pt. overflow
‘ a left operand neg.;
or, left op. zero
and rt. op. neg.
ipwr 3 gl.r,a. II-C.3. P2 | 3 left op. zero, and

right op. neg.

use
trn
iter
ir
neg
zero
pos
stop
ret
get
to
bkp4
bkp8
bkpl6
bkp32
oflow

go to

TABLE IV

LOGIC OPERATIONS

Reference

Iv
Iv
Iv
Iv
Iv
Iv
iV
Iv

Iv
IV

Iv -

Iv
Iv
Iv
IV
Iv

Qe 3 B w oo

C > »

]

O B B B B B a

L]

NN
.

»

4
L]

®
Pt
L]

Packaga

"

”"

n

Code

rdflio
read
print
dpré

iread

iprt

punch
ipch
aread
aprt
er
tab
daprt
reprt
rdxit
rghex

hxpch

Operands

TABLE V

INPUT - QUTPUT OPERATIONS

Package

Reference

V - A.3. P-2
V ~ A.2. P-1
Vv - B,2, P-1
V - B,3, P-1
V - 4.1, P-0
vV - B,1, P-0
V =~ B.4. P-1
V - B.4, P-0
V-cC P-0
V- ¢ P-0

P-0

P-0
v
\ P-0
V- 4,4, P-0
V - B.5, P-0
V - B.5, P-0

Error

Iype Meaning

1("flo") £1.pt. overflow

1 fi,pt. overflow

3 more than 7

digits

TABLE VI

FUNCGTICNS
Code Prec. Cperands Beference Packase Exﬂg_ggggﬁeanin%
aqrit 3 r.a. IX - B SQRT 2 arg, negative
ln 3 r.a. IX - C PELL 2 arg. neg. or zero
log 3 r.a. IX - C PELL 2 arg. meg. or zero
exp 3 r.a. IX - € PELL 1 fl,pﬁo overflow
sin 3 r.a. IX - D TRIG 2 arg. large; ans.
has no significance
cos 3 r.a. IX - D TRIG " n
artan 3 r.a. IX - E ARTAN
randm 3 a. IX - F P-1
TABLE VIT o TABLE VIII
MISCELLANEOUS OPERATICNS MACHINE OPERATIONS
Code Reference Package Lode Meaning
index III - @ P=C bring b
dbind III ~D R0 add a
dim IIl « A P-D subtr | 8
call VII - B P20 oult m
arg VIl - B PO nmult n
enter Vii -« A4 'P=2 div d
exit Vil « A P=2 extrt e
end VII - A P=2 hold h
trace VII - € P-2 ~ elear ¢
walt VII - D P=0 stadd y

SYMBOL
Jo
L1

"3
faV]
%5

3
TAB

Low;r Case

Upper Gasé
" Color Shift
‘Carr, Ret.

Back Space

gopE
04
0J
14
13
24
2]
34
33
44
43
06
Oa
16
la
26
2a

: 36

30
08
10
18
20
28
40

TPABLE IX
CODES FOR "aread"

Aa
Bb
Ce
Dd
Ee
Ff
Gg
Hh
-1
J3
Kk
L1.
Mn
Nn
Co
Pp
Qq
Ry
Se
Tt
Uy
Vv
W
Xx
Yy

Zz

Sumiary of Operation Codes #lleans Precedence does noi

apply.
.Jode Prec, Use - Comnents
L left bracket (maxinum bracket depth = 7)
;) right bracket
0 a':the valuve of a substituted into b (a unchanged)
1 at+th’ floating point addition
1 a'=~the floating point subtraction
2 a'x'bt floating point multiplication
2 a'/tht floating point division
print 0 i'printratl (1 = 1000 + 8) print a as fl.pt. no. in field
o . ¢ columns wide, rounded to s significant figures
dprt 0 ivdprt'a’ (1 = 100c + 8) print a (f1.pt.) as decimal mumber
in field ¢ columns wide with s fractional digits
read 0 read'a!’ read f1. pt. number and store in a :
i+ 1 a'i+'p? integer addition
i- 1 ati-tb? . integer subtraction
ix 2 a'ix'b?t integer nultiplication
i/ 2 a'i/'p? integer division ~
nx 2 a'nx'b’ fast integer mult, handles large numb. incorrectlj
ipwr 3 atipwr'b! a raised to the b'th power (integer)
x10p 3 a'xlOp'bt a (£1. pt.) times 10 Zo the b'th power(b is integ)
use 0 usef'sl? . transfer control to statement no. 1
iter # dter'i*j'k'sl!'' jnorease i (integers) by j (pos.) and transfer
: . - to sl 1if the new value of i ig not greater than k
iread 0 iread'at read integer and store in a
rt 0 di'iprtia’ (1 = 100c) print a(integer) in field ¢ columns wd,
21 3 abs'a’ take absolute value of a (f1, pt.
iabs 3 iabs'a’ take absolute value of a integer
punch 0 punch'a’ punch a (f1.pt.) in format with cond.stops for rd.
ipoh 0 1ipoh'at. punch a (integer)with cond. stop For reloading.
aread 0 arcadla’ read one word in special alphabetic form into a
aprt 0 aprifaf print a as alphabetic information
ir 0 if'a'neg'sl’'' olassify a (fl.pt.) or integer) ds negative, zero,
neg 0 if'a'meg'sl'zero's2''” or positive (but not zero) and transfer
zZero 0 if'a’'zero'sl'pos's2'' g5 the indicated statement in each case,
pos O if'a'neg’sl'zero®s2'pos's3’’ o1 t; next gtate. 1f mone indicated
prev 3 prev'x'a‘ saves result of previous statement for use as an
‘ operand. Must be first operation executed in state-
‘er 0 eort ment. Execute a carriage return -
_tab 0 tab!' , execute a tab '
flo 3 a'flo'd! convert b (integer) to f1. t. counting last a digit
o o as fractional (b unchanged? ~
rdflo 0 ‘a'rdflo'bt read integer, convert it to a 1. pt. number,
' : o counting iast a digits as fractional & store in b,
unflo 3 a'mnflo'bt convert b {£1.Pt.) to integer, moving decimal point
a places to right (b unchanged) rounded
fix 3 arfix'hr ditto, but fractional digits dropped without round.
index * 1index'i'j'' get up 1, j for use as subscripts (mas.30) -
dbind * dbind’i'j'* get up i, j for use as double subscripts
éim ¥ din'a’§o'b'50'feserve 10 sequential locations for a region 50
' ‘ . for b region, eto.
Eprt * Qdaprt's't’'o'p'frint alphabetic information as.given in source
, e language. See special list for control characters
reprt * n'repriter4'' print the indioated character or comtrol n times
etzp g stop'' 8tcp. continue il "stari” pressed .. -
re

ret;s20'use'sll'' trangter to sll after storing a return

addrese in 820, vhioh must read s20°'go to's0'*
i i

trn

exp
p¥r
gin
cos
artan
randm
set
to

bkp4
Dkp8
bkplé
bkp32
oflow

réhex
enter

exit
end

.
call
arg

walt

hxpch

bring
add
subtr
cult
nmult
div
extrt
hold
clear
gtadd

rendr

araga

20 00000 ©OW®WLWMWWWWS

trntel?
sqri’a’
inta?
log'a!
expfa!l
alpwrfb'
sinta?
cos’al
artaa’a’
randm?

set?s20'to’'s1l"

transfer conitrol to sl if aceumulator negative
obtain aquare root of a (f1. pt.)

obtain natural logarithm of a (f1. pt.)

obtain commcn logaritbm of a (£1. pt.)

obtain the value of e raised to the ath power (f.pt

a raised to the b'th power (f1. pt.)

obtain the sine of a (a f1.pt. in radians)

obtain the cosine of a (a fl.pt. in radians)

obtain the angle whose tangent is a (fl.pt) radians

generates a fl.pt. pseudo random no. between 0 andl
statenent 20, which must have the forn 820'go to
'80'' is nade to read use ‘311’

bi:p4*use’s20'' On nachines equipped with the overflow logioc modifi

ofiow'use'sZO"

rdhex'at

see "call"

*

% %

®2 OOC

COO0COOCOOOOCO ©

exit?

end? °?
trage’?

cation only, control is transferred to 820 if indi-

cated breakpoint switch is down (on), otherwise to

next statement : .
(Overfiow logic only) transfer to 820 if overflow

has occurred on a preceding i+, i- or n/

read a word of hexadecimal and store in a

-entertsub*hblokl® ' denotes the beginning of a source-~language sub-

routine whoge name is "sub". blokl is a dunmy sy~
bol to enable reference to a sequential bloock of
dataspecified in the main progran calling sequence
return control from source-language subroutine to
main program

denotes the end of source-language subroutine
causes a source-language subroutine to be trace-
compiled if the transfer control button is down

call'sub'arg'a’' transfers to the source-language subroutine ramed

walt?

hxpch'a’

bring‘'a’
adad'a‘®
subtra’
nmultiag!

nnultta’
divia' .
extrtia’
hold'a?*

clearta?
stadd'at

"sub”, and sets the dummy symbol "blokl" to refer
to the actual region a

(one cond, stop) place at end of source-language
subroutine tape. suspends complling while next
tape is loaded

punches a as a hexadecimal word with conditional
stop for reading by "rdhex" ‘
pachine language instruction

a3

(e)

]I I 3N 22

2
o~
<
o

Special Synbols

reuainder of previous "i/" operation (not "n/v)

a block of 192 locations available for data storage in Mode A only
a block of 640 locations available for data storage in Mode A only
(if more than the first 328 are used, the T-tape must be used for
the next compilation)

CHAPTER IIX
ARITHMETIC OPERATI OMS

A. Syntex.

Operations may be divided syntactically i accordance with two
congiderations; the operand-answer relation and the precedence,

The precedence is an attenpt to formalize the combinational rules of
algebra, and gives an indication of the order in which different operations
appearing in a statement are performed. Thus, slgebraic functions, such '
as "sin®, which are of precedence 3, are performed before multiplioations
and divisions (precedence 2), and the latter are performed before additiouns
and subtractions (precedence 1).

