j AT IV o cing fen

GENERAL PRECISION, INC.

Commercial Computer Division

AN ALGEBRAIC COMPILER
AND TRANSLATOR

for the n p . 4 o o DGeneral Precision Electronic Cpmputer‘

PROGRAM NO. H3-02.0

INTRODUCTION

KIOOOES ‘0‘0.0‘0000‘00‘0 02820000000 ,0.0'0‘0'0’0 000 008.0.0000%0%0%4090 0.8 0 000 %! SRAEBRLROOEE ‘0‘0'0'0.0‘0 000 000%0%0%0%6%00,2,0.0. 0 0 0007070 06%6% %"

SCOPE OF MANUAL

o

ACT IV is an algebraic compiler and translator which was specifically develop-
ed for General Precision's RPC-4000 computer. In this manual, ACT IV refers
to the compiler as well as to the language which it interprets. Users of General
Precision's LGP-30 computer will recognize ACT IV as a descendant of that
computer's ACT III language. Like it, it is not far removed from the familiar
language of mathematics.

The ACT IV processor—as distinguished from the language—is an RPC-4000
program supplied by General Precision, Inc. It translates problem statements
from ACT IV language into RPC-4000 machine language and stores the transla-
tion in the computer for immediate execution. The processor includes the
arithmetic and other subroutines required for running the translated program.
Thus, one could use the RPC-4000 by means of this processor without any
knowledge of machine language programming.

Part 1 of this manual defines the vocabulary and rules of the ACT IV language.

~ Part 2 gives the operating instructions for the ACT IV processor, including
. methods for locating and correcting programming errors.

Part 3 contains a number of ACT IV sample programs. Appendix A briefly
explains the internal number representation for the RPC-4000, and Appendix B
contains a collection of reference lists and tables.

In addition to this manual, a separate ACT IV Reference Manual is available
from General Precision, Inc. It covers technical and operational aspects of
ACT IV which do not belong in the programming manual proper. Also avail-
able separately is a ROAR symbolic tape of the processor.

CONTENTS

R O QOO0 y < 2
AR KA REAEEA AR IREREAAIBTRRIEERARELKERRIBLRRRRERIELLELLRXARARKRRIBE

Page
INTRODUCTION iii
Scope of Manual iii

; THE ACT IV LANGUAGE
1 Statements

Variables

Floating-Point Numbers

Floating-Point Constants

The Stop Code (*)

Floating-Point Operations

Basic Operations

Sign Operations

Other Floating-Point Operations and Functions
Precedence and Brackets

Assignment Statements

Multiple Assignments

Fixed-Point Numbers, Constants, Operations
Numbers and Constants

Basic Operations

Other Fixed-Point Operations, Brackets, and Assignments
Form Conversion
Input

Operations

Format for Data Input

Output

General

Non-data Output

1 UV |

| R IR R T I | [|

el e i e T e T S B e S S S I S o
]
= = = O O W00~~~ R W LW RN DD R e

—
DO = bt

Data Output 1-

Flow Control 1-14
Labels 1-14
Primary Transfer Operations 1-15
Looping iI-16
Other Operations) 1-16
Regions and Subscripts 1-18
Simple Regions 1-18
Subscripts 1-18
Matrices 1-19
Switch Vectors 1-19
Miscellaneous Operations 1-20
Multi-Purpose Statements 1-21
Procedures 1-23
The Subroutine Concept 1-23
The Procedure Concept 1-23
Using a Procedure 1-23
Construction of Procedures 1-25
Placing of Procedures 1-27

OPERATING INSTRUCTIONS

General

Storing the Processor
Starting Translation

Normal Mode Processor Commands
Detected Program Errors
Error Correction

Calling the Translator Back
Too-Lengthy Programs
Memory Assignment

The Region Location Register
Punched-Out Programs

o)
o5
a2

(]

[NSIN V]
I | i

i

| I B} -1
b et bt O =T O N DO ke e g

MNNN[}DNNNNN

o
S

SAMPLE PROGRAMS

INTERNAL NUMBER REPRESENTATION

TABLES OF ACT IV OPERATIONS, COMMANDS, AND
SELECTION CODES
Table 1 Classified List of Operations and Commands
Table 2 Alphanumeric and Input-Output Selection Codes
Table 3 Alphabetical List of Operations and Commands (with
page number references)

wwEw
DD bt

os)

THE ACT IV LANGUAGE

SRR REEREA U KRB LBARARLKAA B OBBEBALAKAAKAKKD

STATEMENTS The main body of an ACT IV program consists of a list of statements. A state-
ment can do one or more of the following:

Call for numerical or other data to be entered into the computer from
tape or typewriter. :

Evaluate mathematical formulas.

Call for the execution of procedures defined earlier within the ACT IV
program.

Print or punch the results of calculations in any desired format.
Alphabetic information can be included in the output.

Modify the normal sequence of statement execution. For example,
a statement may cause the repetition of groups of statements a
specified number of times.

VARIABLES Two types of numerical quantities may occur in the calculations in an ACT IV
program: constants, which are explicitly written out in the program, or vari-
ables, which are either entered from tape or typewriter during a computation,
or obtained through evaluation by a formula in the course of the program.

In mathematics, variables are usually referred to by single letters. In ACT IV,
on the other hand, a variable may be given any name consisting of up to 5 char-

acters, as long as the name is not reserved for special purposes in the ACT IV

system. Restrictions on naming conventions may be summarized as follows:

Names of ACT IV operations may not be used as names of variables.
(A complete list of ACT IV operations appears in Table 3 of Appendix B
of this manual.)

Names of variables may not consist entirely of digits, periods, spaces,
plus- and minus-signs, as they could be mistaken for numerical con-
stants.

Names of variables fnay not end with two periods. Such names could
be mistaken for statement labels by the processor.

The asterisk, (*),.can not be one of the characters of a name.
Of these restrictions, only the first is likely to require careful attention. In
particular, "X" is the symbol for the multiplication operation, thus it can not

be used by itself as the name of a variable. One might use "ex", "xx", or of
course "y'" instead.

1-1

FLOATING-POINT
NUMBERS

FLOATING-POINT
CONSTANTS

1-2

Note that the typewriter space is a character, and must not be inserted without
reason. For example, "asq", " asq", "asq ", and "a sq'" would be treated as
four different variables by the processor.

The computer does not distinguish beitween upper and lower case symbols in
input. Therefore "n'" and "N" are considered as the same name, as are "mass"
and ""MASS", "Ty" and "4y", and so on. Further, the question mark, (?), is
not allowed as a variable name, since it could not be distinguished from the
operator (+), as the two characters represent the upper and lower case symbols
of the same key on the RPC-4000 typewriter keyboard.

Numbers in the ACT IV system can be handled in fixed-point or in floating-point
form. In most programs, calculations in floating-point predominate.

The exact internal representation of numbers in these two forms will be found
in Appendix A of this manual. At this point only information of direct use to
the programmer is presented.

A floating-point number can be positive or negative, and can have magnitudes
in the range

from . 5 x 27128 (which is about 1. 5 x 10~39)
to .999... x 2*127 (which is about 1.7 x 10*38),
as well as zero.

Floating-point operations with whole numbers (0, 1.0, t2, 0, etc.) are exact
as long as the numbers and results range below 16 million. Most calculations,
of course, are not with whole numbers. In general, the computer retains
between 7 and 8 significant decimal digits (24 binary digits) of accuracy when
numbers are first introduced in a calculation. A series of arithmetic opera-
tions on floating-point numbers may yield a result with greater error. This
may be due to cumulative conversion errors or to rounding-off processes which
take place after many of the operations. Such errors are unavoidable, but
usually small. While floating-point arithmetic is somewhat slower than fixed-
point arithmetic, it is the preferred form for most scientific and engineering
computations, because of the broad range allowed for floating-point numbers.

The necessary machine-language subroutines for operations with floating-point
numbers on the RPC-4000 are included in the ACT IV processor.

Computations frequently involve constants; that is, numbers whose values re-
main unchanged throughout the same program. If a formula contains a con-
stant which is to be used in floating-point form, this is indicated by typing the
number with a decimal point (.) in the proper place. Negative constants are
indicated by a minus sign (-), normally preceding the number. For a positive
constant, the plus sign (+) can be used for emphasis, but is not required.
Spaces may be typed within a number, or before or after it, if this aids legi-
bility. In this instance, they are ignored by the processor. (This is not the
case elsewhere in the ACT IV language.)

The expression for a constant must not contain more than 10 characters, in-
cluding decimal point, sign, and spaces, if any, If more characters are used,
only the last 10 are examined by the processor.

THE STOP CODE(*)

FLOATING-POINT

OPERATIONS
/ X -+
minus

A floating-point constant must include a decimal point. Special case: Zero
can be written as '"'0", without a decimal point.

Examples: 1.0

+
p—
1]

Plus One

-3. 1416
3. 1416~
-3.1416

Minus Pi

1"

When typing or punching an ACT IV program, every variable name, constant,
operation symbol, and command symbol must be followed by the asterisk, that
is, a stop code, (%*).

Compare the two expressions

aX+xh* /Hck and a*+*b/c*
The first expression contains three variables (A, B, C) and two operations
(+and /). The second contains only two variables (A and B/C) and one opera-

tion (+), since B/C is taken as a single three-character name, unrelated to the
possible variables B and C.

BASIC OPERATIONS

are the symbols used to denote the four familiar arithmetic operations, when
they are to act on floating-point quantities.

The sign (-) represents only subtraction, not sign-change. Thus the form
Rk ky K

is illegal, if the first (-) specifies a sign-change, not the subtraction of U from
something. (See the ""minus' operation described below.)

In algebra, the (x) symbol for multiplication is often omitted, or replaced by
"1 In ACT IV "X must be used; juxtaposition does not suffice to indicate

multiplication.

SIGN OPERATIONS

denotes sign-change for floating-point numbers.

Consider -*u*-*v* again. Since - u - v is mathematically the same as
0 - u- v, it could be written as

Ok =k ko kyk

1-3

abs

pwr

sqrt

In

exp

sin

cos

artan

tanh

1-4

a correct ACT IV expression. However, at a saving of both translating and
computing time,

minus ¥uk-*y*
can be used.

denotes the operation of absolute value, that is, making the sign plus, for
floating-point numbers.

Thus abs*v*

yields V if V is already positive, and V with sign changed (0 - v) if V is
negative,

OTHER FLOATING-POINT OPERATIONS AND FUNCTIONS

a¥*pwr*b* yields A raised to the power B, (AB). Both A and B must be floating-
point numbers; and A must be positive. (The subroutine for pwr first calculates
loge a, and the logarithm function is not defined for negative numbers.)

If B is a small positive whole-number constant, pwr is slower and less accurate
than repeated multiplication: for example, use a*x*a*x*a* not a*pwr*3. * .

sqrt*a* yields the square root of A; A must not be negative.

In*a* yields the natural, or base e, logarithm of A; A must be positive. For
the base 10 logarithm, use In*a*/*2, 3025851% ,

exp*a* yields the exponential of A, eA. For 104, use exp*[*a*x*2. 3025851*+] *.

sin*a* yields the sine of the angle A; A must be expressed in radians. If A
is in degrees, use sin*[*a*/*57. 295784 *,

cos*a* yields the cosine of the angle A; A must be expressed in radians. If A
is in degrees, use cos*[*a*/*57. 29578%]* .

artan*a* yields the arctangent of the number A. The answer is in radians,
-71/2 to +7/2. If the answer is wanted in degrees, use [*artan*a*] *x*57, 29578% |

tanh*a* yields the hyperbolic tangent of the number A.

PRECEDENCE AND -
BRACKETS

The ACT IV processor groups algebraic operations according to the usual
precedence conventions of algebra. In the absence of brackets, the sign opera-
tions, pwr, and functions (In, sin, and so on) are evaluated first, from left to
right; next, multiplications and divisions; finally, additions and subtractions.

For example, (dropping the (*) codes for clarity),
atbxcpwrd/e-sinf+g

is interpreted as
cd

-(sinf) + g

As in algebra, the precedence of operations can be modified by the use of
brackets. Only the square brackets on the RPC-4000 typewriter may be used,
not the parentheses which appear as upper case symbols on the ""9" and ' 0"
keys. The precedence rules described above are first applied within the inner-
most set of brackets, yielding a numerical result which is then used in evalu-
ating the next set of brackets, and so on, working from inside out. In other
words, the part or parts enclosed by the greatest number of brackets are
evaluated first, as the statement is scanned from left to right; then the next
most ""deeply" enclosed parts,- from left to right; and so on, until no further
brackets are left. ‘ '
For example,

a pwr b pwr ¢

is interpreted as (aP)C, since a pwr b is evaluated first. For greater clarity,
this might be written as

[a pwr b] pwre
or better, since (aP)C = abc, as
apwr [bxc]

On the other hand, if the term, above, is meant to signify a(b®), then it should
be written as

apwr [bpwrc]
As a last example,

-b+/ b2-4ac

2a
would be written—this time with the proper (*) codes—as
[*minus*b*+*sqrt*[*b*x*b*-*4. *xkg ko k| ¥ x /[*2. kg ¥]*
Notice that the argument of sqrt, b2—4ac, has to be bracketed, otherwise
sqrt¥bixkpx-*

would be taken as

\/_B_xb-...

ASSIGNMENT

STATEMENTS

(blank)*

1-6

The numerator is in brackets, or only the square root would be divided; and
the denominator is in brackets, for otherwise the result would be

b + Vb2-dac % a

2

Note, the end of the expression could be written
L] R xe. * ek

since the divisions are done in sequence from left to right. However, this ar-
rangement is not recommended, since it would be unclear to most readers of
the program.

