PRELIMINARY EDITION

RPC-4000

Optimizer &
Assembly

Routine

-

Roval MSBEE CORPORATION -« dats precessing division

MANUAL FOR PROGRAMMERS AND OPERATORS
ROAR

The optimizer and assembly routine
for the

RPC-4000 electronic computer

ROYAL McREE CORPORATION -- Data Processing Division

11

III

Iv

Vi

VII

VIII

IX

X1

TABLE OF CONTENTS

IntroductioN.cceoecocsooeccccccoceacacosoooos
A Brief Description of the RPC 4000..cc00000
The Assembly Programoecoccccoccccccoccocccoscsco
AddresseS..cececcoscocscocccecoseoccovocovea
Pseudo OperationNScccccccccsceoscccoocscoosos
Operation CodeScccoocecocococccocesooosocaose
Programming Using ROARcccocococceoesccovcscaocs
Programming EXampPleS.cecceccccccoscacocsccase
Input Tape PreparatioN.cceccococccccosccsscsoos
Output Formatececsoccococccoasoccooocascacce

Operator’s INStruCtionS.cccccccesceccacccoas

21

24

31

37

39

40

49

52

53

I

INTRODUCTION

The object of an assembly program is to allow the programmer
to code instruction for instruction like actual machine lan-
guage, but to be relieved of the extra chores of optimizing,
keeping track of used locations, etc. With the "one over one”
addressing system of the RPC-4000, optimization is doubly nec-
essary. It wss with these considerations in mind that the
first major program for the RPC-4000 should be a symbolic ass-
embler and optimizer.

The overall scheme is this:
The programmer codes his program either in sym-
bolic language or a combination of symbolic lan-
guage and machine language, The program is then
processed by ROAR.

The output of ROAR is of a dual nature. There are

1. A hex tape of the assembled program,

2. A decimal copy of the assembled program
along with a reproduction of the input.

These provide the programmer with a ready means of loading
his program as well as a complete record for error correction
and program checkout,

On the following pages will be presented a list of defini-

tions of the terms and abbreviations used in the rest of
the manual,

-1

FWA
LWA
Lo

LOC

D-ADDR

N-ADDR

ORDER
SUBRQUTINE

SYMBOLIC ADDRESS

RECRC

DB
BLOCK

PROGRAM

BC

&

Upper half of the double length accumulator
Lowerihalf of the double length accumulator
Index register

Command register

First word address, as of table

Last word address

First location of, as a table

Location, as of an instruction

Data address; bits 5 through 17 of the

" command word

Next address, the address where the next
instruction is located. Also bits 18-30 of the
command word

The instruction code. Bits 0-4 of the command
word

A part of a program. A program used as a part
of a larger program to perform a specific function

A symbol to which ROAR assigns a machine address.
A symtpl contains at least one character that is

not numeric

Refers to track 127, the 8 word recirculating
track

Double Access code

An area of sequential drum storage
Unless.specified as assembly program, program
refers to the object program ~ the program being

coded

Branch control, an internal sense toggle and
overflow indicator

Replace (Replaces)

Not used

PSEUDO OPERATION An instruction to the assembly program. It takes

" AVAILABLE

UNAVAILABLE

RESERVE

REPEAT MODE

the same form as an instruction and is reproduced
on the printed output. It is not output into the
program tape. '

An available memory location may be used by ROAR
for assignment as an instruction or constant, at
which time it is made unavailable,

A memory location is unavailable when it has been
reserved through a pseudo-op or assigned by the
assembler. Double access tracks and RECRC are un-

" available unless specifically made available,

To make a memory location unavailable

The mode of operation in which the execution of
an instruction is repeated as specified

Applies to the scaling convention we use., Q rep-
resents the bit position in the data word that
separates integer from fraction., Mathematically:
the number to be represented is equal to the data
word (which is considered as a fraction) multi-
plied by 24 '

II

A BRIEF DESCRIPTION OF THE RP{-4000

This ehapter is designed to provide a programmer®s view of the RPC-4000 and
. to acquaint the reader with some of the terms usad by the assembler, -

MAIN MEMORY

- The memory consists of 8192 addresses broken infto 128 tracks of 64 sectors,
Some of these addresses are redundent as we shall see, Tracks 000 through

" 122 contain nothing special and may be referred to directly. Tracks 123 and
124 are the leading heads of two double access tracks and, if double access
is not to be used, may be used as two more tracks of main memory, Track 125
is the trailing head 16 word times behind the head of track 123; track 126
" trails the head of track 124 by 24 word times. :

Track 127 is an eight word récirculating iine (RECRC). In other words, the
group of eight words represented by sectors 00 - 07 is duplicated 8 times as
08 - 15, 16 - 23, etc, '

The following table will show the correspondence between the various sectors
of track 127 as well as provide a presentation of modulo 8 equivalence for
later consideration, The RECRC notationm will bz discussed in Chapter IV,

All the sectors on each line refer to a single word of memory.
N

'RECRCO or RECRC3 00 08 16 24 32 40 48 56

RECRC1 01 09 1i7 2 33 41 49 57
RECKCZ2 6z 10 18 26 34 42 50 358
RECRC3 03 11 19 27 35 43 51 59
- RECRC4 04 12 20 28 36 44 52 60
RECRCS 05 13 2% 29 37 45 53 61
RECRCE 06 14 22 30 38 46 54 62
RECRC7 07 15 23 31 39 47 55 83
Figure 1

COMMAND EXECUTION

The normal operation of the one over one” address system is as followssg

As an instruction enters the C register, the indicated opera-
tion is performed upon the memory location specified by the

D address, The next instruction to be executed is located in
the memory location given in the N address.

o

TIMING

Instruction timing is generally discussed in terms somewhat removed from di-
rect application to programming. We speak of n milliseconds access time or an
addition requiring X microseconds. For the purposes of the programmer this

is cumbersome. We plan to relate instruction timing to optimization and, for
. this purpose; two time units are sufficient.

They are: 1. The drum revolution 1/60 second
: 16 2/3 millisecond

2, The word time 1/64 érum revolution
260.4 microsecond _
The time required for word transfer
between registers and memory

For this discussion we will neglect the track since nothing in timing depends
on it,

Let us begin, as in COMMAND EXECUTION, with an instruction entering the C reg-
ister. At this point the computer is entering phase 3 of a four phase oper-
ation. During phase 3 the computer is concerned with waiting while the drum
rotates until the next sector is the one specified in the D address, The min-
imum time for phase 2 is one word time, so that for best optimization the D
sector will be two greater than the sector in which the instruction is located.

T S B TR

As an illustration - 10-3 -RAU T .0.5 | -Xr)d
SECTOR OCCURRENCE
03 Instruction came from sector 3
04 Phase 3 Search for *next sector is it® NOW:

05 Operand sector
06 .

This is the most optimum case. Consider a case which is less optimum:

.._L_,l ' .013 1R1Ag ; L 4 .0‘8 | S 1 .XX

SECTOR OCCURRENCE

03 Instruction came from sector 3

04 Phase 3 Search for 'fnext sector is it Wait
05 Wait

06 Wait

07 Now

08 Operand Sector

09

~5-

Once the computer establishes that the next sector is the operand sector, phase
4 is entered. Phase 4 is the execution phase of the instruction (see below).

Phase 3 is limited to one word time on the following instructions:

HLT-SNS 00 SRL 12
CXE 01 SLC 13
LDX 07 PRD* 16
INP 08 PRU* 17

so that the sector used is generally immaterial,

The time in phase 4 depends upon the instruction being executed:

Shift orders take 4 word times plus 1 word time for each
bit position shifted.

The multiply and both divide orders require 67 word times
of execution,

‘The input order is variable, depending upon the number of
characters read.

All other orders require 1 word time in phase 4.
After execution, phase 1 is entered. Phase 1 is the search for the sector of
the next instruction and requires a minimum of cne word time in the same manner
as phase 3. 1In phase 2, the instruction enters the command register and the

cycle is complete.

As an example, consider the following instruction sequence:

Data N.,ext‘
Address Address

-l 1-310|7 1 l3l/ &
L 4, SIE

L 1 i L 1.)} 1 1

Location Order

-

)|
)|

. 5,00 RAU
S22 ADY

A i d N | 4 1 L1 1

R U S
-
i i sl
p PSR R Y

*Sectors of print orders must not be first optlmum unless it is desired to
bypass the print interlock.

SECTOR" TIME ACTIVITY

00 "Phase 2 Command 1 enters C register

01 Phase 3 Search for sector 07 to be next
02 '

03

04

05

06 07 is next

07 _ Phase 4 Contents of 0307 to upper

08 Phase 1 Begin search for sector 12

09

10

11 12 is next

12 Phase 2 Command 2 to C register.

13 Phase 3 Begin search for sector 14: Next
14 Phase 4 Add C(0014) to upper

15 ' Phase 1 Begin search for sector 15: Long

wait

Note

1. Command 1 is moderately optimum .
2. Execution of command 2 is first optimum,
3. The N address of command 2 calls for the least optimum sector.

VP:int orders require one word time f@r”éxecution, Further printing will be
held up by an interlock until the previous print stroke is completed.