: Some operations require a left operand (1.); some require a right
operand (r.); some have a numerical result or answer {a.). These require-
ments are listed in Tables III~VIII for the various standard operatiouns.
The result of auny operation may be used as an operand for auother opera-
tion; if an operation has no answer se.g. Pprint"), it caunot be so used.
Any failure to observe these syntactical rules will result in an error
stop (type 9).

B. Brackets [7 and "rauk",

Brackets may be used in any statement to modify the order of executiou
of operations. As a geuneral rule, such brackeis carry the standard
algebraic significance. This nay be formulated quentitatively by defining
a "rank" for each operation as the precedence plus four times the bracket
level. These ranks determiune the order of execution of the operations in
a statement in accordance with definite rules. If two neighboring opera-
tions have different ranks, the one of higher rank is executed first; if
they have the same rank, the one on the left is executed first. Brackets
may be nested to a maximum depth of 7; vieolation of this rule, or of the
standard rules regarding unmatched brackets in algebraic expressions, causes
an error stop (type 3).

Redundant brackets are, as & rule, ignored. In any case, they can do
no more harm than adding a few millisecouds to the running time of the
program. Thus if you are doubiful about precedence rules, play safe and
insert brackets to remove possible ambiguity.

C. Arithmetic Operations.

The arithmetic operations are listed in Table III. All these opera-
tions (except "abs" and "iabs”) require both a left operand and a right
operaud. They fall naturally into two main classificatious, integer aud
floatiug—-point. As & general rule, integer operations are preceded by the
letter 1.,

C.1. The Substitution Operator ":" aud Previocus Result "prev',

We have no use for an equal sigun, which represents a statemeut of
fact rather than an operation. In its place we have the substitution
operator ":", The statement

a?:'b!'

causes the value of & to he stored in the location labeled b. The previocus
value of b is destroyed in this procese. The ounly other operations which
can change the contents of memory are the input operations (see Chapter V).

It i to be noted that the substitution operator has uo "resuli",
Actually, the number stored remsins iun the accumulator, but the operation
table is coded so thet this may Bot be used directly as an operand. The
purpose is to enasble detection of some common provrammiug errors., Some-
times it would be desirable to make use of this previous result. The
operation "prev" serves the desired purpose. Oune example will suffice at
this time; au@ther example may be found in Chapter V, section A,.5.

Suppose oue desirea to atore the value zero in locations a, b, aund ¢.
The coding :

——

0':'&”

Q!:le'

0!:'00!

will accomplish this purpose; however, it is neceasary to recall the number
"zero" at each siep, which consumes two instructions and 30 milliseconds of
running time (in this case; the discorepancy may be considerably larger iu
other cases). The coding

O':'&'Z'b’;’e"

will not work because ":" has no "result”; however, this may be bypessed
by writing

prev':th'!

previile'’,
Thus, wheuever the result of the previous statement is needed for
further use, the operation "prev" will avoid having to recall it from

memory. "Prev" must be the first operation executed in a atatement in order
te accomplish this purpose.

C.2. Floating~Point Arithmetic.

The basic floating--point ariithmetic operations are as toliows:

ACT Leuguage Meaning
a'+'b' fl.pt.sum
-'b? fl.pt.difference
a'x'b' fl.pt.product
a'/'h’ "~ fl.pt.quotient
a'pwr'b! & rised to the power b

abs'a’ absclute value (maguitude) of a

These operate on floating-point numbers in the indicated manner,
f a result would have an exponent greater than 31, an error stop (type 1)
ceurs (a8t run-time~-~see Chapter VIII). If a result would have an exponent
less than =32, it is returned as zero. It should be uncted that zero is
seldom obtained as the result of ®+" or "-"; the problems of round-off
and binary-decimal conversion make exact cancellation unlikely.

Ah attempt to divide by zero (or a number not in proper floating-
point form) will give & type 2 error stop, as will the atiempt i{o raise
zero to a negative power, or a negative number to any power.

C.3. Integer Arithmetic.

Integer arithmetic is provided iu the standard ACT III system
primarily for use in counters and subscripts. The primary operatious of
value in this case are addition and subtraction.

ali+'h’
a'i~"h*

These are simple machine operations. If the result exceeds
536,870,911, a machine overflow will occcur. This stops the computer if a
standerd logic board is being used; it sets an indicator which can be
tested later (see Chapter XI) if an overflow modification board is used.

For situations where products of small integers are required, the
operation "nx"

a'nx'b’

may be used. This will give incorrect results if the product is greater
than 134,217,727,

If products are requiréd'and the above limitation is too strict,
the operation "ix"

a'ix'b’

is available., It is cousiderably slower in operation than "ux", and requires
an extra subroutine. If the product exceeds 536,870,911, an error stop
(type 3) will occur. :

Division 0f integers in accomplished by the operatiou "i/?
| ati/'v'.,
The quotient is, of course, an integer, aud is determined by théJréqﬁire- ‘
ment that the remainder must have the same sign as the denominator. This
is consistent with the "modulo® concept of unumber theory. If a and b are

both/positive, it means that the quotient is the largest integer contained
in a/b, ‘

The remainder obtained in'this division is stored in the special
location (symbol) "remdr", and may be used at any later time in the program.

The absolute value of an integer is obtained by "iabs".

The expression
a'ipwr'h!
produces the result of raising a to the power b, An attempt to raise zero
to a negative power gives a type 3 error stop. The answer is obtained by
successive multiplications (12 b is positive), If b is negative and a = 1,
the answer is 1. If b is negative and & is greater than 1, the auswer is
zZero. ‘
C.4. Mixed Arithmetic.
queral operations deal with bhoth integers and floatiugupoint:,uumberb.
The operation "flo"
u'fiota’
givesvau answer the result of interpreting the "integer”'a &g & decimal

number with n (integer) digits after the decimal point. (m may be positive
or negative.) Some examples follow:

n a result (f1.pt.)
0 123 123.0

1 123 12.3
-1 123 1280.0

The oneration "unflo"
n*unflo‘'a’

converis the floating-peint number (a x 10”) to an integer, reunding as
nreeded,

n a result (f1.pt.)
0 15.73 16

2 1.822 182
-2 2947.3 29

The operation "fix"
n'fix'a’

is ‘similar to "unfle”, except that no rounding occcursg. Thus the results
- in the above sample ceses would be 15,182,and 29 respectively.

It is not adviseble to use floating-point numbers as counters, since
the binary-decimal conversion problem introduces roundoff errors which will
‘accumulate. An importent use of the above three operations is in any ocase
in which a counter is also needed for floating-point calculatious.

The operation "x10p"

a'x10p'n?

produces the product of the floating-point number a by 100 (n is an integer).
The result is floating-point.

CHAPTER III
SUBSCRIPYTED VARIABLES

A. IRegions

A series of sequential locations may be set aside as a'"region"g
The statement (din. = dimension)

din'a'50'h125

reserves 50 locations for region "a" and_25 locations for region "b", As
many regions as desired nay be set aside in one dinension statenent; nore
than one dimnension statement may be used; and they may occur anywhere in
the program. Note, however, that the naues {("a" and "b" in the above
example) should not have beem used previously; if they have been, this
statement changes their definition, so that the symbol "a" used before
this statenent refers to a different location fron that assigned after
this statenent.

B. Integer Subscripts

The word pair_a'25' refers to the 26th word of region "a"., It is nmot

necessary that "a" be assigned a size of 25 or mnore, or avem that "a'" be
previously named ir a dimension statement. In the latter case, note the
fact that all variables are assigned consecutive locations in the order
in which they first appear in the program. Blocks reserved by dimension
statements also fall into this order as they occur.