In an expression, brackets may not be nested more than 14 deep. In the rare
event when this limit needs to be exceeded, two statements should be used; one
to evaluate the innermost few brackets and assign the result some name, such
as "temp'; and the second using '""temp'" in place of these brackets.

The equal sign is used in ACT IV to denote assignment or substitution. For
example,

sqrt* [*a*x*a*+*b*x*b*]*=*rms Kok

is a statement which calculates Va2 + b2 (assuming that the variables A and
B have received numerical values earlier in the program), and assigns that
value to the variable RMS.

If a value had been assigned to RMS earlier in the program, the assignment
statement replaces that value, and the former value is discarded. As another
example of this, the statement

path*+*leg*=*path**

will take the previous value of the variable PATH, add the value of the variable
LEG to it, and change the value of PATH to this new value.

The statement 1. 0*=*ex** assigns the value 1 in floating-point form to the
variable EX. Notice that the substitution is from left to right: EX*=*1, 0%* is
incorrect. It may assist the programmer to read the (=) symbol as "yields" or
"replaces. "

The reader may have noticed that each of the assignment statement examples
just given ended with two (*) codes. The first is the stop code which is typed
after every name. The second (*), which follows immediately (and is described
as "blank''), marks the end of the statement. Every statement in ACT IV, not
only assignment statements, must end with a’second (*).

FIXED-POINT
NUMBERS, CON-
STANTS, AND
OPERATIONS

MULTIPLE ASSIGNMENTS

L i+ i-ixi/

If the same value is to be given to several variables, one statement with several
(=) signs may be used. For example,

a*+* 001 *= *a*:*red**

assigns the value of the sum: former value of A, plus . 001, to both the variables
A and RED.

Multiple assignments are very commonly used to set several variables to zero
as an initial value.

0*=*sumx*=*sumy*=*count**

sets all three variables—SUMX, SUMY, and COUNT—to zero.

NUMBERS AND CONSTANTS

In ACT IV fixed-point (or "integer') numbers are used primarily for counting
and as subscripts. A fixed-point number can be zero or any positive or nega-
tive integer less in magnitude than

2,147,483, 648 or (231
In the usual applications, integers will be much smaller than this upper limit.
A constant which is to be used in fixed-point form in a formula, is typed as a
number without a decimal point. In all other respects, the form is the same
as for floating-point constants. Notice that the constant zero can be written in

the same way whether it is to be used as a fixed- or floating-point number.

BASIC OPERATIONS

are the symbols which denote the four familiar arithmetic operations when they
are performed on fixed-point quantities, The sign (i-) represents only sub-
traction, not sign-change. No fixed-point operation analogous to the floating-
point "minus" is provided in ACT IV. If U and V are variables whose values
are in fixed-point form, then - u - v can be expressed in the form

QX —Fyki—ky*x

The (i/) operation requires further explanation. If A is not exactly divisible by
B, and B is positive, the answer obtained from a*i/*b* will be the largest
integer contained in the true quotient A/B. Hence it will be less then the true
quotient. Thus

104*{/*-5% yields +20 (less than +20. 8);
-104%i/*-5% yields -21 (less than -20. 8).

If B is negative, the answer will be greater by a fraction than the true quotient.
Thus

104%i /*-5% yields -20 (greater than -20. 8);
-104%i/*-5% yields +21 (greater than +20. 8).

1-7

OTHER FIXED-POINT OPERATIONS, BRACKETS, AND ASSIGNMENTS

rmain

iabs

0*flo*

flo

unflo

-8

If the denominator of an (i/) operation is followed immediatelv by, for example,
rmain*r*, then R is assigned the value of the remainder of the division, in
fixed-point form. Thus the statement

[xei+kg] *i /% [omki+ *n*] *pmain*rk=kg**
assigns to @ the quotient of the division

f+g
min’

and assigns to R the remainder of the division.

In any case, the remainder is always positive (or zero), and is related to the
quotient @ given by the (i/) operation by the formula

a r
b= 9%p

denotes the operation of absolute value, that is, making the sign plus, for
fixed-point numbers.

The rules for precedence and bracketing are the same for expressions calcula-
ted in fixed- as in floating-point form.

The equal sign can be used for assignments in fixed- as well as floating-point
form. ‘For example, if U and V are variables whose values are in fixed-point
form, then the statement N

2kixk [Ruki Hhyx R kiokx

assigns to the variable K the value 2(u + v) in fixed-point form.

FORM CONVERSION

If B is a variable whose value is in fixed-point form, 0*flo*b* yields the value
of B, converted to floating-point form. Thus thé statement 0*flo*b*=*blg**
gives to the variable BLQ the value of B, but in floating-point form. "0*flo*"
is the most commonly used case of the more general operation defined in the
next paragraph.

If A and B are both in fixed-point form, a*flo*b* vields the value b/102 in
floating-point form. For example, if the variable CENTS represents a number
of cents in fixed-point form, then 2*flo*cents* yields the number of dollars in
floating-point form. The value of the integer A, in general, represents the
number of positions of shift desired for the decimal point,

If B is in floating-point. unflo*b* yields the value of b rounded to the nearest
whole number and converted to fixed-point form.

fix

INPUT

read

iread

aread

rdhex

read

If B is in floating-point, fix*b* yields the truncated value of B converted to
fixed-point form.

OPERATIONS

read*a* causes one number to be read from whichever input device had been
previously selected, and assigns that value to the variable A in floating-point
form.

iread*a* is the same, except that the value assigned to A is in fixed-point form.

aread*a* causes one alphanumeric word of five or fewer characters to be read
from whichever input device had been previously selected, and stores that word
as the value of the variable A in a form suitable for later printing by "aprt'.

rdhex*a* reads a hexadecimal word of 8 or fewer characters and stores it as
the value of the variable A. (This operation is used primarily in conjunction
with "hxpch' to be defined later.)

At this point, it might be remembered that, when the RPC-4000 executes a pro-
gram translated from the ACT IV language, it executes statement after state-
ment, from top to bottom, unless the sequence is varied by transfer operations
written explicitly into the program. Thus, if several statements in the program
contain input operations—perhaps with transfer operations causing some or all
of them to be repeated one or more times—these input operations will be execu-
ted in a definite sequence of which the programmer must be aware. If the input
device which has been selected (manually or under program control) is a tape
reader, the data on the tape must have been punched in the sequence in which

it will be called for. If the selected input device is the typewriter, the typist
must supply the correct data at the correct time. In this case, it is suggested
that the program print out an identifying heading before each call for input.

FORMAT FOR DATA INPUT

A number to be read and stored in floating-point form can be typed or punched
on tape in the same form as indicated for floating-point constants within the
ACT IV program. That is, it appears as a number with a decimal point ap-
pearing in the appropriate position, a (-) sign for negative numbers, and is
followed by an asterisk. (A (+) can be used for positive numbers, but is not
required.) In addition, floating-point notation may be used. A floating-point
number is written as follows: :

a. A number containing not more than 9 digits, preceded by its sign if
negative.

bh. A decimal point, if desired. (If no decimal point is entered, it is
assumed to follow the last digit of the number.)

1-9

iread

aread

¢. The letter "E" to introduce the exponent (i. e., the power of 10 by
which the number must be multiplied to produce the value desired).
d. The value of the exponent and its sign, if negative.

For example:

to input 1234567800
type 12345678E2*
or .12345678E+10%*
to input .000012345678
type .12345678E-4*
or 12345678E-12%

A (-) appearing anywhere before the "E" is interpreted as the sign of the num-
ber; after the "E", as the sign of the exponent.

Note: The forms containing the letter "E", described here, can not be
used to express floating-point constants within ACT IV programs.

Any data input by a ""read' operation is automatically considered floating-point.

-Thus 1* is sufficient for floating-point input of the number one; 1E6%* for the

number one million.

There may not be more than 9 digits in the number typed in, excluding the
exponent, if any. To increase legibility, spaces may be typed anywhere within,
before or after a number, The entire expression must not contain more than 16
characters, however, counting spaces. (If more than 16 are used, only the last
16 are considered by the read routine in the processor.)

A number to be input by "iread" should be typed simply as the number itself,
with a (=) if negative, followed by a (A*) code. (+) for positive numbers is
optional. Spaces may be included for legibility, The expression must not
contain more than 16 characters.

A decimal point in a number input by an "iread" operation is ignored. Thus,
if a dollars-and-cents amount is typed in with a decimal point when an "iread"
operation is calling for input, the total number of cents will be stored in fixed-
point form.

The "aread" operation inputs and stores (right justified) any group of 5 or fewer
acceptable characters, followed by (*). Among these characters can be spaces,
but not (*) codes. Other format controls, such as carriage return, tab, upper
case, lower case and back space, are ignored. Whatever characters are read
in and stored using "aread" can subsequently be printed out using "aprt'. If
names, headings, etc. of more than 5 characters are to be read in and later
printed out, a series of "aread" operations should be used which store each
five-or-fewer character group as a different variable. Note that, in preparing
the input, a stop code must appear every 5 or fewer characters, and the number
of asterisks must be the same as the number of "aread" operations used. If the
input for an "aread'" operation is blank (that is, a sequence of two (*) codes)
nothing will be printed by the corresponding "aprt" operation.

rdhex

OUTPUT

daprt

The input for a ""rdhex' operation—or series of "rdhex'" operations—will usually
be a tape produced earlier by a ""hxpch" operation, It will consist of a word of
8 or fewer hexadecimal characters (0 through 9, A through F) followed by (*).
When there are fewer than 8 characters, leading zeros are automatically
supplied. For an explanation of a use of this operation, see ""hxpch'.

GENERAL

The results of the computer's calculations may be printed out in a variety of
formats which must be specified by the programmer. First of all, the appro-
priate output device(s) must be selected. This determines whether the results
are typed out, punched on tape, or both. If the results on tape are intended for
subsequent off-line printout, the same considerations of output layout apply as
for typed copy. Data may also be punched on tape for later re-entry into the
computer, with no need for a printout. In that case, layout format is less
important.

The output arrangement is controlled in three ways:

By specifying the appropriate output operation ("'print', "dprt", or "iprt",
among others).

By indicating the total number of positions the output should occupy on
a page, and the number of significant digits or decimal places to be
printed.

By using non-data output operations ("cr', "tab'", "sc'", "daprt") to
return the carriage, tab to manually pre-set carriage positions, and
print fixed headings.

Note: If both input and output are handled through the typewriter, they will
appear together on the same paper. Therefore, allowance must be

made for the input when planning the output layout.

NON-DATA OUTPUT

"daprt*", followed by a list of single letters, digits, or other legal symbols,
each followed by (*), causes output of these characters. For example, the
statement

daprt¥nke*x*t* *g¥gkgkex*
causes

""next case"

to be output. Notice that the space between T and C is indicated by actually
spacing once between the two (*) codes.

Whether any of the characters used are also names of variables or operations
is irrelevant.

Neither the character (*) nor the formal controls such as carriage return,

tabulate, upper case, lower case, and back space can be indicated directly.
For these, special mnemonics are typed following the "daprt*': for example,

-1

reprt

cr tab sc

aprt

print

"er*' represents carriage return, "uc*' and "lc*' represent upper case and
lower case respectively. These mnemonics are listed in Table 2, Appendix B
of this manual. Alternatively, any character can be output by giving its two-
digit code shown in the same table. If the two-digit code does not correspond

- to a typewriter character, nothing will be printed if the typewriter is selected,

but if the tape punch is selected, a code will be punched.

The two-digit and three-digit codes 64-127 do not represent characters, but
input-output selection codes. Some of these codes cause selection of a specific
input device and deselection of any previously selected input device. Others
cause selection of a specific output device without causing deselection of other
output devices previously selected. Some deselect all devices. Table 2 also
provides the standard codes for the basic system (one typewriter, one tape-
reader/punch).

n*reprt*, where N is in fixed-point form and "reprt*' is followed by a list of
single letters, digits, or other legal symbols, each followed by (*), causes these
characters to be output N times. The character representations are the same as
for "daprt." For example, the statement

Skrepri* * *gk * * Hpkk
will cause this printout:

a ba ba b

Important: The '"daprt" and "reprt" operations, each with its list of characters,
must always appear as separate statements. No other operations
may appear in the output statement.

cr*, tab*, and sc* can be used as operations anywhere in the program, not just
as codes after "daprt'. They are used to cause carriage returns, tabulation on
the typewriter, or printing of the stop code (*); or—if the output device selected
at the time is the tape punch—to punch the corresponding codes on tape.

The other two-letter "daprt'" format codes can not be used independently as
operations.

If a group of 5 or fewer characters were input, earlier, by aread*b*, then
aprt*b* would output the same characters. If fewer than 5 characters were
read in and output is on the typewriter, only the actual number of characters
read in will be typed. When output is on paper tape, 5 codes will be punched -
in every case, with initial tape feed characters (no holes punched) making up
any blank character positions for a total of 5. (When such a tape is printed
out, tape feeds are ignored.)

DATA OUTPUT

n*print*b*, where N is in fixed-point form and B is in floating-point form,
causes the value of B to be output in floating-point notation. The value of the
integer N controls the number of digits which will be printed, and the total
space taken up on the page. Specifically, assume N is 100C + F, where C is
the field width (i. e., the total number of characters to be output), and F is the

dprt

iprt

number of digits following the decimal point. Then the printout will appear in
the form: (C - F - 6) leading spaces; the sign of the number (space if plus,
(-) if minus); the decimal point; F digits after the point; the letter E; and sign
and two digits of the exponent or power of 10 by which the fraction must be
multiplied—a total of C characters. If any digits are to print, C must be
greater than 6 and F should be less than (C - 6).

