H1-02.0

",

GENERAL PRECISION, INC.

Commercial Computer Division

+42-0

PURDUE FLOATING POINT
INTERPRETIVE SYSTEM

for the n p . 40 o DGeneral Precision Electronic Computer

© 1964, General Precision, Inc.

Developed by
School of Electrical Engineering

~ Purdue University

PROGRAM NO. H1-02.0

TABLE OF CONTENTS

SECTION 1 BASIC PROGRAMMING

Introduction

Available Functions

Memory

Numbers

Instructions

1.5.1 Arithmetic Instructions

1.5.2 Storage Instructions

1.5.3 Functions

1.5.4 Sequence-Changing Instructions
1.5.5 1Input and Output Instructions
Program Input and Operation
Programming Examples 1 and 2
Program Preparation

Post Mortem and Causes

SECTION 2 ADVANCED PROGRAMMING

[\ST S IV
W N

2.4

Introduction

Floating Point Numbers

Additional Instructions

2.3.1 Additional Arithmetic Instructions

2.3.2 Additional Storage Instructions

2.3.3 Additional Function

2.3.4 Additional Sequence-Changing Instructions
2.3.5 Additional Input and Output Instructions
Index Registers

2.4.1 Description

2.4.2 Instructions

2.4.3 Address Modification

2.4.4 Example

Alphanumeric Printing

2.5.1 Additional Output Instructions

2.5.2 ABC Character Codes

2.5.3 Use of ABC

Decimal Memory Printout

Subroutines

SECTION 3 FURTHER PROGRAMMING

3.1 Introduction
3.2 Subroutine Construction
3.2.1 Subroutine Instruction
3.2.2 Example of Subroutine Instruction
3 Manual Intervention
4 Address-Changing Instruction
5 Additional Index Register Instructions
6 Additional Note on ABC
7 Coding Sheet Data Entry
.8 Programs for General Locations
9 Additional Loading Code Words
10 PINT Stop Button
11 Compatible Output
12 Input Duplication
13 Errors Detected by Load and Input Routines
.14 Basic Machine Language
3.15 PINT Summary
Post Mortem Causes
Program Loading Code Words
Rules for Numbers
Memory

SECTION 4 TECHNICAL CHARACTERISTICS OF PINT

4.1 Memory

4,2 PINT Instructions
4,3 PINT Numbers

4.4 Interpretation
4.5 Tagging

4.6 Comments

4.7 Speed

SECTION 5 EXTENDED MEMORY APPENDIX

SECTION 6 OPERATING PROCEDURES

To Turn the RPC-4000 ON and OFF

To Load the PINT Interpretive System

To Load a PINT Program

To Correct a Program

To Trace a Program

To Print Out a Program from Memory - DUMP
Post Mortem

Error Printouts

To Load a Subroutine

Sense Switch Options

oo
*® e e & o 0
~No s WD

.

o O
L]
O 00

SECTION 1

BASIC PROGRAMMING OF PINT

1.1 Introduction

PINT, an interpretive system for the RPC-4000 computer, is designed to
make the coding of problems for the RPC-4000 as simple as possible and
to assist the programmer in carrying out many of the things which are

often confusing or difficult to do. The system is quite flexible and

yet is very easy to program and operate,. :

PINT is a program written for the RPC-4000 to enable it to understand
an instruction code which is not its basic language. The program works
with ordinary decimal numbers. The program carries out operations on
these decimal numbers by interpreting the instructions which it is
given.

1.2 Available Functions

PINT provides for:

Program loading
Data input
Data output (printing and punching)
Basic orders for
a. Arithmetic
b. Sin, cos, arctan, square root, ab, eX, 10%, loge, log;q
c. Logical decisions
d. Input and output
*e., Index Registers
**f, Address modification (without index registers)
**g_ External intervention
5. Post Mortem
*6.” Decimal memory printout
*7. - Trace routine
*8. Alphanumeric output
*%*9_, Subroutines -
*%10, Basic language connections

.

TR

*Items discussed in section 2.
**Items discussed in section 3.

1.3 Memory

PINT has 1000 storage locations, numbered from 000 through 999. One
instruction or one number occupies one PINT location, and certain pro-
grammed features make it impossible to accidentally use instructions
for numbers or vice versa.

1.4 Numbers

The format for the input of numbers into the computer is the same as
the format in which you would ordinarily write decimal numbers, with
the following restrictions:

a. The number must start with its sign (+ or -).

b. The decimal point must appear within the number in its proper
place.

¢c. No more than 8 actual digits may be used, but fewer are per-
mitted.

d. The number must be followed by an asterisk (*), called a
"stop code".

Examples of input and output formats are given below:

Number Input Format Output Format
2 +2,0% 2.000000
-0.673 -0.6730% -.6730000

106.3725823 +106,37258* 106,3726

1.5 Instructions

Instructions are of the form @@@xxx where @@J¥ is the operation code and
xxxX is the address of the operand involved. When we define the individ-
ual instructions, it is handy to have some abbreviations for the quan-
tities being processed. We will use xxx to refer to a general, three-
digit address. We will use the symbol c() to mean 'the contents of the
location specified by the number in the parentheses." For example,
c(132) means the number in location 132, and c(a) means the number in
the accumulator. The following are the basic instructions for PINT.
Other available instructions are discussed in sections 2 and 3.

1.5.1 Arithmetic Instructions

ADDxxx ADD c(xxx) to c(a) and leave in accumulator without changing
c(xxx).

SUBxxx SUBtract c(xxx) from c(a) and leave in accumulator without
changing c(xxx).

MULxxx MULtiply c(xxx) by c(a) and leave in accumulator without
changing c(xxx).

DIVxxx DIVide c(a) by c(xxx) and leave in accumulator without
changing c(xxx).

POSO00 Make c(a) have a POSitive sign (absolute value).

1.5.2 Storage Instructions

CCFxxx Copy Contents From xxx into the accumulator without changing
c(xxx).

CCIxxx Copy Contents of accumulator Into location xxx without chang-
ing c(a).

1.5.3 Functions

SQRO00O Form the SQuare Root of c(a) and leave in accumulator
~ [c(a) can't be negative].
SINOOO - Form SIN c(a) and leave in accumulator [c(a) in radians].
COS000- Form COS c(a) and leave in accumulator [c(a) in radians].
ATNOOO Form ArcTaN c(a) and leave in accumulator (principal value
: in radians).
PWRxxx Raise c(a) to the PoWeR c(xxx) and leave in accumulator
, [c(a) must be > 0].
EXPOOO Raise e to the EXPonent c(a) and léave in accumulator.
TENOOO Raise TEN to the exponent c(a) and leave in accumulator.
LNEOOO Form the Natural log of c(a) and leave in accumulator
[c(a) must be> 0].
LOGOOO Form the base 10 LOG of c(a) and leave in accumulator
[c(a) must be> 0].

1.5.4 Sequehce—Changing Instructions

JMPxxx Take the next instruction from xxx (instead of from the
location following the locations of this JMP instruction).
That is, JuMP .to xxx. v

JINxxx If c(a) is negative, consider this as a JMP instruction.
If c(a) is positive, ignore this instruction. That is,
Jump If c(a) is Negative to xxx.

HLTxxx HalT, then jump to xxx if the START button is pressed.

1.5.5 Input and Output Instructions

INMxxx INput data tape into consecutive Memory locations start-
ing at location xxx. Continue until the symbol END* is
reached on the data tape. Then take the next instruction
in sequence. If another INM is performed, the next set
of data are used, since the tape has advanced.

PFAOOO Print From Accumulator a number on the typewriter.

CARO00 Performa CARriage return on the typewriter.

1.6 Program Input and Operation

PINT receives both programs and data from punched paper tape. Certain‘
formats must be followed in the preparation of these tapes.

