Royal Precision Electronic Computer

LGP-30

SUBROUTINE MANUAL

Royal McBee Corporation

LGP - 30 SUBROUTINE MANUAL

This subroutine manual was compiled by the Royal MCBee Computing
Section to facilitate the coding of problems for the LGP-30. The pro-
gramming was done by the Royal McBee and’ lerascope Computing Sections
This subroutine manual, in 1ts present form, is considered to be complete.

The subroutines provide for a variety of operatlons whose major.
types are as follows: :

‘a. Machine Input and,Output.

b. Evaluation of Elementary Functions.
¢c. Program Check-Out.

d. Complex Operations.

.e. Floating Point Operations.

For each subroUtine'the‘callihg sequences, running time, and storage
requirements are given. Also where applicable, the range of variables,
scaling, and accuracy are given.

It is hoped that as LGP-30 users develop other useful subroutines,
they will submit them to the Royal McBee Computing Section. Synopsés of
these” subroutines together with those developed by the Royal McBee
Computing Section itself will appear regularly in the LGP-30 Newsletter.
The Newsletter is distributed monthly to all ILGP-30 users. This arrange-
ment will facilitate prompt distribution of routines and will prevent
unnecessary duplication.

Royal McBee Corporation
1560 North LaBrea Avenue , : -
Hollywood 28, California Copy No.;ng;

SECTION

- CONTENTS -

Iz MISCELLANEOUS PROGRAMMING INFORMATION

SECTION

I1:

12.
13,
1L,
15.
16.
17.
18.
19.
20.

FROGRAM 09.0 sesensseisreesssisirssnsnsesnansess BOOTSTRAP ROUTINE
PROGRAM 10.0 ,.....;..................LGP-BO PROGRAM 'INPUT ROUTINE
PROGRAM 10.1......’.,.................Q...HEXADECD«AL INPUT ROUTINE
PROGRAM 11, oR..........................DATA INPUT NO. 1 SUBROUTINE
PROGRAM 11.1eeesessscasssansannanssnes DATA INPUT NO, 2 SUBROUTINE
PROGRAM 11,2444 seeussreonncancnnsssse . DATA INPUT NO. 3 SUBROUTINE
PROGRAM 12.040sss0ssacnsnensasessssss DATA OUTPUT NO. 1 SUBROUTINE
PROGRAM 12, 1, veviescscacnsesacsansss DATA OUTPUT NO. 2 SUBROUTINE
PROGRAM 13.04¢uevvaesavssensonesss JHEXADECIMAL PUNCH OR PRINT NO. 1
PROGRAM 13.1¢vevesvssoocnnsnsssss HEXADECIMAL PUNCH OR PRINT NO. 2
PROGRAM 11120 s+ v svsesvnsnnssnnsennsnsssnns .SINE-COSINE SUBROUTINE
PROGRAM 15.0c.c0vscessscscocossonsssssacsss SQUARE ROOT SUBROUTINE
PROGRAM 16.0...,..,,.................Q........ARCTANGENT SUBROUTINE
PROGRAM 17.04ecvsssvecocrasoncancsccssessss EXPONENTTAL SUBROUTINE
FPROGRAM 18.0.1eu0uussurenssarsvecaecsesasonesesssLOG, X SUBROUTINE
PROGRAM 19.0..+.+vvveeessssevssess - ALFHANUNERTG OUTPUT- SUBROUTINE
PROGRAM 2004+ e0rsevonnssnseesssoncnssnsonsss ARGSINE - ARCCOSINE
PROGRAM 21,0+ vessesennenssonnsesenensenss DECTMAL MEMORY PRINTOUT
PROGRAM 22.0..0vscasacenssrsvossssss COMPLEX OPERATIONS SUBROUTINE
PROGRAM 2.0+ vvuesveessesnsssr FLOATING POINT INTERPRETIVE SYSTEM
Program 11.3 = 12.34.ceveurersavssasccssasssssssInput - Output
Program 1U.l ceveesscoscesvessoncsrsacnssnsssnsssSine - Cosine
Program 16.2,.cesesessssscssssascsnsasssescssssasssArctangent

Program 18.1....-......9.-n.-.-.o...................Logarithm
Progra.m 17.1.0...n.................,..............Exponential

"DEFINITIONS

1. A routine is a logical subdivision of a program, complete in itself,
and serving a specific function in the problem. There is no fixed Jlength
to any routine, and each routlne occupies only as much storage as is act-
ually needed. -

2. A subroutine consists of a set @f instructions to perform a standard
task which is of a sufficiently general nature to be used in a number of
different programs. Examples are subroutines to input and output data,
compute square roots, arctangents, etc. This Subroutine Manual is a
compilation of the specifications of the subroutines, completely des-
cribing the function and use of each.

3. ‘A calllng sequence is a set of instructions used for transferring
from the main routine to a particular subroutine. It may also include
information needed by the subroutine, such as constants and the locations
‘of certain quantities. The calling sequence for each of the subroutines
is given in the Subroutine Manual. '

L. Minimum Time Programs

"There are occasions when it is necessary to write programs which
will be executed in as little time as possible. These minimum time
programs are referred to as "optimum" programs. Since the subroutines
contained in the Manual are to be used over and over again, they have
been optimized. (The process of optimizing requires placing the sector
of the operandetat et+ (7k+l) where 2£k%5 for most instructions). The
programmer: should bear in mind that 10,000 executions of all nonoptimum
instructions would take less than 3 mlnutes longer than 10,000 executions
of optimum instructions. If the programmer spends 15 - 30 minutes on
each routine trylng to save machine time by optimizing, thls time may
never be made up in the actual running of the problem.

5. A scale factor of a scaled number in memory is defined as the
power of 2 by which this scaled number must be multlplied to get the
original or unscaled number. ¢

Rev. 8/6/57

Page 1 of 1

CONVENTIONS USED IN THIS MANUAL

1.. of is the base memory location from which entry to a subroutine is-
executed. Locations used by the subroutlne are in reference to location
q‘. G.,d"’l “"'2 x""}.c-c-- .

2. Lo designates an initial location, Lp designates the final location.

3. The "Stop" and "Stop Codes" referred to in these write-ups and on
the coding sheet are synonymous with "Conditional Stop Code'.

L. 'For explanétion of our scaling convention, see write-up on
"SCALING". :

5. Track 63 is used by some of these subroutines for temporary storage.
The track 63 sectors used by the subroutines are enumerated in the res-
pective write-ups. This practice was found useful for "optimum" program-
ming of subroutines. However if the subroutines which use this temporary-
storage are to remain optimum, the Ly of the subroutine must be the
“beginning of a track. It is suggested that the programmer may also use
track 63 for temporary storagé of intermediate calculations. He should
not place a number in a track 63 location used by one of these subroutines.
and expect that number to be there after exit from the subroutine.

)
/

Rev. 8/6/57

vPagell of 1

- PUNCHING TAPES FROM CODING SHEETS
See "Sample Program" page for example of coding sheet.

~ 1. Only the "Program Input Codes" and "Instruction" columns of the
coding sheet are to be punched, with appropriate stops. Never punch
"Locatlon" "Contents of Address" or "Notes™ oolumns.

2. .Each entry on a line must be followed by a conditional stop code--
"Stop" column, symbol (V). A line left blank must have the stop code
punched.

3. Punch the "Program Input Codes" column only when there is an entry
in the column. The "Program Input Codes" must be followed by the stop
()., This punching must precede the punching of the "Instruction"
column on the same llne of the coding sheet.

L. Leadlng zeros need not be punched. All other zeros must be punched
E.G., 00013086'only 13086' need be punched. ,0000017' must be punched
,0000017¢. For TOO59¢ punch TO059¢.

5. Consider brackets as containing zeros. o.G., for [...0...]¢
[00000000]!, only the stop code need be punched. For B[....]' =
B[OOOO]' punch BOOOO *.

6. All punching may be done in lower case. B0O627' will appear as
bOE2 7L : : ' '

T The placing of carriage returns is left to the discretion of the
person preparing the tape. Carriage returns do not affect the input
operation. We have arbitrarily placed a carriage return (R) after
every L words on each codlng sheet.

8. A‘heading may precede a punched program to identify the tape.
Anything except a stop code may be punched as a header. Then as the
tape is fed through the input reader the heading will print but will
“not affeot the operation of the computer.

"9 hach tape should be verified after punching. This can be done by
- placing the punched tape in the reader and ”1lst1ng" ‘the tape by the
follow1no process.

a. Depress the "Cond. Stop" button on the Flexowriter,

b. ‘Depress "Start Read" button.

c. When printing- stops, depress the "Stop Read! button on the
' Flexowrlter.

Then the printing may be visually checked agalnst the coding sheets
for correctness and presence of stop codes

10, It should be the programmer% respon51b111ty to enter "Program Input
Codes" (and the associated stop codes) on the -coding sheet. This will
usually consist of a start £ill (;), a set modifier (/), and possibly
some hex. words (,) and/or stop and transfer (.) codes.

Rev. 826/57v

SAMPLE FPRoBLEM
IGP-30 CODING SHEET

Job No, XXX __ Prog. NO.XZ-_Z_Prep. by 228’

Page.._l.. of....[....

