Royal Precision Electronic Computer

L GP-830

SUBROUTINE MANUAL

Royal McBee Corporation

The subroutines in this reference manual were compiled by the Royal McBee Electronic
Computer Department to facilitate coding of problems for the LGP-30 Electronic Com-
puter. The programming was done by the Royal McBee Electronic Computer Department
and LGP-30 users.

These subroutines provide means for machine input, output, and program checkout, as
well as evaluation of basic functions which are used in many problems. For each sub-
routine the calling sequence, running time, and storage requirements are given. Also,
where applicable, the range of variables, scaling, and accuracy ate given. The coding
‘sheets for these subroutines are available in the LGP-30 SUBROUTINE MANUAL COD-
ING SHEETS.

Only a small part of the programs available to LGP-30 users are contained in this man-
ual. A complete list of LGP-30 programs is published periodically in the LGP-30 News-
letter. Programs may be obtained by writing to Royal McBee Corporation, Electtonic Com-
puter Division, 1532 North Cahuenga Blvd., Hollywood 28, California.

Royal McBee Corporation
Electronic Computer Department
Port Chester, New York

DATE: 10-5-60 PRINTED IN U.S.A.

INDEX OF ROUTINES & SUBROUTINES

SUBJECT DESCRIPTION PROGRAM NO. PAGE NO.

ALPHANUMERIC OUTPUT 19.0 21
ARCSINE — ARCCOSINE 20.0 2
ARCTANGENT 16.0 19
BOOTSTRAP 09.0 - 8
DATA INPUT NO. 1 11.0g 10
DATA INPUT NO. 2 | 11.1 12
DATA INPUT NO.3 11.2 13
DATA OUTPUT NO. 1 12.0,4 14
DATA OUTPUTNO.5 12.4 15
DECIMAL MEMORY PRINTOUT 21.0 23
EXPONENTIAL 17.0 19
FIXED POINT TRACE 23.1 o1
FLOATING POINT SYSTEM 24.0 27
ARCTANGENT 16.2 29
EXPONENTIAL 17.1 29
FLOAT AND UNFLOAT 25.05 : 34
INPUT-OUTPUT 11.6 — 12.6 27 - 29
INTERPRETIVE 24.0 27
LOGARITHM 18.1 29
SINE-COSINE 14.1 29
TRACE 23.4 26
HEXADECIMAL PUNCH 13.2 17
LGP-30 PROGRAM INPUT 10.4 8
LOGARITHM 18.0 20
SEARCH FOR ADDRESS 26.2 n
SINE COSINE 14.0 18

SQUARE ROOT 15.1 18

DEFINITICNS

1. A routine is a logical subdivision of a program, complete in itself,. and
serving a specific function in the problem, There is no fixed length tq any
routine, and each routine occupies only as much storage as is actually rieeded.

2. A subroutine consists of a set of instructions to perform a standard
task which is of a sufficiently general nature to be used in a number of
different programs. Examples are subroutines to input and output data,
compute square roots, arctangents, etc. This Subroutine Manual is a compil-
ation of the specifications of the subroutines, completely describing the
function and use of each.

3. A equence is a set of instructions used for transferring from
the main routine to a particular subroutine. It may also include information
needed by the subroutine, such as constants and the locations of certain
quantities. The calling sequence for each of the subroutines is given in
the Subroutine Manual.

h. Minimum Time Programs

There are occasions when it is necessary to write programs which will be
executed in as little time as possible. These minimum time programs are
referred to as "optimum" programs. , Since the subroutines contained in the
Manual are to be used over and over again, they have been optimized. (The
process of optimizing requires placing the sector of the operand«{at
of + (Tk + 1) where 2 <k<6 for most instructions). The programmer should
bear in mind that 10,000 executions of all nonoptimum instructions would
take less than 3 minutes longer than 10,000 executions of optimum
instructions. If the programmer spends 15 ~ 30 minutes on each routine
trying to save machine time by optimizing, this time may never be made up
in the actual running of the problem.) ‘

5. A scale factor of a scaled number in memory 18 defined as the power of
2 by which this scaled number must be multiplied to get the original or
unscaled number. o

CONVENTTIONB USED IN THIS MANUAL

1.0(is the base memory location from which entry to a subroutine is executed.

Locations used by the subroutine are in reference to location:(, E.G.sX+ 1,
L+ 2,0+ 340aenas

2. L, designates an initial location. Ly designates the final location.

3. The "Stop" and "Stop Codes" referred to in these write-ups and on the
. coding sheet are synonymous with "Conditional Stop Code".

k. For explanation of our scaling convention, see write-up on "SCALING".

5. Track 63 is used by some of these subroutines for temporary storage.
The track 63 sectors used by the subroutines are enumerated in the
respective write-ups. This practice was found useful for "optimum"
programming of subroutines. However if the subroutines which use this
temporary storage are to remain optimum, the L, of the subroutine must

be the beginning of a track. It is suggested that the programmer may also
use track 63 for temporary storage of intermediate calculations. He should
not place a number in a track 63 location used by one of these subroutines
and expect that number €6 be there after exit from the subroutine.

6. All output subroutines should begin at sector 00. This will maintain
the present timing relationship between the typewriter unit and the

computer, If this relationship is not maintained the output routine may
not functién properly,

7. The term "Operation® (Op.) appearing on the LGP-30 coding sheets is
synonymous with the term order,

8.- A1l input times refer to mechanical reader.

PUNCHING TAPES FROM CODING SHEETS

See "Sample Program" page for example of coding sheet.

1. Only the "Program Input Codes" and "Instruction columns of the coding
sheets are to be punched, with appropriate stops. Never punch "Location",
"Contents of Address", or "Notes" columns.

2. FEach entry on a line must be followed by a conditional stop code -~ "Stop"
column, symbol ('). A line left blank must have the stop code punched.

3. Punch the "Program Input Codes" column only when there is an entry in
the column. The "Program Input Codes" must be followed by the stop (').
This punching must precede the punching of the "Instruction" column on the
same line of the coding sheet.

h. Leading zeros need not be punched. All other zeros must be punched.
E. G., 00013086' only 13086' need be punched. ,0000017' must be punched
,0000017". For TOO59' punch TO059°.

5. Consider brackets as containing zeros. E.G., for [.......]"= [00000000]°,
only the stop code need be punched. For Bl....]' = B[0000]' punch BOOCO'.

6.

7. The placing of carriage returns is left to the discretion of the person
preparing the tape., Carriage returns do not affect the input operation.

We have arbitrarily placed a carriage return (X) after every L words on
each coding sheet.

8. A heading may precede a punched program to identify the tape. Anything
except a stop code may be punched as a header., Then as the tape is fed

through the input reader the heading will print but will not affect the
operation of the computer.

9. Each tape should be verified after punching. This can be done by

placing the punched tape in the reader and "listing" the tape by the
following process.,

A1l punching may be done in lower case. BO627' will appear as b0627'

a. - Depress the COND, STOP Lever on the Typewriter.
b. Depress SPART READ Lever on the Typewriter.

¢. When printing stops, depress the SIOP READ Lever on the
Typewriter.

Then the printing may be visually checked against thé coding sheets
for correctness and presence of stop codes.

10. It should be the programmer's responsibility to enter "Program Input.
Codes" (and the associated stop codes) on the coding sheet. This will
usually consist of a start fill (;), and set modifier (/), and possibly
some hex. words (,) and/or stop and transfer (.) codes.

4

LGP-30 CODING SHEET

e
PREPARED FOR:

GF.

1 /1

PAGE

JO8 NO.

PROGRAM NO.

PROGRAM PREPARED BY:

oy rm—
PROGRAM CHECKED 8Y:

"Rev. 6/16/59

XXX YY.Y Mel Kaye
PROBLEN; TRACK
EVALUATION OF Lth DEGREE POLYNOMIAL (Fixed Point)
PROGRAM INPUT CODES é LOCATION ovem:zs:“im::nms é Sonents, NOTES
_‘}Loio .O:rl 00,0}/
00404140040 {/
F“i (T T-T L1y 0.0 g0} 4 X|R0)510 8 1 g%‘“‘ré& cggzgggagggggta@
L1 L O || oo . lxtU!0|510|0 ; |{ store d;a n memory
P O N | Lol Booe317]140027 Enitial "Add" Inst.
"«..i;:t M LRER BT ICEOD‘OW /
TS O WO Y B (141 3 | HIop 251/ 18et worlding storage to zero
Lol I [1 1035t)1 4B ;0 0 215 |/]|Working |storage at g = 0
:xai;;a llOIGIIIMioﬂlzlé’X&tq=0
PR R T A I I | p o7 by oAy g g N etig =0
1 1 i [| Lot i1 H ;0101215‘ / working storage at. q = 0
PO TS Y LN L I |Bi0|0g0]7 /14 (0027 i N)
I B B tpol gy 1A002(217 11 at 29
il l‘lr L i g L1 1¥1010 |0‘|7 / A (OOR7 +N + 1)
I O I N T IR LN N ,S!O[G|2|h /] A0032 Flag
I A A gy ey 4710404045471
TN O O T UL I IBQO 1012,5{/| Final rpsult
NN I Ll xR 2]/ ransfpr to Data Output#l
(S| ; L4 s b ixqu il {41010 |/ |fo print| final result
O T T A L a7 | 4 1121010 1040 |/ ficode worg = 0 (for g = 0)
o1 i [| sl g X P irl 16 1010 | / J\Carriage| return
TN el X200}
b b 114y , 2}, 1 %1084 0]|/|Stop unlpss brk.pt. sw 8 dow
L : L e g ',Ujlo © 0 [0 |/ |Return th. read more data
[5 [L2 g2 | ,x,zio opyr1/]l at 29) constants
PN IO T N O O | Lt IAP 0 4 2.7 / A(Lo) \(And .flags
T T T Lyzde sy yagolof3f2] ae+))
TS B B | 4215 hnu}llt]/WOrkingﬂtorageatQ"O
O OO N T B TN L0 T B O I O I 4 X
bbb 1) I Y20 NN WO W N N A I K A, [(These quantities
[N : 111 i 12181 1 ¢]J' oyt 1/ A ESﬁvé'%%Sd‘ESmbfﬁE%ﬁ
1l ; L1 AR | i Lo /] 42 F;"Snlgdd taj;o &;2 and
O O B A TIREI LI I T O S T O R addresses by data
L1t ; Lt R L N ; R . Ay /lnput #1 subroutine
FORM LPIB Royal McBee Corporatio CARRIAGE RETURN
DATA PROCESSING DIV.

PORT CHESTER, NEW YORK)

/

== CONDITIONAL STOP CODE

SCALING

The LGP-30 normally handles all numbers as if they were of the
form .XXXX.....that is, numbers numerically less than 1. However, it
is quite simple to carry any number in the machine at any number of
binary places, and this arithmetic is explained below. In talking
about the placement of the radix point in the LGP-30, it is simpler to
talk of the number of whole places in front of the radix point,
rather than the number of places after the point. Hereafter, a number
will be referred to as being carried at q places, q being the nmumber of
binary digits to the left of the radix point, and 30-q as the number to
the right of the point.

