PROGRAMMING MANUAL

for the
ROYAL PRECISION

RPC-4000

Electronic Computing System

ROYAL McBEE CORPORATION
Electronic Data Processing

PREFACE

This manual for the RPC-4000 Electronic Cocmputing System contains the
information necessary for programming and operating the basic RPC-4000
computer, The manual has been prepared for both experienced program-
mers and those with no experience,

Beginning programmers will be particularly interested in the "Intro-
duction to Computers™ (Section 1), "Arithmetic for Programmers'" (Sec-
tion 2), and "Programming Techniques" (Section 5),

Section 5 contains an extensively detailed sample program, Even pro-
grammers who have considerable knowledge of data processing will find
this section valuable, It reveals many aspects of RPC-4000 program-
ming that are best explained by illustration,

The expositions on '"The Central Computer'" (Section 3), "The Instruc-
tion List" (Section 4), and the '"Manual Controls and Operating Pro-
cedures"” (Section 6) present the essential information on the design
and use of the RPC-4000, Charts, diagrams, and summaries have been
extensively employed so that the manual will have continuing value as
a reference work for the RPC-4000 user,

CONTENTS

SECTION 1 -~ An Introduction to Computers

The Automatic Digital Computer
Computer Design Considerations
Glossary of Computer Terms

SECTION 2 -~ Arithmetic for Programmers

Number Systems

The Binary System

The Hexadecimal System
Binary Coded Decimal
Conversion Between Systems
Scaling

SECTION 3 -~ The Central Computer

The Memory Drum

Double Access Tracks

The Recirculating Track

The Sector Reference Timing Track
The Working Registers

The Upper Accumulator

The Lower Accumulator

The Command Register

The Index Register

The Branch Control

Programmed Operating Modes

The Eight Word Lower Accumulator
The Automatic Repeat Mode
Instruction Sequencing and Timing

SECTION 4 - The Instruction List

SECTION 5 - Programming Techniques

Program Organization

Input Messages

Output Messages

System Flow Chart

Table Organization and Structure
Program Coding

The ROAR Coding Format

Page

[\ I

10

10
11
11
12
12
14

16

17
18
19
20
20
21
21
22
23
23
24
24
25
25

27

62

63
63
64
66
66
68

68

Page

Space Reservation 69
Program Testing o 115
SECTION 6 - Manual Controls and Operating Procedures 117
The RPC-4010 118
Modes of Computer Operation 118
Protected Tracks) 121
Additional Comments on Modes 122
The RPC-4000 Input/Output 122
The RPC-4430 123
Selection On and Off Line 123
Parity Checking 123
Copy Mode 125
The RPC-4480 Tape Typewriter 126
RPC-4010 Console 130
RPC-4430 Reader/Punch Right
Control Panel 134
RPC-4430 Reader/Punch Left Control tanel 139
Bootstrap 139
RPC-4000 Starting Procedure 143
Bootstrapping Procedure 143
Manual Entrance to a Program 144
Errors in Loading Master Tapes 144
Use of ROAR to Assemble Programs 145
Use of the RPC-4500 Tape/Typewriter
System Off-Line 147
SECTION 7 - Summary Lists and Tables 149

Algebraic Expression of the RPC-4000

Commands 149
Definition of Symbols 150
Description of Command Execution 155
Charts and Tables
RPC-4000 Controls 170
The RPC-4010 (Chart) 170
The RPC-4430 Right Panel (Chart) 174
The RPC-4430 Left Panel (Chart) 177
RPC-4000 Input/Output Selection Codes
for Instruction PRD 184
Alphanumeric Codes 185
Table of Basic EXC Data~track Settings 186
Modulo-8 Table 186

Table of Powers of 2 and Powers of 16 187

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

¢ o .

O 00O~ & LN =
.

s
= O
.

-
Y]

[
W

[
E-N

-
o
.

=
O 00 3
. e

N
o
.

Logical Diagram of Automatic Computer

List of Illustrations

RPC-4000 Data Word Format
RPC-4000 Instruction Word Format

Hexadecimal Word Format

RPC-4000 Main Memory Storage
Double Access Storage Tracks

The Recirculating Track
System Flow

Flow
Flow
Flow
Flow
Flow
Flow
Flow
Flow
Flow
Flow

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

~ Example
-~ Exarple
-~ Fxample
-~ Example
- Example
- Example
- Example
- Example
~ Example
- Example

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

RPC-4010 Control Console

RPC-4430 Reader/Punch Control Panels

Chart For Example Problem

<O IITOMW

Page

16
16
17
18
19
20
65
72
78
87
91
95
97
105
107
109
111
129
133

AN INTRODUCTION
TO COMPUTERS

A T T Y

The emergence of the electronic computer as a major tool for Business and
Industry is not surprising when it is considered that a very large part
of today's total work effort is devoted to the processing of lengthy
calculations or vast amounts of statistical data, Much of this computa-
tion involves wearisome repetition along with the necessity to effective-
ly utilize a confusing array of interrelated information, It is just
this sort of job that can be handled best by an intelligently directed
machine, Not only can the computer perform these tasks many times fast-
er, but with much less fallibility that can the humar worker,

Since earliest times, the development of computing aids has followed

two separate paths, depending upon the means employed to recognize and
to represent information values, Those devices which operate by the
measurement of continuous physical variables are known as analog devices
or Analog Computers, A fuel gauge is a simple analog device in that the
deflection of a pointer is analogous to the quantity of fuel in a tank,

The other type of computing aid, and that which directly concerns us, is
known as a Digital Computer, It is characterized by its representation
of values, both quantitative and symbolic, by counts of discrete dis-
continuous physical units, The abacus is a simple digital device in
which beads are used to represent the counting units, A more complex
and modern, but still non-automatic digital device is represented by the
desk calculator,

THE AUTOMATIC DIGITAL COMPUTER

The abacus has served man for thousands of years as a simple static
storage device to hold the progressive results of lengthy calculations,
The modern desk calculator has, in addition to a similar limited storage
capacity, the ability to mechanically perform certain basic arithmetic
operations, such as addition, division, etc, However, both of these

aids to computation require the constant services of the human operator
to direct each individual operation, Thus the speed of these non-auto-
matic devices is limited to the rapidity with which the operator can con-
trol their actions, 1In order to function automatically, a computer must

be self-sequencing; that is, it must have the capability of controlling
the order in which the steps of a calculation are performed, by reference
to a series of coded signals which are stored within itself,

The history of the Automatic Digital Computer goes back to the year 1822,
when an Englishman by the name of Charles Babbage, with the financial
backing of the British Government, began work on what he called a full
size "Difference Engine', This machine was designed for the purpose of
calculating mathematical tables so as to relieve the human worker of this
routine function, Ten years later, after an expenditure of 17,000 pounds,
the project was abandoned, 1In 1833 he elaborated upon his initial efforts
to develop the concept of a universal computer which he called an "Analyt-
ical Engine", It was designed to be fully automatic and externally
programmed, It incorporated facilities for input/output, arithmetic
operations, internal storage and automatic program control, Unfortunate-
ly, the state of the engineering art was insufficiently advanced to
produce a machine of such mechanical complexity, Although a considerable
amount of money and effort was expended, the machine was never completed,

It was not until the year 1944 that the first such universal digital
computer was actually completed, This machine, generally referred to
as the Harvard Mark I, used electromagnetic relays and mechanical
counters, and was extremely cumbersome compared with the computers in
use today, The first computer to substitute electronic circuitry for
electromagnetic was the ENIAC (Electronic Numerical Integrator And Cal-
culator), which was used primarily to solve ballistics problems, It
contained some 18,000 vacuum tubes and about 1500 electro-mechanical
relays,

The growth rate of the computer industry following these pioneer efforts
has been truly fantastic, Digital computers are being entrusted with an
ever increasing share of the routine, repetitive functions of business
and industry, Computers are being produced in a variety of types and
sizes depending on their intended use, Of particular importance is the
class of small to medium size computers being applied to such diverse
problems as process control, data reduction for management analysis, in-
ventory control and scientific problem solving, They are characterized
by moderate cost, ease of installation and maintenance, and great flexi-
bility in their application to a variety of tasks,

COMPUTER DESIGN CONSIDERATIONS

An automatic digital computer must, of necessity, contain certain basic
logical elements, It must, of course, have the ability to perform a
number of simple arithmetic and logical operations, The solution of
most mathematical equations, regardless of complexity, can be reduced
to a series of basic arithmetic operations, Thus, the ability to add,
subtract, multiply and divide is sufficient to perform virtually any
mathematical computation, The circuitry which performs the arithmetic

and logical processing is generally referred to as the Aritpmetic Elgzent,
It receives raw data from the Memory Element and, after acting upon it,

returns it to the Memory Element,

In order that information (both instructions and operand§) may be sup-
plied to the Arithmetic Element at a rate comparable to its 1?herent
processing speed, it is necessary that there be some form of internal
Memory Element, This element is generally used to store both the pro-
gram to direct the processing operation, and the data tg be progessed,
It must provide rapid access and locatability of each piece of infor-
mation on a program demand basis. Without the Memory Elément,‘the
speed of a computer would be restricted to a mechanical insertion rate,

Prior to beginning a processing operation, and often during the course
of an operation, information from an external source must be entered
into the computer's memory, Consequently, there is required an Input
Element to accomplish this loading of data,)
Conversely, at the completion of, and often during an operation, the
processed data must be externally presented in a usable and under-
standable manner., This internal to external transfer of data is a
function of the Output Element,

CONTROL
SIGNAL
CONTROL — /
i"_ e ELEMENT)'_ -—i
DATA
TRANSFER ! ~
| S |] |
| ARITHMETIC I |
I ELEMENT / |
i]
INPUT > MEMORY OUTPUT
ELEMENT ELEMENT ELEMENT

FIGURE 1, Logical Diagram of Automatic Computer

Finally, and vital to the automatic functioning of the computer, there
must be a Control Element to coordinate the activities of the other four
elements, It is responsible for the proper sequencing of each action
within the computer, For most computers this controlled sequencing de-
termines whether a piece of information stored in memory is to be used
as an instruction or as data to be processed, Data and instructions may
occur intermixed in memory, and in the same form, In fact, the identical
piece of information may be used in both ways at different points in a
program, Further, this Control Element must activate input and output
devices when called for, and, in general, direct the overall performance
of a program or program complex,

GLOSSARY OF COMPUTER TERMS

—————————— The time required to bring a selected word from storage

ACCESS TIME

ACCUMULATOR

to the point at which it is to be used or processed,

—————————— That register, within the arithmetic element, in which

are formed the results of arithmetic and logical
operations,

ADDRESS -, A character, or string of characters, used to identify

a locatiopn within the computer memory,

ADDRESS —————————— e A label, usually numeric, which identifies a location

(Absolute)

(Relative)

(Symbolic)

in memory independent of any reference location,

A numeric label which identifies a location in memory
relative to some other memory location,

A label, consisting of arbitrarily chosen symbols, to
represent a location within a program which is inde-
pendent of the location of the program in memory or
its initial location,

ALPHA-NUMERIC--—--———-, A symbol system in which are included alphabetic, nu-

ARITHMETIC

ASSEMBLER

BINARY CODED

meric and special characters,

That part of a computer in which arithmetic and logical’
computations and decision making functions are performed,

A utility program which assigns absolute address values
for the values in a symbolically addressed program and
sets up storage allocations for its various parts,

In a number system employing positional notation, the
base is the number of counts required in each position
to cause a change in the next higher position, It is
also the number of discrete numeric characters employed
in the system,

Representation of each decimal character in a number
by a pattern of binary digits,

Common programming expression for "binary digit'', The
smallest meaningful unit of information in the computer,
An individual bit is restricted to the values 0" and
"l'l

A group of related computer words or characters pro-
cessed or transferred as a unit,

BOOTSTRAP-————————~~- A procedure for entering a program into the computer,

The initial few steps of the routine, normally en-
tered manually, are used to automatically load the
remainder of the program,

BUFFER- -~ -~ An intermediate storage device for coordinating the

transfer of information from one part of the computer
to another,

COMMAND - — - The directive portion of an instruction, The speci-

fied action to be taken by the computer,

COMPILER-~-~m~- e e e A utility program which produces a machine or assembly

language program from a program which is coded in a
problem oriented language, The coding form of the
program to be compiled ordinarily will closely approxi-
mate standard algebraic notation,

COMPUTER - - — — —— - An electronic device for the automatic calculation of

(Digital)

sequences of arithmetic and logical operations, Quan-
tities and values are represented by patterns of bi-
stable magnetic or electronic indicators,

A value which is not subject to change during an oper-
ation,

That part of a computer which directs the sequencing
and timing of its actions,

DATA- e That information used as operands in the arithmetic
and logical operations of the computer,

DATA-REDUCTION-~-~———— The processing of large volumes of raw data so as to
condense and simplify it to a more meaningful presen-
tation,

DEBUGGING-~~—mmmm e —— The process of eliminating errors from a program by
inspection or machine testing,

EXTRACT - ——— e - To clear selected portions of a word to zero, leaving
the remaining portions intact,

PFIELD - A defined space within a computer word or information
format which is assigned to hold a specified type or
class of information,

FIXED POINT---—eeeemm That system of programming arithmetic in which the

location of the decimal or binary point in a computer
word must be controlled and manipulated by the pro-
grammer,

FLOATING POINT------- That system of programming arithmetic in which the
location of the decimal or binary point in a com-
puter word is automatically manipulated and control-
led by the computer or a program routine,

HEAD-—-———m e The assembly for recording or reading one track of
information on a magnetized surface,

HEXADECIMAL--=-—ee—— The positional number system using a base of 16, A
number system which employs 16 discrete numeric
characters,

INDEX REGISTER------- A register to contain a quantity which may be used

to automatically increment or decrement the address
portion of an instruction,

INPUT-— -~ me e Information entered into a computer's memory from an
external source,

INSTRUCTION -~~~ = - A set or string of characters which completely speci-
fies one action to be taken by the computer,

LOAD-- -~ e To enter information into the computer from an ex-
ternal source, Also, to place a value into a regis-
ter, such as the Index Register,

LOOP-——— e m e A programming technique in which a sequence of in-
structions is repeated a specified number of times
before proceeding with the remainder of the program,

MAGNETIC DRUM---——-—-— A rotating cylindrical drum used for information
storage, Recording is in the form of magnetized
spots on the surface of the drum,

MEMORY -~~~ e e The primary internal storage area of a computer,
Generally, the storage device permitting the most
rapid access to its data, It is from this storage
that instructions and operands are obtained during
execution of a program,

MICROSECOND=———— = ——— One millionth of a second,

MILLISECOND---—————-—— One thousandth of a second,
MNEMONIC-——— e e A code form of identification devised so as to assist

in the remembrance of its meaning,

OPERAND - — - e e An item of information which is to be operated upon,
or one which enters into an operation,

OPTIMIZE-———— -~ To code a routine in such ways as to minimize the
total memory access time,

=

QUTPUT - mm e e e Information transferred from the computer’'s memory
~ to an external device,

OVERFLOW--—mm e m The generation, in a computer register, of a quantity

beyond the capacity of the register,

PARAMETER-~————-————- An item which may be assigned arbitrary values, de-

pending upon its use in a given routine,

PARITY BIT--~---————- An extra binary digit added to an item of information

for validity checking purposes,

PARITY CHECK----—--~- A method of verifying the accuracy of a data transfer

by counting the number of "1" bits in the transferred
item, including the parity bit, An accurate transfer
is indicated by an even count in an '"even parity"

system, or by an odd count in an "odd parity" system,

PROGRAM-—-— -~~~ — e ——— A complete sequenced set of computer instructions de-
signed to carry out a desired processing function, or
solve a defined problem,

REGISTER----—-mm e —— The hardware for storing one complete computer word,

ROUTINE--w—m o — A sequenced set of computer instructions, part of a
program, for performing some well defined function,

SECTOR--~-——————————— The space on a storage drum, measured along the cir-
cumference, required to hold one computer word,

SUBROUTINE--—-—-—-——~~ A program sub-unit, usually used in common by more

(Closed) than one program, which is entered via a transfer
from the main program and exits via a transfer back
to a selected point in the main program,

SUBROUTINE----—-—~——~ A program sub-unit which is included in the normal

(Open) sequence of a program,

TRACK-~— e mmm e The path around a storage drum, traced out by each
head of the drum assembly, Also, the information
stored on a given track,

TRANSPER- - - - — To move information from one storage area to another,

To depart from the linear sequence of the program
instructions by shifting control to another area of
the program, This shift is often conditional upon
the results of a program test of an indicator word
(Conditional Transfer),

UTILITY PROGRAM-—~-——- A program designed to assist in the full utilization
of the computer, 1Included in this class are Assembly
Programs, Compilers, Input/Output Programs, etc;

WORD—— e e A set or string of symbols which occupies one complete
storage register in the computer, This word may be
treated as an instruction or as a data word, depending
upon the manner of its occurrence in a program,

NN\

ARITHMETIC FOR
PROGRAMMERS

MIMNN

AMMMEIINNN

The concept of number is so basic to our everyday life that the average
person rarely has occasion to reflect on the many meanings of number, or
on the many forms in which numbers are expressed, However, the advent of
the electronic computer has necessitated a reconsideration of number sys-
tems and their applicability to the conveyance and manipulation of infor-
mation through electronic circuitry,

Numbers are used, primarily, to denote quantity or amount, We use numbers
to state how many pills are in a bottle, or how many pounds of coffee in a
bag, or how many miles between here and Tin Cup, Colorado, But there are
other ways of using numbers, A number can also be used to represent one
member of an ordered set of symbols, A house number, for example, serves
to identify a particular house among a number of houses in its set, It
further serves to locate that house with respect to these other houses,
When a number is used for this dual purpose of location and identification,
it is generally referred to as an address. Finally, a number which serves
only to identify, but which has no quantitative or locational significance,
is usually called a code number,

All three of these aspects of number---quantity, address and identity---
are vital to the design and operation of a high speed digital computer,
However, the present discussion will concern itself, primarily, with the
quantitative aspect of number.

NUMBER SYSTEMS

A Number System may be classified by the number of counting symbols it em-
ploys. This number is referred to as the base of the system, The Decimal
System is a base-ten Number System; that is, it uses the ten numeric charac-
ters, O thru 9, It is further characterized by its use of a positicnal no-
tation, When counting, if one digit position progresses beyond 9, it adds

a count in the position immediately to its left, Thus, 9 plus 1 becomes 10;
19 plus 1 becomes 20; 99 plus 1 becomes 100; etc, Each position in a decimal
number represents an integral power of 10, so that in the number 456, the
number 4 represents 4 times 102; the 5 represents 5 times 101; and the 6
represents 6 times lOO, Similarly, the decimal fraction ,789 represents 7
times 10-1 plus 8 times 10-2 plus 9 times 10-3,

10

Obviously, we are not restricted to a base-ten system of numbers, The
same notational structure applies equally well to other bases. And, in
fact, it has been determined that today's electronic digital computer
functions most efficiently using a binary system for its internal func-
tions, This base-two system follows naturally from the fact that the
computer circuitry is made up, in large part, of bi-stable devices,

THE BINARY SYSTEM

The Binary System is, of course, a system which utilizes only two numeric
characters, O and 1, The principles of counting and arithmetic are exactly
the same as for decimal numbers, Counting proceeds in the order, 1, 10,
11, 100, 101, 110, 111, 1000, 1001, etc. Whereas, in the Decimal System
every tenth count in a digit position causes a change in the next position
to its left; in the Binary System every second count steps the next higher
digit position, Each successive position to the left represents the next
higher power of two, Thus, the binary number 10110 is equal to 1 times 24
plus O times 2 plus 1 t1mes 22 plus 1 times lelus 0 times 20 This is
equivalent to the decimal number 22,

Similarly, in a fractional binary number, the positions to the right of
the binary point represent successive negative powers of two, Thus, the
binary fraction, ,10110, represents 1 times 2-1 plus 0 times 2-2 plus 1
times 2-3 plus 1 times 2-4 plus O times 2-5, This is equivalent to the
decimal, 1/2 plus 1/8 plus 1/16, or 11/16,

If we were to perform all our manual computations in binary arithmetic,
we would find that, although the individual operations are childishly
simple, we would soon be drowning in a sea of O's and 1's, The decimal
number 999,999, if represented in binary, requires 20 digits, The com-
puter, on the other hand, finds it much easier to handle a large number
of digit positions than to deal with more than two digit values, In
order to facilitate communication between the programmer and the computer,
it is desirable to use a number system which provides for brief numerical
notation; and one which permits easy conversion to and from the binary
system,

THE HEXADECIMAL SYSTEM

If we look carefully at the Binary System, we note that four digit
positions are sufficient to hold 16 numerical values from O to 15, The
RPC-4000 has a word length of 32 bits (binary digits), so that one word
can be divided evenly into eight 4-bit groups, If we select, for com-
munication with the computer, a number system with a base of 16, we can
represent a full computer word with just eight characters, and each
character will correspond exactly with a unique pattern of binary digits,

11

This base-sixteen number system is known as a Hexadecimal System, It is
the system used for all direct communication with the computer, The

table of Hexadecimal characters and their decimal and binary equivalents
is as follows:

Hexadecimal Decimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 o111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
Cc 12 1100
D 13 1101
E 14 1110
F 15 1111

BINARY CODED DECIMAL

Frequently encountered in discussions of computers and programming is another,
and somewhat different, system of numbers known as Binary Coded Decimal,

This is actually a system built on two bases, 2 and 10, Base 2 is used

in the binary representation of each of the ten numeric characters, O

thru 9, Normally, the binary numbers, 0000 thru 1001 are used, and each
4-bit group signifies one decimal character, The positional notation

used is the same as for decimal numbers in that each successive 4-bit

group proceeding to the left of the units position represents the next

higher power of ten, Thus the decimal number in binary is written

101110001,

The usefulness of this number system is in providing a convenient form
in which to process numerical data through the Input/Output equipment,
Its use, however, requires Input and Output program routines which will
make the conversion to and from a true binary representation,

CONVERSION BETWEEN SYSTEMS

In working with computers and programs, it frequently becomes necessafy
to perform a manual conversion from one number system to another, This
is particularly true in debugging, where a word displayed on the scope

face must often be verified against a symbolically written program word,

12

Conversion of a decimal integer into its binary and hexadecimal eguiv-
alent may be accomplished by a system of successive divisions of the
decimal integer by the base of the system into which we are converting,
For example, consider the decimal number, 229, If we divide by the
hexadecimal base, 16, we get 14, with a remainder of 5, The 5 repre-
sents the least significant digit of the hexadecimal number we are com-
puting, If we now divide the integral quotient, 14, by 16, we get O,
with a remainder of 14, The 14, expressed hexadecimally by the character,
E, represents the most significant digit of the desired number, so that
the hexadecimal equivalent of 229 is E5, To avoid confusion when working
with number conversions, the base of a number is usually represented by a
subscript, so that the above numbers would be more clearly expressed as
229,y and E5,,. Let us consider another example, this time showing the
conversion in tabular form, The decimal integer 1386 would be converted
as follows:

DECIMAL
NUMBER -+ 16 = QUOTIENT with REMA INDER
(least significant)
1386lO 8610 A16
810 >10 °16
(most significant)
310 0 516

The hexadecimal equivalent of 1386 0 is 56A;¢. Note that the "A" in the
above example is used as .a hexadecimal numeral, and is the equivalent of
a decimal 10,

Decimal integers may be converted to binary in exactly the same fashion,
Conversion of 5210 to binary proceeds as follows:

DECIMAL NUMBER =+ 2 = QUOTIENT with REMA INDER

(least significant)
2610 1319 0y
1310 910 1,
6
10 310 0,
310 110 1,
L ' (most significant)
10 010 1,

13

The binary equivalent of 5210 is shown to be 110100,. With a little
practice, a binary number can be readily converted to decimal by in-
spection or by referring to a table of powers of two, Converting the
above binary value to decimal is just a matter of adding 23 (32), 24
(16), and 2“ (4) to arrive at the value, 52;5. Fractional values may
be similarly handled by using negative powers of two,

Conversion of a decimal fraction into hexadecimal or binary may be ac-
complished by a system of successive multiplications by the base into
which we are converting, For example, consider the following conversion
of 91244 into hexadecimal,

DECIMAL INTEGRAL

NUMBER X 16 = PRODUCT with CARRY = HEXADECIMAL
(most significant)

°91210 14.59210 1410 E16

159244 9.472, 910 916

47210 7.55219 710 716

ETC,

In this process, the first integral carry represents the most significant
digit of the hexadecimal fraction, and the fraction, ,91210 converts to
,E9716, computed to 3 places,

