H3-01.0

COMPACT c.crence manuar

GENERAL PRECISION, INC.

Commercial Computer Division

REFERENCE MANUAL

for the n p . 4 o o oGeneral Precision Electronic Computer

PROGRAM NO. H3-01.0

© 1963, General Precision, Inc.

CONTENTS

R TR T RN SRR RN AN AN NN N NN AN NN AN NN AN NN AN A A A

INTRODUCTION
PUNCHING THE SOURCE PROGRAM

COMPILATION
Loading The Program
Sense Switch Options
Operation of The Compiler
Error Recovery
Initial Instruction

Terminating Compilation

THE CCMPILED PROGRAM
Symbols
Roar Pseudo-Instructions
Floating-Point Arithmetic
“Undefined” Functions

Summary of Function-Naming Conventions

'ASSEMBLY PROCEDURE
Loading the Assembler
Roar Sense Switch Options

Operation of the Assembler

COMPACT SUBROUTINE LIBRARY
Arithmetic Subroutines
Input / Output Subroutines
Function Subroutines

Assembling the Subroutine Library

APPENDIX SUMMARY OF COMPACT STATEMENTS
Arithmetic Statement

Unconditional GO TO

h O O A W W

N

N

1

13
14

15
15
15
15

17
17
20
2]
23

25
25
25

ILLUSTRATIONS

Assigned GO TO
Assign

Computed GO TO
if

Sense Light

If Sense Light

If Sense Switch

If Accumulator
Overflow

If Quotient Overflow
If Divide Check
Pause

Stop

Do

Continve

End

Call

Subroutine
Function

Return

Read

Punch

Print

Read Input Tape
Write Oufprut Tape
Format

Dimension
Equivalence

Common

FIGURE 1 —Compact coating sheet

FIGURE 2 — Punching unnamed statements
FIGURE 3 —Punching named statements
FIGURE 4 — An assembled comment
FIGURE 5 —Range of exponents

25
26
26
26
26
26
27
27
27
27
28
28
28
29
29
29
30
30
30
30
31
31

31

31

31
32
32
33

11
12

COMPACT REFERENCE MANUAL

INTRODUCTION

This manual is intended as a programming and operating aid for the user of
General Precision's RPC-4000, It presupposes familiarity withthe COMPACT
Programming Manual and the ROAR III Programming Manual,

COMPACT is a FORTRAN-derived compiler which produces a ROAR-
language program, This program, in turn, must be assembled by ROAR III
so that it can be processed by the RPC-4000 directly.

The sole concern of this manual is the compilation and assembly of a source
program, A discussion of the COMPACT subroutine library and its assembly
concludes the subject area treated in this context, Operation of the RPC-4000
and its input and output devices is merely touched upon where necessary, as
it is properly the subject of the RPC-4000 Programming Manual,

PUNCHING THE SOURCE PROGRAM

The COMPACT Coding Sheet, illustrated below, is divided into three fields:
Comment, Statement Number or Name, and COMPACT Statement,

[COMMENT
t| sTATEMENT
NUMBER COMPACT STATEMENT
|, OR NAME
]
T:h i1 sy (pllrogram is to be used only as an example of

¢,0,d,i ;n,gland is not intended for actual compilation.

., . , |piMENSION ARl [10], BC [5,5]

. B ,E G |POLTR=0.0

. . . . |rEap FMT1, BC, NY, NZ

., . |'FNY-NZ] 30,31,32

| ,3,2| POLTR = POLTR + COEFA + COEFB* [TEMP = TRIGF= =
. . . . |[are [inDl1]1+ coerc™® TEMP™ TEMP

—“34 -t =4 4 4 = o

P A
— e

)

FIGURE 1 —Compact coating sheet

The first field is one character wide. If it contains any alphanumeric or type-
writer control character other than zero, space, or tab, the line will be treated
as a comment, A comment may be several lines long, but is terminated at every
carriage return, Thus, the one-sentence example above is interpreted by
COMPACT as two comments, each line constituting one comment,

If the Comment field contains a zero, space, or tab, the subsequent characters
on that line are not treated as a comment, In addition, if a tab is the first
character punched on tape for a given line, it is also assumed that the state-
ment is not named, Figure 2 illustrates how line 3, above, may be punched on
tape.

(tab) DIMENSION AR1 [10] , BC [5, 5]

or as

(sp)(sp)(sp)(sp)(sp)(sp) DIMENSION AR1 [10] , BC [5,5]

FIGURE 2 —Punching unnamed statements

The second field is 5 characters wide and contains the statement name or num-
ber, if there is one, Spaces are counted in this field, but are otherwise ignored.
For example, if a statement name is written on the coding sheet as

|_COMMENT

t| STATEMENT
| nNumeer
, OR NAME
]
= Ty TT
I R B
-

and punched on tape as
spspTsp TT

COMPACT would count 6 characters: 3 spaces and 3 letters, However, this
statement name would be compiled as TTT and so appear on the ROAR-
language* listing, Statement names or numbers may consist of up to 5
characters, If the first character is numeric, the field will be treated as a
statement number; if it is alphabetic, as a statement name. The field may be
terminated by a tab, For example, line 4 in Figure 1 could be punched as
shown in Figure 3,

Comment Field Statement Name Statement
(sp) (sp)(sp) BEG POLTR=0, 0
(sp) (sp) BEG (sp) POLTR=0, 0
(sp) BEG (sp)(sp) POLTR=0, 0
or as:
(sp) BEG (tab) POLTR=0, 0

FIGURE 3 —Punching named statements

In the first method, the statement name BEG preceded by two spaces provides
the required 5 characters for this field. A tab following BEG would be per-
missible but unnecessary., In the second method, the tab terminates the field
although only 3 characters were entered,

*All references to "ROAR" in this document are to "ROAR IIL "

The third field is of indeterminate length and contains the COMPACT statement.
Each carriage return indicates the end of a statement. However, if a state-
ment has to be continued to the next line, this must be indicated by entering

two consecutive equal signs (==) immediately preceding the carriage return.
(See statement 32 in the example.) Note that the (==) convention cannot divide
an entity like a variable name, constant, or operator or a Hollerith field. For
example, the name SUMM cannot be written

SU==
MM

and the number 186, 325 cannot be written

186, ==
325

(The "continuation column" convention of FORTRAN is not allowed in COMPACT.,)
All typewriter controls except carriage return are ignored in the third field,

unless the statement contains a Hollerith field, within which all codes except
blank and delete are recognized,

COMPILATION

The commiler assumes a basic RPC-4000 System. The basic punch is selected
by the compiler to output the ROAR-language program tape. The basic type-
writer is used by the compiler to communicate with the operator whenever an
error is encountered in the source program and to produce a hard-copy listing
of the compilation. The input device is selected manually.

It is possible to alter the COMPACT program to allow output of the object pro-
gram listing on sorne unit other than the RPC-4500 Typewriter, To accomplish
this, make the following changes, replacing "XXX" with the desired PRD
Select Code:

6563* PRD* XXX63* 9359*% *

7239* PRD* XXX39* 5243% *

7255*% PRD* 6855% 9363*% *

9363* PRD* XXX63* 5309* *

6460* PRD* XXX60* 7800*% *

5328* PRD* XXX28* 6132*% *

3753% PRD* XXX53* 3257*% *
With these changes, COMPACT will transfer all hard-copy output, except
error comments, to the specified unit,

Loading The Program

The procedure for loading COMPACT into memory is as follows:

1, Depress MASTER RESET, -

2. Place the COMPACT tape in the reader.

Sense Switch Options

3. Select READER TO COMPUTER,

4, Depress ONE OPERATION,

5, Depress SET INPUT MODE,

6, Depress EXECUTE LOWER ACCUMULATOR.

7. Depress START COMPUTE. The computer will read one word
and stop.

8. Depress START COMPUTE.,
9. Raise EXECUTE LOWER ACCUMULATOR,

10, Depress SET INPUT MODE,

11, Raise ONE OPERATION,

12, Depress START COMPUTE, The program will be read and stored in
Tracks 0 through 101. Tracks 102 through 122 are used by COM-
PACT for temporary storage during the compilation of a program.
When input is completed, the computer will halt.

Before control is transferred to COMPACT, Sense Switches must be set if any
of the options are to be used. The Sense Switch settings are used to determine
the form of the output. Depressed, they will cause the suppression of certain
output as listed below. If none are depressed, the output would consist of the
ROAR-language program tape (format-controlled with a tab after each field and
containing all comments), and a typed listing of both the COMPACT-language
source program as it is read and the resultant ROAR-language instructions.