. Addition: Addition of course poses no problem if the two numbers
to be added are at the same number of ‘places. If not, either may be
shi fted before addition by multiplying or dividing by "One" at an
appropriate q. .

Multiplication: The LGP-30 multiplies a number at Q) places by
a number at gy places and forms the product in the accumulator at Q
plus q, places.

Division: The LGP-30 divides the accumulator at g places by a number

at g5 places and forms the quotient in-the accumulator at q1 - qp = g3

places. It should be noted that overflow will occur if the quotient
developed is not less than 293 in absolute value.

NOTES

Symbol . Command Binary Hex Dec Keyboard Code
z Stop 0000 0 0 YO 02 02 Zz Ol 01
B Bring 0001 1 1 L1 06 06 Bb 05 05
Y Store Add. 0010) 2 2 *2 0f 10 Yy 09 09
R 3 3 "3 0q 14 Rr Ok 13
I Input 0100 4 4 | O 12 18 i 1n 17
D Divide 0101 5 5 % 16 22 pd 15 21
N N Multiply 0110 6 6 $6 1f 26 Nn 19 25
M Multiply 0111 7 7 | w7 1q 30 Mn 1k 29
P Print 1000 8 8 | 28 22 34 Ppp 21 33
B Extract 1001 9 9 (9 26 38 Ee 25 37
U Transfer 1010 F 10 FE 2f 42 Tu 29 41
T Test 1011 e] 11 Gg 2q 46 Tt 2k 43
H Hold 1100 J 12 Jj 32 50 Hh . 31 49
c Clear 1101 K 13 Kk 36 54 Cc 35 53
A Add 1110 Q 14 Q¢ 3t 58 Aa - 39 57
s Subtract 1111 W 15 | ww 3q 62 Ss 3k 61
N N 2N Sp. 03 03 IC 04 04
_~ 07 07 uc 08 08
1 0 1.0 =+ o0g 11 cs 0] 12
2 1 0.5 13 Ow 15 CR 10 16
4 2 0.25 W/ 13 19 BS 14 20
8 3 0.125 1. 17 23 Tab 18 24
, [, 1g 27 Del. 3w 63
16 4 0.062.5 VW lw 31 20 32
32 5 0.031 25 0o 23 35
64 6 0,015 625 Xx 27 39
128 7 0,007 812 5
256 8 0.003 906 25
512 9 0,001 953 125
1 024 10 0,000 976 562 5
2 048 11 0.000 488 281 25
4 096 12 0.000 244 140 625
8 192 13 0,000 122 070 312 5
16 384 14 0,000 061 035 156 25
32 768 15 0.000 030 517 578 125
65 53616 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5
1 048 576 20 0.000 000 953 674 316 408 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0,000 000 238 418 579 101 562 5
8 388 608 23 0,000 000 119 209 289 550 781 25
16 777 216 24 0.000 000 059 604 644 775 390 625
3% 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25
134 217 728 27 0.000 000 007 450 580 596 923 828 125
268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25
1 073 741 B24 30 0,000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0,000 000 000 465 661 287 307 739 257 812 5
—d .7,..."..'.5. :]
=+ l |<ORDE ! " K—TRACK—><-SE(:TO?-> sP
PPN N U d Al L i M PR il M

ROYAL MCBEE CORPORATION

1GP-30 Input - Output
Keyboard Code

Numerical Commands

123456 123h56
)0 000010 Zz 000001
L1 000110 Bb 000101
#2 001010 : Yy 001001
"2 001110 Rr 001101
Al 010010 Ti 010001
%5 010110 Dd 010101
$6 011010 Nn 011001
w7 011110 Mm 011101
L 8 100010 Pp 100001
(9 100110 Ee 100101
Ff 101010 Uu 101001
Gg 101110 Tt 101101
Jj 110010 Hh 110001
Kk 110110 Cc 110101
Qqa 111010 Aa 111001
Ww 111110 Ss 111101

Balance of Keyboard

123456 N
'3 001111
2/ 010011
1. 010111 61
[, 011011
v 011111
Oo 100011
Xx 100111

-

Controls

Lower Case
Upper Case
Color Shift
Carr. Return
Back Space

Tab

Condt. Stop (')
Start Read
Space

Delete

N

0000000000000000000060

W
=
A¥A8

Signs

123456

000100
001000
001100
010000
010100
011000
100000
000000
000C11
111111

001011
000111

BOOTSTRAP ROUTINE
(Program 09.0)

FUNCTION:

To load the input routine on tracks 00, Ol and 02, After the bootstrap program
has loaded the entire input routine, a halt is executed at track 63 sector 13 (3W3L).
Depressing the Start button transfers control to the first instruction of the input
routine.

PROCEDURE :

‘ The tape containing the bootstrap (and the program input routine) is placed in
the tape reader and then the following manual operations are performed,

1. Connect Switch to "off" position.
2., Depress Typewriter START READ lever,
3. Depress FANUAL INPUT button on console,
li. Depress Typewriter START READ lever,
S. Depress FILL INSTRUCTION button on console,
. Depress Typewriter START READ lever.
7. Depress ONE OPERATION button on console, v
8. Depress EXECUTE INSTRUCTION button on console,
9. Repeat steps 3 through § five more times before proceeding to step 10,
10. Depress Typewriter START READ lever,
11. Depress NORMAL button on console,
12, Comnect switch to "on" position.
13. Depress START button on console.

The entire tape will automatically read in after manually performing step 13
above,

OUTPUT:
Program input routine on tracks 00, 01, 02,
STORAGE :

. The bootstrap routine uses 21 words on track 43, (sector 00 through 1h, 22
thru 26 and 46).

TIME:

————

The time to read in the two programs after depressing the START button in
Step 13 is approximately three minutes,

LGP-30 PROGRAM INPUT ROUTINE
(Program 10.4)

Ofiginal ProgramlO .3 Modified by Rice Institute

The Primary function of this routine is the entry of programs from paper tape or
typewriter keyboard to storage on the LGP-30 memory drum, The general characteristics
of the LGP-30 are described in the LGP-30 Programming Manual, A program consists of
two types of words, instruction and data, This routine deals exclusively with the
inputing of instruction words and hexadecimal representations of data words, This
routine does not handle data words expressed in decimal form.

There are several functions to be performed by a useful program input routine.

1. The most direct way of entering instructions into the LGP-30 is to present
it with binary words, But since it is difficult to program in this nuber
system, we prefer to do our programming in decimal notation. If we are to
write instructions in-decimal form, we must provide the r-chine with a
means of converting such instructions into binary form.

2, Most programs contain instructions which refer to locations within that

program. Hence if we wish to place the program in another portion of memo-
Ty, we must modify some of these instructional addresses.

3. It is sometimes convenient to express a numbér in binary form, e.g., 7 or
other universal constants,

L. It may be necessary to make instructional or data changes to a program that
has already been stored in memory.

These are the functions which this input routine is designed to perform,

This routine recognizes seven types of code words. After a code word has entered
the accumulator (from tape or typewriter keyboard), the accumulator sign position and
high order 3 binary bits are analyzed to identify the type of code word. Then a
?ransfer to the appropriate interpretive subroutine within the program inpuf routine
is executed. These seven code words and their symbols are as follows.

1. Instruction (none) consists of an order and decimal address. The address
consists of two decimal digits for track and two decimal digits for sector.
The‘entire instruction is converted to its binary equivalent and stored in
ﬁ given location. The address portion is incremented by the contents of the
Hodifier" (to be discussed below) unless an "x" precedes the order, e.g.,

bL000 will be incremented: xb6310 will not be incremented., The x will
not appear in-the stored instruction.

2. Command (+). This code word will be treated as an instruction to the Pro-
gram Input Routine, .The instruction will be executed after the entry of an-
other word. The command code word is input in decimal and is not incremented
by the modifier. The second word, presumably data, is assumed to be in hex~
adecimal. e.g., the command +O0h1637 followed by 73W08 will cause the hex~-

:dec;r;al word 00073W08 to be held (stored) in memory location track 16, sec-
or 37.

3. Start i1l (5). This code word tells the input routine where to begin fill-
ing input words (instructions and/or hexadecimal representations of data),
Each succeeding word will bec stored consecutively until or unless a new start
£i11 Anderrupts Lho procodure. The address portion of the start £i11 code

word is decimal, and consists of both a track and a sector. e.g., the code
word ;0003128 will cause the first input instruction or hexadecimal data
word to be stored in track 31, sector 28, the second in location 3129, the
third in 3130, etc.

L. 'Set modifier (/). The magnitude of the address of the set modifier code
word is stored in a memory cell within the Program Input Routine knoim as
the "modifier", This modifier is added to the address portion of all sub-
sequently input instructions not preceded by an "X". The modifier remains
unaltered until replaced by another set modifier code word. The set modi-
fier code word will usually follow a start £ill code and will usually be
identical to it in magnitude. This word is for use by the Program Input
Routine only. It will appear no where else on the drum as such.

5. Stop and transfer (.), This code word is executed in two parts. The first
part causes the computer to execute a stop instruction. The second part,
initiated by a depression of either the computer START button or the type-
writer START COMP, lever, will cause the computer to transfer control to the
memory location contained in the stop and transfer code word, The "stop"
part of the stop and transfer code is ignored if'BREAK POINT 32 on the
computer console is in the "doun" position, e.g, the code word ,0001700 will
stop reading., Then, upon depression of the START button, control will be
transferred to memory location 1700.

6. Hex. words (s)., This code word causes the next Ny N2 words to be filled
without decimal translation. No is specified in the sectc portion of the
"Hex, words" code word, 1< Nln?ﬂg < 03 The code word ,00000LL means that the
next 1h input words are to be stored in the next 1l locations of memory.

The input words must be in hexadecimal and they will not be incremented by the
modifier,

7. Hex. £il1 (v). This code word causes the next n hexadecimal words to £ill
consecutively beginning in location m The format of the Hex fill code word is
vnl n2 n3 ml m2 m3 mh. During the filling procedure a summation of the binary
bits actually stored into memory (a check sum) is generated. After all (m)
words have been stored on the drum, and if the TRANSFER CONTROL button is not
depressed, this check sum is compared against a previously computed check sum %

placed at the end of the m hexadecimal words, If the two check sums are identical

the hex, £ill procedure is successfully completed. If the two check sums are
not ;identical the Program Input Routine will return the typewriter carriage and
print "error", The code word v1jO2w0O will cause the next 1j0=n words

[(190)1¢ = (h)-ta)]_o] consecutively beginning in location W00 = m{(2W00),¢ =

location (4710)107, ~As many as (7WW);4 = (2047);, words can be filled by a
single Hex, fill (l,éde word, .

Leading zeros need not be punched on any inﬁut word, All other zeros must be
punched, e.,%;' The code word /0001357 must be completely punchedy for 000B37L9 only
the last 5 characters need be punched, e.z. B37ho.