SCALING

The numbers ,752 0’ 7.5210, 75,210, and 752l are identical in appearance
except for the piacement of an insignificant looking symbol known as a
decimal point. Yet the use of this symbol can make a huge difference in
the meaning of the number in which it is placed, When we work with num-
bers in this fashion, we arbitrarily place this point in such a way as

to establish a desired magnitude for the number we wish to represent,

The digits to the left of this point represent integral values, and the
digits to the right represent fractional values, In order to perform
valid arithmetic operations with these numbers, we must necessarily be
cognizant of the location of the point in all our operands,

The RPC-4000 computer word is 32 binary digits in length, For a data
word, these bits provide for a sign bit in position 0, and 31 magnitude
bits, The principles of scaling, outlined above with respect to decimal
arithmetic, apply also to the binary values used by the computer, The
binary point does not actually exist within the computer, It exists only

14

in the mind or on the paper of the programmer, It is his responsibility
to control the placement of values in the computer word so that these
implied binary points will fall in the proper positions to produce valid
arithmetic results,

The binary point location between bits 0 and 1 of the computer word, re-
ferred to as the machine point, serves as a reference point in specifying
the scale factor for a value in the word, The symbol, "q", has been es-
tablished by convention to denote the placement of the implied binary
point with respect to the machine point, If a value is entered into the
computer at a "q" of 5, the bits in positions 1 thru 5 represent the in-
tegral portion of the value, and the bits in positions 6 thru 31 represent
the fractional portion,

To perform a valid addition or subtraction in the computer, the binary
points must be lined up the same as we would line up the points in per-
forming these operations with pencil and paper, That is, the operands
must exist in the computer at the same "q'. A number at a ''q" of 12,
added to another number at a '"g" of 12, will produce a sum which is also
at a "q" of 12,

In multiplication, however, the points need not be lined up, but must be
located so as to produce a product at the required '"q". The "q" of the
product of a multiplication is the sum of the '"q's" of the multiplicand
and the multiplier, A number at a "q" of 6, multiplied by a number at

a "q" of 3, will produce a product at a '"q" of 9. An exception to the
above is the command MPT (Multiply by Ten), in which the "q" of the
product is the same as the 'q" of the multiplicand, (See Page 44),

The rules for performing a division in the computer are equally simple,
but require one additional precaution on the part of the programmer,

The "q" of the quotient is determined by subtracting the '"q" of the
divisor from the "q" of the dividend, The value 6, at a "q" of 3,
divided by the value 2, at a "q" of 2, should produce a quotient, 3, at
a "q" of 1, But the value, 3, cannot be held at a ''q" of 1, so that a
condition known as a "divide check" occurs, This produces an overflow
out of the accumulator which will turn on an indicator, known as the
Branch Control, To avoid this situation, the programmer must scale his
operands so that the quotient will fit in the accumulator, In the above
example, shifting the dividend 6, to a "q" of 4, and then dividing by 2
at a "q" of 2, will produce a quotient of 3, at a "q'" of 2, which can be
contained without overflow, Considered from the standpoint of the com-
puter word itself, and disregarding the implied binary point location,
the divisor must always exceed the dividend to perform a valid divide
operation,

The means for controlling the scaling of values in the computer are
provided by a shift instruction, which permits the programmer to adjust
the "q" of any value by shifting the accumulator contents right or left
by a prescribed number of bit positions, (See Page41l), It is important,
in coding a program, to note on the coding sheet the 'q'" values of all
operands,

15

THE CENTRAL
COMPUTER

A Y

The basic unit of information in the computer is referred to as a word,
The computer word in the RPC-4000 consists of 32 binary digits, com-
monly called "bits', This 32 bit pattern of information has a meaning
dependent upon the context in which it is used, That is to say, that
the same word from memory may be used as an instruction or as an arith-
metic operand, and this usage is determined by the manner in which the
program is written,

When used as numerical data, a word is considered as consisting of a
sign bit in the left-most position, followed by 31 magnitude bits,
Preceding a DIV (Divide) instruction or following a MPY (Multiply)
instruction the data word in the LOWER Accumulator is considered as

an extension of the UPPER and contains magnitude bits in bit positions
0 thru 30, bit 31 being disregarded,

14

MAGNITUDE BITS

ol 112 s[a]s 6] 7 sl sTolulizfissalisTis irfreio]20f2r2olosfoafas] o6 erfeefs an]st

FIGURE 2, RPC-4000 Data Word Format

When used as an instruction, a word is considered as consisting of a com-
mand in bits O thru 4, an operand or an operand address in bits 5 thru 17,
the next instruction address in bits 18 thru 30, and the index tag in bit
31, ‘

COMMAND OPERAND ADDRESS NEXT ADDRESS X

ufs o 0f3

0 45 1pack ll|12 secror V118

TRACK
FIGURE 3, RPC-4000 Instruction Word Format

16

In certain cases it is convenient to consider the 32 bits of a word as
eight hexadecimal characters, This is particularly true in entering
information manually into the computer or in analyzing certain computer
outputs,

HEX 1 HEX 2 HEX 3 HEX 4 HEX 5 HEX 6 HEX 7 HEX 8

0 314 718 1112 15§16 19120 3124 2128 k]|

FIGURE 4., Hexadecimal Word Format

THE MEMORY DRUM

Information is stored in the RPC-4000 on a magnetic drum which rotates
at the rate of 3600 revolutions per minute, This information will con-
sist of both data words and instruction words. Each individual bit of
each word stored in the computer is in the form of a discrete magnetized
spot on the iron oxide coated drum surface, Each bit can exist in one
of two magnetic states representing the binary values, 0 (zero) and 1
(one). All information in the computer, including all memory storage
and all working registers, is represented in this manner,

The computer words are arranged in parallel bands around the drum, each
band containing 64 word positions, Associated with each of these bands
is a magnetic read/write head (those bands used for double access each
have two read/write heads.,) The band of information traced out by any
given head is referred to as a track, Fach of the 64 word positions
around the circumference of the drum is referred to as a sector,

The RPC-4000 memory consists of 128 tracks (numbered 000 thru 127) and
64 sectors (numbered 00 thru 63), Hence, the location of any word in
memory can be specified by its track and sector number, This number is
known as the address of the word in question,

Tracks 000 thru 122 of the magnetic drum are the Main Memory storage
area for the RPC-4000, Each track has 64 associated sectors, each of
which contains one computer word, The total storage capacity of Main
Memory is 7872 words, Any word in Main Memory may be referenced by
specifying its track and sector position, Thus, 09843 refers to the
word whose address is Track 098, Sector 43,

Maximum access time for a word in Main Memory is the time required for

one complete drum revolution, or approximately 17 milliseconds, Average
access time is approximately 8,5 milliseconds,

17

TRACKS
0 THRU 122

meJ

19

N I~
\ \\‘\></’
NP P
h > >>
. »
— B
S
N |
D¢
=~ I
SECTORS 6
O THRU 63 0 1
)
3
f
5

FIGURE 5, RPC-4000 Main Memory Storage

DOUBLE ACCESS TRACKS

In addition to the Main Memory just discussed, there are two bands of
memory storage on the drum for which double access is provided, Each
of these bands has two read/write heads, addressed by their own indi-
vidual track numbers, The heads addressecd as Track 123 and Track 125
have a common storage band, The Track 125 head is displaced so as to
be 16 word times later than the Track 123 head, Therefore, both heads
refer to the same set of words, and the word which is addressed by
12301 is the same word as that addressed by 12517,

Likewise, the heads addressed as Track 124 and Track 126 have a com-
mon set of word positions, In this case, the Track 126 head is dis-
placed so as to be 24 word times later than the Track 124 head, The
word addressed by 12401 is the same word as that addressed by 12625,

18

Random access time for a word from the Double Access storage area is
approximately 17 milliseconds, the same as for a word from Main Memory,
However, a second access to the same word requires only about 4 milli-
seconds for Track 123/125 or 6 milliseconds for Track 124/126, Total
Double Access storage capacity is 128 words,

TRACK TRACK TRACK TRACK
125 123 126 124

FIGURE 6, Double Access Storage Tracks

THE RECIRCULATING TRACK

There are 8 additional words of memory storage on the drum in what is
known as the Recirculating Track, The associated read/write head is

referred to as Track 127, and this track provides a special rapid ac-
cess storage area, The rapid access capability derives from the fact
that these 8 words are repeated 8 times around the drum, This is ac-
complished in the following manner,

In addition to, and flanking the normal read/write head are a separate
read head and write head, The read head is placed so as to trail the
write head by 8 words, That is to say, that a word position on the
drum will reach the write head 8 words before reaching the read head,
Consequently, as each word is read by the read head, it is immediately
rewritten 8 word positions farther back on the drum, Likewise, any
new word value written on the drum by the normal read/write head will
be picked up when it reaches the read head and recirculated,

Since every eighth word around the drum on Track 127 is identical,
sector addresses will be modulo 8, The addresses 12701, 12709, and
12717 will all refer to the same word inasmuch as the sector addresses
differ by multiples of 8, With 8 accesses provided for each word
every drum revolution, maximum access time for the Recirculating Track

is approximately 2 milliseconds, with an average access time of about
1 millisecond,

19

\

READ/WRITE HEAD
TRACK 127

READ HEAD

J
WRITE HEAD

FIGURE 7, The Recirculating Track

THE SECTOR REFERENCE TIMING TRACK

Although this track cannot be read directly or modified by the program-
mer, some explanation of its function may be helpful, The Sector Refer-
ence Timing Track contains the Sector Reference numbers 00 thru 63,
which are permanently pre-recorded at the time of manufacture, The
track has a read head only, which serves to locate, by reference to
this Timing Track, any sector address on the drum which is called for

in a program,

The Sector Reference numbers on the Timing Track are accessible to a
program only in the case of a compare instruction (CME or CMG) which
is executed in Repeat Mode (See Pages 50 & 51), During a repeated
compare instruction the contents of this track are continually copied
into bits 25 thru 30 of the INDEX Register until a successful comparison
is found, or until completion of the instruction, at which points any
further copying is inhibited., The Sector Reference number is always
one greater than the sector being compared, Consequently, following

a successful comparison (Branch Control On), the sector address of the
memory word which compares can be determined by subtracting 1 from the
Sector Reference value in the INDEX Register,

THE WORKING REGISTERS

A register may be described as the hardware for storing a single computer
word, Those registers which are used to perform the various arithmetic
and control functions within the computer are the Working Registers,
There are four such registers in the RPC-4000, each in the form of a re-
circulating track on the drum with a one-word spacing,

20

These four Working Registers and associated logic together comprise what
is referred to as the Computing Control Unit, As such, they perform all
internal data processing and control inputs and outputs to and from the
computer, The registers are known individually as:

UPPER Accumulator
SR LOWER Accumulator
Cmm e COMMAND Register
X INDEX Register

THE UPPER ACCUMULATOR

Generally speaking, the UPPER Accumulator is that register in the Computing
Control Unit which holds the computer word to be operated upon, At the
completion of an arithmetic or logical operation, it will normally hold

the result of the operation,

The UPPER Accumulator is the primary working resiter, It can receive in-
formation from, or send information to any register in memory, and any
working register except the COMMAND Register, For most instructions these
are full word transfers, However, information may be shifted from the
UPPER to the LOWER Accumulator, or from the LOWER to the UPPER Accumulator
on a bit-by-bit basis,

For any arithmetic operation, the contents of the UPPER Accumulator are
considered as consisting of a sign bit followed by 31 magnitude bits and
the operation will be performed according to the normal law of signs,
Preceding a Multiply (MPY) instruction, the UPPER will contain the multi-
plicand, Following a Multiply instruction, the UPPER Accumulator will
contain the most significant half of the double word product, Preceding
a Divide (DIV) instruction, the UPPER will contain the most significant
half of the double word dividend, Following a Divide instruction, the
UPPER will contain the gquotient,

THE LOWER ACCUMULATOR

The LOWER Accumulator may be thought of as a supplement to the UPPER,
providing an alternate data handling register, and serving as an ex-
tension to the UPPER for bit manipulation and extra precision arith-
metic, Its contents may be added to, subtracted from, and transferred
direct to memory, in the $ame way that these operations are performed
with the UPPER,

Before a Divide (DIV) instruction, the LOWER Accumulator will contain

the least significant half of the dividend, Following a Divide (DIV)
or a Divide Upper (DVU) instruction, the LOWER Accumulator contains the

21

remainder, Following a Multiply (MPY) instruction, the LOWER Accumulator
contains the least significant half of the product,

When combined with the UPPER Accumulator to form a double length word,
bit "0" of the LOWER Accumulator is considered as a data bit. Otherwise,
it is considered as a sign bit,

Through the use of a modifier bit in the Exchange (EXC) instruction,
the LOWER Accumulator can be set to eight words instead of one, These
eight words function as individual accumulators, but are subject to
certain restrictions in their use, For further discussion of this
mode, see Page 24,

THE COMMAND REGISTER

The COMMAND Register is that register which holds an instruction word
during the time that it is being interpreted and operated by the com-
puter, The instruction word consists of four logical parts or fields,
each of which is considered when an instruction is performed:

1, The Command Field (bits O thru 4)---This field in
the COMMAND Register will contain the numerical code
representing the operation to be performed, It
serves only to identify the required operation and
has no quantitative significance.

2, The Data-address Field (bits 5 thru 17)---For most
instructions, this field will contain a memory ad-
dress signifying the location of the operand, For
the transfer instructions TBC and TMI, it will con-
tain the address of the next instruction in the
event of an active transfer, For some instructions,
this field will contain a set of logical modifiers
which serve to further define the operation of a
basic command, And for a few instructions, the con-
tents of this field are used as the operand,

3. The Next-address Field (bits 18 thru 30)---This
field will contain a memory address signifying the
location of the instruction which is to operate
immediately following the one currently in the
COMMAND Register,

The only exception to this is that, upon encounter-
ing an active transfer instruction, the next ins-
truction will be taken from the address specified
in the Data-address Field,

22

4, The Index Tag Field (bit 31)---A "1" bit in this
field will cause the computer to apply indexing to
the instruction when it is placed in the COMMAND
Register, This means that the Data-address Field
is incremented by the contents of bits 5 thru 17
of the INDEX Register, If the Index Tag is set to
"0", indexing is not applied, and the Data-address
field in the COMMAND Register will be identical
with the corresponding instruction in memory,

THE INDEX REGISTER

The INDEX Register performs several important functions in the RPC-4000,
Its primary use is for address modification and, for this purpose, bits

5 thru 17 of the INDEX Register serve to hold a value by which the Data-
address Field of an instruction may be incremented, This incremental
value may be placed in the INDEX Register by means of a Load Index (LDX)
instruction, and can be used by including an Index Tag in the appropriate
instruction,

Bits 18 thru 24 of the INDEX Register are used to hold the Repeat Count
for any instruction which is operated in the Repeat Mode, (See Page 25),
This count is loaded by a Load Count (LDC) instruction immediately pre-
ceding the instruction to be repeated,

Bits 25 thru 30 of the INDEX Register are used in conjunction with the
Compare Memory Equal (CME) and the Compare Memory Greater (CMG) in-
structions when these instructions are executed in the Repeat Mode, At
the beginning of the instruction, the Sector Reference Timing Track is
copied into bits 25 thru 30 of the INDEX Register and this copying oc-
curs during each iteration until a successful comparison is made or until
the specified number of repeats is completed, If and when a successful
comparison occurs, any further copying of the Timing Track is inhibited,
The INDEX Register will then contain a value one sector greater than the
sector location of the memory word which compared successfully,

In addition to the above functions, the full word INDEX Register may be
used as a rapid access storage location and may be exchanged with the
UPPER Accumulator through the use of the Exchange (EXC) instruction,

THE BRANCH CONTROL

Although it is not a register, there is another information handling de-
vice within the computer which should be mentioned here, This is an
internal flip-flop consisting of only one bit and known as the Branch
Control, It is automatically turned on when an overflow condition oc-

23

curs, It may be set by the instructions, SNS, CXE, CME, and CMG, It
may be sensed by the instruction, TBC (Transfer on Branch Control),

PROGRAMMED OPERATING MODES

There are certain modifications which can be made under program control,
which will alter the normal operating procedures for the Central Computer,
They are concerned, for the most part, with the processing of multi-word
blocks of information or tables of associated data, The first of these
modifications provides the ability to change the form of the LOWER Accu-
mulator from one word to eight words in eight individual LOWER Accumula-
tors, The second enables automatic repetition of an instruction for a
selected number of times using consecutive storage locations,

THE EIGHT-WORD LOWER ACCUMULATOR

The LOWER Accumulator can be set to eight words or back to one word by
means of two control bits which are a part of the Exchange (EXC) instruc-
tion word, The effect of setting the LOWER to eight words is that, in-
stead of the same word being recirculated into all 64 word positions,
there are eight separate words considered, each of which is recirculated
into eight word positions, 1In this respect, the eight-word LOWER is the
same format as the recirculating memory, Track 127,

When an instruction involving the eight-word LOWER is executed, the ac-
cumulator word used will correspond to the Data-sector of the instruction
word, To put it another way, if we let Lj, Liy Ly ... Loy, designate the
eight LOWER Accumulators, then an instruction with a Data-address of 10300
would use or affect Ly, as would 10308, 10316, etc, Likewise, an instruc-
tion with a Data-address of 02703, would use or affect L3, as would 05403,
06711, 11819, etc,

If overflow occurs in a LOWER Accumulator word, it has no effect on the
other seven words of the LOWER, nor does it affect the UPPER Accumulator,
It does, however, turn on the Branch Control,

The eight-word LOWER Accumulator can be used with the Input (INP) in-
struction to receive up to 64 4-bit characters or 42 6-bit characters,
Inputs enter into the least significant end of L., and each succeeding
character causes the preceding characters to be shifted left until all
eight accumulators are filled., If the number of input characters
exceeds the capacity of the eight-word LOWER, characters will be lost
out of the most significant end of Lo,

Those instructions concerned with the LOWER which requiie more than one

word time for execution (MPY, DVU, DIV, SRL, SLC,) should not be execu-
ted while the LOWER is in eight-word format,

24

THE AUTOMATIC REPEAT MODE

The execution phase of an instruction operated in this mode may be
extended to any desired number of word times, not to exceed 128, A
word time is that time required for one sector of the drum to pass
beneath the read/write head, It is approximately ,25 milliseconds,
Thus, the number of repetitions of an instruction will be a function
of the Repeat Count and the word times required to complete one exe-
cution, Those instructions which are appropriate for repeated execu-
tion require only one word time for command execution and, therefore,
the number of repetitions beyond the initial execution will be equal
to the specified Repeat Count,

The Repeat Mode is initiated by a Load Count (LDC) instruction, which
places the Repeat Count in the Repeat Control field of the INDEX Re-
gister (bits 18 thru 24), The instruction immediately following the
LDC instruction will be the only one affected, (See exceptions below),
It will be placed in the COMMAND Register, and where appropriate, the
drum will be searched for its Data-address as in normal operation,

But its execution phase will be continually repeated until the Repeat
Count in the INDEX Register runs out, For each repetition, the Data-
address used will be the one beneath the head at the time of execution,
When this operation continues beyond Sector 63, it proceeds with Sector
00, 01, etc,, of the same track, Track switching is not possible during
a Repeat Mode operation,

The Repeat Count in the INDEX Register does not define the number of
repetitions of an instruction whose execution phase requires more than
one word time, These instructions, when executed in the Repeat Mode,
produce results which are not true repetitions of the execution phase,
and this usage is to be avoided,

The primary uses of the Repeat Mode are with the arithmetic instruc-
tions for block processing or block transfers, and with the compare
instructions, CME and CMG, for table search,

A special case occurs when a conditional transfer instruction, TBC, or
TMI, is operated in the Repeat Mode, If the transfer is inactive, no
action is taken and the execution phase merely delays proceeding to the
next instruction until the Repeat Count runs out, If the transfer is
active, the normal execution phase is never reached, Consequently, the
Repeat Count remains intact and causes the repetition of the instruction
to which the transfer is made, This is the only instance in which the
repeated instruction does not immediately follow the LDC instruction,

INSTRUCTION SEQUENCING AND TIMING

The sequence in which instructions are executed is controlled by ad-
dresses contained within the instruction word, A complete instruction

25

cycle extends from‘the beginning of the memory search for the instruction
word to the beginning of the search for the next instruction word,

This cycle consists of four phases as follows:
Search for memory location specified

in Next-address Field of COMMAND Re-
gister --- 1 to 64 word times,

Phase 1

Phase 2 Transfer contents of this location to

the COMMAND Register --- 1 word time,
Phase 3 Search for memory location specified
in Data-address Field of COMMAND Re-
gister --- 1 to 64 word times,

Phase 4

Execution of instruction --- Basically,
1 word time but certain instructions
will include a Sub-phase 4 (a) which
extends this execution time,

Except for EXC (Exchange) and MPT (Multiply by Ten), those instructions
which do not require a memory search for data will require only 1 word

time in Phase 3, Those instructions are:

HLT (Halt) SILC (Shift Left and Count)

SNS (Sense) PRD (Print from Data-address)
CXE (Compare Index Equal) PRU (Print from UPPER)
LDX (Load Index) INP (Input)

SRL (Shift Right or Left)

Phase 3 for EXC and MPT will depend on the Data-sector value of the
instruction word, so as to allow an association with a particular word
of the Eight-word LOWER Accumulator,

The following instructions will include a Sub-phase 4 (a) in addition
to the l-word Phase 4, which will extend their execution times as in-
dicated, :

DVU (Divide Upper) - 67 word times
DIV (Divide) - 67 word times
SRL (Shift Right or Left) - 4 word times plus 1 word time for

each bit position shifted,
SIC (Shift Left and Count) - 4 word times plus 1 word time for
each bit position shifted, v
MPY (Multiply) -~ 67 word times,

All other instructions require one word time for execution except for

INP (Input), PRD (Print from Data-address) and PRU (Print from UPPER),
which are dependent on the speed of the selected Input/Output devices,

26

MININL

THE %
INSTRUCTION LIST %
7

The basic instructions which make up the RPC-4000 Instruction List are
described in the following pages. These are '"machine language'" in-
structions, each of which specifies a particular action to be taken by
the computer, Pseudo-instructions for communication with the ROAR as-
sembly program are not included in this section,
A drawing of the Instruction Word format accompanies each description,
This drawing contains the numerical Command code and illustrates the
field allocation for each component of the Instruction, The mnemonic
designator for each Command is shown in bold type at the top of each
description,

In many instances, diagrams have been included to support and clarify
the textual explanations of the actions taken by the Instructions,

These diagrams indicate the transfer and modification of the contents

of the various registers which are involved in the instruction operation,
The "minimum time" referred to in these pages includes the minimum time
to complete all four phases of the operation, from the beginning of the
search for the Instruction Word to the beginning of the search for the
next Instruction Word,

27

HLT ..