For example, if N = 1605 and B is the floating-point number 123. 45678, then
n*print*¥b* (or 1605*print*b*) will cause the output

.12346E+03

preceded by 6 spaces, including one for the sign. The printout is rounded to
the number of digits specified: . 12346, not . 12345, since the next digit (6) is
more than 4.

n*dprt*b*, where N is in fixed-point form and B is in floating-point form,
causes the value of B to be output in ordinary decimal form. ('dprt" is read
"decimal print".) Assume N is 100C + F, where C and F are integers; C is
the field width, and F is the number of digits following the decimal point. The
printout will appear in the form (C - F - 2) digit positions before the decimal
point, with spaces for the leading zeros; the sign of the number (space for
plus, (-) for minus) inserted before the first non-zero digit; decimal point;
and F digits after the decimal point—a total of C characters.

If the number B is too large to be printed in the format indicated by N (that is,
if it has more than F - C - 2 digits in front of the decimal point), the number
of decimal places printed, F, will be reduced as much as necessary. If there
is not enough space even with F = 0, the output field of C typing positions is
filled with slashes (/). ,

" IfN = 1602 and B is the floating-point number -987. 65432, then n*dprt*b* (or

1602*dprt*b*) will cause the output
-987. 65

preceded by 9 spaces.

n*iprt*b*, where N and B are both in fixed-point form, causes the value of the
integer B to be output. If N = 100C, where C is an integer indicating the field
width, the value of B will print without a decimal point, preceded by leading
spaces and then the sign (space for plus, (-) for minus), for a total of C char-
acters. If Nis 100C + F, where F is an integer between 1 and 8, a decimal
point will be printed before the last F digits.

If the number B is too large to be printed in the format indicated by the value
of N, the field width is increased to accommodate the number. If the two lead-
ing digits of the too-large number are 10, 11, 12, 13,.14, or 15, one added
space is saved by printing the letter A, B, C, D, E, or Fin place of the two

leading digits.

check

hxpch

FLOW CONTROL

An optional print operation is provided in ACT IV for testing programs and for
monitoring the progress of long computations. If a statement such as

ssl*check*13**

is written after an assignment or other statement which has a '"result," this
check statement has no effect if SENSE SWITCH 1 is OFF during execution of
the statement. But if the Switch is ON, the typewriter will print "@ 13" on
a new line, followed by the value of the result of the preceding statement. If
the preceding statement has a floating-point result, the check line number
(here 13) must be positive. If the result is in fixed-point form, a negative
check line number must be used.

Any Sense Switch (1, 2, 4, 8, 16, or 32) can be specified.

The check expression does not have to be a separate statement; it can be
written as the last part of the statement to be checked.

hxpch*b* produces the value of B in hexadecimal form, followed by (*¥). Here
B can have any form internally: fixed-point, floating-point, or the form in
which "aread" stores its input.

The hexadecimal form, which consists of 8 characters per word, chosen from
the numerals 0 to 9 and the letters A to F, is not easily interpreted. The
principal use of "hxpch' is to punch on tape intermediate results of a computa-
tion so that they may be input later for another computation, using "rdhex".
The "hxpch-rdhex' input/output combination is faster than any other, is ap-
plicable to any type of variable, and introduces no conversion errors in transfer
from internal to external form. When the "hxpch-rdhex" combination is to be
used, the first program must contain a series of "hxpch' operations to punch
out the values of the variables which are to be input later, and the second pro-
gram must contain a series of "rdhex" operations in correspondmg sequence to
read them back into the computer.

LABELS

Statements are normally executed in the order in which they appear in a pro-
gram, If the flow of control is to be modified, it is necessary to label some of
the statements.

A statement label can be any name of up to 5 letters which has not already been
reserved for special use in the ACT IV system. Table 3, Appendix B, gives
the complete list of such restricted names. In addition, if a name is already
used for a variable, it can not also be used as a statement label.

To label a statement, precede it by the name of the label, two periods, and

(*). It is customary to type each statement on a separate line. If it is not
preceded by a label, depressing the '"tab'' key on the typewriter will produce

an indentation to indicate this. For labelled statements, it is common practice
to type the label (including "..*'') at the margin, and then tab. Thus, all state-
ments start at the same position on the page, and all labels are displayed in the
left margin. These typing conventions merely assure legibility and uniformity.
Computation is not effected by such forms of copy arrangement, since the "'tab"
code does not enter the computer on input.

use

if*a*neg*
if*a*zero*
if*a*pos*

THE PRIMARY TRANSFER OPERATIONS

When discussing statement labels in the following operations, the "..' are not
included. These periods are used only at the time when the statement is label-
led.

If HERE is a statement label, use*here* causes the normal flow to be broken.
The computer goes back or ahead to the statement so labelled, and sequential
execution of statements resumes at the new point.

In contrast to other operations which change the flow, "use'" is unconditional;
that is, it is carried out regardless of any conditions which may exist.

If HERE is a statement label, and A is a variable or a computed quantity, then
if*a*neg*here*

causes the normal flow to be broken by a transfer to the statement HERE, if
the value of A is negative. Similarly, if*a*zero*here* causes the flow to be
broken by a transfer to HERE if the value of A is exactly zero; and
if*a*pos*here* does likewise if A is positive (not zero or negative).

Subscripted switch vectors, which are discussed in greater detail in the next

section, ean be used in place of simple statement labels with NEG and POS,
but not with ZERO. :

If more than one test is to be made on the quantity A, they can be combined.
Suppose that, if A is negative, the program flow is to jump to a statement
labelled CASEL; if zero to CASE2; and if positive, to SPEC. The single
statement

if*a*neg*casel*zero*case2*pos*spec**
will make the three-way test. The NEG and ZERO could be in either order,
but POS must come last if it is included. However, this statement is slightly
less efficient than

if*a*neg*casel*zero*case2*use*spec**,
where the last test is replaced by USE, resulting in a shorter and generally
faster program. If SPEC is the statement immediately after this test statement,
the "use*spec*' can be omitted entirely.
In place of A in these examples, any fixed-point or floating-point expression
can appear. For example, to transfer to the statement HERE if the fixed-point
variables I and N are equal,

if¥i*i-*n*zero*here**

or, more readably,

if*[*i*i—*n*]*zero*here**

can be used.

step until rpeat

ssl*bcon*
ss2*bcon*
ss4*bcon*
ss8*bcon*
ss16*bcon*
$s32*bcon*

ss64*bcon*

read*a*bcon*
iread*a*bcon*

Because of the round-off errors of floating-point arithmetic, zero-testing of
floating-point quantities is not generally predictable. For example, if the
value EX was obtained by adding the floating-point number 0.1 ten times, the
result will not exactly equal 1. 0. Therefore,

if*[*ex*—*1, 0*] *zero*here **
will not result in a transfer of flow to the statement HERE.

LOOPING

The statement
i*step*j*until*n*rpeat*alpha**

has the following effect. First I (which represents any fixed-point variable) is
incremented by the amount J, just as if

X KRk K

had been written. If this step carries the value of I past the value of the fixed~
point quantity N, control flows to the next statement in sequence. Otherwise,
control flows to the statement labelled ALPHA.

Here J represents any fixed-point expression or variable, which may be posi-
tive, negative or zero. (In most applications the integer 1 is used.) If J = 0,
control always flows to the next statement in sequence. The N represents any
fixed-point variable or expression.

The simplest application of ''step" statements is in programming loops. See
some of the sample programs in Part 3 of this manual.

"'step' statements should not be used for stepping and testing floating-point
variables.

It is permissible to begin step statements with the word "for'", thus:
for*i*step*, etc. This maintains consistency with ACT III. 1If "for" is used,
it should not also be used as a region or procedure name in the program.

OTHER OPERATIONS

If HERE is a statement label, then ssl*bcon*here* causes a transfer to the
statement so labelled, when SENSE SWITCH 1 on the RPC-4000 control panel

is depressed. If the Sense Switch is up, the computer continues in normal
sequence instead. The other five instructions test SENSE SWITCHES 2,4, 8, 186,
and 32 respectively. By setting the Sense Switches appropriately, the computer
operator can choose among several options in a program which contains these
Switch Test operations.

ss64 is a non-readiness query for the High-Speed Reader. If HERE is a state-
ment label, then ss64*bcon*here* causes a transfer to the statement so labelled
when the photo-reader is the selected input device but is not ready for use.

If HERE is a statement label, then bcon*here* appearing after a '""read" or
"iread" operation will cause a transfer to the statement HERE when the

stop

go to

to

expression read contains the letter F, as in f*, "final¥', or "end of data*, "
As long as the expression read contains a legitimate number, the transfer
operation has no effect. Thus, the end of data can be indicated easily on the
data tape itself; the program can detect this end code and take appropriate
action,

The "stop' operation halts the computer after a program has been executed.
It does not interrupt the translation of the program from ACT IV language to
RPC-4000 machine language.

The last operation in an ACT IV program must normally be either a '"use"
operation, returning the flow of control to an earlier statement, or a "stop'".
Otherwise, the computer runs on, with unpredictable results, after execution
of the last statement of a program.

The "stop' operation may also be used during execution of a program to allow
the operator to insert another tape, reset Sense Switches, or the like. In the
latter case, it is suggested that "daprt'' be used in a statement before the stop,
to print out a brief reminder to the operator about the purpose of the upcoming
stop. After the computer has stopped, depressing the START switch on the
RPC-4000 control panel allows the calculation to continue at the next operation.

"go to' is an operation which indicates a variable transfer, or statement
switch, which can be set to different values at different points in the program.
""o0 to'" appears only in the form of a labelled statement swl.. *go to**,

(The form go to*s0** may be used for compatibility with ACT III for the
LGP-30, but ""s0" is meaningless in ACT IV.)

Note the single space in "go to'". It is part of the name of this operation, and .
can not be omitted.

/

If SW3 is the label of a switch statement "'go to**'', and HERE is the label of
another statement, then

sw3*to*here*

sets the switch statement so that is has the effect (but not the internal form) of
use*here*

It is permissible to begin with "set*', for consistency with ACT III. Thus:
set*sw3*to*here* If this is done, "'set'" can not be used as a region or pro-
cedure name in the program. If a switch '"go to'"' is reached due to a program-
ming error before it has been set, it has the effect of a dynamic stop; that is,
the computer repeatedly and endlessly executes the same machine instruction,
and the displays on the RPC-4000 control panel do not change.
Note: If HERE is a switch statement, then

sw3*to*here*

REGIONS AND
SUBSCRIPTS

dim

must be used with caution. If the program contains a sequence
here*to*alpha**
.‘sw'3*.to;"h;ar;3*;" .
ile're;"t(‘)*l;et'a*.* ‘
sw3. . * 'go'to.**'

then the effect of SW3 is use*alpha**, not use*beta**, (ACT IV differs from
ACT III in this respect.)

Data is often handled in blocks, using a single name for the entire block and
calling individual positions in the block by a serial number,.

SIMPLE REGIONS

The statement dim*a*55%* informs the processor that A is to be the name of

a block or region of at most 55 positions. - Any number of such declarations can
be incorporated into a single dimension statement: thus dim*a*55*1igt*37%*
indicates that A is the name of a block of at most 55 positions, and LIST of
another with at most 37 positions., All dimension declarations should be given
at the beginning of the program. Otherwise incorrect machine language pro-
grams may result, especially in long programs, since the processor does not
check the availability of computer locations which are to form the region.

The number of positions to be reserved must be given as an explicit integer
constant. A form such as dim*a*n** where the dimension is given as a
variable, is not allowed. When region space is allocated for use by a program,
the largest size needed should be specified. However, such region size decla-
rations should be governed by the space available in the RPC-4000.

SUBSCRIPTS

Region names without subscripts are of limited use. A region name followed
by a subscript, on the other hand, can be used almost everywhere that a
variable can. The only exceptions are that a subscript can not be merely the
name of another subscripted region nor can it be a formal parameter of a
procedure. Subscripts must be fixed-point numbers or expressions. If 55
locations have been reserved for the region A, they can be referred to by the
subscripted names a*0*, a*1% ., ., a*54% If the programmer whishes to
have a region TABLE and refer to the positions in this region as table*1*
through table*10*, he will have to reserve 11 locations for this region,

dim*table*11%*,

since the processor will reserve a place for table*0* whether or not the pro-
grammer intends to use it.

Any fixed-point variable or expression can be used as a subscript in place of
constants, provided its value is in the range allowed for the particular region.
While subscripted region names can not be used alone as subscripts, arithmetic
expressions containing operations which use subscripted region names are al-
lowed.

dim

dfine

Thus if I and J are variables in fixed-point form and B is a region name, any of
the following are permissible ways of referring to an individual position in the
region A:

a¥ix a*[*i*]*
a* [*i*i+*j*] * a*[*B*i*ix*j *i—*7*]*)

Notice: if the subscript is more than a single constant or variable, it must be

in brackets; if it is only a single variable, it may be in brackets.

MATRICES (TWO-SUBSCRIPT REGIONS)

A statement of the form dim*box*7*, *10** informs the processor that the name
BOX is to be the name of a region of 70 (=7x10) locations to be referred to as

box* [*1%, %1%]* box* [¥1% *2x]x . box*[*1%, ¥10%]*
box*[*2x, ¥1%]* box*[*2x, *2x]x . box*[*2%, ¥10%]*
bok[¥7e, #141¢ boxk[ire s2x]x L box*[*7%, ¥10%]*

In place of integer constants in the brackets, any fixed-point variables or ex-
pressions can be used, provided their values are inthe range allowed for the
corresponding subscript for the particular matrix.