~ To summarize instruction timing for the RPC-4000, the following table will
illustrate in terms of the phase structure.

Phase o Activity
1. ' Search to determine that the next

sector contains the instruction: 1 to
64 word times

R ’ ‘ ~ Copy instruction into command register,
- adding indexing portion of X register
if indexed: 1 word time

3. Search to determine that the next
sector contains operand: 1 to 64
word times (phase 3 is jdmitéd to 1
word time on certain instructions)

4 Execution of command, This is a fixed

or variable amount and depends upon
the order,

-7

Note About Repeat Mode

Repeat mode operation means extended phase 4 operation,

In repeat mode, the execution portion (phase 4) is extended (or
repeated) as many times as the count indicates (see repeat mode of
operation page 1i). :

WORD STRUCTURE

Command Word

10(1]213(4{5(6]|7]8]9 Lop1Lal 30 s 607181 9R0R1E22 3212 5R6R 7R 8RS3031

Order / D Track / D Sect@f / N Track / N Sector / X
Data Word
T -) > T T T T1 . .
-111213 1415161718 19 LOLLp20 3L LI SR AL 780 9P0p 1 2R 3P LPER6R 72 8RP9 3031

Lower Accumulator when used as lower 3 of product, numerator for
division. When used for other functions it uses the data word form,

2B3BL

U
o~

R7BBRI UL LRl 3L ELOL THBLOF0F1E2E3ELESE6E7TE8E9606152

1
AT

INDEX REGISTER .

ofi|2|3|u|s 67 810 Lop1hah3LLE5L6LTL8LoPOP1PERIELEEREETRE

P9BOBL|

Not useh / X Track / X Sector / Repeat count / PFound sector /NU
+ 1 from com-
pare memory
instructions

-8

REGISTERS
The RPC-4000 has four registers:

. Cecmmand Register
. Upper Accumulator
. Lower Accumulator
- Index Register

Lo N =
el al =N

Command Register C

The command register analyzes the instruction word., The general interpretation
of most commands is: Perform the indicated operation upon the contents of the
memory location specified by the D address and find the next instructicn in the
location specified by the N address.,

Upper Accumulator U

The Upper is a one word accumulator capable of arithmetic use, It holds the
multiplicand and high order product for multiplication, the high order portion
of the dividend and the quotient for division and its sign bit is checked by
the test on minus instruction,

Lower Accumulator L

The lower accumulator may be specified by programming as one or eight words in
length, It may be added to, subtracted from, and shifted in conjunction with
the upper. During addition and subtraction there is no carry between upper and
lower, nor between units of the 8 word lower.

For division L holds the lower half of the dividend, then the remainder. For
multiplication it holds the lower half of the double length product. After a
shift and count its D address bits hold the number of places shifted,

L is utilized as a mask holder for the compare memory instructions.

Index Register X

The X register has several varied uses as fcllows:
l. 1Its primary use is as an index register:

If an instruction is indexed, i. e., it contains the index bit
(a one at 31}, the D address portion of the index register is
added to the D address of the instruction as it goes into the
command register. The index register portion may be loaded by
use of the LDX (07) order. It may be incremented by an indexed
LDX order: *Load the X register with the D address of the LDX
crder, after adding in the previous contents of the X register,”

The index register portion of the X register may be tested by use
of the CXE (01) order followed by a TBC (23) order,

For repeat mode instructions, e. g., using the compare memory
orders as a table look-up, adding a column of figures, ete., the
N track holds and counts down the repeat count.

On the compare memory instructions, one greater than the sector
where found, or one greater than the last sector searched (if not
found), is placed in the N sector of the X register.

When not otherwise in use, the X register, through the use of the
EXC (09) order, becomes a word of immediate access, high speed
storage.

Branch Control

The Branch
capable of

Control is not truly a register but an Lnternal toggle which is
being in an on or off pOSLtlon.

The following conditions will turn it on:

AO

D.
The Branch

A,

Overflow conditions resulting from:

Add and subtract in either upper or lower
Either divide ‘

Shifting a bit left beyond the normalized pbsition in
the upper,

Successful compare (memory, X) instructions

A successful match on SNS (00) instruction
Control is turned off in the following ways:

As the first step in executing these instructions:
SNS (00) Sense (not halt)

CXE (01) Compare index register

CME (20) Compare memory equal

CMG (21) Compare memory greater than or equal

Upon execution of the TBC (23) instruction (if on)

SPECIAL FEATURES

Lengthened

Lower Accumulator

The lower accumulator may be either one or eight words in length as deter-
mined by the EXC (09) order, The 16°s bit in the D track of the exchange

-10-

command changes it to 8 word length; the 32°s bit changes it to one word
length, The lengthened Lower may he read into, and may perform all arithmet-
ical instructions that the one word Lower is capable of, either one word at a
time by judicious placing of an operand in memery, or several words at a time
by making use of the repeat mode of operation.

The programmed timing for the 8 word Leower is quite straightforward. It is
timing modulo 8. A word entering the 8 word Lower from memory sector zero
for example, may only be operated on, stored into or replaced from a sector
zero location, modulo 8; that is sector 0,8,16,24,32,40,48, or 56, of a
track, (See figure 1.)

It is suggested that shifting be not done when the lower is lengthened. 1f
programmed, left shifting into the upper will be a bit in turn from each of
the lowers for the duration of the shift.

Repeat Mode

If the LDC (06) instruction is executed, the N track of the X register will

be replaced by the corresponding bits from the memory location specified in
the D address, and the execution of the succeeding instruction will be repeat-
ed as many times as given in that count.

An example of this operation will be given in Programming Example 1 @n.page 40
following the discussion on coding. This tool is expected to prove very
powerful, for it enables us to perform table look-up (repeated CME or CMG),
add a column of numbers (repeated ADU), move blocks of data (repeated RAL,

STL coupled with the 8 word Lower), etc..

Track switching is not possible in repeat mode, For example, assume a count

of 5 is loaded, followed by a CME (20) 0960 XX. The locations searched are
0960, 0961, 0962, 0963, 0900, 0901 in that order.

Command Structure

The following table provides a brief description of the RPC 4000 command
structure:

-11-

ORDER

SYMBOL NUMBER

HLT

SNS

CXE

RAU

SAU

MST.

ORDER

00

00

01

02

03

04

03

D ADDRESS
TRACK SECTOR
000 Any

#000 Any
A B
A B
A - B
A B

A

OPERATION

HALT

SENSE ‘
No operation. Turn the Branch Control

‘on if a track bit (or more) corresponds

to a depressed sense switch on the
console. The track 64 bit will always
turn the Branch Control on.

COMPARE X EQUAL

1. Turn the BC off.

2. Compare the bits of the D address
with the corresponding bits of the
X register.

3. If equal, turn BC on.

RESET - ADD UPPER
Replace the contents of U with the
contents of memory location A B

" RESET ~ ADD LOWER

Replace the contents of L with the
contents of memory location AB

'STORE ADDRESS FROM UPPER
. Store the D portion of U in the locat-

ion specified by AB, leaving the rest
of the word unchanged

MASKED STORE
Where U contains 1%s store L into
memory location ABy where U contains

. O%s, leave the memory location unaltered

N.U,

C(AB)>U

N.U.

D copied
Register
left un-
changed

Mask

"EFFECT ON

N.U,

NgUg

N.U,.

N.U,

C(AB) >L

NoUe

Data
word

Index

Index

D addra
compared
Indexing
is re~
dundent

Index

Index

Index

Index

ORDER ORDER D ADDRESS OPERATION . : EFFECT ON
SYMBOL NUMBER TRACK SECTOR U L X

LDC 06 A B LOAD COUNT N.U, N.U. C(AB)s€(N track)
Replace the contents of the N track
of the X register with the corresponding
bits of memory location AB. Execute Index
the next instruction in repeat mode,
repeatlng EX the amount placed in X,

LDX 07 A B LOAD X : N.U. N.U. AB->C(D addr.)
Load the indexing portion of the X
register (the D address) with AB, the D
portion of the IDx order Index
INPUT
INP 08 000 N.U. Read: 4 bit
INP " 08 064 N,U. Read: 6 bit
If L is at 1 word length, read into the
double accumulator Index
If L is at § word length, read into L,
No other values of the p track ,should
be used, since any other bits ﬁresent
will be duplicated into €very character
read. This read is different from
LGP-30 in that there is no shift prior
to the first digit entering Index
EXC 09 01 B EXCHANGE
Replace the contents of the Lower with —_—
the contents of the Upper. .
02 L->U

04 U~ X o
08 X>U | —____T*
16 Timing Lower to 8 word length <F_w%\ﬁ%--_—’//_-m

32 Timing Lower to 1 word length

64 Unspecified as yet
Any combination of D-track bits is
acceptable

ORDER ORDER D ADDRESS
SYMBOL NUMBER 1pacK SECTOR
DVU 10 A B
DIV - 11 A B
SRL 12 000 B
12 001 B
SIC 13 N.U., N.U,

OPERATTION

DIVIDE UPPER

divide the Upper by C(AB):
retain the quotient in U and the
remainder in L

DIVIDE
Divide the double length accumulator

by C(AB)

SHIFT RIGHT OR LEFT
Shift the double length accumulator
right by B bits, '

Shift the double length accumulator
left by B bits, If an overflow is
detected, turn BC on,

SHIFT LEFT AND COUNT
Normalize the double length number,

Shift left until the most significant

bit is in the high order position of
the upper. After shifting clear the

lower to zeroes and place the number of

bits shifted in D sector of L,

EFFECT ON

U L
Dividend, 0,
Quotient Remainder
High Low
divideng, dividend
Quotient Remainder

—>»

-

Index

Index

Index

Index

Index

ORDER ORDER D ADDRESS OPERATION EFFECT ON

SYMBOL NUMBER TRACK SECTOR U .. L X

MPY i4 A B MULTIPLY Multiplicand, Zero, Lower
Clear the lower to zero, Multiply the High order half of Index
upper accumulator by the contents of product product

memory location AB and develop the
product in the double length
accumulator.