The program tape requires certain commands at the beginning and at the
end to tell the computer where the program is to go and what is to be
done with it. None of these commands require space in memory. The
program must start with the command CLEAR* which causes the machine

to clear the entire memory (but not to zero) so that if you should
make an error the machine can detect it more easily. (However, if
your work consists of several programs which must be loaded together,
CLEAR* should be used only on the first one.) After this command
comes the command LOADxxx*. The address xxx is the address of the
first location in memory into which you want to have your instructions
loaded. The computer will start loading your instructions,i£:£§£%;w4 cupr
address and continue in successive locations from there on. © At the
end of the program, after the last instruction, the command BEGINxxx*
must be written to tell the computer that this is the end of the pro-
gram and that it should go to location xxx, take its first instruction
from there, and continue in sequence from that point executing the
instructions which you have written,

Data is prepared in the format shown in paragraph 1.4. Do not omit
any of the necessary symbols, and do not forget to end the data tape
with the command END*, g

7

1.7 Programming Examples

In the examples which follow, we have assumed that the program starts
in location 000.

10

1.7.1 Example 1

Assume that a number a is in location 500, a number b is in location
501, a number ¢ is in location 502, and a number d is in location 503.

We desire to formx = a + b + ¢ + d and place the result in location
504.
CLEAR* code word to clear all memory
LOADOOO* program loading code word .
in location 000 CCFE500* copy a into the accumulator
001 ADD501%* a+ b
002 ADD502* a+b+c
003 ADD503* a+b+c+d = x
004 CCI504%* copy x into 504
005 HLTOOO* stop the computation
BEGINQOOO* program starting code word

1.7.2 Example 2

We desire to read two numbers from tape, find out which is larger,
and print only this larger number. We then want to return the car-
riage and obtain a new pair of numbers from tape. We want to test
100 pairs of numbers.

CLEAR* code word to clear all memory
LOADOOQO* program loading code word
in location 000 INMO80* input first number into 080,

second into 081, etc.

001 CCF080* copy first number into accumu-
lator .

002 SUBO81* subtract second number from first

003 JINOO6* if -, second is larger; jump to 006

004 CCF080* if not -, copy first number

005 JMPOOQ7 * Jump to 007

006 CCF081* copy second number

007 PFAQOQQ* print first or second number

008 CAROOOQ* return the carriage

009 CCF082* copy counter into accumulator

010 ADDO83* add 1 to counter

011 CCI1082%* store counter + 1 in original
place]

012 JINOOO* if result was -, return for more
numbers

013 HLTOOO* if result was +, halt

BEGINOOQO* program starting code word

11

The first set of data for this program must contain the first two num-
bers to be tested and the two numbers necessary for setting up the
counter. The rest of the sets of data contain only the two numbers

to be tested. An example of the first three sets of data follows:

+2¢0*+l 00*-k990 5*+l .O*END*'H .0*+3. S*END*—I 02*"3. 6*END*

Let us examine the operation of this program in detail. After the
program has been loaded into the machine starting at location 000,
the computer is told to take its first instruction from location 000,
The first instruction is INMO80, which takes the first set of data
shown above and inputs +2,0 into location 080, +1.0 into location
081, -99.5 into location 082, and +1.0 into location 083. It then
discovers the END command and goes on to the next instruction in the
program.

The program then subtracts 1.0 from 2.0 and obtains 1.0, which is a
positive number, The JIN instruction is therefore ignored and the
instruction in 004 is performed, copying the number 2.0 into the ac-
cumulator, Then the computer jumps to 007, prints this number, and
performs a carriage return,

The next instruction copies the counter into the accumulator, which
at this point reads -99.5, adds one to it, making it -98.5, and re-
turns this value to location 082, Since the result of this addition
is still in the accumulator, and since the result is negative, the
JIN instruction is taken as an active jump instruction and the pro-
gram returns to location Q00 for its next instruction.

This time the INM instruction is stopped after two numbers have been
input, placing the number +1.0 in location 080 and the number +3.5
in location 081, Note that locations 082 and 083 are unchanged by
this instruction. The result of the subtraction instruction (002)
leaves a negative result in the accumulator, so the JIN instruction
is active and causes the computer to jump to location 006, where it
copies the number 3.5 into the accumulator. Then it prints the re-
sult and performs a carriage return.

The operation of the counter is the same as described above, except
that the counter is -98.5 and is changed to -97.5. Hence the program
returns again to location 000 for more numbers. A little thought
will reveal that, after testing the 100th pair of numbers, the count-
er will be -0.5, and will be changed to +0.5, causing the JINOOO to
be inactive and stopping the computer. '

12

1.8 Program Preparation

The following is the tape for Example 2, with the first three sets
of data:

CLEAR*LOADOOO *
INMOSO*CCFOSO*SUBOSI*UINOO6*CCF080*JMPOO7*CCF08l*PFAOOO*CAROOO*

CCFO82*ADD083*CC1082*J1NOOO*HLTO00*
BEGINOOO*

1.9 Post Mortem

Should your program fail for some reason which the computer is capable
of detecting, the computer will print out a Post Mortem giving you
enough information to determine what caused your program to fail. The
Post Mortem will not catch all possible errors, but it will locate the
ones most often made by users.

Post Mortem Causes

xxx does not contain a number

divisor is zero

magnitude of exponent of number in accumulator is greater than +99
number in accumulator is negative

magnitude of number in accumulator is greater than 33554431.9
number in accumulator is zero

. xxx does not contain an instruction

input program causes input post mortem if data tape is improper

.

[2 ST o O ¢ I © O o T w

13

SECTION 2

ADVANCED PROGRAMMING OF PINT

2.1 Introduction

PINT as it has been described so far is a rather limited system, Using
the commands given, the user cannot deal with numbers which fall out-
side a rather narrow range. He cannot easily sort through a table of
numbers, nor can he solve such problems as a general set of simultaneous
linear algebraic equations., He cannot print anything except numbers, so
that it is impossible for him to make columns of numbers with alphabetic
headings, ‘

PINT is capable of performing many other operations which have not yet
been mentioned. It has a much larger range of numbers, provided by a
technique known as '"floating point”. It can sort through tables by mak-
ing use of devices known as index registers. It can print letters as
well as numbers using an alphanumeric printing instruction.

2.2 Floating Point Numbers

Engineers have long used a system of notation in which the numbers are
written in a form involving a number and a power of ten: m x 10", where
m is a number and n is an integer. The floating point portion of PINT
makes use of this notation, thereby greatly extending the range of num-
bers which it can handle. In PINT, both m and n must be decimal integers,
written without a decimal point. The range of numbers is limited only by
the size of n. In PINT, n cannot contain more than two digits; hence the
exponent is limited to a range of *99, which is more than enough for most
practical problems.

The rules for writing floating point numbers are as follows:

a. The number m is written with its sign first, followed by not
more than 9 digits.

b. The sign may be omitted if it is +.

c. The number m is followed by a stop code (*).

d. The number n is written with its sign first, followed by no
more than 2 digits,

e. The sign may be omitted if it is +.

f. The number n is followed by a stop code (*).

g. No decimal point may appear anywhere in either m or n.

14

The rules for writing fixed point numbers, which were first given in
section 1, are repeated here with minor modifications:

a. The number is written with its sign first, followed by not more
than 8 digits.

b. The sign may be omitted if it is +; if it is omitted, as many
as 9 digits may be written.

c. The decimal point must appear in the number in its proper pos-
ition.

d. The number is followed by one stop code (*),

Examples of input and output formats are as follows:

Number 2 -0.673 106.3725823
Input Floating 2%+00% ~673%-03* 106372582*%-06*
" Rixed 2.0% -.6730% 106.372582%

Output Floating +2.,0000000 +00 -6.7300000 -01 +1,0637258 +02
" Fixed 2.000000 -. 6730000 106.3726

2.3 Additional Instructions

2.3.1 Additional Arithmetic Instructions

RDVxxx Divide c(xxx) by c(a) and leave in accumulator without
changing c(xxx). (Reciprocal DiVide)

NEGOOO Make c(a) have a NEGative sign,

CHSO00 CHange the Sign of c(a).