A single dimension statement can contain a mixture of declarations of simple
regions and two-subscript regions:

dim*a*55*list*37*box*T*, *1 0*ww*1 0**

dimensions three simple regions (A, LIST, WW) and one matrix (BOX). The
occurrence of a comma and second integer distinguishes the matrix names.

SWITCH VECTORS

The "dfine" code makes it possible to control the relative positions in the
RPC-4000 memory to which the processor assigns variables or statements.
A complete description of the meaning of this code will be given in Part 2 of
this manual. Let it be merely indicated, not explained, at this point, how it
can be used to construct a switch vector.

Suppose ALPHA, BETA, and GAMMA are the labels of three statements,
perhaps the beginnings of three alternative branches of the program. If the
programmer wants to be able to calculate which branch to take by referring
to the three alternatives as "swvec*1*' "swvec*2*" .and "swvec*3*'' re-
spectively, he could use

use*swvec*n**

to transfer to one of the branches according to the value of the fixed-point
variable N.

To set up ALPHA, BETA,GAMMA as a switch vector "swvec'', the following
two statements should be written with the "dim" statements at the beginning of
the program:

dfine*gamma*1*beta*1*alpha*]**
dim*swvec*1**

Note that the switch vector is written in reverse order (i.e., GAMMA is
switch vector 3 and ALPHA is switch vector 1), and that "1'" appears after
each name including "swvec',

MISCELLANEOUS
OPERATIONS

wait The command wait, followed by a single (*), informs the processor that the
end of an ACT IV-language program has been reached, and no further transla-

tions are to be done. Other uses of "wait" and another way of terminating
ACT IV programs—namely, with "xeq"—are explained in Part 2 of this manual.

comnt Explanatory and identifying comments can be included anywhere in an ACT IV

program or before the first statement. A comment statement may consist of
any characters excepting (¥). It must be preceded by the code "comnt*", and
followed by two (*) codes. For example:

comnt* The program will now call for the input of
n+l pairs of numbers (x,y) **

It is recommended that every program begin with a comment statement giving
the name of the program, the author's name, and the date the program was
written or last revised.

"comnt*", followed by a comment and a single (*), can also be used at any point
inside any statement, except after "daprt". "comnt*'" instructs the processor
to ignore what follows up to the next (*). When the program tape is printed out
during its conversion to machine language or off-line, the comments can be read
by the programmer or operator, but have no other effect.

prev - "prev¥' yields the result of the last calculation, so that it can be used as if it

had been given a name. To understand the meaning of '"last calculation" the
scanning method of the processor must be kept in mind, and how its precedence
rules are implemented. This is illustrated by the following examples:

previk-*g¥* assigns to the variable A the result of the
preceding statement executed, if it had a
result.

sqrt*[*prev*] ¥z kptok assigns to the variable B the square root of the

result of the preceding statement executed, if
it had a result in floating-point form. Because
‘"sqrt" and "prev' have the same precedence,
there would be a conflict, unless "prev*"'

was enclosed in brackets.

[*... J*x*prev*=*c*** assigns to C the square of the floating-point
quantity calculated by the expression in the
brackets.

MULTI-PURPOSE
STATEMENTS

Statements in an ACT IV program were primarily intended to be units with a
single effect. Thus the statement

a¥+kpko kpkk
has the single effect of assigning a value to the variable R. The statement
1606*print* [*a*+¥p¥] +x

has the single effect of printing the value of a certain expression. The state-
ment

if* [*a*+*b*]*neg*here*use*there**

has the single effect of "branching' according to the sign of the value of a
certain expression. The statement

or¥*
has the single effect of returning the typewriter carriage.
However, it is possible to write statements which have several effects. Multi-
purpose statements are useful for grouping closely related functions together
on one line. In some situations the saving of a few typed characters is possible,
and translating time is reduced when fewer statement addresses have to be

printed out by the processor.

On the other hand, some disadvantages must be weighted when considering the

use of multi-purpose statements. They may result in a longer machine-language

program than if the statements had been split. More important, the strict ap-
plication of the precedence rules by the processor may result in unexpected
effects and incorrect results.

The examples below demonstrate the proper and improper use of multi-purpose
statements.

Example 1 Several input operations, as well as "cr'" and "tab", can be
combined in one statement.

cr*iread*n*tab*read*a*tab*read*b*cr**
is acceptable.
Example 2 Several output operations can be combined, as well as "cr"
and "tab' (but not '"daprt", which must always form a statement by
itself).
cr*0400%iprt*n*1203*dprt* [*a*+*b*]*1203*dprt* [*a*-*p*]*cr**

is acceptable.

Example 3 When brackets are present, input and output should not
be mixed. The statement

read*a*read*b*1606*print* [*a*+*b*] ok

will not work as probably intended, since the sum A +B will be cal-

1-21

culated on the basis of whatever values A and B had before the new A
and B values are read in.

Example 4 Input operations such as "read*a*", "iread*a*" not only cause
the value input to be assigned to the variable A, but also have that value as
a result which can be used in an expression. Thus the two statements

read*a**
b*+*a*:*s**

can be combined into -
b¥+* [kread*a*]*=*g**

The latter statement has a double effect: it changes the value of A by
input, and the value of S by evaluation.

A form such as b*+*read*=*s** in which "read" is not followed by a
variable, is not correct,

Care should be used if the variable read in occurs more than once in
the expression. For example, in

[*read*a*]*x* [*a*+*b*] *_ kg koK

the [a+b] will be calculated before input takes place, since input
(and output) follow addition and subtraction in order of precedence
of operations.

Example 5 Multiple assignments of the form
a*+* Q0Ll*=*g*=*pred**

have already been mentioned: the above would assign the former value,
A plus 001, to both A and RED. A number of separate assignments can
also be combined in one statement. -

0%k =kg ko kpk] k= *1*=*] *] | kokgkk

assigns zero to A and B, fixed-point 1 to I and J, and floating-point
1toS. (If Bis a region name, the above analysis is wrong: zero
would be assigned to A, B1, I, and J.) Combinations like this are
often used to put all initializations into a single statement for brevity.

Example 6 The value of an expression can be assigned and used
simultaneously, as in the examples

ok [kax+kprokgk o kprk
and
1606*print* [*a*+*p*=*g*] **

There is an exception: if the expression assigned is merely a constant
or variable in floating-point form, the result of the assignment can not
be used for floating-point operations in that statement. Thus

[¥3. 1416%=*pi*]*x*d*=*circm**

is not correct, nor would it be with PIE in place of ''3. 1416" in the
statement.

PROCEDURES

Example 7 The statement
1606*print* [*a*4kp**=*g*
is not correct. Technically, (=) yields a result, the value assigned,

which can be used further; but PRINT has no usable result within
the computer.

THE SUBROUTINE CONCEPT

A subroutine or subprogram consists of a group of statements which is either
to be used several times within the same program, or appears sufficiently
useful to be preserved for incorporation into future programs.

A subroutine can be written as an integral part of a program. It can be used at
several different points of the program if a switch '"go to" is the last statement
and is set each time before the program transfers to the start of the subroutine.
When a subroutine is used, the following must be carefully observed:

Names and labels used in the program may not be applied to different
items in the subroutine..

All quantities dealt with by program and subroutine must be referred
to by the same names. Thus, if a matrix inversion subroutine is
written to invert the matrix MATI and place the inverse in MAT2Z,
any matrix to be inverted would first have to be copied by a program-
med loop into.the MATI1 region, and the resulting inverse would then
have to be similarly removed from MAT2 to the region in which it is
wanted.

THE PROCEDURE CONCEPT

The term "procedure' in ACT IV refers to a more formal type of subroutine
which is not subject to the same restrictions as ordinary subroutines.

No conflict is possible between statement labels and variable names

- introduced within a procedure and the same labels and names used
later, because the ACT IV processor "forgets" their definitions
after it finishes translating the procedure.

At each point in the main program where a procedure is to be used,
it can be ""told" which variables and regions it is to work with, and
where to put the results.

Procedures can be called on from within other procedures, and this process

can be stacked to any depth. However, recursive procedures—procedures
which call on themselves, directly or indirectly—are not allowed in ACT 1V.

USING A PROCEDURE

A procedure is used to work on some data and produce some answer or answers.
Each item of data will be a single quantity—such as can be named by a variable—,
or a region which is identified by its name, with no subscripts given.

1-23

1-24

Suppose there is a procedure for moving from one region into another those
numbers whose value exceeds a limit. The procedure must be told how many
numbers there are to be examined, in what region they lie, what the limit value
is, and what region is to receive the removed numbers. In addition, it would
be useful to know how many numbers are left in the original list.

The description of the procedure will contain the name of the procedure, which
is used when calling on it, and, in a specific order, the types of names or
quantities which must be specified to give the procedure the information it
needs.

The list-splitting procedure might have the following description, in part:
name: split

supply: 1) length of original list, in fixed-point form;
2) name of original region;
3) value of limit, in floating-point form;
4) name of region to receive the removed numbers.

result:) length of reduced list, in fixed-point form.

Supposing a main program states this problem as: Take the numbers greater
than 1000. 0 out of the list of 2k~1 numbers which are in the first 2k-1 places

of the region ALL, put them into region BIG, and set LEFT equal to the number
of values remaining in ALL afterwards.

Then, only the procedure statement:
split*[*2xix*icki-*1%]*, *al1*, *¥1000. 0%, *big*=*left**

needs to be written. A dimension statement at the beginning of the main pro-
gram must have reserved enough locations for the longest possible list to go
into BIG.

Note: the procedure statement consists of the name of the procedure being
called on, followed by the list of actual ""parameters" to be supplied, in the
order specified by the description of the procedure in question. The first
parameter in the example, the length, is the fixed-point expression [2k-1]
(K is assumed to be in fixed-point form.) If the length of the list were given
as a constant (37) or a variable (N), the brackets would not be necessary.
The second parameter is the name of the first region. The third parameter
is the limit, in this case a constant.

So far, these are input parameters: they give information to the procedure.
Input parameters can be constants, variables (including subscripted region
names), expressions, region names, statement labels, or switch vector names
with or without subscripts.

The fourth parameter in the example is BIG, the name of a region which the
procedure will change: hence it is an output parameter. Only region names
are allowed as output parameters, or as parameters which play both input and
output roles. (The second parameter in the list, the name of the orginal region
is an output parameter as well as an input parameter, since the original region
is changed by the procedure.)

In addition, a procedure can have a "result": a single value, in fixed- or
floating-point form as shown in the procedure description. If a procedure has

a result, the result can be used only as shown in the example, by assigning it
immediately:

=*left**
It can not be used as a term in a calculation: a statement like
split¥[*2*ix*k*i-*¥1*]*, *all*, ¥1000. 0%, *big*, *-*list*=*new**
will not operate correctly.

Of course no (=) operation would be written when calling into use a procedure
which has no "result" shown in its description.

Note that a procedure could report on an exceptional situation by executing a
transfer—out of the usual sequence of control—to a statement whose label is
an input parameter. This is why input parameters which are labels can occur
in some procedures.

In the example, the parameters in the list were separated by commas. The use
of commas is optional, except that they are always required to separate a para-
meter which is a region (or switch vector) name from the following parameter.
The first and third commas could have been omitted, but not the second. (In
the example, all three were retained for clarity and uniformity.)

One more example: If a "split" procedure is to remove from the first 37
numbers in the region W those which are larger than the number in the m'th
location of region Y, and put them in region Z, the procedure statement could
be written:

split*37*w*, ¥y*m*z* *-*left**
Notice that Yy, is simply specified as the limit value in the form y*m*. There

is no comma after the Y here, since Y is not the parameter, but y*m*. The
comma after W is necessary, since this region name is a parameter.

CONSTRUCTION OF PROCEDURES

enter

This section will show how to write a procedure,

When using a procedure, the list of actual parameters is written after the name
of the procedure. The first line of the procedure itself, called the "enter" line,
is rather similar. It consists of the code ""enter*'", followed by the name of
the procedure and by the names of the parameters as they will be used in the
procedure definition. The line ends with an extra (*) code after the last para-
meter name, giving it the form of a statement.

The choice of procedure and parameter names is subject to the same restric-
tions as apply to names of variables. In particular, the name of a procedure
can not have more than 5 characters.

Parameter names used within the body of a procedure are called the formal
parameters, When the procedure is called into use, the formal parameters
are, in effect, replaced by the actual parameters specified in the procedure
statement,

The formal parameters must be simple variables: subscripted region names
are not allowed.

array

exit

end

1-26

If any of the formal parameters are to represent names of regions, the "enter"
declaration must be followed by another line. This line begins with the code
"array*'', followed by the names of those formal parameters which represent
names of regions.

The "enter' line (and "array" line, if one is required) constitute the procedure
heading. This is followed by the actual procedure in the form of ACT IV state-
ments operating on the formal parameters, and using any convenient names
for intermediate variables or regions which may be needed. As was stated
earlier, there will be no confusion between the variables used inside the pro-
cedure and those introduced later, so no effort need be made to avoid duplica-
tion of names.

No "dim" statements should be given inside the procedure for the "array"
parameters: space reservations for these is provided by the "dim" statements
given for the actual region parameters in the main program.

In most cases the procedure is intended to complete its function and then allow
the flow of control to return to the main program, to the point following the
call for the procedure. This return transfer is provided by the statement

exit¥*

used at the point in the procedure where the return to the main program is to
take place. This is often the last statement of the procedure. However, a
procedure may also have the form of a loop, with "exit**"' appearing in the
midst of the physical list of statements, constituting one outcome of a test.

If the procedure has a number of branches, several "exit**" statements may
be present, one at the end of each branch.