Sense Switch Function When Depressed

1 Causes the PRE tapes to be output on the RPC-4600 Punch.
2 Suppresses typing of COMPACT statements and comments.
4 Suppresses typing of the ROAR-language instructions.
8 Suppresses punching of COMPACT-language source
statements.
16 Suppresses punching (and printing) of tabs after stop

codes in the ROAR output tape.
32 No effect.

It is suggested that SENSE SWITCH 2 remain UP during compilation, so the
operator can know which statement is currently being processed. With SENSE
SWITCH 4 depressed (and 8 and 16, if desired), the compiler will run faster
because it does not have to type the ROAR instructions. However, it does not
save much time to suppress the typing of the original statements, and if an
error should occur, it is difficult--although not impossible--to discover which
statement was wrong. (See "ERROR RECOVERY.")

Operation of The Compiler

After the Sense Switches are set, place the COMPACT-language program inthe
appropriate input device and transfer control to Location 00000, the beginning
location of COMPACT. When the program is initially stored in memory, de-
pressing START COMPUTE will cause computer control to be transferred to
the beginning location of the program; or the operator may transfer manually to
Location 00000:

1. Depress MASTER RESET.
2. Depress ONE OPERATION.
3. Depress SET INPUT MODE.
4. Depress EXECUTE LOWER ACCUMULATOR.
5. Depress START COMPUTE.
6. Depress START COMPUTE.
7. Raise EXECUTE LOWER ACCUMULATOR.
8. Raise ONE OPERATION,
9. Depress START COMPUTE.
COMPACT will select the typewriter for output and print:
SELECT SINGLE CHARACTER MODE

(This printout will be bypassed if the SINGLE CHARACTER MODE switch is al-
ready down.) Depress this switch and START COMPUTE. Next, COMPACT
will print:

SELECT INPUT DEVICE

COMPACT does not wait for the selection to be made, but immediately starts
to punch a leader of blank tape. While this happens, depress the switch which
selects the appropriate input device. Note: if an RPC-4510 Reader is to be
used for input and a tape is not in the reader when the device is selected, an
"F" will be loaded into the Accumulator.

Error Recover
y If an error is encountered in the source program during compilation, COMPACT

will select the basic typewriter for output and print an indication of what is wrong
with a particular statement. If COMPACT selects the typewriter for input after
such a printout, it is usually possible to correct the error by retyping the last
statement correctly. If the typewriter is not selected for input after an error
printout, the error is not recoverable. In that case, depressing START COM-
PUTE will transfer control to the beginning of COMPACT. Correct the source
program tape and begin again.

Initial Instruction
The compiler is stored in Tracks 0 through 101. The area above Track 101 is

used for table storage. The entry location for the compiler is Location 00000,
as it is most accessible. Unfortunately, this also makes the contents of that
location most vulnerable to destruction by improper manual operations. If this
happens, the initial instruction may be restored by the following procedure:

10.

Depress MASTER RESET.

Select TYPEWRITER TO COMPUTER.

Depress ONE OPERATION.

Depress SET INPUT MODE.

Depress EXECUTE LOWER ACCUMULATOR.

Depress START COMPUTE. The light on the typewriter glows.
Type: 85F02A2EC0000000*

Raise EXECUTE LOWER ACCUMULATOR.

Raise ONE OPERATION.

Depress START COMPUTE.

The following procedure may be used to recover from an error halt during a
blind assembly (i.e., an assembly with Sense Switches 2 and 4 depressed) if
the typewriter light comes ON:

1.

10.
11.
12.

13.

14,

Note which on-line devices are selected when the error halt
occurred.

Depress MASTER RESET.
Mark the character under the read head at the time of the halt,

Reposition the tape so that the first character of the erroneous
statement is under the read head.

Depress READER SELECT and TYPEWRITER SELECT (off-line).

Depress START READ (off-line) and allow the erroneous statement
to be typed.

Depress STOP READ (off-line),
Determine what corrections are necessary.

Position the tape so that the first character of the statement im-
mediately following the erroneous statement is under the read head.

Raise READER SELECT and TYPEWRITER SELECT.

Select on-line all devices noted in step 1.

Depress START READ (on-line).

Type the statement that caused the error halt, making the necessary
corrections. After that statement has been compiled, the typewrite:

light will glow, indicating that the next statement may be input.

Note which on-line devices are selected.

15. Depress MASTER RESET.

16. Re-select all on-line devices noted in step 14 except TYPEWRITER
TO COMPUTER.

17. Depress READER TO COMPUTER.

18, Depress START READ (on-line) and compilation will continue nor-
mally.

Terminating Compilation
An END statement must be the last statement of every COMPACT-language pro-
gram and subprogram. After the compiler reads the END statement followed
by a carriage return, it outputs certain information which is necessary for the
assembly and operation of the compiled program:

1. The instructions for the initialization of a subprogram (when
" applicable).

2. The array base addresses.
3. The RRS pseudo-instructions.
4, The PRE pseudo-instructions.

Items 1, 2, and 3 are punched on the ROAR-language tape and typed on the pro-
gram listing; item 4 is only punched on tape.

THE COMPILED PROGRAM

Symbols The output from the COMPACT compiler consists of a series of ROAR-language
symbolic instructions, constants, and pseudo-instructions. It may be noted that
many more names (symbolic locations) appear on the ROAR-language output
listing than in the original COMPACT statements. There is a definite relation-
ship between the form of such a name and its function. All names generated by
the compiler are of the form X]XXX, where X is any alphabetic character and
(]) the right bracket on the RPC-4480 Typewriter. The character to the left of
the bracket designates the function of the name.

This character has a mnemonic relationship to the function it describes:
K]XXX -- name of a fixed-point constant
Q]XXX -- name of a floating-point constant
M]XXX -- name of a mask
X XXX -- exit from a subroutine
W]XXX -- working storage location
L]XXX -~ usually name of the location of an instruction

J]XXX -- name of a compiler-named Hollerith array.

Other initial letters signify the conversion of a COMPACT statement number to
a statement name. This conversion is necessary since pure numeric names are
interpreted by the_ROAR assembly program as absolute addresses. The conver-
sion is a straightforward process which changes decimal numbers to numbers
base 26 and uses the 26 letters of the alphabet to represent them. Thus, state-
ment number 5 would be converted to A]AA F; statement number 27, to A]ABB,
etc. Any names in the compiled program with A], B], C], D], E], or F]

as the leading characters indicate conversion from statement numbers.

In addition to individual names, the compiler must generate regional names to
provide storage for arrays, format lists, etc. All regions designated by the
compiler are tagged with a special character, thus leaving the alphabetic
characters for use by the programmer. These region designations are as
follows:

, Common region.

Address table for subprogram parameters.

Local array storage.

ed M

Format and input/output address lists.
- Transfer vectors for Computed GO TO statements.
+ Parameter storage for arithmetic-type functions.

It is suggested that no regions tagged with a special character be used in pro-
grams written directly in ROAR language if there is any chance that they will
be assembled together with a compiler-generated program.

All sequential storage described by the compiler will be assigned to the low end
of memory, beginning in Track 0 Sector 01.. The regions will be located in the
sequence listed above. Thus, the common region (,) with base address 00000
is the first region, and its first word '"00001" is in the absolute Location 00001,
(Location 00000 is reserved for the beginning of an error print routine in the
Subroutine Library. *)

Sequential storage assignment is made as follows: the common region is as-
signed the required number of locations extending from Location 00001 upwards;
the last location of the common region becomes the base address of the next
region; i.e., region(=), the address table region.

When several compiler-generated programs are assembled together, ROAR adds
the region reservations for each region, and makes the region large enough to
handle all the required entries for the programs. For example, if the first pro-
gram required 12 locations in the (=) region and the second required 10, the
total number of locations set aside for the (=) region would be 22. This is true

*Location 11519 contains a self-addressed halt which is executed after the error
printout "TRANSFER ERROR' (at run time, not compile time). Location 00000
contains the instruction *PRD*9500*11119**yhich is the first print instruction
for the error printout; the next is in 11119; ete. ; the last Print instruction is in
11959 (*PRD*159*11519%*), If the programmer does not want the computer to
halt after the error printout or wants to be able to continue after such a halt,

the Next-address in Location 11959 or 11519 (respectively) should be changed
accordingly.

Roar Pseudo-Instructions

of all except the common (,) region, which is chosen to accomodate the require-
ments of the program in the group which needs the largest number of common
region locations. To illustrate, assume that three compiled programs are be-
ing assembled together and that the first requires 14 sectors in the common (,)
region, the second 10 sectors in the (,) region, and the third 22 sectors in the
(,) region. When the three PRE tapes are read by ROAR, it will assign 22
sectors to the (,) region. Note, however, that of the 22 symbols which will be
assigned storage in the (,) region, only 10 can actually be used by all three pro-
grams. Furthermore, in order for ROAR to assign the correct region locations
to these common symbols, they must have been listed in the same sequence in
the COMMON statement in each program. The order in which the other sym-
bols were listed in the COMMON statement is immaterial. (See COMPACT
PROGRAMMING MANUAL, "The COMMON Statement, " Chapter 5.)