*Bither program 13.1 or 13,2 will prepare the previously computed check sum and place
it at the end of the Hex £il1 input words,

1GP-30 PROGRAM INPUT ROUTINE

When the overall coding for a problem is surveyed, it is found that the in
struotions separate logically into independent groups s some of which can be used in
any number of problems, Examples of these groups are subroutines of all types,
standard input and output routines, and the mathematical subdivisions of the
problem, It would be desireable to code these pieces without reference to the
other pieces, In order to séparate these pieces completely, it is necessary to
assign a group of instructions a block of storage locations which does not cor-
respond to actual uemory locations; otherwise two blocks of coding might be found
o oceupy the same section of storage, requiring a change in the coding for one
of the two pieces, The "Set Modifier® code word was intended to facilitate this
type of coding, A group of instructions can be coded without reference to actual:
memory locations by starting that group at reladive address 0000, Then by "setting
the modifier" to the "start £ill™ locationthe programmer may position a routine
to any part of memory, An instruction preceded by an "x" will not be incremented,
ind this instruction will still refer to an absoiute memory location. It should
be noted that instructions may be coded for actual locations merely by setting
the modifier to zero (i.e,, imput code word /0000000), Thus no particular re-
strictions are imposed upon the programér by this system.)

If the Program Input Routine detects an erroneous code werd it will return the

typewriter carriage, print "error®, and stép, The last word read frem a or kéye
ooard) contains the,‘en'onemxs cods: o pe (or key -

A tape prepared for this Program Input Routine must comtain typeﬁriter format
control, It is suggested that a carriage return be placed after every four or six
words on tape. If there is no format control and the typewriter carriage is
permitted to space into the automatic carriage return tab a stop may result, The
computer will contimme unaffected if the carriage return key is. depressed,

TIME: _
Instructions are loaded and comverted to bingry at vhe rate of one track every

60 - 70 seconds, The Hex, £ill code loads and computes the check sum at the rate
of one track every 50 . &0 seconds, '

STORAGE :
Locations 0000 through 0263, (3 tracks).
PROGRAM STOPS: -
Location Meaning

No temporary storage,

0062 ' - Erroneous input:cods—word.

0062 The computed check sum 1s -not identical with the
check sum on tape,

£

e X Q

g ¢ E %

(&) (@) 0
g1 125 s

4T 8 S
80047 1 5 s
80x Ty 1281 82

+00¢T1T281$2

;000T1T23182

/000M Ty 5 s,

.000T1T23182

,00000N; N,

v nj n2 n3 m] mp m3 m),

FROGRAM INPUT ROUTINE CODE WORDS
(Program 10.L)

INTERPRETED AS:

Instruction - modified

Instruction - Not modified
Negative instruction - modified
Negative instruction - Not modified

Command, This word is treated as an
instruction to the input routine, using
the following word as data. Following
word is in hex.

Start fill - The first input word will
be stored in location T3 T2 S 32, and
succeeding words will be stored
sequentially.

Set modifier - Set "modifier" location to
Ty T2 8 Sp. Add modifier to all succeed-
- ing instructions not preceded by an "X".

Stop and transfer - Stop (unless BREAK
POINT 32 is down) and transfer to T1 Tp

S1 S2 upon depression of START button
or START COMP. lever,

Hexadecimal words. The next Ny Ny (dec.)

words are hex to be filled sequentially.
1 <N N < 63,

Hexadecimal fill - Fill n} n n3 (hex)
words hexadecimally beginning in location
m m2 m3 ml (hex). 1< m1 np n3 < (2047).
Compute a check sum for these filled
locations and verify this computed check
sum against a previously computed check
sum placed on the tape after the last
word on tape. Do not read and verify the
check sum if the TRANSFER CONTROL button
is depressed.

") represents any one of the 16 LGP-30 orders (or commands) Ty Ty are the
decimal digits for the track part of an address. Sj Sp are the decimal digits

for the sector part of an address.

DATA INPUT NO, 1 SUBROUTINE
(Program 11,0p)

FUNCTION:

To read a decimal number from tape, convert to binary, scale to the
proper binal pcint location, and store the word in a specified drum location,
For each number ‘the following is punched on tape,

1. The decimal point location of the number on tape, counting from
right to left, (One decimal digit designated as "P"),

2, The binal point location desired for +the number to be placed on
érum, (Sign and two decimal digits designated as "g").

3. The drum location to which the number is tc be sent. (2 decimal
digits for track and 2 decimal digits tor sector),

L, The number to be entered (Seven decimal digits plus sign),
INPUT:

For each word to be stored. an identification word (parts 1, 2, & 3
above) and the signed number (part L above) are required.

CALLING SEQUENCE:

Location Order Address

A R (L, + 8)10
=) Lo

A + 2 ete,

OUTPUT :

The scaled binary representation of the number will appear at its
proper drum location,

BXIT:
A "gero'identification word will cause the routine to exit to (¢t 2).

SCALING:

The location of the decimal point in the decimal number is specified
by a number P, which denotes the number of places following the point in the
seven digit field, P can be in the range 0-< P < 9, The location of the
binary point in the full 30 bit binary word is specified by q, the number
of digits preceding the point in the full word. The q can lie in the range

given in the following table,

In order for the number to be representable at a given q, the number
must be less (in absolute value) than 29 However, if too large a q is
used, the number will not reconvert exactly on output, since there will be
too few binary digits following the point to- adequately represent the
fractional port of the number. The following table also gives the maximum
conversion correspondence between P and q.

2+24 (Roo "

PREPARED FOR:

PAGE OF

“TABLE OF P vs gt L
- " . Max q for Exact Min q for Max JOB NO. PROGRAM NO. PROGRAM PREFARED BY: PROGRAM CHECKED 8Y: DATE
B Max g Min g Reconversion No, Size (211 $'s) 11.0g5
= i FROTLEM: EXAN - HD—AY—AIN_PUI NO-
o A7 02 30 2l PLES FOR DATA INPUT # 1
1 + 02 =26 +20 s 3 o k6
: +)i:g o +§3 o NOTES e t!q LOCATION g + NUMBER] ier
3 £37 ~08 +20 +1L SH0,716,2 / 64440424316}/
; b4 -8 120 a 2 (0,716,2,3,4 124611104243
5 +31 -1l +13 +07 "ell)-l 2,3,6,3}! '!0 10104054917}/
13 +28 ~17 +10 0L of(3,012,2. 004/} 4 343,000,0}/
7 +2 -21 06 00 ' t :
8 +21 -2l 103 -03 ,50 0 gt g B
12 +17 <28 00 ~06 Q’O ,b’g) J—t T L [/
TG \)0 ,VDO foo b My o e |
o |1 L 1a ! [I T O I T | /
20 - . \?v f 1
20 = 25 words per minute, Q?‘“ (“‘\' 0-’) |t L | /
ACCURACY : (ﬂ,a %x 5 o } S ol LA A A R A N 1)
: !
The scaled mmber in memory may be inaccurate in the 30th binary position, J” 03 R p N ;
8 T [/. I T OO A I A |
@ A ¥ +
STOR T = :
AGE L L I IR O T Y /
19z locations of instructions and constants. Eight locations of temporary 3 ! T L L T T T W /
storage (Track 63, sectors 03, Ol, L5, 52, Sk, 55, 56, 57.). 11 e Wy ey e i
¥ L§
/ /
PROGRAM STOPS : i bt ! . ~l L
SR DI s - L ! T N A S D /
Loc?a‘b:.on Meaning - T | / RO T O T o T /
(LO + 023“, Divide check in scaling data word I T LA A A A A A L
10 |n]> 23] B
} 1 L4 1 VA Y N Y Y I |
EXAMPLES : (See LGP-30 Data Input 1 load sheet) e ; ot bbb L L ;
—_ | [| L+t & 1 1 1
1. Place +96,140236 in drum Jocation 6234 at a q of +7, : 1] ! ; 11 11 /
L1 i 1
T T
2, Place =,000000597 in drum location 2363 at a q of 1, ! i L1 / [T N T O O | /
. ’ .] , T
3 Place +330000, in drmm:location 21C0 at a q of +30, e R T i
) -t 141 / s I N B N N | !
TAPE FUNCHING INSTRUCTIONS: [RIS 24 B RS i L
i [TR B | ! IO R N U S N | !
1., A11 characters of the I, D, word must be punched.E .g. p anch t }
04096300 completely. The first three characters should not be ! 1 JE | / | T U T B I | /
omitted, The stop code (1) must be the Iast character, L
. T L)
2, Leading zeros of a positive number need not be punched, To [TR L ISR S A R L
enter all zeros merely punch a stop code, All digits of a ; ' L / I _ l ;
negative number must be punched. } ! { S 1
|1 R L S T T /
3. Be sure to check each load sheet to see whether an additional ;
stop code should follow the last number punched. 0=<p=9 Royal McBee Corporation FUNCH A
28 = g = 47 DATA PROCESSING DIV, STOP CODE AFTER
0000 =< Loc == 6363 PORT CHESTER, NEW YORK THE LAST NUMBER?
FORM LP-16 YES]No D J

11

12

Words are interpreted as -+

DATA INPUT NO. 2 SUBROUTINE
i (Program 11.1)
. (T.Kampe - Librascope Incorporated)

FUNCTIONS:

1. To input a sequence of nyn signed seven decimal digit numbers, each
with the same decimal point, convert to binary (all at the same q)
and store sequentially in M, M + 1

OR

2. To input one signed seven decimal digit integer and convert to a
signed binary integer at q = 30.

I.SEQUENTIAL FILL:
Input:

"N" signed decimal numbers on tape and the hexadecimal code word in
the accumulator.

CALLING SEQUENCE:

LOCATTON ORDER ADTRESS

o -1 B L (Code word)

e R (I’o + 0121)10 Track 01, Sector 21.
oS+l U

(L, + 010k4); Track O1, Sector OL.

> - 1 meed wot contain a B order. Any order or sequence of orders that leaves
the code word in the accumulator is permissible,

The code word must be in the form: ny np ng ¢ mom, MmN = (n1

number of words to be filled (in hexadecimal at q = 11)0<N<2048.
C = characteristic of numbers to be filled (number of integers) 0<C<9. See
correspondence of C and g under "Qutput",

M= (my My M3 m) = First address to be filled(in hexadecimal at q = 29).

n2 n3)

Examples:

1. Code word OOF30200 means i1l 10 (F) words, starting in 0200 with
numbers of the form + XXX.XXXX (stored at q = 10)

2, Code word 0318051J.
N = (31)16 = (4910
C=28
M= (051J)1g (0507)lO

Fill 0507, 0508,, 0555 with the next L9 decimal words on tape.
(stored at q = 27),

Output:
Binary representation of words on tape filled sequentially
beginning in location M.

II

c_ q_ Decimal words interpreted as:
0 . 0 + XXX
1 N * X, XXXXXX
2 7 ¥ XX.XKXXX
3 10 * XXX XXX
i 1k * XXXX. XXX
5 17 + XXXXX.XX
6 20 ¥ XXXXXX. X

7 2L ¥ XXKXXXX.

8 27 ¥ XXXXXXXO.
9 30 + XXXXXXXO0O.
Exit:

After all words have beén scaled and stored, the routine exits tox+ 2,
Accuracy: ‘

z—l—a-g-q = 30 for 0<C<6. Exact conversion for 7<C<9.

U5 to 55 words per minute.

Note:
T _If the hexadecimal code word is on tape, replace the©(-1 instruction
of calling sequence by the instructions FOOOO and I0000.