MPT 15 000 B MULTIPLY BY TEN C{U)x10=C(U) N.U, Index
Multiply the upper accumulator by
10,

064 B Multiply the lower accumulator N.U., C(L)x10-(L)
by 10. ,]
PRD 16 A<64 B PRINT DATA ADDRESS N.U, N.U, Index
Print the character represented by
A on the selected output device,

A264 B Select the input and/or output N.U,
device(s) indicated by A

If the automatic interlock is to be
made use of, B must not be the first
optimum sector

PRU 17 A<64 B PRINT FROM UPPER Sign and N.U. Index
Print the left four bits of the upper left 3 bits
‘as channels 1-4 and take channels
5 and 6 from D track of print order

064 B Print the left six bits of the upper Sign and N.U, Index
accumulator left 5 bits.
EXT 18 A B EXTRACT C(AB)EXT=>U N.U, Index

Make the upper zero where memory locat-
ion AB contains zeroes; do not change
the upper when C(AB) has ones

(LGP-30 extract)

ORDER ORDER

MML 19
CME 20
CMG 21
™I 22
TBG 23

D ADDRESS

A

B

OPERATION

MASKED MERGE LOWER (formerly Collate)
"Masked Bring.” For the bit positions
where the upper contains zeroes, retain
the contents of the lower, For the
positions where the upper contains ones,
replace the contents of the lower with
the contents of memory location AB

COMPARE MEMORY EQUAL

Compare the upper with memory location
AB in the bits where the lower contains
ones., If they are equal, turn BC on
and place the sector plus one in the

N sector of the X register. BC is
turned off immediately before compar-
ison begins

COMPARE MEMORY. GREATER

Compare upper with memory under the same
conditions as OME except that BC will

be turned on if C(AB) is algebraicly
greater than or equal to C(U) in the
bits compared

TEST MINUS

If the sign bit of the upper contains

a one, take the next instruction from

AB. If not, take the next instruction
from the N addr. as usual

~ TEST BRANCH CONTROL

If BC is on, turn it off and take the
next instruction from AB, If not proceed
to N addr. as usual ’

EFFECT ON

u L X
Mask Left alone Index
or
replaced
Control Mask Index
word Sector
ffound®™ 4 1
-9 N sector
Gontrél Mask Sector
word - ®found**
' +] —
N sector
Sign N.U. Index
checked
N.U. N.U. Index

ORDER ORDER D ADDRESS OPERATTION EFFECT ON

SYMBOL NUMBER TRACK SEGTOR ‘ U L X
STU 24 A B STORE UPPER : Stored,
Replace the contents of memory unaltered N.U, Index

location AB with the contents of the
upper accumulator; leave the upper

unchanged.,
STL 25 A B STORE LOWER N.U. Stored Index
Replace the contents of memory locat- unaltered

ion AB with the contents of the lowers:
leave the lower unchanged.

CLU 26 A B CLEAR UPPER C(U»»C(AB) N.U, Index
' Replace the contents of memory location zero-»C(U)
AB with the contents of the upper accum-
ulator, then clear the upper to zeroes.

CLL 27 A B CLEAR LOWER N.U, C(L.)—»C(AB) Index
Replace the contents of memory location zero-»C(L)
AB with the contents of the lower, then
set the lower to zeroes

ADU 28 A B ADD UPPER C(Uu)+C(AB) N,U. Index
Add algebraicly the contents of memory —C(U)
location AB to the contents of the
upper, leaving the sum in the upper.

An overflow will turn BC on.

ADL 29 A B ADD LOWER . N.U. C(L) + C(AB) Index
Add algebraicly the contents of - C(L)
memory location AB to the contents of
the lower, leaving the sum in the lower,
An overflow will turn BC on.

ORDER

SYMBOL NUMBER

SBU

SBL

ORDER

30

31

B ADDRESS
TRACK SECTOR

A

B

OPERATION

SUBTRACT FROM UPPER

Subtract algebraicly the contents
of memory location AB ﬁﬁ@w@ﬂﬁ&
upper; leave the difference in
the upper. An overflow turns
BC one

SUBTRACT FROM LOWER,.

Subtract algebraicly the contents

of memory location AB from the contents
of the lower, leaving the difference

in the lower, An overflow turns

BC on,

EFFECT ON
U L

c(¥) - C(AB) N.U,
= C(U)

S NJU. C(L)-é&eAB)
> C(L)

Index

Index

ALPHANUMERIC CODES

The following list gives the tape codes and internal configurations of the
typewriter keyboard.

NUMERIC

00
01

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

DEFINITION

Tape feed
Carriage

return

Tab

Backspace
Color Shift
Upper Case
Lower Case
Line feed
*Stop Code .

Photo Reader

End of Block

mEOQwrPovoOoNaaUPUWNDHO

J

£33

o ® DMy

N

BINARY
000000

000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111

NUMERIC

32

33
34
35
36
37
38
39
40
41
42
43

44

45
46
47
48
49
50
51
52
53
54

" 55

-19-

56
57
58
59
60
61
62
63

DEFINITION

NHKH S <ddHOWWOR"OZRHRGHD @

Yo 7y
I~

+

Space

/

&
Code dglete

BINARY
100000

100001
100010
100011
100100
100101
100110
100111
101000
101001
101010
101011
101100
101101
101110
101111
110000
110001
110010
110011
110100
110101
110110
110111
111000
111001
111010
© 111011
111100
111101
111110
111111

/ De [e.fe

t
— Par

(even)

 Date

Froblem

Job No.

RPC 4000 CODING SHEET

._.._an. No.

Prep. By .

Page

Section

Ck'd By

I
|
\
! d
" g
k”. [0
o T
- i [
(-] ;
(5 i
i
|
H i
H i
i 1
~ = I . - B - -+ - o ~ e . - B g B 4
-) -4 - k -
" - ; - B P . = - E B - o P - P
= e ; i . .
“ - - - - g - -4 - - - . . - . e e .. e
= = ' :
M - - P e - p - g - - = 4 4 . 4 B - -
- P S SRR T - W.lrv B e i s e wiiion sxliies o [S . 23 - i e
i i i
i
. . | .
B - - . - . - . o o . E - . e - 4 -
% ~ - - <4 o - - E e - e B - o - - A P
=8 _ J | |
< = - -4 4 i R o J - - s o e - - e ~f e
.Auﬁ - - . . - . - 4 - - - o . -~ . o o .
- % QU A B i e e ol o .,1.70 [t VRS SR U D SR WIS B i i P SRR
B -4 - - > -4 -y - o » - o = - = - e s T
’ M s ps i ‘ol ot - - = . 4 - e - o L - - - -
= - o - - - 4 o) - - o ot of - - 3 - -
4 - - = o - and - = o4 < -t - -
@ - " . o > 1 o SRS ~ - . o - o e -4
2 | £ B e | O* (S S R A EERE B S 4 - A r o 4
el 4404 4 4 44 4 444 4 4 44 4 4 4
N Jx ISR RS - B e pli i e SR R, L s o S

Royal McBee Corporation

III

THE ASSEMBLY PROGRAM

CODING SHEET FOR THE ASSEMBLY PROGRAM

Figure 2 shows a sample of the coding form for the RPC 4000.

It may be used equally well for machine language programs and symbolically
coded programs. ’

ORDERS

Two types of orders are accepted by the Symbolic Assembler. They are
machine orders and pseudo operations., Pseudo operations are instructions
to the assembly program itself and are not reproduced as such into the
program being processed. See the chapter on pseudo operations.

Machine orders may be entered on the coding sheet in either symbolic or
numeric form. It makes no difference to ROAR which form is used. Provision

" has been made in the coding of ROAR for the user to add or change such

symbolic codes as he desires -- LGP-30 programmers may well wish to use B
for RAU, etc., if so the addition is not difficult. '

Indexed Instructions

If an instruction is to be indexed, include an X immediately to the left
of the 2 or 3 character order code. '

Examples
' Dat Next
Location Order Addar:ss Address Comments

A1 IXIOIZ

)
E

A L. 1 lR lA 1U

ol
B
R

P SR . .