The compiler-generated programs make use of the Recirculating Track and
of the Double-access Tracks, and the floating-point and function routines also
use the Recirculating Track. All of Track 127 is used. Track 124 (and its
associated Track 126) is used to store parameters for hand-coded function
routines with more than one parameter. Sectors 63, 0, 1, 2, 3, and 7 of
Track 123 (125) are used to simulate sense lights and should not be used for
any other purpose if the statements SENSE LIGHT n or IF SENSE LIGHT n
are used in the COMPACT-language source program. Furthermore, Sectors
32 through 63 on Track 123 (125) and all of Track 124 (126) are used for re-
gional storage by the Input/Output subroutine in the COMPACT Subroutine
Library. .

Five pseudo-commands have been included in the assembly program, ROAR III,
to allow it to process compiler-generated programs. Four of these are logi-
cally required, the fifth is merely handy. These pseudo-instructions are as
follows:

1. PRE - Prepare ROAR. This pseudo-instruction is generated by the
compiler and is the last item output after the program compilation
is complete. It contains the name of the subprogram, if any, and
the information concerning the amount of storage required by that
routine for each of the six special-character regions. The PRE
pseudo-instruction must be input to ROAR before the COMPACT ob-
ject program.

The information output as the PRE pseudo-instruction is in hexadeci-
mal notation. The first word is the name of the subprogram if any.

It is in 6-bit binary-coded decimal. If there is no name, the word
will be all zeros. Any subprogram name introduced by a PRE pseudo-
instruction is defined as a global symbol by ROAR. The second and
subsequent words of the PRE pseudo-instruction are made up of two
parts: the first 4 hexadecimal characters give the name of the region;
the last 4 indicate (at a "q" of 30) how many memory locations are re-
quired for that region. For example, the pseudo-instruction

PRE*229ESBAD*34DCO000E*36DC003E*35DC0000*3ADC0000*3BDC0000*
37DCO1DC*

informs ROAR that subroutine INOUT requires
7 locations for region ,
31 locations for region [

0 locations for region =

10

0 locations for region +
0 locations for region —
238 locations for region]

RRS - Relocate Regional Storage. Every compiler-generated pro-
gram which requires regional storage has an RRS pseudo-instruction
at the end of the program. With the exception of the common region,
regional storage from one program must not overlap that of another.
Since the COMPACT compiler can not determine during compilation
of a program whether it is to be assembled with another, the RRS
pseudo-instruction assures assignment of unique sequential storage
regions by informing ROAR how many locations in each region have
been used in the program under consideration.

When ROAR encounters an RRS pseudo-instruction, it relocates the
base address of the specified region upward by the number of locations
given in the Data-address field. Thus, when the next program is as-
sembled which uses the same region, storage will commence from that
point. For example, if two separately compiled programs were to be
assembled together and each used 10 locations in the (=) region, the
two PRE pseudo-instructions would so inform ROAR, and 20 locations
would be reserved for this region. After assembly of the first pro-
gram, this pseudo-instruction would follow:

RRS=0001 0%**

causing ROAR to relocate the base address of the (=) region upward by
10 locations. Then, when the second program refers to =00001, ROAR
will assign the 11th location in the region to that symbol.

SET - Establish Global Symbols. This pseudo-instruction is used to
set up the global symbols, which are symbols common to all programs
assembled as a single operating package. They are used for communi-
cation between sections of a program or between subprograms and a
program. SET is not generated by the COMPACT compiler, but is re-
quired if any symbols--other than a subprogram name established by a
PRE pseudo-instruction--are to be global. A SET and EQR Tape is pro-
vided to all COMPACT users. This tape consists of a SET pseudo-
instruction containing the names of all the built-in and library sub-
routines COMPACT uses and a list of EQR pseudo-instructions desig-
nating the location of the initial instruction of each subroutine. It also
provides the region reservations which are required for the Input/
Output routines when the symbolic Subroutine Library is assembled.
By using the SET and EQR Tape and including SET and EQR pseudo-
instructions to provide global symbols for any hand-coded subroutines,
the programmer provides all the global symbols required by ROAR to
assemble his program properly.

When the SET pseudo-instruction is executed, ROAR places in the Set
Table all the symbols which follow it. Up to 256 symbols may be en-
tered with a single SET pseudo-instruction. Each symbol, consisting
of no more than 5 characters, is followed by a stop code. When a
global symbol is encountered by ROAR for the first time during the
assembly, the symbol is placed in the Symbol Table and is assigned
an absolute address. Thereafter that absolute address is used by
ROAR whenever it sees that symbol.

When assembling a COMPACT-compiled program, the SET pseudo-
instruction must precede all program instructions.* Names defined as
global in either a PRE or SET pseudo-instruction are preserved in the
Set Table as long as the ROAR program is not initialized.

4. RST - Restore Symbol Table. The first instruction of every compiler-
generated program is an RST pseudo-instruction. When ROAR encount-
ers this pseudo-instruction, it will clear all non-global symbols from
the Symbol Table. This does not affect the Set Table. ROAR examines
the list of global symbols established by SET and PRE pseudo-instruc-
tions to determine whether any of these symbols have been assigned
absolute addresses in the object program. If they have, the symbols
are re-established in the Symbol Table, and their absolute addresses
are retained. All other symbols are cleared from the Symbol Table.
In this way two different programs which are assembled together may
use the same non-global symbols to mean different things without con-
flict.

5. (GBEN(EB) - COMPACT-Generated Comments. This pseudo-command
consists of the three non-printing characters (56)(57)(56) and instructs
ROAR to ignore all characters which follow, including stop codes (*)
unless the stop code is preceded by the character (58). This allowsthe
original COMPACT-language statement to be included in the ROAR
symbolic output as a comment and helps to make the final program list-
ing more comprehensible. Each COMPACT statement is compiled as
a block of instructions, the constants (if any) appearing at the bottom of
the block. The block is preceded by the original COMPACT statement
which caused the generation of the block of coding. The statement is
preceded by the comment pseudo-instruction (58)(57)(56) and is follow-
ed by (BB)*. (See "SENSE SWITCH OPTIONS. ")

Since codes 56 and 57 have no representation on the keyboard, this
comment pseudo-command cannot be typed. However, it canbe punched
on tape (either directly by the computer or by overpunching with the
typewriter) and will enter the computer like any other character. When
the program containing this comment pseudo-instruction is assembled
by ROAR, the typewriter output will show only two stop codes, a
carriage return and the remarks provided, and finally a carriage re-
turn and the last stop code. For example, the comments shown in
Figure 1 appear on the assembly listing as:

k%

This program is to be used only as an example of

*

o

coding and isnot intended for actual compilation.

*

FIGURE 4 — An assembled comment

Floating-Point Arithmetic Floating-point arithmetic operations are performed by means of subroutines in-
cluded in the Subroutine Library package. Entrances to these and other special
routines are named by the compiler by means of the convention [XXXX where,
as before, XXXX represents alphabetic characters and [is the left bracket on the
typewriter. Again some mnenomic relationship exists; [FMP is the entranceto

* In previous publications it has been stated that the PRE pseudo-instruction
must be the first input to ROAR and must be followed by the SET and EQR
Tape. However, the order of the PRE and the SET and EQR Tapes is incon-
sequential except that they must both precede the symbolic program which is
to be assembled.

1

12

the floating multiply routine, [FDV is floating divide, etc. The calling sequence
generated by COMPACT for these subroutines varies, depending on the particular
subroutine to be used. The calling sequences for all the subroutines are explain-
ed under "COMPACT SUBROUTINE LIBRARY."

The floating-point word, as stored in memory, consists of a sign, a mantissa
(24 bits), and an exponent carried excess 128 (8 bits), for a total of 33 bits.
This is accomplished in the following way:

1. Al floating-point numbers are normalized.

2. All floating-point numbers are positive. Negative numbers are
represented by a positive mantissa and a "'1'"" in the sign bit; in
other words, a detached sign convention is used. Complement num-
bers are not allowed as the mantissa.

3. Since bit position one of a normalized number must always contain
a '""1l,'" except when a true zero is to be represented, this bit is re-
dundant and is discarded.

4. A floating-point zero (as well as the fixed-point zero) is repre-
sented by a machine word containing all zeros; i.e., both mantissa
and exponent are zero.

5. All floating-point routines insert the ""dropped bit' as required, and
then discard it after the designated operation.