ONE WORD INTEGER CONVERSION:

Input:

One signed decimal integer on tape in the form + XXXXXXX.
Calling Sequence: -

Location Order - Address

oc

° R @ * My

+ 1 U

K42 ete. °
Output s
Binary integer at q = 30 in accumulator.
Accuracy:
Conversion is exact,
w:mcation Meanin,

(1, + 0117) Divide check in scaling data word,

° 10 IN| > 2q

STORAGE: 89 logations of instructions and constants. No temporary storage.
NOTE: When using the one word integer conversion entry (i.e.U Lo) the

accumulator is not cleared before executing the POCO0 and IC000
instructions.

DATA INPUT HO. 3 SUBROUTINE
(Frogram 11.2)

FUNCTION:

To input groups of decimal numbers from tape, each group with the same
decimal point, convert each number to binary, all at the samc g, and store
in consecutive memory locations. This differs from Input No. 1 in that each
group of nuibers, rather than every number, is preceded by an identification
word, The identification word contains P, # ¢, and the location for the first
number to be stored. 11 following numbers of the group. are filled sequentially
at the same P snd g. A "minus zero" number will terminate the group, and
another identification word will be read (See ciamples for "minus zero" format).

QALLII\?G SEQUENCE ¢ Jame as Input No, 1

Location Order Address
= R (1o + 8),,
o +1 i Loy

o + 2 ete. o

EXIT:

A zero iddentification word (normally preccded by a minus zero mmider)
will cause the rovtine to exit to oA + 2.

TINE
LS - 55 vords per minute.
STORAGE :

192 locations of instructions and constants. (3 tracks) Five locations
of temporary ctorage. (Track 63, sector 00, 01, 02, 03, o)

PROGRAM STOP: -

Location_ Meaning
(1o + 0135)10 Divide check in scaling data word |N|> 21
EXAMPLES: (See LGP-30 Data Input 3 Load Sheet)
Group No. 1. Place +96.1,0236 in drum location 623k at q = 7
" -30.00000 " "] 6235 n n
n +03.1h159 n n " 6236 1" n
n -21.50000 " " " 6237 n "

The Minus zero causes identification word No. 2 to be read.

Group No, 2

Place -,000000597 in druin location 2363 at q = -1
" +,000009000 * M " 2L00 * M
" +,000060000 " n " 2&01 [T "

The minvus zero ceanses idéntification word No. 3 to be read.

LGP-30 DATA LOAD SHEET

PREPARED FOR: B PAGE OF

7O NO. FROGRAM NO. PROGRAM PREPARED BY: ROGRAM CHECKED BY:
PROBLEM: -)
EXAMPLES FOR DATA INPUT # 3 |
NOTES e |+ . LOCATION g + \‘ NUMBER gi‘;‘
5 *!O 7 612 3 |l¥ ! !9l§lulolzl316 /
! ! T I | K '!310\|0I0|0I0|0 !
T L % 43\11|LH1|5!9 /
po doov oy J/1-124145,040,0,0 /
b ooy |1}-40,0,0,0,0,040/
9 ‘!11'4 2,3,6,3}11-,0,0,0,0,59,7}/
I IR ST A KA A 1910500}/
b b L0 0 16,0,0,0400
(T I /1-40,0,0,040,040 /
0}+3,012,1,0,0}/1 | 13,3;101040101/
f—t L1t ,;I, -1040,0,0,01040 /
f—t xta\"!vaanlll"
! ! Lo N O T i
Joud T | lw ! [B I O IR | /
1 [/\‘ IR i
! I Lo 1 5 TR O T A I | f
T EPSTIN L S TR S B L
| [/ I W N O | /
k Group No. 3. Place +330000 in drum location 2100 at q = 30.
i The minus zero word causes identification word Nd. L
‘ to be read. Identification word No. L is the extra
—— stop code punched after the last number (see bottom
of 1oad sheet, "Yes" is checked.)
i ‘This enters a zero identification word, so the
subroutine exits to (o4+ 2).
e See Data Input 1 write-up for "Scaling”, "Table of P vs q", and "Tape
I Punching Instructions®.
1 AJ
g i TR | ! ! 1 I | I /
ot 1.4 1 / [T T N D WO | {
Rl X T
! I T L) ! PN T W I I | !
i} b N L { SO VOO I I !
0=p=9 Royal McBee Corporation PUNCH A
8= q=47 DATA PROCESSING DIV, STOP CODE AFTER
0000 == Loc == 6363 PORT CHESIER, NEW YORK THE LAST NUMBER?
FORM LP-16 L yes @ l No_ D .

13

14

DATA OUTPUT NO,). SUBROUTINE
(Program 12'0A)

FUNCTION :

To convert and print a nine decimal digit mmber plus decimal point and
sign (sign if the number is negative).

INPUT:

e ——

The number to be printed in the accumulator and a code number in storage
locationel+ 2 to indicate the number of integers before the decimal point.

CALLING SEQUENCE:

Location Order Address
F-1 B L (v)
o R (Lo + 12)10
of +1 U Lo
K+ 2 Z oboc
L +3 ete.

X - 1 need not contain a bying order. Any order which leaves the
argument in the accumula tor is permissable.

C denotes code number and may be O thru 9.
OUTPUT:

Nine decimal digits plus a sign (or space if the number is positive)
and a decimel point. Leading integral zeros are printed as spaces.

CODE_NUMBER:
c g .of ¥o. Output
0) XXXXXXKRK
1 kL X XXXXKXRX
2 7 XX L XXXXKIK
"3 10 XXX, XXX
L 14 XXKX XXX
5 17 XXXKX L XXX
6 20 XXXXXK . XK
i 2l XXXXXX XK
8 27 \ TXXHAXX. X
9 30 XXXXAXXXX .
MISCELLANEOUS:

Each binary number is scaled and converted as a fraction. The code
number is used by the routine as a print stroke counter. The only format
control is a tab after printing. It is safe to print immediately on exit
from the routine, After printing control is returned toX+ 3.

TIME:

Printing takes about 1.5 seconds including the tab.

ACCURACY s
Maximum error is one in the ninth printed digit.

STORAGE :
121 locations of instructions and constants.,

PROGRAM STOP:

Location Meaning
(Lo + 38) 10 Argument > 10°

DATA OUTFUT NO. 5 SUEROUTINE

(Program 12.h)

FUNCTION:

To print one or more groups of numbers in decimal form where each
group may consist of one or more numbers stored in consecutive memory
locations. All numbers in each group are assigned a specified binal
point location (q) in the calling sequence. -Spacing operations are
executed in place of leading integral zeros.

INPUT:
1. One or more groups of numbers stored in memorj.

2. A calling sequence consisting of pairs of instructions .of the
following kind:

a. The initial location of the group.
b. The number of numbers (N) and the binal point location (q)
of the group.

CALLING SEQUENCE:

Loc. Inst. Add,
o R Lo + 3
AL+ U Lo
ol + 2 Z th;.:l
ol +3 4 51 4
<+]y 4 l'mc.2
KL +g ¥4 No a9
[oc+ 2 1] i I..oc.i
+
[(()(2 j_) + 1]r 2z Ni qi

[(ot+ 2) + 2] ete.

Loc.i = the location of the first number of group i.
N; = number of numbers in group 1. Ny is placed in the track position

(in decimal). 1 <N, < 63. Qi = binal point location of the i’th group.

gy is placed in the sector position (in decimal). O < q <31
Loc.X+ 2y + 2 must not contain a Z order.

OUTPUT :
Each output number will consist of a decimal point and eight (or

more) decimal digits. Each number is followed by the sign if the number

i8 negative, A tab is executed after each number.

Table of q versus Output:

a Output
0 «XEXXX XXX+
0-14 X XXXXXKX*
L~ XX XXXAXXF
*7 - 10 XXX XXXXX+
10 - 1, 3K X XXX+
1 - 17 XXXXX XXX+
17 - 20 XXXXXX XX+
20 - 2, XXXXXXL X+
2y - 27 MXXXXXXK.*
27 - 30 TXXXRXIHK +
30- 31 FXXKXXXKXK, +

#8ee EXAMPLE for the situation requiring the recurrance of upper limit in
successive classes of q.

EXIT:

As was mentioned above under INPUT, a pair of "Z" instructions are
required for defining the group of numbers to be printed. When the last
such group has been printed, the routine will exit to the next instruction

of the calling sequence, and this location will contain a "non- Z" instruc-
tion,

EXAMPIE:

Loc. Inst. Add. Notes

o xR Lo + 3
ol + 1 xU Lo
X+ 2 xZ 2100° @ 0C.q = 2100
=+ 3 xZ oLo7 L’Nla)"; q1=7
oL+)y X2 2110 (2) Loc., = 2110
o+ 5 xZ 1115 : N, =711; q; = 15
L+ 6 xB A (3)

The above calling sequence will cause this subroutine to:

1. Print the contents of locations 2100, 01, 02, and 03 as
XX XXXXXX+ for those numbers numerically smaller than
100.00000 or as XXX.XXXXX+ for those numbers which exceed
this number. (See q of 7 under Table of q vs. Output).

2. Print the contents of 2110 thru 2120 as XXXXX.XXX+

3. Exit tox(+ 6 which is the "non~ Z® instruction te;minating
the calling sequence.

16

Data Output No, 5 Subroutine Program 12.L

PROGRAM STOPS:

Loc, Meaning and Remedy

io + 030L N <1, Depress the start to exit
without printing.

ACCURACY :

. Output is exact (and rounded) for eight printed digits, ’hen more
digits are printed, the ninth printed digit may be high by one or two.

STORAGE :

?2)4 locations of instructions and constants (3 1/2 tracks), Five
locations of temporary storage (track 63, sectors L1, L2, L3, L6, L8).

TOE ¢

30 to 35 words per minute,

NOTES

HEXADECIMAL PUNCH
(Program 13,2)

FUNCTION:

To punch the contents of consecutive memory locations and to compute and punch
a check sum, The output of this routine may be punched on tape through the type-
writer or through the twenty character per-second unit.

INPUT:

Beginning and final locations (L, and L) in decimal.
OUTPUT:

The output of this routine is in the form required by program 10.L

1. An identification word will be the first word punched on tape, This
identification word consists of v N M, where N is the number of words in
the record and M is the initial location (I,) of the record, Both N and
M are in hexadecimal, (001).16 <N < (M)lé-
(a) Example: o »

The identification word vOBL218J' denotes a record of 132 words

beginning in location 3335,

2, After the identification word has been punched the contents of memory

locations Lo through Ly will be punched,* Following every sixth word the
routine will punch a carriage return,

3. When the entire record has been punched the routine will compute the check
sum, punch a carriage return, and then punch the check sum. The check sum
will always be an eight digit word that might contain leading zeros,

PROCEDURE s
A: When the output is through the medium of the typewriter.

1. Depress MANUAL INPUT lever on the typewriter,

2, Transfer to the first location of this routine, -

3. After the "manual imput" light turns on, type the beginning and
final locations in decimal., This will be one eight digit word

- (Lo and Lg),

» Pub break point switch 32 in the UP position.