INSTRUCTION WORD FORMAT

The compufer will halt with the Instruction Word in the COMMAND Re-
gister,

If indexing is specified, it should be noted that any index value
which results in a non-zero value in the D-track field will effec-
tively produce a SNS instruction, (See next page)

Minimum time----———- 4 word times
Overflow--—————cceo—— Not a factor
Branch Control--—--- Not affected

Registers affected--None

28

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
00 000 (ANY) (NEXT ADDRESS) 01
o 0000 als nh 17 hs 241 25 sl 3

SNS

SENSE
INSTRUCTION WORD FORMAT
COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
00 §—=127 (ANY) (NEXT ADDRESS) 0/1
o JUC0 afs nhe 7 |hs 24 | 25] n

The initial action of the instruction is to turn off the Branch Control,

This instruction will sense the condition of certain manual switches as
related to bits 6—>11 of the D-track field, If one or more D-track
bits correspond to a depressed Sense Switch, the instruction will turn
on the Branch Control,

If bit 5 of the D-track field is set to 1, it causes the Branch Control
to be turned on if no input device is selected, or if any selected input
or output device is not ready,

Note that any index value which modifies the value of the D-track will
alter the logical correspondence of the D-track bits and the Sense
Switches,

Minimum time-—-———-—-—-— 4 word times
Overflow-——————eeeoo Not a factor
Branch Control------- Conditionally set "ON'" or "OFF"

Registers affected---None

DATA-TRACK/SENSE SWITCH CORRESPONDENCE

D-track Value Bit Pattern Sense Switch

1 0000001 1
2 0000010 2
4 0000100 4
8 0001000 8
16 0010000 16
32 0100000 32

29

cx E COMPARE INDEX EQUAL

INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG

o1 (DATA VALUE) (NEXT ADDRESS) 0/
L
o 800/ . 5 n 17 bg 24'25 ol 3

The initial action of this instruction is to turn off the Branch Control
The Data Value in the instruction is then compared with blts 5 ~=»-17 of

the INDEX Register, If there is a one-to-one correspondence, the Branch
Control is turned on, If not, the Branch Control remains gfnf_'_,

If indexing is specified for this instruction, a Data Value of zero will
turn on the Branch Control, regardless of the index value, This occurs
because the zero Data Value, when indexed, becomes identical with the
Index Value, Conversely, any Data Value other than zero will turn off
the Branch Control regardless of the Index Value, inasmuch as any non-
zero value, when 1ndexed becomes greater than the Index Value,

Minimum time---------4 word times
Overflow———————e__ Not a factor
Branch Control----——- Conditionally set "On" or "Off"
Registers affected---None
l INSTRUCTION
RN REGISTER
TV)
BRANCH CONTROL //
OFF
5 11
COMPARE BITS WITH INDEX
* REGISTER

l 17

A__ V]
4
\

TURN YES ARE THEY
BRANCH CONTROL I IDENTICHAL"
ON
NO
l NEXT INSTRUCTION
>

RESET AND ADD TO UPPER RAU

INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
02 (DATA ADDRESS) (NEXT ADDRESS) 0/1
0 @5"/d 4ls 12 17 818 24§ 25 30l 31

The contents of the memory location specified by the Data-address will
replace the current contents of the UPPER Accumulator,

The Data-address may be modified by indexing,

Minimum time--—-—~———- 4 word times
Overflow-—~——meme___ Not a factor
Branch Control--—-—-——- Not affected

Register affected----UPPER Accumulator

INITIAL CONTENTS FINAL CONTENTS
MEMORY REGISTER MEMORY REGISTER

| A — EZZAZZA
UPPER ACCUMULATOR UPPER ACCUMULATOR

U787 A

31

RAL RESET AND ADD TO LOWER

INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
03 (DATA ADDRESS) (NEXT ADDRESS) 0/1
0 00 // 485 12 17 418 24 § 25 30§ 31

The contents of the memory location specified by the Data-address will
replace the current contents of the LOWER Accumulator,

The Data-address may be modified by indexing,

Minimum time
Overflow

Branch Control]
Registers affected---LOWER Accumulator

INITIAL CONTENTS

MEMORY REGISTER

A

LOWER ACCUMULATOR

(278777

4 word‘ times
Not a factor
Not affected

FINAL CONTENTS

MEMORY REGISTER

k7777

LOWER ACCUMULATOR

A

STORE ADDRESS FROM UPPER SAU

INSTRUCTION WORD FORMAT

o
COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
04 {DATA ADDRESS) (NEXT ADDRESS) 0/1
1
0 0/66) 4 1s 1812 17 s 24|25 300 31

Stores bits 5—>17 of the UPPER Accumulator into bits 5—>17 of the
memory location specified by the Data-address, replacing the current

contents of these bits,

changed,

The remainder of the memory word is left un-

The Data-address may be modified by indexing.

Minimum time
Overflow
Branch Control

_______ 4 word times

_____________ Not a factor

——————— Not affected

Registers affected---Specified memory location

INITIAL CONTENTS

MEMORY REGISTER

FINAL CONTENTS

MEMORY REGISTER

Bt 17

ACCUMULATOR

1t V¥

17

33

UPPER ACCUMULATOR

] 17

MST MASKED STORE

INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
05 (DATA ﬁDDRESQ (NEXT ADDRESS) 0/1
o ¢ /[)/ als 1 |12 17 hs 24|25 ol o

Stores selected bits from the LOWER Accumulator into the memory location
specified by the Data-address, as masked by the UPPER Accumulator, Where
the UPPER Accumulator contains 1's, stores the corresponding LOWER Accumu-
lator bits into the memory word. Where the UPPER Accumulator contains O's,
leaves the corresponding memory word bits unaltered,

The Data-address may be modified by indexing,

Minimum time--——-—-—-- 4 word times
Overflow——————me—eee Not a factor
Branch Control--—-—-- Not affected

Registers affected---Specified memory location

INITIAL CONTENTS FINAL CONTENTS
MEMORY REGISTER MEMORY REGISTER
A > =JI COMBINED A & C

UPPER ACCUMULATOR UPPER ACCUMULATOR

B ~- . A4
— e

%

LOWER ACCUMULATOR LOWER ACCUMULATOR

C (2%

34

LOAD COUNT

INSTRUCTION WORD FORMAT

LDC

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG

06 (DATA ADDRESS) (NEXT ADDRESS) 01
) 0/'/(] 5 11N B¥ 17 118 24825 ol a1

Loads bits 18—>24 of the memory location specified by the Data-

address into bits 18—>24 of the INDEX Register, replacing the

current contents of these bits, The remainder of the INDEX Re-

gister is left unchanged,

Causes the next instruction to be executed in the Repeat Mode; that

is, the instruction contained in the memory location spec1f1ed by

the Next-address will be repeated as many times as the number placed
in bits 18—%24 of the INDEX Register,
an active TBC or TMI,
the transfer is made (See page 25).

INITIAL CONTENTS

MEMORY REGISTER

Minimum time
Overflow
Branch Control

If the next instruction is

4 word times
Not a factor
Not affected

Registers affected--~Index Register

V&7 1B

N

7757 XE)E.

FINAL CONTENTS

MEMORY REGISTER

%

INDEX REGISTER

\\

35

INDEX REGISTER

the repeated instruction will be that to which

V7 8 Va3

——
=~
oor

1}

LDX o

INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
o7 (DATA VALUE) (NEXT ADDRESS) 01
00/// 415 12 1718 240 25 309 A

Loads the Data Value from the Instruction Word into bits 5—17 of the
INDEX Register, replacing the current contents of these bits, The re-
mainder of the INDEX Register is left unchanged,

The Data Value may be modified by indexing, This will serve to increment
the index value by the number in the Data Value Field,

Minimum time--———=——- 4 word times

Overflow————ommmmme Not a factor
Branch Control-—-————- Not affected

Registers affected---INDEX Register

B

INITIAL CONTENTS FINAL CONTENTS
INSTRUCTION REGISIER INSTRUCTION REGISTER
3 V%7 2727727
INDEX REGISTER INDEX Y REGISTER

T~y o’ [/ "~ |
ViU U 78 V77
11

36

wr |NP

INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
%
08 000 OR 064 /////// NEXT ADDRESS 0/1
I (|) /
0 /000 415 11§12 171!8 24|25 30 31

If the D-track of the Instruction Word contains 000, reads 4-bit char-
acters into the accumulator(s), If the D-track contains 064, reads 6-
bit characters into the accumulator(s).

If the LOWER Accumulator is set at 1-word length, the characters will
be read into the double length accumulator (combined UPPER and LOWER),
If the LOWER Accumulator is set at 8-word length, the characters will
be read into the LOWER Accumulator only., Read-in begins with the low
order character position of the low order accumulator word and, as
subsequent characters are read in, the existing accumulator contents
are shifted left one character position,

The D-track value may be modified by indexing, However, care should
be taken that this does not result in a value other than 000 or 064,

If the D-track field of the INP instruction contains a value other

than 000 or 064, the character which enters the LOWER Accumulator will
be the logical sum of the incoming tape character and the corresponding
bits from the D-track field of the instruction word,

Minimum time--——————— Dependent on the number of
characters read

Overflow-——e——] Not a factor

Branch Control---———— Not affected

Registers affected---UPPER and/or LOWER Accumu-
lators

2

37

EXC

EXCHANGE
INSTRUCTION WORD FORMAT
COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
09 0>2|0——15 (ANY) (NEXT ADDRESS) 0/1
0/00/ 4ls5le 7lg nh2 17 big 24125 sol 3

This instruction performs one or more of the following functions, in ac-
cordance with the logical bit pattern in the D-track field,

If bit 6 = 1,

If bit 7 = 1,
(If both = 1,

If bit 8 = 1,

If bit 9O =

1f bit 10 =

If bit 11 =

Set the LOWER Accumulator to l-word length,
Set the LOWER Accumulator to 8-word length,
the current state of the LOWER will be reversed),
Replace the contents of the UPPER Accumulator

with the contents of the INDEX Register,

Replace the contents of the INDEX Register

with the contents of the UPPER Accumulator,

Replace the contents of the UPPER Accumulator

with the contents of the LOWER Accumulator,

Replace the contents of the LOWER Accumulator

with the contents of the UPPER Accumulator,

(Aay or all of the above exchanges may be executed with the same
If bits 8 and 10 are both set, the UPPER Accumula-
tor will receive the logical sum of the contents of the INDEX
Register and the LOWER Accumulator),

instruction,

The D-track and D-sector values may be modified by indexing,

Minimum time
Overflow
Branch Control

----- 4
Not a factor
Not affected

word times

Registers affected---INDEX Register and/or
either or both Accumulators

38

DIVIDE UPPER DVU

INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
10 (DATA ADDRESS) (NEXT ADDRESS) 0/1
0 /0/0 als n 2 17 | 24 |25 o] A

The contents of the UPPER Accumulator are divided by the contents of
the memory location specified by the Data-address, The quotient is
left in the UPPER Accumulator, and the remainder is left in the LOWER
Accumulator, The remainder is always a positive value, regardless
of the sign of the quotient, so that the dividend minus the remainder
will always equal the divisor times the quotient,.

The Data-address may be modified by indexing,

NOTE: This instruction should not be executed in Repeat Mode nor
with the eight-word LOWER Accumulator,

Minimum time--—-—————— 70 word times
Overflow——————coemn Turns on Branch Control
Branch Control--—--—--- Turned on by overflow

Registers affected---UPPER and LOWER Accumulators

INITIAL CONTENTS FINAL CONTENTS
MEMORY LREGISTER MEMORY REGISTER
G407 0
“ /// ~ g
UPPER i ACCUMULATOR UPPER ACCUMULATOR

Y

B=A

LOWER ACCUMULATOR LOWER ACCUMULATOR

V7% T+ roaon

39

| D lv DIVIDE
INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG

11 (DATA ADDRESS) (NEXT ADDRESS) 0/1

0/0}/ abs N2 17 his 24§25 o)

The contents of the double length accumulator (combined UPPER and LOWER)
are divided by the contents of the memory location specified by the Data-
address, The quotient is left in the UPPER Accumulator, and the remainder
is left in the LOWER Accumulator, The remainder is always a positive
value, regardless of the sign of the quotient, so that the dividend minus
the remainder will always equal the divisor times the quotient,

The Data-address may be modified by indexing,

NOTE: This instruction should not be executed in Repeat Mode nor with
the eight-word LOWER Accumulator,

Minimum time—-—-———-- 70 word times
Overflow———ecmeee Turns on Branch Control
Branch Control--——---- Turned on by overflow

Registers affected---UPPER and LOWER Accumulators

5

INITIAL CONTENTS FINAL CONTENTS
MEMORY REGISTER MEMORY REGISTER
Y
A
COMBINED UPPER AND‘ LOWER ACCUMULATOR UPPER ACCUMULATOR

» B ! - B+A

LOWER ACCUMULATOR

! ' > > + REMAINDER

40

SHIFT RIGHT OR LEFT SRL

INSTRUCTION WORD FORMAT

-

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
12 000 OR 001 |(SHIFT COUNT) (NEXT ADDRESS) 0/1
'
0 /‘Dﬂ als 2 17§18 24|25) N

If the D-track field of the Instruction Word contains 000, shifts the
contents of the double length accumulator (combined UPPER and LOWER)
to the right by the number of bit positions specified in the Shift
Count, Bits shifted out of the low order bit position are lost, The
sign bit is duplicated in vacated bit positions,

If the D-track field contains 001, shifts the contents of the double
length accumulator to the left by the number of bit positions speci-
fied in the Shift Count, If overflow occurs, turns on Branch Control,
Bits shifted out of the sign position are lost, Vacated bit positions
are filled with zeroes,

The Shift Count and/or direction of shift may be modified by indexing.

NOTE: This instruction should not be executed in Repeat Mode nor with
the eight-word LOWER Accumulator,

Minimum time--—-——-——_ 7 word times plus 1 for each
bit position shifted,

Overflow—————e____ Turns on Branch Control,

Branch Control------- Turned on by overflow

Registers affected---UPPER and LOWER Accumulators

RIGHT SHIFT

UPPER ACCUMULATOR LOWER ACCUMULATOR
BITS LOST
S ——» I._, ﬁ
LEFT SHIFT
UPPER ACCUMULATOR LOWER ACCUMULATOR

BITS LOST
(.__ S f+— - I‘—O's

41

SLc SHIFT LEFT AND COUNT

INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG

13 ’////////////V// 9 (NEXT ADDRESS) 0/1

LI

18 24)25 30 31

The value contained in the double length accumulator (combined UPPER and
LOWER) is shifted to the left until bit 1 contains the first significant
magnitude bit, or until the sum of the D-sector value of the instruction
word and the number of bit positions shifted equals 64, Following the
shift, the LOWER Accumulator is cleared to zero, and the sum of the D-
sector value and the number of shifts is placed in LOWER Accumulator bits
12 through 17, modulo 64, That is, a sum of 64 will appear in the LOWER
as zero,

The Data-address may be modified‘by indexing,

NOTE: This instruction should not be executed in Repeat Mode nor with
the eight-word LOWER Accumulator,

Minimum time-———————— 7 word times plus 1 for each
bit position shifted,

Overflow————meeo Not a factor

Branch Control--——--- Not affected

Registers affected---UPPER and LOWER Accumulators

INITIAL CONTENTS FINAL CONTENTS
COMBINED UPPER AND LOWER ACCUMULATOR UPPER ACCUMULATOR
|
S I N S NORMALIZED A

LOWER ACCUMULATOR

NUMBER OF SHIFTS

MULTIPLY M PY
INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG

14 (DATA ADDRESS) (NEXT ADDRESS) o1

0 / / / (;) als n Ilz 17 s 24 § 25 30| 31

The contents of the UPPER Accumulator are multiplied by the contents of
the memory location specified by the Data-address, The resulting double
length product is held in the combined UPPER and LOWER Accumulators,

The Data-address may be modified by indexing,

NOTE: This instruction should not be executed in Repeat Mode nor with
the eight-word LOWER Accumulator,

Minimum time--——w——-— 70 word times
Overflow-—ewe—cmmee Not a factor
Branch Control~-———--— Not affected

Registers affected---UPPER and LOWER Accumulators

INITIAL CONTENTS FINAL CONTENTS
MEMORY REGISTER MEMORY REGISTER
Y 7
\
uppER | ACCUMULATOR COMBINED UPPER AND LOWER ACCUMULATOR

_ 1
B T \AXB}]

LOWER ACCUMULATOR

//////////y////////% L =

43

MPT

MULTIPLY BY TEN

INSTRUCTION WORD FORMAT

COMMAND

D-TRACK

D-SECTOR

N-TRACK

N-SECTOR

X-TAG

15

000 OR 064

(ANY)

(NEXT ADDRESS)

o1

o [Hi] «

n

244 25

30

31

If the D-track field of the Instruction Word contains 000, multiplies
the contents of the UPPER Accumulator by 1010, retaining the product
in the UPPER Accumulator,

If the D-track field of the Instruction Word contains 064, multiplies

the contents of the LOWER Accumulator by 10

on the LOWER Accumulator,

10°

The D-track value may be modified by indexing,

NOTE:

retaining the product

Unlike MPY, this is an integral multiply in which the "q" of

the product in the affected accumulator is the same as the
The sign bit is treated as another

"q" of the multiplicand,
magnitude bit,

Minimum time
Overflow

Branch Control
Registers affected---UPPER or LOWER Accumulator

44

4 word times
Does not turn on Branch Control

Not affected

PRINT FROM D-ADDRESS PRD

INSTRUCTION WORD FORMAT
COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
16 000 ——= 127 (ANY) (NEXT ADDRESS) 0/1
i OOO Culs n 2 17 {e 24 |25 0] n

If the D-track field of the Instruction Word contains 000—>063, prints
the character it represents on the selected output device(s), If the
D-track field contains 064—>127, selects the input and/or output de-
vices or modes it represents. (See selection table below), The I/0
interlock will be turned on, preventing the execution of another print
instruction until completion of the current one, if the D-sector field
contains any sector other than the first optimum sector (instruction

location + 2),

passed,

If this sector is specified, the interlock will be by-

The D-track and D-sector values may be modified by indexing,

D-track

64
65
66
67
68
69
70
71
72
73
74
75
76-94
95
96
97

Minimum time-—-——————- 4 word times
Overflow-——————n—__ Not a factor
Branch Control-——-—-——- Not affected
Registers affected---None

4500
4500
4500
4500
4500
4500
4500
4500
4410
4410
4410
4410

4500

INPUT/OUTPUT SELECTION CODES

Reader input

Reader input--Punch output

Reader input--Typewriter output

Reader input--Punch and Typewriter output
Typewriter input

Typewriter input--Punch output

Typewriter input--Typewriter output
Typewriter input--Punch and Typewriter output
Photo-reader, Forward and Search
Photo-reader, Reverse and Search
Photo-reader, Forward

Photo-reader, Reverse

Available for additional units

Master reset (reset all units)

Available

Punch output

45

98 4500 Typewriter outpuf

99 4500 Punch and Typewriter output
100 Available
101 4500 Punch output
102 4500 Typewriter output
103 4500 Punch and Typewriter output
104,105 Search Mode
106 4440 High Speed Punch
107-124 Available
125 Copy Mode on
126 Copy Mode off
127 Reset output units
NOTES :

1, Selection of a new input device automatically resets the previous
one, Only one input device may be in the system at a time,

2, Any combination of output devices may be included in the system

at one time, A reset command is necessary to drop an output de-
vice from the system,

46

PRINT FROM UPPER PRU

INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
17 000 —= 127 (ANY) (NEXT ADDRESS) 0/1
olf)oa’ 4ls n 2 1718 24 825 08 N

If the D-track field of the Instruction Word contains 000-—»063, prints
the character represented by the combination of bits 6 and 7 from the
Instruction Word followed by the high order four bits of the UPPER Ac-

cumulator,

If the D-track field contains 064 —> 127, prints the character represen-
ted by the high order six bits of the UPPER Accumulator,

The I/0 interlock will be turned on, preventing the execution of another'
print instruction until completion of the current one, if the D-sector
field contains any sector other than the first optimum sector (instruc-
tion location + 2), If this sector is specified, the interlock will be

bypassed,

The D-track and D-sector values may be modified by indexing.

Minimum time--=------- 4 word times
Overflow-——-eeeeeoee - Not a factor
Branch Control--—--—-- Not affected

Registers affected---None

EXT s

INSTRUCTION WORD FORMAT

COMMAND

D-TRACK

D-SECTOR

N-TRACK

N-SECTOR

X-TAG

18

(DATA ADDRESS)

(NEXT ADDRESS)

0/1

o[0010 .

H|12 17

24 125

30

31

Produces, in the UPPER Accumulator, the logical product of the contents
of the UPPER Accumulator and the contents of the memory location speci-

fied by the Data-address,

The resultant product will contain 1's in

only those bit positions which are set to 1 in both the UPPER Accumula-
tor and the memory word,

The Data-address may be modified by indexing,

Miriimum time
Overflow—-———m—eem e

Branch Control
Registers affected---UPPER Accumulator

INITIAL CONTENTS

MEMORY REGISTER

A

UPPER

[

r ACCUMULATOR

4 word times
Not a factor
Not affected

FINAL CONTENTS

MEMORY REGISTER

77K

UPPER ACCUMULATOR

48

LOGICAL (A x B)

MASKED MERGE LOWER

INSTRUCTION WORD FORMAT

MML

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
19 (DATA ADDRESS) (NEXT ADDRESS) o/
1
oiCO” als n|12 17 hie 24 | 25 ol u

!

The contents of the memory location specified by the Data-address are
merged with the contents of the LOWER Accumulator under control of the
In those bit positions where the UPPER

mask in the UPPER Accumulator,

Accumulator contains 0 s,
bit positions where the UPPER Accumulator contains 1's,

the LOWER Accumulator is retained,

In those
the contents

of the memory word replace the corresponding contents of the LOWER Ac-

cumulator,

The Data-address may be modified by indexing,

INITIAL CONTENTS

MEMORY REGISTER

Minimum time
Overflow——— e
Branch Control

4 word times
Not a factor
Not affected

Registers affected---LOWER Accumulator

A

UPPER ACCUMULATOR

MASK

LOWER ACCUMULATOR

C

g ———

FINAL CONTENTS

MEMORY REGISTER

7777

UPPER ACCUMULATOR

U787,

LOWER ACCUMULATOR

 §

49

COMBINED A & C

o CME COMPARE MEMORY EQUAL

~_ INSTRUCTION WORD FORMAT

COMMAND D-TRACK " D-SECTOR N-TRACK N-SECTOR X-TAG
20 . » (DATA ADDRESS) (NEXT ADDRESS) 0/1
N "
OIU“\)D 485 n|12 17 hs 24 125 300 0

Prior to performing the specified comparison, the Branch Control is
turned off,

Selected bits of the UPPER Accumulator are then compared with corres-

' ponding bits in the memory location specified by the Data-address,
Only those bit positions indicated by 1's in the LOWER Accumulator
mask are compared, If the selected values are identical, the Branch
Control is turned on to indicate a successful comparison,

If the instruction is being executed in the Repeat Mode, the Sector
Reference Timing Track is copied into bits 25— 30 of the INDEX Re-
gister during each comparison until a successful comparison is made
or until completion of the repeat function, A successful comparison
inhibits any furthef copying of the timing track, The memory loca-
tion containing the value which compares successfully may then be
determined by reference to the INDEX Register,

The Data-address may be modified by indexing,

Minimum time---——————- 4 word times
Overflow-——————cceo—— Not a factor
Branch Control---—---- Conditionally set "On" or "Off"

Registers affected---INDEX Register if executed in
Repeat Mode,

50

COMPARE MEMORY GREATER

INSTRUCTION WORD FORMAT

CMG

COMMAND

D-TRACK

D-SECTOR

N-TRACK

N-SECTOR

X-TAG

21

(DATA ADDRESS)

(NEXT ADDRESS)

on

10101 I

n

12

24 425

30

Prior to performing the specified comparison, the Branch Control is

turned off,

Selected bits of the UPPER Accumulator are then compared with cor-

responding bits in the memory location specified by the Data-address,

31

Only those bit positions indicated by 1's in the LOWER Accumulator mask
If the selected value in memory is greater than, or equal

are compared,

to the selected UPPER Accumulator value, the Branch Control is turned on

If the instruction is being executed in the Repeat Mode, the Sector Re-
ference Timing Track is copied into bits 25— 30 of the INDEX Regis-

ter during each comparison until a memory value equal to, or greater

than the accumulator value is found, or until completion of the repeat
function, If such a value is found, any further copying of the timing
The memory location which contains this value can
then be determined by reference to the INDEX Register,

track is inhibited,

The Data-address may be modified by indexing,

Minimum time
Overflow———emecee
Branch Control

4 word times
Not a factor
Conditionally set '"On or Off"

Registers affected---INDEX Register if executed in
Repeat Mode,

51

THi

TRANSFER ON MINUS

INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
22 (TRANSFER ADDRESS) (NEXT ADDRESS) 0/1
0.0‘ ”0 4 nh2 17 §18 24 825 RV)
If the UPPER Accumulator is negative (a "1" in bit position zero), con-

trol is transferred to the instruction specified by the Transfer Address,

If the value is positive,

the instruction has no effect,

instruction is that specified in the Next-address field,

The Transfer Address may be modified by indexing,

Minimum time
Overflow
Branch Control

4 word times
Not a factor
Not affected

Registers affected---None

52

and the next

TRANSFER ON BRANCH CONTROL

INSTRUCTION WORD FORMAT

TBC

COMMAND

D-TRACK

D-SECTOR

N-TRACK

N-SECTOR

X-TAG

23

(TRANSFER ADDRESS)

(NEXT ADDRESS)

0/1

0’0”[4

1t the Branch Control is on,

lllm

17

specified by the Transfer Address,

If the Branch Control is off, the instruction has no effect,

18

24 L25

30

31

controi is transferred to the instruction

and the Branch Control is turned off,

next instruction is that spec1f1ed in the Next-address f1e1d

The Transfer Address may be modified by indexing,

Minimum time

——————— 1

Overflow-——————cmuouo Not
Branch Control
Registers affected---None

53

-—---Set

4 word times

a factor
to "Off"

and the

STU

STORE UPPER

INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-TRACK N SECTOR X-TAG
24 (DATA ADDRESS) (NEXT ADDRESS) 0/1
0”000 4 1 h2 17 Le 24 b 25 30 1 31

