H#/o

1GP=30

{
FLOATING POINT INTERPRETIVE SYSTEM (24.2)

PROGRAMMING NOTES

Prepared bys:

School of Electrical Engineering
Purdue University

November 1959

1,0 INTRODUCTION TO DIGITAL COMPUTERS

1.1 The or Portions o Computer

A digital computer 1s, basically, a device which is capable of
processing numbers toward some desired result, An adding machine is,
therefore, a digital computer, but only in a restricted sense of the
term, The adding machine has three basic partsz the input device
(keyboard), the arithmetic unit (internal mechanical elements), and
the output device (printed tape or display registers), It is con~
trolled by a human operator who has a list of the operations to be
performed and another list of the numbers on which to perform these
operations,

The first step toward improvement of the adding machine to make
a more powerful device might be to »dd a memory unit to it so that it
could remember some of the numbers with which it was working, Then
the intermediate results could be stored without the need for printing
or recopying, The desk calculator does this in a small way, for it
is capable of holding intermediate results in the various dial registers,
and some desk calculators can even store s number from the keyboard for
use in several subsequent calculations, The sequence of operations to
be performed, however, is still controlled entirely by the human operator,

The second step toward improvement of the adding machine would then
appear to be that of adding to the device some means of holding a list of
the operations to be performed (this 1list is often called a program), so
that when the machine was finished with one operation it could go on to
the next without waiting for the human operator to decide what to do next,
The first machines to do this on a large scale were the card-programmed
calculators, These devices had the ability to process numbers, store data
and intermediate results, provide output as required, and accept their
operating sequence (program) from a deck of punched cards,

One trouble with the deck of punched cards, though, is that it is
impossible for the machine to change the sequence by itself, This must
be done by the operator by altering the order of the cards, 4lso, cards,
like operators, cannot work at the electronic speeds now possible, If
some way of allowing the machine to change its sequence of operations by
itself can be found, the machine can be made more versatile, This decision
to change its own sequence might be based on some condition like the change
of the sign of a result from positive to negative, Since the change of
sequence does not require the handling of cards now, the change can be made
much more rapidly,

This has been done with the type of digital computer which we will
be studying from here on, This computer might better be described as a
fgeneral~purpose,automatically=-sequenced, stored-program, electronic
digital computer," The definitions of these modifiers might be:
general purpose - can do almost any numerical or logical problem
of reasonable size;

automatically sequenced - performs operations one after the other
without outside intervention;

stored program ~ stores the sequence of operations to be performed
inside the machine before the operation of the program is started,

electronic « uses electron deviees such as tubes or transistors; and
digital =« processes discrete numbers rather than continuous quantities,

1,2 Internal Funetioning

We have described the type of digital computer which we are talking
about with the various modifiers given above, From here on we will, when
vwe say "digital computer," we mean a "generalepurpose, automatically ...
etc, . computer” and will not bother to write all of the modifiers, First
we will describe the instructions which tell the machine what to do, Then
we will consider the functions of the four major parts of the computer
which the programmer is concerned with, These parts are the arithmetic
unit, the memory, the input, and the output, (There is a fifth major part,
the control unit which keeps the other four rumning properly, but the pro~
grammer is not concerned with this part,)

1,21 Instructions - Instructions are the orders which tell the computer
what we want it to do with the numbers which we have given it, Instruc-
 tions are stored inside the machine before the operation of the problem
is started, Then these instructions are considered by the machine one
by one and the data are processed accordingly,

It is important to realize at this point, though, that instructions
bers, They look exactly like a piece of data which we may also
store in the machine, The memory can hold only numbers, some of which
may be data-type numbers and some of which may be instructionetype numbers,
Since they look the same, we must be careful to keep instructions and data
separate, :

Instructions have two major portions. The first portion is a code,
called the operation code, which tells the computer which operation is
to be performed next, like "add,® The second portion is the address por-
tion, In the address portion are the numbers of the locations in memory
where the data to be used in this operation can be found, The number of
addresses which are placed in one complete instruction varies from computer
to computer, We will be considering here only those machines which have
onadsingle address following the operation code, We will see how this is
used later, ‘

1e22 Arithmetic Unit « The arithmetic unit is a device which can do arith-
metic operations on command, It can add, subtract, multiply, and divide,
and it can also test the sign of a number, It cannot do anything like
decoding or translating instructions, and if the programmer accidently
sends an instruction to the aritlmetic unit, it will consider this instruce
tion as a number and operate on ity perhaps producing unplanned results,

The arithmetic unit contains a device known as the accumulator, The accum~
ulator 1s a register much like the lower dial of a desk calculator, It
holds the number which is currently being processed, MNumbers mey be added
to the number in the aceumulator, subtracted from the number in it, and so
on, The nmumber in the accummulator may be tested to see if it is positive
or negative, or the accumulator may be set to zero to clear it,

1,23 Memory ~ The memory is the portion of the computer where all numbers,
which may be either data or instructions sre stored, The memory is broken
up into cells, often called registers or storage locations. A system of

of addresses is established which assigns a unique address to each memory
cell, The cell address is a number, These address nulbers are the compu-
ter's way of keeping track of the information stored in a particular cell,
To refer to a particular plece of data, we instruct the computer to call
at the address of that data, The memory cell which we have addressed is
then connected so that we can get the number from the cell or place another
number into it. Taking a number from a cell, usually called "reading,"
does not change the number which is stored in the cell, just as reading a
book does not alter the printed word on the page. Placing a new mmber in
a cell does change the number in the cell, since we cannot write two num-
bers in the same space,

) put- = Input and output devices. are«provided ‘for getting
data and programs in and out so that the computer can communicate with
the outside world, There are two distinet types of inputs, however, which
must be handled by the input device, The first is the progrem and some
assoclated constants, The program must be loaded before it can be used,
The second type of input is the input of data; this comes under the control
of the user's program and reads into the machine whatever he desires, Out-
put 1s generally entirely under the control of the programmer, but the loade
ing of the program is not., We will speak more about this in the next sec-
tion,

1.3 Computer ggergtigg

The operation of the computer can effectively be divided into two
very distinct parts, the loading phase and tre operating phase, During
the loading phase the program is placed in the machine; during the oper=
ating phase the program is followed step by step to produce the desired
result (or at least a result),

Since instructions are stored in the memory, it is necessary to get
these instructions into the memory before the program can be operated,
This loading phase only loads the computer with instructions, which have
been prepared on some medium which can produce electrical signals. Common
program input media are electric typewriters, punched paper tape and cards,
and magnetic tape, It is important to realize that during the loading
phase no operation of any of the user!s programmed instructions is carried
out, The instructions are merely placed in the memory.