The first word of region "a" is a'0', or sinply a', Thus, in the
above example, the fifty words of "a" are a'0’ thru a'49’. Then comes
b*'0'. The word pair a&'51’ would thus have the sane neaning a b'l*,

Iz variables'c, d, and e are used (not in a dimension statement) in
that order, then c¢'l’' is the saue as a', ete,

C. Single Variable Subscripts.
The statement index'i*j'?

sets up a mechanisn by which the variables 1 and J nay be used as variable
subscripts. Up to 31 subseripis may be named in a single index statement.
More than one index statement may occur, and they may appear at any place
in a progran. In the latter case, the sane comments appearing in saction A,
for diuension statenents apply. _ ‘

The word pair a'i' refers to the (1 + 1)st word of regiom a, where the
current value at run~-tine of the integer variable 1 is used. If the valme
of 1 18 not properly set before using it, the resultant location nay be
anywhere on the drum, with mysterious results. Note that "i" pust have been
previously named in an index statement, or am error stop will occur, ——

' The words a'i'25' (or a'25'i') refer to the 1 + 26)th word of region
"a". Again, i must be named previously in an index statenent.

D, Double Subscripts
The statewent

dbind'm*!*

nakes m available as a double subsecript. Two locations are reserved
for each symbol so named, referred to (im the case of "a") as n'0’
(or simply u') and m'1°,

The word pair a'm' now refers to the location in region "a" corres-
ponding to the matrix element im row m'0’' and column m'l' of a natrix
stored row-wise beginning at a'l*. ¥he number of colurns of the zatrix
(an integer) must be first placed in a'0’.

Other properties of double subscripts are as described for single
subscripts.
E. Adjacent Variables

If two variables {(e.g. a and b) appear next to each other (as atbt)
or if a variable and a constant or two variables and a constant appear
together (not separated by operation words), they are interpreted in

accordance with the preceding sections. If they do mot satisfy the
conditions laid out there, an error stop will occur.

CoLomy INDEX m ‘1’
11 1213 (4|5 (6|7 (¥

leif@z|as jay

CHAPTER IV

LOGIC OPERATIONS

A, Logic Flow,

The nermal flovw of onerations {(as run-time) is from cne statement o
the next in ssquencs, as they appser in the socurce program. Seversl opera-
tions are aveileble which may chauge this flow. The machine operatious
“uge® sud "trn" are two such. Thus the statement

ugeisl'’

transfers control unconditionally to siatement number 1, and the statement

trntalt?

trangfers to statemsnt 1 ouly if the result of the previous statement is
negative (otherwise the normal f£low occurs).

B, "If" Statements.
The statementd

if'a'neg'sli'zero's2'pos'tsd'’

transfers control of statement 1 if a is negative, statement 2 if a is =zero,
and statement 3 if 3 is positive (mon-zere). The varieble "a" may be
integer or flogting-point. It may also be replaced by an expression with

a result (integer or fiosting-poiut). BSuch an expression must be eunclosed
in brackets, It is not necessary ito speeify all of the tests ("neg", “zerc®,
"pos®); eny one or any itwo may be obmitted. The normal flow (to the next
statement) iz understood for the misging tests. It is necessary that the
relative order of the three iests be preserved in the statement. Thus;

oy

if’{;a'+’bﬁi'neg'sl'pos's%"
if'[ﬁa'—'b’]'zera'sﬁ'”
¢, Varisble Connectors,

There are several ways, in eddition to the "if" statement, of settiug
up variable transfers.

C@lo
The statement 'K
¥ ret'sl0'use’sll""

-

where statement 10 (appeariug elsewhere in the progrem) has the form

810'go to's0'’

first changes statement 10 to "use (next statement after the ret-use
statement)", then transfers to sll. Thus & block of programming may be

set up, beginning at s8il and ending with 810, which mey be called as a umit,
from verious places in the program., MNote the space iun the word "gogto“o

e

C.2. The words "gd to" and *use" are not interchangeable. The symbol "SO"
is a dummy symbol with no special significance. e
The statement

set'sl0'to'ss"!
where statement 10, as before, reads
810'go to'sO*'!

causes sl0 to be changed to use 's5'', but the flow then proceeds to the
next statement following the set-to statement.

C.3. Subscripted Statement lumbers.
The word.pairvsS'i', where i is named in an index stateﬁent, transfers

to the i'th location before the begiuniug of statement 5. Thus the state-
ment preceding statement five might read .

" use'slO'use'sl5'use’'sl2'use's3'!
85! (etec.).

In this case, if 1 = 0 (at run-time) 85'i' refers to 85 itself; if 1 = 1
it refers to the use's3', if i = 2 to the use 'sl2', etc. !ote that the
"statement dictionary" so coustituted must all be contained in oue state-
ment.

Mote that the word pair s85'2' (for example) refers to statement number
(5-2) = 8, without reference to any such statement dictionary. Similarly,
the combinations 85'2'i' and 85'1'2' are equivaleut to 83'i', Subscripted
statement numbers must not be used after "to"; or after "use" in a "ret~
use" statement; or after "zero" in an "if" statement.,

D. Programming Loops.
The statement
fter'itj'k'sl'"
- has the tollowing significance: increase i by the amount j (must be positive;

if the new value of i is less than_or equal to k, transfer to sl, otherwise
g0 to the next statement. -

As an example, the following coding will obtain the sum of 26 floating-
poiut numbers in locations a'0' thru a?25’'.

0f':'sum'’
prev':iit?
sl'a'i'+sum':'sum’"’
iter'i'1°25's1"*"’

The arithmetic performed in au iteratiou statemeut is iunteger
grithmetic. The four arguments of the statement need not be simple variables.
he first argument (i in the above) may be a subseripted variable, the
second aud third arguments may be integer expressions of auy complexity,
aud the statement number may be subscripted. Any such argument, however,
must be enclosed in parentheses. Example:

1ter'['m'1']' Em'l'i*'a'ix'-jfj 'k'['sl'ii'l "

E. Breakpoint snd Overflow Tesis. ifﬁg

The statement L
bkpd'use’sls'!?

when used on & computer with overflow logic board (see Chapter XI) causes
& transfer to statemont 15 if breakpoint 4 is oun; otherwise countrol passes
to the next statement. The codes bkp8, bkpl6, aud bkp32 have similar
meanings., If this ie used with a standard logic board, asud the breakpoint
is on, control passes to tho next statement. If 1t is off, a stop occurs.,
Pressing start will continue with the next statement. Execution of the
sequence "one operatien, manual input, start, one operation, normal, start"
will transfer to statement 15.

The statement
oflow'use’gls"
when used with the overflow logic modification trauafers to sl5 if the over-
flow indicator is on es the result of a previous i+ or i- operation. It
should be noted, however, that the overflow is turned off during execution
of a + or ~; and that, if the overflow is on at entry to / (fl1. pt. divide),
it will cause a type 2 error stop. ' . :
Subscripted statement numbers must not be used with these tests.
F. Stops.
The statement
stop'!
will cause the computer to stop. If the statement is numbered and was not

trace-compiled, the statemeut number will appear at & q of 11 in the
instruction register.

T AT
éir‘f.l&,apﬁ,l,ﬂg&ﬁ v

INPUT~-OUTPUT OPERATIONS

A. DNumerieal Data Input.

~ Mumerical data may be read iuito the computer (at rum time) in either
integer or floating-point formst. The operstious which achieve this |
result are "iread" (for integers), and "read” (for floating~point numbers),
Algo available is the operation "rdflo", which is & read-asud-float procedure.

A.1, Integer input.
The statement
iread'n®?

causes a single word to be read from tape, interpreted as an integer, and
stored in n. :

The proper form for integer data is a sign (+ or space for positive,:
- for negative) followed by one tc seven numeric digits. The + gign is
recommended, since & space may be overloocked. This is followed by & coudi=~
tional stop. The sigu must be the first chearacter read; it may be preceded
by a carriage veturn, which enters nothing into the computer, but net by a
. tab, which enters as & space (unless, of course, you wish this to be recog-
\ nized as a plus sign).
\\' . VMJXI at F b ¢ '
TTIf it is desired to inelude textual matter with the data word, the
last eight characters musi constitute the data word, as follows: first
character is the sigu, followed by & seveu-digit integer with leadiug

zeros {or spaces).
A.2 Floating=-point Iuput,
The statemeunt
read’a'’

causes twoe words to be read from tape, interpreted as the mentissa and
exponent of a floating-point number, and the resulting number stored iu a.

The proper form for floating-point data is as follows. The first
word consists of the sign and one to seven significant digites of the
mantissa. The decimal point is understood to be imprediately to the right
of the sign. !Mon-significant trailing zeros may be omitted unless textual
material precedes the sign. The second word contains the exponent, in the
form of an integer as exnlained above,

A.3. Read-and-float,
The statement |
n'rdflio'a'’
causes a single word to be read from tape in the form of an integer, iunter-
preted as a decimal number with n digite following the decimal point, cou-

- verted to a floating point number and stored in a. The decimal indicator
n may be positivg or negative,

hode Dava Iuput Yevuwinalion.

in bateh processing, reading in lengithy tables of deata, and other
Bpplications, it is nocessary o iunclude provision to vary the amount of
date from oue run to enother. Suppose, for example, you write & program
designed for batch pirocessing, in which a set of data is read, computed
resulte ave priunted, and then new dats &re read %o repeat the process. Oue
way to control the number of sets of date read iz to ineorporste in the
progrem a separsie "iread” {executsd ounly ouce) which reads first the number
of cases on the tape. : ' '

A more usefnl procedure is provided by the sitatement
rdxit’el2t?’ o

execution of which (at rum'time).@et@ a apeciel exit from the data read
subroutines to statement 12. Thie exit is used wheunever a blank word
(conditional sitop only) is read fvom the data tape. The placing of this
staterent at the beginning of the above program allows the bateh processing
to be terminated by merely placing au extra couditional stop after the last
set of data, When this is read, econtrol is transferred to 812, which may
merely say "stop”, or may start ancther section of the program. Several
"rdxit" statemenis may bewed in a program in this way, changing the data

- exit o8 requived in verious sections of the progrem. If a blank word is
read before "rdxit" hes heen set, an error stop will oecsgur.