Stores the contents of the UPPER Accumulator into the memory location

specified by the Data-address,

The Data-address may be modified by

INITIAL CONTENTS

MEMORY REGISTER

Minimum time
Overflow
Branch Control

replacing its current contents,

indexing,

______ 4 word times
______________ Not a factor
~~~~~~~ Not affected

Registers affected---Specified memory location

S,
G v

UPPER ACCUMULATOR

FINAL CONTENTS

MEMORY REGISTER

g B

UPPER ACCUMULATOR

U787




STORE LOWER STI_

INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
25 {DATA ADDRESS) (NEXT ADDRESS) 0/1
oiidO[ als 1 b2 17 his 24 125 % T

Stores the contents of the LOWER Accumulator into the memory location
specified by the Data-address, replacing its current contents,

The Data-address may be modified by indexing.

INITIAL CONTENTS

MEMORY REGISTER

Minimum time

Branch Control

——————— 4 word times
Overflow———————eeeeoo Not

——————— Not

a factor
affected

Registers affected---Specified memory location

LOWER ACCUMULATOR

FINAL CONTENTS

MEMORY REGISTER

o

LOWER ACCUMULATOR

55

7877777




CLU CLEAR UPPER

INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
26 (DATA ADDRESS) (NEXT ADDRESS) 0/1
o”@lo als 1|I12 17 his 24 ¥ 25 L EEN

Stores the contents of the UPPER Accumulator into the memory location
specified by the Data-address, replacing its current contents, Clears
the UPPER Accumulator to zero,

The Data-address may be modified by indexing.

Minimum time-—=——mee- 4 word times
Overflow-——weeomeae—o Not a factor
Branch Control-——-——--- Not affected

Registers affected---Specified memory location and
UPPER Accumulator

INITIAL CONTENTS FINAL CONTENTS
A MEMORY REGISTER MEMORY REGISTER
UPPER ACCUMULATOR UPPER ACCUMULATOR

B ——000——

56



CLEAR LOWER

INSTRUCTION WORD FORMAT

CLL

COMMAND

D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
27 (DATA ADDRESS) (NEXT ADDRESS) 0/1
o//C)/I 41s |||12 17 his 24'25 3ol 31

Stores the contents of the LOWER Accumulator into the memory location
specified by the Data-address, replacing its current contents,
the LOWER Accumulator to zero,

The Data-address may be modified by indexing,

iNITIAL CONTENTS

MEMORY REGISTER

Minimum time-—-——————-
Overflow————eemeeeeeo
Branch Control

4 word times
Not a factor
Not affected

Clears

Registers affected---Specified memory location and
LOWER Accumulator

7222222223

LOWER ACCUMULATOR

FINAL CONTENTS

MEMORY REGISTER

57

LOWER ACCUMULATOR

——000——




ADU

ADD TO UPPER

INSTRUCTION WORD FORMAT

COMMAND

D-TRACK

D-SECTOR

N-TRACK

N-SECTOR

X-TAG

28

(DATA ADDRESS)

(NEXT ADDRESS)

0/1

°"i60 4

5 HI]z

17

24

25

30

31

Adds the contents of the memory location specified by the Data-address

to the contents of the UPPER Accumulator,

Accumulator,

The Data-address may be modified by indexing.

Minimum time
Overflow
Branch Control

4 word times
Turns on Branch Control
Turned on by overflow

Registers affected---UPPER Accumulator

INITIAL CONTENTS

MEMORY REGISTER

A

UPPER ACCUMULATOR

FINAL CONTENTS

MEMORY REGISTER

Retains the sum in the UPPER

V77

%777

UPPER ACCUMULATOR

58

A+B




ADD TO LOWER ADL

INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-IRA.CK N-SECTOR X-TAG
29 (DATA ADDRESS) (NEXT ADDRESS) 0/1
0”/0/ 415 11'12 17 418 ’ 24'25 ol

Adds the contents of the memory location specified by the Data-address

to the contents of the LOWER Accumulator, Retains the sum in the LOWER
Accumulator,

The Data-address may be modified by indexing,

Minimum fime ————————— 4 word times
Overflow————eemea____ Turns on Branch Control
Branch Control-------Turned on by overflow

Registers affected---LOWER Accumulator

INITIAL CONTENTS : FINAL CONTENTS

MEMORY REGISTER MEMORY REGISTER

A U727

LOWER ACCUMULATOR LOWEP ACCUMULATOR

B - +s

59



SBU SUBTRACT FROM UPPER

INSTRUCTION WORD FORMAT

COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
30 (DATA ADDRESS) (NEXT ADDRESS) 0/1
0“”0 415 |1||2 17 §1s 24 § 25 30 3

Subtracts the contents of the memory location specified by the Data-
address from the contents of the UPPER Accumulator, Retains the dif-
ference in the UPPER Accumulator,

The Data-address may be modified by indexing,

INITIAL CONTENTS

MEMORY REGISTER

Minimum time-——-————- 4 word times )
. Overflow-——--—- ————— Turns on Branch Control
‘Branch Control------- Turned on by overflow

Registers affected---UPPER Accumulator

FINAL CONTENTS

MEMORY REGISTER

A

7227777

UPPER ACCUMULATOR

UPPER ACCUMULATOR

B-A

60



INSTRUCTION

SUBTRACT FROM LOWER

SBL

WORD FORMAT
COMMAND D-TRACK D-SECTOR N-TRACK N-SECTOR X-TAG
31 (DATA A.DDRESS) (NEXT ADDRESS) 0/1
0 ”“/ 4 nln 17 he 24025 ol n

Subtracts the contents of the memory location specified by the Data-

address from the contents of the LOWER Accumulator,

ference in the LOWER Accumulator.

The Data-address may be modified by indexing,

INITIAL CONTENTS

MEMORY REGISTER

Minimum time
Overflow—————— . ___

——————— 4 word times
Turns on Eranch Control

Branch Control----—--- Turned on by overflow
Registers affected---LOWER Accumulator

A

LOWER ACCUMULATOR

B

22777

FINAL CONTENTS

MEMORY

REGISTER

Retains the dif-

61

LOWER ACCUMULATOR

e

B-A




PROGRAMMING
TECHNIQUES

A Y

Programming, in general, may be thought of as encompassing three separéte
areas of activity--organization, coding and testing,

Program organization involves a determination of the processing methods
to be used, the format of input and output data, the storage and arrange-
ment of computational tables and constants, and the sequence in which the
various operations within the program are to be performed, It is often
convenient to divide a lengthy program into a number of smaller units,
called subroutines, each of which performs some well-defined function
necessary to the operation of the program,

Program coding is the process of perparing the step-by-step list of in-
structions that the computer is to execute in performing a required
processing task, This coding may be in absolute form (machine language)
which is directly assimilable by the computer, but is more often in some
symbolic form which, in turn, requires translation by a previously writ-
ten program as it is loaded into the computer, In any case, the coded
program must represent an unambiguous statement of the operations to be
performed, the locations of the data to be operated upon, and the se-
quence of execution of the included instructions,

Program testing, or "debugging', necessarily follows the coding of a
program or subroutine, It is a rare program which functions perfectly
on the first try, Normally, the first consideration in debugging is the
logical design of the program; that is, the sequencing and storage of
the program and its data, When it has been determined that the program
has no unexplained halts or endless loops, it is usual to verify some
program output against predetermined expected results,

This being accomplished, it is advisable to test the limits of the program
with respect to the designed value ranges and data handling capacity,
Finally, if the program has been written and checked out in the form of
individual subroutines, an assembly test must be run to eliminate any
storage conflicts and to assure proper communication between these sub-
routines,

62



PROGRAM ORGANIZATION

In order to effectively organize a program to be executed by the computer,
the problem must first be defined in such a way as to enable the program-
mer to evaluate the program requirements in terms of input, output, table
structure and memory utilization,

Consider the following hypothetical problem:

An air freighter wishes to provide the fastest possible service to
any destination from any one of five distribution bases, He has at
his disposal 25 aircraft consisting of five each of five different
types, Each type has a different cruising speed and range, Fol-
lowing each delivery, the aircraft is to be routed to that base
which is nearest in terms of time. An aircraft may be removed from
service or returned to service at any time., When an aircraft has
logged 100 hours of flight time, it must be removed from service for
maintenance,

At any given time, the aircraft may be dispersed in any manner among
the five bases or in the air, Following any landing, the aircraft
must be allowed one hour of ground time before a subsequent take-off,

The program must accomplish the following functions:

1. In response to an input message, select the aircraft which will
provide the fastest service to the specified destination, The input
message is to consist of the name of the destination, the time of
day, and the course, distance and wind from each of the five bases,

2. Print an Aircraft Assignment message consisting of departure
base, destination, ETA to destination, new assigned base, ETA to
new base, and aircraft number,

3. Print a note if service cannot be provided to a specified des-
tination,

4. Print a note if more than 12 aircraft are out of service,

5. In response to an input message, remove a specified aircraft
from service or restore an aircraft to service,

INPUT MESSAGES

Two types of input message must be recognized and processed by the program;
an Aircraft Assignment Request message, and an Aircraft Availability message,
The format of the input message should be such that it imposes no undue in-
convenience on the person preparing the message, and that it may be handled
in logical sequence by the progran,

63



The A/C Assignment Request message may be conveniently composed as fol-
lows: ‘

Destination *

Time of Day*

Base * Course/Distance/ * Wind Direction/Wind Velocity/ *
Base * Course/Distance/ * Wind Direction/Wind Velocity/ *

END *

Destination may be any place name not exceeding 42 characters in length,
including spaces,

Time of Day is entered in hours and minutes of the 24 hour clock,

Base must consist of the city name only and must be one of the five de-
parture points, Boston, Atlanta, Chicago, Dallas and San Francisco,

Course/Distance/ must be entered as a compass course of up to 3 digits
followed by a slash (/) followed by a distance of up to 4 digits fol-
lowed by a slash (/), Wind Direction/Wind Velocity/ must be entered

as a compass direction from which the wind is blowing followed by a
slash (/) followed by a velocity of up to 3 digits, followed by a slash
(/). Wind Velocity may not exceed 200 knots, END is entered as the
word "END" to mark the termination of the message,

The A/C Availability message must give the identification number of the
aircraft involved, and indicate whether the aircraft is being made
available or unavailable, The message may be set up in the following
form:

AIRCRAFT NO, DD-L *

Position "L" will contain the single character U or A, standing for
"unavailable™ or "available', and must be the last character preceding
the stop code, Position "DD" will contain a 2 digit aircraft number
and must precede the stop code by 3 character positions,

OUTPUT MESSAGES

Three types of output message are required of the program; an Aircraft
Assignment message, an Aircraft in Maintenance message, and a Service
Availability message, For the purpose of our hypothetical problem, the
A/C Assignment message will consist of the headings, DEPARTURE, DESTI-
NATION, ETA, NEW BASE, ETA, and A/C NO,, with the appropriate message
entry beneath each heading, If an ETA falls on a day other than the day
of the message, it will be followed by a plus sign (+) with a number indi-
cating the number of days following the day of the message, Thus, an ETA
of 0200 + 2 will mean 2:00 A.,M. on the second day following the message,

64



Return for next message

Initialize

Error
Stops

A

L [

Input and store dest.
or availability message

Input & store message
time, and update
time-to-go in A/C table

| ¢

—P

Error

Input course, distance

and wind and compute

ground speed out and
back for one base

v |V

I

Compute new shortest
time to destination

Return for next base

Store base and
distance in table
with ground speed back

Q

Error

Select new base

No Service

Update entry
in A/C table.

Y

S

|

Print note
if service not
available

Print
message
headings

Print

ldestinatian

| G

FIGURE 8,

Output
A/C assignment
message

65

End of message

Update entry
in A/C table.

M

Print note if
A/C in service
less than 13

Error

Return for next message

System Flow Chart For Example Problem



The Aircraft in Maintenance message will be printed whenever more than 12
aircraft are out of service and will read as follows:

DD AIRCRAFT IN MAINTENANCE

Position DD will contain the number of aircraft in maintenance. The Ser-
vice Availability message will be printed when no aircraft of sufficient

range are available for service to a requested destination and will read

as follows:

SERVICE NOT AVAILABLE TO L,,,,L

Position L --: L will contain the requested destination,

SYSTEM FLOW CHART

Having defined the problem and its input and output requirements, it is
usually helpful to prepare a system flow chart to indicate in broad terms
what each subroutine of the program is to accomplish and to establish the
lines of 1ntercommun1cat10n between subroutines,

Such a flow chart for the problem under discussion identifies ten separate
subroutines, each performing a portion of the overall problem solution and
each communicating with one or more associated subroutines, Breaking a
program down in this manner facilitates its preparation in that each sub-
routine can be separately coded and checked out before attempting to run
the whole program,

TABLE ORGANIZATION AND STRUCTURE

Many programs will consist, in part, of data tables to be used or main-
tained by one or more of the subroutines incorporated in the program,

The structure of the individual tables will be dictated by the manner

in which they are to be used, It is not always possible to completely
define the format of a table until the coding of the subroutine concerned
is accomplished, However, the tables may be roughly defined and later
modified as necessary to adapt them to the coding logic,

For the program under discussion, the primary table is an Aircraft Status
Table consisting of 25 words, each word containing six items of informa-
tion relating to the availability status of a particular aircraft. The
word format for the table is as follows:

66



S LOGGED TIME A/C No, TYPE BASE TIME-TO-GO

o1 718 1213 15}16 18}19 31
Bit 0 - Status indicator., O = In service, 1 = In maintenance,
Bits 1 - 7 -- Air time logged since maintenance in hours (0 -~ 100)

Bits 8 - 12 -- Aircraft number (1 -- 25)

Bits 13 - 15 -- Aircraft type (0 -- 4)

Bits 16 - 18 -~ Current base assignment (1 -- 5)

Bits 19 - 31 -- Time in minutes until a dispatched aircraft is available
for re-assignment,

There are two smaller tables which are directly associated with the Air-
craft Status Table as follows:

Airspeed Table -- five words containing the cruising speed in
knots at a "q" of 31 for each of five air-
craft types,

Range Table -- five words containing the range in minutes
at a "q" of 31 for each of five aircraft
types,

When an A/C Assignment Request message is received, the departure base
is input in four-bit mode and compared with the contents of a six word
Base Table in order to determine the identification number of the base,
The last word of the Base Table contains the four-bit configuration for
END and serves to identify the end of a message,

For solution of the wind triangle to compute ground speed, a 91 word
table of sines is used with the values scaled at a "q" of 1,

Four tables are used to hold preset print images for the typed program
output, In addition to the above preset tables, the program generates
temporary tables as follows:

Destination Storage -- eight words used to hold the input destina-
tion in alphanumeric form until it is printed as
part of an output message,

Sin W Storage -- Five words used to hold the sine of the angle op-
posite the wind vector for five airspeeds,

Ground Speed to Destination -- Five words used to hold the computed
ground speeds to destination for five aircraft types,

Ground Speed to New Base -- 25 words used to hold ground speeds and
distances for five aircraft types to five bases,

67



PROGRAM CODING

A program may be coded in any one of several forms or languages each with
its own rules of procedure to be followed, As previously stated, machine
language implies numerical coding in a form which corresponds directly
with the internal word and memory formats employed in the design of the
computer, This language, although meaningful to the computer, requires
considerable experience on the part of the programmer before it can be
handled with any degree of facility, It further imposes on the program-
mer the burdens of optimizing and memory storage allocation,

Compiler languages are problem oriented languages which require proces-
sing by a compiler program for conversion to a language usable by the
computer or by an assembly program, Compiler languages normally are in
a form which closely approximates standard algebraic notation, The RPC-
4000 compiler, COMPACT, is the subject of a separate publication,

The language which will best serve our purpose in discussing programming
techniques is the language of the assembly program, ROAR (RPC-4000 Opti-
mizer and Assembly Routine), An assembly program permits coding in a
symbolic language in which each machine instruction is represented by one
symbolically noted assembly instruction, The assembly program ROAR, will
interpret mnemonic commands and will assign optimum absolute memory
locations for locations which are expressed symbolically, It will also
act upon a number of pseudo-instructions to reserve blocks of memory, set
up addressable regions for block storage, set up constants, etc, These
pseudo-instructions will be discussed as they are encountered in out study
of techniques,

THE ROAR CODING FORMAT

The coding sheets used with ROAR consist of five fields with the headings,
Location, Order, Data-address, Next-address and Comments, The vertical
line to the right of each field implies a "stop' code (*) which must be
entered into the punched symbolic input tape. ROAR requires five such
"stop" codes for each coding sheet entry, whether or not the associated
field is blank,

The Location, Data-address and Next-address fields may contain an ab-
solute memory location or a symbol representing a location to be assigned
by ROAR, Symbolic addresses may not normally exceed five characters in
length and must contain at least one non-numeric character, Six-char-
acter addresses are used only for certain special addressing functions,
Fields may be left blank subject to certain rules to be defined later,

The Order field will contain a machine command or a ROAR pseudo-in-
struction and may be in mnemonic or numeric form, An indexed command

is indicated by appending an X immediately preceding the order code, If
a numeric command is used, the X must precede at least two digits,

68



The Comments field may contain any information the programmer desires
except that no 'stop'" code may be used except the one which identifies
the end of the field,

RPC-4000 CODING SHEET

DATA | NEXT COMMENTS
ION |ORDER
LOCAT ADDRESS |ADDRESS
L |
START| RAU 1234 Bring contents of location 1234

XSTU SAVE NEXT|Store in SAVE plus index value

NEXT X24 HOLD Store in HOLD plus index value

HLT O CONT|Halt

SPACE RESERVATION

Usually, the first step in coding a program is to assign storage locations
for various tables and word blocks required by the program, It is also
often desirable to pre-establish absolute addresses for particular key
symbols, as for example, the initial location of the program,

The ROAR pseudo-instruction, RES, will cause ROAR to reserve the block of
memory between and including the specified initial and final location, By
"reserve" is meant that ROAR will not assign, to any instruction or con-
stant, any location in the reserved area except through the use of the
pseudo-instruction, EQV,

The pseudo-instruction, REG, sets up and reserves a block of memory which
may be addressed by a special region address symbol, containing a region
tag followed by a number indicating the word location relative to the
initial location of the region, The pseudo-instruction EQR, will equate
a location symbol with any desired memory location and will then reserve
this location, preventing its subsequent assignment to another symbol,
except through the use of the pseudo-instruction EQV,

The pseudo-instruction, EQV, functions essentially the same as EQR, except
that it is assumed that the location has been previously reserved,

Consider the following coding sequence for space reservation in our example
problem:

DATA NEXT
LOCATION ORDER ADDRESS ADDRESS COMMENTS
RES 4000 122OQ ROAR, CATRO, BOOTSTRAP
REG A03500 3531 Aircraft Status Table

60



DATA NEXT

LOCATION ORDER ADDRESS ADDRESS COMMENTS
REG  D03532 3539 Destination or Availability Message
REG  TO03540 3547 Elapsed time
REG  W03548 3551 Instruction words
REG V03552 3556 Sin W for 5 airspeeds
REG  B03600 3605 Base Reference Table
REG PO3606 3610 Airspeeds
REG GO3611 3615 Ground Speeds to Destination
REG  R03616 3620 Range in minutes
REG  M03621 3631 Base print image
REG N03632 3636 A/C Maintenance print image
REG  (C03637 3641 -Service Not Available- print image
REG  HO3642 3652 Column headings
REG  S03700 3826 Sine Table
RES 3827 3851 Ground Speeds to New Base
EQV  EGSNB 3827 First location of Ground Speeds to
New Base
EQR  START 0 Beginning location of program

The first entry serves to confine the program to the lower 40 tracks of
memory, Since ROAR, itself, does not occupy any memory below track 52,

this allows us to keep ROAR intact in memory while checking out or operating
our program, It also allows the space from track 40 through track 51 to be
used for the bootstrap routine which ROAR provides for loading the assembled
program into memory, and for utility programs, such as Change and Transfer
which are helpful in debugging. The double access tracks, 123 thru 126 and
the recirculating track, 127, are automatically reserved by ROAR and need
not be reserved by the program,

The next 14 entries set up region storage for the tables discussed pre-
viously, and in one instance, Region W, for four program instructions which
require contigueus memory storage, Region S, for example, will occupy 91
locations, beéinning at location 3700 and ending at 3826, Location 3700
will be addressed in the program by the special regional address, A0OOOO1,
and location 3826 by AQ0091,

The table of ''ground speeds to new base™ is not set up as a region, but
the space is reserved by the RES pseudo-instruction, The initial loca-
tion is symbolized EGSNB, hence the symbol is made equivalent to location
3827, using the pseudo-instruction EQV.

Finally, the beginning location of the program is established as START
and is assigned the location 00000 which is reserved through the use of
the EQR pseudc-instruction, Any reference in the program to the symbo-
lic location START will be interpreted by ROAR as absolute location 00000,

Note that ‘the location column in all of the above is left blank, Since

none of tne pseudo-instructions RES, REG, EQR, or EQV, generate any words
to be stored in memory, a location for the pseudo-instruction is inap-

70



propriate, Note also that, in any field, leading zeroes may be omitted,

SUBROUTINE R

We will bypass, for the present, the discussion of initialization, since
it cannot be determined what initialization is necessary until the other
subroutines have been coded,

Subroutine R, as indicated on the System Flow Chart, is to input and
store in memory the destination portion of an A/C Assignment Request
message, or an entire A/C Availability message, It must, of course,
determine which type of message is being processed,

If the message is an A/C Assignment Request, Subroutine R is to perform
the additional functions of reading in, from tape or typewriter, the
message time, and up-dating the Time-to-go item in the Aircraft Status
Table,

It is advisable, for each subroutine in a program, to draw a detailed

flow chart of the logical pattern to be followed in coding the subroutine,
Such a flow chart enables the programmer to clearly visualize the instruc-
tion sequences necessary to accomplish the required functions, It is ex-

tremely helpful in avoiding the many pitfalls and logical traps which are

a part of any complex problem,

The initial action of Subroutine R is to test the setting of SENSE SWITCH
1. If down, typewriter input and output will be selected: if not, tape
reader input and typewriter output will be selected, It is assumed at
this point that the LOWER Accumulator will have been set to 8-word length
during initialization, An input is called for and stored in the eight
word Region D, A test is then made to determine the type of message and,
if an Aircraft Availability Message, control is transferred to Subroutine
V. Otherwise, the time of day is input,

The time of day is input in hours and minutes of the 24 hour clock, The