It is during the operating phase that the computer carries out the
instructions which the programmer has written, These instructions may
do all sorts of things, including the input of data and the output of
results, Note that the data are read into the machine under the control
of the user's program, Hence the data must not be placed in a position '
to be brought into the machine until ‘the entire program has been loaded
and set into operation,

2,0 BASIC PROGRAMMING OF THE LGP-30 FLOATING INTERPRETIVE SYSTEM

2231 Introduction

The Floating Point Interpretive System (24,2) for the LGP-30 com=
puter is designed to mske the coding of problems for the LGP=30 as simple
as possible and to assist the programmer in carrying out many of the things
which are often confusing or difficult to do, The system is quite flexible
and yet is very easy to program and operate, .

The IGP-30 itself is a small, fairly inexpensive digital computer.

It works in binary, and the numbers have a fixed point at the left end

of the number, It uses an electric typewriter (Flexowriter) and a paper
tape reader and punch for innut and output. The Floating Point Inter-
pretive System is a program written for the LGP-30 to enable it to under-
stand an instruction code which is not its basic language, The program
works in decimal, and the decimal point is not fixed in any one particular
location in the number, The program interprets the instructions Whlch

it is given to carry on operations on these decimal numbers.

Availsble tions |
The Floating Point Interpretive System (24.2) provides fors

1. Program input

2. Date input

3, Data output

4. Basic orders for
a. Floating point arithmetic
b, 8in, cos, arctan, square root, ab, eX, 10x loggs logyg
¢, Logical decisions
d., Printing
e, Input
f. Index registers

Decimal memory printout

Trace routine

Alphameric output

Hexadecimal output

*

0 ~3 O\
* -

*

2.3 Memory

There are 1402 storage locations available to the programmer for
the storage of instructions and data, These locations are divided into
22 tracks of 6 locations each, These locations are often called sectors,
Each location is addressed by specifying a track number (from 40 through
61) and a sector number (from 00 through 63), Since instructions in this
system require only one memory location each, they are stored and ex-
ecuted in sequential order, Mumbers require two locations each, but they
are always addressed by the number of the first of the two locations,
Examples of consecutive locctions are 4000, 4001, 4002, . . . 4061, 4062,
gggz, 4100, 4101, 4102, . ., .

2.4 Numbers

Floating point means that the numbers are not represented in the
usual machine code which has the point fixed in a certain location but
rather in a code which gives numbers in the form m x 10" where m is a
decimal integer and n 1s also a decimal integer giving the power of
10 by which m must be multiplied to produce the original number, Al="
though the range would appear to be nearly unlimited, when the problems
of input and output are considered, the system must be limited in this
machine to powers of 10 within the range from ~99 to +99.

These floating point numbers are stored in two consecutive memory
locations, The first location contains the m part and the second contains
the n part, However, the programmer need address the entire number only
by giving the address of the first location of the pair, But all numbers,
regardless of whether parts of them are zeros, take two locations,

‘ The@mat for numbers @@ is xxoxxxxxx 'sees'! where xxxxxxxx is

a decimal integer with up to eight digits (leading zeros need not be -
written), the first s is the sign of the integer, ee is the decimal integger
~ giving the power of 10 by which the first integer must be multiplied to
get_the orginal number, and the second s is the sign of the exponent, The
apostrophe (') is a special signal to the computer and must be placed as
indicated, This mark is called a "stop code' or "conditional stop" and
must be used,

e PP
Thg_,/.fé’rma}} for numbers which are printed {ép(gutput) is the same,
except that a decimal point replaces the first !, “signs are omitted
if they are +, and the second ' is also omitted.

Examples of floating point formats

Number : Input Format Output Format
2.0 2400k 20000000, O07-
16,9 16914011 16900000, 06~
-0,031 31'-03-t 31000000, -09=
15600,0 156402+ 1 ‘ 15600000, 03-

For greater precision, numbers with less than eight digits may have zeros
placed after them to £ill all eight digits and have the exponent adjusted
accordingly. , - ;

245 Instruetions

Instructions are of the form Pttss whers f is the operation code and
ttss is the track and sector number of the operand involved (or a special
code in some cases), When we consider the instructions themselves, it
is handy to have some abbreviations for the quatities being processed,

We will use xxxx to refer to a general four-digit track and sector number,
‘We will use the symbol c¢() to mean "the contents of the location specified
by the number in the parentheses," For example, ¢ (xxxx) means the number
in location xxxx, and c(a) means the number in the accumulator, On the
next page are the basic instructions for the Floating Point Interpretive
System (24.,2), Other available instructions are discussed in chapter 3,

2,51 Arithmetic Instructions -

axxxx Form c(a) + ¢(xxxx) and leave in accumulator,

sxxxx Form c(a) - c¢(xxxx) and leave in accumulator,

macx Form c(a) times ¢(xoxx) and leave in accumulator,

dxxxx Form c(a)/c(xxxx) and leave in accumulator,

rxxxx Ferm ¢ (xxxx)/c(a) and leave in accumulatof.

2,52 Sign Instructions -

0000 Méke.c(a) have a positive sign.

t0000 make c(a) have a negative sign,

y0000 Change the sign of c(a).