. Depress the PUNCH ON lever on the typewriter,

. Depress the START COMP, lever on the typewriter,

O\

NOTE: Following step six this program begins punching, After the check sum
has been punched control is returned to step 3 of the procedure where a new Ly and
Ls may be entered, ‘

% Leading zeros are not punched, For the conmtents of a memory location which
contains a zero only the conditional.stop code will be punched,

B, When the output is through the medium of the twemty character per-second
< punch unit,

1, Make sure the input selector switch is turmed to TYPEWRITER,

2, Depress MANUAL INPUT lever on the typewriter, .

3. Transfer to the first location of this routine. ‘

L, After the "Mamual Input" light turns on, type the beginning an
final locations in decimal, This will be one eight digit word
(L, and Lg),

5. Put break point switch 32 in the DOWN position,

6. Turn the output selector switch to PUNCH position,

7. Depress the START COMP, lever on the typewriter.

NOTE: Following step seven this program begins punching, After the check

sun has been punched control is returned to step L of the procedure where a new
L, and Ly may be entered, '

TIME:
A, Approximately 6l words per-minute using the typewriter,

B, Approximately 128 words per-minute using the twemty character per second
punch unit,

STORAGE:

282 locations of instructions and constants. Eleven locations of temporary
on track 63 (sectors 1, 17, 22, 31, 32,35, 38, 43, 48, 53, €0).

17

18

SINE~-COSINE SUBROUTINE
(Program 14.0)

FUNCTION:

To compute the sine or cosine of any given angle. A 9th degree
pPolynomial approximation is used, The argument must be in degrees
and will be reduced to the first quadrant equivalent before computation
of the function.

INPUT:

One word in the accumulator at q = 9.
OUTPUT:

One word in the accumulator at q = 1.
CALLING SEQUENCE:

STIE COSINE

Location Order Address Location Order Address
& -1 B L(Arg.) oc -1 B L{Arg.)
4 (Lo + 249)10 o« R (Io + 19)10
o+l U Io oc + 1 U (Lo + W)yq
o +*2 cte. K+ 2 ete.

o - 1 need not be a B order., Any order or orders that leaves the argumont in
the accumulator is permissable.

ACCURACY:

The maximum error is approximately 5 x lO"?.

TIME:

250 to 275 MS.

STORAGE :

6l locations of instructions and.constants. 6 locations of temporary
storage (Track 63, sectors 02, Ok, 05, 06, 07, L5).

SQUARE ROOT SUBROUTINE
(Program 15.1)

(M. Levy - White Sands Proving Ground,N.Mexico)
FUNCTION:

To compute the square root of any positive number. The argument may be
at any even scale q, and the result is at q/2.

INPUT:

One word in the accumulator at any even q.
QUTFUT:

One word in the accumulator at q/2.
CALLING SEQUENCE:

Location Instruction
o R(Io + 50)4,
o 4+ 1 U Lo
ete,

METHOD:

Newton's method to solve the equation
0=x2_ 5
by the successive zpproximations
X+ lexy + [-1/2] -a/x; + x;].

ACCURACY :

If x is the true square root and x* is the computed root then
x - x¥% < 2 -30 :
Note that if the true square root is digital, then the computed root
is exact. '
TDVE:
Maximum is 510 ms.

STORAGE :

51 locations. No temporary storage.
FROGRAN STOPS:

) (Lo + 2).;)10 Argument is negative; restarting sets the accumulator to
zero and exits.

ARCTANGENT SUBROUTINE
{Program 16,0)

_FUNCTION:
approgmacgmt:stggegr ct;tnlgegztzitagg E;vgggﬁ?r;nd%tgt;rfneg;;ep:m be
given (first or fourth quadrant),
Iweur:
One word in the accumulator at q = 9.
oureur:
One word in the accumilator at q = 9 (degrees),

CALLING SEQUENCE:

Location Order Address
oL -1 B L, (Arg,)
ol R (Lo + 5110
o+ 1 U Lo
o 4 2 ete.

©¢ - 1 need not be a B order, Any order or orders that leaves the argument in the
accumulator is permissable,

ACCURACY :

Meximum error is 5 x 10~! degrees, The output will be between 0°and 89,903
because the argument cgmxo’c, be numerically greater than 512, If the programmer
wants his output tu come closer to 90* he can modity the routine by changing
(Lo + 56)10 and Lo +59)10 from 1 and 2, respectively, at g= 9, to 1 and 2 at some
greateriQy Then the argument must be at 4y

TIME:
320 milliseconds,
STORAGE: '

6l locations of instructions and comstants, 10 locations of temporary storage
(track 63, sectors Ol, 05, 06, 07,08, 09, 10, 13, 50, 51).

EXPONENTIAL SUBROUTINE
(Program 17.0)

FUNCTION:

To evaluate the function X*, where K = 2, e, or 10, and -lsx<l To obtain
higher values of the exponential function, multiply the outpu’c of the subroutineby g
to the integer part of the exponent,

EXAMPLES :

102a5 = 102' § 10,5)
2=3.5 ‘w 23 2=.5
ex.xx = eXe (e ®)
INPUT:
One word in the accumulator at q =1,

OUTPUT:

One word in thé accumulator at q = L.

" CALLING SEQUENCE:

Location Order Address
e 1 B L (Arg.)

ot R (Lo + 0910
oL+ 1 U L, for 2X
%+ 1 U (Lo + 2)3q for e*
oL+l U Lo + 3)10 for 10%
X+ 2 etc,

©4 =~ 1 need not comtain a B order, Any order or orders that.leaves the argu~
ment in the accumilator is permissible,

ACCURACY :

The maximum error is 5 x 107C,.
IDME:

255 to 285 Ms,
STORAGES

63 locations of instructions and constamts,
No temporary storage,

19

20

(Program 18.0)
LOGARITHM SUBROUTINE
FUNCTION:

To compute the logarithm of any given number to the base 2, e, or 10, A 7th
degree polynomial approximation is used, The argmment must be positive, The
base to be used must be specified in the calling sequence.

INPUT:

One word in the accumilator at a positive g,
OUTPUT;

One word in the accumulator at g=6,
CALLING SEQUENCE:

Location Order Address

ot -1 B L (Arg.)
o< R (Lo + 2)4, o

ot +1 U Lo Lo= Initial location of Subroutine,
oL + 2 Z q quo,ofp,]agisina.rgment.
X + 3 Z K K= (0 for log

o< + L ete, 1 for log e

2 for log X

o~ 1 need not be a B order. Any order or orders that leaves the argument in the
accumulator is permissible, . '

NOTES:
. The argument must be greater than zero., The q (mumber of places in the argu-
ment) must be in the range 0<q<3l. If K, the type o§ output, is not equal to O or 1,
the base 10 will be used, . .
ACCURACY:

The maximm error is 3 x 10‘8.

PROGRAM STOPS:

Location Meaning
(Lo + 8)J.O Argument is zero or negative,

TIME

———

.Approﬁ.mate]y (L45 + 30 N) MS, where N is the pumber of leading zeros,
STORAGE :

122 locations of instructions-and consbarts
No temporary storage.

NOTES

ATLPHANUMERIC OUTPUT SUBROUTINE
(Program 19.0)
FUNCTION:
To print (or punch and print) alphabetic and/or numeric information.
INPUT:

A set of code words, where each code word consists of L alphanumeric out-
put codes.,

CALLING SEQUENCE:

Location "~ Order Address
o R Lo
K+l U Lo
o« + 2 [codeword]

» e s

(X +1) +n [Code word containing VQ]
(K +1) +(n+1) etc.,

Where n is the number of code words.

EXAMPLE:
I _INSTRUCTION 5| conrents
PROGRAM INPUT CODES g{ LOCATION SrERATION l DORES g OF ADDRESS NOTES
— ¥
I B
¥
I L
N EfTeT
H i L1t 1 J0 10 [|R! l]i"ol ! A'lr'hnhum_n'n‘in
T g qo gt by oy Uy y Lo {7 Subroutine
£} 1 3
101010104043 * | 4 1012 2,0,1,010,3,8,] ﬁe?ﬁ;gﬁeg§?arr-ﬁe:upr"nt
Ll L 1o s 14,2(018104,1,7]/ P,LC, 3] LGP-30",Tab and
N 10 14]0;14310]V;Q 040}/ 0, Tab, ExiY Exit
R L ogs i) jevey oy |/ Fontinue- with Prog.

This calling sequence will perform a carriage return, print "LGP-30"
and execute a tab.

OUTPUT:

Printing (or punching and printing) of alphanumeric characters selected.

.

ALPHANUMERTIC OUTPUT CODES:

See "6 Bjt Alphanumeric Output Codes" (next page).
EXIT:

The routine will exit to the location following the location containing the
exit code (VQ).

STORAGE :

58 locations of instructions and coﬁstants.
No temporary storage.

TIME:

About LOO characters per minute.
NOTE :

An increase in output speed can be obtained by switching the instruction
in location 0035 with the one in 0036. This will raise output speed to L75

characters per minute. But this change requires that there not be a long
carriage return or tab code as the Lth code of a code word.

21

Leave Routine

6 - BIT ALPHANUMERIC OUTPUT CODES

ok
oJ
1
1J
2
2J

34

3J
Lk

L3
06
0A
26

2A

36
30

08
10
18

20

28

Q

HES RFESEF

FERS

16
-

72
OF
6F

2F .

LF
5k
5J
62

22’

6l

oJ
3F
32
L6

L2.
7

TF:

52

3A.

12,

02

ARCSINE ~ ARCCOSINE SUBROUTINE
(Program 20,0)

FRNCTION :

To compute the aresime or arccosine of amy given valus between <1< X <1, &
Tth. degree polynemial approximation is used,

INPUT:

One word in accumulator at q = 1,
OUTPUT;

One word in the accumslator at q = 9 3, degrees
CALLING SEQUENCE:

Arcsine Arccogine
Location - Order Address Location Order Address
v 3 L (hrg) -1 B L (re.)
i R (L, + 21y, < R (L, * 2
oL+l U L, o+ 1 U (L, + 02139
oLr2 etc, oL+ 2 etc,

o€ - 1 need not be a B order, Any order or orders that leaves the argumemt in the
accumulator is permissable,

Accuracy:

The maximun error is approximately 1,2 x 1076
TIME:

850 to 900 ms.
STORAGE

160 locations of instructions and “onstants, 9 ~of -temporary” storage
(track 63, sectors 12, 16, 18, 19, 20, 21, 23, 2l, 28).

PROGRAM STOPS
Location Meaning
(L, + 0161)1, Argument is larger~than 1 at q = 1.

Note :

Since the square root subroutine is required for the evaluation of either arc-
sine or arc-cosine, the coding, for the former (Program 15.0) is included in
this program (20.0). In those instances in which the square root subroutine
is independently required, the following calling sequence may be used for
square root extraction:

Location Order Address
I | B L(Arg.)

oL R (L, *+ 0150)14
ol 1 U (Lo + 0100)4,
L 42 etc.,

For further information on the square root subroutine see program 15.0.