Tables of varying length mey be reed in using this method. The
sequence

rdxit'e2'?
1?;'1?!

- s8l'n'rdfio'a'i'’
iter'i’1'90999'al'!
82' {ete.)

with read and float data words, loading into sequential locations ay, a,,ete.,
until the extra condiftional stop is read, at whick time control ia'ﬁran§ferr@1
to 82. The value of 1 is then one more than the number of euntries in the
table. The upper limit 99929 is, of course, a dummy, since this many words
would never be used. o -

A.5. General Comments en Data Input Operations.

- The right operend of "read", “"iread", or "rdfle" must, of courseg be a
simple variable, The statement ' ‘

read' ﬁa'xf'b' L]

will give mo error iundication, but will accomplish nothing useful in the
running program.

The result of @& data input operation may be used as an operand. Thus,
if it had been desired in the sbove loop to accumulate the sum of the
pumbers ag they were vead in, the Tollowing statement could have been
ingerted helfore the iiteration statement. ‘

T prevtetgum':'sum'?

Statement number 1 cowuld, aliernatively, bhave been chapged to read
sl'fﬂm”rdﬁla’a'i?&’+’auw’:'sum”'

The advantage to be gained in either case is the time necessary to recall
the indexed varigble, which is about 225 millisecounds.

Instructive examples are included at the end of the‘eh&pter.
B, lNumerical Data Output.

Remember: bkp 32 ON for high speed punch
bkp 32 OFF for flexowriter

B.1. Integer Output.
The statement
n'iprtia’’

(where » and a ere both integers) causes the integer a to be priuted or
punched in a field n/100 characters wide, with leading spaces. legative
numbers have the sign printed immediately to the left of the high-order
digit. A nine-digi$ integer may be in error by 1 or 2.

‘AS an exsmple, if u=1100 and a=5372, the routine will priunt 7 spaces
followed by the number 5372. I1If a=-5372, then 6 spaces would be printed,
followed by -5372.

_ If the field is too small for the uumber to be priuted, the size of
the field is respected. In this case, the sign is replaced by a p or m
{for plus or minus), followed by enough of the high-order digits to fill
the field. If n/100 = 1, a conditional stop is printed; if u/100 = 0,
nothing is priunted.

B.2. Floating Point Output.
The statement
niprint’a®?

where & is a fleating-point uumber and n = 100¢ + 8 {¢ and s iutegers),
causes the flostiug-point number a2 to be priuted in & field ¢ characters
wide rounded to s significant digits. The format consists of leadiung
spaces as required, followed by a sign (space or =), decimal poiut and s
digite of the mantissa, space, "e", and the exponent printed as an iuteger
in & field three characters wide. If ¢ is too smsll to make room for s
digits, the value of 8 is decreased as required. If ¢ is less thaun 7, the
routine simply priuts the exponent as an integer in a field of ¢ characters,

B.3. Uunfloat and Priut {(decimal priut).
The statemeut
ntdprtia’’
where a is a floatiug point number aud u = 100c + £ (¢ and £ iuntegers)
causes the floatiug-point number a to be unfloated and priuted as a decimal
number in & field ¢ characters wide, rouuded to £ fractional digits., The

format cousists of leading spaces are required, followed by a sigu (space
or -), integral digits (if any), decimal point, and franctioual digits

arge o be prinitsd en epecified, £ is

{42 auwy). I the nvaber i tos larg
sasure Lails, control is trangforred o

1
decreassd as reguired, I this m
, . kY
the "print” routine (ses B.2.).

IZ £ = O gud the nunber is less than 0.5, it is printed as O,
B.4. Competible Output,

Rountines sre avellgble for punching numbere in & form which may be
uged directly a2z input to another progrem. If legible output is desired,
the stutements

punchta®?’
and ipehtn'?®

produce legible ouviput for floatinge-poini aud integer data, respectively.
The flosting-point format consists of & sign and seven digite for mantissese,
z conditional stop, & sign end two digits for exponent, a conditiocual

stop. The integer format consists of a sign and seven digits (with leading
zeros) followed by a ecoenditional step. If the integer contains mere thau
Beven digits, an error sitop will oceour.

B.5. Hexadecimal Iuput-Output.
The statenent
rdhex'a’’
causes az single hex werd o be read and sitored iu a. The statemeut
hxpch'a®?
causes a ¢ be punched as an eighi-characier hex word with a conditional
stop. This pair of cperations is recommended for iuwtermediate cutput of data
reguired for anothsr program when legibility is not required. The advant-
ages are increased Input-output speed and increased accuracy {in floating-
roint numbers, wherse the binary-decimal conversion causes inaccuracy).
B.6., General Commenta on Data Gutput Operations, |
All the ouiput routines will Qperate on the flexowriter (breaskneint
- 82 up) or the high-speed punch (breakpoint 32 down). Since an output
order has ne "resuli", it may not be used as an operand.
Instructive examples are included at the end ok”thq chapter,
C. Alphsnumeriec Inpuit-=Qutput,
The stetemont
aread'a'’
will ceuse & single wbrd to be read from tape, iuterpreted as aiphanumeric
information in & special two-digit-per-character code (four characters or
lesas per word), aud stored in a. The two-digit code is giveun iu table

IX. It is identical to tbe code used in the standard alphaunumeric priut
subroutine 19.0. A blank word trausfers. ioc "rdxit" (see A.4.).

The statement
aprt'a‘’’

causes the contents of a, interpreted as alphabetic information of up to
five characters, to be printed. Five characters are possible, although
words read in by aread" may contain no more thau four. This limitation is
due to the input format rather tham the internal storage format. The output
will run on the high-speed punch if breakpoint 82 is down.

If, through error, a numeric data word is in a, some of the characters
may not be acceptable to the flexowriter. This may cause a stop duriug
the print operation. !lo such stop will occur on the high-speed punch,
since all characters are acceptable to it. If a is a negative data word,
nothing will be punched. ‘ '

D. Direct Alphanumeriec Print.
The statement
daprt's’tto'p'!
will cause the compilation of instructions to print the word "stop” (at
run time). Up to 30 characters may be so iundicated in a single statemeut,
there is no objection to havinf a series of such statements. A}l characters
i

acceptable to the flexowriter (including gpace) may be included iu this way.
The ceontrol characters are represeunted by the following mnemounic codes.

lower case lel!
upper case uc2'
color shift color!
ocarriage return or4'
back space bsb!*
coudi tional stop stop’
(or apostrophe ap'
tal , tab6'

Execution of the above statement does not affect the conteuts of the
accumulator. : v

The statement
n'repré'x'!

(where n is au integer, and x stauds for any oharacter, as discussed above)
causes the high-speed printing of the indicated character n times. If u is
negative, nothing is printed. '

E. Example.

The following vnages contain undoctored flexowriter listings of a
sample program showing iuput-output format. The first page contains the
source~language program and the data tape. The second page is a record of
the compilation, aund the third page is the result of the actual run. Most
of the features of iumeric input-output format are demonstrated.

The headings on the data tape are for purposee of labelling the
output (page V-8) and are included as a sample of this methed of
inserting headiugs. All fields in the output begin immediately under
the first character of the heading, haviug been aligned by a "tab" in
the source program. Note that the output is always right-~justified,
with leading spaces inseted where necessary to fill the field.

The two controls cr' and tab', not previously discussed, have the
same effect as daprt'er4' and daprt'tabé' respectively., If these opera-
tions stand alone, the shorter forms compile more rapidly, but if they
are part of a series of priunted characters, they should be inecluded under
the "daprt®” for more rapid compiling. The output program is the same in
either case, y .

Source Program

(Examples of input-output format ') .
Part I -- integer format '
sll’ raxit'sl2'’
sl? cer'iread'm'’
tab'iread'n'’
teb'm'iprt'n'?
use'sl'’

Part II -- floating point format '

sl2' rdxit's13*'*
52 ertiread'm*" ‘
tab'read's'’

“tab'm'print'a’’
tab'm'dpri’a‘t?
use's2t?

Pert III ~~ "rdflo" format °

813! rdxit'sl4"”!

83! cr'iread'n'tab®’
prev'rdflo‘ta'’
tab'1608'print'at’ .
use's3'® :

8l4' stop'use'sll'"!