2.53 Storage Ingtructiong -

brooex Bring o (soo) dnto the accumulator without changing e (xoxcx).
mxxxx Bring -c(xxxx) into the accumulator without changing e (xxxx).
loox Store c(a) in location xomx without changing c(a).

2,54 Functiong -

r0000 Form the square root of c(a) and lesve in accumulator,
80000 Form sin c¢(a) and leaye’in accumulator,

¢0000 Form cos c(a) and leave in accumulator,

a0000 Form arctan ¢ (a) and leave in aécumulator.

exxxx Raise e(a) to the power ¢(xxxx) and leave in accumulator,
hOO00 Raise e to the pover c{a) and lesve in accumilator,

hO010 Raise 10 to the power c(a) end leave in accumulator,

- n0000 Form the natural log of c(a) and leave in accumulator,
n0010 Form the base 10 log of ¢(a) and leave in eccumulator.

2:55 Seggegge-Chgggigg Instructiong =

urxxx Take the next instruction from xxxx instead of from the location
‘ following the location of this wxxxx instruction,

txoxx If c(a) is negative, consider this as a wxxxx instruction. If c(a).

7

‘48 positive or zero ignore this instruction,
20000 Halt,

2,56 Input and Output Instructions -

ixxxx Receive data from tape and begin placing it in location xxoxx and
those following until the symbol f' is reached on the data tape.
Then take the next instruction in sequence, Floating point numbers
require two locations each,

pxxx Print c(xooxx) as a floating point number on the typewriter with no
control of the typewriter carriage such as tabs or carriage returns.

p0000 Print c(a) as a floating point number on the type writer with no
control of the typewriter carriage such as tabs or carriage returns,

d0000 Perform a tab on the typewriter,

m0000 Perform a carriage return on the typewriter,

2.6 Programming Exg_xmles

We will assume here in these programming examples that the programs
all start with their first instruction in location 4000, It is necessary
in all programs using this interpretive system with the LGP-30 to have
as the first two ins‘bructionstin the program the following:

N THE FIRSE TWO LOCA TS

SA—

r6300%u0400*

2,61 Example 1 - Assume that a number g is in location 5000, a number b
is in location 5002, a number ¢ is in location 5C04, and a number d 1s in
location 5006, We desire to formx = a+ b+ ¢ + d and place the result
in location 5008,

in location 4000 - r6300! special instruction
4001 u0400! special instruction
4002 b5000* bring a into the accumulator
4003 ~ a5002! a+ b .
4004 a5004! a+ p+C
4005 a5006! a+ b+c+d=x
4006 h5008! store x in 5008
4007 - 1000 stop the computation

2,62 Example 2 - Ve desire to read two numbers from tape and subtract
the second from the first, If the result is positive, print the result,
If the result is negative, change the sign of the result and print it
preceded by a tab, After printing the desired number perform a carriage
return and then resd another pair of numbers and repeat the problem,

in location 4000 r6300! special instruction
4001 w0400! special instruction
4002 Y4100t read the first into 4100 the second

into 4102

4003 b4100* bring the first into the accumulator
4004 84102t first - second L ‘
4005 4008 if +, continue; if -, go to 4008
4006 p0OO00Q* print positive result
4007 u4011t go to 4011 for a carriage return
4008 b0000* make the sign positive

4009 doo00?* perform a tab :

4010 p0000! Print number
4011 m0000?* - perform\g carriage return
4012 u4002! go back to read more numbers

The data tape in this example will have two mmbers in floating point format
followed by £', Then there would be two more numbers, and so on, The com-
puter is stopped by shutting off the reader so that no more numbers can be
read in, Paragraph 2,71 shows an example of the program tape and the data
tape for this problem, ‘

Pro Pre ion - wrire mismeverow xxax’
hxxxx®

2 the Fle ter =

a-Press the Mamial Input button on the computer down,

‘b-Put all switches in the top row of the Flexowriter up,

c~Turn the Cormect switch on the Flexowriter off,

d-Turn the Flexowriter power on,

e-Press the Punch On switch on the Flexowriter down,

f-Feed about 6 inches of blank tape using the Tape Feed switch,

g-Type a carriage return (CAR RET key). ,

h-Type 30004000!/0000000! followed by a carriage return, (This is a
command to the computer to start loading your program into loecation
4000 when you actually begin the loading phase,)

1-Type the instructions of your progrem as written, each followed by !,

j-Place a carriage return on the tape after every 16#1 instruction
(hence before 00, 16, 32, and 48), . 4 ‘

k-To correct an error, ‘back up the punch to the wrong character by
turning the knob on the punch away from you, One click will back
up the punch to the last charscter punched, etec, Press the Code
Delete button enough times to delete (punch out all holes) from
that point on, Then type the correct characters,

1-At the end of the program, type a carriage return, followed by
0004000 (a command to the computer to tell it where you want it
to start operating your program), followed by a carriage return,

n-Feed some blank tape, .

n-If you want data on the same tape, type a carriage return followed
by the data, Don't forget the necessary f' codes,

o-When done making tape, feed about 6 inches of blank tape,

p-Tear off the tape against the tear bar,

g-Raise the Punch On switch,

r-Proofread your tape as shown in paragraph 2,73

The following is the tape for example 2 with two sets of data following:
30004000t /0000000* , v
r6300:u0400'iAlOO'bl.lOO'34102'1'.4008'pOOOO'uAOll'bOOOO'dOOOO'pOOOO'mOOOO'
w4002 : :

»0004000" » ‘
12440116801 £1165 -00F 1124 00K T£?

9

2,72 On the Typewriter = (Not Available at Wayne State University)
a =« Turn on the power

b - Press tape Feed on the keyboard and the silver key sticking out
of the front of the cabinet above the keyboard to feed about 6
inches of blank tape, - ‘If the tape does not feed properly, pull
gontly on the tape as it feeds to get the feed holes in step,

¢ -~ Follow steps g through p of paragraph 2,71,

d « Turn off the Teletypewriter,

@ = Proofread your tape on the Flexowriter as shown in paragreph 2,73.