hours and minutes are now binarized separately, and converted to minutes
in binary form. This time is then compared with the previous message
time to compute an elapsed time and this elapsed time is duplicated in
the eight words of Region T, The new time of day is then stored in lo-
cation, MTIME,

A block of eight words is brought into the 8-word LOWER from the Air-
craft Status table stored in Region A, The elapsed time is then sub-
tracted from each of the eight words in the LOWER, An eight pass loop
is programmed here in which each word in turn is exchanged into the

UPPER Accumulator and tested for a negative sign bit, If negative, the
associated aircraft has completed its last assignment and its time-to-go
is set to zero, When eight words have been processed, they are precessed
to their original positions in the LOWER, and stored back into Region A,

71



No

Select-
Reader Input
TW output

Select-
TW Input

TW Output

Input
dest. or
availability
message

Store 8 words
in Region D
table. Set
L to 1 wd length

Availability
message ?

Binarize two
hour digits.

Hold hours
inX
Clear U.

Binarize two
minute digits.

A

Hold minutes
inX Put
hours in U.

Convert hours to
minutes and store
in RECRC4

Compute total
time in minutes.

FIGURE 9,

\ 4

C (X) +C (RECRC4)
Clear X

Compute
elapsed time
since previous

message

Store elapsed

time in eight

locations of
Region T.

Store new

time-of-day

in MTIME.
SetLto

8 wd length

Put time-to-go
for 8A/Cin
8-word L.

Modify address
of ABOVE

Y

Subtract elapsed
time from ail
8 words.
Clear X.

U— 1

L—1

to equal X
setling

Elapsed
time > time-
to-go?

Clear
time-to-go
to0

y

—p Step X by 1

Flow Charﬁ -

72

Finished
8A/C?

Table
finished ?

Step X by 8

3

Store new
time-to-go for
8 A/C in table

4

ABOVE

SetXto 0,
8 160r 24

Precess conents
of 8-wd lower
to original pasition

Example Subroutine R



The index reference is increased by eight, and a test is made to determine
whether the entire table has been updated. If not, another pass is made

through the main loop to process the next eight words, If finished, con-
trol is transferred to Subroutine T,

Consider now the ROAR coding of Subroutine R,

DATA NEXT
LOCATION ORDER ADDRESS ADDRESS
TAG R
INPUT SNS 100
TBC W
PRD 6699 MREAD
TW PRD 7099 MREAD
MREAD INP 6400
LDC NT7
CLL DO0001
EXC 298
EXC 3698
RAU 1A
RAL 3F
CMG DO0O001
TBC AVMES
CLU JUNK
EXC 598
INP 0
EXC 298
SRL 12
MPT 98
CLU RECRCO
SRL 104 PR2
3F HEX 3 FOO00
1A HEX 1 AQ00
NT7 DEC 24
PR2 ADU RECRCO
EXC 1298
SRL 104
MPT 08
CLU RECRC7
SRL 104
ADbu RECRC7
EXC 1298
SRL 102
STU RECRCO
SRL 104
SBU RECRCO

73

COMMENTS

Message input

Test Sense Switch 1

If down, go to TW

Select reader input, typewriter output
Select typewriter input, typewriter
output

Input destination or availability mes-
sage

Store input
Clear U
Clear X, L =1

Check for number in bits 14~19
If yes, go to AVMES

Clear U

Clear L and X

Time of Day

L to U

Binarize hours

Mask for last digit of A/C number
Test constant

Repeat count of 7

Hours to X, 0 to U

Binarize minutes

Minutes to X, hours to U
Convert hours to minutes



DATA NEXT

LOCATION ORDER ADDRESS ADDRESS COMMENTS
CLU RECRC4 Store converted hours
EXC 1298 Minutes to U, 0 to X
ADU RECRC4 Compute time in minutes
EXC 198 Message time to L
SBU MTIME Compute elapsed time
™I POS Test for minus
ADU DAY POS If yes, add 24 hours
POS LDC NT7
STU TOO0O1 Store elapsed time in 8 locations
CLL MTIME Store new message time
EXC 1698 L =28
RAU TMSK PR3
DAY DEC 31 1440 24 hours in minutes
PR3 LDC NT7
XMML.  A00001 Get current time-to-go for 8 A/C
LDC NT7
SBL TOOO01 Compute new time-to-go
LDX 0 FLIP
FLIP XEXC 390 UtoL, L to U
TMI BYP Test time-to-go for minus
CLU JUNK BYP If yes, clear to zero
BYP XLDX 1 Step X
CXE 9 Test for finish 8 A/C
TBC FLIP If no, go to FLIP
LDC NT62
EXC 398 ABOVE Precess L to initial position
ABOVE LDX 00
LDC NT7
XMST A0Q0001 Store new time-to-go's
XLDX 8 Step X by 8
CXE 32 Test for finish - full table
TBC TBELO If yes, go to TBELO
EXC 1298 X toU, Uto X
SAU ABOVE Set up for next pass
EXC 1298 PR3 X to U, U to X
NT62 DEC 24 62 Repeat Count of 62
TMSK HEX 0 1FFF Mask for time-to-go

The first entry is the ROAR pseudo-instruction TAG, It requires no
Location and no Next-address. It causes ROAR to append the character
from the Data-address field to every symbolic location or address of
four characters or less, as it is placed in ROAR's bookkeeping Symbol
Table, This allows identical symbols to be used for other locations

in the other subroutines of the program, without being ambiguous to
ROAR in making its memory allocation assignments, Five character sSym-
bols are not tagged in this manner, and are used wherever communication

74



between subroutines is required,

There are two entry points in this subroutine, labelled INPUT and MREAD,
The normal entry is INPUT, MREAD is used for entry only after certain
error stops,

The rules governing blank fields are these, For any instruction word,
either the Data-address or the Next-address, but not both, may be left
blank, If one of these fields is left blank, the location field of the
following instruction or constant must also be blank, If both the Data-
address and the Next-address fields of an instruction are occupied, the
Location field of the following instruction or constant must contain a
symbolic or absolute location, When ROAR encounters a blank address, it
supplies an optimum memory address and assumes that the following word

is to be located at that address in memory, These rules do not apply to
such pseudo-instructions as TAG where no memory allocations are involved,

The first action of Subroutine R is to select input and output devices
depending on the setting of SENSE SWITCH 1, Note that the PRD instruc-
tions contain the artificial Data-sector 99, This causes ROAR to assign
the same sector number as was assigned to the location of the instruction,
This sector assignment has no bearing on optimization, but is necessary in
order to honor the print interlock (See pages ).

At location, MREAD, an Input instruction is executed to read into the
8-word LOWER a destination or an Aircraft Availability message, A
Repeat Count of 7 is then set by the LDC instruction, and the eight
words in the LOWER are cleared into Region D,

The UPPER Accumulator and the INDEX Register are now cleared to zero,
The artificial sector number, 98, in the Exchange instructions causes
ROAR to assign an optimum sector number for the Data-address,

At this point it is necessary to determine the type of message being
processed, This is accomplished by testing the third from last char-
acter of the message just stored in Region D against a six-bit char-
acter, A, in the corresponding bit positions of location 1A, An A/C
Availability message will always have a number in this character
position, An Aircraft Assignment Request message will always have

an alphabetic character or punctuation mark in this position and the
magnitude of its bit pattern will always be equal to or greater than
the character A, If the comparison test indicates that this character
position contains a number, control is transferred to Subroutine V at
location AVMES,

When it is determined that a destination is in Region D, the time of

day is input with the LOWER in l-word mode, This time must now be con-
verted from hours and minutes, which are in the LOWER in BCD form, to
minutes in binary form, The first character of the hours is placed in
the low order four bits of the UPPER, multiplied by 10, and cleared into

75



the Recirculating Track, 127, The second character is now shifted into
the UPPER and added to the value placed on Track 127, The hours in
binary are then stored temporarily in the INDEX Register, and the minutes
are binarized in the same manner. Next, the binarized minutes are stored
in the INDEX Register while the hours are brought back to the UPPER and
converted to minutes,

This could of course be accomplished by multiplying by 60, But for certain
small values, it is faster to program this multiplication by a series of
steps such as is used here, The hours are first shifted left two binary
places, which produces a multiplication by 4, This value is stored in
Track 127 and the hours, still in the UPPER, are shifted left four more
places, producing a multiplication of the original value by 64, The word
stored on Track 127 is now subtracted from the contents of the UPPER,
leaving a value which is 60 times the original hours value, This is
combined with the minutes held in the INDEX Register to complete the time
conversion process,

Before proceeding with the next instruction sequence, there are several
points which should be brought out, The artificial sector number 98 in
the MPT instruction has the same function as was previously discussed
in connection with the EXC instruction, References to Recirculating
Track storage are coded in ROAR language with a 6-character symbol con-
sisting of the letters RECRC followed by a prime modulo 8 sector number,

ROAR will choose as an absolute address the next optimum occurrence from
Track 127 of a location with a sector number whose modulo 8 equivalent
is equal to that entered in the symbol, Thus, for RECRCO, ROAR might
substitute 12700, 12708, ---- 12756, whichever is most optimum,

The three locations, 3F, 1A, and NT7 all contain constants using ROAR
pseudo-instructions, HEX or DEC, A HEX constant is entered with the

first four characters in the Data-address field, and the last four
charag¢ters in the Next-address field, Leading zeroes in a field may be
omitted except that at least one character must be entered, The DEC
constant is entered with the desired '"q" in the Data-address field, and
the decimal number to be converted in the Next-address field, including

a decimal point, if appropriate, and preceded by a minus sign if negative,

Resuming our discussion where we were so rudely interrupted, we now
proceed to compute the elapsed time since the last processed message, We
subtract the previous message time held in location MTIME from our new
time and test the sign of the result, If negative, we know that the pre-
vious message occurred yesterday, and we must add 24 hours to produce the
true elapsed time, It is assumed here that less than 24 hours have
elapsed between messages,

After completing the elapsed time computation, it is stored in all eight
locations of Region T, and the new message time is stored in MTIME,

The LOWER Accumulator is now changed to 8-word mode and a mask defining

76



the time-to-go field of the Aircraft Status Table is placed in the UPPER,
Location PR3 marks the beginning of the major or outside loop to be used

in updating the Availability Table, The INDEX Register at this time re-

mains set to zero from a previous instruction, The repeated and indexed

MML instruction brings into the eight words of the LOWER, the contents of

the time-to-go field from the first eight words of the Aircraft Status

Table in Region A, The mask in the UPPER defines the bits to be brought

from memory, The eight identical elapsed time values from Region T are
subtracted from the eight time-to-go's with a single repeated SBU instruction,

Location FLIP marks the beginning of the inside loop in the updating
sequence, The artificial sector number 90 directs ROAR to assign a sec-
tor equivalent to a modulo eight zero, so as to being LO into the UPPER
on the first pass, L is now tested for a negative sign bit, If minus,
the elapsed time must have exceeded the time-to-go and the aircraft is

now available for a new assignment, The time-to-go is, therefore, cleared
to zero, Otherwise the new time-to-go has been computed and we go to 10-
cation BYP where the INDEX Register is incremented by 1, 1Its setting is
now tested to determine whether it has reached 9 and, if not, we return to
location FLIP where the next LOWER Accumulator is brought into the UPPER
at the same time that is replaced by the previously computed time-to-go,

We will exit from the minor lcop when the Index value reaches nine, at
which time eight time-to-go's will have been processed and each will have
been shifted or precessed by one word position in the 8-word LOWER, The
repeated EXC which follows the minor loop is necessary to precess the
eight values to their original positions in the 8-word LOWER so that we
may store them in their proper table locations, The INDEX Register is now
set initially to zero and the new time-to-go's are stored into the first
eight locations of Region A,

The INDEX Register is incremented by 8 and tested for a setting of 32, If
not, the current setting is used to modify the Data-address of location
ABOVE, so that on tne next pass the updated values will be stored into the
proper 8-word block of Region A, We now return to PR3 to repeat the entire
process for the next eight words from the table being processed, When the
entire table has been updated and the INDEX Register setting has reached
32, we exit from Subroutine R to location TBELO, which is the initial lo-
cation of Subroutine T,

SUBROUTINE T

Having updated the time-to-go fieild for all aircraft represented in the
Aircraft Status Table, we may now proceed with the programming of the sub-
routine which will solve the wind triangle to compute ground speed,

As can be seen from the flow chart, the general procedure to be followed

is this, A base is input as part of the A/C Assignment Request message,
and checked against a table of bases, If it is not found, we exit to an

77



Input
Base

Search for
matching entry
in base table

End of
message?

Save base
number in
ESAVB

SetXto 0

Input
course/dist.
or wind
dir. /vel.

T

L]

N Binarize- Find angle W
Number course, distance, > from table
binarized ? wind direction & for ane

wind velocity airspeed
Yes
-‘-’- w ) o
L ,‘L D
Store Store Store Store
i wind wind
distance elogity course direction Yes
Compute
y angle G
180-A-W
Step X by 1 Step X by 1 ( )
Compute
Compute Find sin A ground speed
wind /course from table (2 sin G/sin A)
angle A
A 4
Multiply by Greater
wind velocity than airspeed
{w sin A} plus wind ?
y
Compute sin W
for Less
5 airspeeds than airspeed
(wsinA/a) minus wind ?

7

Compute
ground speed
(Rirspeed plus
wind velocity)

7

Compute
ground speed
(Rirspeed minus
wind velocity)

Store ground
speed to
destination for
one airspeed

Reduce
P counter
by1
4

Store ground
speed back to
base for
one airspeed

]

Compute course
from destination
back to base

FIGURE 10,

T

This pass
finished?

Restore
counter
to5

v

Reverse
exit/return
switch

v

Reverse
ground speed
storage

Return

Exit

78

Flow Chart - Example Subroutine T



error halt in Subroutine B, If it is found to be an end-of-message code,
we exit to Subroutine Q. If the base is found in the base table, its
number is saved in location ESAVB, and its associated course, distance,
wind direction and wind velocity are input, binarized and stored in turn,

The angle between course and wind is now computed and is tested for
equality to O and 180. If either is true, we branch to a part of the
subroutine which will handle these special cases, Otherwise, we find

the sine of the angle from the table of sines in Region S, The sine of
angle A is multiplied by the wind velocity and then divided by the air-
speed for each of five aircraft types, We have now computed the sine of
the angles between the airspeed and ground speed vectors by the equation,
sin W = sin A / a,

At this point, we enter a five pass loop in which we will compute the
ground speed to destination for each of the aircraft types, To ac-
complish this, we find angle W from the sine table, and compute angle

G from the equation, G = 180 - A - W, We can then determine the ground
speed from the equation, g = a sin G / sin A, where g represents the
ground speed and G represents the angle between the airspeed and wind
vectors, Having found the ground speed for one aircraft type, we store
it in Region G and return for another pass through the loop until all
five passes are complete,

We also wish to compute in this subroutine the ground speeds from the
destination back to base, Since the procedure is the same as that

just described, it is necessary only to change the ground speed storage
location, set up the necessary exit switches, compute the new course,
and loop back to repeat the wind triangle solution,

Coding for Subroutine T

The subroutine is entered at location TBELO, where a constant consist-
ing of all 1-bits is brought into the UPPER Accumulator and duplicated
in the LOWER through the EXC instruction, A base input is then called
for in 4-bit mode, Although an alphabetic character cannot be comple-
tely defined in four bits, for our purpose the pattern produced will

be sufficient to identify the base, In the case of SAN FRANCISCO, only
the last eight characters entering the accumulator are of concern,

UPPER and LOWER Accumulators are exchanged, putting a mask in the LOWER
which is used with the repeated CME instruction to find a matching entry
in the base table in Region B, If no match is found, we exit to an error
halt in Subroutine B,

If a match is found, bits 25-30 of the INDEX Register will contain the
sector number of the matching entry, plus 1, It is important for our
purpose that Region B begin at sector 00, If INDEX Register bits 25-30
contain a 6, it indicates that the word END was read from tape, This

79



is determined by exchanging the INDEX Register contents into the UPPER
and comparihg these bits against the test constant at location THRU,

If it is an end-of-message, we exit to location NOMOR in Subroutine Q,
Otherwise, we save the base reference number in ESAVB,

An input instruction is now executed, bringing into the accumulators
the course and distance from base to destination, The termination of
each of these values is marked by a slash (/) which has the numerical
value 14 in 4-bit mode, The maximum number of characters which will

be input is 9, which would bring no more than one into the UPPER, The
course is binarized and, when the / is detected, we branch to the first
location of Region W to store it in location CRSE, The INDEX Register
is stepped by 1, and we return to BACK to binarize the distance, After
storing the distance in EDIST, we loop back to PT2 to input the wind
direction and velocity which are processed in the same manner, Note
that we have used an indexed exit from an instruction sequence to one
of four sequentially stored instruction words, In order to activate
the XTBC, we precede it with an XCXE with a zero Data-address to un-
conditionally turn on the Branch Control,

The determination of angle A is fairly straightforward and should re-
quire no detailed explanation, but it should be pointed out that
"course" refers to the direction from the departure base to the desti-
nation, while "wind direction" refers to the compass direction from
which the wind is blowing,

Solving for sin W in the equation sin W = w sin A/a is simply a matter
of using the first quadrant equivalent of angle A to index into the sine
table to find sin A, and then multiplying by wind velocity and dividing
by airspeed, This is done for an airspeed of 300 knots, To compute sin
W for a 600 knot airspeed, we need only halve the first value by a right
shift of 1, Now adding sin W for 300 knots, gives us sin W for 200
knots and halving this value, gives us sin W for 400 knots, Finally,
multiplying by the constant .8, located in JUG, gives us sin W for 500
knots, These sin W values are stored in Region V in the order in which
they are computed,

With sin W for one airspeed in the UPPER, we now search the sine table
for the first entry equal to or greater than the contents of the UPPER,
We get the found sector plus one from bits 25-30 of the INDEX Register,
subtract one from it, and use it to set the INDEX Register bits 5-17 to
the correct table reference value, Note here the ROAR symbology used

to refer to the double access tracks, The first three characters denote
the track, DBl refers to Track 123, while DB2 refers to Track 125, The
last three characters have the same significance as any other location
symbol, Both DBIQIK and DB2QIK designate the same word on the drum, but
the DB2QIK reference is 16 word times later than DB1QIK, unble access
is used here to permit two references to the same word in 16 word times
instead of the normal 64,

80



After setting the INDEX Register at location DB2QIK, the sine value which
compared with sin W is brought from the sine table into the UPPER, The
five instructions beginning with location PT5 compute an interpolation
factor, If an overflow occurs as a result of the DIV instruction, it
means that an exact match was found in the table and no interpolation is
required, We, therefore, proceed to compute angle G from the equation,

G =180 - A - W, Since we are really interested in the first quadrant
equivalent of angle G, we may simply use the sum of angle A and angle W,
if this sum is 90 degrees or less,

If interpolation for angle G is required, we use the sequence of steps
beginning at location NOVR to compute angle G, Actually, the nearest
integral angle value above the true value is used as an index into the
sine table to get the bracketing sine values, and the interpolation
factor is applied to compute the sine of angle G,

At location STOW, the just computed sin G is stored in RECRCO. We then

set the Repeat Count from the variable parameter in ENTRA, This parameter
will vary from 4 to O depending upon the particular airspeed with which we
are concerned, The repeated RAU instruction will bring into the UPPER each
airspeed in turn from Region P, until the Repeat Count runs out, At this
point, the required airspeed is in the UPPER Accunmulator, The maximum and
minimum possible ground speeds are now computed from the airspeed and wind
velocity, and are placed in recirculating storage, Ground speed is now
computed from the equation, g = a sin G/sin A, It is possible with a nearly
direct head or tail wind to get a ground speed which lies outside the pos-
sible range, The computed ground speed must now be compared against these
limiting values, If it exceeds the maximum value, we branch to TAIL, 1If
it is less than the minimum value, we branch to HEAD, Otherwise, we go to
PT7 where a Repeat Count is set up to enable us to store the ground speed
in the proper location of Region G by a technique similar to that discussed
above,

For those cases resulting in a branch to TAIL or HEAD, ground speed is com-
puted simply by adding or subtracting wind velocity from airspeed before
proceeding to PT7,

When a ground speed has been stored, we proceed to location DECR, where the
Repeat Count parameter is reduced by 1 and tested for a negative value, If
not negative, angle A is brought back into the UPPER., If it is 0, we branch
to TAIL, 1If it is 180, we branch to HEAD. If neither, the Repeat Count is
set up, the next sin W is brought into the UPPER, and we return to AGIN to
compute the next ground speed,

When five ground speeds have been processed, the Repeat Count parameter will
become negative at DECR plus 1, and at DECR plus 2, we will branch to lo-
cation RSET, At RSET, ENTRA is again set to 4, The instruction at TERM is
now modified to change its Next-address to GOON, and the original setting

is saved in EXSW, The instruction at SAGS is modified to change its Data-
address to EGSNB, which is the initial location of the table of ground speeds
from destination to base, The original setting is saved in EGSSW, At GOON,

81



the course is brought into the UPPER, and the reciprocal course from
destination back to base is computed, We now return to location STOB
to compute and store the five ground speeds back to base,

When we again arrive at RSET, location ENTRA and the two switches at
SAGS and TERM are reset to their original values, and at TERM control
is transferred to location ENEXT in Subroutine E,

NEXT

DATA
LOCATION ORDER ADDRESS ADDRESS COMMENTS
TAG T Wind triangle solution for ground
speeds
TBELO RAU ALLF Set to all 1's
EXC 3398 UtoL, L =1
INP 0 Input A/C base
EXC 398 Base to U, mask to L
LDC NT5
CME BO0O0OO1 Search base table
TBC ERRO1 If not there, go to ERRO1
 EXC 898 X to U
RAL SMSK
CME THRU Test for end of message
TBC NOMOR Go to NOMOR if message complete
CLU ESAVB Save base reference
EXC 198 Clear L
LDX 0 PT2
THRU DEC 30 6 Test constant
SMSK  DEC 30 63 Mask for N-sector
B0O0001 HEX FFB8 CD87 Boston
BO0O02 HEX FAD5 A7DA Atlanta
BOOOO3 HEX FC12 CAO08 Chicago
BO0004 HEX FFDA 55AC Dallas
BOO0OOS5 HEX BA7C 2CC8 San F(rancisco)
BOO0O0OO6 HEX FFFF FE7D End
NT5 DEC 24 5 Repeat Count of 5
ALLF HEX FFFF FFFF Mask
PT2 INP 0 BACK Input course/distance or wind
BACK EXC 398 UtoL, L toU
TMI ADD DEE If high order character greater
than 7, go to ADD '
DEE EXC 398 BIN UtoL, L toU
ADD ADU 2AT3
TMI DUN If high order character is /, go to DUN
SBU 2AT3 DEE
DUN EXC 398 UtoL, L toU
XCXE 0 Turn on Branch Control
XTBC  WO0001 0

82



DATA NEXT

LOCATION ORDER ADDRESS ADDRESS COMMENTS
BIN MPT 98 Binarize
CLU RECRCO
SRL 104
ADU RECRCO BACK
WO0001 CLU CRSE GO Store course