Data Tape
Examples of input-output format
Pert I -- integer input-output

field number "iprt® output -
+ 1000'+12345'4+900'~12345'+1000'+0"+300'+12345'+300'~12345""

Part I1 -~ floating noint format

field number . "print® output "dprt" output
+ 1407t+1'=27'+1407'2+1'+4'+140T'¢1'+20°
+1204'+5555555'+1'#1204’+5555555'-4'*1204’+9999999'+8"

Part III -- "rdflo" |

dec.pt. number cutput
0'31234'+5'-12341-207+1234""

Compilation Record

Examples of input-output format °
Part I -- integer format '

sll' rdxittsi2'!

sl!? cr'iread'm'!
tab'irea'n''
tab'm'iprt'nt’
use'sl'!’

Part I1 -- floatiug point format '

812! rdxit'sl13"!

g2' crtiread'mt!?
tab'read'a'’
tab'm'print'a’’
tab'm'dprt'a'’
use'g2'?

Part III «-~ "rdflo" format !

s13* rdxit*sl4'?
s3' cr'iread’n'tab'’
' previrdflo'a'’
tab'1608'printtat!

ugse'ts3"?
sl4' stop'use'sllt'?
f 0414
s 01 0305 ‘
8.C2 0326
8 03 0354
s 11 0302
s 12 0323
8 13 0351
s 14 0412

(19

Program Output

Examples of iunput-output format

Part I -~ integer inputéoutput

field
+ 1000°
+900!
+1000"
+300°*
- +300°"

9

number
+12345'
-12345"
+0'
+12345'
~12345"

"iprit" output
12345
-12345
' 0
pl2
ml2

Part II -~ floating point format

field
+ 1407
+1407"
+1407"

+1204°*
+1204!
+1204°
1 4

number
+1 '_2'
+1'+4!
+1'420"

+5556555'+1"
+5556555"'-4"
+9999999'+8"

Part IXII -~ "rdflo"

dec.pt.
0'

+5¢

-201

nunmber
+1234!

- =1234"

+1234"

"print® output
1000000 e -2
.1000000 ¢ 4
.1000000 e 20

.5556 e 1
.5556 e -4
<1000 ¢ 9

output
.12339997 ¢ 4

-,12340003 e -1
»12339997 e 24

"dprit" output
.0010000
1000.0002849
.1000000 e 20

65,5556
..0001
99999988 ,54

CHAPTER VI
'STCRAGE PROBLEMS

NOTE: All of the allocations discussed below are taken care of by
your T-tape and R~tape ‘ , '

A, Mode A

In mode A operations, 32 tracks (of 64 words each) are allocated
to the compiler and its temporary storage, Of these, one block of 3
tracks may be freely used for data. This is set apart as the region
"aregl". Use of more than these three tracks (aregl'0' to aregl'191')
will cause data to be writtem over the compiler itself.

Another block of 10 tracks is designated as areg3'0' to areg2'639°’,
The first five tracks of this region (0 to 319) may be used freely for
data storage; the second five may be used, but in this case the whole
I~tape must be used for the next compilation. If more than ten tracks
are used in this region, the operating subroutines (P-tape) will be
danaged. ’

0f the remaining 27 tracks (3-29 inolusive) the subroutines occupy
the top part (from 29 down), the compiler program runs from track 3 up
and data storage lies in between.

If a type 2 stop (storage full) occurs, several procedures may
help: :

a. ocomplle without trace (saves 2 words per statement)
b. reduce all regions to bare minimum size

C. move all data to aregl and areg2

d. use less subroutines if possible

e. go to Mode B

B, Mode B

In Mode B operation tracks 3 - 61 inclusive are available for the
compiled program {from 3 up), subroutines (from 61 down) and data
{from the subroutines downs. However, 1t is noi possible in any case
for the gompiled program to cceupy more than 27 tracks (3 - 29 inclusive).

CHAPTER VII

PROCEDURES
~ (SOURCE~LANGUAGE SUBROUTINES)

In many prograus, it is desirable to have certain blocks of pro~
granming (at source-language level) set apart as closed subroutines which
may be called upon at various points within the main progranm, Typical
examples would be a plotting routine, matrix inversion, etc:. The "ret-
uge" language discussed in Chapter III may be used for this purpose, but
it is not extremely flexible. The present chapter describes ACT IXII
language provisions for this situation,

A, Basioc Codes

The stateuent
enter'plot!!

is interpreted as the physical beginning of a source-language subroutine
or procedure which 1s thereby assigned the symbolic name "plot",

The statement ;
exit*?

executes a return from the procedure to the main program.

The statement
end®?’

is interpreted as the physical termination of a procedure., The block from
an "enter" to the next following "end" is the procedure, Tests are incor~
porated which implement the following diagnostie checks.

a. An "enter" may not occur within a procedure

b. An "end" may not occur unless an unmatched "enter" has been
processed -
Cc. An "exit" nust lie within a procedure

A.1. Data Blocks; Indirect Addressing

Many proceduréa have single input and.a single result. These may
conveniently be placed in the accumulator. Often, however, a procedure
will operate on an entire block of data. ‘ »

‘A sanple of this would be a matrix inversiom procedure, which must
know the location of the matrix to be inverted and the location in which
the inverse is to be placed. This is accomplished by beginning the
procedure with v '
' enter‘minv'ininv'2minv??

Thus the name "minv" is assigned, and the two symbols, lminv and
2minv, are set up as dummy references to the two data blocks. No space
must be reserved (by "dim" statements) for these symbols. We suggest
in all cases, to avoid duplication, that such dumniyy symbole be naned as
here, with a numeric digit followed by the first four characters of the
nane .

Any variable subscripts required by the procedure must be set up,
preferably iumediately after the "enter" statement, by "index" and "dbind"
statements. Such subscripts should have names of the type indicated above.

Suppose we write, after the above statement,
| dbind'3minv*?

Then the variable ,
Ininv'3minv?

refers to the element of the original matrix determined by the double
subscript "3mniv". Specific words in a data block may be.referred to by
integer subscripts, as

Ininvt' 3!

Note that "lminv" without a subscript should not be used; it does
not refer to word zero of the block, but rather to the location in which
the origin of the block is stored for purposes of indirect addressing.
Thus word zero must be written out as

lninv'o?

The special subscript arithmetie, e.£. lninv'3minvi2' is not allowed
when using indirect addressing.
B. Calling Upom a Procedure

The procedure headed by the statement givem in A.1,

enter'minv'lminvt2ninv**
is called upon in the main program as follows.
call'minv'arg'atarg'b!

Here "a" and "b" are the actual names of the blocks for the original
and inverse matrices, as set apart by "dim" statements in the main program.
Assuming the procedure has been written and compiled, the above statement
'will cause the matrix "a” to be inverted and its inverse stored im "b".

‘The same procedure may be called more than once, with different matrices to
be operated upon.

It jiw nevessary thet bhe procedure bs compiled before a statement
calling mgom i%. It is not pragtical te @ncorygruﬁe a tent for thie
aomﬁiuﬁcé, 1% is necessary, thsrefore, that procedures be placszd roultinely

at the beginning of any progran.

P

"a¥ and "LY pay be subseripted; they may alsc ke indirect addrsss
refarsnces,

C. Tenporary Storage
3 &

In order to avold duplication of syubols between prﬁceda“gm, or
belween a preocsdure and the pain pregram, the following proviegions are
nade for ﬁemne rary siorage.

If a procedure needs {for ¢ “ample} S locations for temporary sitorags,
they are reserved by placing ?he statenent

8@@@?@@0@9gﬁgpvggop,stop'a

{one "stop” for each location reguired) imumediately before the "enter®
statement. These localtlions are then called by the mame of the procedure,
with subscripte 1 %o § (ﬁa no% use zero).

D. Zample Procedure

To demonsirate thema features, we include ia geoction G a program
Tor a gimple plotting p?e@@daraa The ‘minimum scale value {yg) and
range “Ymax - ¥¢) are taken from locations plot?l’ and plot’2*, and
the aumber of scale divisions from plot'8* {all in floating point).
The aumber to be plotéted ia in the accumulator. The number of scale
divigions 18 agsumed $o be in plot'4?! as an integer and we assune that
tab stops are sel at svery 16 characliers,

This procedure is called from the main program, after the proper
nunibers have been placed im plot®l’ thru plot'4' aznd an inivial carriage
return hag been executed, by the statement

bringfa‘eall’'plot’?,

or, if the number %o be plotied has been calculated as the result of
the previcus sitatenent, simply

call’'plot'?,

The procedure is wrilitter so that points are plotted using the
character "o® and off-mcale values are indicated by a red "zx".

E. A Library of Procedures

It would be desirsble to keep commonly~used procedures in a 1ibrary
form. A separate tape of a procedure like the one in seotion G may be
kept, 1if it ends with the word

wait'.

If this tape is to be used with a new program, it is compiled
first. When the "wait" is read, the computer stops while the next

tape 1s placed in the reader. Sinply pressing "start" resumes conpila-
tion,

The problens involved in duplication of symbols can be avoided by

using the conventions which have been suggested above, and which pay be
sunparized here.

a. For temporary storage, use looations reserved by "gtop" codes
preceding the "enter" statement.

b. All dummy symbols and index symbols should consist of a numeric
digit followed by the first four digits of the name (separated by spaces
if the name containe less than 4 digits).