DEGIMAL -MEMORY FPRINTOUT
(Program 21-.0)7

FUNCTION:

To print the contents of consecutive memory locations in decimal form.
INPUT:

Beginning and final locations and the modifier (all in decimal)
OUTPUT FORMAT:

A. Locations:)
The printed location is equal to the real location minus the modifier
used.

B. Instructions:
1. With modifier subtracted if in the range Modifier <Address<Final
location.

2, If in the range Modifier >Address>Final location
a. Instructions are preceded by an "x" if modifier # O.
b. Instructions arewnot preceded by an "x" if modifier = O

C. Data:
1. In decimal (at q=0) if transfer control button is up.
a. Decimal data preceded by sign and decimal point.

2. In hexadecimal if transfer control button is down.
a. Hexadecimal data preceded by a comma.

Output is six words per line preceded by initial location of the line.
Words are separated by spaces. The sign and decimal point are printed for
decimal data words and a comma is printed for hexadecimal words. Two
carriage returns are given before and after printing.

Note:

Data printed in this manner can be converted to its real decimal value
by multiplying by 29, :

PROCEDURE :

1. Depress MANUAL INPUT Lever on the Typewriter.

2. Transfer to the first location of this routine.

3. After the "manual input" light comes on, type the initial and final
locations (in decimal) into the keyboard.

L. Depress the START COMP. Lever on the Typewriter.

5. After a space is given :and the "manual input" light comes on again,
type in the modifier in decimal.

6. Make sure the TRANSFER CONTROL button is in the defired position -
up for decimal data - down for hexadecimal.

7. Depress the START COMP. Lever on the Typewriter.

8. The position of the TRANSKFER CONTROIL, bubtton may be changed at any
time to change the output format of non instructional words.

TIME s
Approximately 60 words per minute,

STORAGE;
23
256 locations of instructions and constants { L tracks).
No temporary storage.

FIXED POINT TRACING SUBROUTINE

(Program 23,1)
(J. Wilkinson - University of Michigan)

FUNCTION: PROCEDURE :
. To facilitate the checkeout of fixed point programs by providing a a. Tracing Subroutine.
prm'f,ed record of their sequence of instructions and numerical results (1) Load b. Program to be traced.
obtained at each step, _) . ¢+ Subroutines required by traced program.
INPUT: (2) Transfer to the first instruction of the tracing program.
1. Initial contents of accumulator required by the program being\ F ive items of information are to be typed in next, one at a time,
t:faced or monitored, (A) = following the printing by the typewriter of a standard program symbol.
2, An indication of address radix in the form "D:H = " requiping A single depression of the START COMPUTE lever is to follow each stan-
the typewritten symbol "d! or Hhe, dard symbol.
3. Lower and upper limits defining the interval over which tracing :
and printing is to be executed by the program, STANDARD SYMBOL TYPE IN
L. The address at which computation is to begin, symbolized by a "C", (3) () = Starting contents of accumulator if
OUTPUT: . such are required by program traced.
v (L) D = ngn or "h" to designate decimal or
~ INFORMATION SYMBQL hexadecimal addresses.
1, The location of the instruction,, C . . :
2, The instruction expressed ‘ (5) A= —— The address of first traced instruction

in the agreeable radix. This may be
the address of the first instruction in
a subroutine used by the main program
being traced.

_in terms of Order & AdATesS.,...se(C)
3. Contents of the address appearing .
in the instructioNiessecesesassses (M)
li. Contents of the accumulator after

the execution of instruction.sssees (A)
et (6) B = The address of the last instruction

traced. This may be the last instruc-

The actual typed output has the following arrangement for a sample program:
tion in a subroutine used by the main

INSTRUCTION TNSTRUCTION CONTENTS OF CONTENTS OF program rather than the last instruction
COUNTER [ORDER & ADDRESS INSTRUCTION ADIRESS IACCUMULATOR in the latter. ~
1 2 ‘(l'e‘ghe operand) I (@))] C = The address at which computation is to
¢ (©) () (a) begin in the main program being traced.
If the START COMPUTE lever is successively depressed immediately after
1002 b 1019 000q081l; the typewriter prints the symbols "(A)", "D:H", "A", and "C" the follow-
1003 ¢ 1007 ing values will be automatically assigned:
100k h 0800 .
1005 b 0800 0000 0000 (A) 00C00000
1006 m 0804 , Okw3 gbli6 ~ 0000 0000 D:H 4
1007 a 0805 0189 3743 0189 374j 4 0000
1008 h 0800 c 0000
ete, ete.. etc, ete,

The value of "B" cannot be assigned in this way unless the single inst-
ruction G000 is the only one which the tracing program is to report upon.
The valne of “B" must be Lyped and the START COMPUIE lever depressed.

Depression of the START COMPUTE. lever following the typing of the "C"
value will cause the computer to begin executing the tracing program.
Each instruction in the interval A-B will be taken in turn, traced, and

a record printed, After the tracing and printing has been completed for
each instruction the computer will carriage return and stop as the result
of a programmed break-point stop, 23200. This stop will occur after the
completion of the tracing-printing for each instruction. If it 1s desired
that these stops be omitted, and that continuous tracing-printing be done,
then the break-point 32 switch should be depressed.

When the control counter is set to a value outside of the interval A-B,
printing will usually be suspended. However, if the control counter is
outside of the interval A-B and the computer attempts, through a C,H,R,
or Y instruction, to write information into a memory location within the
interval A-B, then that instruction will be traced. A break-point - 16
stop will be executed just preceding the execution of the instruction.
Furthermore, in the case of an R or Y instruction, the contents of the
operand will be printed as an instruction after completion of the instruc-
tion. Finally when the control counter re-enters the interval A-B the
current contents of the accumulator will be printed en a separate line
before tracing the next instruction.

The purpose of providing a means of supressing monitoring when outside
of a specifio range is to permit already-checked-out routines to be run
at greater speed, and to reduce the volume of output to a minimum con-
sistent with an understanding of the program being monitored.

The large number of possible combinations of printing modes occurring

when the program control counter's instruction is inside or outside of

the interval A-B and the possibilities of printing before and/or after
instructiog-execution can best be summarized in tabular form. Accordingly,
the following classification or analysis is presented for clarity.

PRINTING DONE BY THE TRACING FROGRAM
WHEN THE INSTRUCTION APPEARING IN THE
CONTROL COUNTER IS IN THE INTERVAL A-B

. LGP-30 PRINTING DONE
DRDER STRUCTURE BEFURE COMFUTER PRINTING DONE
OPERATION EXECUTES INSTRUCTION ER COMPUTER
XECUTES INSFRUC:
Instruction| Instruction| Contents of
Counter Inst, Addresd
4,D,E,M,N,S c (c) (Mn)* A
B c (c) (Mn) . ———
I,p,2 c (c) —— ——
C,H c (c) _— —
R c (c) - (ui)*
Y ¢ (c) - (Mi)
T C (c) — ——-
U c (c) -— ——

* .

(Mi) represents the contents of the memory location referenced by the
current instruction, printed as an instruction; (Mn) represents the con-
tents of .the memory location referenced by the current instruction.

PRINTING DONE BY THE TRACING PROGRAM
WHEN THE INSTRUCTION APPEARING IN THE
CONTROL COUNTER IS OUTSIDE THE INTERVAL A-B
LGP-30 PRINTING DONE PRINTING DONE
DRDER STRUCTURE BEFORE COMPUTER AFTER COMPUTER
OPERATION EXECUTES INSTRUCTION EXECUTES INSTRUCT ION
{Instruction Instruction| Contents of
Counter . Instr.Address
CiH c () (a) - o=
R C (C) —— (M)
Y C (c) (a) (M)
T c (©) _— . *
U c (C) — #*

% In addition to the above printing, the contents of the accumulator will
be printed on a separate line preceded by a "(A)=" if the control counter
enters that range after having been outside of the A-B interval,

SPECIAL FEATURES:

In order to permit running through stop instructions following print
orders, when the control counter is within the A-B interval, all z0000
instructions are done as though they were written 20400 and all other
stop instructions are done as though written 2z0800. . When the control
counter is out of the interval A-B all stops are ignored.

When the control counter address is outside the interval A-B, all print
instructions are done as written. When inside the limits, format-control
instructions (space, lower case, upper case, color chift, carriage return,
back-space, and tabulate) will not be done. Instead, an abbreviation of
the function will be printed, as "tab" for tabulate, etc.. All monitor
printing is done in lower case, but a record is kept of the most recent
case-shift, and print instructions are done in either upper or lower

case accordingly.

The "TRANSFER CONTROL" switch functions normally with respect to the program
being monitored.
STORAGE: ' Nine tracks of storage, constants, and temporaries,

TIME: About 3.8 seconds per instruction when monitor-printing, and about
0.7 seconds per instruction when not printing.

25,

FLOATING POINT TRACE ROUTINE
(Program 23.L)

FUNCTION:

To trace all floating point instructions defined by program 24.0 except 800t
and Rxxxx,

INPUT:

A tape punched with the decimal locations of instructions to be traced, each
followed by the conditional stop code. The final location is followed by 80000000.

PROCEDURE :

Enter the trace routine at.Lo and read in the locations tape. As each location
is read, the instruction in that location is tagged with a 1 at 2 and restored in
memory. After the final location has been tagged, a halt is executed in Lo + 106
and pressing the start switch transfers control to the program input routine.
OUTPUT:

Execution of a tagged instruction is followed by a carriage return, print of the
decimal location, a tab and a print of the contents of the floating point accumulator.

DE-TAG PROCEDURE:

Enter the trace routine at Lo + 25 and re-read the locations tape. Instructions
are detagged and program 24,0 is restored. Tracing may be halted without detagging
by entering Lo + 25 and giving zero as an address. Also, tracing may be resumed by
entering Lo and giving zero as an address.

TIME:
One extra drum revolution per instruction plus printing time.

STORAGE :

127 locations of instructions and constants. 3 locations of temporary storage.
(Track 63, sectors 10, 52, 58).

NOTE :
The symbol Lf used in the coding refers to the initial location of program 2l,0,

The decimal program tape assumes L. = 4OOO. If this is not the case the tape
must be repunched with the correct address. See coding sheets for those instructions

which refer to program 2L4.0.

This routine was suggested by Mr. A. J. Ness of Reaction Motors, Inc., and
modified at Lehigh University.

26

NOTES

FLOATING POINT INTERPRETIVE SYSTEM
(Program 24,0)

PART 1
SECTION I: FUNCTION

The function of this floating point system is the re-interpretation
of the IGP-30 fixed point order structure so that it may be programmed
as a floating point computer, This re~interpretation is effected by:

(1) The provision of a multiplier register and an address
register as well as a floating point accumulator,

(2) The provision of more types of orders including cumulative
multiply, shift, sign change, and function generating orders,

(3) A broadenming of the scope of certain instructions such as
the input instruction and the print instruction,

SECTION II: GENFERAL CHARACTERISTICS

Floating point programming has several advantages over fixed
point programming in that it is more rapid, does not require an
exact knowledge of the range of magnitude of the variables, and does
not involve as much truncation of the smaller values when that range
is large. Thirty-three orders are provided for in the system, All
of these orders except input, output, sine, cosine, arctangent,
logarithm, and exponential are included in that section of the system
known as the floating point interpretive routine. This routine requires
only 10 out of the 6l tracks of LGP-30 memory leaving 3456 words -
available for problem program and data storage, The input and ocutput
orders require 6 tracks and the floating point functions require 7
tracks. The entire system leaves 262l words of memory left for
problem program and data storage.