Ck'd, by_GL W _Date ¥-/-57

Problemwm (Frxep PosnT) Track 2.2
e WY =l B
;,OJO,OT/LOAOLO !
.o.a.o;/lo,o,a ' X | :
— .| |z.000] , xRo5 08 ’EMA%”:&DW
s ., .01 .X.(/?Onf‘ 00| .Ccnwalf,acu@ £ @MW?&
s .02 B0 073"l Aoove |fuilial 4" Seiinctio
e . .03 &0007! '
. ; e Ok ,h‘%o.o.?,f' L rorbneg ;&ﬂfz,eu
N 05| . BeoorS|'| Wnke ’ oZ g =
s ; 0.6 Moowb!'|l X@%=o
. 07 AL .1 dn@g=
ey .08 HioovS! Wm/%_g#g_@fso
. - 09 . 73%0,0,047' A (00574 %)
e L 10 Afolonf,v' /@]
e L2 Yo ao7'Raleori+nt)
. 12| 5 0024'| Adgeiv Flog
oo il a3l 7o 00 4
e L A B0,03S | Fwal Lol
ey A5, xR A K % Dite fuZat#/
e A8 XU/ A 00 |Vl pnd L
ey 1 27, x2Zi0000['] Colte o (fn g=
e . 18] . .X?g/.é,o.a' Canrs '
P N .x.zio.o;o‘o'
N L) . .20 \ ,X.Z}-O,X,'OJO' / ’#P;W_.m
L L 21| . (o000
L ; ‘ L 22 .,x.—z-;o.a,o./ '\ /@27
L 23] ‘A%o,o‘ké' A(lag) “ and
e Y A0.031' | Allr+1) e
o 25 f | L -0
ol X ,
] T ' THrae Pecawtlita ~—atl
— 2 N [Tt e e
i 24t L1 el % Ly
e ;z : : Z” el o]
. Rl 1 . 3 49“‘%4%:2&_—
f 31 o ' 2y W*//MW
' Conditional Stop Code B carriage Return

Roval M$Bee Corporation

Jan., 57

Page 1 of 1

SCALING

The IGP-30 normally handles all numbers as if they were of the form
oXXXXeeeosossas, that is, numbers numerically less than 1. However, it
1s quite simple to carry any number in the machine at any number of bin-

ary places, and this arithmetic is explained below. In talking about
the placement of the radix point in the IGP=-30, it is simpler to talk of
the number of whole places in front of the radix point, rather than the
number of places after the point., Hereafter, a number will be referred
to ag being carried at q places, q being the number of binary digits to
th; left of the radix point, and 30-q as the number to the right of the
point,

Additions Addition of course poses no problem if the two num-
bers To be added are at the same number of places. If not, either may
be shifted before addition by multiplying or dividing by "One"at an
. appropriate q.

Multiplication- The IGP-30 multiplies a number at Q] places by
a number at q places and forms the product in the accumulator at q3
plus q2 splaces,

Division: = The IGP-30 divides the accumulator at gy places by a
number‘if'ag'places and forms the quotient in the accumula%or at qi

3 places. It should be noted that overflow will occur if the quotient
developed is not less than 2q3 in absolute value,

10-29-56

ROYAL McEEE CORPORATION

LGP-30 Input Output

Keyboard Code

\

Numerical - Commands Controls
123456 123456 ~ 123L56
)0 000010 : Zz 000001 Lower Case 000100
L1 0u0110 Bb 000101 Upper Case 001000
#2 001010 Yy 001001 Color Shift 001100
"3 001110 Rr 001101 Car Ret 010000
Ay 010010 ' Ii 010001 : _ Back Space 010100
%5 010110 , Dd 010101 Tab 011000
$6 011010 NMn 011001 Cond Stop (') 100000
«7 011110 Mm 011101 Start Read 000000
£8 100010 Pp 100001 Space , 000011
(9 100110 Ee 100101 . Delete 111111
Ff 101010 Uu 101001 :
Gg 101110 Tt 101101 Signs
Jj 110010 Hh 110001 ,
Kk 110110 Ce 110101 =+ 001011
Qg 111010 ‘ Aa 111001 _ - 000111
Ww 111110 ' Ss 111101
Balance of Keyboard 'I’o\
. o
123456 o
o
33 001111 o
?/ 010011 o
1. 010111 - 612 9345
¢, 011011 000 2000
Vv 011111 o
Oo 100011 S
Xx 100111 °
\ o
]
[]
[+ I
—

. Symbol

Stop
Bring

Inpnt
Divide

Print

Test
Hold
Clear
Add

WOl dEH IEZU 20N

16
32
-6l
128

. 256
512
02l
oL8

096
_ 192
16 38l
32 768

65 536
131 072
262 1h)
52), 288

1 oh8 576

o N =t

2 097 152

Ly 19 304
8. 388 608

16 777 216
33 55 L32
67 108 86k
134 217 728

268 1,35 1,56
536 870 912
1 073 7L1 82}
2 147 L83 6L8

Command

Store Add.
Return Add,.

N M ultiply
Multiply

Extract
Transfer

Subtract

Vo ~NOoNVnE woHEO =

Rinary Hex Ded
0000 0 ol)o
0001 1 1 11
0010 2 2| &2
0011 3 3] 3
0100 I bl Al
0101 5 51 95
0110 6 6] ¢
o111 7 1 w7
1000 8 8| >8
1001 9 9 (9
1010 F 10| Fr
1011 G 11| e
1100 J 12 Jj
1101 K 13| Kk
1110 Q@ 1| qq
111 W 15| ww
2-N Spacf
1.0 o
0. ./
0.25 3/
0.125 :
[
0.062 5 Vv
0.031 25 0o
0,015 625 Xx
0.007 812 § ‘

Keyboard Code
02 2z

06 Bb

10 Yy

1) Rr

18 Ti

22 Dd

26 Nn

30 Mm

3L Pp

38 Ee

2 Uu

L6 Tt

50 Hh

sl Ce

58 Aa

62 Ss

03 LC

07 UcC

11 Cs

15 CR
19 BS.
23 Tab

27 Del.
31 '

35

39

01
05
09
Ok
11
15
19
1k
21
25
29

2k

31
35
39
3k

ol
08
0j
10
1)
18
3w

20

0.003 906 25
0.001 953 125
0.000 976 562 §
0.000 1,88 281 25

0.000 2L, 140 625

0.000
0.000
0.000

0.000
0.000
0.000
0.000

0,000
0.000
0.000
0,000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

i

070 312 5
035 156 25 .
517 578 125

258 789 062 5
629 39 531 25

81l 697 265 625
907 348 632 812 5

953 67 316 L06 25
L76 837 158 203 125
238 418 579 101 562 5
119 209 289 550 781 25

059 60L 6Ll 775 390 625

029 802 322 387 695 312 &
Olh 901 161 193 847 656 25
007 150 580 596 923 828 125

003 725 290 298 L61 91l 062 5
001 862 645 149 230 957 031 25

000 931 322 57l 615 478 515 625

000 L65 661 287 307 739 257 812 &

(13

~

Leorder o]

LJ' 11 n' U
i-« Track ~‘+l-o- Sectoy -—v-l L‘:[»I

Page 1 of 2

BOOTSTRAP ROUTINE
(PROGRAM 09.0)

FUNCTION:

To load the input routine on tracks 00, Ol and 02. After the
bootstrap program has loaded the entire input routine, a halt is
executed at track 63 sector 13 (3W34.) Depressing the Start button
transfers control to the first instruction of the input routine.
PROCEDURE :

The tape containing the bootstrap (and the program input routine)
1s placed in the tape reader and then the following manual operations
are performed

1. Connect Switch to "off" position.
("Inp. - Comp." switch to "Comp." on early machines.)

a. Depress Flexowriter "Start Read" button.

2. Depress "Manual Input” button on console.
("Interrogate™ button on early machines.)

3. Depress Flexowriter "Start Read" button.

k. Depress "Fill Instruection™ button.
("Fill R" on early machines.)

5. Depress Flexowriter "Start Read" button.
§. Depress "One Operation" button.

7. Depress "Execute Instruction” button.
("Execute R" button on early machines.)

8. Repeat steps . 2 through 7 five more times before proceeding
to step 9.

9. Depress "One Operation" tutton.
10. Depress "Normal button.

11. "Connect" switch to "On".
(Inp - Comp." switch to "Inp." on early machines.

12. Depress Computer "Start".

The entire tape will automatiaclly read in after manually per-
forming step 12 asbove.

Rev. (1) 12/13/56

Page 2 of 2

(PROGRAM 09.0)

OUTPUT ¢

Program input routine on tracks 00, 01, 02.
STORAGE: .

The bootstrap routine uses 21 words on track 63, k(Sector 00
through 1L, 22 thru 26 and L6). ’

TIME:

The time to read in the two programs after depressing the Start
button in Step 12 is approximately three minutes.

10/29/56

Page 1 of L

IGP-30 PROGRAM INPUT ROUTINE
(PROGRAM 10.0)

The purpose of this report is to describe a method of entering
information into the IGP=-30. The general characteristics of the IGP-30
are described in the programming manual. A program consists of two types
of words, data and instruction., This write-up primarily deseribes the
process of inputing instruction words and hexadecimal representations of
data words. This process does not handle data words expressed in decimal
form.

There are several functions to be performed by a useful input routine,

l. The most direct way of entering information into the IGP-30 is
to present it with binary words. But since it is difficult to
program in this number system, we prefer to do our programming
in decimal notation. If we are to write words in decimal form,

we must provide the machine with a means of converting such words
into binary form.

))
2, Most routines contain instructions which refer to other locations
within that routine. Hence if we wish to place the routine in

another portion of memory, we must modify some of these addresses,

3e It is sometimes useful to express a number in binary formee.ge, Yy
or other universal constants,

ke Tt may be necessary to make instructional or data changes to a
program that has already been stored in memory.

These are the functions which this input routine is designed to
perform,

This routine recognizes seven types of input word., The sign and
first 3 bits of the input word are used for the input routine to iden-
[tify the type. These words and their symbols are as follows:

1. Instruction (none) cdonsists of an order and decimal addrecs,
The address consists of a decimal track and sector, The
instruction is converted to its binary equivalent and stored
in a given location. The address portion is incremented by
the contents of the "modifier™ (to be discussed below) un-
less an "x" precedes the order. e.g. b 4000 will in inc-
rementede x b 6310 will not'be incremented (and the x will
not appear in the stored instruction).

2, Command (+) This word will be treated as an order to the
input routine. The order will be executed after entry of
another worde The command is input in decimal and is not
incremented by the modifier. The second word, presumably
data, is input in hexadecimal., e.g, +00h1637 followed by
73W08 will store the hexadecimal word 73WO8 in memory
location 1637,

Rev. 3/25/57

Page 2 of L

PROGRAM 10,0

3. Start fill (;). Tells the input routine where to begin
filling input words. Fach succeeding word will be filled
consecutively., The address portion of the start fill
word is decimal, and consists of both track and sector
number. e.g. 30003128, The first stored word will be
located in track 31, sector 28,

he Set modifier (/). The magnitude of the address of the
modifier will be used to increment orders. The set
modifier word will usually follow a start fill and will
usually be identical to it in magnitude. This word is .
for use by the input routine only.

5« Stop and transfer (.). This word stops the flexowriter.
A "start" will transfer control to the memory location
contained in the address portion of the stop and transfer
worde Depressing break switech 32 on the control panel
will cause the computer to disregard the stop portion of
this word. e.ge .0001700 will stop reading, then control
will be transferred to track 17, sector 00.