W00002 CLU EDIST DOWN Store distance
W00003 CLU DIR GO Store wind direction
W00004 CLU VEL our Store wind velocity
GO X1LDX 1 BACK Step X
DOWN XLDX 1 PT2 Step X
our RAU CRSE STOB Compute angle A
STOB SBU DIR
T™I PT3 Go to PT3 if wind direction greater
than bearing
SBU 18E
TMI CMPL USE
CMPL CLU RECRCO
SBU RECRCO USE
18E DEC 31 180 Constant
2AT3 DEC 3 2 Test constant
PT3  ADU 18E
T™MI CMPL USE
USE STU RECRC7 Store angle A
RAL ALLF
CME ZERO
TBC TAIL
CME 18E
TBC HEAD
CMG oT
TBC SINE Go to SINE if A 90 degrees or less
RAU 18E
SBU RECRC7 SINE
SINE SRL 114
EXC 498 U to X .
XRAU  S00001 Get sine of angle
STU RECRC4 Sin A @ 1
MPY VEL w sin A @ 32
DIV CcC wsin A /a=sinWe 1
STU V00001 Store sin W for a = 300
SRL 1
STU V00002 Store sin W for a = 600
ADU V00001
STU V00003 Store sin W for a = 200
SRL 1
STU V00004 Store sin W for a = 400
MPY JUG PT4

83



DATA NEXT

LOCATION ORDER ADDRESS ADDRESS COMMENTS
JUG DEC o0 .8 Constant
ccC  DEC 31 300 Constant
oT DEC 31 90 Constant
PT4 STU  VOO0005 AGIN Store sin W for a = 500
AGIN RAL ALLF Mask
LDX o
LDC. NT63
CMG ~ S00001 Search sine table for sin W
TBC ANGL If found, go to ANGL
LDX 100 -
LDC NT26
XCMG  S00CQ? Search upper sine table for sin W
. TBC . ANGL ERRO2 If not found, go to ERRO2
ANGL CLU RECRC6 Store sin W
EXC 898 ' X to U
SBU NS1
EXT SMSK Get found sector
SRL 113
SAU  DB1QIK  DB2QIK Set XLDX address to found sector
DB2QIK  XLDX 0 . Set X to relative location in table
XRAU  S00001 PT5 Get comparing table entry
ZERO HLT 0 0 Constant
NS1 DEC 30 1 Constant
NT26 DEC 24 26 Repeat Count of 26
NT63 DEC 24 63 Repeat Count of 63
PTS XSBU  S00000 Subtract next lower entry
CLU RECRCO Save entry interval
RAU  RECRC6 Get sin W
XSBU S00000 Subtract next lower table entry
DIV RECRCO : Compute interpolation factor
TBC NOVR If no overflow, go to NOVR
EXC 898 X to U
SRL 14
ADU  RECRC7 , Compute A plus W
RAL  ALLF
CMG oT ,
TBC SHL If 90 degrees or less, go to SHL
CLU RECRCS
RAU ~ 18E
SBU RECRCS SHL Compute angle G
SHL SRL 114
EXC 498 U to X
XRAU  S00001 STOW Get sin G
NOVR CLU RECRCO
EXC 898 X to U
SRL 14

84



LOCATION ORDER

DATA

NEXT
ADDRESS ADDRESS

SFT

1ATO
PT6

STOW

PO0O0OO1
P0O0002
PO0003
PO0O004
POO00S5
ENTRA
PT7
SAGS
TAIL

HEAD

DECR

ADU
RAL
CMG
TBC
STU
RAU
SBU
CLU
RAU
SBU
SRL
EXC
XRAU

XSBU
MPY
XADU
CLU
LDC
RAU
ADU
STU
SBU
STU
ADU
MPY
DIV
RAL
CMG
TBC

CMG
TBC

DEC
DEC
DEC
DEC
DEC
DEC
LDC
STU
LDC
RAU
ADU
LDC
RAU
SBU
RAU

RECRC7
ALLF
9T

SFT
RECRCS5
1ATO
RECRCO
RECRCO
18E
RECRCS
114
498
S00002
8000
S00001
RECRCO
S00001
RECRCO
ENTRA
PO0001
VEL
RECRC1
VEL
RECRCZ2
VEL
RECRCO
RECRC4
ALLF
RECRC1

RECRC2
HEAD

31

31

31

31

31

24
ENTRA
GO0001
ENTRA
PO0001
VEL
ENTRA
PO0O00O1
VEL
ENTRA

300
600
200
400
500

SFT

PTO6
0000

STOW

TAIL

PT7

SAGS
DECR

PT7

PT7

COMMENTS

Compute A plus W (high)

If 90 degrees or less, go to SET

Complement interpolation factor

Compute angle G (low)

Get sin G (high)

Compute G (low) - G (high) interval
Interpolate

Compute sin G

Save

Get airspeed

Add wind velocity

Save

Save airspeed minus wind velocity
Compute a sin G

a sin G / sin A

If computed ground speed greater than
airspeed plus wind, go to TAIL

If computed ground speed less than

airspeed minus wind, go to HEAD
Airspeed table

Repeat Count parameter
Store ground speed

Get airspeed
Compute ground speed

Get airspeed
Compute ground speed
Get Repeat Count parameter



DATA NEXT

LOCATION ORDER ADDRESS ADDRESS COMMENTS
SBU NT1 Reduce by 1
T™MI RSET If negative, go to RSET
STU ENTRA Store
RAU  RECRC7? Get angle A
CME ZERO
TBC TAIL If A =0, go to TAIL
CME 18E v
TBC HEAD If a = 180, go to HEAD
LDC ENTRA
RAU V00001 AGIN Get next sin W and return to AGIN
RSET ADU NTS5 Reset Repeat Count parameter to 4
STU ENTRA
RAU EXSW Reverse exit/return switch
RAL TERM
STL EXSW PT8
NT1 DEC 24 1
PT8 STU TERM
RAU EGSSW TERM
TERM SAU SAGS - ENEXT
GOON RAU CRSE Compute course from destination to
base
SBU 18E
TMI STOB
ADU . 36T STOB
EGSSW HLT EGSNB 0
EXSW SAU SAGS GOON
36T DEC 31 360

SUBROUTINE E

We come now to the subroutine which will select, on the basis of the
ground speeds provided by Subroutine T, the aircraft which will pro-
vide the fastest service to the destination, It is entered from
Subroutine T each time the ground speeds for one base are computed,

The method of selection is this, The base reference number is used

as a search key to bring from the Aircraft Status Table each entry

for this base, When a table word is brought into the accumulator, the
A/C type is extracted and used as a key to find the range from the
5-word range table and the ground speed from the table prepared by
Subroutine T,

The time enroute is now computed and checked against the range for this
A/C type, If the range is insufficient, this A/C is eliminated from

the selection process and we return to select another A/C from the Air-
craft Status Table, If an A/C has sufficient range, its time enroute is

86



Get base No.
and position
toq=20

v

Search A/C
table for entry
for this base

Get G.S. to
— dest. for this
type & store

'

Get distance
to
destination

!

Y

Set current

fill location

in G.S. back
table

I

Step fill
location by
5 for next pass

'

Get distance to

destination
and base No.
Compute time
enroute i
(Dist. / G.S.)
No Insert in
5 locations of
Yes G.S. back table
Is N
A/C range 0
Set X sufficient?
= found
sector + 1
l Add time-to-go
from table to
Get word :
from A/C table time enroute
‘ 4
Total Get base No.
Extract time < previous t"ﬂii?’;%‘"
ime?
A/C type A/C time? this base
Get range Store new Get time
for this type best A/C = enroute & store
& store in RECRC in QUICK in RECRC3
FIGURE 11

87

Flow Chart - Example Subroutine E




to its time-to-go value from the Aircraft Status Table, and this sum is
checked against the last computed best time, If smaller, this new best
time replaces the previous one and we return for the next A/C from the
Aircraft Status Table,

When all A/C assigned to this base have been processed, the distance and
base number are stored in five locations of the Ground Speed Back Table,
These five locations contain the ground speeds back to base for five A/C
types previously computed by Subroutine T, The new information is stored
under control of a mask so as to leave these ground speeds undisturbed,

When finished, control is returned to Subroutine T to process the next
base,

Aircraft Status Table Search

The coding of Subroutine E contains a search of the Aircraft Status Table
for all entries associated with a particular base, At location ENEXT, the
base reference number is brought from ESAVB, It is then positioned to
agree with the base field in the table and a corresponding mask is placed
in the LOWER, ' ’

The INDEX Register is set initially to zero, and at PASS a Repeat Count of
24 is set up, The XCME will now be executed in Repeat Mode, and for the
first pass will begin its search with the initial location of the table,

If no matching base is found, we branch to NOMO, If a match is found, the
found sector plus 1 is exchanged into the UPPER and compared with a termi-
nation constant stored at NS25, For the first search, the constant will
always be equal to or greater than the found sector plus 1, which is now
shifted to a "q" of 17 and used to set the INDEX value, Since this value

is one greater than the relative table location with which we are concerned,
we may bring the correct word from the table with an XRAU whose Data-address
is one less than the initial location. In ROAR coding, we can express this
initial location minus 1 for Region A as AQ0000.

The A/C type from the table word is used as a key to select the proper range
and ground speed, The coding sequence from location PE2 to PE3 computes

time enroute, checks for sufficient range and determines whether the A/C
presently being processed is a better choice than the previous A/C. At LONG,
the base number is again placed in the UPPER, The mask is brought back into
the LOWER and we return to PASS for the next table search,

Note that each time we return to begin a new search, the INDEX Value will
be equal to the relative table location at which the search is to begin,

Since we will always use a Repeat Count of 24 for this search, it is pos-
sible that we may find a match which is beyond the end of the table, If

this occurs, the found sector plus 1 will be greater than 25 and will be

detected by the comparison with the termination constant, NS25, In this

event, we exit from the loop to location NOMO,

88



At NOMO, we get from EGSSW the location at which the ground speeds back to
this base are stored, This same address is then used as the Data-address
of GSNB, The EGSSW Data-address is incremented by 5 to establish the
storage block for the next execution of Subroutine T, The distance and
base number are inserted into the table of ground speeds back to base with
a Masked Store (MST) command and control is returned to Subroutine T,

DATA NEXT
LOCATION ORDER ADDRESS ADDRESS COMMENTS
TAG E Compute new shortest time to destination
ENEXT RAU ESAVB Get base reference
SRL 112 Position
EXT BASS
STU BASR Save base reference
RAL HEXB Mask
LDX 0 PASS
PASS LDC NT24
XCME  A00001 Search for available A/C
TBC NOMO Go to NOMO if finished
EXC 8908 X to U
EXT SMSK Get found sector plus 1
RAL SMSK
CMG NS25 Test for end of table
TBC NOMO If finished, go to NOMO
SRL 113
EXC 4908 U to X
XRAU  A00000 Get table entry
EXT HEXT Extract A/C type
SRL 9 Position
STU RECRC1 PE2 Store Repeat Count
HEXT HEX 7 0000 Mask for A/C type (0 to 4)
NS25 DEC 30 25 Constant
SMSK DEC 30 63 Mask for N-sector
NT24 DEC 24 24 Repeat Count of 24
HEXB HEX 8000 EQ00 Mask for base (1 to 5) and availa-
bility bit
BASS  HEX 0 EO0Q
PE2 LDC RECRC1
RAU  RO0001 Get A/C range in minutes
CLU  RECRCO
LDC RECRC1
RAU  G0O0001 Get ground speed to destination
CLU RECRC1 Store @ 31
RAL EDIST Get distance to destination @ 63
SRL 107 Distance @ 56
DIV RECRC1 Compute time enroute @ 25
MPY 6T Convert to minutes @ 31

89



DATA NEXT

LOCATION ORDER ADDRESS ADDRESS COMMENTS
RAL TMSK Mask
CMG  RECRCO Test for sufficient range
TBC LONG If no, go to LONG
XADU  A00000 Add time-to-go
CMG QUICK Compare with previous time to des-
tination
TBC LONG Go to LONG if previous time smaller
STU QUICK Store new smaller entry
XSBU  A00000 PE3 Subtract time-to-go
TMSK HEX 0 1FFF Mask for time-to-go
6T DEC 6 60 Constant
RO0001 DEC 31 600 10 hours
RO0O002 DEC 31 300 5 hours
ROO003 DEC 31 480 8 hours
RO0O004 DEC 31 240 4 hours
RO000S5 DEC 31 300 5 hours
PE3 CLU  RECRC3 LONG Save time enroute
LONG RAU BASR Get base reference
RAL HEXB PASS Get mask and return for next pass
NOMO RAU EGSSW
SAU GSNB Set next storage address in GSNB
ADU DS5 Increment by 5
CLU EGSSW Save
RAL EDIST Get distance
SRL 116
RAU HEXB Get mask
MML BASR Merge distance and base
RAU HEXX
LDC ENTRA GSNB
GSNB MST 98 TBELO Store in EGSNB table
HEXX HEX 1FFF EOQO0 Mask
DS5 DEC 17 5 Constant
QUICK HEX 7FFF FEFF A/C status word storage

SUBROUTINE Q

When the end of an input message is detected by Subroutine T, control is
transferred to Subroutine Q, At this point, the best available A/C will
have been selected, and its logged time, A/C number, A/C type, current
base and time-to-go to destination placed in location QUICK, 1If no A/C
of sufficient range is available, QUICK will contain all 1's except for
a 0 sign bit,

Subroutine Q will test the contents of location QUICK and, if service is
not available will exit to Subroutine S, Otherwise, it will proceed to

90



Get selected
A/C word
from QUICK

Is
service
available ?

Extract
A/C type

!

Get G.S. back to
> one base for

this A/C type.
& store in RECRCO

T

Get distance
destination to
base

)}

Compute time
to this base
(Dist. / G.S.)

Is
time <
previous
time?

Yes

No

Store new
shortest time
and new base

in QBACK

i

~>

Step X by 5

Return
base selection
complete ?

No

Compute total
flight time
Departure —=— dest.
—=— new base

'

Update logged

hours field in

selected A/C
word

:

Update time-to-go
field and new base
(Total flight time

r 2 hours — prev time)

FIGURE 12,

Yes

Set A/C
word to
out-of-service

v

Find A/C

table entry

for this A/C
Number.

Yes

Store updated
A/C word
in A/C table

Logged
time > 100
hours 7

Flow Chart - Example Subroutine Q

91

No



select a new base and update the appropriate entry in the Aircraft Status
Table,

The A/C type from QUICK is used as a key to get the ground speed from
destination to each base, For each prospective new base, a time enroute
is computed and compared against the previous shortest time, If the new
time is shorter, it replaces the old shorter time, the Index Value is
stepped by 5, and a test is made to determine whether all bases have been
considered, If not, another pass through the loop is executed,

When the best new base is found, the logged hours field in QUICK is up-
dated by adding the total flight time from base to destination to new
base, The time-to-go field is updated by adding to its current value,
the total flight time plus two hours ground time, and the base reference
number is changed to that of the newly assigned base, If the new logged
hours value is greater than 100, the availability indicator is set to
out-of-service, which will apply at the conclusion of this assignment,

The correct Aircraft Status Table location for this A/C number is now
determined by a search of the table, If not found, we exit to an error
halt in Subroutine B, When the location is found, the updated entry in
QUICK is stored in the status table and we exit to Subroutine H,

Table Structure for Ground Speeds to New Base

When Subroutine Q is executed, it will choose a new base assignment on
the basis of ground speeds stored in the 25 word table beginning at
location EGSNB, This table consists of five 5-word blocks, each block
containing the ground speeds and distance back to one base for 5 A/C
types.

The INDEX Register is set initially with the A/C type from location
QUICK and may be any value O thru 4, The XRAU instruction at location
AGAN will bring into the UPPER, the ground speed and distance to one
base for the selected A/C type, Subsequent references to the table will
be in 5-word increments to select the same type for each of the five
bases, When the INDEX Register has been stepped to or beyond 25 at lo-
cation OLD, we will drop through the TMI instruction at OLD plus 3,
instead of returning to AGAN for another pass,

DATA NEXT
LOCATION ORDER ADDRESS ADDRESS COMMENTS
TAG Q Select new base, Update A/C Status
Table
NOMOR RAU QUICK Get selected A/C word
RAL ALLE Get mask

92



LOCATION ORDER

DATA

NEXT

ADDRESS ADDRESS

AGAN

QBACK
6T
TMSK
HEXT
HEXQ
ALLF
PQ2

OLD

HEXN
LMSK
1ATS8

CME
TBC
EXT
SRL
EXC
XRAU
EXT
CLU
XRAL
SRL
SRL
DIV

MPY

STU
RAU
RAL
EXT

DEC
HEX

CMG
TBC
RAL
RAU
XMML
CLL
XLDX
EXC
SBU
TMI
RAU
EXT
ADU
DVU
ADU
EXT
ADU

STU
EXT
ADU

HEX
DEC

HEXQ
NOTEL
HEXT

2

498
EGSNB
TMSK
RECRCO
EGSNB
16

107
RECRCO
6T
RECRCO
TMSK
ALLF
QBACK
7FEF

6

0

7

~ 7FFF
FFEF
RECRCO
OLD
RECRCO
HEXB
EGSNB
QBACK
5

898
DS25
AGAN
TMSK
QBACK
RECRC3
NT60
1AT8
IMSK
QUICK

RECRC3
HEXN
QBACK
FEFF
FFOO

g

AGAN

PQ2
FEFF
60
1FFF
0000
FFRF
FEFF

OLD

PQ3
1FFF
0000

93

COMMENTS

Test for service available
If no, go to NOTE1l
Extract A/C type

U to X

Get ground speed and distance
Get ground speed

Save ground speed @ 31

Get ground speed and distance
Discard all but distance
Distance @ 56

Compute time in hours @ 25
Time minutes @ 31

Save

Get mask in U

Get mask in L

Get previous time to new base
A/C word storage for new base
Constant

Mask for ground speed

Mask for A/C type (0 to 4)

A/C word mask

Mask

Compare with new time to new base
Go to OLD if old value smaller
Get new shorter time

Get mask

Merge base with time

Store new smaller time and base
Step X by 5

X to U

Test for finish

If not, return to AGAN

Mask

Time to new base @ 31

Add time enroute @ 31

Convert to hours @ 7

Round

Extract whole hours

Add A/C Status word for total logged
hours

Extract all but base

Compute total flight time to new base
Mask for everything but base

Mask for hours

Constant



 DATA NEXT

LOCATION ORDER ADDRESS ADDRESS COMMENTS
NT60 DEC 24 60 Constant
DS25  DEC 17 25 Constant
HEXB HEX 8000 EO00O Mask for base (1 to 5) and availability
bit
PQ3 ADU = 2HRS Add ground time
: STU RECRC6 _ Save
ADU 2T8 Test for logged time 100 hours or more
TMI LESS If not, go to LESS
STU  RECRC6 LESS Store and set to -out of service-
LESS RAL AMSK _ Mask
LDC  NT24
CME  A00001 Find table entry
TBC ERRO3 If A/C not found, go to ERRO3
EXC 898 . X to U
EXT SMSK
SRL 113
EXC 498 U to X
RAU RECRC6 Get A/C word
.. XCLU  A00000 HEADS Update A/C Status table and go to HEADS
SMSK "~ DEC 30 63 Mask for N-sector
NT24 DEC 24 24 Constant
AMSK HEX F8 0000 Mask for A/C number
2T8 DEC 7 28 Constant
2HRS DEC 31 120 Constant
SUBROUTINE H

Having completed the selection of the aircraft to be dispatched and the
new base, we are ready to output, via the typewriter, an Aircraft As-
signment Message, Subroutine H performs the function of printing the
message headings,

A carriage return and two line feeds are output and the INDEX Register

is set to 0, A word from the output table is placed in the UPPER and a
mask is placed in the LOWER, The leftmost character from the UPPER is
printed and the contents of UPPER and LOWER are shifted left six places,
We now test for completion of one word and, if not, we return to print

the next character, When one table word is printed, we step the INDEX Re-
gister by 1 and check for completion of the headings, If not, we return
to get the next word from the table, When all headings are printed, we
exit to Subroutine P,

94



Get word from

———{  output table & 4
set mask in L.

v

Print 1
character

Output carriage
return and
line feeds

Step X by 1

One word

SetX=0 finished?

Headings ali
printed ?

FIGURE 13, Flow Chart-Example Subroutine H

The Print Loop

The headings are printed by means of a fairly simple double loop. The
output print image is contained in a table stored in Region H, Each
word contains five 6-bit characters, with the last two bits of each
word blank, The necessary tabs and spaces are included as characters,

At location GRAB, a table word is brought into the UPPER and a mask is
placed in the LOWER, At ALPH, a character is printed, The Data-track
64 designates that the six-bit character to be printed is in the UPPER,
The artificial Data-sector 99 causes ROAR to assign a sector which will
honor the print interlock, When the next character is positioned by the
shift, the low order six bits of the LOWER are filled with zeroes, The
CME instruction will not turn on Branch Control until all five characters
have been printed and shifted out of the UPPER, At this point, the mask
in the LOWER will contain ones only in the two leftmost positions; the
corresponding positions of the UPPER will contain zeroes,

When this inner loop is completed, the INDEX Register is stepped and
tested for the value 10, If less than 10, we return to GRAB for another
pass of the outside loop, When the Index Value reaches 10, the CXE will
turn on Branch Control and we will exit to Subroutine P,

95



DATA NEXT

LOCATION ORDER ADDRESS ADDRESS COMMENTS
TAG H Print message headings
HEADS PRD 199 Carriage return
PRD 799 Line feed
PRD 799
LDX 0 GRAB
GRAB XRAU  HO0001 Get heading word
RAL ALLF ALPH Mask
ALPH PRU 6499 Print one character
SRL 106 Position to next character
CME ZERO Test finish of one word
TBC ALPH If no, go to ALPH
XLDX 1 PH2 Step X
ZERO HLT 0 0 Constant
ALLF HEX FFFF FFFF Mask
HO0001 HEX 75EA S5AAC DEPAR
HO0002 HEX B6EA 5E08 TURE Tab,
HO0003 HEX 75EB 2D88 DESTI
HO0004 HEX 9DAB 62A0 NATIO
HOO0005 HEX 9C27 AD68 N Tab, ETA
HO0006 HEX 0A77 BOF4 Tab, NEW Sp,
HOO0007 HEX 6DAB 1E08 BASE Tab,
HO0008 HEX 7AD6 8268 ETA Tab A
HO0009 HEX FOCF 67A0 /C sp. NO
HOO0010 HEX FO11 C700 . C,R, L,F, L,F,
PH2 CXE 10 Test end of heading print
TBC PRINT GRAB If no, go to GRAB

SUBROUTINE P

The Aircraft Assignment Message, exclusive of headings, is printed by
Subroutine P, The destination print sequence is also used in printing
a service-not-available message,

The departure base is printed first in the following manner, The base
number is used to set the INDEX Register to provide a reference to the
desired entry in the Base Print Image Table, The base print image is

then brought into the UPPER and LOWER Accumulators, and the INDEX Re-
gister is set to O, Characters are now printed from the combined accumu-
lators, using the INDEX Register as a character counter, When all charac-
ters have been printed, we check to determine whether the base is SAN
FRANCISCO, If so, it is necessary to print one more word from the table,
When the entire departure base is printed, we encounter a 2-position
program switch set to follow path number 1,

96



Get number Put shift Set X=-0. Save ETA to new
of departure [—— count of » Get time to » base in RECRC6
base 4inl destination Get ETA to dest.
from RECRC7
y
Set X
from base no. Put shift Add message Convert 1o hours
] count of time to > & store rlemqmlng
. te ET) minutes In
2inL compute ETA RECRCT
y
Put base 4
print image Convert 1st
inb&l Pul shif ETA Yes char. to BCD
] count of today? and position
Qint
SetX—0
Restore X. Put Step X
- partial char. in U partial
& store in RECRC char. - X
Print 1 X A Convert 2nd
character char. to BCD
Save ETA it
Mod{ify add!ress 1 to destination QJ and position
or nex| ot in RECRC7
el Destination
destination word printed?
2
y
Step X by 1 Get time
5:3";‘5'_"“ destination
unt in
SHFT Shift left to new base
6 and step
Xbyl
Get minutes.
Acc. convert 3rd
contents Put Compute ETA char. to BCD
printed? ut next dest. to new base and position
word in U. Print 1
test word in L. character
L Y
- s
oo et Put 15t dest,
combine with word in _IJ,
partial char. test word in L.
Shift feft 4 No
L Convert 4th
char. to BCD
d position
> Put rest of ! Step X e
SetX--5 image in U. SetX--0 P,
2
Put da N
count inyx Switch base Switch base 1
print exit print exit Save
Get ETA Switch ETA and get no. count
to new base. print exit. of new base 2
‘ L
Switch ETA :
P Print
print exit. 1 M
Get A/C No. A/Cro.

FIGURE 14, Flow Chart - Example Subroutine P

97




The INDEX Register is set to O and the first word of the destination
print image is placed in the UPPER, The image table capacity is eight
words and may contain a destination of up to 42 6-bit characters, These
characters are stored contiguously, with vacant character positions at
the high order end of the table, With this storage format, some charac-
ters will be split between two table words,

A test word is placed in the LOWER which will be used to detect the
printing of the last full character from the UPPER, The first charac-
ter is positioned to bits 0-5 of the UPPER and a PRU instruction is
executed, If the character position contains all zeroes, it represents

a tape feed code and causes no typewriter output, The next character

is positioned and the INDEX Register is incremented by 1, A test is made
for completion of 42 characters and, if not, the INDEX Register and UPPER
Accumulator contents are exchanged, Now a sequence of tests determines
whether the last full character of a word has been printed, If not,
UPPER Accumulator and INDEX Register contents are again exchanged and the
next character is printed,

When the last full character of a word is printed, any remaining partial
character is saved and a shift is set up to be used in combining it with
the next table word, When the next word is brought in from the image
table, it is shifted right by the number of bits in the partial charac-
ter and combined with it, The next character is printed and the above
procedure continues until the INDEX Value reaches 42, At this point, the
destination printing is complete and we encounter a 2-position program
switch set to follow path number 1,

The next sequence will compute the ETA's to destination and new base as
follows., The INDEX Register is reset to 0, and the time to destination
is brought into the UPPER where it is added to the time of the message,
If this ETA is not the same day as the message, a day count is set in
the INDEX Register, The ETA to destination is saved in RECRC7 and the
ETA to new base is computed in a similar manner and stored in RECRC6 ,

Now the ETA to destination is brought back from RECRC7, converted to
hours and minutes, and the minutes stored in RECRC7, The hours are con-
verted from binary to BCD and printed, The minutes are brought from
RECRC7, converted to BCD and printed, If this ETA is not the same day
as the message, a "+" is printed followed by the day count,

Another program switch is encountered and again we follow path number 1,
Now the program switch which serves as an exit from the base print se-~
quence is switched to follow path number 2, The number of the new base
is brought into the UPPER and we return to the base print sequence to
print the new base,

This time when we reach the exit, we branch to a sequence in which the
base print exit is reset to its initial value, and the ETA print exit

switch is set to follow path number 2, The ETA to new base is brought
into the UPPER and we return to the ETA print sequence,