Generally tne execution of a floating point program will take 10
to 20 times as long as the execution of the corresponding fixed point

program,

Times for the execution of the individual floating point orders
are included in the summary tabulation at the end of Part 2,

SECTION IIT: REGISTERS

(1) The floating point accumulator occupies 2 words

of memory, one for the characteristic of a floating point

number and one for the exponent, The floating point accumilator
is similar in function to the fixed point accumulator; it holds
intermediate results.

(2) The multiplier (M) register occupies 2 words of memory, one
for the characteristic of a floating point number and one for the

SECTION III: REGISTERS

exponent. The multiplier register holds the multiplier for the reset and
multiply order and for the cumulative multiply order.

(3) The address accumulator occupies 1 word of memory and holds
a single address or tally which is the same in form as for fixed
point operations.

(L) The contents of none of these registers is changed unless
replaced by a new result. For example, the M register remains
unchanged following execution of a square root or multiply
instruction. Nor is the contents of any memory location changed
except when affected as specifically noted in the order description
in the section that follows,

SECTION IV: FLOATING POINT ORDERS

Thirty-three orders are available. The list of these orders and

their meaning follows. In the following exposition the term "accumulator
refers to the two memory cells of the floating point accumulator as
defined above,

A, Arithmetic Instructions
ﬁemory Tocation XXXX is the address of one floating point
number in standard form as defined in Part 2.

1. B XXXX. Bri
The contents of memory location XXXX replace the contents
of the accumulator.

2. A XXX, Add.
The contents of the accumulator plus the contents of
memory location XXXX replace. the contents of the accumulator.

3. S XXXX. Subtract.
The contents of the accumulator minus the contents of
memory location XXXX replace the contents of the
accumulator,

L. D XXXX. Divide.
The contents of the accumulator divided by the contents
of memory location XXXX replace the contents of the
accumulator,

5. P IXXX. PFlace.
The contents of memory location XXXX replace the contents of the
M register,

6. M XXXX. Reset and Multipl
The contents of the M register multiplied by the contents of
memory location XXXX replace the contents of the accumulator,

7. N XXXX. Cumulative Multiply.
The contents of the M register multiplied by the contents of
memory location YXXX and mdded to the contents of the accumulator
veplace the contents of the accumulator.

28

8.

9.

10.

11.

FLOATING FOINT INTERPRETIVE SYSTEM
(Program 24.0)
PART I
D 000y. Right Shift
The contents of the accumulator divided by 2¥ replace the contents of
the accumulator. The contents of accumulator remain in floating point
form,
0<y<9

M 000y. Left Shift

The contents of the accumblator multiplied by 2¥ replace the contents
of the accumulator. The contents of accumulator remain in floating
point form.

0=vys<?9

H XXXX. Hold
Place the contents of the accumulator in memory location XXXX.

C XXXX. Clear v
Place the contents of the accumulator in memory location XXXX and set
the accumulator to zero.

B. Logical or Transfer Instructions

12,

13.

‘1’4-

U XXXX. Unconditional Transfer

The next instruction to be interpreted is in memory locatioun XXXX. .
This order cannot be used to exit from the floating point interpretive
system,

T XXXX. Test)

The next instruction to be interpreted is in memory location XXXX if
the aceumulator is negative. Otherwise the first successive location
will be interpreted.

800T XXXX. Transfer Control

The next instruction to be interpreted will be in memory location XXXX
if either the accumulator has a negative characteristic or the transfer
control switch is down. Otherwise the first successive location will
be interpreted.

C. Address Modification Instructions

15.

16.

17.

Location XXXX implies a fixed point address.

E XXXX. Enter
The address portion of memory location XXX replaces the contents of
the address accumulator.

I XXXX. Increment

The address accumulator is incremented by the address XXXX. This order
can be used to decrement the address accumulator by complementing the
address portion of the I XXXX order.

Y XXXX. Store Address
The address portion of %the address accummlator replaces the contents
of the address portion of memory location XXXX,

SECTION IV:

FLOATING POINT ORDERS

D.

18. Z XXXX. Zero Test
The address of the "Z" instruction is subtracted from the
contents of the address accumulator. If the result is
not zero, the first successive instruction is interpreted.
If the result is zero, the first successive instruction is
skipped and the second successive instruction is interpreted.

Auxiliary Instructions

19. R XXXX. Return Address
The location of this imstruction is increased by 2 and is
stored in the address portion of memory location XXXX.

20, U 0000. Reverse Registers
The contents of the M register and accumulator are interchanged.

21, B 0000. Set Sign Plus
The sign of the accumulator is made positive if not
already so.

22, T 0000. Set Sign Minus
The sign of the accumulator is made negative if not
already so.

Y 0000 Change Sign
The sign of the accumulator is reversed,

23

24, Z 0000. Stop
Computation is halted unless break point switch No. 16
is down. Depressing the start button causes the next
instruction to be interpreted.

25. E 0000, Exit
Exit. from the floating point interpretive system.
Contrnl is returned to the location following the location
of the E 0000 imstruction.

Input-Output Instructions

26, I 0000. Input
Control is transferred to a floating point data input
subroutine which reads decimally punched numbers on
tape, converts them to floating binary, and stores them.
The next instruction is interpreted after the proper
exit code has been read from tape. See Section V, Part I
for tape format and input details.

27. P 0000. Print

Print the contents of the accumulator, The contents of
the agcumulator are not destroyed. See Section VI, Part 1
for Output format.)

SECTION IV: FLOATING POINT ORDERS
F. Tunction Evaluation Instructions

28. R 0000. Square root
The squaré root of the contents of the accumilator replaces The printed output consists of a decimal point followed by seven

the contents of the accumulator. decimal digits of the characteristic and its sign. Following the sign
29. S 0000. Sine there are two spaces followed by the exponent and ite sign (if the sign
The sine e contents of the accumilator replaces the is negative). e.g. .5060000- 02 is -50.60000., A tab is executed after

contents of the accumulator. The accumulator must be in printing.
radian measure.

SECTION VI: DATA OUTPUT FORMAT

30. C 0000, Cosine
The cosine of the contents of the accumulator replaces the
contents of the accumulator. The accumulator must be in
radian measure.

31. A 0000. Arctengent
The arctangent of the contents of the accumulator replaces
the contents of the accumulator. Output is in radian measure.
32. N 0000. Natural Logarithm

The natural logarithm of the contents of the accumulator
replaces the contents of the accumulator.

33. H 0000. Exponential
The quantity eX replaces the contents of the accumulator, where
x is initially the contents of the accumulator.

SECTION V: DATA INPUT FORMAT
Data Input is accomplished by reading a prepunched decimal tape.
The tape consists of groups of the following:

1. One identification word. This consists of a sign and o
decimal digits for P, followéd by four decimal digits
for initial location to begin storing tke converted floating
floating point binary numbers.

2. Signed decimal numbers. Each number consists of a sign
(if negative) and seven decimal digits.

3. A "minus zero" word. This consists of a minus sign followed
by seven zeros. This number is not stored in memoryy,but
is used by the routine to signal the end of the group.

A stop code must follow the last "minus zero" word. This is interpreted
as a M"zero" identification (I.D.) word since it follows the "minus zero" data
word. It causes the system to exit from the subroutine,carriage return, and
interpret the instruction following the I 0000 imstruction.

P denotes the number of decimal places following the point in the seven
digit field. -6 < P < 16. Internally the exponent must be in the range
-32 < Exp. < 31. ’

FLOATING POINT INTERPRETIVE SYSTEM
{Program 21,,0)

PART 2

Note: Refer to Part 1 for FUNCTION, REGISTERS, ORDERS, and INPUT and
OUTPUT FORMAT,

INPUT:

Floating point numbers on tape or in memory, or numbers in the
pseudo registers resulting from previous operations.

JALLING SEQUENCE :

Location Order Address

o R Lo

o +1 1) Lo

OL * 2 . .
&l + 3 . .

. . . Floating point operations

o +n E 0000 "Exit" instruction
oL +n+l ete, Resume fixed point

operation.

INTERNAL NUMBER FORMAT:

A standard floating point number as carried in memory consists of
sign and 2|, bits for characteristic (x) and sign and 5 bits for the
exponent (y). However, all intermediate calculations (i.e., numbers
appearing only in accumulator and multiplier registers) are carried with
30 bits of characteristic and 30 bits of exponent., Each factor of any
calculation must be in standard floating point form. (N = x¢2¥ ; .5<ixi<1,
or x = 0; =32<y <31), Numbers appearing in accumulator or M registers
are in the range .25 < ixi< ,5 or x = 0, N is defined as the original un-
scaled number, -

The standard floating point binary form:

z e s PO o x XK
Sign of Characteristic Sign of exponent Exponent
Characteristic 2l bits, 5 bits
0 for plus 0 for plus Power of 2
1 for minus 1 for minus '

DATA TAPE PREPARATION:

411 characters of the I.D. word should bs punched. E.g.
-0120L0! must contain eight charscters including the stop
code, The stop code (') must be the last character punched.

2. Punch only those I.D, words appearing on the load sheet.
Do not punch the stop code if an I,D, word is not present,

3. The sign and any leading zeros of a positive number need
not be punched, To emter all zeros merely punch a stop
code, The sign and all seven digits of a negative number
must be punched,

Be sure to check each load sheet to see whether an additional
stop. code should follow the last mumber punched.

4
3

The interpretive routine exists to the fipst location following the
E 0000 instruction,

SUBROUTINE MEMORY RELATIONSHIPS:

The arithmetic, logical, address modification, and auxiliary instruc-
tions have been coded as a unified group on a single set of coding sheets
("Floating Point Interpretive Routine"), A single corresponding tape
has been punched for this set, In many ingtances the programmer will
wish Yo use just this part of the floating point system, if so, only
this tape need be stored in the memory., This will leave 5 tracks
for program instructions and. data in contrast o 41 when the entire
system is used,

In other cases the Input-Output and/or function evaluation routines may
be needed, Only those routines actually used need be stored on the
drum. These required routines must be stored on the drum in the
following relationship:

Program Routine Start Fill Set Modifier No, of Tracks
24,0 Interpretive (Includes,’) Lo Lo 10
11,6-12,6 Input-Output Lo + 1000 Lo + 1000 6
1.1 ‘Sine-Cosine Lo + 1600 Lo 21/2
16.2 Arctangent Lo + 1832 Lo 11/2
18.1 Logarithm Lo + 2000 Lo 1
17.1 Exponential Lo + 2100 Lo 2

ALl track 63 except sectors 10, 15, 16, 23, 27, 29, 3L, 36, LO,
L7 thru 50, 52, 56 thru 58, €0 and 63 is used for temporary storage by
various parts of the system., Therefore Lo should be set such that no
part of the floating point system used is stored in track 63.