The result of the procedure, if one is to be announced, is the result of the last
statement executed before the "exit**" If the desired result can be conven-
iently calculated as the last step before exiting, there is no particular difficulty.
If the result quantity had to be calculated at an earlier point in the procedure,
and therefore given a name such as XYZ, place the statement

XyZ *_ *Xyz**

just before the exit, since this assignment statement does have XYZ as result.

The last statement of the procedure (last in order of typing, not in order of
execution) must be followed by the code "end**''., This notifies the processor
that the list of statements constituting the procedure have all been input for
translation, and that the terminal processing—primarily, the "forgetting' of
all names of variables and statement labels introduced in the procedure—
should take place.

Many procedures end with the two lines

exit¥*
end**

The "exit**'" indicates the dynamic end of the procedure, the point at which its

dummy

execution is to end; "end**" indicates the physical end of the procedure, where
translation into RPC-4000 machine language is to end.

PLACING OF PROCEDURES

The following is a recommended plan for placing procedures in programs. If
the main program does not use ""dim" or "dfine'", all procedures used by the
program may be written first, then the main program. (If any procedures
call upon others, the ones called upon must come first.) If procedures to be
used are on separate tapes, they can either be copied into a single tape; off-
line, then followed by the main program, or each tape can be translated in
turn. This is further discussed in Part 2 of this manual.

If "dim" or "dfine" is used, the total number of locations to be reserved must
be established first, including the 1's in the "dfine'" statements. Supposing
the total is 874 the program should begin with the statement

dim*dummy*874 **

A convention exists that the name ""dummy" is not to be used for any other
purpose in any program or procedure; but any name not otherwise used may
be written in its place. Thus, "dummy" or its substitute is written and fol-
lowed by the procedures used. The last procedure is followed by the command

reglo*04200%*

(The special meaning of the number 04200 will be explained further in this sub-
section and in Part 2. 04200 is the number to be used normally.)

Next, the main program is written, starting as usual with all the ""dim" and
"dfine" statements required.

The following facts should be considered when working out a modification of
the suggested plan, above, for using procedures in a main program.

(1) At the "end**'" of each procedure, the processor "forgets'" the
names of all variables, etc., introduced within the procedure, but
not those introduced before (if any). If names are introduced before
the "enter' of a procedure, and the same name happens to be used
inside the procedure (a question often inconvenient to check), the
double use of the name is almost certain to lead to error.

(2) Space reserved by ""dim' and "dfine'" is assigned backward from
location 04200 in the normal mode of program translation. No test
is made whether any of the space required for a region is already
used for other purposes.)

Because of (1), the dimension statements of the main program should not be
written before the procedures. Because of (2), the procedures should not be
written before the dimension statements, unless some way is provided to
prevent overlap.

The dim*dummy*874** reserves all the region-space the main program will
need, from 04200 backward. If the procedures themselves contain "dim" or
"dfine" (unusual, but possible), the space assigned for these will automatically

fall before the space for the main program's regions.

The reglo*04200* command resets the region location register within the

1-27

processor to the value it had at the beginning. The following "dim" and "dfine"
statements in the main program will cause the actual regions of the main pro-

gram to be located within the space reserved at the beginning as the dummy
region "dummy'".

Instead of the method of avoiding conflicts described above, the commands "res"
and "avl" defined in Part 2 could be used to reserve or make available different
areas of memory for the procedures and for the main program and its regions.

OPERATING INSTRUCTIONS

IR R XS AR R R AR B DI

GENERAL This part explains the operation of the RPC-4000 for translating and running
ACT IV programs. Since some of the commands which control translation and
computer operation may be incorporated into the ACT IV program proper, it is
suggested that this part be scanned even by programmers who do not intend to
operate the computer themselves.

A hexadecimal tape of the processor is available which can be loaded into the
RPC-4000 by the usual bootstrap procedure. This takes about 15 minutes with
the standard 60-character/second tape reader.

The program to be translated can be on tape, or it may be typed in. In the
normal '"load-and-go' mode of operation, the translation will be stored in the
computer and not punched out.

Any translated part of a program can be executed immediately. Errors dis-
covered at this time can be corrected, and translation can be continued. In the
load-~and~go mode, even the completed program can call for the input of state~
ments in ACT IV language which can be executed subsequently in the program,
Thus, a data tape may consist of numbers intermixed with ACT IV statements.

If a program is to be re-used in the future, a tape of its translated form can be
punched out during the translation process. Corrections made at this time,
including those discovered while executing portions of the program, will be
recorded on the tape. The resultant tape can be read in at a later time for
executing the program in its corrected form. Further corrections are not
possible, however. Calls for input of ACT IV statements are not allowed
within the program if it is to be run, later, without retranslation.

If the 42 tracks available for a program in load-and-go mode are not enough,
53 more tracks can be made available by switching to the ""punch/do not store"
mode. When the translation is finished, the punched part of the program can
be read in to overlie the translating portion of the processor. The entire pro-
gram can be executed, but correcting in ACT IV language obviously becomes
impossible, since the corrections could not be translated.

STORING THE The following operating instructions are given here as a practical extension of

PROCESSOR the programming procedures discussed in Part 1. To keep this section as
simple as possible, it is keyed to the basic RPC-4000 system using the type-
writer and tape reader/punch. As a further simplification, the following
abbreviations will be used throughout the subsequent discussion:

CC: computer control panel

RPR: reader/punch cabinet, right-hand panel

RPUL: reader/punch cabinet, upper half of left-hand panel
RPLL: reader/punch cabinet, lower half of left-hand panel

2-1

If the light underneath a control switch is in the wrong state according to
proper procedure—OFF instead of ON, or vice versa—this can be corrected
in most cases by depressing the switch. It should not be touched when it is in
the correct state. Exceptions to this rule will be noted as they occur.

The following steps will activate the computer and lead to storage of the ACT IV

processor:
(1) cCcC POWER ON: ON
Both memory protection switches (behind the slide
below the oscilloscope display) UP.
(2) RPUL Make sure the POWER ON switch is UP.
(3) RPR SYSTEM POWER: ON
(4) RPR SINGLE CHARACTER MODE: OFF
PARITY MONITOR RESET: OFF
PARITY MONITOR INHIBIT: OFF
(5) RPR Depress MASTER RESET
(6) RPUL POWER ON: ON
(7) RPLL TYPEWRITER SELECT: OFF
READER SELECT: OFF
PUNCH SELECT: OFF
(8) RP Place the processor (hexadecimal tape) in the reader.
(9) CC If the computer was just turned on, the console may
not yet be lit. Wait until the STOP light is ON.
(10) RPUL READER TO COMPUTER: ON
(11) CcC ONE OPERATION: ON
Depress SET INPUT MODE
EXECUTE LOWER: ON
Depress START COMPUTE
(The tdpe will move a short distance—one word—
and stop.)
(12) CC Depress START COMPUTE again

Depress EXECUTE LOWER (to turn it OFF)
Depress SET INPUT MODE again

Depress ONE OPERATION (to turn it OFF)
Depress START COMPUTE

The tape will start moving again and continue for about 15 minutes, storing the
entire processor in the computer. When input is finished, the tape and computer
will both stop.

STARTING In order to start translation, the following steps are required:
TRANSLATION

(1) Store the processor. It is not necessary to repeat this if another

2-2

program has just been translated and/or run, unless that program
had been too long and so was translated in the mode which overlays
part of the processor.

(2) RPR Depress MASTER RESET

(3) If the ACT IV language program is on tape, place the tape in the
reader. If the program—or at least its beginning—is to be entered
from the typewriter, this input device will have to be selected
manually at the appropriate time (see step 12).

(4) Set two tabs on the typewriter: one about 10 places from the left
margin, and one the same distance from the right margin.

(6) RPUL TYPEWRITER TO COMPUTER: ON

(6) CC Normally, all SENSE SWITCHES: OFF.
But:
If the entire translated program is to be punched
out,

SENSE SWITCH 32 ON;

If none of the translated program is to be stored
in the computer while translating and punching,
SENSE SWITCH 16 ON

(no effect unless SS 32 is ON also);

If no printouts of statement locations are wanted
during translation,
SENSE SWITCH 8 ON.

(Switches 4, 2, 1 are not examined while translating.)

(7)y CC ONE OPERATION: ON
Depress SET INPUT MODE
EXECUTE LOWER: ON
Depress START COMPUTE

(8) The light on the typewriter will come on. Return the carriage
and type
ACT4*
The light on the typewriter will go out.
(9 CcC EXECUTE LOWER: OFF
ONE OPERATION: OFF
Depress START COMPUTE
(10) The following will happen almost immediately:

If SENSE SWITCH 32 is ON, a leader and then
the code FILL* will be punched on tape.

The reader will be selected for input.
The typewriter will be selected for output.

Input Duplication Mode will be selected.

NORMAL MODE PRO-
CESSOR COMMANDS

2-4

The computer will run for about 15 seconds, during
which the processor initializes the various tables it
uses while translating. At the end of that time the
typewriter tabs, a printout ""0000'" appears, and
translation can begin.

(11) If the program is on tape and was placed in the tape reader in Step 3,
it will start moving. Since Input Duplication Mode is selected by the

processor, a copy of the program will print out simultaneously on the
typewriter.

(12) If the program, or at least its beginning, is to be typed by hand,
perform the following operations to change the selection of input
device from reader to typewriter:

RPR Depress MASTER RESET

RPUL TYPEWRITER TO COMPUTER: ON
COMPUTER TO TYPEWRITER: ON

RPR Depress START READ.

The typewriter light will come on, indicating that the compiler is
ready to accept the first word of the program. (A "word'" is the
sequence of characters up to and including an (*).) The light will
go out when the (*) is typed. Do not resume typing until it comes
on again a fraction of a second or so later. Continue typing the
first statement, word by word.

After the input via the typewriter is completed, perform the follow-
ing operations to allow input from the tape reader:

RPR Depress MASTER RESET
Position the tape in the reader.
RPUL READER TO COMPUTER: ON
COMPUTER TO TYPEWRITER: ON
RPR Depress START READ.

(13) At the end of the statement there will be a longer pause than usual.
If SENSE SWITCH 32 is ON, the translated form of the statement
will punch out. Unless SENSE SWITCH 8 is ON, the typewriter will
tab and print a 5-digit number which is the address, in decimal
track-and-sector form, at which the translated form of that state-
ment begins in the RPC-4000.

(14) The above is repeated, statement after statement, until the cycle
is stopped by one of the processing commands "wait" or "xeq", or
until the processor detects an error in the program.

Processor commands are distinguished from operations such as (+), '"read",
"use" and so on, because they control translation instead of becoming part
of the translated program. (The line of separation is not always clear.) In
this section, two commands will be defined which are used in normal load-
and-go processing, as well as '"loc" whose commonest use is in connection
with one of these two commands. Other processing commands, usually used
for correcting programs and for too-long programs, will be given later.

wait

xeq

When the processor encounters the line
wait*

instead of a statement it stops, or pauses, in the translation process. The
computer STOP light comes on. Depressing START COMPUTE (RPR or CC)
allows translation to resume, if this is wanted.

Notice that there is only a single (*) on a "wait" line.
Following are a few applications of "wait":

Either "wait" or "xeq" (described next in this section) should be at the
end of the entire program, whether typed by hand or on tape.

If the program is on several pieces of tape, "wait" is punched at the
end of each tape to give the operator an opportunity to remove it and
insert the next part. In particular, tapes of procedures should always
end with "wait". Long programs are preferably punched in several
parts, so that it will not be necessary to copy the entire program if
an error is noticed which the programmer wishes to correct off-line
before translation.

If part of the program is on tape and part is to be typed by hand,
"wait" should appear on the tape wherever a "switch to typed input"
is desired. The pause would be used by the operator to change the
input selection by these manual operations:

RPR Depress MASTER RESET

RPUL COMPUTER TO TYPEWRITER: ON
TYPEWRITER TO COMPUTER: ON

RPR (or CC) Depress START COMPUTE to resume translation.

It is not necessary to use "wait" to go from typewriter input to tape input,
since the processor already waits for typewriter input. When a "switch to
tape input" is desired, do not type when the typewriter light comes on again,

but:
RPR : Depress MASTER RESET
RPUL COMPUTER TO TYPEWRITER: ON
READER TO COMPUTER: ON
RPR Depress START. READ (not START COMPUTE)

If HERE is a statement label, the command
xeq*here**

causes translation to stop, and execution of the translated program to begin at
the statement HERE, provided SENSE SWITCH 16 is OFF, indicating that the
program is being stored in the computer. If SENSE SWITCH 32 is ON, meaning
that the translated program is being punched out, the resulting tape will have a
special transfer code at this point. When the tape is read in later, this code
will interrupt the input process and cause a transfer to the translated statement
HERE.

loc

DETECTED

PROGRAM ERRORS

The statement before the '""xeq'" line must be a '""use", "stop'", or "go to".
Otherwise the computer's execution of the program would continue beyond the
end of the program with unpredictable results.

If the translated program is being punched out and "xeq' is used for testing
purposes only, but is not wanted in the completed program, set SENSE
SWITCH 32 OFF before typing ""xeq". It can be turned back ON as soon as
the transfer to the named statement has taken place.