6. Hex, words (,). This instruction causes the next N words
to be filled without conversion. N is specified in the
address portion of the "hex. words" word and must be
within the range 1 & N ¥ 63 e.g. ,000001 means the next
1 words are to be stored in the next 1y consecutive memory
locations. The words must be in hexadecimal notation, and
they will not be incremented by the modifier.

7. Hex, fill (v). Fills the next n words hexadecimally
beginning in m. m and n are proper hexadecimal numbers.,
The format of the word is v m Ny N my m, e ©ege
v1JO2WOO means the next 1J0O words[KiJQlé - ?BhB) will
be filled consecutively beginning in location 240 ['(ZWOO)l
= track (L7) o. sector 00]. Up to (7wW) 6 = (20L7),, words
can be £illed’by a single hex £ill input order.

Leading zeros need not be punched on any input word. All other
zeros must be punched. e.g. 800T0018 must be completely punched;
000B3749 only the last five characters need be punched., e.g.

B37L9. :

When the overall coding for a problem is surveyed, it is found
~that the instructions separate logically into independent groups,
some of which can be used in any number of problems., Examples of these
groups are subroutines of all types, standard input and output routines,
and the mathematical subdivisions of the problem. It would be desirable
to code these pieces without reference to the other pieces. In order
to separate these pieces completely, it is necessary to assign a group
of instructions a block of storage locations which does not correspond
to actual memory locations; otherwise two blocks of coding might be
found to occupy the same section of storage, requiring a change in the

10/29/56

Page 3 of |

PROGRAM 10,0

coding for one of the two pieces., The "set Modifier" order of the

input routine was intended to facilitate this type of coding, 4

group of instructions can be coded without reference to actual memory
locations by starting that group at symbolic address 0000, Then by
setting the modifier to the "start filln location, the programmer may
position a routine to any part of memory. An instruction preceeded by
an *x" will not be incremented, and this instruction will still refer
to an absolute memory location. It should be noted that orders may be
coded for actual locations merely by setting the modifier to zero (i.e.,
input order /OOOOOOO). Thus no particular restrictions are imposed upon
the programmer by this system. ‘

If the input routine detects an erroneous input code it will print
"code" and halt, The last word read from tape contains the erroneous
code in the first punched character,

A tape prepared for this input routine must contain flexowriter
format control. It is suggested that a carriage return be inserted after
every four words on tape. If there is no format control and the flexo-
writer carriage is permitted to space into the automatic carriage return
a stop will result., The computer will continue if the carriage return
button is depressed., ’

10/29/56

o
g £ 3 %
s &k 3
opl23L
x0pl23)
8o0T 123}
80xT 1231
+000pl23)

$000°2123}
/000 12314
»s000 1234

,00000 12

M b e b

INPUT ROUTINE FORMAT

Mod,
Not Mod.
Mod.
Not Mod.,

PROGRAM 10,0

INTERPRETED AS:

Instruction - '
Order plus address (dec.)

Command, This word is
treated as an order, using
the following word as data,
Following word in hex,

Start Fil1l - Address in decimal
Set Modifier - Addresg in decimsl

Cond, Stop and Transfer =

Stop (unless Sw 32 down) and
transfer to location specified
in address.

Hexadecimal words,
Next N (dec) words are hex,
£i11 sequentially 1 & N 63

Hexadecimal Fill - Fill N

‘(hex) words beginning in loc,
M (hex) 1 € N & 2047

Rev, 3/25/57

‘Page 1 of 2

HEXADECIMAL INPUT ROUTINS
(Prog-am 10.1)

FUNCTION:
1. To read hexadecimal informatlon and store it on the memory drum.

2. To verify that the information has been correctly stored by
generating a summation of the binary bits stored on the drum
(a check sum) and checking this summation against a previously
computed summation placed on the input tape.

INPUT:

A tape prepared in its entirety by program 13.1. This tape contains
the following:

1. An identification word in the form v m np n3 my m, my m whére
N = (ny np n3) = the number of words in hexadecimal to b€ placed

on the drum.” M = (m] mp my m),) = the initial location in hexadecimal
to begin storing the words. ;

2. N hexadecimal words, each followed by a conditional stop code,
3. The check sum.
PROCEDURE :

1. Transfer to the beginning of this routine with the previously
prepared tape in the reader.

2. The routine will read the identification word and set up the
initial address and a tally from M and N respectively.

3. The hexadecimal words are read and stored sequentially on the
memory drum. After each word is stored the address (for the
next wora)is incremented by 1 and the tally is decremented
by 1.

L. After all hexadecimal words on tape have been placed in memory,

, the check sum 1s read 1n and stored within this routine. Then
another check sum is computed in the identical manner used by
program 13.1.

5. The computed check sum is subtracted from the one placed on tape.,
If they are equal, the routine returns for another identification
word.

6. If the two check sums are not equal the routine prints "error"

and halts. To re-read the same record, back up the tape in the reader
. to the last "v code" (identified by a punch in channel 6) and depress

3/28/57

Page 2 of 2

(Hexadecimal Input Routine continued)

the start button. The routine w111 return to re-read the identification
word and proceed from there.

OUTPUT :

The information on the tape utored in memory and checked for
validity.

TIME:

Reading from tape - one track per minute.
Computing check sum - ten tracks per minute.

- STORAGE:

96 locations of instructions and constants.,
No temporary storage.

3/28/57

Page 1 of L

DATA. INPUT #71 SUBROUTINE
(PROGRAM 11.0p)

FUNCTION:

To read a decimal number from tape, convert to binary, scale to
the proper binal point location, and store the word in a specified drum
location. For each number the following is punched on tape:

1. ‘"he decimal point location of the number on tape;
counting from right to left. (One decimal digit
designated as "P").:

2. The binal poiﬁt location desired for the number
to be placed on drum. (Sign and two decimal
digits designated as "g").
3. The drum location to which the number is to be
sent. (2 decimal digits for track and 2 decimal
digits for sector).
li. The number to bevéntered (Seven decimal digits plus sign).
INPUT:

For each word to be stored, an identification word (parts 1, 2,
& 3 above), and the signed number (part L above) are required.

CALLING SEQUENCE:

:.[_J.CBE.. Il’ls’b . ° - li_d‘q:-

‘o« E (Lo * 8)1
e+ 1 U LO
oK+ 2 etc.

QUTPUT:

The scaled binary representation of the number will appear at its.
proper drum location. : '

EXIT:

A ”zefo" identificafion.word will cause the routine to exit to
(X 2). " , L .

Rev. 8/6/57

Page 2 of U

PROGRAM 11.0R

SCALING:

The location of the decimal point in the decimal number is
specified by a number P, which denotes the number of places follow-
ing the point in the seven digit field, P can be in the range 0<P.9.
The location of the binary point in the full 30 bit binary word is
specified by q, the number of digits preceeding the point in the full
worde q can lie in the range given in the following table.

In order for the number to be representable at a given q, the
number must be less (in absolute value) than oq. However, if too large
a q is used, the number will not reconvert exactly on output, since there
will be too few binary digits following the point to adequately represent
the fractional part of the number. The following table also gives the
maximum conversion correspondence between P and q.

TABLE OF P vs g

P Max g Min q Max q for Exact Min q for Max

L Reconversion “No. Size (all 9's)
0 +47 +2 +30 . n
1 +43 -2 +26 +20
2 +1,0 -5 +23 +17
3 +37 -8 +20 +1l
L +3h 11 +16 _ +10

5 +31 -1 +13 +7
6 +28 =17 +10)
7 | +2) -21 +6 ' 0
8 +21, -2l +3 -3
9 17 -28 0 -6

10/29/56

Page 3 of L

PROGRAM 11.0gr

TIME :
20 - 25 words per minute.
ACCURACY:

The scaled number in memory may be inaccurate in the 30th binary
position.

STORAGE :

192 locations of instructions and constants. Eight locations of
temporary storage (Track 63, sectors 03, Ob, L5, 52, 5L, 55, 56, 57).

PROGRAM STOPS:

Loc. Meaning

(Lo + 023L)1, Divide check in scaling data word. §N§ > 29,
- EXAMPLES: (See LGP-30 Data Inpu£ 1 load sheet)

fﬁ Plaoé +96.40236 in drum location 6234 at a q of +7\

2. Place -.000000597 in drum location 2363 at a q of -1k

3. Place +330000. in drum location 2100 at a q 6f +30

TAPE PUNCHING INSTRUCTIONS:

1. All characters of the I.D. word must be punched. e.g., punch
0+096300° completely. The first three characters should not be
omitted. The stop code (?) must be the last character.

no
.

Leading zeros of a positive number need not be punched; To
enter all zeros merely punch a stop code. All digits of a
negative number must be punched.

3. Be sure to check each load sheet to see whether an additional
stop code should follow the last number punched.

3/20/57

1GP-30 DATA LOAD SHEET

page 2 ot

Job No. Proge No._//. 9z Prep. by Ck'd, by Date
Problem ExAampres For __DRTA L npd7 */ Case
INPUT #1 . o ' o
Quan P‘:l: q [|Location §t Number 3334:;'
i 1 T o o
sth0,7|6.2.3 41| 17640 236"
])
I 42.3.6.3|" o000 0577]! |
o3 0|2/ 00" | 3.30.0000]|' 0£P49
1 ' i) ?)
l i [] L ‘ I 1 2]
" g 'y . L i L 4 1
: i 4 ' ! [] s ' 00m£10c£6363
: vl K
i 1 0
]
' 1 N A ? ! 4 L 1 L v
| [| ?
J| 2 1 1 1 " 2 1 3 [
| 1 A 1 v ! 1 3 '
! Fy 1 ' ; '
1 ’ I L
l 1 [] 1 L i 'y 1 Y 1 e
| . ’ (| 4
: [} 1 v i Iy '
: 1 1 g ? 1 '
| v 7
! 2 3 1 ' ; 1 1 ?
' il L 1 1 ? : v
LN i
! ' o] f}
‘ L 1 Ny 3 L i
' 1 L 1). ' :) 1 1 9
! s M A ’
f—
l Ao i ' : 1 L '
i el ! ¥
= 'l 1 I i
i L)
' + L 1 L
1 1 ! ; 4 '
A "1 A
i , "l |
| 1 |]
ol T v
I ‘ P!]
P Y e 9 1 n 1 4 L
Punch a stop code after the last number? Yes_ X No
C ™ .
Royal MSBee Corporahon Jan. 57

Page 1 of 3
This Subroutine was developed by the Librascope‘Computing Group

DATA INPUT NO. 2 SUBROUTINE
(Program 11.1) '

FUNCTIONS:
1. To input a sequence of "N" signcd seven decimal digit numbers,
each with the same decimal point, convert to binary (all at the
same q) and store sequentially in M, M + 1.........
OR

2. To input one signed seven decimal digit integer and convert to
a signed binary integer at q = 30.

I. SEQUENTIAL FILL:

Input:
N" signed decimal numbers on tape and the hexadecimal code word
in the accumulator.