98



Upon completion of the ETA to new base, we branch to a point where the

ETA exit switch is reset, and the A/C number is brought into the UPPER,
The A/C number is converted to BCD form and printed and we exit to Sub-~
routine M,

There is a secondary entry point to Subroutine P which is entered from
Subroutine S in connection with a "service not available" output mes-
sage., As a part of this message, we need to print the destination, The
destination print exit switch will have been set by Subroutine S to fol-
low path number 2, When the destination is printed, we now exit back to
Subroutine S, where the exit switch will be reset to its initial value,

Program Switches

The technique of programmed exit switches is used at three points in
Subroutine P, These switches occur at location PP2, PEXIT and SAFE,
The procedure is simply a matter of replacing the original contents
of the switch with an alternate instruction word prior to execution
of the required instruction sequence. Upon completion of this se-
quence, the switch is reset to its original value,

The Destination Print Sequence

At location PDEST, the Index Value is set to O, The INDEX Register will
be used as a counter to control the exit after 42 executions of the PRU
instruction at LETR, The print image is stored in Region D, with the
first word in DOOOO8 and the last word in DO0OOO1,. The storage format is
such that the first four bits of the first word will always be blank,
Bits 28-31 of words 1,4 and 7 contain partial characters, Bits 30-31 of
words 3 and 6 contain partial characters., The low order end of words 2
and 5 coincide with the end of a character,

As each print image word is brought into the UPPER, a flag containing 1's
in bit positions 5 - 17 is brought into the LOWER, When a character is
printed at location LETR, the combined UPPER and LOWER contents are
shifted left by six bits, When the last full character of any word has
been printed, this shift will move the flag to a position in the UPPER
such that bits 5 - 17 will contain a track and sector value, 12763, 3163
or 763, The flag is exchanged into the INDEX Register at PEXIT plus 1,
and the series of CXE instructions will test for one of these three values,
If one of these tests is positive, the associated TBC will branch to a
point where a Shift Count of 0, 2 or 4 is brought into the LOWER, The
INDEX Register contents are exchanged back into the UPPER and the left-
most four bits are extracted and stored in RECRC5 to save any partial
character they may contain,

99



The Data-address of DBIGET is modified to the next image word reference
and the Shift Count in the LOWER is stored in location SHET, When the
new image word and the flag are brought into the accumulators, they are
shifted right by 0, 2 or 4 bits and combined with the partial character
from RECRC5 at location JOIN, The Next-address of JOIN branches back
to LETR to print the next character,

ETA Conversion for Printing

To print on ETA, it is necessary to convert from minutes in binary
form to hours and minutes in BCD form., At location ENTR, the ETA
value will have been placed at a '"q'" of 63 in the LOWER Accumulator,
The UPPER is cleared and the ETA shifted to a "q" of 62, Dividing by
a value 60 at a "q" of 31 will compute the whole hours at a "q" of 31,
leaving the remainder, in minutes, in the LOWER,

The minutes are saved in RECRC7 and the hours divided by a value 10 at
a '"q" of 28, which converts the first character to BCD and moves it to
a "q'f of 3, A rounding constant is added and the first character is
printed, This character is now eliminated by an EXT instruction, the
remaining character is multiplied by ten, and printed as the second
hour digit, Now the minutes are brought back from RECRC7, converted
and printed in the same manner, The day count in the INDEX Register is
checked and, if set, a "+" is printed followed by the day count,

DATA NEXT .
LOCATION ORDER ADDRESS ADDRESS COMMENTS
TAG P Output A/C assignment message
PRINT RAU HEXB Mask
EXT QUICK POS Get departure base
POS SRL 101 Position
EXC 498 U to X
XRAU  MO0OO00O Get print image 1,
XRAL MOQOO0 S5 Get print image 2,
LDX 0 CHAR
CHAR PRU 6499 Print one character
XLDX 1
CXE 10 Test for end of image 2,
TBC PP2 If yes, go to PP2
SRL 106 CHAR Position next character
MO0001 HEX 6E8B 2DA2 BOSTO(N)
MO0002 HEX 64D9 5A9E ATLAN(T)
MOOO003 HEX 7218 9C6A CHICA (G)
MO0004 HEX 75A9 656A DALLA(S)
MO0005 HEX B1A9 FD7E SAN F(R)

100



DATA NEXT
LOCATION ORDER ADDRESS ADDRESS
MO0006 HEX 7E7D F420
MO0007 HEX D6BD F420
MO0008 HEX 0A3D F420
MOO009 HEX CF7D F420
MO0010 HEX B6A7 7220
MO0011 HEX B1CA 3D08
HEXB HEX 8000 E000
PP2  TMI HO PDEST
HO LDX 5 ,
RAU  MOOO11l CHAR
PDEST LDX 0
RAU  DO0008
RAL FLAG ;
SRL 104 LETR
LETR PRU 6499 '
SRL 106
XLDX 1 ;
CXE 42 PEXIT
PEXIT TBC PFINI '
EXC 1298
CXE 12763
TBC SHO
CXE 3163
TBC SH2
CXE 763
TBC SH4
EXC 1298 LETR
SH4 RAL SFT4 PP3
SH2 RAL  SFT2 PP3
FLAG HLT 12763 0
SFT2 SRL 2 EX2
SFT4 SRL 4 EX4
SHO RAL SETO PP3
PP3 EXC 1298
EXT LFT4
STU  RECRCS
RAU  DBIGET
SBU DS1
CLU  DB2GET
CLL SHET  DBIGET
DB1GET RAU  DO0008
RAL FLAG SHET
SHFT SRL 4 JOIN
EX4 EXT X4 JOIN
EX2 EXT X2 JOIN
JOIN ADU  RECRC5S LETR

101

COMMENTS

(N) sp. sp, sp. Tab,

(T)A sp. sp. Tab,

(G)O sp. sp. Tab,

(S) sp. sp. sp. Tab,

(R) ANCI

SCO sp. Tab,

Mask for base (1 to 5) and
availability bit,

If finished, go to PDEST
Reset X .

Get print image 3 for San Francisco

Get word 1

Test word

Position first character
Print one character
Position to next character
Step X ‘

Test for end of message

1f yes, go to PFINI

X to U, U to X

Test for end of word 2 or 5
If yes, go to SHO

Test for end of word 3 or 6
If yes, go to SH2

Test for end of word 1, 4 or 7
If yes, go to SH4

X to U, U to X

Termination flag
Shift constant
Shift constant
Get Shift Count
X to U, Uto X

Save partial character
Modify address for next word

Set Shift Count
Get next word
Test word
Position

Add partial character



DATA

NEXT

LOCATION ORDER ADDRESS ADDRESS
PFINI PRD 299
LDX 0
RAU  RECRC3
EXT TMSK
ADU MT IME PP4
TMSK HEX 0 1FFF
X2 HEX 3FFF FFFF
X4 HEX OFFF FFFE
DS1 HLT 1 0
LFT4 HEX FO00 0000
SFTO SRL 0 JOIN
PP4 EXC 198
SBU DAY
T™MI TDAY
XLDX 1 PP4
TDAY STL  RECRC7?
RAU TMSK
EXT QBACK
ADU  RECRC7
ADU 1HR
EXC 198
SBU DAY
T™I SDAY
XLDX 100
EXC 198 SDAY
SDAY CLL  RECRC6
RAL  RECRC7 ENTR
ENTR CLU JUNK
SRL 101
DIV 1HR
'CLL  RECRC7
DIV TEN
ADU ONE PP5
TEN DEC 28 10
1HR DEC 31 60
DAY DEC 31 1440
PP5 PRU 1699
EXT X4
MPT 98
PRU 1699
RAU  RECRC7
DVU TEN
ADU ONE
PRU 1699
EXT X4

102

COMMENTS

Print Tab,
Get time to destination @ 31

Compute ETA in minutes
Mask for time-to-go

Constant

Mask

Shift Constant

Uto L

Subtract 24 hours

If ETA today, go to TDAY

Step count

Save ETA to destination

Mask )

Get time - destination to new base
ETA to destination plus time to new
base

Compute ETA to new base

Uto L

Subtract 24 hours

I1f same day as ETA to destination, go
to SDAY

Step counter

U to L ‘

Save ETA to new base

Get ETA to destination @ 63

ETA @ 62

Convert to hours @ 31
Save minutes

Position hours

Constant

Constant

24 hours in minutes
Print first character

Convert character
Print second character
Get minutes

Position minutes

Print third character



DATA

NEXT
LOCATION ORDER ADDRESS ADDRESS
MPT 98
PRU 1699
CXE 0
TBC TOD
CXE 100
TBC TOM
XLDX 12701 TOD
TOM PRD 5899
EXC 898
SRL 111
T™I SHIF
XLDX 12701 SHIF
SHIF SRL 103
PRU 1699 TOD
TOD PRD 299 PP6
ONE DEC 31 1
PP6 EXC 898 SAFE
SAFE CLU  RECRC7 SWCH
SWCH RAU ETAN
CLU PP2
RAU HEXB
EXT QBACK POS
'NETA RAU THAW
CLU PP2
~ RAU ACNO
CLU SAFE
RAU  RECRC7?
EXC 498
RAL  RECRC6 ENTR
AC RAU SWIT
CLU SAFE
RAU AMSK
EXT QUICK
DIV X
ADU ONE PP7
X DEC 9 10 ,
AMSK  HEX F8 0000
SWIT CLU  RECRC7? SWCH
ACNO CLU  RECRC7 AC
THAW TMI - HO PDEST
ETAN TMI HO NETA
PP7 PRU 1699
EXT X4
MPT 98
PRU 1699
PRD 199 MAINT

103

COMMENTS

Convert character

Print fourth character

Are both ETA's today

If yes, go to TOD

Is ETA to destination today
If no, go to TOM

Reduce index to 1

Print +

X to U

If both ETA's same day, go to SHIF
Modify counter

Position day count

Print day count

Print Tab,

Constant

X to U

Save day count

Switch exit to print new base

Get new base reference
Switch exit initial setting

Get day count

U to X

Get ETA to new base

Switch ETA print exit to SWCH

Mask
Get A/C number
Position

Constant

Print first character

Convert character
Print second character
Carriage return



SUBROUTINE M

When an Assignment Request Message or an Availability Message has been
processed, Subroutine M is entered and a count is made of the A/C in
maintenance, If more than 12 A/C are out of service, a note is printed
via the typewriter, '

The count, which has been tallied in the LOWER, is exchanged to the
UPPER where it is converted to BCD and printed as a 2-digit number,

A print loop is now entered which will take the remainder of the mes-
sage from a print image table, When the message is complete, control
is transferred to Subroutine B where the program is initialized in
preparation for a new message, o

In the event that fewer than 13 A/C are out of service, the print se-
quence is bypassed and we proceed di;ectly to Subroutine B,

DATA NEXT

LOCATION ORDER ADDRESS ADDRESS ‘ ~ COMMENTS
TAG M Print note if less than 13 A/C
, in service o
MA INT CLL JUNK Clear L for count
LbX 0o GET _ .
GET XRAU  A00001 k Get A/C word
TMI STEP If in service, go to STEP
ADL ONE STEP ~Add 1 to count
STEP  XLDX 1 - Step X ’
CXE 25 ' ~ Test for finish
TBC GET If no, go to GET
EXC 208 ~ LtoU '
SBU 3TN Test if more than 12 A/C in
: | , ~ maintenance ‘
TMI SENSE If no, go to SENSE
ADU 3IN , L
DVU TEN - Position
ADU ONE , o
PRD 199 , Carriage return
PRD 799 Line feed
PRD 799 Line feed
PRU 1699 Print first character
EXT RT28 ’ ‘
7 ~ MPT 98 PM2 Convert character
RT28 ~ HEX  OFFF FFFF Mask
 TEN  DEC 28 10 v Constant
3N DEC 31 13 ~ Constant
" ONE  DEC, 31 1 Constant

‘PM2  PRU 1699 ' Print second character

104



Clear L.
Set X=0

y

Get word

A/Cin
maintenance ? _

Add one
to counter
in L.

v

) Step X by 1

Table
finished ?

A/Cin
maintenance
> 127

FIGURE. 15,

of A/C table ¢

—>

Put
count in U.

y

Get message
word

Convert 1st
char. to BCD
and position

Convert 2nd
char. to BCD
and position

Print 1
character }

One word
finished ?

Step X by 1

Set X--=0

105

Message
finished?

Flow Chart - Example Subroutine M




DATA NEXT

LOCATION ORDER ADDRESS ADDRESS COMMENTS
LDX 0 GETT
GETT XRAU NOOOO1 Get message word
RAL ALLF LTTR Mask
LTTR PRU 6499 Print one character
SRL 106 Position
CME ZERO Test finish of one word
TBC LTTR If no, go to LTTR
XLDX 1 Step X
CXE 5 Test for end of message
. TBC SENSE GETT If no, go to GETT
ZERO  HLT 0 0 Constant
ALLF HEX FFFF FFFFF Mask
NOOOO1 HEX FS5A8 AB70 sp. AIRC
NO0002 HEX ADA7 EDF4 RAFT sp,
NOOO0O3 HEX 8A7F 6668 IN sp. MA
NOOO0O4 HEX 8A7B SESC INTEN
NOOOQS5 HEX 6A77 1E04 ANCE C.R,

SUBROUTINE S

If it is determined in Subroutine Q, that no available A/C has suf-
ficient range to reach a déstination, Subroutine S is entered, The
first part of a '"service not available" message is printed from a print
image table,

When this is complete, the exit switch for the destination print se-
quence in Subroutine P is set to as to return control to Subroutine S,
and control is transferred to print the destination, When Subroutine
S is re-entered, the switch is reset to its initial value and we exit
to Subroutine B for initialization,

DATA NEXT
LOCATION ORDER ADDRESS ADDRESS COMMENTS
TAG S Print note if service not available
NOTE1 PRD 199 Carriage return

PRD 799 Line feed
PRD 799
LDX 0 GIT

GIT XRAU CO00001 Get message word
RAL ALLF LTRR Mask

LTRR PRU 6499 _ Print one character
SRL 106 ' Position

106



Output carriage Switch
_return and —> destination

line feeds print exit

Get message
—P word and
put mask in L

Switch
destination
print exit

Print 1

character

One word
finished?

Step X by 1

1st part ot
message
finished 7

FIGURE 16, Flow Chart - Example Subroutine S

107



DATA NEXT

LOCATION ORDER ADDRESS ADDRESS COMMENTS
CME ZERO Test finish of one word
TBC _ LTRR If no, go to LTRR
XLDX 1 Step X
CXE 5 Test for end of message
TBC GIT If no, go to GIT
RAU EXIT Switch destination print exit
SAU PEXIT PDEST Go to destination print
TAGS RAU FISH PS2 Switch destination print exit
EXIT  HLT = TAGS 0 '
ZERO HLT 0 0 Constant
ALLF HEX FFFF - FFFF Mask
C00001 HEX B1EA EF88 SERVI
C00002 HEX - 71EF 67A0 CE sp, NO
C00003 HEX B7D6 AF68 T sp. AVA
C00004 HEX 8A56 9B94 ILABL
C00005 HEX 7BDB 68F4 E sp. TO sp,
PS2 SAU PEXIT
~ PRD 199 SENSE Carriage return
FISH HLT = PFINI 0 '
SUBROUTINE V

When Subroutine R detects an Availability Message input, Subroutine V
is entered, The message word, which contains the A/C number is brought
into the UPPER and the A/C number is converted from its 6-bit input
form to binary, This number is used as a key to search the Aircraft
Status Table, If no entry is found for this A/C number, we exit to an
error halt in Subroutine B,

When the table location for this A/C is found, it is used to set the
INDEX Value, The message word is brought back into the UPPER, and its
last character is tested for a "U", 1If the test is positive, this A/C
is set to "unavailable" in the Aircraft Status Table,

If the last character of the input message is not a "U", it is tested
for an "A", If not an "A'", we exit to an error halt in Subroutine B,
If it is an "A", the Aircraft Status Table entry is modified to make
the A/C available for assignment, '

At the completion of Subroutine V, control is transferred to Subroutine
M to count the number of A/C in maintenance,

108



Get
availability
message word

v

Binarize
A/C No.

v

Search
A/C tabie
for A/C No.

sector + 1

v

Get
availability
message word

A/C
made
unavailable?

A/C
made

available ?

Put
zero word
inl

v

Update
A/C table
entry

1

Put all
I'sinL

FIGURE 17, Flow Chart - Example Subroutine V

109




DATA NEXT

LOCATION ORDER ADDRESS ADDRESS COMMENTS
TAG \% Updata A/C table for availability
message
AVMES RAU  D0O0001 Availability message
EXT 4BIT Get characters in BCD
SRL 18 Position for binarization
MPT 98 Binarize
CLU  RECRC3
SRL 106
ADU RECRC3
SRL 119 Shift A/C number to table position
RAL AMSK Get mask
LDC NT24 Repeat Count
CME A00001 Find table entry
TBC ERRO4 If A/C not found, go to ERRO4
EXC 898 X to U
EXT SMSK ' Mask
SRL 113 Position
EXC 498 U to X
RAU  DOOO0O1 Availability message
RAL 3F Mask
CME UCON PV2 Test A/C un-availability
3F HEX 0 Q03F Mask
SMSK DEC 30 63 Mask for N-sector
NT24 DEC 24 24 Constant
AMSK HEX F8 0000 Mask
4BIT HEX 3c FOO00 Mask
PV2 TBC YOU If unavailable, go to YOU
CME ACON Test A/C availability
TBC ERROS If no, go to ERROS
RAL ZERO GEB Get zero value
GEB RAU BITS PLUG Mask
PLUG XMST  AOO0000 MAINT Store in table entry
YOU RAL ALLF GEB Get word of all 1's
ALLF HEX FFFF FFFF Constant
BITS HEX FEFOO 1FFF Mask
ZERO HLT 0 0 Constant
ACON HEX 0 001A Constant
UCON HEX 0 Q02E Constant

SUBROUTINE B

The first subroutine of the program to be executed is the last one to
be coded, Subroutine B performs the initialization of various tables
and instructions which are modified during the operation of the program,
It also contains the five error halts previously discussed,

110



e base field

—] (Av. bit, logged time,

Clear U, L & X
Set MTIME--0

!

Rdd 1 to

in L.

Y

Initialize one
entry in A/C table

base no. and
time-to-go)

'

Step X by 5

Table
finished?

This pass
finished ?

Decrement

X by 24

FIGURE 18,

¢

(>
(2

Halt Halt

Set 25 entries of
EGSNB table to ¢
initial value.

:

Initialize-
DBIGET, EGSSW, Halt Halt

QUICK, QBACK,
ABOVE

I

Clear U, L& X
SetLto
8-word length

m
=
’
™m
=
=
o
wn

Flow Chart - Example Subroutine B

111

Halt

ERRO3



When Subroutine B is entered at START, the UPPER and LOWER Accumulators
and the INDEX Register are cleared and the message time in location

MTIME is set to O, The base number 1 is set up in the LOWER and along
with a zeroed availability bit, logged time and time-to-go is stored

into every fifth location of the Aircraft Status Table under control of

a mask so as to leave the A/C numbers and types intact, The base number
is increased to 2 and we again store into every fifth location, this time
beginning with the second word of the table, This process is repeated
until the entire table has been initialized,

Sense Switch 2 is now tested and, if down, a programmed halt is en-
countered, The table of ground speeds from destination to base is
now initialized by storing a value in every location which will in-
dicate to Subroutine Q any base for which ground speeds have not
been computed,

The parameters, QUICK, QBACK and EGSSW are now initialized as are the
Data-address fields of the instruction words DB1GET and ABOVE, The
accumulators and the INDEX Register are again cleared and control is
transferred to Subroutine R,

For subsequent executions of the program, Subroutine B is entered at
the point indicated as B6 in the flow chart,

If Subroutlne B is entered at B1 it indicates that an illegal base has
been input,

Continuing from the halt will return control to Subroutine T where a
correct base may be input,

If Subroutine B is entered at B,, an unsuccessful Sine Table search is
indicated, If entered at B3, an unsuccessful search for an A/C number
in the Alrcraft Status Table is indicated, Both cases are considered
incorrigible errors and continuing from the halt will cause a return to
location START,

If Subroutine B is entered at By or Bs, it indicates an illegal Air-
craft Availability Message format, Continuing from the halt will
transfer control to Subroutine R where a corrected message may be
input,

DATA NEXT N
LOCATION ORDER ADDRESS ADDRESS COMMENTS
TAG B Initialization and error stops
START CLU JUNK OVER
ERRO1 HLT 1 TBELO Departure base not found in table
ERRO2 HLT 2 START Sine Table search unsuccessful
ERRO3 HLT 3 START Dispatched A/C No, not found in

Status Table



DATA NEXT

LOCATION ORDER ADDRESS ADDRESS
ERRO4 HLT 4 MREAD
ERRO5 HLT 5 MREAD

OVER EXC 3798
CLU MT IME MORE
MORE ADL BAS1 GEM

RAU MSK1

XMST  A00001

XLDX 5

CXE 29

TBC SENSE

EXC 898

ADU OVRF
TBC GEM
XLDX 12740 MORE

SENSE SNS 200
TBC PB2 PROC
OVREF HEX 7FE9 €000
MSK1 HEX FFOO FFFF
BAS1 HEX 0000 2000
PB2 HLT 0 PROC

PROC RAU DONE
LDC NT24  STEW

STEW STU EGSNB

RAU RSET

SAU  DBIGET

RAU RSET

SAU EGSSW

RAU HEXQ

STU QUICK

CLU QBACK

SAU ABOVE

EXC 598
EXC 1699 INPUT
HEXQ HEX 7FFF FEFF
REST HLT EGSNB 0
RSET HLT  D0O0008 0

NT24 DEC 24 24

DONE HEX 1FFF 0001

£

.

COMMENTS

Availability A/C No, not found in
Status Table

Last character of Availability
Message (U or A) may be in error
Uto X, UtoL, L =1

Set message time to zero

Step base number

Mask

Reset table word

Step X

Test for finish

If yes, go to SENSE

X to U

Overflow if finished one pass

If not, go to GEM

Decrement X by 24

Test Sense Switch 2

If not down, go to PROC

Overflow constant

Mask for availability bit, logged
hours, base number and time-to-go
1 @ 20

1 @ 31

Initialize EGSNB Table
Initialize DBIGET
Initialize EGSSW

Initialize QUICK
Initialize QBACK
Initialize ABOVE
Clear X and L

L =8

Initializing constant
Initializing constant
Initializing constant
Repeat Count of 24
Initializing constant



ATIRCRAFT STATUS TABLE AND SINE TABLE FORMATS

The Aircraft Status Table is stored in Region A and the table values
are entered using the HEX pseudo-instruction, 1Initially the aircraft
number, type, and assigned base are entered, During the operation of
the program the aircraft number and type will retain their original
table storage, but the base number may change with the processing of
an Aircraft Assignment Message,

DATA NEXT
LOCATION ORDER ADDRESS ADDRESS COMMENTS

A00001 HEX 2009 2000 A/C 1 Type 1 Base
A0Q0002 HEX 0011 4000 2 1
A00003 HEX 0019 6000 3 1
A00004 HEX 0021 8000 4 1
A0Q0005 HEX 0029 A00QOQ 5 1
A00006 HEX 0034 2000 §] 4
A00007 HEX 003C 4000 7 4
AQ0008 HEX 0044 6000 8 4
A00009 HEX 004C 8000 9 4
A00010 HEX 0054 AQOO 10 4
AQ0011 HEX 005B 2000 11 3
AQ0012 HEX 0063 4000 12 3
A00013 HEX 006B 6000 13 3
A00014 HEX 0073 8000 14 3
A00015 HEX 007B AQO0O 15 3
AD0016 HEX 0080 2000 16 0
A00017 HEX 0088 4000 17 0
A00018 HEX 0090 6000 18 0
A00019 HEX 0098 8000 19 0
A00020 HEX 00A0 AQ00 20 0
A00021 HEX 00AA 2000 21 2
A0Q022 HEX 00B2 4000 22 2
A00023 HEX 00BA 6000 23 2
A00024 HEX 00cz2 8000 24 2
A00025 HEX 00CA A000O 25 2

The table of sines is 91 words in length and is stored in Region S,
Values are entered using the DEC pseudo-instruction,

114

b LR DA W RHE LR WD R D WM = DN



DATA NEXT

LOCATION ORDER ADDRESS ADDRESS COMMENTS
S00001 HLT 0 0 Table of sines beginning with sin 0
S00002 DEC 1 L0175
S00003 DEC 1 .0349
S00090 DEC 1 .9998 v
S00091 = DEC 1 1.000 End of table - sin 90

PROGRAM TESTING

The program which we are discussing was tested first for the correct
operation of each of the subroutines, This was accomplished by punching
and assembling each subroutine as an independent program, The listing

was scanned for references to Regions and 5-character symbolic addresses
outside the subroutine being tested, Simulated values for these tables,
parameters and instruction words were included in the symbolic tape before
assembling,

The assembled subroutine was loaded into memory along with the utility
programs Change and Transfer and Sequential Memory Print, The sub-
routine was executed and Sequential Memory Print used to print out

the contents of all tables and locations which were altered by the
subroutine, This data was then checked for correctness against pre-
computed values,

In several cases where the subroutine failed to function properly, it
was possible to locate the error by executing a portion of the sub-
routine in One-Operation Mode while verifying the register contents from
the oscilloscope, In other cases it was necessary to re-analyze coding
sequences in the light of the printed results,

The Change and Transfer Program provides the ability to set or alter any
word in memory via the typewriter, This function was used to make on-
the-spot corrections which could be verified before repunching a corrected
tape, It was also used to bring selected words from memory into the LOWER
Accumulator for examination,

Output Subroutines

Output subroutines were tested, for the most part, by verifying their
output against expected results, It was sometimes necessary to simulate

115



initial conditions prior to testing the subroutines, The simulations
were designed to test the operation over the full range of possible con-
ditions,

Final Testing

When all subroutines had been successfully tested individually, they
were combined into a single punched symbolic tape, This tape was then
assembled by ROAR and loaded into the computer,

A program input tape was prepared containing a variety of Aircraft As-
signment Request Messages intermixed with Availability Messages which
gradually removed all aircraft from service, Bach output was checked
for correct assignments and ETA's, Removal of aircraft from service
permitted checking the "Aircraft in Maintenance" output message and
the "Service Not Available" message,

The final testing phase brought to light a few errors in the intercom-

munication linkage between subroutines which were readily corrected to
produce a finished program tape,

116



MANUAL CONTROLS AND
OPERATING PROCEDURES

The RPC-4000 Electronic Computing System is composed of the RPC-4010
Computer and the RPC-4500 Tape/Typewriter System,

Other input/output devices may be added in various combinations to a
maximum of 60 devices,

The 1list of components:

RPC-4000 Electronic Computing System
RPC-4010 Computer

RPC-4500 Tape/Typewriter System

RPC-4480 Typewriter

RPC-4430 Reader/Punch

RPC-4410 Photo-Electric Reader

RPC-4440 High Speed Punch

RPC-4431 Auxiliary Reader/Punch

RPC-4600 Auxiliary Tape/Typewriter System
RPC-4450 Line Printer

A magnetic tape unit is planned and other devices will be announced
as they become available, This discussion will concern itself with
the basic RPC-4000 system, the RPC-4010 Computer, and the RPC-4500
Tape/Typewriter System,

The RPC-4010 computer console contains the controls for the central
computer, The RPC-4500 Tape/Typewriter System consisting of the RPC-
4480 Typewriter and the RPC-4430 Reader/Punch provide means for pre-
senting information to the central computer via the typewriter key-
board or the reading unit on the RPC-4430 Reader/Punch, The central
computer can output information via the typewriter or the punching

unit on the RPC-4430, The master controls for all input/output devices
are located on the right panel of the RPC-4430,

A list of all the controls on both the RPC-4010 and the RPC-4430 may
be found on pages 130 through 138

.

The control panels on the units are referred to as:

117



RPC-4010 Computer Console Control Panel - abbreviated - (CC)
RPC-4430 Reader/Punch Right Control Panel - abbreviated - (RPR)
RPC-4430 Reader/Punch Left Control Panel - abbreviated - (RPL)

THE RPC-4010

\

The RPC-4010 console has buttons that control the central computer,
The use of the SENSE SWITCHES is discussed on pages 29 and 132, The
POWER ON and POWER OFF buttons do not require discussion,