"loc*", followed by a computer address in decimal track-and-sector notation
and by (*), can be used any place where a variable or a statement label might
appear. One application is given below. Another use of "loc' might be for
fitting instructions written in machine larguage into ACT IV-language programs,

When the ACT IV-language program is being translated, the computer address
of the beginning of each statement is printed out unless SENSE SWITCH 8 had
been depressed to suppress the printout. It has been shown how "xeq" is used
to begin execution of the program at a labelled statement. Execution can also
begin at unlabelled statements. For example, to start execution with the state-
ment which is shown by the printout to begin at location 01234, input the com-
mand

xeq*loc*(01234**

To start at the first statement of the program, normally 00000, input
xeq*loc*0**

The processor can detect certain programming errors while translating the
program. When it does so, it types out an identification of the error, and the
computer stops. Typographical errors in the present statement are easiest

to correct. Select typewriter input and depress START COMPUTE. The type-
writer light will come on, and the processor will allow the retyping of the
present statement correctly. More information on error correction appears
in the next section. At this point, a list of possible error printouts from the
processor are merely listed, and their meaning explained.

STATEMENT TOO LARGE A statement may have at most 63

COR. AND RESTART (*) codes, not counting those fol-
lowing the brackets. If there are
more, the statement must be split
into parts. ("daprt" is not sub-
ject to this limitation: any number
of characters can be listed in a
single "daprt" statement.)

ILLEGAL SYM. The symbol just read is not a

COR. AND RESTART number, yet has more than 5
characters; or an invalid "daprt"
code has been used.

TOO MANY [The left and right brackets do
COR. AND RESTART not match properly.

or
TOO MANY]

COR. AND RESTART

ERROR
CORRECTION

LF. OP. INCORRECT One of the operations in the state-

OP. CODE IS ITEM NO., XX ment has no operand (or an im-

COR. AND RESTART properly constructed operand) on
or its left or right.

RT. OP. INCORRECT The operation in question is the

OP. CODE IS ITEM NO. XX XX'th word in the statement, not

COR. AND RESTART counting brackets or the statement

label (if any).

DRUM IS FULL The space available to the pro-

COR. AND RESTART gram (initially, tracks 000-041)
is used up. It is necessary to
switch to the "punch/do not store"
mode, and make more space

available.
SYM. NOT DEFINED IN ENTER This printout is only obtained
CORRECT PROCEDURE during an "array" declaration
COR. AND RESTART within a procedure. A symbol

has been declared an array which
was not listed in the "'enter' line.
If it is the array line which is in
error, simply depress START
COMPUTE and retype it. If the
"enter'" line was wrong, it is
necessary to use "'start" to back
up the processor to the "enter"

line.
SYMBOL TABLE IS FULL No immediate correction is pos-
PUNT sible. Reduce the number of

distinct symbols introduced by
placing some of the variables in
regions and by leaving out un-
necessary statement labels, and
start over from the beginning,
"ACT4*",

There are several situations in which error correction is possible.
When the program is typed in and the operator notices he made a mistake.

When the processor detects an error in a program being input from type-
writer or tape.

When the program (or a part of it) is being run in '"load-and-go" mode,
and incorrect results point out an error.

By its very nature, error correction is almost always done by typewriter.
Therefore, before attempting any of the correction methods below, the type-
writer must be selected for input.

2-8

If the need for correction is discovered during the translation process, there is
no difficulty in reaching the correction phase of the processor, known as ACTC.
If the program is being executed in '"load-and-go" mode, it is necessary to
transfer to ACTC by manual operations:

CC ONE OPERATION: ON
Depress SET INPUT MODE
EXECUTE LOWER: ON
Depress START COMPUTE

The light on the typewriter will come on. Return the carriage and type ACTC*,
The light on the typewriter will go out.

CcC EXECUTE LOWER: OFF
ONE OPERATION: OFF
Depress START COMPUTE

The computer will then transfer to the point in the processor which accepts
new statements or corrections.

The error-correction methods below are applicable at various other times of
program processing.

To correct any mistyped symbol if the error is noticed before typing the
(*): Depress SET INPUT MODE on the computer control panel. This
clears the Lower Accumulator. Look at the top line of the oscilloscope
display (the Upper Accumulator). If any pattern is visible there, hold
down SET INPUT MODE key and space the typewriter until the pattern
moves completely out to the left. Then type the intended symbol correctly.
(Caution: ONE OPERATION must be OFF when using this method—other-
wise the SET INPUT MODE switch has another effect as well, which is not
desired here.)

To correct the statement being typed, type at least 6 characters and a (*):
D:9:9.9:0.9.0.0:¢

The computer will print ILLEGAL SYM. Depress START COMPUTE,

ignore the address which will print out, and retype the entire statement

correctly.

To correct the most recent statement after the second (*) is typed, or
to correct the last few statements:

(1) If you have started typing another statement, cancel it by typing
XXXXXX* as described above.

(2) See what address was printed by the processor after the first wrong
statement. (This is the computer location where the translation of
the statement begins.) Suppose it was 01111,

(3) Type start*01111%*

(4) Retype the erroneous statement(s) correctly and continue.

An explanation of the effect of "start" is given at the end of this section.

start

CALLING THE
TRANSLATOR BACK

acte

To correct an earlier statement or statements:
(1) Finish the statement being typed.

(2) If the next statement is labelled, type the label with its two dots,
and two (*) codes. If it is unlabelled, type one (*). A computer
address will print out, say, 03333. This is where the next state-
ment is to begin—note it carefully.

(3) See what address was printed by the processor after the first of
the statements to be corrected. Suppose it was 01111.

(4) Type start*0llll*x*
(5) Type the corrected statement or statements.

(6) See what address was printed out by the processor after the first
correct statement following the one(s) just corrected. Suppose it
‘was 02222,

(7) Type the statement use*loc*02222%%*
(8) Type start*03333** (the address noted in step 2).

(9) Continue typing the program where you stopped. If the next state-
ment is labelled, the label does not have to be but can be repeated.

To insert a missing statement, check the two statements between which the
insertion is to be made, to see which is easiest to retype. Then "correct"
that statement by the technique given above, changing it into the missing’
statement(s) followed or preceded by a duplicate of the one being "corrected".
Retyping one of the surrounding statements is unavoidable, in general,

except by making a correction afterwards in machine language. This

method falls beyond the scope of this manual and is therefore not explained.

The effect of start*01111%** is to instruct the processor to place the first instruc-
tion of the translated form of the next statement into computer location 01111,

It will do so even if 01111 has already been used. The subsequent instructions

of the next statement will be in previously unused locations. If 01111 contained
the first instruction of a former translated statement, all except that first in-
struction would remain in the computer unchanged but inaccessible.

Three operations are defined in this section which enable the translated program
to call the translator back into use during the ""load-and-go' mode of operation.

When the statement use*actc** is executed in the program (not when it is being
translated) the same point in the processor is reached as when transferring
manually to make corrections (by typing actc* in conjunction with some button-
pushing). If actc* is written before an ""xeq" statement intended to test part of
a program, it causes the computer to automatically exit and continue translation
after it has run through the part of the program already input. To remove the
use*acte** from the program automatically after making the test, label it, and

2-9

actx
acte

act4

TOO-LENGTHY
PROGRAMS

give the first statement after the '"xeq" line the same label. The first instruc-
tion of the latter will replace the first instruction of the former in memory, and
will effectively eliminate it.

During the execution of a program which was processed in the "load-and-go'
mode, a statement in ACT IV language may be inserted to be executed imme-
diately. For example, if HERE is a statement label, the statement

actx*to*here*use*acte**

calls for the input of one statement in ACT IV language (perhaps a heading or a
sense switch option which vary depending on the data used with the program).
That statement would be translated and executed immediately. Then the pro-
gram would continue with the statement labelled HERE.

If the statement use*act4** is executed in the program, the same point in the
processor is reached as when transferring manually to ACT4*, The tables in
the processor are initialized, and an entirely new program can be read in and
translated. One use of this is to allow a semi-unattended translate-and-run
operation of the computer: when each program has finished, it will automatical-
ly start the translation of the next program, if the programs and their data
alternate properly on a single tape.)

When the processor prints out DRUM IS FULL during the normal '"load-and-go"
translation mode, the following steps will more than double the available space,
although the '"load-and-go'" feature must be sacrificed, including the ability to
make corrections after trying part of the program.

(1) CC SENSE SWITCH 32: ON (=Punch)
SENSE SWITCH 16: ON (=Donot store)

(2) If the translated program has not been punched out until now, prepare
the tape:

RPLL SELECT PUNCH: ON
SELECT TYPEWRITER: ON
Hold TAPE FEED until a foot or more of blank
tape has been fed out as a leader.
Type FILL*
SELECT PUNCH: OFF
SELECT TYPEWRITER: OFF

(3) Make sure typewriter input to the computer is selected.

(4) RPR (or CC) Depress START COMPUTE. Ignore the address
which will print out.

(5) When the light on the typewriter comes on, type

avl*04200*09463%**

MEMORY ASSIGNMENT

(6) Repeat the last program statement, and continue to the end,
returning to reader input when and if appropriate.

(7) When translation is finished, remove the newly-punched tape, and
read it in.

The punched part of the program will overlay parts of the translating portion of
the processor, which makes corrections impossible, once the tape is read in.
If the program contains any use*actc** or similar statements calling on the
translator, it can not be run at all.

Two alternate considerations should be introduced at this point:

If a program was extensively corrected before the DRUM IS FULL
message, and if the remaining program appears to be no longer than
what has been replaced by corrections, an alternative approach is
available which preserves the convenience and correctability of '"load-
and-go". This method involves correction of the ACT IV-language
program tape off-line and a new start. This utilizes the space in
memory of those program parts which were later replaced by cor-
rections; possibly accounting for the DRUM IS FULL message.
Additional saving of space may be achieved in some cases by re-
ducing the dimensions reserved for the regions.

If a program appears too long to fit in the normally available space—
for example, if the regions alone take up the 42 x 64 = 2688 locations
normally available—it is advisable to use the "punch/do not store"
mode for the entire program to begin with. Having the extended
space available enables the processor to optimize better, and results
in a faster-running program. It is suggested that the program start
with

avl*04200*09463**

reglo*09500%*

The second of these lines allows the regions more room. If pro-
cedures are used, and they are placed according to the instructions
in Part 1, the "reglo" command following the procedures must be
changed to

reglo*09500%*

When the processor is entered at ACT4, the memory area 00000-04163
(decimal track-and-sector) is made available to the program. The first state-
ment is set to start at 00000. The dimensioned regions and defined symbols
are set to occupy the higher-numbered end of the available area, so that the
first reserved region will have 04163 as its last location.

Technically, 00000-04163 in an Availability Table are marked Available, and
the rest of the RPC-4000 memory is marked Reserved. The Start Register is
set to 00000, and the Reglo Register is set to 04200.

The two Registers and the Availability Table can be controlled by the program-
mer, if he wishes, by means of certain processor commands. The "start"
command, already defined in this Part, resets the Start Register to the speci-
fied value. The "'reglo'" command, to be discussed in the next section, resets
the Reglo Register. The Availability Table is controllable by "avl" and ''res"'.

2-N

avl

res

THE REGION
LOCATION REGISTER

A command such as avl1*04200*%09463** gvails the computer memory area
from 04200 through 09463 to the program by marking the Availability Table
appropriately. It countermands any reservations previously made by the
processor or the programmer.

The area used in this illustration is actually the portion of the processor which
does the translating—often called the compiler. If this area were made avail-
able during load-and-go translation, the compiler's own instructions would be
replaced,” one by one, by program instructions, and correct translation could
not continue for long. = Therefore, if the available area is enlarged in this
fashion, the "punch/do not store'" mode must be used.

The part of the processor which falls in locations 09600 through 12063 contains
the running-time subroutines: the loader for the translated program tapes as
well as the machine-language subroutines which carry out the input, output,
and floating-point arithmetic (and '"functions') operations. This is the only
part of the processor which must be in the computer when the program is being
executed. Therefore the punched-out program can be read in after translation
in "punch/do not store' mode is complete, thereby destroying part of the
processor but leaving the part that is needed.

A command such as res*00500*00831** makes the memory area from 00500
through 00831 unavailable to the processor ("reserves' it), by marking the
Availability Table appropriately. If the two addresses are the same, a single
memory location is reserved. This command is useful if a programmer wants
to have several separately-translated and/or hand-written programs in the
computer memory simultaneously. It countermands any availability notations
previously made in the Availability Table by the processor (in initializing) or
by the programmer. With a sequence of "avl" and "res" commands, a com-
plicated pattern of availability can be laid out.

The processor automatically reserves any location used for a program instruc-
tion, constant, variable, as well as locations designated as regions.

Within the processor is a Region Location Register, '"Reglo" for short, which
determines what computer locations will correspond to regions and to "dfine"
variables or statements. To determine where position 0 of a dimensioned
region should be, the processor subtracts the declared size of the region from
the current setting of Reglo. It also changes Reglo by that amount. No prior
check is made of the Availability Table, but all positions in the region are auto-
matically reserved.

The same is done when a certain number of locations—usually 1—is specified
after a statement label or other symbol in a "dfine' statement. Indeed, the
only difference between "dim'" and "dfine" is that for names declared in "dim"
statements the processor accepts subscripts, but not for those declared in
"dfine" statements. More precisely, a reference to a "dim'"-declared name
without a subscript is in fact a reference to a code word which indicates where
position 0 of the region is (and the number of columns, if two-dimensional),
while a reference to a "dfine''-declared name is a direct reference to the named
statement or variable.

reglo

The Reglo Register normally starts at the setting 04200. If a program begins
with

dim*table*20*list*1 0**
dfine*gamma*1*beta*1*alpha*1**

dim*swvec*1*wow*100**

the resulting memory assignment becomes:

location dim dfn
03958 WOow \Y2

(100 locations = 1 track
and 36 sectors

04130 swvec i
31 alpha Y
32 beta Vv
33 gamma \ Vv
04134 list v

(10 locations)
04144 table Y

(20 locations)
04163
04200 NOT USED FOR REGIONS

and Reglo is left at the setting 03958,

This chart shows that

list*0* is in location 04134,
list*1* is in location 04135,
list*g* is in location 04143,

While "1ist" was declared to be a 10-position region, no limit is actually
enforced by the processor. If the programmer refers to list¥10*, he gets
location 04144, which is the same as table*0*; and so on.