[0 S R A o
-
-
=
-

I W T XlRlAL‘/

E

L1111
) -
"y

21

MEMORY SETUP_EOR THE ASSEMBLED PROGRAM

In assembling an obJect program, the Assembler has in memory only one instruc-
tion at a tlme.'FImmedlately as it is assembled, it is punched out in hex

and printed in decimal. Since this is true, the entire memory of the computer
is. avallable to the assembled program. ~

At the'beginning of assembly, all of "normal" memory, that is, tracks 000—122
is availableyfor program, Normally, it will be necessary for the programmer '
to reserve various parts of memory for data storage, tables, etc.. It is also
necessary for the programmer to provide one track for the bootstrap program -
which loads his program. This bootstrap area may be utilized later for data
storage, etc. , o
ROAR provides two pseudo operation codes to reserve various areas of the. .
drum. They may be used at any time, but normally will be among the first
instructions assembled. -

*

RES

ReservevA Portion Of Memory:

This pseudo operatlon directs the Assembler to reserve the portlon of

memory between the FWA and the LWA., All locations between (and 1nc1ud1ng)
these addresses are made unavailable for symbol assignment. The FWA and
_LWA must be numeric addresses. (see the section on addresses which follows).

ThiseWilifﬁake meﬁegyilacafions 100 through 563 unavailable.

fSet Up a RegzonongEC’"

i A reg1on is a. set of sequential memory locations whlch may be referred
Lk'to by wreglonal addresses" (See Addresses).

 §Reg$ons are dlstingu1shed by a one character code which is defined
‘7w1th thelREG commando

1The iocatloﬁs w1th1n a: region are reserved in a manner similar to the
*»RES orderpﬂ“’

22

S , D Next
 Location 1 Order Address Address Comments
1 3 T T T y -
% Sl ¥ IEUS : % L l‘!loﬂo bt 151613 e

Data

| Next

Locatio
ation Order Address Address Comments
| S N BN T .R;E¥$ B\0.0r5fonc) | — ﬁFA;;x
will reserve region B from 300 through 463,
Make a Block Available: AVL
The function of this pseudo operation is the reverse of RES., It will
serve to make the locations from FWA to LWA available for program as-
signment. The only time it would be meaningful to employ the AVL order
at the beginning of a program is in the event that one or both of the
double access tracks will not be used for double access. The leading
(or trailing) head may be made available to general program use,
should be taken that making available both heads of a double access
track could lead to disastrous results. (See the section on Double
Access, page 28).
Example:
Location Order Data Next
_ . Address Address Comments
; ’ LR j T ’ i : U
- - 141V1L !/HZ|3;GEG> l/:lyjlél3

Makes availlable the block 12300 - 12363,

=23

Iv

ADDRESSES

Before discussing coding methods and techniques it is necessary that a
complete discussion of addresses and addressing be presented.

An address in the final program will be in track and sector form, One of
the major reasons for having an assembly routine, however, is to allow the
programmer to be relieved of the task of assigning these machine language
addresses, and to permit him to refer to operands and instructions in a
convenient shorthand notation.

ROAR provides several methods for addressing memory locations in order that
the programmer may allow the assembler to do as much or as little as he
desires.

Data Next

Location Order Address Address Comments
A :] IBI 1 1 1 1 A : 1 IBI 1 /4 1 - l 1 .19
T | T
1l 1 1 | 1] i L1 1

] H 1 1 1
{
TEE S T | 1 IFI'I ?IUIY |€| 3 | I S U |

In the sample coding sheet (figure 3), note the columns narked Location,
Data Address and Next Address. These are the columns that may contain
addresses. These addresses consist of a left hand character (A) separated
from the right hand five characters (B).

If a character is placed in the left hand box, it indicates a special ad-
dress. Let us first consider addresses without the "special™ character.

These normal or "non-special" addresses are of two types, symbolic and
numeric.

Symbolic Addresses

Symbolic addresses are one through five characters in length. They contain
at least one character that is not numeric. For this purpose any character
that may be read into the computer is acceptable except specifically the
digits zero through nine.

—24-

Symbolic addresses are assigned memory location equivalents by the assembly
routine when they are first encountered and retain this equivalence through-
out the program. Such equivalent locations are then made unavailable.
Symbols may be preset to a particular value through the use of the pseudo
operation codes EQR and EQV which are discussed later.

Some typical symbolic addresses might be:

Address

Y.
VAT,
. A
RAT.E
B.EG IN
. D BL
lLR,E',D,:S’,L
. LAY
L AT2S
L 3/4
/2P
Numeric Addresses: . | 31 ‘ L/n412'

PSR G T e e

Numeric addresses refer to drum addresses and are in track and sector form
with the exceptions mentioned below. It is not necessary to include

leading zeroes in numeric addresses. The memory locations corresponding to
numeric addresses are not made unavailable; if numeric addressing of data or
instructions is to be used, the locations should be reserved in advance by

a RES pseudo-op.

Special Sectors For Numeric Addresses:

In order to have the ability to select a particular word of the 8 word Lower,
certain instructions were allowed to operate at a particular sector time:
EXC (09), MPT (15). Normally we are not concerned with this feature and
would like to have the Assembly Program merely assign an optimum sector.

At other times it is desirable to specify the action of these orders to
operate on a particular word of the lengthed Lower.

Since we can completely describe the sectors of a track with the numbers
00-63, we have the remainder (64-99) available for these other purposes.

We have, then, assigned the sectors of the 90's as follows: the track will
remain as assigned by the programmer:

-25~

90-97 The second character refers to a prime sector, modula 8.
ROAR will assign the next optimum occurrence of this sector as the
sector address, As an example, if the next optimum sector
were 34 and the given sector address, 93, the first optimum
modulo eight 3 would be sector 35. See figure 1,

98 Assign the first optimum sector.
99 Assign the same sector as is contained in the location of the
instruction,
Data Next
Location Order Address Address Comments

e

U S | U-)L._}_ﬂl_/.ﬂz_tlﬂﬂ_/zy_

Cao rrmg& relvry

Ll L1 ‘J‘_EIXIC :Ll 51918
U W S lPlKP i

[S -

~
0
NO
-
F—

The sector 99 is desirable since print interlocking is bypassed
if and only if the sector of the D address of the print order
is first optimum; normally this bypassing is not desirable.

We can be certain that if the D sector is the same as the LOC
sector, it will not be optimum,

Note that these special sectors apply only to D and N addressess; if a location
were thus assigned it could never be referred to again.

Blank Addresses:‘

Addresses may be left blank subject to certain conditions.

If the D or N address (but not both) of an instruction is left blank, it will
be assigned an available memory location (which is then made unavailable) and
the location of the following instruction (or constant) will be given that
address, If the D or N address of an instruction is left blank, the location
of the following instruction must also be left blank.

Obviously, if a location is to be referred to from more than one place, it

should be assigned a symbol rather than being left blank. Blank addresses
are, in effect, symbolic addresses with the symbol implied.

ADDRESSES CONTAINING THE "SPECIAL" CHARACTER:

Regional Addresses:

A Regional Address consists of a region symbol (which must have been defined
previously) and a five digit sequence nuymber. The first memory location of a
region is addressec as 00001, The sequence numbers are in true sequence,

—26-

not track and sector, so that 00105 would be the 105th word of the region.
Example: _Address Comments

Tilo,olo,o]l 2500
T%ololaléﬂ 1543

T%ololzloko Uurowlid éég.g.{zgaeg./gs

v o |2 BO7 evern thorgh (I Heog
L1 1)707‘ é@e)l nz.:ervtd//a the

]
4
]
)
|

+ L i 1 L r{? Iaﬂ
7‘5 0.c,000 A.s_s'r}z/;gd'_e: 294463 —
g 1'1 i AbC7f‘)T:ff)4/€C¥

An error stop will result if a regional address that refers to an undefined
region is used, ’

Addressing the Eight Word Recirculating Track (127)

A special means of addressing the recirculating storage track has been devised.
The eight storage locations have been assigned numbers corresponding to their
prime modulo 8 sectors, They are numbered 0 through 7 or 1 through 8 depending
upon the desire of the programmer; sector O and sector 8 in reality refer to
the same sector.

Recirculating line sectors are addressed with the symbol RECRC followed by a
prime sector. When the assembly program encounters a RECRC address, it assigns
track 127 and the next optimum occurence of the indicated sector. See also
figure 1,

Example:

Assume the next optimum sector to be sector 5. The next time a modulo 8 sev-
en is available beginning with sector 5 is sector 7 itself,

-2 7=

RECRCS

Assume the next optimum sector is sector 30, Modulo 8 5's are 5,13,21,29,37,
45,53,61, so the next available one is 37. The assembly routine therefore
assigns 12737 for RECRC5 in this case. The programmer must keep track for
himself of which RECRC sectors he is using. Subroutine write-ups should provide
a list of the RECRC sectors they use.

Since the bootstrap program makes use of the recirculating track, any storage
therein must be done by the program itself.

If a RECRC address is used as a location, the contents will be printed as a

part of the program listing, but will not be reproduced into the hex program
tape.