A "floating accumulator' is simulated in memory, using the Recirculating
Sectors 0, 1, and 3. It is loaded by means of the Floating Bring Routine,
which separates a floating-point word into its three components and stores
them in the three recirculating locations: exponent in Sector 00, mantissa in
Sector 01, and sign in Sector 03. The dropped bit is inserted into the mantissa
at this time. The entrance to the Floating Bring Routine is named [FBR.

The floating-point exponent, which consists of the last eight bits of the word
and is always positive and greater than zero, represents the power of 2 by
which the mantissa is to be multiplied. The convention adopted is called
"excess 128, " since the high-order position of the eight bits contains a 1"

if the represented power of 2 is positive, and a "0" if it is negative. For this
reason it is sometimes called the "reversed sign convention.'" - Figure 5
illustrates in chart form how the exponents are represented.

10000000 = 20

10000001 = 21 01111111 = 271
10000010 = 22 01111110 = 272
10000011 = 23 01111101 = 273
10000100 = 24 01111100 = 274

11111101 = 2125 00000011 = 2125
11111110 = 2126 00000010 = 2126

11111111 = 2127 00000001 = 2127

FIGURE 5 —Range of exponents

“Undefined” Functions

This chart shows that the largest possible exponent is 11111111, representing
2127 and the smallest permissible exponent for a non-zero number is
00000001, representing 2-127, If the number to be represented is smallerthan
.5 x 2-127 (which is 1 x 2-128), it is considered to be zero. That is, exponent
underflow (2-128 = 00000000) generates a zero number.

In terms of decimal notation, numbers between the approximate limits of 1038
and 10-38 can be represented. The mantissa contains a sufficient number of
binary bits to represent seven decimal digits of significance.

Two different types of subroutine calling sequences are generated by the com-
piler, corresponding to the "arithmetic-type' functions and the '"'subprogram-
type' functions. Both types of subroutines may be written in COMPACT source
language and in ROAR language and provision has been made for their assembly
with compiler-generated programs. A few precautions must be observed.

ARITHMETIC-TYPE FUNCTIONS This type of function is called by its use inan
arithmetic statement. For example, the statement Y = SAMF (X) will cause the
compiler to generate the necessary instructions to bring X into the Upper Accu-
mulator and transfer control to the routine called SAMF. To insure that it is
available, the name SAMF must have been entered into the global list by means
of a SET pseudo-instruction. (If SAMF is being assembled as a part of the pro-
gram under consideration, this latter step is not required.)

The compiler provides the arithmetic-type functions with the actual values of
the parameters, not their addresses. The first parameter listed will be in
the Upper Accumulator (the exit instruction is in the Lower Accumulator and
must be stored by the subroutine for later execution). If more than one para-
meter is required, the others will be stored in Track 126--the trailing head of
the Double-access Track--in the order of their appearance in the argument list.
The last parameter in the list will always be stored in absolute Location 12663,
the next-to-last in 12662, etc. For example, assume a subroutine is written
in ROAR language and is to be used with a COMPACT-compiled program. It

is named BILLF (the name must end with an F and be 4 or 5 characters in
length), and it requires four arguments. In the COMPACT source program the
subroutine is called by the statement

Y = ANY + BILLF (ONE, TWO, THREE, FOUR)

The subroutine must store the exit instruction so that control may be transferred
to the correct instruction in the main program when the subroutine has finished.
The following ROAR instruction would accomplish this:

BILLF* CLL* EXIT***

It is desirable to use the first parameter immediately, if possible, since it is
in the Upper Accumulator. Otherwise, it must be stored for future use. If the
second parameter is to be used, the contents of Location 12661 must be brought
to the Upper Accumulator. The third parameter will be in Location 12662, and
the fourth in Location 12663. At the end of the subroutine, the instruction that
was stored in EXIT must be executed.

When the subroutine is assembled, the name BILLF must be included in a SET
pseudo-instruction, and the subroutine should begin with the pseudo-instruction
RST to avoid conflicts with COMPACT -generated programs.

For an arithmetic function of a single argument (which is the most common form)
the compiler generates the following instructions:

13

from Y = ANYF [QP]

will come L]XYZ* RAU* QP* *k
* RAL* * ANYF**
¥ STU* Y* L]XZA**

Thus, if anything is to be stored in Y, it must be in the Upper Accumulato.
when control is transferred from the subroutine to the main program, and 1
the floating accumulator if the output is a floating~point number.

SUBPROGRAM-TYPE FUNCTIONS This type of function can be hand-coded in
ROAR language (or in absolute machine language) and may be used with a com-
piler-generated program, providing the calling sequence is understood. In this
type of function call, the subroutine is provided with a base address of a list of
parameter addresses (not with the actual parameter values, as in the arithme-
tic-type functions).

Upon entry, the Lower Accumulator contains the exit instruction, as before.
The Index Register contains an address that is 1 less than the location in which
the address of the first parameter is stored. Therefore, when the instruction

XRAU 00001

is executed, the Upper Accumulator contains the address of the first parameter
(at a "q" of 17). XRAU 00003 would bring to the Upper the address of the third
parameter, etc. These may then be handled in any suitable manner.

If the routine were called by means of a CALL statement, no value need be in
the Upper Accumulator at exit. If it were called by its appearance in an arith-
metic statement, then the Upper must contain the output value, as must the
floating accumulator if the output is a floating-point number.

The subroutine name must be rendered global by use of the SET pseudo-instruc-
tion, and the routine should be preceded by an RST to avoid conflict.

Summary of Function-Naming Conventions

14

The naming conventions for these different types of functions are summarized
below for easy reference.

An arithmetic-type function must have a name consisting of 4 or 5 characters,
the last of which must be "F''. If the value of the function (the output from the
subroutine) is to be treated as fixed-point, the first character of the name must
be "X'". If the name begins with any other letter, the value of the function will
be treated as floating-point.

The subprogram type of function may have a name consisting of 1 to 5 charac-
ters. If the name is 4 or 5 characters in length, the last character must not
be "F'". The value of the function will be treated as fixed-point if the first
character of the name is I, J, K, L, M, or N, and will be treated as floating-
point if the first character is any other letter. For example

Name Designates

JSINF Arithmetic Functién, floating-point
XSINF Arithmetic Function, fixed-point
XSING Subprogram Function, floating-point
JSING Subprogram Function, fixed-point
ERF Subprogram Function, floating-point

ASSEMBLY PROCEDURE

Loading the Assembler

Roar Sense Switch Options

When hand-coding either type of routine, the programmer should remember
that no parameters may be called by name unless the names are global, and
that all items with global names are available to all programs which are as-
sembled together. For example, if there is a subprogram named OUT in the
assembly, any reference to OUT can only be to the entrance of this subprogram.

Complete operating procedures for the assembly program may be found inthe
ROAR III manual. However, as a matter of convenience, a condensation of
the procedures is given here.

After compilation is completed, the symbolic-language tape that was produced
must be assembled by ROAR to obtain a machine-language program. To load
ROAR in the computer, use the same procedure as for loading COMPACT.

Various Sense Switch options control the input to and output from ROAR;

Sense Switch Function When Depressed

1 Functions only after an error halt. Each time START
COMPUTE is depressed, ROAR will read from the
symbolic input tape until a stop code is sensed and list
that information on the RPC-4500 Typewriter, but will
not assemble it.

After SENSE SWITCH 1 is raised, depressing START
COMPUTE prepares ROAR for an input to allow error

recovery.
2 Bypass listing of symbolic input.
4 Use High-Speed Reader for input.
8 Do not output a bootstrap.
16 List decimal output on RPC-4500 Typewriter in addition

to the selected output device.
32 Bypass decimal output.
NOTE: When both SENSE SWITCH 2 and 32 are depressed, the hexa-

decimal program tape is the only output. This shortens the
assembly time for COMPACT-generated programs.

Operation of the Assembler

The operator can select the input/output devices ROAR will use during an
assembly. The selections are the first input to ROAR and are made in re-
sponse to the printout I/ O SELECTIONS.

1f no change from the normal selections is to be made, type only a stop code.
ROAR will then proceed to the next preliminary question, i.e., SUBROUTINE
TAPE REGION STORAGE. Listed below are the selections ROAR will make if
no changes are indicated.

1. RPC-4500 Reader (Input symbolic tape) code 64

2. RPC-4500 Punch (Output hexadecimal tape) code 97

15

16

3. RPC-4500 Typewriter (Output decimal listing) code 98
4. RPC-4500 Typewriter (Output preliminary questions) code 98

5. RPC-4500 Typewriter (Input responses to preliminary questions)
code 68

Changes are made by entering the numeric input/output selection codes in thi.
order:

1. The input device for entering the symbolic program.

2. The output device for the hexadecimal output.

3. The output device for the decimal listing.

4. The output device for the remaining preliminary questions.

5. The input device for answering preliminary questions.

If any device is to be changed, all preceding fields must be entered. Once the
changes have been made, the devices remain selected until changed again. This
may be done either by transferring to the entry point of ROAR and entering new
selection codes (typing only a stop code leaves previously selected devices still
selected) or by reloading ROAR.