2.3.2 Additional Storage Instructions

XCHxxx EXCHange c(a) and c(xxx).

CNFxxx Copy Negative From xxx into the accumulator without changing
c(xxx).

CZIxxx Copy Zero Into xxx without changing c(a).

2.3.3 Additional Function

SQAOO0 SQuare the number in the Accumulator.

15

2.3.4 Additional Sequence-Changing Instruction

JIPxxx If c(a) is positive, consider this as a JMP instruction.
If c(a) is negative, ignore this instruction. That is,
Jump If c(a) is Positive to xxx.

2.3.5 Additional Input and Output Instructions

INAOOO INput one number from tape into the Accumulator. Then take
the next instruction in order. Appearance of END* on the
tape will cause an error,

PRMxxx PRint from Memory location xxx a floating point number,
unrounded, with 8 significant digits, preceded by 2 spaces.

PRAOOn PRint from Accumulator a floating point number, unrounded,
with one digit before the decimal point and n digits after,
preceded by 2 spaces. n< 8, If n = 0, print 7 digits
after the decimal point,

PFAOOn Print From Accumulator a fixed point number, rounded, with
n significant digits, preceded by 2 spaces. Print enough
zeros to locate the decimal point. n < 8. If n = 0, print
7 significant digits.

TABOOO Perform a TAB. (Tabs are not usually necessary, since PINT
automatically spaces before each number. Tab stops must be
set by the user in advance.)

2.4 Index Registers

There are many times when the programmer has to count something during
the operation of his program. Example 2 given in the last section
presents one of these cases; the programmer must count the number of
sets of data which have been read into the machine and stop the com-
puter after 100 of them have been processed.

There is another type of operation which essentially involves counting
and which the programmer often wants to do. Suppose, for example, that
we wish to read into the computer a list of 100 numbers, sum the entire
list, and print out the result. We might decide to read the list into
the machine using the INM instruction, storing the numbers in the 100
locations from 800 through 899, Then we would take each number, add

it into a sum, and print this result after all 100 had been done. One
possible program for doing this is as follows:

CLEAR*LOADOOO*

I1NM800*CCF800™*ADD 801 *ADD802*ADD803* ..eTC.. ADD898*ADD899*PFAO00*HLTO00™
BEGINOOO™

16

But this program has 103 instruction to add 100 numbers! It would be
very nice if we could use only one ADD instruction and make it refer
successively to each of the 100 numbers.

Index registers simplify both of the operations which have been discus-
sed above, The index register makes it possible to set up a count and
then test this count each time the program is executed to determine
whether to continue repeating the program or to do something else. The
index register also makes it possible to modify automatically the ad-
dress in an instruction so that it refers to a different location each
time it is executed. N '

2.4.1 Description of PINT Index Registers

PINT has seven index registers, numbered 1 through 7. They are all
the same. Each has a count, an address, and an increment. The count
is the portion of the index register which is used to determine how
many times a particular piece of program has been executed. The
address is the portion which is automatically added to “the address

of any instruction the programmer desires. The increment is the ‘
amount by which the address portion is increased each time the pro-
gram is repeated.

2.4.2 Index Register Instructions

In the descriptions which follow, the letter j represents any number
from 1 through 7, corresponding to any one of the seven index regis-
ters. «

JLDCxxx LoaD the Count portion of index register j with xxx.

JLDAxxx LoaD the Address portion of index register j with xxx.

jLDIxxx LoaD the Increment portion of index register j with xxx.

jCIJxxx Decrease the Count portion of index register j by one,
increase the address by the amount of the Increment, and
Jump to. location xxx if the count is greater than zero.
(Count, Increment, and Jump)

2.4.3 Address Modification

The addresses of most instructions can be modified by a given index

register simply by writing the number of the desired index register

ahead of the letters of the instruction. Then the value of the ad-

dress portion of that index register will be added to the address

of the instruction before the instruction is executed. The instruc-
tion itself remains unchanged in memory; its address is changed only
during its execution.

17

Any instruction which has a true address may be changed in this man-
ner by an index register. Some instructions have special codes in
their address portions (such as SINOOO) and modification would be
meaningless. Others require the number of the index register in
front of them because they operate directly on index registers. The
following is a tabulation of these three groups of instructions
(those in parentheses are discussed in section 3):

May Be Modified by Cannot Be Modified Must Have Index
Index Registers - By Index Registers Register Number
ADD CCEF PWR INM POS SIN EXP 1INA LDC (AXA)
SUB CNF PRM NEG COS TEN LDA (SXA)
MUL CCI JMP CHS ATN LNE PRA . LDI
DIV CZI JIN (SRA) LOG PFA (CXF)
RDV XCH JIP (CAI) SQR CFI - (CXI1)
(JOS)H(XIT) SQA - ABC CAR N
HLT TAB

2.4.4 Example Using Index Registers

Let us write the program for the example which was presented in
paragraph 2.4, but this time we will use index registers. We will
write the program beginning at location 200, input the 100 numbers,
compute and print out their sum, and stop.

CLEAR¥* code word to clear memory
LOAD200* code word to load program

in location 200 INM80O* input the 100 numbers starting at 800

201 3LDCO99* load 099 into count of index regis-
ter 3

202 3LDAO00O* load 000 into address of 3
203 3LDIO01* load 001 into increment of 3
204 CCE800* copy first number into accumulator
205 3ADD801* add on the next number
206 3CI1J205%* decrease the count of index regis-

ter 3 by one, increment the address,
jump to 205 if the count is greater

than O
207 PFAQOO* if count = 0, print result
208 - HLT200* halt (jump to 200 if START button

is pressed)
BEGIN200* code word to begin operation

The use of the CIJ instruction does not change the number in the ac-
cumulator, so we are simply keeping a running sum of the numbers to
be added. The computer uses the indexed ADD instruction in location
205 first as ADD801, then ADD802, then ADD803, etc., finally printing
and stopping after using it as ADD899. Notice that the computation
takes place only 99 times for the 100 numbers, since the CCF instruc-
tion is used to copy the first of the numbers into the accumulator.

18

The program which we wrote without using index registers contained
103 instructions, each of which was performed once during the oper-
ation of the program. Our program with index registers contains

9 instructions, which is considerably shorter than the original
program, and much easier to prepare on paper tape for the computer.
However, two of the instructions in this new program are executed

99 times each (ADD and CIJ). Hence we must execute 2 x 99 + 7 = 205
instructions to perform the job by using index registers. The opera-
tion of the new program will take about twice as long as the original
one. This is a good example of the trade of time for space. We have
reduced the amount of storage which our program took at the expense
of increasing the amount of time which it took to operate. The pro-
grammer must often consider this trade, especially when both his time
and the computer's time can be valued in dollars and cents,

2.5 Alphanumeric Printing

The programmer often wants to print alphabetic information on the output
from his problem, For example, his results may appear as a number of
‘related columns of figures, For ease in reading there should be column
headings to describe what each column means. Sometimes it may be desir-
able to obtain the output in the form of an equation. 1In both cases,
the required symbols may be printed by PINT. :

2.5,1 Additional Output Instruction
ABCnnn Print AlphaBetiC characters from the next nnn locations.
These characters must be specially coded as shown in the

following table.