In making use of the switch vector '"Swvec', this over-running of regions is
applied deliberately:

swvec*(Q* means location 04130, unused (since switch
alternatives were numbered from 1 on).
swvec*]* is the same as alpha: the first instruction of

the statement labelled "alpha.." will be in
location 04131.

swvec*2* is the same as beta.

swvec*3* is the same as gamma.

Thus "dfine" allows a systematic relationship among symbolically-named
computer locations.

A command such as reglo*01234** changes the setting of the Reglo Register
to the specified address. '"reglo'" might be placed before the first "dim'" or

2-13

"dfine" statement in the program to change the computer area which will be
used for regions.

If the programmer wants "lemon" to denote computer location 01234, and
"melon" 04321, he could write

reglo*01234**
dfine*lemon*(Q**
reglo*04321%*
dfine*melon*Q**

Since this leaves Reglo set at 04321, these lines should follow all normal "dim"
and "dfine' declarations.

PUNCHED OUT If SENSE SWITCH 32 is ON during translation, the translated form of the ACT IV-

PROGRAMS language program is punched out. The resulting tape contains the instructions
and constants comprising the program, but not the tables of definitions which the
processor forms while translating. Therefore, the punched-out program can not
be corrected in ACT IV-language.

There is no provision for punching out a program after it has been translated.
If a machine-language tape of the entire program is desired, SENSE SWITCH 32
must be ON from the beginning.

fill According to the operating instructions given earlier in this manual, the punched
tape will begin with the word FILL* "FILL" is the address, in hexadecimal

equivalent, of the beginning, of an input routine contained in the processor.
When this input routine reads the program tape, it

stores each instruction and constant in its indicated place, and

exits to the named statement when a transfer code appears on the
tape as a result of an "xeq'" in the ACT IV-language program.

If this tape were printed out, one would frequently find two successive instruc-
tions placed in the same location. In these cases, the first is an intermediate
form which the processor punches out but then replaces by a changed version.
Each instruction would be on a separate line, with an extra carriage return
before the translated form of each statement.
To store a punched-out translated program:
(1) The part of the processor from 09500 on must be in memory.
(2) Place the tape in the reader.
(3) Select reader input and de-select Input Duplication Mode.
4) CC ONE OPERATION: ON
’ Depress SET INPUT MODE
EXECUTE LOWER: ON
Depress START COMPUTE

(The tape will move one word, through FILL¥)

2-14

cC EXECUTE LOWER: OFF
ONE OPERATION: OFF
Depress START COMPUTE

The tape will read in, up to the first ""xeq''-generated transfer
code; then execution will start immediately.

(5a) If there is no transfer code on the tape, the tape will run to its
physical end. To start execution at, say, the statement begin-
ning at 01234 (decimal track-and-sector), change to typewriter
input, transfer manually to FILL* (in hexadecimal), and type
the transfer code T1234% Transfers can be effected in this
way to any statement at any time.

(5b) If the program tape continues after an ""xeq'" transfer code on
tape, transfer manually to FILL*, then select reader input and
press START READ to read the program tape to the next transfer
code.

2-15

SAMPLE PROGRAMS

&
IR BB UKD OO DDA AR R BIRREBL KRR

This section contains sample programs designed to illustrate programming
techniques. Each program is headed by a ""comnt" statement to describe the
function of the program. Two procedures and sample call programs are in-
cluded. Sample 3 is given to illustrate the conventions used when writing and
calling a procedure. However, the method of sorting in this example is
extremely bad as the time required for the sort is proportional to the square

of the number of values to be sorted. Sample 4 is included to give some insight
about compiler additions which may be accomplished in source language. This
procedure can be very useful.)

ACT IZ CODING SHEET
rropiem_— TABLE GENERATOR

oate August 5,1962 pace 1 oF

408 NO. PROG. NO. PREP. BY.

CHD BY SECTION

STATEMENT
LABEL ACT

STATEMENT

formats August 5, 1962

COMNT" Generate a table of functions and exhibit input and output
Sample 1**

DAPRT"CR¥CR* % *A™ * X5 = » «%

READ*A**

DAPRT*CR® *UCS"LC*A™ * %a% =« ==

READ*DA*Y

DAPRT*CR™L*I"M* * *=*% * =u

READ*LIM**

DAPRTCRTCR™ % * ™ * wps w w4

FHR kg wpw wn e owox

L*N’ !h! 3 LR Y ‘E&X!Pn

EAR MW R s RouRpR KA RO ¥N

CR*802*DPRT*A* *

904*DPRT™["A“X*aA*] **

904™DPRT*[*LN™A®1**

DAPRT* **

904 *DPRT*[*EXP*A*]**

1206 *PRINT*[“A*PWR™A*] * *

$S32™BCON™s1 **

YDA "AT ¢

IF*A*-*LIM*NEG*S2*USE*SI* *

WAIT *

INC.] c

As THE PROGRAM IS comPiLED BY ACT 1V,
OCCUR.

OMPUTER DIVISION PRINTED N U5

THE FOLLOWING PRINTOUT WiLL

AC Tl 0000
COMNT GENERATE A TABLE OF FUNCTIONS AND EXHIBIT INPUT AND
OUTPUT FORMATS
AueusTt 5, 1962 SaMPLE 13%% 0000
$1.o% DAPRTHCRICRH #* HA¥ 3 %=k 3 %% N000
READ¥#AR] 0020
DAPRTHCR# HUCHDHLCHAR & =3 8 4% 0026
READ% DA 0048
DAPRTHCR¥LH# | #M% 3 #T# % #% 005
READ¥L | M3t 010
DAPRTH#CR¥CR¥*
%% % % RAN B ¥
%% AR HxXE BAN ¥
o % RLBN® HAR H %
% REHXHP® HA% *
3% % RA% HPUWHRH BARCRIH 0114
S2..% cr#802%0PRT#AN® 02448
90l o PR [A% At]#e 0332
90l #pPRT# [H#LN#A%]2 0334
DAPRTI 3¢ oL3
9OlstpPRTE[EX PN] R 033
1206%priInT*[®a%PWREAR]2t 053},
ss32%BCcoN¥®s % o436
ASHRD ARTHANR 0302
P F#A#=RL | MENEGRS2¥USERS T3¢ 1126

WAL TH

ResuLTs oF TABLE GENERATOR

A = 00,0% PROGRAMMED
Aa = 1,00+ HeaDiINGS
tim = 20,00
A A X A LN A EXP A A PWR A
.00 +0000 .0000 1.0000 ,100000e+01
1.00 1.0000 .0000 2.7183 .100000e+01
2.00 4.0000 6931 7.389%1 .1L00000e+01

.00 9,0000 1.02;6 20,0855 ,270000e+02
.00 16,0000 1.336 Bg.39$1 .256000e+0
§ 148,132

.00 25,0000 1.509 .312500e+40

B ogme 1o il sy

. . . . ol €

.00 .0000 0792 gO 9230 . 167772e+08 CompPuTED
9.00 £1.0000 972 ©103.08L0 .357421+09 RESULTS

10.00 100,0000
11.20 121.0000
12.00 14l;.0000
13.00 169,0000
1L.00 196.0000
15.00 225.0000
16,00 256.0000
17.00 289,0000
18.00 32L.0000
19.00 361.0000

1
3026 22026.1467 .100000e+11
379 5987&.1%1 .265312e+12
E L9 162754.80 .891610e+13
5649 LL2Lh13.41 .302875e+15
6391 122260h.2 .311gzﬁ:+1g
7081 3%269017.5 .L3789Le+1
2726 3882111.0 .1ghhz7s+2o
E .8272l0e+21
9

oL 65659968, . 2
L S e

[ASEASH\SH\SR VR SRS R\ VIVI VR \VH (V)

erosLem — MEAN

JOB NO.

AND STANDARD DEVIATION

ACT I CODING SHEET

PROG. NO. PREP. BY CHD BY SECTION

pare _August 5,1962,,.. | o

STATEMENT
LABEL

ACT I¥ STATEMENT

COMNT™Compute mean and standard deviation. The data tape

contains run number identification followed by fioating

point values of "Y" An"F" signals the end of the data tape.

August 5, 1962 Sample 2**

IREAD*RUN"BCON*S10* *

"ty vy *s N

L

READ"Y *BCON"s5™ *

Y Iy *s*sy™*

Y*X*Y*4EY vt tvy Y

N*I+*1*=*N""

USE*s3**

O*FLO®N*="EN**

DAPRT* CR®CR™R™U*N™ “N¥Q** **

O*IPRT *RUN**

CR™O™IPRT"N*™

DAPRT™ * *C*A"S*E™s**

IF*N® ZERO*SI* ™

SY*/"EN*="YBAR"*

SQRT *["SYY*/ “EN*—% YBAR* X * YBAR*]*="sIGMA * ™

DAPRT*CR*Y*B*A"R* **

1608 * PRINT * YBAR **

DAPRT*cR*s"1*6*mM*A""

1608 *PRINT ™ SIGMA* *

USE *sI1**

* sToP*UsSE *s1**

WAIT*

AS THE PROGRAM 1S COMPILED BY ACT IV, THE FOLLOWING PRINTOUT

OCCUR,

actlx

COMNTS®

stleo#

$3.e%

$5eet

$10. .%

3-4

0000

COMPUTE MEAN AND STANDARD DEVIATION. THE DATA
TAPE CONTAINS RUN NUMBER IDENTIFICATION FOLLOWED
BY FLOATING POINT vaLues ofF "y", An "f" sienaLs
THE END OF THE DATA TAPE,

AususT 5, 1962 SAaMPLE 23t

IREAD#RUN¥BCON3S 103
Q=33 y#=42 y y#SHNHE

READ#Y#BCON#S St
YD Y ST yaE
YiEX#YEFRED Y YRSRI Y vt
N3] SN

USE¥#S 33t

O3%F LOEN#=HENIE
DAPRTHCR¥CRIRIUINI HNHOW®,H W3
03t) PRTIRUNIE

CR3#03% 1 PRTINIE

DAPRTH# # HCHA#SHEISHNE

I F¥N#ZERO%S 1403

Ty /HENHTRYBARKE

SQRTH[#Dy v /HEN#aityBAREXIYBARE]HSHS | GMAME
DAPRTH#CR¥YHBIARRY

16084#pPR INTH#YBARS®
DAPRTH#CR¥®SHE | #GHMEARH
1600%PRINT#S 1 GMARE

USE#s T3

STOP#USE#ST##

WAL TH#

wiLL

RESULTS OF MEAN AND STANDARD DEVIATION.

13
1.,00%2,00%3,00%1 ,55%.90%, 48, ,01%2,53%3,22%2 , 98sF %

RUN NO, 1

10 cases

YBAR .21669998e+01
S 1GMA .1105161Le+01

2%
5731#298543555#),022#2500%5052#333 35 F %

RUN NO. 2

! CASES
YBAR «39968572e+0l
S1GMA .3114951 7e+0k

INPUT
DATA

QUTPUT
INPUT

DATA

OUTPUTY

3-5

ACT I¥ CODING SHEET

PROBLEM SORT PROCEDURE pate August 6,1962 race | _or_l

JOB NO.

PROG. NO. PREP. BY CH'D BY SECTION

STATEMENT
LABEL

* ACT ¥ STATEMENT

. . | COMNT ™ The following sort program illustrates the use of procedures.

. . ||t should be noted that the method of sorting is very

inefficient for large values of "N" The parameters used in

_ . | the call of the procedure are "A' which contains a vector

__,_| of floating point numbers and "N" which contains the number

., |l of values. August 6, 1962 Sample 3**

. . I DIM* DUMMY* 500" *

. . |ENTER™ SORT*A*N"*

. . |ARRAY*A"™

|M=mpe"

w1 =%y

»*

o o *lA*IT="TEMP**

o o *IF* T TEMP*-*a* y* I*NEG* EXCH™ *

. . JJ¥STEP™ I “UNTIL *N *RPEAT*SI*"

_, I1“STEP™ | *UNTIL*N"1-*1*RPEAT"S3" "

L HEXIT™ ™

o o tARY A LT

L, | TEMP*=*A*y**

. . |USE*s2™*

END **

.. I REGLO *4200 **

L warr”

INc./ COMPUTER DIVISION PRINTES 1N .84

WHEN THE PROCEDURE 1S COMPILED BY ACT |V, THE FOLLOWING PRINTOUT WILL

OCCUR.

AcTlyse

COMNT3*

S$3,.%
S2. %
s1..%

EXCH,e o%

3-6

0000

THE FOLLOWING SORT PROGRAM ILLUSTRATES THE USE OF
PROCEDURES, | T SHOULD BE NOTED THAT THE METHOD OF
SORTING IS VERY INEFFICIENT FOR LARGE VALUES of "N"

THE PARAMETERS USED IN THE CALL OF THE PROCEDURE ARE
n, 1

A"y WHICH CONTAINS A VECTOR OF FLOATING POINT NUMBERS,

AND "N" WHICH CONTAINS THE NUMBER OF VALUES,

AueusT 6, 1962 SAMPLE it

0 1 M¥FDUMMY#50030¢

ENTER¥#SORTH#HA#NI®

ARRAY¥ A%

=36 g 3

P36y YT gt

A I HSRTEMPHR
LF#[#TEMP#=kA® ®] #NEGHEXCHIS
JHSTEPHIHUNT I LIENFRPEATHS 133

1S TEPHTHUNT IL¥N¥ | % T1#RPEATHS 333
EX | TH#3#

A JRTIAN
TEMPH#S3 A g4t
US E#S23%
END3##
REGLO%200%%
WAL TH

0000

0000
0000
000l
oool
0012
0020
0106
0208
0512
0118

0306
0502
0502
0000
0000

ACT I¥ CODING SHEET

rrosiem _ SAMPLE PROBLEM THAT USES SORT PROCFDURE ~ oarelugust 61962 racel_or |

JOB NO.