Duplication of statement numbers between procedures and between a
procedure and the main programn is automatically avoided by the compiler.
When the "end" code i1s read, all statement number references compiled so
far are satisfied and the statement dictionary is erased., If any state~
ment numbers have been called but not defined, the special "type 7"
error display ooccurs, Thus, no statement number may be called before an
"end", whichis not defined before the same "end". Computation will auto—
natically start at the statement immediately following the last "end"
statement compiled, Thus, it is recommended that all procedures be com-

14

piled first, before any portion of the main program is compiled.

If you need to have second, third, or other entries and/or exits
to a procedure, the block of words preceding the "enter" statement may
be used. Thus, 1f one of the "stop” words before the "enter" (see
section C) is replaced by (for example) use 's5', where 85 is defined
in the procedure, it may be referred to in the main progran or in a
later procedure by the name of the procedure and the appropriate subscript.
If you desire to have an alternate exit set by "set" or "ret" in the wain
program, you nust use the above format, where 85 again nust be defined in
the procedure, although in this case it is really a dummy. Do not attempt
to use a "go to" code in this situation. ,

When you are debugging a procedure, the following steps must be follow-
ed if you wish statement numbers printed out while tracing. First, the pro-
cedure nust be preceded by a "use" statement transferring to the main pro-
gram following the procedure. Second, the "trace" statement must be in-
serted after the "enter" statement. Third, the "end" statement must be
omitted. Fourth, the main program for the test run nust not duplicate
statement numbers used in the procedure. Finally, no other procedure nay
be compiled after the one being tested in this way.

- Symbols used within a procedure will appear in the symbol table
printed at the end of compilation.

F. Trace-Compiling.

The tracing feature is automatically suspended within a procedure.
This is done because procedures will normally be debugged already.

If it 1s desired to trace through a procedure (for debugging purposes),
the statement

trace'?

~is placed immediately after the "enter" statement. This restores the
trace~§omplle,feature (depending on the setting of the transfer comtrol
button). '

G, Samgle_Procedure.

Plot Procedure!
stop'stop'stop'atop’stop!?’
enter'plott? o
O'unflo’ * *prev'~'plot'l' 'x'plot'3'/'plot’'2’ *:'plot?5t
] or'’
-1f'prev'neg'slt' .
1£' 'plot'4'i~'plot!S' 'negts2'!
83! set'gS'to'sg6!'? .
s€' ‘'plot'5'i/'16' ‘'reprt'tab6’’
rendr'reprt? *?
85' go to's0*s
86!' daprtto'?
" 84' or'exitr
g2t . 8set'g5itotslt?
plot*4':'plot*s’.
use’sg!!
s8l' daprt'ecolor’x?colort?
use’g4!?
end®?
wait?

CHAPTER VIIX

DEBUGGING AT RUM-TIME

A. Trece-Compiling.

If, during compile time, the transfer ceontrol button is down (on),
provision is incorporated in the compiled program to meke use of certaiun
valugble tracing features. If only a portion of a program needs checking,
the transfer control button may be pushed or released at auy time during
compilation. Blocks of coding begiuning with au "enter" statement and endiug
with an "end" statement (see Chapter VII) are not trace-compiled regardless
of the position of the transfer countrol buttou.

-

~

B. Error Displays.

Indorporated into the staundard operating subroutines are & number of
tests on the validity of the data which they are hendliung. For example,
if a floatiug~point subroutine geuerates & number with an exponent greater
than 81, an error condition is set up. The occurrence of such errors,
which can be detected at run-~time, but not at compile~time, causes a
legible error display to be printed out in the following format: carriage
return, "e", space, error type {(a numeric digit), space, subroutine name;
carriage return, the number of the last numbered statement executed, the
machine location (decimal} in the main (compiled) program, and the cou-
tents of the accumulator £t entry to the subroutine (usually the right
operand), interpreted first as an integer and second as a floating-point
number,

The meaning of the error type ia iundicated iu connection with each
subroutine. The "last numbered statement® will be printed as zero if the
program was not trace-compiled. '

The subroutine name printed out in the mame of the actual operation
in the source program being executed. For example, a type 2 error in "pwr®
(argument regative) gives the name "pwr" even though the error is actually
detected in the logarithm subroutine. The ouly exception to this is iu
"rdflo", where the name "flo" will be given.

C. Statement Nnmbér Stopping.,

If your program is trace-compiled, aund you enter it with the trausfer
control button down and maunual input on the flexowriter, a read is called.
Type in a + sign followed by a statement number, release the trausfer
coutrol button, and press "stari". The program will run without interrup-
tion until it stops just before executing -the statement identified by the
number you typed in. Pressing start now will cause it to ask for aunother
statement number., If you wishit to run without stopping, type "run".

D'v Traeillg o

If, during run~time, the transfer control button is depressed, and
if your program was trace~compiled, each statement will be traced. After
each statement is executed, the following print-out will occur: carriage
return, statement number, machine address of firsi instruetion of state-~
ment, and result of statement, interpreted first as an integer and then

as g floating-point number. The transfer control button may be
depressed or released at eny time to turn the trace print-out on or

off, '

Suppose, for exauple, you know your program is all right as far as
statement 10, but you want to trace from there oun, The procedure is then
&8s follows: tirangsfer te 300 with trausfer coutrol down, When the light
glows, type in +10. Release transfer coutrol, aud press start compute.
The progream will run at full speed and stop before executing statement 10.
Press start. When the light glows, type “"ruu". Depress trausfer coutrol
and press start compute. The first liune of tracing is always meauningless;
the second line will be the trace of siatement 10, and subsequent state-
ments will be traced until the trausier countrol button is released.

CHAPTER IX
STANDARD SUBROQUTINES
P~ tape -
A. Subroutine Packages

Considerations of machine lenguage coling have made it necessary to
group the operating subroutiunes into "packages" which may uot be broken up.
An attempt hes been made to formulate these groupings on the basis of
related content,

These basic or minimum packages may in turn be Jjoined into larger
packages., The countents of the various packages are indicated in tables
ITI-VIII. '

B. "Basic Package" P-0. (9 tracks)

The basic package P-0 contains all of the basic service routines,
including the common input-output loops, trace and error display, aud
others needed by all the other suhroutipes,

C. Floating~Point Package P-1. (16 tracks)

I .
The packagel P~1 contains everything in P-0 plus snother group
labelled FP, including the basic floating-point arithmetic (+,-, x, /, abs)
and the floating-point input-output (read, print, dprt, punehsa Optionally
available in P-1 is a raudom number generator,

The operation
randm'

which requires uo operands, has as result a floating-point number from a
pseudo~-random sequence uniformly distributed over the rauge zero - one,

D. Package P-2, (21 tracks)

The package P-2 contains gzenxxhing“ih,xgl plus the procedure codes
(see Chapter VII) and ix, i/, flo, unflo, fix, ipwr, rdflo.

These additional portious may be separated:

CS (1 track) procedure codes.
IcP (4 traoksg "integer compatibility package".

£ g

E. PELL (4 tracks)

- PELL contains pwr, exp, 1n, log. The FP group must have been
previously assembled, or contained in the R~-tape.

F. TRIG (3 tracks)

-

TRIG contains sin, cos. The FP groun must have been previously
assembled.

G. ARTAMN (2 tracks)

The FP group must have been previously assembled.

H. SQRT (1 track)

The FP group must have been previously assembled.

TP A URITITOTS s
{Akfzfs.‘d‘f 33? EAIA S }L,

MACHINE OPERATIOM

A, Assembly of Subroutines. (See Flow Chari A)
Load: SPAR A

Console: breakpoint 4 off, & off, 16 off, 32 oun.
' 6-bit off. transfer control- off.

Read apﬁropriate R-tape (see A.1l,). After reading the first two
words, the program initializes tables, then reads the remaiunder of the
tape. At end of R~tape, the computer stops.

Depress the 6-bit button, prepare a symbolic subroutine tape in the
reader, press start. At emnd of tape, the computer stops. Repeat for as
many subroutine tapes as desired. .

When all desired subroutines have been assembled, switch to the flexo-
writer (mamial input), and press start compute three times. If an error
indication occurs at this time, consult the writeup of the subroutines used,
or the SPAR manual, If it is unexplained, it probably indicates a damaged
tape or a misread. ‘ ‘

, Set up the nunch (Preakpoiut 32 down for the high-speed punch, up for
the flexowriter) and rress start. The tape punched will be the P-tape
(assembled subroutines in hex) of all the symbolie subroutines assembled.
Keep this tape, run & leader and press start., This will produce the T-
tape (operation tables in hex). Repeat this procedure to produce the T#
~tape (see D). : -

A.1. Use aud Preparation of R-tapes,

~ Six R-tapes are provided with the system. These are R-0-A, R-0-B,
R-1~A, Rel~B, R-2-A, and R~2-B. An R-1 or aun R-2 tape must be used if
any floatiug-point arithmetic is desired. . ,

To prepare R-~tapes correspouding to vour owﬁ P~tapes, after comple-
tion of section A above load the tepe SPAR B. Prepare the punch as above
and press start. The desired R-tape will be punched.