2.5.2 ABC Character Codes

- UPPER LOWER UpPER LOWER UPPER LOWER
OPeErRATION CobDeE | CAse CAse CopeJCAse CASe CoDeJCASE CASe CoODE
Tape FEep 00) 0 10]G G 2c | W W 3y
CAR RET] I 1 H H 2H X X 3x
TAB 02 " 2 12 | 1 21 Y Y 3y
Back Space 03 # 3 1314 J 2J yA z 32
L 4 | K K 2k | $, 3,
UpPeErR CASE 05 A 5 15 L L 2L : = 3=
Lower CASE 06 @ 6 16 1 M M 2M ; r 3] (36)*
LINE FEep 07 & 7 i17 | N N 28 | %] 3] (37)*
Stop Cobe* 08 ! 8 18 0 0 20
(9 123]1p P 2p
A A A Q Q 2qQ ? + 3+
B B is | R R 2R | - 3-
C c Ic N 3 2s . . 3,
D D o | T T 27 SPACE 3p
E E le | U u 2y | = / 3/
F F IF 1V v 2v ‘

* if using Flexowriter

19

2.5.3 Use of ABC

The codes given above are written in groups of four and placed in suc-
cessive locations following the ABC instruction., If the codes do not
come out even in groups of four, fill the last group with the code FF
so that there are four codes in the last group. An an example, sup-
pose that we wish to print: Carriage return Th e E n d ! carriage
return. We must manufacture the ! by using a back space. The program
will be as follows:

CLEAR* code word to clear memory
LOADOOO* code word to load program

in location 000 ABCO05* the next 5 locations are ABC codes
001 01052T06* <car ret, upper case, T, lower case
002 2H1E3DO5* h, e, space, upper case
003 1E062N1D* E, lower case, n, d
004 3.030518* ,, back space, upper case,
005 0601FFFF* 1lower case, car ret, filler, filler
006 HLTOOO* halt

BEGINOOO* code word to begin operating

2.6 Decimal Memory Printout

The programmer often wants to know what is in a certain portion of the
PINT memory. He may, for example, suspect that he has written an ad-
dress or an instruction incorrectly and would like to verify what was
written by printing it out of memory where he stored it. He may want
to have a certain set of data printed out to see what operations his
program has performed on it, especially when his program has operated
incorrectly. The decimal memory printout provides the means for ob-
taining a print of what is in a section of memory.

The special code word DUMP*, followed by the addresses of the locations
to be printed and a stop code, initiates the printout. The special code
word DONE* is used to return to the loading program. Complete instruc-
tions for operation of the printout are given in section 6.6.

2.7 Subroutines

There are often certain programs which are used by many people without
change. These programs, called subroutines, are usually written by very
good programmers and made available to all who want them., Examples are
programs for the solution of simultaneous linear algebraic equations,
matrix inversion, and least-squares curve fitting.

Subroutines are available in two forms. Some are in a form which re-

quire no additional programming by the user. When someone has a cer-
tain job to do, he simply obtains the tape for the program to do that

20

job, studies the write-up on the program to be sure that it does the
right job and that he knows how to use it, and then uses the program,
These routines usually require loading the program directly into the
computer and then providing a data tape for its operation. Examples
of these are programs for mean and standard deviation and for finding
the roots of a quartic.)

Other subroutines are written so that the user must include instruc-
tions in his program in order to make use of them. Routines of this
type are those which are used for calculations which are likely to be
required several times within one program, An example of a very sim-
ple operation which might be performed many times in one program is
the evaluation of tan x and cotan x. Although we can easily write
the coding for performing these operations, it might be handy to have
a packaged routine for doing the job. The instructions for using the
subroutine might appear like this:

The subroutine will compute the value of tan x or cotan x to an
accuracy of 0.0001%. The value of x is to be in the accumulator,
and the result is left in the accumulator. The subroutine re-
quires 14 locations. The calling sequence is as follows:

For tanm x For cotan x
a-1 CCF (x) a-1 CCF (x)
a JMP L0 a JMP L0 + 7
a+l return a+l return

Note: The instruction in a-1 may be omitted if the value of x is
already in the accumulator.

The symbol a is used to represent an arbitrary location in the user's
program, Hence a-1 is the location before a, and a+l is the location
following it. (x) means the address of the location containing the
value of x. L, is the first location of the subroutine, which may be
placed anywhere which is convenient to the programmer, provided that
there are 14 consecutive locations available.

These points are best illustrated by a programming example. Suppose
that we are making a computation which requires, at a certain point,
that we take the cotangent of a number. Suppose that the instruction
in location 143 of our program is an MUL416 and that we wish to form
the cotangent of the result of this MUL instruction and then square
the cotangent. We decide that we have space for our subroutine in
locations starting at 800, so L0 = 800. This portion of our program
would look like this:

in location 143 MUL416* produce number to form cotan of
144 JMP8Q7* jump to cotangent subroutine
145 SQAQ000* return point - square the re-

sulting cotan

21

Note that this subroutine gives us,in effect, a new instruction, for

the use of the JMP807 actually means "form the cotangent of the number
in the accumulator®. Our program runs along executing instructions and
reaches location 143. 1In 143 is our MUL instruction, which the com-
puter executes and goes to 144. The JMP807 in 144 causes the computer
to jump to 807 to compute the cotangent. After computing the cotangent,
the subroutine is designed to jump to the location right after the JMP807
instruction, no matter where that JMP807 instruction is. Hence this
time it jumps back to location 145, squares the result, and carries

out our program instructions from there on. We may compute the cotan-
gent any number of times we wish by writing the JMP807 instruction when
we want to compute it. This is exactly what we do when we write SINOOO
except that we do not have to load the subroutine for computing the
value of the sine, since this routine is stored as part of PINT.

22

SECTION 3

FURTHER PROGRAMMING OF PINT

3.1 Introduction

At the end of the last section we pointed out that there are still some
operations, such as the construction of subroutines, which you cannot
yet perform with the PINT instructions you have learned. There are sev-
eral more instructions available which will help you do this, and there
are also some features of PINT which will make programming large prob-
lems somewhat easier. We will present some of the material in this
section without giving programming examples, since by this time you

have gained enough knowledge to be able to understand the use of various
features without examples.

3.2 Subroutine Construction

In paragraph 2.7 we discussed the use of a subroutine which computed the
value of tan x or cotan x when the number x was left in the accumulator.
One feature of this subroutine, and of many others for that matter, is
that it was capable of returning to your program (to the location dir-
ectly after the location in which you wrote the JMP instruction) no mat-
ter where you wrote this imstruction. This feature is provided by a
special instruction which will record in the subroutine the location
right after the one in which the JMP instruction was placed.

3.2.1 Subroutine Instruction

SRAxxx Set Return Address. Take the address of the location of the
last jump instruction executed, add one to it, and place it
in the address portion of the instruction in location xxx
without changing the operation code in that location. This
will work with all jump instructions except CIJ.

3.2.2 Example of Subroutine Construction

We almost always write subroutines as if they were to start in loca-
tion 000. Then the programmer can store them anywhere that he wishes
by making use of the MODxxx loading code described in paragraph 3.8.
Let us write as an example of a subroutine the one which was des-
cribed as an example in paragraph 2.7. This subroutine is to compute
the tangent of the number in the accumulator if the user jumps to
location Ly (the first location of the subroutine), and is to compute
the cotangent if he jumps to Ly + 7. 1In either case the result is
left in the accumulator. The program is on the following page.

23

in 000 SRAO06* set return address in 006 - entry for tan x

001 CCI013* store x temporarily

002 COS000* cos X

003 XCHO13%* store cos x and obtain x

004 SINOOO* sin x

005 DIVO13* sin x divided by cos x = tan x

006 JMPOQO* leave the subroutine with tan x in accumulator
007 SRAQ06* set return address in 006 - entry for cotan x
008 CCI013* store x temporarily

009 SINOOO* sin x

010 XCHO13* store sin x and obtain x

011 C0S000* cos X

012 JMPO05* leave the subroutine with cotan x in accumulator
013 (space) temporary storage

Suppose that the user's program contains a JMP807 in location 144,

He is jumping to the SRA instruction in location 807, (He has stored
the subroutine starting at location 800.) This SRA instruction
notices that the JMP was in location 144, adds one to that number,
and stores it as the address in location 812. Hence the JMP instruc-
tion in our subroutine, which initially had a blank address portion
(usually filled with 000), is changed to JMP145. When the subrou-
tine is executed, the result is left in the accumulator and the sub-
routine jumps to location 145 to resume operation of the user's
program.