Using Double Access Tracks:

1f the double access tracks are to be used as such, they should be left unavail-
able to other types of addressing. This is not difficult since it reguires
a pseudo-op to make them available,

In this normal condition they may be addressed by special double access sym~
bolic addressing; for this purpose, the following numeric codes have been assign-
ed:

Number Track
1. Leading head of the 16 word track (123)
2 Trailing head of the 16 word track (125)
3. B Leading head of the 24 word track (i24)
4, Trailing head of the 24 word track (126)

The double access address consists of three parts:

A

1 H L

1. The letters DB with the D in the special
column,

2. #The number as assigned above,

3. ‘ A three character symbol, which characters

may be any character capable of being read
into the computer.,

A double access address, when assigned, may be used only by the track to

which assigned or by its partner track. Tracks 1 and 2 are partners and
tracks 3 and 4 are partners.

-28-

To illustrate this, consider the following program:

. Dat Next
Location Order AdJiéLs Address Comments

R T T M%VVd'éﬁgerL/ @9 7’

L 1 IEIX ISITIUDBI/]VIAIR

1 T

i {

| it 11 Store 7ﬁ?qg¢24a:gj—z{?

= 14 | 1 :S;E”L } [N n/ { A S W 47;141‘ /Aélfa f g

= TR NS S | I:i'rl/ { 1 xvﬂ4| { S N B Mﬂ)ﬂd?é[e @9 g’

: [N S W | ”€K4HL/‘Zu£?921LG/QM€ :éiCQ. |<7/V’£7 ve i

The instruction in EX stores the variable quantity in the £irst optimum sec-
tor of the first double access track (16 word time) using the leading head.

The DB symbol VAR is stored in the symbol table.
The accumulator is shifted right by one bit and the variable at q = 8 is
stored into a location symbolized VAR, This is the first assignment of VAR

so it will be optimum.

The fourth instruction replaces the variable in the accumulator at q = 7,
read by the trailing head of the first double access track (16 word time).

The assembly routine might have translated the instruction as follows:

EX*STU*DB1VAR** 00105 24 12307 00009 Variable in U at 7%
*SRL*1%* 00009 12 00001 00217 Right 1: 8%*

*STU*VAR** 00217 24 00019 00021 Variable at 8%
*RAU*DB2VAR*GO ON* 00021 02 12523 00125 Replace variable at 7%

Skip Address:

At times, for the sake of optimization, it is desired to place an instruction
at a distance beyond the first optimum. An example of this might be where

the D address is variable and may be set to pick up the contents of one of
several consecutive sectors, yet we want the next instruction to be as optimum
as possible, .

To enable the programmer to do this, the Skip Address has been devised., For
any D or N address that might otherwise have been blank, the letters SKIP,
with the S in the special column, are used followed by a two digit number of
sectors to be skipped beyond first optimum.

The following example will illustrate:
Locations 10520 through 10524 have been reserved for a set of parameters, one

of which will have been chosen for use and its address placed in CODE, CODE
has been defined as 00318.

-29.

- Next
Location Order A&a::ss Address - Comments

. CoDE| RAU 'Il.og,z.o_;ﬂﬁ.rﬁ.og Parvameter —= U
; RS W W | APIY T S T JX ht

D-ADDR

The remaining special type of address is rather limited:; it was designed for
a specific condition. At times it is disired to turn the branch control off.
This is done by coding a TBC instruction with the D and N addresses the same.
In order for this to be done optimally, the N address must be location plus
four sectors, but the D address would be optimized as location plus two sec-
tors. If we were to use ‘the same symbolic address for both, the D address
would be optimized first as location plus two and any transfer to the N add-
ress would waste a drum revolution.

To cope w1th'th15 the D address is made a SKIPO2 and the N address is given

the code D-ADDR w1th D in the spec1al column:

Data Next ’
Location | Order Address Address Comments

s L TBC|SKIPOZD~ADDR]

The code D-ADDR in the N address column indicates that the N address is to
be made the same as the D address.

Example: Assume the location to be 01235,
*TBC*SKIPO2*D-ADDR*) 01235 23 00539 00539

Instead of trying to place the D address in sector 37, the SKIPO2 address

.indicates that the search should begin with 2 greater -than the optimum sector,

or 39. Once defined, the N address is made the same as D through the D-ADDR
address. '

= 30-

PSEUDO OPERATIONS

A discussion of several of the pseudo-operations has already been included:
REG, RES and AVL in chapter III.

PRESETTING ADDRESSES

Symbolic addresses may be fixed at any time. Generally the initial address
of the program will be set. There are two pseudo operations to be used for
presetting addresses.

Equivalent, Reserve: EQR

Next
Location Order Agda,t:ss Address Comments
I I]
| R WO N N | IEJQIR |SITIAKRIT } l/lz’lglc i

Upon reading the pseudo-op EQR, ROAR will do the following:
1. Place in the symbol table the symbolic address given in the D address.

2. a. If the N address is numeric, assign that address to the symbol.
b. If the N address contains another type of address, assign the
memory equivalent of that address to the symbol.
c¢. If the N address is numeric, the sector must be in the range
00 to 63. ‘Blank, SKIP and D-ADDR are not legal addresses for
this psendo-op.

3., The memory equivalent as assigned in (2) is made unavailable (see
Availability Table).

Equivalent, Don't Reserve: EQV

Data Next ,
Location Order Address Address Comments
I] '
! . | i LEIQLV !.T-IA!EIL'IE Rzalalolall

ROAR will treat the pseudo operation in the same manner as EQR with themexcep—
tion of step 3. That is, it will not reserve any location.

-31-

The D address must be symbolic,
(except Blank, SKIP or D-ADDR).

the N address may contain any type of address,
It is assumed that when this pseudo-op is used,

the location will have been previously reserved or there is no need for reser-
vation.
Set Up A Header Tag: TAG

‘Location Data Next

Order Address Address Comments
-
T

111‘_1 1tAxG 1111A111|
When a program is being written in large parts or by several people, or makes

use of symbolically coded subroutines, it becomes difficult to avoid the dup-

lication of symbolic address codes between the sections.
the maintenance of order instead of chaos,
the various portions of the program, each with its own symbol,
the following conventions:

In order to assist
it has been made possible to head
subiject to

1. Symbolic address of five characters in length are not headed.
2. To symbolic addresses of less than five characters is added the
‘ header tag and a bit to indicate that heading has taken place.

THIS TAG WILL NOT APPEAR ON THE OUTPUT ,LISTING.

3. A headed four character symbol will not be confused with a five
character symbol even though the characters are the same, €.g.
MASKS is not equivalent to ASKS headed by M,

4, Double access symbolic codes are not headed.

5. No heading will be done by the routine until a header has been set
up.

6. Since five character symbolic addresses are not headed, they may be
used to provide communication between portions of the program. ‘

7. Subroutines written by the Royal McBee Programming Group will make
use of five character symbols only for entry locatlons. These sub-
rout1nes should be headed when used.

To set up the header, the pseudo-operation TAG is used. The D address is to

contain the single character header tag that is to be set up and the location

and N address are to be blank.

A header, when established, will be used until

replaced, or initialization for a new program is entered. Should it be nec-
essary to remove the header altogether, use the pseudo-op TAG with a blank D

address.

SETTING UP CONSTANTS

The assembly routine provides the programmer with four methods of setting up

constants

for his program.

1. Convert the constant to the form of an 1nstruct10n and place on the
coding sheet as such.

-32-

2,

Pseudo operation HEX. The constant may be converted to its hex equival-
ent and entered on the following format:

D Next
Location Order Addart:ss Address Comments

| 1 1 | 1 IHJEIX :r l/lzljlq ; l‘;-lél7l8

The location may be as for any instruction. For order, the pseudo-op HEX is
used. The left four characters are placed in the four low order characters of
the D address; the right four characters are placed in the four low order
characters of the N address. Leading zeroes need not be entered.

Pseudo operation ALF

The five characters of the D address of the ALF pseudo operation are read in
six bit mode and "stored" as indicated by the location. The N address is not
used.

; Data Next
Location Order Address Address Comments

: IWI IAJL_LF :Ilfl 1[1/ [N 1

Decimal Numbers: DEC

By using the pseudo-op DEC, the programmer may allow ROAR to comvert his
constants to a given "q" and punch them out in the same manner as HEX and
ALF.

DBC is used as follows:

1. The location is the desired location, coded to indicate the proper
address.

2. Use the order code DEC.

3. Place the q in the D address with its sign, if negative,

4. Start the number in the N address and allow it to extend out to
the right. When punching the tape, place the stop code for the N
address after the complete number, Place the sign at the left of
the number (necessary only if negative). Include the decimal point
at its proper place,

g

Next
Location Order Agﬁt:ss Address Comments
I BB T
! N lCl/ I‘DJEIC | Y T T 15-‘]31"1/1714 43 l

-33-

The limit
: 1.

s are as follows:
For perfect accuracy, the 51gn1f1uant figures of the number must

tottl less than 231 (2, 147, 483, 648) however, the only limit on
digits is in 2. :

. The decimal point may be plated anywhere that describes 15 digits,

but number, sign and decimal point must not total more than 16
characters. No decimal point is required for integers.