If tabbed output was obtained from COMPACT and a typed listing is to be pro-
duced during the assembly, the tab settings should be placed from the left-hand
margin in the following increments: 9, 7, 9, 9, 25, 2.

After all preliminary questions have been answered, the first inputs to ROAR
will be the SET and EQR Tape for the Subroutine Library Package and the PRE
pseudo-instruction output by COMPACT at the end of the symbolic program tape.
If several compiled programs are to be assembled together, enter all the PRE
tapes. The SET and EQR Tape for the Subroutine Library Package contains an
RES to protect the package. Any desired RES, REG, etc., pseudo-instructions
may be entered after the PRE and SET and EQR Tapes.

After the SET and EQR Tape and the PRE tapes have been input and the neces-
sary memory allocations have been made, enter the symbolic program tape out-
put by COMPACT. Availability of storage space on the drum determines how
many programs may be assembled together. This may be in any order desired.
Following assembly of the last program, special input/output selection codes
may be entered in the input/output selection table if they are required. (See
"INPUT/OUTPUT SELECTION TABLE.")

Each program should be concluded with a NIX or END pseudo-instruction. A
NIX pseudo-~instruction causes ROAR to print the number of memory locations
used since the beginning of the assembly if this is the first NIX, or since the
previous NIX if there are more than one. Then ROAR will halt. When START
COMPUTE is depressed, ROAR will continue assembling as if the interruption
had not occurred. This pseudo-instruction is convenient when several pro-
grams are being assembled together, since it gives the operator time to change
tapes, etc. The END pseudo-instruction causes ROAR (1) to punch in the out-
put tape a transfer instruction to a specified location and a final checksum;

(2) to print the total number of locations that were assigned during the assembly;
and (3) to halt. Since COMPACT cannot know the order in which the programs
will be assembled, it does not generate a NIX or END pseudo-instruction. If
these pseudo-instructions are used, they must be entered manually.

To save time when loading several tapes for assembly, the operator may want
to produce a ROAR tape which includes the SET and EQR Tape information. To
prepare such a tape, the following procedure is recommended:

1. Load ROAR.
2. Enter the SET and EQR Tape.

3. Load Hexadecimal Qutput 5, program J4-06.0, beginning in Track 60.

4. Punch Tracks 0 through 59.
5. Load ROAR.

6. Load Hexadecimal Qutput 5, beginning in Track 0.

7. Punch Tracks 60 through 122,

8. Enter Location 11654 as the Transfer Location. (The entry
' GOTOROAR -- Location 11321 -- cannot be used since it allows
initialization of ROAR's internal tables; NOWBEGIN -- Location
6419 —- cannot be used because it does not provide a bootstrap.)

The bootstrap produced by Hexadecimal Output 5 at step 7 must be eliminated.
This is easily done if two punch units are available: the second bootstrap can be
output on a different device from the one used to punch the program. The same
result is achieved by removing the bootstrap from the second tape and then re-
producing the two remaining portions as a single tape.

The combined ROAR/SET and EQR Tape will be only slightly longer than the
standard ROAR tape, require little additional load time, and eliminate the need
to input the SET and EQR Tape for the first assembly after ROAR is loaded.

COMPACT SUBROUTINE LIBRARY

Arithmetic Subroutines

After assembly is completed, the object program can be stored in memory for
execution. First, however, the Subroutine Library Package must also be in
memory. This package consists of a group of routines which are necessary to
perform floating-point arithmetic operations, decimal data input and output,
trigonometric functions, and built-in functions.

The COMPACT Subroutine Library is available in two forms: a pre-assembled
package and a symbolic package. The pre-assembled package consists of a
single hexadecimal tape which is self-loading and stores the subroutines in
Tracks 79 through 122. The symbolic package consists of three tapes:
Arithmetic Subroutines, Input-Output Subroutines, and Function Subroutines.

When a Subroutine Library is being assembled, any or all subroutines in the
Function package may be omitted if they are not called by the COMPACT -
language source program. However, it is inadvisable to omit subroutines
from the other two packages, since those subroutines may be called by COM-
PACT even though their names are not used in the source program. The
storage requirements and calling sequences for the subroutines are explained
on the following pages for programmers who wish to assemble their own sub-
routine library or to use these subroutines without the compiler. The sub-
routines in each group are listed in the order of their appearance on the
symbolic tape.

Because of the similarity between the letter ""O'" and the digit ''0"', the letter
O will be written with a slash, @, in the following discussions when it is part
of a symbolic name.

The symbolic Arithmetic Subroutines Tape contains three groups of programs:
the floating-point arithmetic group, the float-fix subroutines, and the repeated
store subroutine.

17

18

The floating-point arithmetic subroutines are all interdependent and require 3

tracks, 51 sectors of storage.

The Upper Accumulator must contain a floating-

point quantity before entry to any of the routines, and each will exit to the
instruction which is brought to the Lov'ex Accumulator by the calling sequence.

Subroutine Calling Sequence
[FBR * RAL* * [FBR* *
Floating Bring

[FAD * RAL* * [FAD* *
Floating Add

[FsB * RAL* * [FSB* *
Floating Subtract

[FsBI * RAL* * [FSBI* *
Inverse

Floating Subtract

[FDV * RAL* * [FDV* *
Floating Divide

[FDV1 * RAL* * [FDVI* *
Inverse

Floating Divide

[FMmp * RAL* * [FMP* *
Floating Multiply

[cuSG * RAL* * [CHSG* *

Change Sign

Function

Copy the contents of the Upper
into the floating accumulator.

Add the contents of the Upper to
that of the floating accumulator

and leave the sum in both the Upper
and the floating accumulator.

Subtract the contents of the Upper
from that of the floating accumula-
tor and leave the difference inboth
the Upper and the floating accumu-
lator.

Subtract the contents of the floating
accumulator from that of the Upper
and leave the difference in both the
Upper and the floating accumulator.

Divide the contents of the floating
accumulator by that of the Upper
and leave the quotient in both the
Upper and the floating accumulator.

Divide the contents of the Upper by
that of the floating accumulator and
leave the product in both the Upper
and the floating accumulator.

Multiply the contents of the Upper
by that of the floating accumulator
and leave the product in both the
Upper and the floating accumulator.

Multiply the contents of the Upper
by -1 and store this value in the
floating accumulator.

The Normalize routine is included in the coding of the arithmetic routines. Al-
though a calling sequence to this subroutine will not appear in a COMPACT-
compiled program, it is given here as it may be useful to programmers who do

hand-coding.

Subroutine Calling Sequence

[NgRM * RAL* EXIT*

Normalize * STL* RECRC2*
* RAL* EXIT*
* STL*

Function

** Normalize the numbers which
** is in the Upper and the float-
** ing accumulator. The normal-

RECRC6* JNGRM** ized value is left in the Upper

and the floating accumulator.

The following symbolic statement namesare special entry locations to the arith-
metic subroutines; they are not used by or output from the compiler and are of no
special interest to the COMPACT programmer except that they appear on the SET

and EQR Tape.

The float-fix subroutines require 1 track, 22 sectors of storage. Subroutine
names beginning with [are composed by the compiler in the process of com-
pilation; the other names may be used by the COMPACT programmer, e.g.,

M = XFIXF(B).
Subroutine Calling Sequence
FLGATF * RAL* * FLUTF*
[FLoT * RAL* * [FLQT*
FLYTF * RAL* * FLQTF*
[FLup * RAL* * [FLUP*
XINTF * RAL* * XINTF*
XFIXF * RAL* * XFIXF*
[F1x * RAL* * [FIX*

*

*

Function

Convert the fixed-point quantity
contained in the Upper to a float-
ing-point quantity and leave the
result in both the Upper and the
floating accumulator.

Convert the fixed-point quantity
contained in the Upper to a float-
ing-point quantity and leave the
result in the Upper; do not dis-
turb the floating accumulator,

Convert the floating-point argu-
ment in the Upper to a fixed-
point integer and leave the result
in the Upper. The argument is
truncated to the largest integer
less than or equal to itself.

The repeated store subroutine is used to set all elements of an array to the
same value. It requires 57 sectors of storage.

Subroutine Calling Sequence

[RPTS *RAL* KJXXX
Repeated *CLL* RECRC4*

Store

RAU K]XXZ

LDX [YYyYy

RAL

*

* ¥

* k
* *
* [RPTS*

Function

Where K]XXX is a constant indica-
ting the number of locations to be
filled.