3.3 Manual Intervention

There are times when it is useful to be able to intervene in the opera-
tion of the program. This is provided by an instruction which tests the
condition of SENSE SWITCH 2. This instruction may be used, for example,
to tell the program that you want to change some data for a particular
problem,

JOSxxx If SENSE SWITCH 2 is down, jump to xxx. If it is up,
ignore this instruction. (Jump On Sense switch)

3.4 Address-Changing Instruction

There is an instruction which permits the programmer to change an ad-
dress in his list of instructions without using index registers. One
example of the use of this occurs in subroutines. Suppose, for example,
that the programmer wants to write a subroutine which will first input

a number n telling how many simultaneous equations there are and then
input the coefficients for the equations and solve them. He must there-
fore have some method of taking the number n and setting appropriate
index registers to count the equations properly.

24

CAIxxx Round off the number in the accumulator to make it a proper
integer, Copy this number as an Address Into the address
portion of the instruction in location xxx without changing
the operation code in that location.

This instruction might be used as follows. Suppose that the instruction
3LDCO0O0 is stored in location 431, and that the accumulator contains the
number 3.6, The execution of the instruction CAI431 will round the num-
ber in the accumulator to 4 and place it in location 431 as an address,
causing the instruction in that location to read 3LDCO04, Note that
this instruction is actually changed in memory by the CAI instruction,
whereas the use of index registers did not change the instruction as it
stood in memory.

3.5 Additional Index Register Instructions

The following instructions are provided to make the index registers
more versatile,

jCXFxxx Copy the value of the address portion of indeX register j
From the address portion of the instruction in xxx. (xxx
must not contain an LDC instruction.)

jCXIxxx Copy the address portion of indeX register j Into the ad-
dress portion of the instruction in xxx. (xxx must not
contain an LDC instruction.)

JAXAnnn Add the number nnn to indeX register j's Address portion,

jSXAnnn Subtract the number nnn from indeX register j's Address
portion,

Suppose that location 267 contains the instruction ADD246 and loca-
tion 437 contains the instruction SUB357. Suppose further that we
execute the following sequence of instructions:

LCXF 267 *LAXA002*L4C X1 437 *4SXA002

The execution of the 4CXF instruction will cause the value 246 to be
stored as the address value in index register 4., The 4AXA instruction
will cause two to be added to the address portion of index register 4,
producing 246 + 2 = 248. Then the 4CXI instruction will take this

new value of the address portion of index register 4 and place it in
the address portion of the instruction in 437, changing it from SUB357
to SUB248. Finally, the 4SXA will subtract two from the address portion
of index register 4, changing it back to 246.

25

3.6 Additional Note on ABC

Although the information given in section 2 makes the alphabetic print
instruction ABC appear to be a regular instruction of the PINT reper-
toire, it is not. It is merely a program loading code which tells the
program loading routine to load the next nnn locations with the special
alphanumeric code. This loading code takes one space in the memory to
avoid confusing the beginner., It is simply skipped over during the
actual operation of a PINT program, The special alphanumeric code
words are themselves recognized by PINT and operate independently as
instructions.

This means two things to the user. First, he does not need any special
code in his 1list of characters to terminate the list (indeed, there is

no such code given - FF is only a filler). Second, he may cause only a
portion of the list of codes to be printed simply by giving a jump
instruction to the location of the first code he wants and the printing
will continue from there. For example, in the program in paragraph 2.5.3,
if the programmer should give the instruction JMPOO4 from some other place
in his program, the result would be the printing of . back space upper
case ' lower case carriage return . The program would then halt.

Corrections can be made to alphanumeric code words stored in the com-
puter only by reloading the entire sequence. Simply writing LOADxxx*
and then giving the corrected word will result in an error on input,
Attempting to do this by writing LOADxxx*ABCnnn* and then giving the
corrected word will cause two words to be stored, the ABC instruction
and the corrected word. Hence the only practical way to correct an
alphabetic error is to reload the entire sequence,

3.7 Coding Sheet Data Entry

Many programs use constants, which up to this point have been input by
writing an INM or INA instruction at the beginning of the program. This
is not necessary. The constants can be loaded as part of the program
simply by writing them as proper numbers in either fixed or floating
point format on the program tape. They must be placed in appropriate
locations where the program would normally have data, but no special
codes are required either to load them or use them. For example, sup-
pose that we want to have a program which will input a number, add one
to it, and print it out in fixed point format, Samples of how this

can be accomplished follow on the next page.

26

Correct Correct Incorrect

CLEAR™ CLEAR* CLEAR™
LOADO0O™ LOADOOO* LOAD00O*
INAOOO* I.0* INAOOO™
ADDOOL™ INAOOO* ADD003*
PFA000™ ADDO0O* PFA000*
HLT000* PFA000* 1.0%
1.0* HLTOO1* HLT000*
BEGINOOO™ BEGINOOI™ BEGINOOO*

The number "one" in the above program is stored in the program right
along with the instructions, but we must be careful never to get the
constants into locations where they might be used as instructions.

The same format rules which applied for INM and INA (see paragraph 2.2)
apply for coding sheet data entry.

3.8 Programs for General Locations

The subroutine which we wrote in paragraph 3.2.2 was written for loca-
tions 000 through 013, Yet the user would like to place this program
anywhere in memory. He does this by writing the loading code word
MODxxx* after his LOAD code. This causes the value xxx to be added

to the address of every instruction which follows until another
LOADxxx* or MODxxx* is given. There are two exceptions to this:

1) if the instruction is preceded by an "x"; 2) if the instruction

has no meaningful address portion, such as SINOOO (these are the
instructions listed in paragraph 2.4.3 as "Cannot Be Modified by

Index Registers').

For example, if we write the sequence LOAD100*MOD100*CCF200*xCCI500%*
x4LDCO04* etc. and load it into the machine, the instructions will
start in location 100 and will appear as follows: CCF300*CCI500%*
41DCO04* etc. Note that this MOD code word modifies the addresses
of instructions as they are loaded into the machine. It does not
modify any of the loading codes such as LOAD or BEGIN.,

3.9 Additional Loading Code Words

The code word CLEAR* has already been introduced in section 2, but its
function has not yet been completely explained. This code word will
cause the PINT system to clear all of the PINT memory when the code is
received on input. This takes about two seconds. However, it does not
set the locations to zero., Rather it places something in them which in
the PINT system is taken to be "undefined'". Hence an attempt to use a
number from a location cleared by the CLEAR code word will result in a
Post Mortem. The purpose of the CLEAR code is to assist the Post Mortem
in catching common errors which beginning programmers often make, since

27

any attempt to use a number not previously stored or any attempt to
jump to a location in which the programmer hasn't placed an instruction
will produce a Post Mortem. CLEAR* clears all memory, so it must be
used only at the beginning of the first program if more than one is to
be loaded.

The code word WAIT* is designed to assist the programmer in operating
the computer. For example, suppose that he has just given some instruc-
tions to the computer from the typewriter and now wishes to give it some
from tape. He must push some buttons on the computer to make this
change, but he cannot do it by merely pressing the proper button and
then pressing the START button, since he will receive a notice of "Il1-
legal Order"., Typing the code word WAIT* will cause the computer to
wait; he may then press the necessary buttons to change over to the
reader and then press START without getting into difficulties with

the loading program. This WAIT* code is used at the end of all sub-
routines, since it is assumed that the programmer wishes to load more
routines or give a BEGINxxx* code from the typewriter,

3.10 PINT Stop Button

SENSE SWITCH 16 has been programmed to enable the user to stop the
operation of his program in the middle if he has a feeling that some-
thing has gone wrong or if he wants to interrupt the operation of the
program for some reason. This button will always stop the operation

of PINT on the next CCF or CNF instructions and will then print a Post
Mortem telling what particular instruction the computer was stopped on.
Hence if the user simply wants to see what his program is doing, he may
press SENSE SWITCH 16 and obtain a Post Mortem., If everything appears
correct he may return to the operation of his program by getting to the
beginning of the PINT loading routine and typing BEGINxxx* where xxx is
the location of the CCF or CNF instruction on which the operation was
Jjust stopped.