There is no limit on q except that condltlons 1. and 2. must be
fulfilled.

END OF PROGRAM: END
When the assembly program reads the pseudo operation code END it:
1. Computes the check sum for the hex tape and punches it.
2. Punches a transfer instruction in the hex tape, to the address given
in the N address. ;
3. Stops computation. If started, it will read the next instruction,
The END pseudo-op does not cause initialization for a new program,
Location ‘ Data Next
| Order Address Address Comments

| A S W |

¥
)

J EJIND F IS W N |

BEGT

The above sample will place on the Hex Tape the instruction to transrer to the

drum equi

valent of the symbol BEGIN.

.THE AVAILABILITY TABLE

The Availability Table showing the availability status of each memory location
may be punched out at any time through the use of the pseudo operation PAV for

Punch Availability.

code.

If this is done at all, it is normally following the END

The punched availability table consists of the following:

4.

As area of blank tape

The RAV code (see below) needed if the table is to be read at a fut-
ure time.

The Availability Table itself consisting of the hex representation
of the contents of. the stored table interspersed with initial addres-
ses of groups.

A check sum.

Punch the Availability Table

Location

Next
Address

Data

Order Address

PAV

Comments

The Availability Table is set up in this manner so that, at a future time,
additions can be made to a program without the
original program, but simply to restore the availability as it was when the

original assembly was finished.

If an availability table is to be read,

necessity to reassemble the

it

is normally the first tape read after loading the assembly program or using
the pseudo operation NEW (See below).

CLEARING THE SYMBOL TABLE: CLS

- Sometines it is desirabie to continue assembly with the same availability,

but with a fresh symbol table.

This is espeeially true wheh separate programs

are being optimized to be in memory at the same tife, or when major pertions
of a program have beéen cod=d by two people,

The pseudo-op CLS peéfforis this operation.

but everything elge femains unéhanged.

The symbol table is zeroed out,

Data Next
“Location Order Address Address Comments
| ¥ T
W"I 1 1 i CLS L1 ;l J | LIS [G |
WAIT A SECOND: NIX

This ps€ide 6pératiéfi has PEén ificludéd as ah ehd of tape esde,
othéF time it is d&ésiféd te have thé edfputésr 5tep durihg assembly.

action takes placé. A déepressien 6f the start button eauses the eperation to

contifiue s

oF for any
No other

Data Next
Location Order Address Address Comments
T T } T
3 T T 1 INJIlX ! 1:1 11 11 -

- BEGIN.ASSEMBLING A NEW PROGRAM: NEW

Reading this pseudo opératiohi causes the asseénbly pki
to its 1n1t1alzzatloh subrottings in ordér 1o make
This order is normally tiséd shortly fo116wihg the ENB afﬁérv
to usé NEW immédiately after loading the assembiy pregram:

The following pagé cohtains a summary of the pseuds Speratisns:

y trahsfer control
8 Heéw program.
it i uhheedssary

1 Data Next
Location Order Address Address Comments
T T T
1 1 1 12 M[w S W N T [N

2352

Location Order A(?da,t:ss A:de,:tss Comments
; L4 1 R;E.QS‘:X.X.X.A.X ;‘,"‘)"?‘?‘3’ Reserve a feq;an'f
b 4 T Loy aa o | from xaxxax fbram/; :/_
b sy E.QR . %S".-VM‘ .§-O.LL£;¢m1zs_.Dfm_mzz_u_
Ll L Lo L addvecs oF 582/,
R T L4 - Reserve 502/
o | ERVE L SYML L AP DRI Symbolize SYMuith the
b L R L | same address 2ssigned

To ADDR

L R.ES L ,5.00 \ 1520\ Make uravailable the loca-
NI s 1 L v Hers coa £e f‘}rauob s2¢
L AL 500 | 520 bl thiowah 820
Lot) - L1 R WA Y

L PLAY L1 L1 | Punch availab: /zTC/ lalble
e RAV 4 Lo |Read availa bl fu Table

4

(ay lorna f/ca//u on 1a pé'/

w.5.5.5

ER.R OR

Reoad ERROR I n & /il place

oxn hex lage assigred/te ANY

y 1 J. i L 1 1 1 i i i i It ' i
1.1 1 1 1T1 A‘,g [1C L1 1 3 Z}g__g // fg//ﬂla/ﬁﬁ Igm&[z‘ :
U WS S ¢ R S U U GRS PR S " QC/J)’P;J‘e.SM//fAC ’ff/lﬁfl

,g.zatgm [2ss téqa 5

&< /’d raclery

Stop the computer

Achrg gdlnq the

zexT //rsf/'ryc.f/an

BEGIN End of pregra in.

Punch €inal check sym

I3 i 1 1)] i 'y L i i 1 'l i [\ 1
T W W [! TS S T PR S T ﬂﬂc/.YeT %LQ ffg,"'?:felv .
1 b d A1 1 SR S N | I U S fb BE_@I/V ‘

i i i |

Llear the S‘y/f;ba/ tab/e.

[S e L. S SUSE SRS W S S —nL e [TR S TG S S T T T S S S SN NG S S S [SR G-

B I S e e . T s NSt S SEpts Kt S S S St Ui N A (U N U I N W U U U S O U S G E

L4
]
i
/|
T
1
¥
]
T
J
¥
]
¥
1
¥
]
T
}
T
|
)
1
I
)
|
]
¥
|
|
{
I
|
T
1
1
{
1
{
1
}
¥
|
T
}
T
]
T
}
T
|
¥
i
1
l
|
]
|
]
|
1
T
|
T
Il
1
!
{

1 R v VIntialize te process a
Lo L1 L4 Lo | 22€ 4l RYOIQ yam)
CANY DEC pnn Lt 2368l Store the mumbe r
PR B e |23 A @7

VI

OPERATION GODES

The order codes along with the assembly routine's symbolic codes are given
in the chapter on computer description, however, the following points are
worthy of consideration.

SHIFTING

You will note that one instruction covers both directions of shift. If there
is a one in the track portion of the D address, the accumulator will be shifted
left by the amount contained in the sector of the D address. A zero in the
track portion of the D address causes a right shift in the same manner.

EXCHANGE

The EXC (09) order may be used to execute any combination of its functions with
one command., For example, let us assume it is desired to trade the contents of
U and L, and copy U into X. This may be accomplished by forming the D track as
the sum of the bits necessary to perform the required functions:

U=»L
L=y
U=»X

inonon
N =

\ll

We would code track 7 for the EXC order.
If both the 16's and 32%'s bits are present in the EXC D track, the status of the

Lower will be reversed, e.g., if it were eight words long it would become one
word long.

SECTOR SEARCH

There are four instructions that the programmer should consider as to timing,
two of which will normally be optimized and two of which will normally be
unoptimized,

1, The two which are normally optimized: Because at times the EXC
(09) and MPT (15) orders are to be used on the 8 word lower, they
delay their action until the drum has turned to the sector of the
D address. When used for normal operation, it is desirable for
them to begin operation as soon as possible. Since they will
normally be given a numeric track address, we suggest that the sec-
tor 98 (most optimum) be used for the D sector. This allows the
best optimization of these instructions,

~37.

The two which are normally unoptimized: PRD (16) and PRU (17),
Output interlocking may be bypassed by giving the print orders

the first optimum sector in the D address. In normal operation
this is not desirable, being for special cases only. Since these
orders will normally be given a numeric D track address, we suggest
the use of sector 99 for the D sector of print orders. Except for
recognizing the first optimum sector, the print orders perform no
complete sector search.

~38..

VII

PROGRAMMING USING ROAR

In preparing to use the Assembly Program, the following sequence will be most

usual,

1.

Determine the area where the bootstrap program may be placed. It
requires one track plus the recirculating track. It is suggested
that it be placed in an area later used for data storage.

Code the instructions to reserve regions and blocks for data storage,
etc.

Set up equivalents for entry points if desired.

When assembling a large progfam, it is desirable to run the most
often used routines first in order to give them the best optimizat-
ion, This should be borne in mind when coding so that the linkage
between various routines will be optimum, '

Set up header tags if used.