2:73 To proofread a tape on the Flexowriter -

a = Press the Manual input button on the computer down,

b « Put all switches in the top row of the Flexowriter up,

¢ = Turn the Connect switch on the Flexowriter off,

d « Turn the Flexowriter power on,

e = Load the tape into the reader with the printing on the tape
aligned the same way that it is in the punch, The tape hold~douwn
on the sprocket wheel is onened by pulling the tab forward., The
tape slides from the left side under the reader head, under the
open gate, and under the small flat hook at the rear on the right,
Be sure that the pins on the feed sprocket are through the feed
holes on the tape before closing the tape hold-down, Iet the rest
of the tape fall through the space between the reader and the punch,

f - Press the Gond Stop switch on the Flexowriter down,

g = Press Start Read,

h « At the end of the tape, press Stop Read.

i1 « Raise the Cond Stop switeh,

J = Advance the platen by hand and tear off the typed copy.

k ~ Remove the tape from the reader by opening the gate and sliding it out,

1 « If necessary, reproduce and correct the tape as shown in paragraph 2,74,

2274 To reproduce and correct a tape on the Flexowriter -

& - Follow the steps for proofreading a tape, except that the punch
must be on and you should feed about 6 inches of blank tape at
the beginning and end of the tape,

b « While the typewriter is typing the word just before the incorrect
' word, raise the Cond Ston switch, The tape will stop on the stop
code just before the incorrect word,

10

e~Type the correct word or words, Then advance the tape in the reader
to skip the incorrect characters by counting the number of wrong
characters to be skipped. and then advancing the tape just that many
holes. Do not count deletes (all six holes punched) as lines skipped,
If a word has been omitted from the original tepe, it is not necessary
to skip any words on the tape. ,

d-Run a proof copy when the corrections have been made,
2,8 Program Operation
2,81 To turn the computer on (if it is not on) =
a~Press the Manual Input switch on the computer down,
b~Press the Operate switch on the computer down,
cePress the Power On button on the computer
d-Wait for the green light under- the Operate switch,
2,82 To load and run a groggam -

a~If the computer is not on, see paraﬂraph 2.81
s~ uy3t . faf,fd O‘? /’”/IC"\O

bnMake sure that the Manual Input switch on the computer is down.
c~Put all switches in the top row on the Flexouriter up, excep? Voo lopo
deTurn the Flexowriter power on,
e«Turn the Comnect switch on the Flexowriter on,

R
feload the tape into the reader (see paragraph 2,73e).

gaﬂn the computer, press One Operation, Clear Counter, Normal, Start(ciwo on#bx

~g-1: i wp Mav, Sup ot on Flex
h-When the tepe reaches ,0004000% it will?step., ,
epress, "Mav, I oo? | om Fleve

ieIf the data tape is separatleloadLit into the reader, ,ums sweF
///*/ Mo lnput’ Leve, o Flexo

J-Press “the Start Comp ?ﬁ%%enﬂbn the Flexowriter to start the program,
Evrn

k-If it is necessary to stop the tape, use the Man Input button,
2,83 If the program fails to operate all the way through -

. -gwPress the Transfer Control button on the computer down,

b=Press the Start button on the computer,

ceThe location of the instruction either on which the computer stopped
or the one following will be printed, along with the instruetion in
that location and the number in the accumulator at the time of printe -
ing, This will give you information on where the ccmputer was in
your program at the time that it ran into trouble,

deStop the printing by pressing the One Operction button on the computer.

e~Raise the Transfer Control switch by pressing it again,

2,84 To leave the computer -

a=Press the Manual Input switch on the computer down,
beTurn the Connect switch on the Flexowriter off,

e~Turn the Flexowriter power off,

dePlace gll switches in the top row on the Flexowriter UPe
e~Write your time in the log,

2,85 To turn the computer off «

The computer is never turned off if it will be used within the follow-
ing two hours., It is also not turned off before 5 pm on week days., It is
never put into Stend By Operation. To turn the computer offs

a«Press the Manual Input switch on the computer down,

b=Press the Power Off button,

c«Turn off the Flexowriter

12
3,0 ADVANCED PROGRAMMING OF TU'E LGP«30 FLOATING POINT INTERPRETIVE SYSTEM

3,1 Introduction

The Floating Point Interpretive System (24,2) has been provided with
many additional features which were not discussed in the previous sections
because they are not of interest to the beginning programmer, It is not
long, however, before the programmer begins to realize that he cannot do
things that he wants to do with the system as it has been presented so far,
One of the first things which he has trouble doing is running programs
which require access in some seguential order to different locations in
‘memory; operations with determinants or matrices are examples of this typs
of problem, The input and output for the systems are more flexiblé than:
has been described, and it is possible to print alphabetic charzcters as
well as fixed and floating point numbers, Aids to the programmer are avail-
able which will assist him in overating his program and in determining what
happened vhen it fails, These include tracing, address searching, and
memory printouts,

Some users of the Floating Point Interpretive System become concerned
with the length of time éach instruction takes, so a table of operating times
'is included here, Since the programmer will find that these times are rather
long, suggestions for use of the much faster basic machine language are made
where they may be of use in speeding up the operation of programs., For the
user who would like to combine operations in basic (machine-languzge) fixed
point and in floating point, the layout of the memory and the arrangement
of the various types of numbers and registers is given,

3,2 Index Registers
3,21 Looping and Addregs Modification -

So far, looping (repeating a section of coding by transferring from
the end to the beginning of it) has been accomplished by simply writing a
conditional or unconditional transfer at the end of the loop., There is a
much easier method (although somewhot slower) using the index registers,
It is possible to write a single command which will count the number of
passages through a loop and transfer out of the loop when the desired
number has been reached, These same index registers may be used for modi-
fying addresses of instructions as stored in memory, This makes it possible
to write loops in which some instructions refer to a different place in
memory each time the loop is traversed,

3,22 Parts of the Index Register =

There are eight index registers available in this system, numbered
from 1 to 8, They are all the same and may be used interchangeably., Each
index register has four parts, shown in the diagram below,

[ﬁountgr 7T Address ! |

3 F11 =29

] Minus 1 | Increﬁsﬁ:er f
=11 =29

13

(The values of q are given for those working in basic machine language).