Note that this makes it possible for a user with a short program to
.interrupt the user with a very long program in the machine. The user
with the long program can stop his program without affecting any of
his numbers. Then the user with the short program can place his pro-
gram in the machine in a clear space in memory designated by the other
user and can run his short program. After this short program is fin-
ished, the other user can transfer back to his long program and con-
tinue operating. Care must be taken that the user with the short pro-
gram does NOT use CLEAR* and does not change any of the index registers
which the other programmer is using. The short program can easily be
modified to go into any portion of memory by using the MODxxx* code
word, since most programs will be written for locations starting with
000 and the "x' code is rarely required.

28

3.11 Compatible Output

The decimal memory printout routine described in paragraph 2.6 may be
used to produce a complete correct copy of the program which is stored
in memory. The compatible output feature will print or punch both
instructions and data in a form which can later be used as input for
further machine operations. Depress SENSE SWITCH & to produce com-
patible output. It will place an x before any instruction which had
an x before it when the program was loaded, and will place stop codes

after every word.

This system is useful when a program has required a number of correct-
ions after it has been loaded. These corrections may be loaded as
patchwork, correcting an instruction here and there. Then the complete
corrected program can be punched out when the program is working prop-
erly. If the program has been loaded into locations starting at 000,
the result is a program which is relocatable using the MOD code word,
provided the necessary x's have been included.

Compatible output may also be used to obtain data output from the com-
puter on tape in a form that can be used by the data input routine in

a later program., For example, the results of one problem may be used

as the input data for the next.

NOTE: No memory address above F99 can be made compatible because
locations are output modulo 1600.

3.12 Input Duplication

Material which is being loaded into the machine may be copied either on
the typewriter or the punch by making use of the input duplication fea-
ture of the computer. If the button INPUT DUPLICATION - SELECT is down,
the computer will output the information just input on the selected
output device. The user must select the punch if he wants to make a
tape copy, because the computer will attempt to select the typewriter.

3.13 Errors Detected by Load and Input Routines

The PINT loading and input routines contain checks to catch some of the
errors which can be made on tapes, so that gross errors by the program-
mer can be caught more readily. In addition, the loading routine con-
tains a feature which permits the loading of the correct instructions
after the program tape has been loaded, so that corrections can be made
very easily.

29

The PINT loading routine operates by examining the instruction presented
to it and comparing it with a table of allowed instructions, If the
operation code presented is not in this table, the PINT assumes that
this must be a piece of data being loaded as part of the program, and
proceeds to check this against the table of allowed symbols for data.

If it finds that the word presented is not proper data either, it will
print "Illegal Order xxx". It will then leave location xxx blank and
will continue loading beyond that point. At the end of the program,
after receiving a BEGINxxx, it will print "Load Corrected Orders'. At
this time the programmer must give the LOAD code word for each location
to be corrected and the correct instruction taken from his coding sheet,
He may then give the correct BEGINxxx code word to operate the program
or he may check his program in the machine by having the computer dump
(paragraph 2.6). Notice that, should the program tape contain a LOAD
code word after the error has been detected but before the BEGIN code
word, this system will not work, since the LOAD cancels PINT's recol-
lection of the error.

The PINT loading routine will also catch errors caused by attempting to
give improper characters in addresses in the same way that it catches
improper orders. The same correcting procedure is provided as above.

The PINT data input routine will catch those errors which result from
attempts to use improper characters as numbers. The data tape will stop
and the machine will print "Incorrect Data". There is no way to cor-
rect this data as there was for instruction errors and the tape must be
corrected before the operation can proceed. For example, attempting to
write the rumber 1 as +1.t* or as +100*-,2* will be caught.

Note that the number "one' and the letter "ell”™ will both be accepted

as '"one'" and that number "0'" and the letter "o' will both be accepted
as the number 0,

3.14 Basic Machine Language

There is perhaps a rare occasion when the PINT user wants to go into the
basic machine language to perform some operations which are not part of
the floating point system (for example, logical operations). Although
doing this is difficult because of the rather weird structure of both
PINT memory and PINT instructions, the user may get out of PINT with the
following instruction:

XITyyy -Transfer the basic machine control to the basic language

instruction in yyy, where yyy is a special code for the
machine address of the instruction.

30

yyy is converted to basic language as follows: Divide yyy by 64,
Take the integer quotient and add 48; the result is the basic track
number. The remainder is the basic sector number., For example,
XIT463 will transfer basic machine control to the basic machine
language instruction in location 05515,

Reentry into PINT location xxx is accomplished by the basic language
instruction @*07*tttss*02000* (decimal), where @ is the basic machine
location of this instruction and tttss is the basic machine location
equivalent of the PINT location xxx. xxx is converted to basic machine
language as follows: Divide xxx by 23, Take the integer quotient and
add it to 48; the result is ttt. Take the remainder and add 1; the
result is ss. For example, to transfer into PINT starting at loca-
tion 463, the basic machine language instruction would read
a*07*06804*02000*, Improper reentry will usually cause a meaning-
less Post Mortem.

3.15 PINT Summary

Word Post Mortem if See
Code Name Times* (see list below) Paragraph
ADD ADD 4 A 1.5
SUB SUBtract 4 A 1.5
MUL MULtiply 4 A 1.5
DIV DIVide 4 A, B 1.5
RDV Reciprocal DiVide 4 B 2.3
POS make POSitive 2 none 1.5
NEG make NEGative 2 none 2.3
CHS CHange Sign 2 none 2.3
CCF Copy Contents From 3 A 1.5
CNF Copy Negative From 3 A 2.3
XCH eXCHange 4 none 2.3
CC1 Copy Contents Into 3 C 1.5
Ccz1 Copy Zero Into 2 none 2.3
CAI Copy Address Into 7 D, I 3.4
SQR SQuare Root 9 D 1.5
SQA SQuare Accumulator 3 ' none 2.3
SIN SINe 14 E 1.5
COS COSine ' 17 : E 1.5
ATN ArcTaNgent 17 none 1.5
PWR PoWeR " 28 A, D, F 1.5
EXP EXPonential 11 none 1.5
TEN TEN exponential 13 none 1.5
LNE Natural Logarithm 15 D, F 1.5
LOG base 10 LOGarithm 15 D, F 1.5

31

Word Post Mortem if See

Code Name Times* (see list below) Paragraph
JMP JuMP 2 G 1.5

JIN Jump If Negative 2 G 1.5

JIP Jump If Positive 2 G 2.3

JOS Jump On Sense 2 G 3.3

SRA Set Return Address 3 none 3.2

HLT HalT and jump 2 G 1.5

XIT: eXIT 1 none 3.14

INM - INput to Memory - H 1.5

INA INput to Accumulator - H 2.3

PRM PRint from Memory - A, C 2.3

PRA PRint from Accumulator - C 2.3

PFA Print Fixed from Accumulator - C 1.5, 2.3
ABC AlphaBetiC print - none 2.5, 3.6
CAR CARriage return - none 1.5

TAB TABulate - none 2.3

LDC LoaD Count 3 none 2.4

LDA LoaD Address 2 none 2.4

LDI LoaD Increment 2 none 2.4

C1J Count, Increment, and Jump 3 G 2.4

AXA Add to indeX Address 3 none 3.5

SXA Subtract from indeX Address 3 none 3.5

CXF Copy indeX address From 3 J 3.5

CXI Copy indeX address Into 3 none 3.5

* One word time in PINT is about 17 milliseconds (1/60 of a second).
For some instructions, the word times given are approximate averages,
since the times vary somewhat. An indexed instruction requires one
additional word time.

Post Mortem Causes

xxx does not contain a number

divisor is zero

magnitude of exponent of number in accumulator is greater than +99
number in accumulator is negative

magnitude of number in accumulator is greater than 33554431.9
number in accumulator is zero

xxx does not contain an instruction

input program causes input post mortem if data tape is improper
number in. accumulator is greater than 2047

xxx does not contain an address

CREEMPOODPE

32

Program Loading Code Words (see paragraph given in parentheses)

CLEAR Clear all of PINT memory. This code word does not set the
locations to zero, however, but to "undefined". (1.6, 3.9)
LOADxxx Load the program in consecutive locations starting at xxx.