PROGRAM STOPS:

Location Order Mezning amd Remedy

Lo + 065 Z 0000 Programmed stop, Depress "start" to continue,

Lo + 0557 H XXX Exponent is too large. Location of instruction
or being executed is in the real accumulator,
C Xxxx Start to continue,

Lo + 0557 R 0000 Accumulator is negative, Location of instruction
being executed is in the real accumilator,
Start to continue,

Lo + 1152 I 0000 Input data has too large an exponent. A start
will store a zero for that word and continue
with next word on tape,

Lo + 0612 D XXXX Division by zero or a non-floated number.
Do not continue,
Lo +2005 N 0000 Accumulator is <0, A start continues with
an answer of zero,
Lo $,2028 N 0000 Accumulator exponent is not in range, Do not
Lo + 2030 continue,
‘TIME s
See summary tabulation.
EXAMPLE ;
See the following LGP-30 coding sheet.
NOTES :

1, The floating point system may be left and re~entered without des-
troying the contents of the registers,

2, The exponent of a number in a register which is to be stored in
memory must be less than +32, or a range error will result. If it is
less than-32., the number is replaced by zero.

3. Tt is strongly suggested that the initial location occupied by
the system be the 00 sector of a track, If it is not, many of the
addresses that refer to track 63 are not optimum,

L., It is also suggested that the entire system be placed in memory
and punched out in parts by program 13.2. Then the parts needed may
be loaded by program 10.l and each -check sum may be verified,

5. All instructions with zero addresses have special interpretations.
None of these zero addresses refer to memory location "“zero", (0000},
?ut rather designate a .special interpretive instruction., This float=
ing point system employs sixteen special instructions, Furthermore,
the two shift instructions (D 000y, M 000y) utilize the next nine
addresses (G001 through 0009); hence the divide and reset and multiply
instructions cannot use these addresses,

NOTES

31

SUMMARY TABULATION
T IME

1T Jo 0T 9ded

" ORDER RESULT IF ADDRESS &£) # 0 RESULT IF ADDRESS = O TIME
z | C (Add.Acc) - €9 = 07 NotNo Skip
Yes: Skip 133 ms Stop (SW No, 16) .Proceed on start 117 ms

B C&)—>Ace. 233 ms Maké C (ACC.) fbositive 150 ms
Y C (Add.Acc.)— Add. of &9) 150 ms Complement C (Acc.) 150 ms
R (Loc. of R) + 2—>Add. of (=) 166 ms V€ (4ce.) —> Acc. 500 ms
I C(Add, Acc.) + (£)—> Add. Acc. | 150 ms Input floating point data 4O/min,
D C(Acc.) = C (£)—>Acc. 283 ms C(Acc.) * 2—?;Acc. 1R3 ms
N C(M) x C (x) + C(Acc.)— Acc. 566 ms In C(Acc.)—>Acc, kSOO ms
M C(M) x C 69— Ace. 266 ms C(Acc.) x 2—>Acc. 150 ms
P Ce)—> M 217 ms Print C(Acc.) 1.85 sec,
E Cl[Add. (o) 1—s Add. Acc. 150 ms Exj.t from interpretive routine 117 ms
U Next abstract order taken from () 1117 ms C(Acc.)—>M; C (M) — Acc. 200 ms
T Transfer if C(Acc.) is negative 133 ms Make C(Acc.) negative 150 ms
H C(Acc,.) —> () 200 ms C (Acc.)— Acc. 450 ms
C C(Acc.)—>(xX); O—>Acc. 233 ms Cosine C(Acc.)—> Acc. 517 ms
A C(Ace.) + C ()—>Acc. 1400 ms Arctangent. C(Acc.)—> Acc. L50 ms
S C(Ace,) = Cx)—>Acc. 417 ms Sine C(Acc.)—> Acc. 550 ms

-Add, Acc. = Address Accumulator register

#Address = O: except for instructions "M 0000(" and "D OOOOU

M = Multiplier register

Acc. = Floating point Accumulator
= any address

c = Contents of

where 0 << 9,

———) = Is stored in

All times are approximate and will vary with the amount of overflow and/or underflow. Actual times should be
32 slightly less than listed. Time will usually be reduced if any factor is zero.

LGP-30 DATA LOAD SHEET

Floating Point Data Input

LGP-30 CODING SHEET

PORT CHESTER, NEW YORK

Wwwmmm—m % = e — =
TLLUSTRATIVE EXAMPLE FOR: FLOATING POINT INTERPRETIVE SYSTE /1
308 NO. PROGRAM NO. PROGRAM FREPARED BY: PROGRAM CHECKED BY: DATE [758 NG, PROGRAM NO. FROGRAM PREPARED BY: PROGRAM CHECKED BY: DATE
ONE 2l;.0 l G.L:¥. i ~ M.K. REV: 6/26/591 2l.0 G.L.W. M.K REV: 6/26/59
TROBLEM: YOATA TNFUT NO- PROBLEM: TRACK
CODING FOR Lth. DEGREE POLYNOMIAL i CODING FOR Lith. DEGREE POLYNOMIAL _
NOTES o] il p | tocaton é + NUMBER giﬁ: PROGRAM INPUT CODES é LOCATION: opERA1::SJRliCT‘(A):$Ress é Sonents, NOTES
X boroonl]l popoo0p}l 11000021500}
Ao [T g Pl v 1010 10 42 1510 40 !
Aq Lol B hoPopPti -3<P< 15 R AN B A pgop) KRBOPP ! PEnter Interpretive
) : : o ; soLcp0pll 0000<Loc<6363 L1t 3 L1y e ? 0 oo/ Routine
A3 ' et l 7800001/ I R Lol KEppopl! Input Coefficients
A) T 1y o 0000011 TR B g loply 1 BEQQPAT ! 12005 ?:gtial IIEESS
T A l-!0,0,0,0l0,0‘OI S gl | FPOOK LS 2005
(- RS L I T / IR N I poteqs i B'DDI'lB /| Zero
Pl Uy et Y AL A Lpoged g KLy g 117 An Addn'th”efﬁgi:?t
TN I N L ST U I B R I N Lyl garpppall amOOS"'M%%%@@SﬁM
- T L VI O T B i S O T T DO | g gogs L I I FPOP 61/ a[2005+n]§3 P8 cEOREoB686°
T / AR B ! I B paote] xpeodpls Tost for finish.
|1 RN L I B T B ! VIR O T [LRI UPOH.ILL /{Not finiished]
T i IR ! TR R Lyl XPPPDD I\ Print result here:Finished
J—t a4t N / I I S p vzl XKEODPOO / Exit
P I A B AR A I L ol Lwpli xkgpopo|fistop Fixed point inst.
ped e Ml ey P R A L xupoDo!/Move Accum.to Reglster
|1 I L IR N T T B ! 11|§||1 UL .mmgoomr’ Multigly by X
Pt e e 0L I S R L yvs|l il mpoDplbl’] Return ifor next term.
-t S L AN T T ! TS N N L7l XKizP 0D £ 1/] Initlall coefficient.
T T 1A I AN O A A B L TS I RTINS BN I N RO B
' L 4 L - Lt !
pode s e e P RIS B Pyl e bl
gn«|.’5q|i|||/_ TN S S S 1|210|!|!ill/
- pa ! T T Tt l,‘% O T PN 28 LI TN N O O T /
ot . N T I ! Y U S B S T L 0 T T T T O /
pod e ey P Li gty BN CINER N T O O A 4
1 T L IR B B / NN I 1t Lgzde b1y f HEm
|t L1y ! NI T T Tt ! [} il Pojzasboe 1o ! L
. ..n’!.nxnlil Lit gl pzge by LY
;;:.u’é.;.llnf R R gl e
{1...’1.:1;1.’ LTI T pazge b b ta !
b r|l’!iLllll/[PR O T T B 11219|lllllj'|/
Royal McBee Corporation PUNCH A R s Lt 111y Lo ff
DATA PROCESSING DIV. SYOP CODE AFTER Ly 4t 1131 A IR I I L
PORT CHESTER. NEW YORK THE hst IR FORM LP-10 Royal McBee Corporation CARRIAGE RETURN
CORM P18 Yi5 I NO D DATA PROCESSING DIv.] = CONDITIONAL $TOP CODE 33

34

FLOAT AND UNFLOAT SUBROUTINES
(Program 25.0R)

FUNCTION:

A. To convert a fixed point binary number to standard floating point form
as defined in program 24.0. This is called "floating" a number, or

B. To take a floating point mumber as used by program 24.0, and convert
it to fixed point form. This process is called "unfloating" a number.

INPUT;

The number to be operated upon. in the accumulator.

CALLING SEQUENCES:

A, ' Float B. Unfloat
o-1 BL (No.) (Fixed point number) # -"1-B L{No.)(Floating point no.)
o R (Io + 25)q, o< R (Lo + 0148)44
A +1 U Lo - &+ 1 U (Lo + 0122)44
£ +2 7 q (g of fixed point number) oC +2 Z q (q of unficated number)
2 + 3 ete. ol + 3 ete,
&£ - 1 need not contain a B order. Any order which leaves the number to be

floated, or unfloated, in the accumulator is permissable.

OUTPUT:

a, The number in standard floating point form in the accumulator, or
B. The nmumber in fixed point form at the g specified in calling sequence
B in the accumulator. ’

PROGRAM STOPS:

Loc. Routine Meaning
Lo + 0512 Unfloat Number is too large to unfloat to
the specified q.
Lo + 0262 Float Exponent > 32, so cannot be expressed
as a floating point number.
EXIT:

For either subroutine, exit is too(+ 3.

TIME: Float -- (150 + 16 n) MS where n is the number of leading zeros.
Unfloat -<=== 150 MS.

STORAGE: 192 locations of instructions and constants, (3 tracks).

No temporary storage.

SEARCH FO™ ADDRESS
(Prozram 26.2)

_FUNCTION:

To search the drum and determine if a given address is in the . address portion
of the words in locations 0000 through 6263. If such a word is found, its location
and the operation code corresponding to bits 11 through 15 of that word are
printed; the search then continues. Bits outside the operation and address
portions of the words are disregarded. The search does not alter the contents of
the locations searched.

INPUT:

The decimal track and sector for which the search is to be made, e.g., 0237
for track 2, sector 37.

OUTPUT:
All locations in 0000-6263 containing the given address will be printed in
decimal followed by the operation code found in that location. The printing of

each location and operation is preceded hy a tabulation,

PRCCEDURE FOR MANUAL OPEXATION:

Transfer ‘o the first location of the routine with the MANUAL INPUT lever of
the typewriter down. When the input light glows, type the four character decimal
dddress and then depress the START COMP. lever on the tynewriter. When the search
is completed, the input light on the typewriter will again go on, and a new address
for the search may then be typed.

STORAGE:

64 locations of storage are required. No tewporary storage is needed, so the
routine may occupy tracl: 63,

TIME:
Each search requires about 2 3/4 minutes exclusive of printing.

NOTES ¢

This program requires that Program Input Routine (Program 10.4) be in locations
0000-0263. This orogram may be relocated. However, if locations Lo + 0016 and

Lo + 0048 are not in tracl 63, then they will be printed as two of the locations
where the given address occurs.

If it is desired to search for all references to a given track, insert

xz6300 in location Lo + 0021. The input must still be the four character decimal
track and "sector" desired, e.g., 2300 for track 23,

NOTES

NOTES

35

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