Include the "Change and Transfer" program if there is room. This will

enable the person doing checkout on the assembled program to get
about on the computer. :

-390~

VIII

PROGRAMMING EXAMPLES

The following three examples are included as a demonstration of some of the
principles herein discussed. It is assumed that the reader has some coding
experience. Example 3 is the simplest of the three and probably should be
considered first by the more inexperienced readers. ’

EXAMPLE 1: LINEAR INTERPOLATION

Given: Table of X, in Region X, 320 values in ascending order. X00001 is
in Sector 00 of a track.
Table of Yi in Region Y, each corresponding to an Xi
Xin U, X < X<X of X table

Find: Y corresponding to X, Exif to FOUND with Y in the upper Accumu-
lator. : '

~40-

Location Order Atﬁlart:ss A:der)::ss Comments
;IIMTIEK LD, X X;O.O.O. e/ ; L | Xe addvesS —> tndex yeaister
| Y S T U L1 1 TR S TR W | I T N |
L | RAL L MAs K (CHECK Mask for comparison
:CLH‘Elc.K L DL :5.0,%/\/'.7' by [Setep vepeatl covnt
I T S B chf?é I —— 8] b L1 T o r erar
RN 7 &.0.T] R B Fovnd X
JI L xl DX : leo L (VT ‘«Zoa/‘?a/ fru pexrt track
L | CHEIX coZ2/ b Have we éxceeded the Table?
b | TBC| ERROR| (CHECK|—> Talble exceecled
i [i 1 11 1 S W T 1 | [1
" MASH 3| (12763 127430 An 7%
lCO(//VT L1 10 ! T ¥ = ,4.3.0.0 (a(/}?f Of 43
;ERIK OR IHIL N1 S R T - -S'féiﬁ M/(?Lh X 10 d?cfc)umu/éon
; L. | CL U ; D2.UMP =F’,0,U,A/,P)t with o© Uppe r
| 11 1 1 T W T | | | S T S | i 1
. GOT| Exc , , 998 N x>, oL
: P ,.Y.PA ; .H.Ol[. .D | L Sfdrg 'f”au}zc/ '/‘rqck
; L1 SR.L s .22 b Moye sector +1 7o P ot U
sl psEC]
T EXT ;EI§.H.T P keew Psecterof (//, shifFed Xvalve
I APV = Mol D |
| . SAV T XL | Addvess of Xu
R S, B, U EP,S,E.C.I T
: I T .S.A.U ; X .X.S./ = Adc/res.r O?C *.3'
L 00 S AU | XS A

Royal McBee Corporation

‘ON qor

*ON “8044

g -doid

/T

g p.%2

‘N'.LD/"J“a-I-“I Ab2017

waqoid

uo1}93s

ajeq

Es[67/z1

133HS 9NIQ0J 000F JdY

, f adeq

Jo

Location

Data
Address

Next
Address

Comments

Xoao/

1 i 1 1

IYI Olol/

i IYISII

Address o Vs

1 lylSll

L L

Addyess of Ye

J
]
|
I[
%
D.SE.Cl
%
:
i
|
|
}

} I

% %

| |

= |

| i

| T

% =

| |

L1 1 [PR S G | = I S N |

b LWSRLL 9L NS X pper
- XS/ SsBY L 29 b

C . L STYIRECRE]] X X—Xs

P XLl RAVL L 99 L XS2

C XS2 SBYL 99 Ly] Kt ds
L | STYIRECRES] L YL

C YL RALL L 98] L TS

11 .Y.S./k .§.B.U = Lo .9.9 |)/L‘ys
o meYlRECRCH] L O X)
. pavlRECRES] | yS2| T Cx)
L vS2l APyl 991 \FovhDpl Y
s L |

o % :

:D.K.E.C i L2 I —— 4 | 0

Y N2 2 S B N 7/ S R

RIe i T ool . L3 ([2,243

Xood| L OX 0000 | . 0

L Yoo/ oWcocoeoe | . O

Royal McBee Corporation

"ON qor

*oN “80i4g

Ag ‘daid

s

k4 p.1)

- N@f_!_&[ﬂd#?_l_ “r - aat{/ﬁ

wa|q0.d

uo1}33s

ed

133HS ONIQ0J 000y ddY

LS adeqd

The Method Used Is:

1. Find the next larger Xi from the table XL

2, Find the surrounding X and Y values from the table.

3. Interpol

ate using the formula Y = Ys +(X-Xs)

(Yi -Ys)

(XL - Xs)

where subscript S indicates smaller and L larger.

4, Exit

Flow Chart Migh

t Look Like:

Hove we

-43-

.. !

Indizntlize !

Ind g x § zx%’;:?,ugtad YES Ceror
| E’@%%Sﬁ'&i?" | ine Stop
- ond comtrol table?
| ;

! I
/ i ,
& z’; ! |
; . v
hack 3 troack
for X - No | Set up Lor Claar
v} | ‘ i) ! !'» r Upp@r
1o it there ? ; Next track
EO
Vs
Set up
addresses
for
Computation
Exit to
Compule Y > Found

Programming Notes

1.

Before

The index register is initialized to the first location of the
table of X®s which is in sector O of a track specified previously
by a REG pseudo-op.

The N address of the instruction in INTER has been left blank: the
location has been left blank on the next instruction.

A mask for comparison is placed in the lower, leaving X in the upper.

The N address is symbolized "CHECK" because of a later reference to
the same address,

A count of 63 is placed in the count portion of the X register and
the next instruction will be repeated as specified by the command
in CHECK.

A table look up is executed by the CMG order and checked by the
TBC order. If X has been found, control is transferred to the
instruction in GOT, if not, a setup for the next track occurs in
the indexed LDX order,

For safety, a check for the end of the X table occurs in the CXE
and TBC ordersy If the table has been exceeded, an error stop is
executed: if not we go back to CHECK another track,

When X is found we transfer to GOT where an EXC (Exchange) order is

executed., The track is nine -- we have bits one and eight. The 1°s
bit indicates that the contents of the upper are to be copied in

the lower, The 8%s bit indicates that the contents of the X regis-

ter are to be copied in the upper3*? ; i\}
NSO
. Lo of Qﬁ 03 "/)\%#
) Search S JEVI
X: [T > T]
| X alve [] yowey
ey ﬂ\éf
Lo of NI
L Tear<) & ¢ £X
X [T e T]
Y. A®
Loof f N ;ﬁ
S?&ch\ Q" ‘/v L) °
N T N
i » I N : ” L . /\’ vqlue

44

so that we can retain X without using temporary storage while
performing address modification.,

9. The SAU order after GOT places Lo of the found track in temporary
storage.

10. The found sector plus one is shifted, trimmed, reduced by one and
the address of X is compiled and stored,

11. From the address of XL are found the addresses of X89 YL and YS which
are stored appropriately.

12, X is restored, Y is computed and control is transferred to FOUND,

13, Note the selection of RECRC locations. There is no assurance that
the first reference te RECRCl will be optimum; it might be as far
as 7 word times out. However, once we have optimized te RECRCL

every subsequent reference to recirculating locations is optimum
through the choice of Sectors 1 and 5 which are 4 word times apart,

EXAMPLE 2: POLYNGMIAIL EVALUATION

Fixed coefficients with wvariable X,
Determine £(X).

The routine is entered with X in the Upper @1; the instruction to be executed
in order to exit is in L. The table of a; @1 is to be in 0700 - 0706 stored
a, through a_. 1In order to exit, the computer is to execute the instruction
that was found in the Lower upon entry, leaving £(x) in the Upper @l.

Method

6

- 2 3 4 5
f(x)ma0+alx+a2X %azx +a4X +a.X +a6X

5

The values are such that £f(X)<2 for all X<1,
£(1)=2 ‘
~~for this program: 0% X </

To accomplish the evaluation, we may reswrite the equation in
a form that provides an easy method of solution: '

f(X)ﬁao+X(al+X(a2+X(aS*X(a&+X(aS*X(a6))))))

The ewvaluation will demonstrate the use of the index register,
however in the reverse fashion to normal use,

45

Location Order A&a,t:ss A:de,:tss Comments |
L | REGAVO700 | Joll A.- 4,
l T S T S | 151&1"? i 1 IAI‘D sD ; 11 1612‘
= 411 |E|&|R %EIVAnL aU { 1 1/1010
| S W W N | L1 1 | S N S S | J I S I |
;ElnglLAU lepiX ; b1 1 10 : ISITnO|k rh/‘flq//zc X Vég!sf‘EY'
| N W T G | D S | | N N U S | | DO N S |
; 1 1412:1? XIAI‘DLLU /4}0.&,@.0,7 : R S | AC/J a’f
} U N N |C|X|E ;/:’2171512 = PO S C/;’QC;% /Y “;:’Y s GG/C/(\t’Oﬂ
! I N B | ITI EIC = 1 nEL/VrD % U B S pl(/ v e C?//f“’/ Ao 3? y@S""‘) E/YC/
g L1 1 1M1P|Y % T |X } TR B S |
l[L1 11 lSlRiL ! 1 1/10n/ = PR S B ¢
Ir ' S | 1A|D1L }R,O,U.A/;D { L1 1 1 AAG/C/'§ fo /QLL/ (Z?)’“G/er“
: T W U | ITIBIC =A1DIDI l/? = I/VIEIX 17-
{ anE.)(.T XILLDK =/12171413 % 1 IAIDI‘D
L 11 [B [S S H S | NS W B i
=rALDlDI IR 1/41D1U =/1/41T| 3: l % n/V.E;X ;T -
| I T B | 1 I S | I W S WO | IO NN N |
; ‘SITlOlR)CILIL ; 1 xEINl‘D } I S S
= L1 1‘ 1 |C1L |U % [xX ; nAnpaD
| IO T S | i I S | | IR VRN TR T | | IS TR WY N
RouUND| HEX | 3o000| ol /@0
LAT.21] Xool | ., o] | o /@3/
% J I T B | 11) } R N T | = [R I
J' F S | i 1 1 1 : Ao =
| I T S S PR N | | I | IR S T

Royal McBee Corporation

‘ON qor

*oN “3o1g

“Ag daid

/1l

yoiyvnjon3 | v/waaé/ad -2 daroy 5 weleld

k4 p.XD

uo1}33$

o

=

w
=
-4
[y
S
=
S
oS
[x}
(=]
=
=
(7]
(2]
x
m
m
-—f

-

[

L)

[]

™

2

Programming Notes

1,

EXAMPLE 3:

A region is assigned for the a,. Values and addresses are assigned

for critical locations.