B, Compiling a Progrem, ({See flow chart?B)
Load: ACT III A)

Console: breakpoint 4 off, § off, 16 off, 32 off
_ . 6«bit off. trausfer control off.

- Read appropriate T-tape. After reading the first two words, the
program initializes tables, then reads the remainder of the T-tape and
stops.

If you have source-language subroutines on seqarate tapes, they must
be comniled now. Follow the instructions below for each such tape. A
stop occurs at the end of each tape. - '

Prepare ysur source-language program tape in the reader, depress 6-
bit button., Depress transfer control if you wish to trace-compile. Press
start.

At the end of the progream, the computer will type out the last loca-
tion used by the compiled program {(in decimal) and a statement dictionary,
listing the location of the first instruction of each numbered statement.
After the seerch of the statement dictionary, a carriage return is
executed and the symbol table is printed. {(See Supplement).

B.1. Punching a Compiled Program.

The compiled nrbgram may be punched out as a hex tape either immediately
after compiling or after testiung. Four separate methods are available.

A, Aftér the statement dictionary is printed, prepare the punch as
usual and press start. The resultant tepe will be a single block of hex
with one checksum, :

B, After the statement dictionary is printed, release the 6-bit
button and transfer control. Load the tape marked ACT I1I B. Set up the
punch and press start. The resultant hex tape will be iu blocks of two
tracks, each with its own checksum. ~ '

C. After testing, reload ACT III A (not necessary iun mode A), trausfer
to 5449, set up the puunch and press start. The tape produced is described
in (a) above. - ‘ :

D. After testing, follow the directions in (b) above.

In any of the above cases, punch ,0000300' manually on the end of
the program tape. (a) and (c¢) not aveilable with standard system,
.0000300' is punched sutomatically in ceses (b) and (d) above.

C, Tuuning a Program, .
Load: The proner P-tape, followed by your program tape.

Console: breaknoints are required by your program, 6-bit off,
transfer coutrol off (except for debugging; see Chapter VIII).

Prepare data tepe (if any) in reader, prepare punch if necessary,
press start. .

ote: Immediately after compiling, the compiled program is present
on the drum. For testing, load the P~tape (if necessary), and trausfer to
300 to start your program,

o'l

In mode A operation, the subroutines (P-tape) aud compiler (ACT III A)
are ou the drum simultaneously. Thus it is uot necessary to reload these
tapes, unless you wish to use & different P-tape. Also, uunless you have
used ACT III B or written data in more than the first 320 words of the
region "areg2", it is not necessary to read in the whole T-tape. Iu this
case, use only the T*-tape for & secoud compilation. This mode is evideutly
most convenieunt for installations not having a photoelectric reader.
However, the limitations on program size are rather severe.

D. Mode A and Mode B Operation. 5"%'

In mode B operation the various tapes must be reloaded for each use;
we strongly recommend the use of ACT III B for punching the compiled
program in this case,

'PREPARING THE STANDARD SYSTEM FOR USE

A. To Prepare P~0-A or P-0-B.

Follow flow chart "A" using for R-tape RI-A or RI-B, aud for symbolic
tape, S-0. Mark P, T, and 1 tapes thus produced (P-0-A, T-0-A, T*-0-A,
R-0~A) or (P-0~B, T=0-B, T#«0-B, R=0-B). -

B. To Prepare P=~l«A or P-1-B,

Follow (A) above, replaciug O by 1 everywhere. (bottom)

C. To Prepare P-2-A or P-2-B,

Follow flow-chart "A" using for R-iape R-1-A or R-1-B, and for .
symbolic tape CS-ICP*. The T and R tapes thus produced may be appropriately
marked. They include all previous materisl. The P-tape shouid be marked
"P-2-A minus P=1-A" {or "P-~-2-B minus P-1-B"), |

To produce a complete P~2-A or P-2-B: 1load P-l~A (or P-1-B) aund
"P~2-A minus P-1-A" (or "P~-2-B minus P-1-B"). (The word "load" meaus
place tape in reader and execute the sequence "OCNS" as described in
flow chart "A".) low load ACT III B, tramnsfer to 3000. When light
glows, type in 14002963 (A) or 46006163 (B). Set up punch as usual, press
"START COMPUTE". Punch ".0000000' " maunuelly at end of this tape.

D. To PreparevPoé-B,

Follow chart "A" using for R-tape R-1-B, and for symbolic tapes
Cs-ICP, PELL, TRIG, ARTAN, SQRT. The T aud R tapes thus produced may be
appropriately marked. They include all previous material. The P-tape
shovld be marked "P-4'B miunus P-1-B."

, To produce & complete P-4-B, load P~l~B and "P-4-B minus P-1-B", and
" punch out from 3100 to 6163 using 13.2 or equivaleunt. Puuch ".0000000' *
manually at end of this tape.

*MOTE: When assembling CS-ICP assembly will stop with the tape only
partially processed., Push "START" and assembly will continue.

-B. The assembly of S~1 will ston before the tape is completely processed.
Push start to include "raudm"., : , ~

CHAPYER XI
TUE OVERFLOW LOGIC MODIFICATIONS

The ACT III system has been set up to take advantage of the special
loglie board installed at Parma Research Center, Union Carbice Corporation;
however, it has been so designed that it will run satisfactorily on a
standard logic board. In this chapter we present the ways in which the
special logic may be utilized. First, however, since there are in '
existence several versions of this logic modification, it is worthwhile
to describe the facility in detail. '

A. Nature of the Modifications.

The ocourrence of an arithmetic overflow in addition, subtraction,
or division does not stop the machine, but sets an indicator (the sign
bit of the C-register) and computation continues.

All Z instructions with a zero sign bit ("+2") have the same
meaning as on the standard logic board,

Z instructions with a one in the sign bit ("-n) are changed as
follows:

Track address 00: stop (unchanged)

Track address Ol: do nothing if overflow indicator off;
skip next instruction and turn indica-
tor off if it i3 on.

Track address 04,08,16,32: do nothing if corresponding
breakpoint switeh is up (off); ski
next instruction if it is dowm (on?.

B. Overflow Logic and SPAR

SPAR contains a test which determines whether the logic board on
which an assembly is being performed is standard or modified. Specgial
-codes in SPAR language may be used so that certain instructions may be
assembled only on ome board, net on the other.

C. Overflow Logic and the Operatiag Subroutines.

_ The symbolic tapes of the basic floating-point subroutines contain,
in effect, two sete of coding, ome of which is used if the tapes are
assenbled on a standard board, the other om a modified board,

The gains in the routimes for the modified board imvolve deoreased
running times for the +, ~, and / routines and inproved acecuracy in + and

None of the other routines have been coded in this dual manner.

|

Place main
prog. ftape inj
. fiex. reador

é_
"START"

“(Progtzm is
5

compl ted)

L

Statement
dict. printe

Symbol Teble
Printed

NOTE:s Option i not available »
with tape ACT 11§ A (S) TR. CNTR. OFF} 6-bit off

fSet u unchH S Y jace P-TAPE
PP €) % in reader
y ot
"START" necessary OCNS '
' 1§ P-TAPE +
. on drum
(Hex program Flace ACT 111 (mode A) P-TAPE is
is punched) in reader read)
g { St
: : Sﬁ tch to
1 Punch @Xo3
", 0000300*" _"OCNs® wan, 1NeUT
manualiy on 4 :
hay tana.at end "START"
R ’~»~k=" a w—— st up
r Punch ___._i______,_
File tape i
. : ‘] .0000300'“
; . : .4
A START" TR

 Hex Program

is punched , (J\)
L g

\

if you used
option 1, or
option 3
mode A and §
did not use
more than
328 words of

| Y |
Lrsy

Place Te~TAPE
in reader

g;f you used
option 2, or
3 mode A and
used more thar
328 words of
“areg2"

Place T-TAPE
IN reader

BKP's, 6-BIT,
TR. CNTR. OFF

t

Go to "A" .

¥

Set BKP's as
required by

program

1

(For tracing
fol low
Chapter Vi)

L

Load test
data tape,
set up punch

¥

"START"

T

{ works,go to(2]

K progfam

If you used
option 3
mode B, or in
mode A used
more than 6l
words of
"aregt™

;

Return fo
beginning

{ NOTE: 1§ you
detect an error
while compiling,
:{ you may re-
compile from the
i beginning by
going to "B".

£

Swlfteh reader
to flex.
HANUAL INPUT

Lmee 2hmm

-

(stowly)

"START COMPUTE
3 times

!

Set up punch
(BKP 32 off
for flex., on
for high-spd.
punch.

v

TSTART"

v

(P-TAP& is
punchad)

v

| Tear off tape,
et un ounch

"START"

¥

(T-TAPE i3

_punched) _

(TA-TAPE is
punched)

?

v

i

(§6§§¥Hgﬁ3"}“}“““"*“’fkﬁ

Place SPAR B
In readar

]

ﬁocusﬂ

v

{SPAR B

to mand)

v

Set up

auneh

f Another
Ascomhivd

Place R-TAPE
In reader

v

BKP 32 on.