The counter is the section of the index register which keeps track of the
number of passages through a loop., It cande set to any desired value, The
minus one is used with this counter to reduce the counter value by one during
each passage., The progremmer cannot chenge this minus one, The gddress is
the number which may be added automatically to the address of any instruction
to get a new address for the instruction, This addition takes place only when
the instruction itself is called for during the oneration of the program, snd
takes place just before the instruction is carried out. The instruction as

it stends in memory is unchanged., The incrementer is the value which is added
to the address value in the index register each time the leop is traversed,
All three parts of the recister must be set by the prosrem before it can be
used even if only one part is to be used,

3,23 Instructions for Using index Registers -

There are four basic orders for loading, incrementing, and texting the
index registers, In describing these commands, the following abbreviations
will be used:

n The number of the index register from 1 to &,

an The address stored in the nth index register.,

in The incrementer in the nth index register,
¢, The counter value in the nth index register.

A1l values set into the index registers must be written in the same track
and sector notation which we use for reguler zddresses, Although this is
normal for addresses, this must also be done for the incrementer and the
counter, For example, if a counter value of 100 is desired (to traverse
a loop 100 times, for example), the number to be loaded into the counter is
0136, meaning 1 full track of 6 locations plus 36 more, The instructions
for using the counters are as follows:

neXX Set the counter value of the nth index register (i) to xox.
The maximum value in trackeand-sector notation is 3163,

nixoxx Set the incrementer of the nth index register (in) to omx,.
nexoex Set the sddress value of the nth index register (a,) to xxxx.

NZEXXXK Increase a, by the amount i,,, decrease cj, by one, and test cy,
If ¢y, is not zero, take the next instruction from xxxx. If cj,
is zero, take the next instruction in sequence,

The incrementer may be used as a decrementer (to reduce the address value

each time) by setting it to the desired number of tracks and sectors

subtracted from track 63 sector 64, For example ’

Using index register 2

Amount v Increment ‘Decremen
2 locations 2310002 216362
60 locations 230060 234304

70 locations (1 track, 6 sectors) 216258

3,24 Instructions Modified by Index Registers =

Most of the 24,2 instructions may have their address modified by
simply placing the number of the index register desired in front of the
instruction letter, These may be defined as follows:

nffxooa Perform the indicated operation (f) on location xotx + ape
00000 Perform the indicated operations (f) on location ay,

The operation (#) may be any of the following instructions:

a Add b Bring

s Subtract n Negative bring
m Multiply h Hold

d Divide P Print

T Reciprocal Divide

There are several other instructions which are different from their
unindexed counterparts:

DYXXXX Place a, in the address portion of the instruction in XXXX o

ny0O000 Illegal - causes machine to stop.

nuxxxx Set a, to the location of the nuxxxx instruction and transfer
to xxx,

nuC000 Illegal = causes machine to stope.

ntxxxx Teke the next instruction from xxxx + a,, Notice that this
is an unconditional transfer,

nt0000 Take the next instruction from location ap.

There are several differences to be noted when using indexed instructions.

1) The eddress — and the address 0000 do not make different
instructions like they did_without index registers, For example exoox
means add, a0000 mears tan~! | but naxxcx and na0O00 both mean edd,

2) The conditional transfer is nzxxxx when using index registers,
and the unconditional transfer is done with the nt command,

3) The input command is not indexable,
L) None of the algebraic functions may be indexed,

3,25 Example Using Index Registers =

‘Suppose that there are 100 mumbers starting in location 5000 and
we wish to get the sum of these and place the sum in location 4962, A
possible program is , ,

in location 4000t r6300° Special Instruction
4001 u04,00! Special Instruction
4002 3c0136¢ - Set counter value to 136
4003 3e0000! Set address value to' O
4004 310002 Set incrementer to 2
4005 b4962! bring the sum so far
4006 3a5000' = add next number
4007 -hi96e2! - store new sum
4008 324005t test counter =~ if not done, loop

4009 z0000" done = stop

15

Notes It has been assumed here that location 4962 was set to
0 before the program was operated, This must be done
by the programmer,

3,26 _Basic_Language Approaches to Indexing - The index register commands

of the 24,2 system are very slow, The programmer can, with only a little
extra work, learn the basic machine language to perform the indexing
overations in fixed point., These operations in general consist of adding
to a fixed location chosen as a counter and adding to the addresses of
instructions each time through a loop., The effect of this is to speed

up the operation of the indexing portions of the program by a factor

of more than 50, The basic machine language will not be discussed here,
by the serious nrogrammer who has a long problem to do will find it well
worth hls time to learn this portion of basic machine language.

3.2 Input and Output

3,21 Coding Sheet Dats Entry - The programmer often has several con-
stants which he wishes to use in his program but which he rather would

not have to enter as data using the data imput commend (i), The following
command permits him to enter special constants 2t the same time

that he loads his program:

CXXXX Convert the specially-coded fixed point number in location
xxxx into floating point and place it in the floating point
accumulator,

Notice that hhis is the equivalent of the bring instruction except
that it applies only to specially-coded numbers,

The format for the coding sheet is .xxxxxses' where xxxx' is a five digit
decimal integer, the first s is the sign of the integer, e is the décimal
inbeger giving the power of 10 by which the first integer must be multiplied
to get the original number, and the second s is the sign of the exponent,
The stop code appears only after the entire number, Examples of these
numbers are: . '