PROG. NO. PREP. BY CHD BY

SECTION

STATEMENT
LABEL

* ACT ¥ STATEMENT

. . |COMNT™The following program will read "N" floating point

L calt the sort pr then print th

W
., lsorted numbers.”

. . |poim*B*500**

8EG,I N

. I&=Qx‘0
.. .Sitlee "|READ*B*T*BCONTS2*™
X X R .)) I"I‘.QI*=-\I¥Q
e |, JUSE*sI*¥
52 .‘I!l_l|¥=¢1**
e .|, . SORT™BY "**
I‘S*Jb&
L. .S.3le, s *|CR*I204* DPRT *B*y**

. . Iy*STEP*I “UNTIL*1 " RPEAT *s3**

. . JUSE*BEGIN**

XEQ* BEGIN™ ™

me.| COMPUTER DIVISION

WHEN THE PROGRAM 1S COMPILED BY ACT |V IMMEDIATELY AFTER

PROCEDURE,

COMNTH

BEGIN, ¥

st,..%

S2, ¥

33- o

THE FOLLOWING PRINTOUT WILL OCCUR.

n..n

THE FOLLOWING PROGRAM WiLL READ "nN" FLOATING
POINT NUMBERS, CALL THE SORT PROCEDURE, THEN
PRINT THE SORTED NUMBERS, it

D 1 m3tB3500%
13653 g 3¢
READ#B#1#BCON#S2#4#
136 #6733 | 364
USE¥S138¢

1361 =301 36S30) B3
SORTIHBIF, 3 | 33

E N
cR¥#120i#0PRT#E% g
IRSTEPHIHUNTILI I HRPEATHS S
USE#BEG | N3¢
XEQH#BEG | N3¢

RESULTS OF PROGRAM USING SORT PROCEDURE,

75.9%=333%L6.33% . 082#1 76, 6#31,22%57%68,0-tr

L476.5996

31,22.0000
75.9000

i

.0000
<3300

-68,0000
-333,0000

THE

PRINTED 1N U5.A

SORT

OUTPUT

0000

0000
0201
0509
0510
080

030

1009
0121
0128
oo

0135

INPUT DATA

rrosiem _PROCEDURFE TO PRINT ASSIGNED LOCATIONS

JOB NO.

ACT I¥ CODING SHEET

PROG. NO. PREP. BY CHD BY SECTION,

pate Auqust 6 1962 pacel__oF. L

STATEMENT
LABEL

* ACT I¥ STATEMENT

.| COMNT* This procedure may be used if the programmer wishes

._llto see the locations assigned to variables, region code words,

. fland procedures. These are respectively identified by the

. |lnumber codes of 2,3,10, Unassigned variables have a

. llcode of -14. The initialization is determined by the con-

. lltents of counters within_the compiler.

. Region "B" represents Table 2.

. Region "A" represents Tabie 1.

. A _[2] represents the ber of entries in Tables | and 2.

. (On iater versions of the compiler, these positions may change)

. |Iit should be noted that variables and region codes within

. jla procedure are forgotten, hence they will not be printed.

. | August 6, 1962 Sample 4**

. |ENTER*SYMPR **

. |REGLO*5300* *

. IDIM*B*320%A*320%*

L JCcR™™*

L | A*[*2*T"1/* 16384%=*N" *

L [B¥[*2%]*1/%16384%=* ™ *

L Sotle o MIF*["A*1*=*T*]*2ERO™ 52" *

. |CR™APRT*T™*T1AB* *

. | 300*IPRT*[*B*I*1/*134217728*RMAIN*RI®]* *

. |[*R1®"1/*1048576* RMAIN *R2™] *EX *100*=*TRACK ™ *

. |900*IPRT*[*R2*1/16384* 1 +*TRACK"]* *

L .S 2],

o *|I*STEP*I*UNTIL*N*RPEAT*S|* *

. |lUSE*AcTC* ™

END* *

REGLO*4200* ™

WAIT*

WHEN THIS PROCEDURE IS COMPILED BY ACT 1V, THE FOLLOWING PRINTOUT

WIiLL OCCUR,

acThx

COMNTH#

sTe o

S22, %

3-8

0000

THIS PROCEDURE MAY BE USED IF THE PROGRAMMER
WISHES TO SEE THE LOCATIONS ASSIGNED TO VARIABLES,
REGION CODE WORDS, AND PROCEDURES, THESE ARE
RESPECTIVELY IDENTIFIED BY THE NUMBER OF CODES OF
2, 3, 10. UNASSIGNED VARIABLES HAVE A CODE oF -1l,
THE INITIALIZATION 1S DETERMINED BY THE CONTENTS
OF COUNTERS WITHIN THE COMPILER,

Recton "8" ReEPrRESENTS TaBLE 2.

Recion "A" REPRESENTS TasLe 1,

A [2) REPRESENTS THE NUMBER OF ENTRIES IN

TasLes 1 ano 2.
(ON LATER VERSIONS OF THE COMPILER, THESE POSITIONS
MAY CHANGE,)

| T SHOULD BE NOTED THAT VARIABLES AND REGION CODES
WITHIN A PROCEDURE ARE FORGOTTEN, HENCE THEY WILL
NOT BE PRINTED, :

AucusT 6, 1962 SAMPLE s+

ENTER3#S YMPRIHE

REGLO%53004#

0 1 M#p #3203 A% 32033

CR##

Ak [#23)31 /21633 w=nnate

B [#2#)% /#1638 ez 5

1ra[A aSuTH] HZERONS 2343

CR¥APRTHTHTABH®
?oo*apnw*[*e*.*|/*13&217728*RMAuu*a1*]**
#R 131 /#10LE5T6%RMA TN#R2% T3 1 xH100H=HTRACK®S
90031 PRT#[#R2#1 /%1638 % 1 +TRACKH®] wk
1#STEPHTHUNT I LIENHRPEATHS 304t

USE#ACTCI

END3%

REGL 0% 200%#

WATH

0000

0000
000l
oool,
000l
0006
0057
0157
0008
0310
016

012

003l
0263
0000
0000
0000

ACT I¥ CODING SHEET

wosiem PROGRAM_TO USE THE VARIABLE [|ST _PROCEDURE oate August 6, 1962 race Lot
JOB NO. PROG. NO. PREP. BY CH'D BY. SECTION
STATEMENT L ¥ ACT ¥ STATEMENT
e . . | COMNT *The following program_will illustrate the use of the
L . . | above procedure.**
e 1., |DIM*AA*100*BB"100" "
BLEG I, No o, ¥ o%*1**
. . .l , |IREAD*M"™
.. .S lle. e, *AA*1"="BB" 1" "
oo | ., |FOR*I*STEP* |*UNTIL*M“RPEAT*s|**
e | |sTOP**
L .S Y,Ple o * SYMPR * ¥
e |, |XEQ*SYP*™
PN B 7V
s:m’nn —t * * GENERAL PRECISION, INC. | COMMERCIAL COMPUTER DIVISION PRINTED IN USA.
RESULTS OF VARIABLE LIST PROCEDURE,
COMNT3 THE FOLLOWING PROGRAM WILL ILLUSTRATE THE USE OF
THE ABOVE PROCEDURE¥# 0000
D IM¥AA#T100%BB%T100%% 0000
BEGIN. % O%T% (3% 0401
| RE A DM oL409
s1..% AAN | HSHBB* | 0409
FOR¥I#STEP¥THUNT I LEMERPEATHS 1363 0302
S TO P3¢ 0215
SYPe ¥ SYMPR¥# 0019
XEQ¥#S Y Pt
SYMPR 10 5608 OUTPUT
AA 3 201
88] 01
BEGIN 2 01
1 2 uog
|READ -1l L92
M 2 1"
s1 2 313
FOR -14 L5931
sYp 2 119 0221
WAL TH

APPENDIX

SRR R D BB AAAI IR RS U AL LRAEIRRS 0002000 00 20 ¥e ¥e Pa0e 800 6°6 %0 %0 4 %0 0 O ¥a 02 61076 *0 % %0 %0 %

INTERNAL NUMBER
REPRESENTATION

The RPC-4000 has a 32-bit word size. The bits are numbered 0 through 31.

Fixed-point numbers are stored as binary integers with the units position at
bit 31. Negative numbers are in complement form: in particular, bit 0 is
a "1",

Floating-point numbers, other than 0, should be thought of as being in the
form '

t.m x 2°,
where .b<m<1,
and -128 < ¢ < +127.
Bit 0 is the sign of the number: "0" if positive or "'1" if negative.
Bits 1-23 are 23 of the 24 bits required for the binary expression of

the positive fraction m, (Since m >.5, the first bit of m
is always ''1'", and there is no reason to represent it ex-
plicitly.) Notice that the complement form is not used for
negative numbers.

Bits 24-31 contain the positive number (¢ + 128) as a binary integer
with units position at bit 31.

Floating-point 0 is stored as a word of 0's. Any floating-point number of
magnitude

<.5x2 128

is replaced by zero.

APPENDIX

; O OO0 o
E ARSI RIS A IR AR RRARAAAIDILARS

TABLES OF ACT IV TABLE 1. CLASSIFIED LIST OF ACT IV OPERATIONS AND COMMANDS
OPERATIONS AND
COMMANDS AND
SELECTION CODES

General Regions and storage Flow control (Cont.)
[] dim (for)
= dfine ssl
(blank)* , ss2
comnt reglo ss4
prev start ss8
loc avl ssl6
res ss32
Floating-point (dummy) ss64
bcon
+ Input and output stop
- go to
b4 ’ read to
/ iread (set)
minus aread
abs rdhex Procedures
pwr daprt
sqrt cr enter
In tab array
exp sc exit
sin print end
cos dprt ,
artan iprt
tanh check Operating
aprt
Fixed-point hxpch ' act4
reprt acte
i+ actx
i- Flow control acte
ix fill
i/ use wait
rmain if xXeq
iabs neg
zZero
Conversion pos
step
flo until
unflo rpeat
fix

B-2

TABLE 2.

ALPHANUMERIC CODES

Numeric
Code

00
01
02
03
04
05
06
07
08
09
10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Definition

Tape feed
Carriage return
Tab

Backspace

Upper Case
Lower Case
Line feed
*Stop Code

End of Block

Photo Reader-
End of Message

~

o

O O 0T D OO0 U R WD O
HEYJQw>~ ~ee@bM=*

Numeric
Code

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

ALPHANUMERIC AND INPUT-OUTPUT SELECTION CODES

Definition
g G
h H
i I

j J
k K
1 L
m M
n N
o (0]
p P
q Q
T R
s S
t T
u U
v A\
w W
X X
vy Y
Z Z
, $
[;
] %
+ ?
Space

/ -

Code delete

TABLE 2. ALPHANUMERIC AND INPUT-OUTPUT SELECTION CODES (Cont.)

INPUT-OUTPUT SELECTION CODES

D track Input Selected Output
64 Reader
65 Reader Punch
66 Reader Typewriter
67 Reader Punch & Typewriter
68 Typewriter
69 Typewriter Punch
70 Typewriter Typewriter
71 Typewriter Punch & Typewriter
72 Photo—Fwd & Search
73 Photo—Rev & Search
74 Photo—Fwd
75 Photo—Rev
76-94 Available for additional units—probably input
95 Master Reset—Reset all units
96 Available
97 Punch
98 Typewriter
99 Punch & Typewriter
100
101 Punch
102 Typewriter
103 Punch & Typewriter
104,105 Search mode
106 High Speed Punch
107-124 Available—probably for output units
125 Copy mode on
126 Copy mode off
127 Reset output units

TABLE 3. ALPHABETICAL LIST OF ACT IV OPERATIONS AND COMMANDS

Operation

]

lank)*

+5 1

~ X

abs
act 4
act ¢
act e
act X
aprt
aread
array
artan
avl
bcon
check
comnt
cos
cr
daprt
dfine
dim

dprt
(dummy)
end
enter
exit
€xp
fix
fill
flo
(for)
go to
hxpch
i+

i_

ix

i/

1

1

1

1

1

2-3, 2-10
2-8, 2-9
2-10
2-10

1-12

1-9, 1-10
1-26

1-4

2-10, 2-12
1-16

1-14

1-20

1-4

1-12

1-11
1-19, 1-27, 2-12
1

-18, 1-19, 1-27,
2-12
1-13
1-27
26
25
26

, 2-10, 2-14

B~ o

1-
1-
1-
1-
1-
99—
1-
1-
1-
1-
1-
1-
1-
1-

al ~3 ~3 = = = = 00 W O

Operation

iabs
if
iprt
iread
In
loc
minus
neg
pos
prev
print
pwr
rdhex
read
reprt
reglo
res
rmain
rpeat
sc
(set)
sin
ssl
ss2
ss4
ss8
ssl6
5832
s564
start
step
stop
sqrt
tab
tanh
to
unflo
until
use
wait
xeq
zZero

DN b e = e e
[R R B T
— U1 DN e 00
g o o> 3
[\

I
-t
> o

COMMERCIAL COMPUTER DIVISION

SC 4109) B PRINTED IN U.S.A.

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	A-01
	B-01
	B-02
	B-03
	B-04
	xBack