¢

"ocNs”

v

Return to A"

FLOW CHART "A" . ASSEMBLY OF SUBROUTINES

6-BIT, TR.CNTR.,

IALL BKP's OFF

d

Place SPAR A
in reader

v

"OCNS"

vy

B(SHAR Ais “
mand 3

Place R-TAPE
in roader

¥

BXP 32 on
TSTART"

<i§}h----er1&
(R-TAs’E s E

3

BKP 32 off
-81T on

'dec ma'

{PTace symbolic
tape in reader

v |
TR - CNTR. -O-f-t
"START"

"OCNS™ = "ONE OPERATION,

CLEAR COUNTER,
NORMAL
START."

ou w!sh ‘_fkl,

Set tab on

flex. about
char. from
left margin,

(Symbéllc te
processed)

More

y

Place Symbl.

1£-] in flex.
ggader.

Y

TR. CNTRO 22.
TSTART"

y

\symbolic_tapes

FLOn CHMART "B - CORPILLING A PRIGRAS

"0CNS" = "ono cperation, clear counter,

sorasl, otart.”

6=B17, TRe CHIR
ALL BKP's CFF
é €
Place ACT |11 necessary
if
ACT 111 A
already
TOCNS™ in
' momory
K (sodo A)
(ACT 111 A
‘. o
w‘
Place T=TAPE
START"
(Y-TaPE is ﬂ
: T— If you have o
¥ﬂ Cetape, load it
~ hore with

G=BIT }gg , "ochs"

e

[oma
-
Plece tape in L@ é
oceduro is Any wore oy
coapiled q

FLOW CHART "C" - RUNNING A PREVICQUSLY COMPILED PROGRAM

i

-4

neccss::: Place P-TAPE |
1§ P-TAFE in reader
on drum :
(mode A) VJ&_
"OCNS"

y
[=r

Ly I
Place_ hex.
program tape

"START"

¥

{[?;rogram is
read)

iSet BKP's as

required by
program

y

(For tracing
fol low.
Chapter Vii1)

t

-

Place data

PARMA RESEARCH LABORATORY
UNION CARBIDE CORPORATIOMN

URM-21A
August 5, 1960

Supplement to ACT III Compiler
by
H. J. Bowlden aud 2. R. Helms

The Minimum System

This system is sdequate for moSi requirements of iustallations
possessing a photo-electric reader. It inecludes the following tapes:

A. ACT III A (S). This is the ACT III trauslation program,
described in the attached sheets.

B. ACT III B. This is the program punch routine; its use is
described in the manual.

C, ACT III C. This tape is used for partial compilations. See
attached sheets.) | '

D, P-4-B. This tape contains the subroutines necessary to
implement all the podes described in the manugl. It operates
on the staudard logic board.

E. T~4-B and T*-4-B. These are the corresponding operation table

tapes needed for compiling programs which are to use P-4-B.

-

Additiongl Tapes (available on request)

The following tapes are needed if yo&:
do not have avphoto-reader, and desire to Operafe in Mode A;
or have an overIlow logic board, and wish to take full advantage
of it; | |
or need more space for data;’and wfch to oﬁit.eome of the
subroutines; |

or wich to add subroutines to the sy?ateho

A. SPAR A. This iz the symbolic assewbler, zs described in the

ménualo

B. SPAR B. The use of this tape is described in the manual,

C. R~I-A and R~I-B. These are the initializer tgpes for Mode A

and Mode B Assembly. . ' ‘

D. S-1. This is the symbolic tape containing the floating-point

arithmetic, input-output, error and trace routines.

E. CS-ICP, PELL, TRIG, ARTAN, SQRT. These symbolic tapes are

described in the manual. |

F, ‘R—4—B. This is the R-tape corresponding to P-4-B,.

Also available, on special request, is the tape ACT III A (H),
incorporating the hex-punch routine for option (1) of the flow chart B,
This takes the place of the symbol table print, special error displays
for types 2 and 7 errors, and restart features associated with these
displays. Compilation speed is about 30 per ceunt slower than with ACT
III A (S); the advantage for installations without photo-reader lies in
the elimination of the necessity to load ACT IXII B and relcad the T-tapes,
when compiling short programs,

Also available is the tape $-0, the symbolic tape incorporatiug
integer input-output, integer arithmetic (except ix and i/), error aud
trace. This'maylnzof use if you do not wish to use the floatiug-poiut

arithmetic,'or if you wish to substitute some other arithmetic mode.

Special Features of ACT III A (S)

This tape is a version of the ACT III A translator designed for
inereased compilation sneed and imprbved'facilities for handling partial
programs and correction of certain source-program errors.

Symbol Table Print-Out

After the printiug of the statement dictionary (see flow chart B),
a list of all symbols used is printed, with the machine language aldresses

assigued to each. In the case of regiouns, the address corresponds to

word 0 VWorda 1. 2 eate ere found hv suhirsetine 1 2 ote. Prom thie

address. Remember that these addresses ocousist of two digits for track
and iwo digits for sector, and that each track conteius 64 sectors. Thus,

we have the peculier arithmetic: 2400 - 1 = 2363,

Special Type 2 aund 7 Error Display

In the case of type 2 (storage full) and type 7 (uudefined‘statemeut
number) errors, the usual error iundication is not given. Iu its place, the
following prinﬁeout ooours:

A. For type 2 errors ouly, a carriage returun, aud a simulated state-

ment dictionary entry with statement number zero and éddress 0600. .
Fof(tyne 7‘errors only, a carriage ruturn, the offending statement
number, and the machine address of the instruetion in which this
statement is called. If more than one case oocurs, they are &all
listed as they are found.

B. The f-address, statement dictionary and symbol table s giveu for

successful completion of compilation.

Restarting Compilatiou After Type 2 or 7 Errors

If the neces :ary corrections cau be made to the source program tape,
or if you caun stand by to catch the process aud iusert the correctious
nanually, the following procedure may be followed.

Roll the source tape back beyond the correction to the couditional
stop code before a numbered statement., If a dimension statement is iu the
blook thus contained, depress "manual iuput" on flexowriter, "start compute",
and (at the read) type iu the first symbol named iu this dimension state-

ment, and 1ift the "manual input" button. If no dimension statement is
involved, simnly press "start compute”,

The compiler will reset and recompile over the previously compiled
portion,

It should be noted that often if you are trace-compiling you may over-

come.a storage problem by compiling the last few statements without trace

(which takes up twe words per statement). The above procedure makes
this easy. |

If you try to restart at a statement number not yet defined, a display
like that for type 2 error will be repeated.

In the ocase of a type T error, the portion of the program which is
not to be recompiled must not contain any references te sitatement numbers
in the recompiled portion. This restriction does not apply to a type 2
error, _

If it is necessary to get off the machine after a type 2 or 7 error
display in order to correct your tape, the following process may be used
to advantage if an appreciable pari of the program does not need to be
recompiled.

A. Load the tape ACT III C, set up the punch and press "start".

The resulting tape contains a complete record of the compilatiowu,
‘a8 described under the deseription of ACT III C.

B. To recompile with this tape, load it as described uuder ACT I1I C.
Then switch to flexowrlter, "mauual iﬁput", "OCNS", Type in
.0005642 and press "start compute"”. 'Positiou your program tape
at the conditional stop before the statement number and follow
the remaindéi of the procedure described above.

Partial Compilations (ACT III C)

It is often desirable to use a large portion of a program (a2 long
procedure, for example) a&s a common portion of many programs., The
following method may be used to avoid the need for repeated compilation
of this common portion.

Compile the common portion in the usual way, It should eud with a
"wait" code. Place the tape ACT III C in the reader, "OCNS" to load it.
Prepare the punch and press "start". We shall refer to the resulting tape

as a C-tape. It contains the compiled program segment, statement dictionary,

and symbol table in hex. After it is puniched, you may obtain a printed
statement dictionary aund symbol table by discounecting the punch and
pressing "start compute", |

To use the C~-tape, initiate compilation iu the usual way with the
T-tape (or T*-tape). When this tape is in, place the C-tape in the
reader, and "OCNS", After the C-tape has been read, place your progrem
tape in the flexowriter reader and proceed aé for stendard compilations.

Note: A partial program must not go beyond location 2763.

A very frequently used C-tape magy be duplicated onto the end of the

T-tape by deleting the last code hg character punched on the T-tape.

S¥YMBOL

Jo
L1

TAB

Lowér Case

Upper Case

 Color sShift
~Garro Ret,

Back Space

?

CODE

TABLE IX
CODES FOR “aread?

SYMBOL
Aa
Bb
Co
Da
Be
L
Gg
Fh

11
J3
Kk
L1.
Mm
Nn
0o
Pp
Qq
Ry
Ssg
Tg
Un
Vv
Wor
Xx
Yy

2z

A0~ |

Lier —_

CODE_

72

of

6f

2
4f
54
5
62
22

- 64

63
0J

3r

32
46

42-

74

1£-
7t
52-

82

3a-

%3

12
02