Where K]XXZ is the quantity with
which to fill them.

Where [YYYY is the beginning
location to be filled.

Go to the repeated store sub-
routine and return to the location
contained in the Lower Accumu-
lator.

19

Input/ Output Subroutines

20

The Input/Output control subroutine, [I(ZfUT, is the only one of these subroutines
called upon by any COMPACT object program. [I(ZfUT, however, calls upon two
other programs: the data input subroutine, [INPT, and the data output subroutine,
[UTP. The symbols [P... and [CLEX , found on the SET and EQR Tape, are
special communication symbols used by these three routines* The store require-
ments are as follows:

[1guT 9 tracks 54 sectors
Region A 50 sectors
Region B 32 sectors
Region C 32 sectors
Region D 1 track 00 sectors

[iNpT 4 tracks 23 sectors

[guTp 7 tracks 01 sectors
Region / 39 sectors
Region R 09 sectors
Region M 06 sectors

The reservations for these seven regions are on the SET and EQR Tape, separat-
ed from the other information by a length of blank tape. (They are also listed in
the example under "ASSEMBLING THE SUBROUTINE LIBRARY.'")

The calling sequence for [I¢UT consists of the following four instructions:

* RAU* K]XXX* * o*x Where K]XXX contains the beginning loca-
* EXC* 498% * %k tion of the 1/0 address list, and is negative
(order = 16) only for Input Statements.

* RAU* K]XXZ* * % If the code word K]XXZ is negative, it is
the PRD select code for the desired input
or output unit; if K]XXZ is positive, it is
the symbolic name which will be searched
for in the input/output selection table
(Region C, Locations 11800 through 11831)
to determine the 1/0 selection.

* RAL* *[1guT* * Go to Input/Output control subroutine, then
exit to the instruction contained in the
Lower Accumulator.

INPUT/OUTPUT SELECTION TABLE The Subroutine Library contains a table
to which the input/output subroutine refers when the routine has been called by
a READ INPUT TAPE or WRITE OUTPUT TAPE statement in the COMPACT
source-language program. These two statements permit any desired input/
output selection at object program time by means of the proper entries in this
double-entry table. The input/output statements with set selections are

READ selects the RPC-4500 Reader for input.
PRINT selects the RPC-4500 Typewriter for output only.

PUNCH selects the RPC-4500 Punch for output.

* |P...contains the scaling factor controlled by the FORMAT symbol nP.
CLEX contains the exit instruction for both [INPT and [(ZUTP; i.e., both
subroutines return to [I(ZUT, which in turn exits to the source program.

Function Subroutines

Since these statements are fairly limited, the more general statements are
used most often. They cause the input/output routine to search the selection
table in Track 118 for the proper input/output selections. These table entries
may be made at assembly time (input to ROAR as ALF pseudo-instructions at
the end of the program and preceding END) or may be included in the Sub-
routine Library Package. For example, if one writes

READ INPUT TAPE BETA, FMT2, X, Y, Z

and at assembly time makesthe table entries
11800% ALF* BETA* * *
11801% 00* 6800%* 0* *

then the variables X, Y, and Z will be called for on the typewriter and read
according to format statement FMT2.

If one writes
WRITE @GUTPUT TAPE @UT3, 3, A, B, C

and makes the table entries

11802%* ALF* @GUT3* * *
11803* 16%* 9800%* * *
11804* 00* 10600% * *

then the variables A, B, and C will be output on both the typewriter and High-
Speed Punch, according to Format Statement 3. Note the order "16' in
Location 11803, which tells the input/output routine that another selection
follows, and 11804 must contain that next selection. The order 00" in
Location 11804, and in Location 11801 in the previous example, indicates

that no more select codes follow. As many such entries for input and output
selections as desired may be stored in the first 32 locations of Track 118.

If the input/output routine completes the search of the table without finding

the specified code, an error halt will occur. The correct entries in Track 118
will have to be made before the program can be executed properly.

Certain entries have been made in the input/output selection table of the Sub-
routine Library Package which may be used or changed, as desired. These
entries occupy Locations 11800 through 11813. The code names for these
entires and the devices that will be selected are listed below:

Name Device

168 selects the RPC-4500 Typewriter for input.

174 selects the High-Speed Reader, forward.

175 selects the High-Speed Readé’r, reverse.

@99 selects the RPC-4500 Punch and Typewriter for output.
@106 selects the High-Speed Punch for output.

16498 selects the RPC-4500 Reader for input and the RPC-4000

Typewriter for output, and turns ON Copy Mcde.

The symbolic Function Subroutines Tape contains the trigonometric functions,
exponential routines, and the functions referred to in FORTRAN as "built-in"
functions. All these subroutines require that the routines on the Arithmetic

2]

22

Subroutine Tape be in memory at execution time. The trigonometric functions
may be used without the exponential routines or built-in functions, but the con-
verse is not true; i.e., the exponential routines [PRXX, [PRLX, [PRLI, and
[PRLL require LYGF and EXPF.

The calling sequence for each of the trigonometric functions requiresthe ar-
gument in the Upper Accumulator and the exit instruction in the Lower. The
storage requirements are as follows:

Subroutine Type of Function Storage Required
SINF Sine 1 track, 38 sectors
CJSF Cosine
ATANF Arctangent 1 track, 51 sectors
TANHF Hyperbolic Tangent 14 sectors
LGGF Natural Logarithm 60 sectors
FLYG*

EXPF Exponential 1 track, 36 sectors
SQRTF Square Root 56 sectors
Total Storage 6 tracks, 63 sectors

The calling sequences for the four exponential routines vary, depending on the
placement of the arguments, which must be as follows:

Subroutine Function Storage of Argument
[PRLL Raise a floating-point A is in floating accumulator
number to a floating- B is in Upper Accumulator

point power: A
[PRLI Inversely raise a float- B is in Upper Accumulator

ing-point number to a A A is in floating accumulator

floating-point power: B

[PrRxX Raise a fixed-point num- K is in RECRC6

ber to a fifed—point J is in Upper Accumulator
power: K

[PRLX Raise a floating-point A is in floating accumulator
number to_a fixed-point J is in Upper Accumulator
power: A

All the calling sequences must have the exit instruction in the Lower Accumu-
lator. This group of subroutines requires 3 tracks, 03 sectors of storage.

The built-in functions comprise the last group on the Function Tape. This
group requires 3 tracks, 13 sectors of memory and is assembled as a unit.
The calling sequence must position the base address of the argument list in
the Index Register, the first argument in the Upper Accumulator, and the

* This name is an entry to the LGGF subroutine which does not call upon
FBR. It is not used by or output from the compiler, nor should it be used
by the programmer. It is noted.here only because it appears on the SET
and EQR Tape.

exit instruction in the Lower Accumulator. The first entry in the argument
list must specify the number of entries in the list, and the list must follow in
sequential locations, beginning with the second argument.

No. of Mode of
Name Type of Function Args. Argument Function
INTF Truncation 1 Floating Floating
M@DF Remaindering 2 Floating Floating
XM@DF Fixed Fixed
ABSF Absolute value 1 Floating Floating
XABSF Fixed Fixed
SIGNF Transfer of sign 2 Floating Floating
XSIGNF* Fixed Fixed
MAXI1F Choosing the largest >2 Floating Floating
XMAX1F* value Floating Fixed
XMAXOF* Fixed Fixed
MAXOF Fixed Floating
MIN1F Choosing the smallest >2 Floating Floating
XMIN1F* value Floating Fixed
XMINOQF* Fixed Fixed
MINOF Fixed Floating
DIMF Positive difference 2 Floating Floating
XDIMF Fixed Fixed

Assembling the Subroutine Library
When assembling a Subroutine Library, the following procedure is recommended:
1. Assemble the SET and EQR Tape.
2. Make available the number of locations required for the Subroutines
to be assembled and establish the necessary regions. For example,

to assemble the Arithmetic and Input-Output Subroutines, make the
following memory allocations:

AVL 9200% 12163%%*
REG / 12043% 12117+
*REG*R 12002% 12010%%*
¥REG*M 12037* 12042%%*
*REG*A 11900% 11949%*
*REG*B 12332% 12363**
*REG*C 11800% 11831%%*

*REG*D 12600* 12663**

* These six-character symbols are acceptable to COMPACT but not to ROAR;
therefore, the compiler outputs the following equivalent symbols, respec-
tively: XSGNF, XMX1F, XMXO0F, XMN1F, and XMNOF.

23

24

Make the necessary memory reservations for the required subroutines.
In the example stated above, use

*RES*0* 9163**
Assemble the subroutines.
NOTE: It is recommended that the Input/Output Subroutines be

assembled first to insure the best optimization for these
critical subroutines.