(1.6)

MODxxx Add the value xxx to all modifiable instructions not pre-
ceded by the letter x., (3.8)

WAIT Remain in the loading program and wait for another code

word. (3.9)
BEGINxxx Stop, then go to location xxx for the first instruction.
(1.6)

Rules for Numbers (see paragraph 2.2)

Floating point

a. The number is written with its sign first, followed by not
more than 9 digits.

b. The sign may be omitted if it is +,

c. The number is followed by a stop code (*).

d. The exponent is written with its sign first, followed by not
more than 2 digits.

e. The sign may be omitted if it is +,

f. The exponent is followed by a stop code (*).

g. No decimal point may appear anywhere.

Fixed point

a. The number is written with its sign first, followed by not
more than 8 digits.

b. The sign may be omitted if it is +; if it is omitted, as
many as 9 digits may be written,

c. The decimal point must appear in the number in its proper
position.

d. The number is followed by one stop code (*).

Memory

PINT has 1000 memory locations, numbered 000 through 999, There is
no restriction on the use of any particular location. Each location
holds one number or one instruction, Locations containing neither a
number nor an instruction are considered undefined; attempts to use
their contents either as instructions or numbers result in post
mortems,

There are additional memory locations available, bringing the total

to 1666, and the user is referred to the "EXTENDED MEMORY APPENDIX"
(5.0) for the addresses of these locations.

33

SECTION 4

TECHNICAL CHARACTERISTICS OF PINT

The following descriptions of the PINT program are not intended to pre-
sent more than a superficial view of the general characteristics of the

system from the programming standpoint.

A detailed knowledge of the

design of the system can be obtained successfully only by careful study
of the coding of the routines which comprise PINT.
down everything would be madness.

4.1 Memory

To attempt to write

The PINT program occupies locations 00000-03163 on the drum and uses
It is written in 'protected’
form to prevent its accidental destruction by the user. The remainder
of the drum is unprotected and is used for PINT memory consisting of
1666 PINT words, (See "EXTENDED MEMORY APPENDIX")

tracks 123-127 for temporary storage.

The PINT word occupies two sectors in one track and is arranged so that
the second half of the word lags the first half by thirty sectors.
These two halves are stored in sectors 01-23 and 31-53 respectively;
thus, sectors 24-30 and 54-00 are not disturbed by PINT and may be used

for permanent basic language programs,

The structure of PINT memory is illustrated below:

Sector—>

PINT Program

00

31

Not used by PINT

PINT
Memory

Q0o n 0 2

Not
Used
by
PINT

PINT
Memory

Not
Used
by
PINT

438

Temporary Storage

123

127

0001 2324

34

30 31

5354 63 1

Track

4.2 PINT Instructions

There are four basic types of PINT instructions:

Type A - Those which specify an address which may be modified by
indexing (ADD, CCF, JMP, etc.)

Type B - Those which specify an address and must be preceded by
an index register number (jLDA, jLDI, jCIJ, jCXI, etc.)
Type C - Those which specify a count of some sort (PRAOOn, PFAOOn,

jLDCnnn, XITnnn, etc.)

Type D - Those which have a meaningless address portion (SIN, Pds,
CAR, etc.)

The internal format of each type of instruction is given below:

Type A
rc)] 1 [2 I 3] als] 6 l 7] 8' 9] 10] 11[12113|14I15]16] 17] 18[19]20[21]22]23[24[25lzs |27]23[29]39]31]
g >l JL_ JL Lt . | B3
B é @ track sector ab transfer address
o 9 (048-122) (01-23) f9r partic?lar
g3 B4 converted PINT 123;’;53‘;;;:‘*
" - Hou data address
-5 B x
3 0 a]l = x on b| 1= changed
& o instruction location
Type B
fof1]2]3]a LS l 6] 7| 8] 9] 10]11]12[13]14‘15‘15[17| 13[19]20l;:[zz]zslm]zslzs 127[23 |29[39J3_x]
x ¥ I M LI S L
) track sector a b transfer address
55 (048-122) (01-23) for particular
“ 0 interpretive
c-a converted PINT subroutine
b v data address
2 ‘
§ ﬁ al]l = x on bl = changed
€ instruction location

* indicates not used

35

Type C
[o]1]2]3]a]s]6] 7] 8| 9] 10]11]12[13]1a]18]16] 17] 18]19]20] 21 [22 [23] 24 [25 |26 |27 [28 |20 [a0] 31

L bx Lt _Ix

é‘g actual count g transfer address
-9 at q = 17 W & for particular
% @ s interpretive
- 3 O s subroutine
[T n 3
Ko —
E A
30
S o

Type D

lo[1]2]3[a]s]el7]8] 9| 10] 11]12]13]1a[15] 16] 17] 18|19[20{21]22]23] 24 [25 26 127I28]29]vyao|31]
KRk ok ok ok ok kK ok K ok Kk ok ok kK kKL

Jx .

o transfer address
W g ;

28 for part1c913r
s interpretive
Vs subroutine
o

-

* indicates not used

The PINT instruction x5ADD024 would appear as follows:
1 2 3 4 5 6 7 8 9 10 11 1213141516171819202122232425262728293031

LL0J110|110|1111010|0111OIOIOIOIlIOIllololololllo]1!1I1[1I 11 110]

Lo I L L , J
° n track 49 sector 02 x g dinitial location of
3 pat ; @ ADD routine (00263)
o >< + . «
g i = PINT location 024 5

T .

g o o

-H H o £

<

36

4.3 PINT Numbers

All PINT numbers are floating point and are stored in two parts as
follows:

a. the characteristic, consisting of a sign and 31 magnitude bits,
normalized, with the binary point at the high-order end.

b. the exponent, consisting of a sign and 17 magnitude bits, stored
at q = 17, and complemented for ease of handling. Bits 20-30
contain the address of the post-mortem routine. Thus, if a
number is used as an instruction, a post-mortem will result,

The PINT floating point representation of the number 5 is shown below:

Characteristic

2 3 4 5 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rflloll|0|0IOIOIOIOIOIOIOIOIOIOLOIOIOIOIOJ [olololololol ool dlo]

+.625
Exponent
o 2 3 4 5 6 7 8 9 10 11 1213141516171819202122232425262728293031
lllllllllllllll1lllllllll i[1[1]1]of1]ofof1]2]ofojofofof1]0[1[1]0]
- L _ JLIL . |
complement of exponent 3. oy address of post-
+ mortem routine
° (02411)
o1
<]
R
o &
2o

4.4 Interpretation

In the PINT system, interpretation is done during the program loading
phase instead of during program operation. A simplified block diagram
of the program loading routine will explain how this is done,

37

INP6400 compare mnemonic

input this operation code
instruction with table in
track 15

store corres-
ponding trans-
fer address

comparison
successful

assume word
is data - go
to data input

!

determine jp———e= A ———e=] binarize address store »
class of ———s= B ——=} in appropriate decoded

instruction p———e C =4 manner, add mod- ™1 instruction v
found |——= D ———= ifier, etc. in memory

A typical mnemonic operation code table entry for ADD is as follows:

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

[Oli[aTo aTo ol [alal ol [al2 [0l olo ololo[1 ol 11l 1 1] 1] 110]
L [[]

I il i |
A D D address of ADD subroutine
(00263)
4.5 Tagging

All PINT words contain a tag to indicate to the post-mortem routine
whether or not the word was changed by program operation. This tag
consists of a bit at @ = 19 in the first half word (sectors 01-23).
When posf—morteming, PINT will detag and print the contents of all
locations which have been changed and hence tagged with a 1 at 19,
Using the repeat mode, the operation takes less than two seconds to
check the entire memory, exclusive of printing time.