Calling Sequence:

Loc. - Inst. Add.
a- 1 B L (Code word) o
g R (Lo + 0121)y5 Track 01, Sector 21.
oL+ U k (Lo + Oth)10 Track 01, Sector Ol.
o+ 2 “ete.

ol- 1 need not contain a B order. Any order or sequence of orders
that leaves the code word in the accumulator is permisgible.

The code word must be in the form: 1 ny nq G my mp my m .
N =1(n] n2 ny) = number of words to be filled (in hexadecimal

at g = 11) O<N<2048. '

C = characteristic of numbers to be filled (number of integers)
0<C< 9. See correspondence of C and @ under "Output. ‘
M m‘(m% mo my mu)'z First address to be filled (in hexadecimal at
q=29). -

Exampleq:

1. Code word 00F30200 means fill 10 (F) words, starting in _
0200 with decimal numbers of the form + XXX XXKX (stored at g = 10)

2. Code word 0318051J,
(3)) = (19) 1,
= g

= (OSIJ)16 = (0507),,

i

2Ea =zZao

3728757

. ~ . Page 2 of 3
(Data Input No. 2 Subroutine continuod)

Fill 0507, 0508,....., 0555 with the next L9 decimal words
on tape. Words are interprcted as +XXXVXXKO (otOIbd at q = 27).

Output:

'Binary represontatlon of words on tape filled quULnLidJJy
beginning in location M

9. o] ' Decimal words interpreted as:
0 0 R s eoseo e
1 b + X.
2 7 ¥
3 10 ¥
Iy 14 +
5 17 +
6 20 o
7 2 F LOLAXAK.
8 217 + KAXXXXXO.
9 30 + XXXXXXX00.
BExit:
: ﬁ{ter all words have been scaled and stored, the routine exits to
A+ 2, : o :
‘ Accuracy:

+ 1 at ¢ = 30 for 0<C<b
Ehact converuion for 7<ﬂ<9

Time: : (

L5 to 55 words per minute.

Note: v : : v
If the hexadecimal code word is on tape, replace the @-1
instruction of- calllng sequcnce by the inatxuctions PO0OOO
and T0000.

. II. ONE WORD.INTEGER CONVERSION:

Input:
| One signed'decimal integer on tape in the form + XXXXUXK

Calling Sequencé:

Toc. . TInst. Add.

L1 R | (Lo + 1o
A+ 1 v L. :
o+ 2 ete. ‘

3/28/57

Page 3 of 3

(Data Input No. 2 Subroutine continued)‘

Binaryfihteger at q = 30 in accumulator,
- -Accuracy: q ‘4 | N
Conversion is éxaét.
PROGRAM STOP: R
| “ gggg; ' Meaning
(Lo . 0117510 D:;%d; ggéck 1n.aga11ng datg word.
 STORAGE: | |

" 89 locations of instructions and constants.
No temporary storage. '

NOTE s

. Leading zeros of a positive number need not be punched.- To enter
all zeros merely punch a stop code, 411 digits of a negative number
must be punched, - -

3/28/57

Page 1 of 3

DATA INPUT NO. 3 SUBROUTINE
(Program 11.2) ’

FUNCTION:

To input groups of decimal numbers from tape, each group with the
same decimal point, convert each number to binary, all at the same q,
and store in consecutlve memory locations. This differs from Input No. 1
in that each group of numbers, rather than every number, is preceded by
an identification word. The identification word contains P, + g, and the
location for the flrst number to be stored. All following numbers of the
group are filled sequentially at the same P and g. A '"minus gzero!" number
- will terminate the group, and another identification word will be read
R(See examples for "mlnus zero" format).

CALLING SEQUENCE: (Same as Input No. 1)

Loc. - Inst. ; égg.

« : R - (Lo + 8)
<+ 1 U Lo 10
°(4.2 ebe.,

EXIT:

————

A zero idcntlficatlon word (normally preccded by a minus zero
number) will cause the routine to exit to o + 2, ‘ 7

LS - 55 words per minute .

STORAGE : |
192 locations of instructions andbconstants.
(3 tracks).

Five locations of temporary tor&pe
(Track 63, sector 00, 01, 02, 03, O4)

PROGRAM STOP:

Loc. Meaning
(Lo +v0135)10 Divide check in scaling

data word N} z 29 |

W/3/57

Page 2 of 3

(Data Input No. 3 continued)

EXAMPIES: (See LGP-30 Data Input 3 Load Sheet)
~ Group No. 1. Place +96.40236 in drum location 623k at q = 7
. e n

-30,00000 ®* ® m o635 mon
" +03. 1hlb9 " L 16236 n 1
"o .21,50000 0 omoon 6237 noou

The minus zero causes idantiiication word No. 2 to be read.

Group No. 2. Place -~ 0000005 97 in drum location 2363 at g = mlh
TT——— g 1" 0000009000]] "n ghoo noon

v M +,000060000 0 L 201w om o om
- The minus zero causes identification word No. 3 to be read.

--‘Grou No. 3. Place +330000 in drum location 2100 at g = 30
' e minus zero word causes 1dentiflcation word No. L} to be read.
: Identlflcatlan word No. 4 is the extra stop code punched after
the last number (see bottom of load sheet, "Yegh is checked)

This enters a zero identlflcation.word, so the subroutine
exits to (°c+-2) ' e

See Data Input I write-up for "Scaling" "Table of P vs g", and "Tape
Punching Instructions®,

VoS de

IGP-30 DATA LOAD SHEET Page .~3__ of 3.
Job No.______Proge No..7/:Z __Prep, by Ck'd, by—. Date
Problemn L XAMPLES Fox [DATA L NPT #3 Case
. 24) ®
INgg’l‘ #1 Quan, | P + q [Location |g + Number 8lus
INPUT #3 stho7le2 3 4" \2¢40230]"
1" 1 I'H3oocooool!
I I "t 3/.47579" 0£P49
1L : ?
Lo P2/ 50,000 ~264q2L7
M A '}909000900
974237 ¢ 3|'Vo0 0 059771 0000£Loc£6363
, .
! b ' L ' ! [l () l.7lolojo '
' 2 4 A ' . l‘.él olololo '
Lol tHoes o 0000l
olr30lz/00|'|! 3.3 0.00.0|
[L L a1t o000, 00.00!!
| : U '
(‘ L 1
l i 1 i 1 ! 1 L1 1 i '
! . SR 4
: (] A i ' i i 1 '
: i |) ’ i 1 ?
I R !
! i L
i 3 b 1 N t : '
: A PRI W | ’ ! . L " '
! . Al '
' i L 5 i i
' 1. s 1 i ' ! i [l i £ '
! 8 A A ' i 3 N 9
' L 4 L
N s M BE
| L ¢
: i L 5 n | 1 1 N
1 L v ¥
- ot v
. 1
va i 4 1 ’ l - | 1 4 2 1 2. '
L] ! L
- M R
L "o R
| " I O
Punch & stop code after the last mumber? Yes__2X_____No
Royal MSBee (,orporahon Jan. 57

Page 1 of 2

DATA OUTPUT #1 SUBROUTINE
(PROGRAM 12.0)

FUNCTION:

To convert and print a nine decimal digit number plus decimal point
and sign (sign if the number is negative).

INPUT

The number to be printed in the accumulator and a code number in
storage location &+ 2 to indicate the number of integers before the decimal
point,

CALLING SEQUENCEs

loc. Inst, kdd.
o - } B %(N))
- R Iy + 12
S+ 2 2 000C
el 3 etc,

< = 1 need not contain a bring order. Any order which leaves the
argument in the accumulator is permissable,

C denotes code number and may be O thru 9.
QUTPUT s

Nine decimal digits plus a sign (or space if the number is positive)
and a decimal point.

CODE NUMBER:

C q of No, Output
0 0 o« XXXXXXKXX
1 L X XXXXXXXX
2 7 XX XXXXXXX
3 10 XXX, XXXXXX
L 1L XXXX . XXXXX
5 17 XXXXX ., XXXX
6 20 XXXXXX. XXX
7 2L XXXXXXX, XX
8 27 S XXXXXXXX X
9 30 XXKXXXXXX.

MISCELLANEOUS ¢

Each binary number is scaled and converted as a fraction. The code
number is used by the routine as a print stroke counter., The only format
“control is a tab after printing. It is safe to print immediately on exit
from the routine. After printing control is returned to %+3.

TIMEs

Printing takes about 1.5 seconds including the tab.

10/29/56

Page 2 of 2

PROGRAM 12.0

DATA OUTPUT #1 SUBROUTINE (cont'd)
ACCURACY ¢ '
Maximum error is one in the ninth printed digit.
STORAGE:
96 locations of instructions and §onstants.
No temporary storage.

PROGRAM STOP:

(Lo+38)10 Argument7/ 10¢

Rev. 1 (12-13-56)

Page 1 of 2

DATA OUTPUT NO. 2’SUBROUTINE
(Program 12.1)

FUNCTION:

To print one or more groups of numbers in decimal form. Each
group hag the same binal point location (q), and all numbers are
printed from consecutive memory locations.

INPUT:

One or more groups of numbers to be printed, the initial location,
the number of numbers in each group, and theé binal point location (q)
of each group. ' ' :

CALLING SEQUENCE:

Loc. Inst. Add.
o -1 B L(1lst. No.)
ot R Lo + 5
o +1 U Lo
« + 3 Z N2Q2
[(b+1) +i] z ‘Niqi
[(a +1)+(i+1)] etc. T

N; = number of words in group i. N; is placed in the track
position (in decimal). 1 < Nj < 63. ‘

94 = binal point location of the i’th group. a; is placed in
the sector position (in decimal) 0 < g4 < 31. ‘ ’

OUTPUT:

‘Printed decimal representations of the numbers specified. Fach
output number will consist of a sign (space or minus), eight (or more)
decimal digits and the decimal point. A tab is given after each number.
There will be q/l; (rounded) = J printed integers unless the number
to be printed will not fit at that J., If the number is too large,

J 1s increased by enough to accommodate the number. The number of
decimal places will be 8 -~ J (30). If more than eight integers are
needed to express the number, J will be increased and no decimal places
will be printed.