EVALU initializes the index register. Note that the initialization

is placed on the coding sheet following the main loop. This allows

END and X to be optimized from major use instead of initialization

which is ;’.ncidentalo

The major loop of 7 instructions develops f(X) in the upper accumulator,

a. The test-out occurs after adding an aj.

b. The summation is multiplied by X and rounded.

C. The index register is incremented by 12763, which results in
decrementation by 1.

d. Exit is to location END which is filled in the initialization.

2
Evaluate the function: f(X)= aX+X
C

Given X in X @5
a in a @5

Cin C @5

Store f(X) in f(X) @5
Begin at BEGIN

The exit is in the index register

-47-

at Data Next
Locatien Order Address - Address Comments
T ' T T
%_.BAEJGJJ—N .191/4.0 } L1 | IX % | S S | X
| Jl SIS SR W | lMle T] L1 X { S S B | A Z
| PR SE |S:T1£j { I XS-Q~ % oot b f‘X—z ‘*C[/\'.S'@)- '
; | N R S | LRlAIU % L1 IX } Y A
} S N G| i IMlPly l A : Y L1 1 /4 X
= F . U | 1 lAnpnlj D B 2' XS‘:& } 1 113 A*‘I‘Xl
‘ 1 i 1 i IDIVIU ‘ C l 1 i 1 1 A¥+XZ/C‘ = ‘F&)
T T 1
| NS S S G | 15‘17-:0 { 1{\16 1X|) } N D S
T
% S N XrCXE l[IS |O : [N R TU"’I BC o /7
s UTBCL L Ol (ERROR] Exit to address 1h X
| T TV T W ¥ [N) N U S T i IS T W N
1 y I ,
% TR S W T % L1 1 { F I WS DR T | A/O',B :
! [T | [| T’ | U U | { R U N TA/.)’ COD/C/ /ZQ_L@ Aefﬁ f/of)i
% TR S i1 1 bt { R S T ore eff/C/Eﬂ'f/U “ue fé 7 he
J' O S S S R % AR ' } Y S : fﬁe"‘éoc/u/: e*ﬁﬂ/ﬂ é.‘zf
% TR R S 1 3 } T W T | = 1 rha? /4/01/1/0//7)7‘ c/?zx/aﬁf?l"rq 7
g L1 __ 1 1 i 1 } PR R S = PO T 1 C/Obé/e QCCG}'.S‘,, .{4/041/4‘3// f"‘)
| N TR T S L1 | T | N N U S
i T T
| S S W | Il PR N | l PR N W1 | S U S !
¥ * T T
R A T 1 1 | S 1 U S N | TS N 1
i ' |
I S Y i 3 L 1 | PR SR S { el 2 A
I 4)
l 4 i i 1 y} 1 1 l 1 L 1 i 1 A 1 i i
1 T T
| S Y N T | I | S Y S T S S N S}
i v V
I f i 1 1 1 L 1 | i1 L 5] 1 i 1 L
1 i i
I G S T N | | 1 | R W

Royal McBee Corporatibn

‘o ‘8044 ‘ON qof

kg ‘daid

[

kg p.1o

s 2/ o ter vX 3 wajqoid

= (04

5

D

X+ -

uo01}2a$

aeg

133HS YNIQ0I 000y 9dY

1% # ajeq

jo

IX

INPUT TAPE PREPARATION

The format for punching tapes from coding sheets is fixed and rigid for all
instructions and pseudo operations., This was done purposely in an effort to
reduce the possibility of tape-punch errors, and so that the puncher has
relatively few rules to remember,

TAPE PUNCHING FROM CODING SHEETS IS AS FOLLOWS: .

1. There is required a stop code following each of the following fields,
no matter if it is blank or filled: Location, Order, Data Address,
Next Address, Comments.

2. Following each instruction, a carriage return must be on tape.

3. Leading zeroes need not be punched, except that separating zeroes
must be punched,

a. Regional addresses contain the region symbol followed by five
numeric characters, ' '

b. Spaces are not accepted in lieu of zeroes,

c. If a numeric order is to be indexed, the X must appear to the
left of two (not one) characters, otherwise no leading zeroes
need be punched, except that a blank order is illegal. There
is a difference between a blank address and a zero addresss
a single punched zero is sufficient for distinction.

EXAMPLE: Punch the Following

—40-~

5 Next
Location Order A(?d‘i;t:ss Address Comments
1
[| 1 1 |R;ES 1 1 51010 1/10100

R.EG

A,0,.0,0,0.0

1 l/lélg

lEIQIR

l/g IOIO

- e -

B.EG.LLY

L

X

%

b1 L1 T - BT

BEGE N RAVAWV0OOI] |\ .
; 1 1 I\ 1 lTlMII % 1 i i 1 { 1 1]N\a
Py KAY L AL Ly JES
L NOL SBPU L ACL L YES
b END boea I Step for ava la b;/;jﬁ? Iwanﬁfz
| Y WA N T PR W N SN N WO S N | T VO N |
; e | PAV boeo ; v o | Pureh es?zzag/ﬂ/u/z‘f‘y
| E T U U | | | I S T | I S WO B |
L YES| cLul | .coDE| ..
T L DPC =C,0,u,,/\/, | oy
; L ADVAvo ool | -
L. L DC =C.0.U./‘VT b
b ,A.P.UA=0.@.O.65 P
b L STU TOTALL (GO 0N
| I I S | { 1 11 1 S B S | | I L1 1
COVNT| ., g0 | 4300
 E— END e o
e A B s
e S R S t .
L0 Lot 1 | T]

Royal McBee Corporation

"ON qor

*ON ‘3014

Ag -daid

fq p.12

uo01333§ b«i{;?‘l/ld Bﬂﬂ ,AOJL bal/DOJ Q/Q'WD‘S‘ walqoid

ajeq

L133IHS ONIA0J 000y IdY

758 adeqd

10

The Tape Produced Must List Like This:

?RES*SOO*IOOO**
*REG*A00000*163%*
*EQR*BEGIN*1500%*
BEGIN*RAU*A00001 **%*
FIMI**NO**

*RAU*AB*YES **
NO*SBU*AC*YES **
*END***Stop for availability punch*
*PAV***Punch Availability¥*
YES *CLU*CODE***
*LDC*COUNT *#*
*ADU*AQ0Q001 **%*
*LDC*COUNT**%*
*ADU*A00065%**

*STUFTOTAL*GO ON*H{

COUNT*0*0*6300%*

*END** %%

=51 ~

OUTPUT FORMAT

The Assembly Program makes use of both punch and typewriter output.

The punch delivers:
1. A bootstrap program to be stored as indicated by the operator.
2. The hex tape of the program with check sums at specified intervals.
3. End and transfer codes.

The availability table is output on the punch.

The typewriter output consists of a listing of the input instruction, numeric
assembled instruction and the punched comments.

The typewriter output may be bypassed, if desired as in the case of a subroutine,
by the depression of a sense switch. ' :

-52-

1.

XI

OPERATOR®S INSTRUCTIONS

Load ROAR by means of the bootstrap included on the tape. The
computer will stop after loading.

The method of reading the bootstrap is as follows:

a. Place the tape in the reader

b. Select reader input

¢. Depress One Operation

d. Depress Execute Lower

e. Depress Set Input

f. Depress Start Read on the reader
g. Raise Execute Lower

h. Depress Set Input

i. Raise One Operation

j. Depress Start Read on the reader

Place the tape of the program to be assembled in the reader and de-
press the start button. The computer will soon stop to be given
the track for the Bootstrap Program. If no bootstrap is desired,
sense switch 8 must be depressed,

All further communication with the program should be through the

use of pseudo operations., These may be entered manually by

selecting typewriter entry after an END order on tape, or by stopping
on tape, or by stopping the computer while reading a carriage return.

If ROAR detects an error, it will print out an indication as to the
type and stop. If started, assembly will continue from the point
where location is read. The safest place to restart after correcting
an error is at the nearest previous instruction which contains a non-
blank location.

TFAB STOPS
Two typewriter carriage tab stops are required. All others should be

cleared. Place the tab stops in relation to the left margin at
increments of 27 and 50.

For your convenience, the following options have been placed on console
sense switches, The normal condition is represented by the UP position

in each case.

Sense Switch Use In Depressed State

2 ‘ Do not 1ist the input on the typewriter

=53~

16

32

54—

Use the photo reader for input instead
of the reader

Do not output a bootstrap

Use the output device selected by print

code 106 for the decimal output instead
of the typewriter (may be changed to any

other selection code)

Bypass the decimal output

	000
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54