APPENDIX

A NN N AN NN AN AN AN AN AN AN AN NN AN AN AN AN NN NN A AN NN NN AN NN NN N NN NN NN NN NN NN NN N

SUMMARY OF COMPACT STATEMENTS

Arithmetic Statement

Unconditional GO TO

Assigned GO TO

This appendix summarizes the types of statements which are available in the
COMPACT language. They include the (1) arithmetic, (2) control, (3) speci-
fication, (4) input and output, and (5) subprogram link and termination state-
ments. Each statement type is represented by typical examples.

SUM = EXPR

Evaluate the expression EXPR, place the result in location SUM, and go to the
next executable statement. EXPR may be in fixed-point, floating-point, or
mixed mode and may be compounded; that is, contain other replacement opera-
tors. If the location in which the result is to be stored has a fixed-point name,
EXPR is stored as a fixed-point quantity, regardless of the mode of EXPR, and
vice versa.

Example

A=8 + 3.648
J=C —JL + 2*D

B[J, 3, LL]= sINF[G@L]

B[J, 2*K, LL/3] = KMAX = SINF [G@IL/4]

GO TO STAT

Go to, (transfer control to), the statement whose name or number is STAT.

Example

GG T@ 45

G@ TP START

GOTOK, [STAT;, STAT,,...STAT,]

Go to "K", where "K' is some non-subscripted variable from a previously
executed ASSIGN statement and the list (STAT;) is "n" statement names or num-
bers, any of which may be assigned to "K"., Either the comma following "K"

or the list, or both, may be omitted. Control passes to that statement whose
name or number is the last value assigned to "K' by an ASSIGN statement.

Example

GY¥ TG K, [45, 3, 15, 90]

c¢ T¢ K [13, ALPHA, BETA]

G¢g TP K

25

Assign

Computed GO TO

Sense Light

If Sense Light

26

ASSIGN STAT TO K

Assign the statement name or number STAT to "K', where "K" is some non-
subscripted variable name. If STAT is a statement name, it must be delimited
by brackets or commas. Note that values assigned through ASSIGN statements
may be used only in conjunction with an ASSIGNED GO TO statement; that is,
the statements ASSIGN 2 to K and K = 2 are not equivalent.

Example

ASSIGN 5 T@ JN

ASSIGN [JUMP] T¢ KX

ASSIGN, T@P, T¢ JIL

GO TO [STAT;, STAT,,...STAT,], EXPR

Evaluate the expression EXPR and transfer control to STAT; if the value of
EXPR is 1, to STATy if the value of EXPR is 2, to STATg if the value of EXPR
is 3, etc. The STAT,, are statement names or numbers, and the comma follow-
ing the list is optional. The value of EXPR is converted to fixed-point if EXPR
is not a fixed-point expression.

Example

G¢ T [10, 20, 3, 30], M

G¢ T¢ [9, ALPHA, 3, BETA] K+ M/4

IF [EXPR] STAT;, STAT,, STATg

Evaluate the expression EXPR and if its value is less than zero, transfer
control to STATy; if its value is exactly zero, transfer control to STAT; or
if its value is greater than zero, transfer control to STAT3. EXPR may be
any expression, and the STATj are statement names or numbers. The value
of EXPR is converted to fixed-point if EXPR is not a fixed-point expression.

Example

1IF [a[5,.K] -B]4, 10, 12

IF [J-K = K + 1] ALPHA, 3, BETA

SENSE LIGHT I (for1=1, 2, 3, 4,0r 0)

Turn ON sense light "I"", where "I"is 1, 2, 3, or 4; if "I'"is 0, turn all four
sense lights OFF.

Example

SENSE LIGHT 3

SENSE LIGHT 0

IF [SENSE LIGHT 1] STAT;, STAT, (forI=1, 2, 3, or 4)

If sense light "I'" is ON, turn it OFF and transfer control to statement STAT;

if Sense Switch

If Accumulator
Overflow

If Quotient Overflow

If Divide Check

if sense light "I" is OFF, transfer control to statement STATy. STAT; and
STAT o may be either statement names or numbers. STAT9 may be omitted, in
which case control is transferred to the next executable stateihent when sense
light "I'" is OFF.

. The brackets around "SENSE LIGHT I'" may be omitted. However if they are,

a delimiter (", ") must precede STAT;.

Example

IF [SENSE LIGHT 2] 46, 44

IF SENSE LIGHT 3, ALPHA, 5

IF SENSE LIGHT 4, ALPHA

IF [SENSE SWITCH I] STAT;, STATy (forI=1, 2, 3, 4, 5, or 6)

If sense switch "I" is depressed, transfer control to statement STAT,, other-
wise transfer control to statement STAT,. The STAT; and STAT2 may be
either statement names or numbers. STAT9 may be omitted, in which case
control is transferred to the next executable statement when sense switch '"T"
is not depressed.

- The brackets around ""SENSE SWITCH I' may be omitted. However if they are,

a delimiter (,) must precede STATl.

COMPACT sense switches correspond to the RPC-4000 console sense switches
as follows:

console Sense Switch 1
console Sense Switch 2
console Sense Switch 4
console Sense Switch 8
console Sense Switch 16
console Sense Switch 32

Sense switch 1
Sense switch 2
Sense switch 3
Sense switch 4
Sense switch 5
Sense switch 6

Example

IF [SENSE SWITCH 5] 12, 11
IF SENSE SWITCH 4, BETA, 9

IF SENSE SWITCH 4, BETA

IF OVERFLOW

The IF ACCUMULATOR OVERFLOW, IF QUOTIENT OVERFLOW and IF
DIVIDE CHECK statements function like the IF OVERFLOW statement and
serve to interrogate the RPC-~4000 Branch Control switch which is turned ON
whenever overflow occurs.

IF OVERFLOW, STAT,, STATjy

If the overflow switch (Branch Control Switch) is ON, transfer control to state~
ment STAT; and turn the overflow switch OFF, otherwise transfer control to
statement STATgy. The STAT] and STATy may be either statement names or
numbers. STATg may be omitted, in which case control is transferred to the
next executable statement when the overflow switch is OFF. The comma follow-
ing "OVERFLOW'" is also optional.

27

Pause

Stop

Do

28

Note that the IF OVERFLOW statements should immediately follow the arith-
metic statement which is being interrogated for overflow, because the Branch
Control switch is also affected by IF statements and the loop tests in DO
statements. -

Example

IF ACCUMULATQUR @VERFLQW, 16, 17
IF QU@TIENT GVERFLQW, 50, 51

IF DIVIDE CHECK, 3, 13

IF GVERFLGW, 3, 8

IF ACCUMULAT@R GVERFLQW, FIND

IF DIVIDE CHECK RED@, CQNT

PAUSE n (where n = 0 to 8 hexadecimal digits)

Stop computing and display '"n' (right justified) in the Lower Accumulator on the
computer console. Then continue on to the next executable statement when the
operator depresses the START COMPUTE switch.

Example

PAUSE FFFFF

PAUSE

STOP n (where n = 0 to 8 hexadecimal digits)

Stop computing and display "n'" (right justified) in the Lower Accumulator on the
computer console. This statement causes the object program to stop on a self-
addressed Halt instruction, and the machine will not continue computing when
the START COMPUTE switch is depressed.

Example

STGP 80000000

STQP

DO STAT;, K = EXPRI, N, INCR

Execute repeatedly the statements which follow, up to and including statement
STAT;. The first time, execute the statements with K = EXPR1. Before each
succeeding execution increase "K' by the value INCR and if "K" does not exceed
the value of N, repeat the statements up to statement STAT;. If "K" exceeds
the value of N, transfer control to the first executable statement following
STAT;. STAT; may be any statement name or number and "K', any non-
subscripted fixed-point variable name.

INCR may be omitted, in which case its value will be taken to be 1.
The expressions (EXPR1, N, and INCR) are all evaluated before beginning the

first loop. If they are floating-point or mixed mode expressions, they are trun-
cated to fixed-point before being used in the DO-loop testing.

Continve

End

Call

The first instruction in the range of a DO, (instruction immediately following a
DO statement), must be executable, that is, not a FORMAT statement. State-
ment STAT{ must not be any kind of a transfer statement, like IF or GO TO.
This restriction may be met by making STAT a CONTINUE statement.

Example

DY 12IGH = 1, 8, 2
DY K =10, 20

D¢ END, L - AJ +K, [3*K] + 3, M = K/4

D@ LGP, 1J = M/2, K*M + 2

CONTINUE

Continue to the next executable statement. The CONTINUE statement is a
dummy, usually the last statement in the range of a DO. It provides a transfer
address for IF and GO TO statements which are intended to begin another re-
petition of the DO range.