BXIT:

The routine exits to the first "non - Z0 instruction.

Page 2 of 2

EXAMPIE:
Lg&. Inst. égg.
of~ 1 XB 2100
o xR + 5
o+ 1 xU /A?
o+ 2 xZ - 0L07 (1)
o+ 3 xZ 1015 (2)
o+ Iy xB Y (3)

The abové calling sequence will éause this subroutine to:

1. Print the contents of 2100, Ol, 02, and 03 as +XX.XXXXXX or
© HXXX.XXXXX. J = 7/L4 (rounded) = 2. If one or more of ‘these numbers
Is too large, J will be increased to 3 for that number.

2. Print the contents of 2104, 05.....13 as +XXXK . XXXX unloss
one or more of these numbers is too 1arge. The number(s)
which overflow J = lj will be printed as +XXXXX.XXX.

3. Exit to &+ L, which is the first "non-Z" order following the
calling sequence.

PROGRAM STOPS:
Nohe.
ACCURACY:

OQutput is exact (and rounded) for eight printed digits. When nine
digits are printed, the output will be in error by 5 or 6 in the ninth
place.,

STORAGE :

160 locations of instructions and constants (2. 1/2 tracks).
No temporary storage.

TIME:

——r———"

Approximately 30 words per minute.

RANGE :

The number to be printed must be within the range w109 <N< 109
q must be within the range 0 < g < 31.

L/12/57

Page 1 of 1

HEXADECIMAL PUNCH OR PRINT
(PROGRAM 13.0)

FUNCTION'

L. To print the contents of consecutive memory locations, or
2. To punch (and print) the contents of consecutive memory locations.

- INPUT:

Beginning and final locations in decinal,
QUTPUT ¢

Hexadecimal representation of the contents of memery locations Lo
through Lee Output is six words per line., Leading zeros are not punched
or print When a memory location's value is zero, the flexowriter exe-
cutes a space if the "transfer control® button is down. When the Transfer
Control button is up, the routine punches a conditional stop code for a
_ memory location that contains zero. When punching, an identification

word (for use by the program input routine) is punched as the first
word on tape. .

FORMAT CONTROL:

Depressing the "transfer control" button on the computer console
causes the routine to space between printed words, Otherwise stop codes
are punched after each word, If the transfer control button is down the
carriage is returned before printing. If it is up the control word is
punched. The control word consists of v N M, where N is the number of
words in the record to be punched, and M is the initial location., Both
M and N are in Hexadecimal. 001 £N& Twwry €eles v1h32k00' denotes a
record of 332 words beginning 1n ocatlon 8500 This word is recognized
and used by the program input routine (Program 10.0) as a hexadecimal
£i11 instruction.

PROCEDURE

1. Depress "manual input" button on the flexowriter,

2. Transfer to the first location of this routine.

3. After the "manual input" light turns on, type the initial and

~ final locations (in decimal) into the keyboard,

4. Make sure the transfer control button is in the correct position
- up for punchout - down for printout.

5. Depress "punch on* switch on flexowriter for punchout.

6. Depress the "start comp." button on the flexowriter,

TIME:
Approximately 45 words per minute.
STORAGE:

158 locations of instructions and constants,
No temporary storage,

1n/29/86

Page 1 of 1

HEXADECIMAL PUNCH OR PRINT NO. 2
' (Program 13.1)

FUNCTION:

This subroutine functions and operates the same as program 13.0
with the exception that after punching has been completed ("transfer
control" switch up), this routine computes a check sum and punches
it as the last word on tape. This check sum is intended for use by
programs. 10.1 and 10.2 which determine whether the content of the tape
has been gorrectly recorded on the memory drum.

TIME:

The check sum is computed at approximately 7 seconds per track.

STORAGE :

204 locations of instructions and constants. (Three‘tracks and
12 sectors).

No temporary storage.

N e Fetes

Poge) of 1

SIN~COS SUBROUTINE
(PROGRAM 14.0)

FUNCTIONs

To compute the sine or cosine of any given angle.k A 9th degree
polynomial approximation is used., The argument must be in degrees and
will be reduced to the first quadrant equivalenx before computation
of the function.
INPUT s

One word in the accumulator at q =2 9,
OUTPUT s

One word in the accumulator at q = 1.

CALLING SEQUENCEs

SINE | COSINE

2._?_(_3_5 Inst. . ég._q !&_?‘_C.o Inst. Add.
e 1 B L (Arg.) Fe 1 B L (Arg.)
= . R (Lo * h9) A R (Lo + L9)
o+ 1 U {4] v +
A+ 2 etce. o A4 2 v etce (Lo h)lo

% o] need not be a B order., Any order or orders that lsaves the
argument in the accumulator is permissable,

ACCURACY s

The maximum error is approximately 5 x 10°7,
TIME:

250 to 275 MS.
STORAGE ¢

6Ly locations of instructions and constants. 6 locations of tenpo-
rary storage (Track 63, sectora 02, OL, 05, 06, 07, L5).

oo S Lt #

Page 1 of 1

SQUARE ROOT SUBROUTINE
(PROGRAM 15,0)

FUNCTION:

{

To compute the square root of any positive number. The argument
may be at any even q, and the output will be at ¢/2.

INPUTe
One word in the accumulator at any even q.

OUTPUTs

One word in the accumulator at q/2.

CALLING SEQUENCE:

Loc, Inst, Add,
A -1 B L (Arg.)

o4 R (Lo + 50)
<+ 1 U I, 10
A+ 2 etce

=] need not cbntain a B order., Any order or orders that leaves
the argument in the accumulator is permissable.

ACCURACY s

Answer is correct to 30 bits..
TIME:
| Varies from 506-750 MS,
STORAGE:

6ly locations of instructions and constants. 5 locations of tempo-
rary storage (track 63, sectors 19, 20, 21, 23, 2k).

PROGRAM STOPSs

“Loc. Meaning
{lo + 61)10 Argument 1s negative, A start exits with zero

in accumulator,
NOTE:

A single bit in the 30th position will be treated as zero.

Rev. 3/26/57

Page 1 of 1

ARCTANGENT SUBROUTINE
(PROGRAM 16,0)

FUNCTION:

’

To compute the arctangent of any given number, A 15th degree polynomial
approximation is useds The output is in degrees, and the principle value
will be given (first or fourth quadrant),

Tveut:
One word in the accumulator at q = 9,
ourpur: |
One word in the accumulator at q = 9 (degrees).

CALLING SEQUENCE:

Loc, Inst, Add, .

- R (Lo + 51)
x4+ 1 U L
A+ 2 etc, °

oA = 1 need not be a B order. Any order or orders that leaves the
argument in the accumulator is permissable,

ACCURACY s

Maximum error is 5 x 10™7, The output will be between 0° and 89.90°,
because the argument cannot be numerically greater that 512, 1If the pro-
grammer wants his output to come closer to 90° he can modify the routine
by changing (Iq+ 56)q5 and (Lo + 59)1, from 1 and 2, respectively, at
q=9, toland 2 at"some greater Go. Then the argument must be at q2.
TIME:

320 milliseconds.,

STORAGE:

- 6l locations of instruetions and constants. 10 locations of tempo-
rary storage (track 63, sectors OL, 05, 06, 07, 08, 09, 10, 13, 50, 51).

mnlon Irt

Page 1 of 1

EXPONENTIAL SUBROUTINE
(PROGRAM 17.0)

FUNCTIONe

To evaluate the function KX, where K ='2, e, or 10, and -1%x£1.
To obtain higher values of the exponentiel function, multiply the out -
put of the subroutine K to the integer part of the exponent.

EXAMPLES: 1025 = 102+ , 10.5
2."'305 = 2"30 . 2-.5
eXeXX = eXe R geXX
INPUT:

One word in the accumulator at q = 1.

OUTPUT ¢

One.word in the accumulator at q = L,

CALLING SEQUENCEs

Loc.
a=-1 B L (arg.)

°< R (Lo + 09) :
S U Lo for 2;‘0 ' '
A4 1 U (I'O*z)lo for eX
A+ 1 U + 3)
2 Cte. (Io, 19 for 10X

== 1 need not contain a B order, Any order or orders that leaves
the argument in the accumulator is permissible.

ACCURACY 2

Answer is correct to 5 x 10 '8.
| TDE:

255 to 285 1S,
STORAGE+

63 locations of instructions and constants,
No temporary storage,

Rev. 1{12~1356)

Page 1.of 1

LOGy, X SUBROUTINE
(PROGRAM 18,0)

FUNCTION:

To compute the logarithm of any given number to the base 2, e, or
10, A 7th degree polynomial approximation is used. The argument must
be positive. K, the base to be used, must be specified in the calling
sequence, ,

INPUT#

One word in the accumulator at a positive q.

OUTPUT 2

Onejword in the accumulator at q=6,

CALLING SEQUENCE:

a(_ 1 B L (argo)
2t 'R (Lo + 2h)10 ,
A+ 1 U Lo Lo = Initial location of Subroutine.
X+ 2 2 q q = No. of places in argument.
X+ 3 Z K K = (0 for log X)
0(."' h e‘bc. :

(1 for log X))
(2 for log 10X)

{ = 1 need not be a B order., Any order or orders that leaves the
argument in the accumulator is permissable,

NOTES ¢

The argument must be greater than zero, q, the number of places
in the argument must be in the range 0%q431. If K, the type of output,
is not equal to O or 1, the base 10 will be used,

ACCURACY: .
The error is 3 x 10'8.

PROGRAM STOPS:

(Lo + 8)q, Argument is zero or negative.
Approximately (LLS + 30 N) MS, where N is the number of leading zeros.
STORAGE:

122 locations of instructions and constansts.
No temporary storage.

10/29/56

FUNCTION:

Page 1 of 3

ALPHANUMERIC OUTPUT SUBROUTINE

(Program 19.0)

To print (or punch and print) alphabetic and/or numeric information.

INPUT:

A set of code words, where each code word consists of L alphanumeric

output codes.

CALLING SEQUENCE:

LOCA

- 4
]
A

+ +

1
2

@+1) +n

(@+1) + (n+ 1)

Inst.

R
U

[code

Add.

Lo
TLo
word]

[code word containing VQ]

ete,

Where n is the number of code words.