Number Format
53.216 53216+ 3~
»5468000 54680=2+1

The number may be placed anywhere on the coding sheet where it
is convenient to place constants, However, it must be entered as a
hexadecimal word, This simply means that the number (Or a group of
them) must be preceded by the hexadecimal word code ,00000nn' where
nn is the number of these specially-coded constants to follow, For
example, the two numbers ziven in the example above would be written
on the progrem tape as follows: _

» 0000002153216+ 3~ 54680-2+ 1

Note that the hexadecimal word code requires no space in memory and
that each of the specially-doded words requires only one space each,
The only floating point command which can be used to refer to these
constants is the ¢ command, If other commands must also use them,

the constants should be converted by using the ¢ command to get them
into the floating point accumulator and then holding them into an area
where there is space for regular floating point numbers which take two
locations each, v ‘ '

16

22 Pro s for General locations « Programs written so far have been
written for a particular place in memory, This is not necessary and
~ often not deslrable since the programmer mey want to rearrange the memory
at a later time, If the program is written as a subroutine to be used
by many other programmers, the program should be flexible enough to be
locatable anywhere in the memory. '

The programmer may do this with any program by making use of the
address modification feature of the Input Program, The programmer can
write a program as if it were to be placed in locations from 00Q0 on.

He can then cause a constant to be added to the address of every in-
struction in his program as it is loaded into the machine, This in
effect modifies the program se that it now appears to be wrltten for some
other area, The rules for doing this are as follows:

1) Write the program as if it were working in locations starting
at 0000,

2) Place an x before any instructlon vwhich is not to have its
address modified, (For example, ré300 is to refer to 6300 no matter
where the program is located; therefore it would be written xré300,)

3) Vhen loading the program into, say, location 4000, precede the
program with ;0004000°'/0004000% and then type the program, The number
after the / is called the set modifier! and is added to the addresses of
all instructions not preceded by x. (It does not affect anything except
inatructions.) ' ' ' '

3,23 More on Data Input « The data input command ixcomx is somewhat
restricted in that data must go into a particular place in memory assigned
by the program, Another input command is available which allows the
assigmment of the starting location of the data to be made on the data tape:

10000 Receive data from tape and begin placing them in memory starting
with location given as the first four digits on the tape, Continue
in consecutive pairs of locations until either g' or f! is reached,
If g' is encountered, continue loading, but start a new sequence
of consecutive pairs of lccations starting with the one given as
the next four digits on the tape, If f! is encountered, stop
loading and take the next instruction in sequence in the program.

For example, to load the numbers 33,1 and 142 into locations 5000 and 5002
and the pumber 0,0067 into location 5216, the program would contain the
command 30000 and the data tape would be:

5000 '331' +01- '142'+00+'g'5216167+0~£!

Accuracy of the data input may be improved somewhat by representing
numbers with as large an integer as possible, For example, the best way
to represent 4,0673 is to write 40673000%07-' rather than 40673™04!,
Numbers are always printed out in the larger form,

17

Typing time for data can be shortened by omitting leadimg zeros.
This is usually done when typing the integer part of the number, but
it can also be done with the exponent if the programmer remembers that
~the + sign may be consicdered as a leading zero, Hence +06-' can be written
€6-' or even as 6-', If the exponent is zero, it may be omitted entirely,
but the stop code following it must be printed, If the sign of the
integer is negative, however, the entire exponent must be printed,

It 1s sometimes convenient not to have to take the next instruction
in sequence following an ixxxx or 10000 command but to transfer to some
other location depending on the data set which was fed in, This may be
done by writing, on the data tape in place.of f', a transfer command uxxxx'.
This will cause the program to take the next instruction from xxxx after
reading in the set of data,

3.2/ Compatible Output - The regular print commands pxxxx and p0OCO

print in a non-compatible format; i, e., in a format which is not like the
input format, Therefore if output data is to be punched on tepe the format
is incorrect for use as input by another program, The following print
com?ands print in a format exsctly like the data input format (see section
2.4)8 .

800pxxxx Print ¢ (xxxx) in compatible format,
800p0000 Print c(a) in compatible format,

If the print command is used with the x to prevent input address modifi
cation or with the index register number n or with both, the forms are
80xpxxxx, 80mpxxxx, and 8xmpxxxx, As with the non-compatible print
commands, no page format control is exercised over the typewriter such
as tabs or carriage returns, '

3,25 Fixed Point Output - Data may be printed in a fixed-point format with
no exponent and with the decimal point properly located:
}%ciin Print c(a) as a fixed point number with no more than nnn
digits after the decimal point. Print only enough zeros to
lcca$e1theﬁdecima1 point,

zxxx Print c(xoxx) as a fixed point number with eight significant
figures and only as many zeros as are necessary to locate the
decimal point, . '

wxanples of the use of this print command are

¥

-oea) Command Output

i23452;g:+82~; 20000 none~machine stops.
2345 +06- , z0003 12,345
igzggzg :+gg-: 20006 iz.%sggg

+00~ 20022 24345 ’
123456781407 1 50000 123256780000000,
123456784 20! 20018 »000000000000123456

The zxox command always produces eight significant digits.

The number nnn is counted by tracks and sectors, For example,
if 63 digits are desired, write 20063, but if 64 digits are desired,
~write 20100 (i.e., one track of 64 sectors plus no additional sectors).