Example

5 D@ 9 L=1, 35

IF [ARGX - ARG [L]]9, 51, 9

9 - CONTINUE

END

Terminate compilation and output all program array and region storage data.
The END statement must be the last statement in every source program, in-
cluding FUNCTION subprograms and SUBROUTINE subprograms. That is to
say, END is physically the last statement in any source program.

Example

END

CALL MATAD [EXPR1, EXPR2, EXPRS,...EXPRn]

Evaluate the ''n'"' expressions, if given; call on the SUBROUTINE named MATAD;
execute the SUBROUTINE using the "n'" parameter values; then return to the
next executable statement. MATAD must be a SUBROUTINE name, one to five
characters in length and not ending in the letter "F'" if more than three charac-
ters long. The EXPR's may contain any combination of fixed- and floating-point
variables, constants, or expressions; but they must correspond in mode and in
sequence to the "n" parameters defined by SUBROUTINE MATAD.

Example

CALL GEGGR
CALL MATPY [L, A1, GT, KM, ARRAY]

CALL INTRP [K-3, 6.78, F/T + 5, ARI]

29

Subroutine

Function

Return

Read

30

SUBROUTINE MATMT [S, T,....Up,]

The SUBROUTINE statement causes compilation of the program which follows as
a SUBROUTINE subprogram. The argument list, the S, T,...Up, are all non-
subscripted variable names and may include array names without subscripts.
The list must contain the names of all input and output variables which the SUB-
ROUTINE and the calling program have in common. If there are no common
variables needed (that is, if the SUBROUTINE contains its own Input and Qutput
statements), the argument list may be omitted. SUBROUTINE subprograms are
entered from the calling program through CALL statements. The name, MATMT,
can be one to five characters long but must not end in F if it is more than three
characters long.

Example

SUBR@UTINE GEUGR

SUBR@UTINE MATPY [K, C, D, J, A]

SUBRQUTINE INTRP [IF, F, BAL, A]

FUNCTION ERF [Z, TR, E,...n]

The FUNCTION statement causes compilation of the program which follows as

a FUNCTION subprogram. The argument list, Z, TR,...,, are all non-
subscripted variable names and may include array names without their subscripts.
The list contains the names of all input variables which the FUNCTION and the
main program have in common, and there must be at least one argument in the
list. A FUNCTION subprogram exits to the main program with a single function
value in the accumulator; for this reason, the FUNCTION name, ERF, must ap-
pear with its argument list in some arithmetic expression within the calling pro-
gram. A FUNCTION name is any name, from one to five characters in length,
the first letter of which is not "I, "J", "K", "L", or "M" unless it is a fixed-
point function, and the last letter of which is not "F' unless-it is fewer than

four characters long.

Example

FUNCTI@GN TAN [X]

FUNCTIGN FMEAN [A, B, C, D]

FUNCTIQN IF [K, KK, KKK]

RETURN

The RETURN statement terminates any SUBROUTINE subprogram or FUNCTION
subprogram and returns control to the calling program. Therefore, a RETURN
statement must be the last executed statement in a subprogram. It need not be
physically the last statement of a subprogram (the last statement physically is
END); it can be at any terminal point reached by a path of control, and a single
subprogram may have any number of RETURN statements.

READ n, list

On the RPC-4000, read the following variables via the prime paper tape reader.
See PRINT statement, for additional information.

Punch

Print

Read Input Tape

Write Output Tape

Format

PUNCH n, list

On the RPC-4000, punch the following variables via the prime paper tape punch.
See PRINT statement, for additional information.

PRINT n, list

On the RPC-4000, print the following variables via the prime typewriter. The
following information applies equally to all READ, PUNCH, and PRINT state-
ments.

Read, punch, or print the variables given in the list, using the Input or Output
FORMAT statement named or numbered n. Then continue to the next executable
statement. FORMAT statement n gives pertinent information on the field widths
and conversion types of the listed variables and also all alphanumeric heading,
output page or tape, and input tape format data. The list may contain any com-
bination of fixed- and floating-point variable names and array names, either
subscripted or non-subscripted.

Example

READ 100, 1, K, [[ARRAY [J, L], J=1,11, 2], L =1, K]
PRINT 92, ARRAY

PUNCH FRMT1, A, B, ARRAY [4, K]

READ INPUT TAPE N, STAT, list

WRITE OUTPUT TAPE N, STAT, list

Input or output the variables in list via input or output unit N using FORMAT
statement STAT. N may be any name or number fewer than six characters in
length. The computer operator at each installation must enter the name or
number, N, along with its appropriate input/output selection code or codes,

into a special input/output selection table within the Subroutine Library Package.

Example

READ INPUT TAPE 6, 14, A, B, ARRAY
WRITE GUTPUT TAPE HPNCH, FMT1, A, B

WRITE @UTPUT TAPE 5, FMT2, K, ARRAY

STAT, FORMAT [f, f, fg,...f,]

FORMAT statements are used in conjunction with the five input /output state-
ments and describe the information format to be used with the transmitted data.
FORMAT statements also specify the type of conversion to be performed be-
tween machine-language data representation and the external input or output
unit. FORMAT statements may be placed anywhere in a source program, except
as the first statement in the range of a DO, since they are not executed but
merely supply information to the object program. The statement name or num-
ber, STAT,,, corresponds to the FORMAT statement name or number in the
input or output statement which refers to them.

Following is a brief list of conversion specifications and format codes, f's.

The FORMAT f-list consists of the following format specifications, each
separated by commas and all enclosed in brackets.

31

Dimension

Equivalence

32

Specification Code Definition

nlw n integer conversions of field-width w

nFw.d n fixed-point decimal conversions of field-width
w and d fractional decimal places

nEw.d n floating-point decimal conversions of field-
width w and d fractional decimal places

nOw n octal characters of field width w
nAw n alphanumeric characters of field width w
nP scale the following E and F conversions so that:

(external number = 10™ x internal number)

nX the next n characters of input or output are spaces

nH the next n format-list characters are a
Hollerith field

/ new line; may also replace the comma as a
" format-list specification delimiter

DIMENSION SV].’ SV2, SV3, SV4_,...)

The DIMENSION statement is a non-executable statement which provides the
necessary information to allocate storage in the object program for arrays
(subscripted variables). A DIMENSION statement must appear somewhere
before the first executable statement or Arithmetic Subroutine statement in
every source program and subprogram which contains subscripted variables
(the sv's above). The DIMENSION statement must contain the name of every
subscripted variable or array along with the maximum dimension of each sub-
script. There is no limit to the number of dimensions an array may have;
however, these arrays must never exceed the specified dimensions.

Example

DIMENSIGN AR1 [3, 5] AR2 [4, 4, 4], Kk [10]

DIMENSIGN KRAY [3, 3, 3, 3]

EQUIVALENCE [Vl, Vo, Vg, .. J . [va, Vs Veo- J...

The EQUIVALENCE statement is a non-executable statement which allows the
programmer to control data storage allocations in the object program. If the
program permits, the programmer may assign two or more variables or array
elements to share the same memory location. Each series of variable names
to be assigned a common location (equivalence group) must be enclosed in
brackets and separated by a comma from the next equivalence group. See the
general form below. COMPACT does not allow the same variable or array
name to appear more than once in an EQUIVALENCE statement in any one
program or subprogram. EQUIVALENCE statements must appear somewhere
before the first executable statement or Arithmetic Subroutine statement in a
program or subprogram.

Each of the group elements, v's, has the general form A(q). In general, A(q)
is defined for q>0 to mean the (q-1)th location after A or after the beginning of
array A; that is, the gth location in the array. If q is not specified, it is taken
to mean the location named A or (if A is dimensioned) the first location in
array A.

Common

Example

EQUIVALENCE [a[5], B[1], aNY], [SOME, DRAY [10]]

EQUIVALENCE [A[1], c o], krAY], [A [45], AFIN]

COMMON Vis Vo, Vgs.to

The COMMON statement is a non-executable statement which enables the pro-
grammer to share data storage between programs and subprograms in much the
same way as the EQUIVALENCE statement permits data storage sharing within
a single program or subprogram. The variables (v's above), including non-
subscripted array names appearing in COMMON statements, are assigned
storage locations in common storage, a storage region completely separate
from the program instructions, constants and other data. Common storage

is assigned separately for each program or subprogram assembled together

in memory. In this way, the locations which contain variables and arrays
from one program, may be used to contain other variables and arrays from
another program. Proper use of COMMON can result in a large saving of
storage space.

In COMPACT, a COMMON statement must appear before the first executable
statement or Arithmetic Statement subprogram in a program.

33

COMMERCIAL COMPUTER DIVISION

SC 4007 PRINTED IN U.S.A.

	000
	001
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	xBack