EXAMPLE :

PROGRAM INPUT

INSTRUCTION

CONTENTS OF

CODES LOCATION | op ADDRESS ADDRESS NOTES
!)

: : : : : '1 | : ' ‘ a : ‘ V

R N ! Lt . ,"010 P X; 5’/|/. % E)t{ num e

PRI PR .;O‘I’.‘..Uu.' i «Suérvagfxe
2.0.0000,03|"| | 0.2120/.08J5| |G U LG el orint
"‘4l 4 /] : L '1 4 ») '10 1'3 #lzloif‘iq/qj /|J Elctl .:’:3 | F “LGP'JOJ” %ﬂ/é)‘ ‘

L4 : | P L 10,4 0«41‘!_?10 \vjmlolo 4] 4«"}“(:{' e"‘,.f ‘

TR - ! 'R T v 0,51 -, ’k. .ke ‘Q' ""‘ C'Onzfl.!{ég w:‘#ngg:j

This calling sequence will perform a carriage return, print "LGP- 30"
and execute a tab.

3/29/57

Page 2 of 3

(Alphanumeric Output Subroutine continued)

OUTPUT:

Printing (or punching and printing) of alphanumeric characters
selected. :

ALPHANUMERIC OUTPUT CODES:

(See page 3 of this write-up)
BXIT:

The routine will exit to the location following the location
containing the exit code (VQ). ‘

STORAGE :

58 locations of instructions and COnspants.
No temporary storage.

‘TIME:

About LOO characters per minute.
NOTE :

An increase in output speed can be obtained by switching the
instruction in location 0035 with the one in 0036. This will raise
output speed to 475 characters per minute. But this .change requires

that”there not be a long carriage return or tab code as the Lth code
of a code word. '

3/29/57

e

(Alphanumeric Output Subroutine'continued)

6-BIT ALPHANUMERIC OUTPUT CODES

L o R
M =O

M 4 *D =
w3 O -

1 og—
1P

¢ #

- e
N+

] .
[,
TAB

Lower Case'
Upper Case
Color Shift

Carr. Ret.
Back Space

1

Leave Routine

oL

0J
1k

1J
2l

23
3h

3d
L

lJ
06

OA

16
1A
26

2A
36
30
08

10
18

20
28

Lo

Q

Aa
Bb
Ce

Da
Ee
Ff

Gg

Ii

JJ

Kk

L1

Nn
Oo

Qq
Rr

Ss

Tt

T

Vv
Ww

2%

Page 3 of 3

72
OF
6F

2F
LF
5L

b
22
ol
6J
0J
3F
32
L6

42
7L
1F

1o
52

3A
7d

12 .
02

L/ /e

Page 1 of 2

ARCSINE - ARCCOSINE SUBROUTINE

(Program 20.0)

FUNCTION

To compute the arcsine or arccosine of any given value between
-1<X<1l. A 6th degree polynomial approximation is used,

INPUT

One word in accumulator at q = 1.

OUTPUT:

One word in the accumulator at q = 9 in degrees.

CALLING SEQUENCE:

Arcsine
Loc. Inst. Add. Loc.
K-l B L(arg.) ot-1
- 'R (Lo + 21),, oL
®x+l U 1L, ol+ 1
Q‘ + 2 etc. K+ 2

Arccosiné
‘ Inst. _‘Add.
B L(arg.)
R o (o + 21)40
v (Lo + G211),
ete, .

#i.e, track 02 sector 11

oL - 1l need not be a B order. Any order or orders that leaves the

argument in the accumulator is permissable.

ACCURACY:

The maximum error is approximately. 5 x 10°7

TIME:
350 to 375 ms.
STORAGE :

: 160 iocations of instructions and constants. 11 locations of
temporary storage (track 63, sectors 12, 15, 16, 17, 18, 19, 20, 21,

23, 2L, 28).
PROGRAM STOPS:

TLoc. | ‘ : ‘Meaning

(Lo + 0161), | Argument is larger than 1 at q = 1.

Page 2 of 2
‘.NOTE~’

Since the square root subroutlne is required for the- evaluation ‘
.of either arcsine or arccosine, the coding for the former (Program 15.0)
is included in this program (20.0), In those instances in which the

square root subroutine is independently required, the following calling .
sequence may be used for sqpare root extractlon'

i,ch;3s‘ TInst, ;“Add.;_
d(;‘lfv :ann_iA"L (Arg) .

o_(‘-}i 2v . e"i‘.v'.C._n k

_ For further 1nformatiyﬂ;dﬁiﬁhé:squété;rbbt_sﬁbrqutiﬁe:gee,programk

" Page 1 of 2

| DRCIMAL MEMORY PRINTOUT
(Program 21.0)

FUNCTION:

» To pfint the contents of consecutive memory locations in decimal
form. :

INPUT:
Beginning and final. locations and the modifier (all in decimal).

OUTPUT FORMAT:

A. Locations: .
The printed location is equal to the real location minus
.the modifier used. '

- B. -Instructions: o .
1. With modifier subtracted if in the range
Modifier < Address < Final location.

2. If in the range Modifier > Address > Final 1ogation.
a. Instructions are preceded by an "x" if modifier # O.

b Instructions are not preceded by an "x“7if'mddifier = 0.

C. Data: ‘ :
1. In decimal (at g=0} if transfer control button is up.
a. Decimal data preceded by sign and decimal .point.

-2, In hexadecimal if transfer control button is down.
a. Hexadecimal data preceded by a comma. :

Output is six words per 1ine preceded by initial ‘location of the
line. Words are separated by spaces. ‘The sign and decimal point are
printed for decimal data words and a comma is printed for hexadecimal .
words. Two carriage returns are given before and after printing.

‘Note: S :

" Data printed in this manner can be converted to its
real decimal value by multiplying by 29, ' -

wo dern Srtes

Page 2 of 2

(Decimal memory printout continued.)

PROCEDURE :

1.
2,
3.

Llo

i
»

TIME:

[uee—

. STORAGE :

Depress "manual input" button on the Flexowriter.r
Transfer to the first‘locatioh of this routine..

After the “manaal‘input" 1light comes on, type the initial and
final locations (in decimal) into the keyboard. ‘

‘Depress the "Start Comp." button on the Flexowriter.

After a space is given and "manual input" light comes
on again, type in modifier in decimal.

Make sure the "transfer cortrol" is in the desired position -

‘up for decimal data - down for hexadecimal.

Depress the."Start Comp." button on the Flexowriter,

The position of the "tfanéfer control" button may bevchanged
at any time to change the output format of non-instructional

‘words. S

Approximately 60 words per minute,

256 locations of instructions and constants (L4 tracks).
No temporary storage.

3/28/57

Page 1 of 5

COMPLEX OPERATION SUBROUTINE
(Program 22.0) '

FUNCTION:

~ To interpret and cxecute the instructions B, A, S, M, D, Hand C
as if they were complex operation instructions referring to a two word
abstract accumulator. To provide for shifting the abstracl accurulators
to the right or left from O to 10 places. To permit address modificabion
of instructions and test for the final address without leaving the complex
operation mode of programming. '

INPUT:
Real and imaginary parts of a complex number must be carried at
the same "q" and be in consecutive memory locations. (L.e. renl in ¥ ;

imaginary in ¥+1).

OUTPUT :

Real and imaginary pacts of a complex number placed in memory
locations specified by the program. See programming section of this
subroutine. - R

CALLING SEQUENCE:

Loc. Inst. Add.

e R " Lo
-1 UL
A+ 2
a4 3
s complex operation
i ’ ‘ instructions

L+ n XE 000 nexit" instruction
d +n +1 ete. - :

PROCRAMMING:

After executing the R Lo and U Lo instructions (where Lo is first
instruction of the complex operation subroutine) the computer interprets
and executes instructions as defined below. For simplicity '"m'is defined
as a complex memory address (i.e. memory location m and m + 1) and m’
is defined as a standard one-word memory address.

L/11/51

Page 2 of §

ORDER ' ADDRESS INTERPRETATION

B m BRING
Contents of m
replaces the contents of the abstract
accumulators,

A m ADD
Contents of absiract accumulators plu
contents of m replaces the conloents of
the abstracl accumulialors.

S j R SUBTRACT
' K Contents of abstract accumulators minus
.contents of m replaces the contents
of the abstract accumulators. -

M : m MULTIPLY
’ ' - Contents of abstract accumulauor& times
the contents of m replaces the contcnhs
of the abstract accumulators.

D m DIVIDE
' Contents of abstract accumulators divided
by contents of m replaces the contents of
the abstract accumulators.,

R _ n HOLD
‘ ' Record the contents of the abstract
accumulators into location m. ' Contents
of abstract accumulators unchanged.

c m CLEAR
' Record contents of the abstract accumulators
into memory location m., Abstract
accumulators are then set to zero,

i} n - ‘UNGONDITIONAL TRANSFER
' The next instruction to be interpreted
is locuted in location m/?

The uscrs attentionfis called to the

fact that after the execution of this
instruction the computer will continue

to execute orders in the complex operation
mode. This instruction may not be used

as an exit from the subroutine,

L/12/57

Page 3 of §

ORDER ADDRESS INTERPRETATTION

XE 0000 BXIT

ixit from the complex operation mode
of interpreting instruction and begin
executing instructions in conventional
"machine language" with instruction
following XE 0000 instruction.

To facilitate the programmers task of address modification, this
subroutine contains a special address accumulator. The following four
instructions permit the programmer to perform address modification
and test final address without leaving the complex operation mode.

ORDER ADDRESS v INTERPRETATION

E m ENTER
This instruction enters the address
portion of the word at m into tre
address accumulator.

XI T1T2S1 82 INCREMENT , '
This instruction increments the address
accumulator by T1T2 (track) and 5157
(sector) leaving the adjusted address
in the address accumulator.

4 m* STORE ADDRESS

This instruction stores the address
‘portion of the address accumulator in
the address portion of memory location
me. The address accumulator in un-
altered.

X2 T1TpS152 Z&ERO TEST AND JUMP
If the address portiorn of the address
accumulator is equal tuv T1T2S15, the
 fo11owing instruction is skipped.
When TyT,5)S, differs from the address
accumulator the instruction following
XZ T1T25182 is executed, Note that this
comparison is based only on the address
portions. '

Since the basic arithmetic operation A, S, M, and D obey the
conventional "q" laws, (as established under "Scaling" in this manual)
it is still the responsibility of the programmer to provide the proper
binal point manipulations. To facilitate shifting to the right or
left, the following instructions are provided.