A rather infrequently used tag is found in instructions in the first
half word at q = 18, If this bit is a 1, the instruction was preceded
by an "x'" during input. The Dump routine picks up this tag and prints
the "x" in front of the instruction, making it possible to dump a
program in relocatable form,

38.

4.6 Comments

A few unusual aspects of the system should be mentioned here for they
result from the unorthodox structure of the PINT memory.

The CAI operation (Copy Address Into) is the slowest non-function
instruction and is illustrated in the following block diagram:

unfloat ¢
number %o ot
to q = 17 post mortem

yes

>20477?

does xxx
contain a
Type C in-
struction?

yes store unfloated

number in D-ad-
dress portion of

instruction in xxx

no

convert un- store result in

floated num- D-address portion

ber to PINT of instruction in
address XXX .

As a result of the structure of PINT memory, some instructions are
limited. For example, jCXI may not be used to modify count-type

(Type C) instruction. This could have been allowed only by approx-
imately doubling the operation time.

The memory structure also causes the CIJ, AXA, and SXA orders

" (and the PINT executive routine itself) to count by 23's when step -
ping along through memory. This is usually done in the following
manner, which requires only 1/4 drum revolution.

39

add the
addresses
concerned

resultantv
sector
23?7

no

address is
in correct
form - go on

yes

track + 1
sector - 23

4.7 Speed

PINT was not designed to be a fast system; nevertheless, considerable
effort was made to obtain this, It was found that the present memory
structure provided a compromise between wasting drum space and reduc-
ing the access time during program execution. . The programming diffi-
culties introduced by not having a sequential memory were more than
compensated for by the greater operating speed.

40

SECTION 5

EXTENDED MEMORY APPENDIX

As has been previously pointed out, it is possible to extend the PINT
memory to 166 locations. This is accomplished by the use of the alpha-
betic characters A through F in such a manner that a numerical digit
never appears to the left of an alphabetic digit.

The following table gives the complete list of memory locations
available:

Locations PINT Addresses

0 -- 999 000 -- 999
1000 -- 1099 AOQ -- A99
1100 -- 1199 BOO -- B99
1200 -- 1299 CO00 -- C99
1300 -- 1399 DOO -- D99
1400 -- 1499 EOO0 -- E99
1500 -- 1599 FOO -- F99
1600 -- 1609 FAO -- FA9
1610 -- 1619 FBO -- FB9
1620 -- 1629 FCO -- EFC9
1630 -- 1639 FDO -- FD9
1640 -- 1649 FEO -- FE9
1650 -- 1659 FFO -- FF9
1660 -- 1665 FFA -- FFF

TOTAL NUMBER OF LOCATIONS -- 1666

41

SECTION 6

OPERATING -‘PROCEDURES

6.1 To Turn the RPC-4000 ON and OFEF
To turn the computer ON

. Press POWER ON on computer

Press SYSTEM POWER on 4500

Press POWER on 4500

Hit MASTER RESET

Make sure nothing is selected off-line

. .

bW
.

To turn the RPC-4000 OFF
1. Raise POWER on 4500
2. Raise SYSTEM POWER on 4500
3. Press POWER OFF on computer

* If someone is going to use the computer within an hour DO NOT
press POWER OFF on computer.

6.2 To Load the PINT Interpretive System

. Load PINT tape into reader
Depress ONE OPERATION

Press SET INPUT MODE

Depress EXECUTE LOWER ACCUMULATOR
Select READER on line

Press START COMPUTE

. .

o h W

About three inches of tape will be read.

7. Press START COMPUTE
8. Depress SET INPUT MODE
9. Raise ONE OPERATION
10. Press START COMPUTE

The entire tape will now be read.

11. Lock out track 00 - 31 by flipping the two switches under the
scope, down.

42

The PINT CHECK SUM is used as follows:

1. Load tape into reader

2. Follow steps 2 through 10 above

3 After loading, the program will sum the entire PINT system
and print O.K., If something else is printed, reload PINT.

6.3 To Load a PINT Program

Place program tape in reader
Depress ONE OPERATION

Press START COMPUTE

Raise ONE OPERATION

Press START COMPUTE

.

0O dHWN
. .

If program tape does not read in, execute the following steps:

Select typewrite input (on-line)

Depress ONE OPERATION

Press SET INPUT MODE

Depress EXECUTE LOWER ACCUMULATOR

Press START COMPUTE

Type 00000000* on typewriter (eight zero's)
Raise ONE OPERATION

Select reader input

Depress START COMPUTE to read program tape

. . .

OWoO~NOWLdDWN -
.

.

6.4 To Correct a Program

If the typewriter prints "Illegal Order xxx" while you are loading your
program, it will print "Load Corrected Orders" at the end, and then
stop. Independent corrected instructions may now be loaded by the
LOADxxx operation,

Note: If the program has more than one LOAD code PINT will not print
"Load Corrected Orders’.

In order to load corrections under these conditions:

. Depress SENSE SWITCH 4
Depress ONE OPERATION
Press START COMPUTE
Raise ONE OPERATION
Raise SENSE SWITCH 4

“dh W

The corrected instructions may now be entered as above.

43

6.5 To

Trace a Program

The trace within the PINT system may be activated at any time by de-
" pressing SENSE SWITCH 1 which causes the following printout:

1.
2.
3.

Lift

6.6 To

Location of each active jump instruction
Jump instruction executed
Contents of the Accumulator

SENSE SWITCH 1 to inhibit the trace.

Print Out a Program from Memory - DUMP

NoUuh LR
. .

Depress SENSE SWITCH 4

Depress ONE OPERATION

Press ‘START COMPUTE

Raise ONE OPERATION

Press START COMPUTE

Type DUMP*

To print one location type xxx*

To print a series of locations type xxx xxxX*

To inhibit printing depress, then raise, SENSE SWITCH 2
To print again, repeat step 7 '
To return to PINT loading program type DONE*

6.7 Post Mortem

The PINT system prints a Post Mortem if your program makes any of a
number of errors:

"UND" means undefined, that is, it is neither a number nor an
instruction, ‘ ' R

Error Printouts

PgFF is an operation,

1.

2,

"JLLEGAL ORDER IN-XXX@@@YYY in YYY..." This means that the
contents of YYY are not consistent with the operation of the
instruction. The contents of YYY are printed out for refer-
ence. :

"IN XXX@OPYYY" @PF is a CCF or a CNF instruction and SENSE
SWITCH 16 is down, -

Following the identification, PINT produces a printout of all changed
index registers and memory locations.

44

The Post Mortem may be terminated at any time by depressing SENSE
SWITCH 32, and then raising it again.

Index Register contents are printed as follows:

A

= Address, I = Increment,

6.8 To Load a Subroutine

C = Count

If instructions for the subroutine say that it is self-loading,

load as a program.

If it is not self-loading, proceed as follows:

a. Depress SENSE SWITCH 4
b. Go to PINT loading routine (6.3)

c. Type LOADxxx*
MODxxx*
WAIT*

where xxx is the initial location for the subroutine to be

stored in.

d. Raise SENSE SWITCH 4
e, Place subroutine in reader
f. Press START COMPUTE

6.9 Sense Switch Options

SENSE

SENSE

SENSE

SENSE

SENSE

SENSE

NOTE:

SWITCH 1

SWITCH 2

SWITCH 4

SWITCH 8

SWITCH 16

SWITCH 32

UP:
DOWN :

DOWN:

UP:
DOWN:

DOWN:

DOWN :

UP:
DOWN':

No effect
Trace program mode

No effect
a. Stop '"DUMP"

b. Jump on JOS instruction

Tape input mode
Typewriter input mode

Normal output mode
Compatible output mode

No effect
PINT stop

No effect
Stop Post Mortem

EXECUTE LOWER ACCUMULATOR must be down at all times,
do not use ONE OPERATION button to interrupt a program; use

SENSE SWITCH 16.

45

Therefore,

SC40

LIBRASCOPE GROUP

A
COMMERCIAL COMPUTER DIVISION

LITHO IN U.S.A

	01
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46