18

3,26 Alphemeric Output - Alphabetic characters, digits, symbols, and
typewriter control commands may be printed out using the alphameric

print commend:

u0000 Print the codes in the following locations in the program as
alphameric characters until the code 00 is reached. Then take
the next word following this as an instruction,

Each location after the u0000 command must contain four alphameric codes
as listed below, The last location rust have at least one 00 code and
may be filled with other 00's to obtain four codes, These dodes are
considered as hexadecimal words and must be preceded by the hexadecimal
word code ,OOOOO'hn' where nn is the number of locations occupied by these
alphameric codes, For example, a program which is to print The End
would be u0000', 0000003!20t410h4’elz)20e4!10n4d400t and the typewriter
would execute upper case, T, lower case, h, e, space, upper case, B,
lower case, n, d, and then control would be returned to the instruction
right after the last code word, Note that the typewriter must be placed
in upper and lower case when desired,

Character desired Character desired

Upper Lover Upper ~ Lover

case cagse Code case case Code
A a al ?' 0 - 08
B b b4, L 1 18
C o] c4 * 2 28
D d az. ,. 3 38 -
B e 8/, L JA 48
F f £8 % 5 58
G e g8 $ 6 68
H h h4 w 7 78
I i i4 £ 8 88
J] i8 (9 98

K k k8 3 3 H
L 1 18 ? / /3
M m ms 3 » %
N n né C ’ 2J
0 o o = S+ +3
P P 72 R - =J
Q q q8 Space ‘ zj
R r T4 Delete - vji
S 8 84 Lower case 10
T t - t4 : Upper case 20
] u us _ Color shift 30
v v vi Carriage return 40,
W W ws Backspace 50
X x x3 Tab 60
Y Y Y4 ‘ Stop code (t) ~ 80
z z 24, ‘ SRS -

19
3a4 Miscellaneous Features

3,41 Trace Routine ~ A trace routine is provided to assist the programmer
in checking out his program when he is testing it, The trace routine
will provide a complete record of what is heppening in the machine by
printing the location of the instruction just performed, the instruction
itself, and the contents of the accumulator after the instruction has
been executed,

To initiate tracing, depress Transfer Control, The trace routine
will begin with the instruction just executed and will continue from
that point on, The Transfer Control may be pressed while the program
is operating or when it is stopped (if it is stopped, start it again
by pressing start), If the program stopped because of an illegal
operation, it will print the instruction on which it stopped (or in some
cases the one following), To @tap tracing, raise the Transfer Control
button by pressing it agaiii,

The number in the acecumulator must be a proper floating point
number before the trace routine will print it, Improper numbers can
be present during initialinput instructions and as a result of machine
operations in basic language, The trace routine will stop after print-
ing the instruction if an illegal number is present, Merely press the
Start button to make it continue,

Dec Memory Printout - The decimal memory printout is another
aid to the programmer for it enables him to get a picture of what is
in a section of memory, This is valuable to check on the correctness
of input onerations and to see what the program has stored in a region
if the program should fail for some reason, The decimal memory print-
out will print aes follows:

1) Instructions - Complete instruction including index register
mmber (if any), but with the address ummodified by the index register,

2) Floating Point Numbers - The number with its exponent.

3) Anything else - Printed es hexadecimal numbers if the number is
not recognized as an instruction or a floating point number, Some num-
bers which the programmer wrote as hexadecimal words may be recognized
as instructions or floating point numbers, The digits of the hexadeci-
mal number will always be written in the standard hexadecimal code (see
the basic languaze programming manuals),

To operate the decimal memory printout:
1, Depress Man in on the Flexowriter,
2, Press One Operation, Clear Counter, Normal, Start,

3. When the light on the Flexowriter comes on, type ,0003300!
and press the Start Comp button twice,

4. VWhen the light comes on again, type, as a single eight-digit
number, the decimal value of the initial and final locations of the -
block of memory to be printed, (For example, to have the section from
4000 through 4015 printed, type 40004015',)

5. Press Start Comp,

20
6, VWhen the printing is finished, step 4 may be repeated,

7. The contents of the index registers may be printed by giving
the range as zero, (Nothing need by typed; just press the Start Comp
button for Step 4). The index registers are printed in order, 1-8,
glving counter value, address value, and incrementer.

3.43 Search for Address - The address search mskes it possible for the
programmer to find out if any instruction in the region from 4000 through
6163 has a certain address in it, The program will look through this
entire region for a particular address, If any instruction is found
which refers to that address, the program will print the location of

the instruction followed by the instruction letter, It will then
continue searching the rest of the region, (Note that it is possible

for hexadecimal numbers to look like instructions now and then,)

Operation is as followss:
1., Depress Man In on the Flexowriter,

2, Press One Operation, Clear Counter, Normal, Start,

3. When the light on the Flexowriter comes on, type .0003700!
and press the start Comp button twice,

4, When the light comes on again, type the four decimal digits
of the address to be searched for, ’

5, Press Start Comp,

6, The routine will print locations if any are found and will
finally stop. If it is desired to continue with a new address, depress
Transfer Control and press Start, Then repeat step 4, If Transfer
Control is not depressed, the routine will reduce the address to be
searched for by one and will continue when the Start button is pressed,

324 Hexadecimal Punch - The hexadecimal punch is used to punch in
hexadecimal form on tape a program already stored in the machine, This
may be used when the program has been designed for use many times in the
future, since it provides a slightly faster input and has a check sum on
the end of the tape to check the accuracy of imput, The hexadecimal punch
routine is generslly not in the computer because it must be placed in the
same area that the fixed point print routine and the address search rou=
tine occupy, However, it is the same as the LGP-30 Subroutine J4-13,2M1
which is on file in the computer room and which may easily be used when
a hexadecimal program tape is desired, The prospective user should con=
sult the subroutine write-up file,

If the floating point hexadecimal punch is in the computer, the
operation is the same as for the decimal memory printout except that
the starting location is ,0003600t;

Test Pr for = There are times when it is desirable to
check the entire 24,2 program to see if everything is written correctly
on the drum, Operations which make it necessary to reload the progran
or perts of it,power line transients which may have changed part of the
program, and trouble with the program itself make this text necessary,
A test program, tape Hl~ 24,20, is available to test the entire program,
It operates by checking four iracks at a time, The program occupies
. most of tracks 60, 61, and 62, but may be relocated if necessary,

21

The operation is as fbllows:
1) Place the H1-24,20 tape in the reader.
2) Place all switches in the top row of the Flexowriter up,
3) Turn on the Flexowriter power and comnect switches ,
L) Press One Operation, Glear Counter, Normal, Start.