L/12/57

Page L of 5

XR 00 mny "Right Shift" -- This instruction
o will shift the abstract accumulators
"mnot places to the right. Whero
CMmyno" G an Integer in the range:
Ogmnog10

XpP 00 nyny "Left SifL" -- This instruction wil!
shifl the abstract accumulators Tyt
nlaces to Lhe left. where "ujoph is an
integer in the range: OgnynpglO

NOTES:

1. The transfer control button feature was notvprogrammed into
the subroutine. Use of the —T instruction will result in
a halt.

2. In the explanation of orders above, use was made of the WX"
to prevent modification of the corresponding address. If
modification is desired do not precede the order with "X".

3. Use of the order "T" will result in a programmed halt.

L. Use of EO000 for the first complex operation instruction
is forbidden. " :

5. Shifts exceeding 10 places will be incorrectly interpreted.
The table may be expanded to include large shifts if the
user desires.

Error Halts ‘ ,
Lo + 0122 (track Ol sector 22) - T instruction given.

Lo + 0154 (tract 01 sector 5) - T instlruction given.

Lo + 0135 (track 01 sector 35) N instruction given.

STORAGH :

192 locations of instructions and constants (3 tracks).
No temporary storage. ‘

ACCUMULATOR LOCATIONS:

Lo + 0059 Real Accumulator
Lo + 0033 Imaginary Accumulator
Lo + 0219 (track 02 sector 19) Address Accumulator.

TIME:
The following table gives the approximate time required to execute

each instruction. The times given are maximum times and in practice
will be slightly less than the times given.

[S

Page 5 of 5

ORDER ~ DRUM REV. , TIME (ms.)

B 11 e
Y 8 136
R 14 | 238
I 6 102
D o 697
N# | on 187

N = 13 o 221
M | 22 37y
3 | 17 289
E (enter) ' 9 E | 153
E (exit) . ' 6 ' 102

U 8 o 136
c 1k 238
H W 238

A 1l | 238
s

- 238

uhe/st

Page 1 of 11

FLOATING POINT INTERPRETIVE SYSTEM
(Program 24.0)

PART 1

SECTION I: FUNCTION

The function of this floating point system is the reinterpreétation
of the LGP-30 fixed point order structure so that it may be programmed
as a floating point computer. This reinterpretation is effected by:

(1) The provision of a:multiplior'register and an address
register as well as a-floatingﬂpoint accumulator.

(2) The provision of more types of orders including cumulative
" multiply, shift 'sign change, and function generating orders.

(3) A broadening of the scope of certain instructions such as
the input instruction and the print instruction.

SECTION IT: GENERAL CHARACTERISTICS

Floating point programming has several advantages over fixed
point programming in that it is more rapid, does not require an ,
exact knowledge of the range of magnitude of the variables, and does
not involve as much truncation of the smaller values when that range
is large., Thirty-three orders are provided for in the system. 411
of these orders except input, output, sine, cosine, arctangent,
logarithm, and exponential are included in that section of the system
known as the floating point interpretive routine. This routine requires
only 10 out of the 6l tracks of LGP-30 memory leaving 3456 words
available for problem program and data storage. The input and output
orders require 6 tracks and the floating point functions require 7
tracks. The entire system leaves 262l words of memory left for
problem: program and data storage.

Generally the execution of a floating point program will take 10
to 20 times as long as the execution of the corresponding fixed point
program. _

Times for the execution of the individua1~floating point orders
are included in the summary tabulation at the end of part 2.

SECTION III: REGISTERS

(1) The floating point accumulator occupies 2 words

of memory, one for the characteristic of a floating point

number and one for the exponent. The floating point accumulator
is similar in function to the fixed point accumulator; it holds
intermediate results. '

(2) The multiplier (M) register occupies 2 words of memory, one
for the characteristic of a floating point number and one for the

Page 2 of 11

exponent. The multiplier register holds the multiplier for the reset and
multiply order and for the cumulative multiply order.

-(3) The address accumulator occupies 1 word of memory and holds
a single address or tally which is the same in form as for fixed
- point operations.

(4) . The contents of none of these registers is changed unless
replaced by a new result. For example, the M register remains
unchanged following execution of a square root or multiply
instruction. Nor is the contents of any memory location changed
except when affected as specifically noted in the order description
in the section that follows.

 SECTION IV: FLOATING POINT ORDERS

Thirty-three orders are available. The list of these orders and
their meaning follows. In the following exposition the term "accumulator"
refers to the two memory cells of the floating point accumulator as
defined above.

A. Arithmetic Instructions »
Memory location XXXX is the address of one floating point
number in standard form as defined in Part 2,

1. B XXXX. Brin
The contents of memory location XXXX replace the contents
of the accumulator.

2. A XXXX. Add '
The contents of the accumulator plus the contents of
memory location XXXX replace the contents of the
accumulator.

3. 8 XXXX. Subtract
The contents of the accumulator minus the contents of
memory location XXXX replace the contents of the
accumulatgr.

L. D XXXX. Divide
The contents of the accumulator divided by the contents
~of memory location XXXX replace the contents of the
accumulator.,

5. P XXXX: Place
The contents of memory location XXXX replace the contents
of the M register.

6. M XXXX. Reset and Multiply '
The contents of the M register multlplied by the
contents of memory location XXXX replace the contents
of the accumulator.

7. N XXXX. Cumulative Multiply
The contents of the M register multiplied by the
" contents of memory location XXXX and added.to the contents
of the accumulator replace the contents of the accumulator.

Page 3 of 11

8. D 000y. Right shift
The contents of the accumulator divided by 2Y replace the

contents of the accumulator. The contents of accumulator
remain in floatipg point form,
O0<ys?

9. M O000y. Left Shift
The contents of the accumulator multiplied by 2y replace the
contents of the accumulator. The contents of accumulator
remain in floating point form. ' '
0Osys?

10. H XXXX. Hold"
Place the contents of the accumulator in memory location
XXXX.

11. C XXXX. Clear ‘
Place the contents of the accumulator in memory location
XXXX and/ set the accumulator to zero.

B. ngiqal or Transfer‘Instructions

12, U XXXX Unconditional Transfer
The next instruction to be interpreted is in memory location
XXXX. This order cannot be used to exit from the floating
point interpretive system.

13, T XXXX. Test
The next Instruction to be interpreted is in memory location
XXXX if the accumulator is negative. Otherwise the first
successive location will be interpreted.

14, B800T XXXX. Transfer Control
. The next instruction to be interpreted will be in memory
location XXXX if either the accumulator has a negative
characteristic or the transfer control switch is down.
. Otherwise the first successive location will be interpreted,

C. Address Modification Instructions
Location XXXX implies a fixed point addreas.

15, B XXXX. @nter .
The address portion of memory location XXXX replacea the
contents of the address accumulator.

16, I XXXX. Increment '
The address accumulator is incremented by the address XXXX
This order can be used to decrement the address acoumulator
by complementing the address portion of the I XXXX order,

17, Y XXXX. Store Address
The address portion of the address acoumulator replacea the
contents of the address portion of memory location XXXX,

D.

E.

28,

Page L of 11

Z XXXX. Zero Test _

The address of the "Z" instructlon is subtracted from

the contents of the address accumulator. If the result is
not zero, the first successive instruction is interpreted.
If the result is zero, the first successive instruction
is skipped and the second successive instruction is
interpreted. '

Auxiliary Instructions

19.

20.

21,

22,

23,

24,

'R XXXX. Return Address

‘‘he location of this instruction is increased by 2 and is
stored in the address portion of memory location XXXX.

U 0000. Reverse Registers
The contents of the M register and accumulator are
interchanged.

B 0000. Set Sign Plus
The sign of the accumulator is made positive if not
already so.

T 0000, Set Sign Minus
The sign of the accumulator is made negative if not

‘already so.,

Y 0000. Change Sign
The sign of the acumulator is reversed.

Z 0000. Stop
Computation is halted unless break point switch No. 16

- is down. Depressing the start button causes the next

25.

instruction to be interpreted.
E 0000. Exit

. Exit from the floating point interpretive system.

Control is returned to the location following the location
of the E 0000 instruction.

Input-Output Instructions

26,

27.

I 0000. Input

Control is transferred to a floating point data input
subroutine which reads decimally<punched numbers on

tape, converts them to floating binary, and stores them.
The next instruction is interpreted after the proper
exit code has been read from tape. See Section V, Part 1
for tape format and input details. -

P 0000, Print

Print the contents of the accumulator. The contents of
the accumulator are not destroyed. See Section VI, Part 1
for Output format.

Page 5 of 11

F. Funchion Evaluation Instructions

28, R 0000, Somare root \
The square roct of the contents of the accumulator re-
places the contents of the accumulator.

29, 8 0000, Sine
The sine of The contents of the accumulator replaces the
contents of the accumulator. The accumulator must be in
radian measure, ‘

30, C 0000, Cosine
The cosine of the contents of the accumulator replaces the
contents of the accumulator, The accumulator must be in
radian measure. :

31. A 0000, Arctangent ;
The arctangent of the contents of the accumulator replaces
the contents of the accumulator. Output is in radian
measure., :

32, N 0000, Natural Logarithm.
The natural logarithm of the contents of the accumulator
replaces the contents of the accumulator.

33. H 0000. Exponential
The quantity eX replaces the contents of the accumulator,
where x is initially the contents of the accumulator,

SECTION V: DATA INPUT FORMAT

Data input is accomplished by reading a prepunched decimal tape.
The tape consists of groups of the following: '

1. One identification word. This consists of a sign and two
decimal digits for P, followed by four decimal digits
for initial location to begin storing the converted
floating point binary mmbers.

2, Signedvdecimal numbers., Each number consists of a sign
(if negative) and seven decimal digits,

3. A "minus zero" word. This consists of a minus sign followed
by seven zeros, This number is not stored in memory, but
is used by the routine to signal the end of the group.

A stop code must follow the last "minus zero" word. This is
 interpreted as a "zero" identification (I.D.) word since it follows
" the "minus zero" data word. It causes the system to exit from the
subroutine, carriage return, and interpret the instruction following
the I 0000 instruction.

P denotes the number of decimal places following the point in‘the
seven digit field. -3 g P < 15. Internally the exponent must be in the

Page 6 of 11

SECTION VI: DATA OUTPUT FORMAT

The printed output consists of a decimal point followed by seven
decimal digits of the characteristic and its sign. Following the sign
there are two spaces followed by the exponent and its sign (if the sign
is negative). e.g. .5060000- 02 is -50.60000. A tab is executed after
printing, ‘ ' ‘

~ Page 7 of 11

FLOATING POINT INTERPRETIVE SYSTEM
(Program 24.0)

PART 2
Note: Refer to Part 1 for FUNCTION, REGISTERS, ORDERS, and INPUT and
OUTPUT FORMAT. '
INPUT :

Floating point numbers on tape or in memory, or numbers in the
pseudo registers resulting from previous operations.

CALLING SEQUENCE :

Loc. - Inst.

add
3 : P
+1 U Lo
Ol 42 . .
oo+ 3 ; } '
. . . Floating point operations
X +n E 0000 M“Exit" instruction
A +n+1l ete. Resume fixed point

. operation,

INTERNAL NUMBER FORMAT :

A standard floating point number as carried in memory consists of
sign and 2k bits for characteristic (x) and sign and 5 bits for the
exponent (y). However, all intermediate calculations (i.e., numbers
appearing only in accumulator and multiplier registers) are carried with
30 bits of characteristic and 30 bits of exponent. " Each factor of any
calculation must be in standard floating point form. (N = x.27; .5<ixi< 1.
orx =03 -3l<y< 31). Numbers appearing in accumulator or M reEisters

' ~ are in the range 25 < 1xl < .5 or x = 0.

Thé standard floating point binary form:

g- e " o}{XXo.- s e rw‘XX .X_ ‘ . Xxm
Sign of Characteristic Sign of exponent Exponent
‘Characteristic -~ 2l bits. A . 5 bits
0 for plus ' 0 for plus Power of2

1 for minus) 1 for minus

DATA TAPE PREPARATION:

1. All characters of the I. D. wordAshbuld be pﬁnched, e.g8.
-012040" must contain eight characters including the stop
code. The stop code (') must be the last character punched.

Page 8 of 11

2. Punch only those I.D. words appearing on the load sheet.
Do not punch the stop code if an I.D. word is not present.

3. The sign and any leading zeros of a positive number need
not be punched. To enter all zeros merely punch a stop
code. The sign and all seven digits of a negative number
must be punched. :

4. Be sure to check each load sheet to see whether an additional
stop code should follow the last number punched.

EXIT:

The interpretive routine exits to the first location following the
E 0000 instruction.

SUBROUTINE MEMORY RELATIONSHIPS:

The arithmetic, logical, address modification, and auxiliary instruc-
tions have been coded as a unified group on a single set of coding sheets
("Floating Point Interpretive Routine"). A single corresponding tape
has :been punched for this set. In many instances the programmer will
wish to use just this part of the floating point system; if so, only
this tape need be stored in the memory. This will leave 5k tracks
for program instructions and data in contrast to L1 when the entire
system is used.

In other cases the Input-Output and/or function evaluation routines
may be needed. Only those routines actually used need be stored on the
drum. These required routines must be stored on the drum in the
following relationship: '

Program Routine Start Fill Set Modifier No. of Tracks

24,0 Interpretive (Includes v) Lo Lo 10
11.3-12.3 Input-Output Lo + 1000 Lo + 1000 6
14.1 Sine-Cosine Lo + 1600 Lo 2 1/2
16.2 Arctangent Lo + 1832 Lo 11/2
18.1 Logarithm Lo + 2000 Lo 1
17.1 Exponential Lo + 2100 Lo 2

A1l track 63 except sectors 10, 15, 16, 18, 23, 27, 29, 3k, 36, LO,
47 thru 50, 52, 56 thru 58, 60 and 63 is used for temporary storage by
various parts of the system. Therefore Lo should be set such that no
part of the floating point system used is stored in track 63..

PROGRAM STOPS:

Loc. Order Meaning and Remedy
Lo + OéSh -~ Z 0000 Programmed stop. Depress "start" to continue.
Lo + 0556 H XXXX Exponent is too large. Location of instruction

or being executed is in the real accumulator.
C XXX Start to continue.

Page 9 of 11

Lo + 0556 R 0000 Accumulator is negative. Location of instruction
being executed is in the real accumilator.
Start to continue.

Lo +1152 I 0000 Input data has too large an exponent.z A start
. will store a zero for that word and continue
with next word on tape.

Lo + 0612 D XXXX Division by zero or a non-floated nnmber.
' "~ Do not continue. -

Lo + 2005 N 0000 Accumulator is < 0. A start continues with

an answer of zero. o

Lo + 2028 N 0000 Accumulator exponent is not in range, Do not
or continue. S

Lo + 2030

TIME:

See summary tabulation.

EXAMPLE:

See the following LGP-30 coding sheet.
NOTES:

1. The floating point system may be left and re-entered without des-
troying the contents of the registers. ‘

2. The exponent of a number in a register which is to be stored in
memory must be less than +32, or a range error will result, If it is
less than -31, the number is replaced by zero.

3. It is strongly suggested that the initial location occupied by
the system be the 00 sector of a track., If it is not, many of the
addresses that refer to track 63 are not optimum.

L. It is also suggested that the entire system be placed in memory
and punched out in parts by program 13.1. Then the parts needed may
be loaded by program 10.1 and each check sum may be verified.

5. All instructions with zero addresses have special interpretations.
None of these zero addresses refer to memory location "zero", (0000),
but rather designate a special interpretive instruction. This float-
ing point system employs sixteen such special instructions. Further-
more, the two-shift instructions (D 000y, M 000y) utilize the next nine
addresses (0001 through 0009); hence the divide and reset and multiply
instructions cannot use these addresses. ;

Add.

Acc. = Address Accumulator register

‘M = Multiplier register
Acc. = Floating point Accumulator
= any address
C = Contents of

All times are
slightly less t

proximate and will vary with the
listed.

#
Address = 0: except for mstructions "M 000€{" and "D 0000&",

" where O <°(< 9.

_48

amount of overflow and/or underflow.
Time will usually be reduced if any factor is zero.

Ts stored in)

Actual times should be

TT Jo OT 93eg

ORDER____RESULT IF ADDRESS () # 0 TIME RESULT IF ADDRESS = o¥ TIME
2 C(Add. Acc.)- (X) = 0? No: No skip
- yes: ' Skip 133 ms Stop (SW No. 16). Proceed on start 117 ms
B C(‘o() —> Acc, 233 ms. Make C(Acc.) positive 150 ms
4 c(Add. Acc.)—> Add. of (ob) _ 150 ms. Complement C(Acc.) 150 ms
R (Loc. of R) + 2—> Add. of (%) 166 ms. V€ (Acc) —> Acc. 500 ms
I C(Add. Acc.) + (et)—> Add. Acc. 150 ms Input floating point data 40/min,
D €(Acc.) *+ C(eX)—> Acc. 283 ms. C(Acc.) *# 215—2-; Acc. 183 ms|
N (M) x G(ex) + O(Acc.)—> Acc. 566 ms 1n C{Acc.)——> Acc. 500 ms}
M C(M) x C(cX) — > Acc. 266 ms. C(Ace.) x 2% 5 scc. 150 ms|
P *C_(Oﬁ)—-), M 217 ms. Print C(Acc.) 1.85 secf
E C[Add.{cC)]—> Add. Acc. 150 ms. Exit from interpretive routine 117 ms‘
U Next abstract order taken from (oK) 117 ms. C‘(Acc.)-—b M; C (M)—‘> Acc. 200 ms|
{7 Transfer if C(Acc.) is negative 133 ms. ‘Make C(Acc.) negative 150 ms
H ‘¢{Acc.) —> (X)) 200 ms. ClAce.) o pee. 450 ms}
C Clacc.) =———» (X); 0—> Acc. 233 ms. Cosine C{Acc)—> Acc. 517 ms
A C(acc.) + C(o()--S Acc. LOO ms. Arctangent C(Acc.)-—> Acc, U450rs”
S C{Acc.) = C(eQ—> Acc. 417 ms. Sine C(Acc.)——> Acc. 550 ms

ILLUSTRATIVE BEXAMPLLE FOR FLOATING POINT INTERPRETIVE SYSTEM
16P-30 CODING SHEET

ONE Prog. NO. 4’-[o Prep.‘ by 6 L., W

Page [l ot Ll

Job No, .2 Ck'd, by M- < Date/‘/‘/‘-”ze J5‘7
Px'ohlom CRLING FOR lf-*h "Dcﬁr‘ec Folvnomial Track
| Progran Tt [8l1ocatton oi‘."”“ﬁiﬁi-‘m 5| Contante of Notes
3.«9,0.012-\‘5‘0*0 '
l{oco2800]|'® |
e ,,00|, XR3000] W Enter Trtorpretive
s 0], . ' .o,a,a' - Routine
; R L, 02| | ,xI’Lo.o.o,a ! T nput Coctficiomts |
— .03 Ea,00.7! 2095 Set
L :) . - oh| . Y‘LO 0.0 Llt] 2008 Initial Address
— ; s . .,05 B.g a, 13' Eero |
,) 06 xA.[v Qn Add n' th cocfficet
‘ ; R ‘ ‘ ‘017 XI10 o ol ' 4@0054-"3 Lncrease addraty;”’”‘y
— o Yo gedl [aLeees +allitis aaT i AL
et , 09 xz.z o.r0'| Test fov Finish.
R 10 \ t’/a 0./, Nor_ finished
: . RS Y. 1 P. 0,000 'ﬂm Fnt reasu /Y berct Fimshed
- :L d21 xE.o pool'|l Exit ’ ,
s —— 131, A’W ol ‘ S Zoep _ Fixed pt (7t
, - LAb|, xveael Move Accun ta M Register
i cAS] A’M}_g.o ogt|' I Moltiply by X |
] :
Ly L 16 "‘LCQLQ 2 Q:‘ Re Forn jkf’f7:xi‘*édvvn
e Lr X.Zgz,al_a,g' T nitial |coctficicnt
bt .: .) €. 11..L8) ..,.<-;._\&.*-4_.4.f.t_....'....',.. R
| Quan, |, P |rocation E,f m:mber” §,§§
Floating point ~ f' = v
Data Input X Fio7l2.00 4 u 0,9,0,0,0,0
27 N A A .120000'
2, || PRSI B : 2 '4".»&,-;'00 : . w34P615
" vl g e .
T T e ad] 0t
Ay \) L 4 ' 7‘a*‘odo-o '
| oL loooaoao'
I N U R

Punch a stop code after the last number?

No

Yes X