5) The tape will read in most of the way and stop after printing
.0006000t, Press Start Comp,

6) Do not remove the tape from the reader until the entire testing
operation is finished,

7) The numbers of the groups in error will be printed, These
numbers represent the section of the 24.2 program tape which
must be read in again to replace the faulty area, You will
have to get help to reload 24.2

8) If no errors are found, the program will print 'none! and stop,

3,6 Comments on Speed

3,61 Interpretation

The Floating Point Interpretive System is a program which takes the
programmer?s instructions and decodes them under program control to
cause the desired ovneration, In other words, the instructions are not
being interpreted electronically as the hasic machine language instruc=
tions are. This decoding operation takes time, since it takes a certain
amount of time to decode machine instructions electronically and it takes
many machine instructions to decode one floating point instruction,.There-
fore, interprctive systems are inherently slow, For this loss of speed,
however, the programmer often gains in ease of programming, He is essen=
tially taking less of his time to program but is taking more of the mach-
ine's time, There is a certain break-even point where reducing the pro-
grammerts time still more will raise the cost of the entire operation by
teking too much machine time, It is difficult to say where this point is
because the various costs are not known, but the prosremmer with any large
Job to do on the computer should consider carefully the amount of machine
time that may be required to enable him to reduce his programming time,

3262 Use of Basic machine language

The basic machine language is similar to the floating point language
except that it deals with fixed point numbers and works entirely in binary,
Input and output routines are available to convert between decimal and
binary so that the programmer does not have to do this. There are three
important faets to be consgidered when deciding whether to use floating
point or basic languages

1, The slowest basic machine operation speed is 50 operations per
second compared with the fastest interpretive system operation speed of
2 operations per second,

22

2. Iogical operations such as counting, looping, and printing are
much more easily done in basic machine language. Moreover, some logical
operations are nearly impossible to do in 24.2,

3, The programmer may have to spend some extra time and effort
learning the basic language to be able to use it effectively, and there

are many more idiosyncracies in basic language that there are in 2442.

3,63 Mixed Ussge of Lancuages
Some programs may be effectively written by using floating point

for the numerical operations and basic language for the logical opera=
tions such as looping and counting, The effect depends on the percentage
of these two kinds of operations in a given program, but at least some
machine time is saved. The floating point interpretive system may be
entered at any point in a program merely by srising r6300'u0400', In~-
structions which follow will be operating as interpreted instructicns.
To get back out of the floating point operation, the following instruc-
“tion is used: :

e0000 Take the instructions following this as a basic machine language
instructions, -

3,7 #Space Required for 24,2 :
The 24,2 Floating Point Interpretive System occupies a block of
40 tracks within the mechine, These tracks are electrically inter=
locked so that it is impossible to write anything onto them and destroy
the floating poiunt vrogram, The program is broken up inte four tapes,
¢alled H1-24.28, H1-2,.2B1, Hl~24.2B2, and H1~24,2B3, (Tape H1-24,2A
is sectioned into groups for ease of reloaling.) Either H1-24,2B2 or
H1~24,2B3 is in the memory at any one time, not both, The memory is -
divided as follows: ,
Hl-24.28 Program Input Routine 0000-0363
Floating Point Interpretive Routine 0400=1763
Floating Point Data Input Routine 1800-2163
Floating Point Data Output Routine 2200-2563

Logarithm _ 2600-2663

- Exponential 2700-2839
Arctangent ~ 284,0-2963
Sine-Cosine , 3000-3163
H1-2/,2B1 Alphameric Output Routine 3200-3263
Decimal Memory Printout Routine 3300=3463
Floating Point Trace Routine 3500-3563

H1-2/,2B2 Addition to Decimal Memory Printout 3600-3763
and Address Search Routine
Unfloat and Print Routine 3800-3963

Hl-24.,2B3 Hexadecimal Punéh Routine 3600-3963

In addition to the space above, the 24.2 system requires tracks
63 and 62 for temporary storage. The only locations which may be of
interest to the programmer who mey combine floating point and bssic
language are those of the floating point accumulator. The fraction is
usually in 6258; the exponent is 6205, See section 3.8 for a further
desoription of the numbers, '

23

3,8 Binary Representation of Floating Point Numbers

Although numbers are entered into the machine in decimal, they must
cf course be converted to binary to be stored and used, The number is
stored in the formx(2Y) where x is a binary fraction and y is the binary
exponent, The binary frsction is stored in the first of two locations
with a q of O; the exponent is stored in the second location with a q of
29, (See the hasic language manuals for a discussion of q,) The fraction
is always shiftecd so that the first bit on the left is a one. This normal-
ization is done vhenever a number is brought into the floating point accu-
mulator, For example, the number 3,75 would be stored as follows:

3,75 = 0,9375 (2°)
Fractional Part

| O.1111000OOOOOOOOOOOOOOOOQQOOOOOf
&.
8ign of fraction 0,937 @ q= 0

Exponent o
| 0, 000000000000000000000000000100 |
Q
Sign of exponent = 2@g= 29

3.9 Programmed and Error Stops

There are various operations in floating point which are not legal
for some reason or another, For example, attempting to toke the square
root of a negative number is not permitted, Each of these illegal opera=
tions leads to a machine stop, By reading the counter of the machine, the
programmer can determine what illegal operation he attermted to perform.

The program counter is the top window of the oscilloscope on the
console of the computer., It may be read as follows:

R (N S R B
TRACK SECTOR

1, Read only the horizonal lines: if at top, one; if at bottom, zero.
2., Read from left to right, reading track and sector separately,

3. Assign values to the ones according to the values given in the
diagram,

4« 1f necessary, simply read off the sequence as a series of 12
binary digits (0's and 1ts),

24

For example, the pattern shown above would be read as 001111001010
in binary and as ‘

123+ 1@R)+ 1@ + 1% =8+ 4+ 2+ 1= 15
1) + 1Y) =8+ 2= 10

so the result is 1510,

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24