MODES OF COMPUTER OPERATION
If the ONE OPERATION bdtton is raised, the computer is in NORMAL mode,

If the ONE OPERATION button is depressed, the computer is in ONE
OPERATION Mode,

Normal Mode

If conditions are satisfied for the operation of a given program and

the computer is in Normal Mode, a start signal will initiate the
execution of program steps until a programmed halt is encountered or

the ONE OPERATION button is depressed, During computer operation in

the Normal Mode, the COMPUTE indicator will generally be lighted during
the execution of program steps, INP, PRD, or PRU commands may cause

the STOP indicator to light and the COMPUTE indicator to go out, However,
so long as the computer is under program control, manual intervention is
not required unless it pertains to input of information, When ONE
OPERATION is depressed, the computer stops in the next phase 3 that is
encountered,

If an instruction is being executed in the Repeat Mode, the computer
will perform the number of executions specified by the Repeat Count

(an extended phase 4 will occur) before stopping in the following phase
3 (See page 25 .)

During Normal Mode the computer will stop when a HLT command is
executed or when ONE OPERATION is depressed,

The HLT command is similar to INP in that the effect of the command oc-

curs in phase 3, Ordinarily the instruction word in the COMMAND Re-
gister has not been executed, In the case of HLT, obviously it has been

118



executed if the computer stops. When a programmed HLT is encountered
the computer stops in phase 3 of the HLT cycle with the HLT instruction
word in the COMMAND Register,

One Operation Mode

When the ONE OPERATION button is depressed the computer halts at the
beginning of the next phase 3 that is encountered, initiating One Oper-
ation Mode, This computer mode is used for bootstrapping and while
debugging a program,

In One Operation Mode a start signal will cause the instruction in the
COMMAND Register to be executed and the next instruction in the program
to be placed in the COMMAND Register,

Certain conditions can exist which will modify the operation of an in-
struction,

a, If the sign of the UPPER Accumulator is negative and the COM-
MAND Register contains a TMI instruction word the next in-
struction to be executed will be designated by the data-address
of the COMMAND Register,

b. If Branch Control is on and the COMMAND Register contains a
TBC instruction word the next instruction to be executed is
designated by the data-address, If the BRANCH CONTROL but-
ton is depressed, resetting (or turning OFF) Branch Control,
the next instruction will be designated by the next-address
of the COMMAND Register as usual,

c, A programmed HLT executed when ONE OPERATION is depressed is
redundant,

When the RPC-4010 is in One Operation Mode the SET INPUT and EXECUTE
LOWER ACCUMULATOR buttons may be activated,

SET INPUT

When SET INPUT is depressed the instruction in the COMMAND Register is
overridden by an "effective" input command, The COMMAND Register is
unchanged except for the data-track field which is set to zero, The
"effective" input command is treated in the same way as any other in-
struction is treated in One Operation Mode. The computer halts at the
beginning of phase 3 of the "effective" input command which will not be
"executed until START COMPUTE (RPR) (CC) is depressed,

119



If EXECUTE LOWER ACCUMULATOR is depressed when the "effective" input
command is executed, the next start signal received as the result of
the detection of a stop code by the selected input device or the de-
pression of START COMPUTE (RPR) (CC), will cause the contents of the
LOWER Accumulator to be transferred to the COMMAND Register, by-pas-
sing the usual phase 1 and 2 and the computer to halt with the contents
of the LOWER Accumulator, The instruction word now in the COMMAND Re-
gister will not be executed until the another start signal is received,

EXECUTE LOWER ACCUMULATOR should not be depressed unless input is being
accomplished by means of SET INPUT,

THE RELATIONSHIP OF ONE OPERATION AND REPEAT MODES

In One Operation Mode it is possible that the Repeat Count will be
loaded and Repeat Mode initiated, There are several possibilities
that may occur,

The effect of Repeat Mode when the ONE OPERATION button is raised is
explained in Section 3, Only a brief review is necessary, The repeat
Count is loaded into bits 18 thru 24 of the INDEX Register by the LDC
instruction word, The next phase four that is encountered is executed
and then repeated the number of times specified by the Repeat Count
(Repeat Count + word times for execution = number of repetitions),

When ONE OPERATION is depressed and an LDC instruction word is executed,
the instruction word designated by the next-address is transferred to
the COMMAND register and the computer stops at the next phase 3 that is
encountered, Thus the Repeat Count will be intact in the INDEX Register,
If no other buttons are activated the instruction now in the COMMAND Re-
gister will be executed in the Repeat Mode if it could be so executed in
Normal Mode, All of the restrictions that apply in Normal Mode will ap-
ply in One Operation Mode,

The possibility does exist that manual operations can intervene,
a, One Operation Mode-Repeat Count not loaded, Obviously no problem,
b, One Operation Mode- Repeat Count loaded,
If the last instruction to be executed was an LDC and the instruction now
in the COMMAND Register can be executed in the Repeat Mode, the next start
signal will cause the instruction to be executed just as if the computer
were in Normal Mode, Since only phase 4 of an instruction is repeated all

of the repetitions will occur before the computer stops in phase three of
the following instruction,

120



c. One Operation Mode-Repeat Count loaded-EXECUTE LOWER ACCUMULATOR
depressed,

If the last instruction to be executed was an LDC and EXECUTE LOWER ACCU-
MULATOR was depressed when the computer entered the next phase 1, the con-
tents of the LOWER Accumulator was transferred to the COMMAND Register and
the computer halted in phase 3 of the instruction word now in the COMMAND
Register, 1If this instruction would normally be executed in the Repeat
Mode the next start signal will initiate its repeated execution as in b,
(above)

d. One Operation Mode-Repeat Count loaded-EXECUTE LOWER ACCUMULATOR
depressed-SET INPUT depressed,

If SET INPUT is depressed after the Repeat Count is loaded, the Repeat Mode
is terminated and the Repeat Count remains intact in the INDEX Register,
The instruction following SET INPUT is executed only once regardless of ac-
tual input or whether the instruction is taken from memory or the LOWER Ac-
cumulator, '

Certain commands cannot be repeated, Any command which does not have a
phase 4 cannot be repeated for obvious reasons (active TBC and TMI, INP,
HLT), These commands would alter the Repeat Count during a repeated
execution: LDC, EXC (UPPER into INDEX) and would cause a phase 4 that
would never stop, hence they will not be repeated if so attempted by

the program,

PROTECTED TRACKS

The RPC-4010 memory may be protected to prevent destruction of recorded
information in 8 blocks of 16 tracks each. Two blocks (tracks 0-15,
16-31) may be protected by means of toggle switches located behind the
sliding panel directly below the oscilloscope on the RPC-4010 console.
These switches disconnect the write heads to prevent recording, (Figure

19.)

Inside the RPC-4010 cabinet are 8 toggle switches that will protect any
of the 8 blocks of 16 tracks. These switches are mounted on circuit
cards located inside the front panel of the RPC-4010 (and behind the
metal door covering the circuit card racks), Eight toggle switches are
mounted two each on 4 cards, The upper switch on the left-most card is
in series with the 0-15 switch on the computer console, the lower switch
is in series with the 16-31 switch on the console,

The eight switches inside the cabinet control the write-heads (reading

—
bo
[y



upper, lower, left to right) on tracks:

0-15 64-79
16-31 80-95
32-47 96-111
48-63 112-127

If the two internal switches (0-15, 16-31) corresponding to the external
switches are off, the external switches have no effect, If one is off,

both are off, If both are on, recording is possible, The switches are

in series,

ADDITIONAL COMMENTS ON MODES

A summary of the various modes may be useful:

One Operation and Normal Mode can only be selected manually (by the
ONE OPERATION button),

Copy Mode can be controlled manually or by programming,

The Eight-Word Mode of the LOWER Accumulator is controlled by
programming, but depressing the SET INPUT button in One Operation
Mode will set the LOWER to one-word length, regardless of its
programmed mode,

The Repeat Mode can be controlled by programming only,

Single Character Mode means that after each four-bit or six-bit
character is read as determined by the INP command, a start signal
will be sent to the computer, Single Character Mode cannot be con-
trolled by programming and with the exception of SET INPUT, the
four-bit or six-bit input cannot be controlled manually,

The selection of four-bit or six-bit input is under control of the
INP (x) command, except for the effect of SET INPUT,

THE RPC-4000 INPUT/OUTPUT

The basic RPC-4000 system uses the RPC-4500 Tape/Typewriter System
consisting of the RPC-4480 Typewriter and the RPC-4430 Reader/Punch,
The RPC-4430 Right Control Panel has the master INPUT/OUTPUT controls
for any device in the system, The control buttons and indicators are
listed and described on pages 134 through 138,

122



THE RPC-4430

The RPC-4430 has two panels, The right panel (with the exception of
SYSTEM POWER) is concerned exclusively with on-line operations, The
left panel is actually in two sections divided by the caption OFF
LINE, The top portion deals primarily with on-line operation, but
must be considered to affect off-line functions to a certain extent,
The principle function of the lower portion is to control off-line
operation, but it can have a decided effect on on-line operation,

Selection On and Off Line

Any unit selected off-line takes precedence over on-line selection,
Selection of the typewriter, the reader or the punch off-line will
deselect that unit if it is selected on-line., If the unit is se-
lected off-line and any attempt (by programming or manually) is made
to select that unit on-line, the SELECTION MONITOR indicator lights

to indicate an error, The light under the on-line selection button
will come on and with the exception of the SELECTION MONITOR indicator,
the unit will appear to be selected on-line, THE COMPUTER WILL BE
UNABLE TO USE UNITS SELECTED BOTH AND OFF-LINE, They may be used off-
line in this condition,

One and only one input device may be selected at any one time, If an
input device is selected on-line manually or by a program step and
another input device is subsequently selected, the input that was se-
lected last will be the one that is used by the RPC-4010, The lights
under both buttons will be on and both will appear to be selected but
only the last will have access to the RPC-4010, If two devices are
so selected the SELECTION MONITOR indicator (RPL) will be lighted,

The RPC-4000 Tape

The tape-reader moves the tape under a set of 'read brushes" which
close an electrical circuit when a tape hole (punch) passes beneath
them, The tape has seven channels, Any or all of these channels may
have a punch in one horizontal row., A combination of punches in chan-
nels 1 through 6 is called a character, Channel 7 is called the parity
bit,

Parity Checking

The PARITY MONITOR circuit (RPR) is used to check the accuracy of the
reader and of the punch which produced the tape that is being read,

123



That is, channel 7 of the tape is reserved for a parity bit, The RPC-4000
system has even parity, If the number of punches in a character is odd,

a parity bit will be punched so that the number of bits in all seven
channels is always even, The parity checking circuitry is active only
during on-line operation of the tape-reader,

If the PARITY MONITOR INHIBIT button is depressed, parity checking is
by-passed, If the button is raised, the reader will check the parity
of the tape being read,

If the PARITY MONITOR INHIBIT button is raised and a character with an
odd number of bits is read, the light under the PARITY MONITOR RESET
button comes on and input stops, At this point the STOP READ button
(RPR) must be depressed. The character with bad parity is the character
that was read before the one that is now in the CHARACTER INDICATOR
lights, The character with bad parity has been transferred to the RPC-
4010,

If the parity error is such that the character so input is invalid, the
accumulators must be cleared and all information input as a result of
the INP being executed must be read into the computer again,

Recovery from a parity stop is normally as follows:-

depress STOP READ (RPR),

depress PARITY MONITOR RESET (RPR),
clear the accumulators,

read all of the input again,
re-position the tape, if necessary,
depress START READ

When START READ is depressed, the character under the read-head (and
also in the CHARACTER INDICATOR LIGHTS is input to the RPC-4010 com-
puter just as if the parity stop had not occurred,

Checksums and Master Tapes

The advantage of checking the reliability of information input into a
computer is widely recognized, One method was discussed above, A second
method is checksumming,

Various schemes are used to produce a checksum, The criteria for choosing
a scheme depends on the characteristics of the various components in the
computing system, the assemblers that produces the machine language pro-
gram tape and the input routines, Using these criteria, the following
scheme was adopted for the RPC-4000. The RPC-4000 Opt1m1zer and Assembly
Routine, ROAR, which will produce most RPC- 24000 program master tapes,
outputs a checksummed hexadecimal master tape of the following format

124



The bootstrap followed by a blank space,
several tape records (structured as below) and
a transfer record,

For present purposes, a tape word is defined as the characters between
stop codes, The structure of each tape record of the hexadecimal pro-
gram tape (except the final record) is 100 tape word of 12 hexadecimal
characters, each followed by a stop code, The final word (101) is a
checksum of not more than 16 hexadecimal characters,

In the tape word, the first 4 characters are an absolute address and
the remaining eight characters are the information to be entered at
the specified address, Leading zero's in the first 4 characters are
omitted,

In the checksum (word 101), 16 characters may be present (leading
zeroes are supressed), The first 8 characters are the sum of all
the locations (first 4 characters) in the preceding words in the
record plus the total number of overflows detected while summing
the data words (last 8 characters) in the record, The final 8
characters in the cheskcum are the sum (without regard to overflow)
of all the data words in the record,

The final tape record is of variable length and is the same as other
records except that the checksum of this final record will always have
bit 0 equal 1 and will always have 16 characters, Only the final re-
cord will ever have a checksum with negative sign bit,

The last record on the tape is a transfer record to branch to the
beginning of the program being loaded, If SENSE SWITCH 32 is depressed
the transfer will occur immediately and the program will begin operation,

If SENSE SWITCH 32 is raised a halt will occur before a transfer to the
starting location of the program,

COPY MODE

Copy Mode means that whatever is being input to the RPC-4010 will be
copied on all output devices that are selected by the RPC-4010., Two
buttons on the RPC-4430 Right Control Panel control Copy Mode. They
are the INPUT DUPLICATION SELECT and RESET buttons. Copy Mode may
also be controlled by the appropriate PRD instruction, Although Copy
Mode is an on-line activity and may be under program control it is a
function of the RPC-4430, If the RPC-4010 selects more than one out-
put device and prints or punches on these devices simultaneously, this
is multiple output and is a function of the RPC-4010, Such multiple
output should not be confused with Copy Mode,

125



The RPC-4480 Typewriter

The RPC-4480 typewriter may be used as input/output device on-line or
off-line, It could also be used as a conventional typewriter,

Before the typewriter can be used (either on-line or off-line), it must
be selected, On-line selection may be manual or by the appropriate PRD
instruction, Off-line selection overrides on-line selection as stated

on page 123,

If the typewriter is used for output, the only action required by the
operator is setting the tab stops and margins,

On-line Operation

If the RPC-4480 is being used for on-line input, it must be selected

(manually or by programming), the computer must have executed an INP

command or SET INPUT (CC) and START COMPUTE (RPR) (CC) must have been
depressed,

When the above conditions are met, the RPC emblem on the upper left
of the face of the type bar rack cover will be lighted., This light
indicates that the RPC-4010 is ready to accept input and information
may be typed,

If the SINGLE CHARACTER MODE button (RPR) is raised, the computer will
accept codes 16 through 62, that is all the legal alpha-numeric
characters, (See page 185), When (and only when) a stop code is de-
tected, at start signal is sent to the computer, If SINGLE CHARACTER
MODE (RPR) is depressed, all character codes are entered into the
computer and a START signal is sent after each character is read,

A stop code (*) is a special character representing a configuration of
bits that the RPC-4430 normally recognizes (on and off-line) as a
signal to stop input and take some other action. Single Character Mode
(on or off-line) allows the treatment of stop codes to be identical to
that of any other character,

When an input device is selected on-line and SINGLE CHARACTER MODE
(RPR) is raised and the RPC-4430 recognizes a stop code originating

from the device, the RPC-4430 terminates input and sends a start
signal to the RPC-4010,

Off-line Operation

When an input device is selected off-line and the CONDITIONAL STOP but-
ton (RPL) is raised, a stop code that originates with the input device

126



and is detected by the RPC-4430 will cause the RPC-4430 to act as if
STOP READ (RPL) had been depressed, If CONDITIONAL STOP (RPL) is de-
pressed, stop codes will be treated in the same way as any other
character,

Operation of the RPC-4480

The typewriter keyboard is similar to any good electric typewriter,
The operation is very similar and it only seems necessary to com-
ment on certain differences,

The numeric keys include a "1",
The "*'" is the stop code,

The short bar to the left of the SPACE bar is labeled LINE FEED and
depression of this bar will cause the typewriter carriage to move the
paper up one line (feed a line of paper),

To the right of the SPACE bar is a short bar labeled SPECIAL., This
bar is used in conjunction with the BACKSPACE key and the x
key.

When the SPECIAL bar is depressed, depression of the BACKSPACE key
will backspace the typewritef carriage and the tape, It is now pos-
sible to depress the x key with the SPECIAL bar depressed and a code
delete will be punched over the character on the tape and an x imprint-
ed over the character on the print-out which was deleted from the tape,

The only way to obtain a code delete is by depressing the x key while
the SPECIAL bar is depressed,

The BACKSPACE key and the x key have the usual effect if the SPECIAL
bar is not used,

If the RPC-4480 Typewriter is being used for input off-line, the TYPE-
WRITER SELECT (RPL) button must be depressed, the READER SELECT (RPL)
button must be raised and START READ (RPL) must be depressed, The RPC
emblem will be lighted just as in on-line use of the typewriter,

Information may now be typed (and, presumably will be punched). If the
SINGLE CHARACTER Mode button (RPL) is depressed, the START READ button
(RPL) must be depressed before any (or each) character is typed,

If the CONDITIONAL STOP button is depressed, all stop codes will be
ignored and the off-line typewriter will remain connected to the punch
until STOP READ (RPL) is depressed,

If the CONDITIONAL STOP button (RPL) is raised, the typewriter will

127



accept input as defined by the setting of the SINGLE CHARACTER MODE
button (RPL).

If SINGLE CHARACTER MODE (RPL) is raised, then the connection between

the typewriter and the selected output device is dependent entirely
upon the CONDITIONAL STOP button (RPL) as described above,

THE AUXILIARY TYPEWRITER

On the left control panel of the RPC-4430 there are buttons to select
an auxiliary typewriter for input and output, Similarly there are
buttons on the RPC-4431 unit to select an auxiliary typewriter, These
buttons do not select the same typewriter nor do the buttons on the
RPC-4430 select the typewriter used on or off-line with the RPC-4600
Auxiliary Tape/Typewriter System,

An auxiliary typewriter is auxiliary to the tape/typewriter system
which will select it manually for on-line use., An auxiliary type-
writer will not punch or print off-line, It is an auxiliary type-
writer for use by the computer while the tape/typewriter with which

it is associated is being used off-line, An auxiliary typewriter might
also be used in some remote location to provide access to the RPC-4000
system, '

128



aTosuo) Tox3uo)d OTIOP—Dd¥ “6T TINDIA
HONVYE
1e-91 S1-0 ]
@ "® O 0O
Qu0934
1 z ) 8 91 3
X3ONI
L 0 ANVWINOD T0UINOD HINvuE HOLVINWNIIY  IGOW INdNI  NOLLYY3IO INO 3LNdWOI 1¥VIS
¥IMO1 31n23X3 135
9 T ¥IMO1
s z
Rt ¥3ddn

AV1dSIa H0133S 1

410 4Imod

NO ¥iMod

31ndW0J

dois




RPC-4010 CONSOLE

BUTTON OR INDICATOR : FUNCTION
POWER ON A momentary switch which turns power

ON, and is lighted when power is ON.

POWER OFF A momentary switch which turns power
OFF,
START COMPUTE , A momentary switch which initiates

computer operation, depending on the
setting of ONE OPERATION, It is
lighted when power is Qﬁ,

ONE OPERATION A two position switch, active when de-
pressed and lighted when active, A
“depressed ONE OPERATION button places
the computer in One Operation Mode,
When ONE OPERATION is raised the com-
puter is in Normal Mode,

When in Normal Mode, the depression of
ONE OPERATION will halt the computer
at the beginning of the next phase 3
that is encountered,

The depression of ONE OPERATION will
allow the activation of the SET INPUT
and EXECUTE LOWER ACCUMULATOR buttons,

In One Operation Mode a start signal
will cause the instruction word in the
COMMAND Register to be executed and the
instruction designated by the next-ad-
dress to be placed in the COMMAND Re-
gister before the computer halts at the
beginning of the next phase 3 that is
encountered, See the discussion of TMI,
TBC, and the Repeat Mode on page 25,

SET INPUT A momentary switch active only when ONE

OPERATION is depressed., When ONE OPER-
ATION is active, depression of the SET

130



SET INPUT
(continued)

EXECUTE LOWER ACCUMULATOR

BRANCH CONTROL

131

INPUT button will cause the LOWER Ac-
cumulator and the data-track field of
the COMMAND Register to be set to zero,
The LOWER Accumulator will be set to
one-word length and the execution of a
four-bit input order that overrides the
instruction in the COMMAND Register
will be initiated,

If SET INPUT is depressed while the com-
puter is in One Operation Mode, the re-
sulting four-bit input order will be in
effect even though ONE OPERATION is
raised before the receipt of a start
signal, In all cases the successful
execution of the four-bit input order

is contingent on manual selection of an
input device and depression of START
COMPUTE

A two position switch, active only when
the ONE OPERATION button is depressed
and lighted when active, When active
and upon the receipt of any start sig-
nal, either as a result of the depres-
sion of START COMPUTE or of some input
function, the word contained in the
LOWER Accumulator is transferred into
the COMMAND REGISTER, START COMPUTE
must be depressed before the instruction
will be executed.

Good procedure demands that EXECUTE
LOWER ACCUMULATOR be raised during
operation in Normal Mode, If ONE OPER-
ATION is depressed with the operator
unaware of the fact that EXECUTE LOW-
ER ACCUMULATOR is depressed much con-
fusion can result,

A momentary switch used to turn Branch

Control QEE when the computer is in One
Operation Mode, This button is lighted
when Branch Control is ON regardless of
mode , _~

If the operator is single-stepping
through a program in One Operation
Mode, this button allows a choice of



X

the path that will be taken by TBC in-
structions,

SENSE SWITCHES Six two position switches used in con-
Jjunction with the SNS instructions,
Each button is lighted when depressed,
Depressed buttons are ON, raised but-
tons are OFFE, (See paEE

OSCILLOSCOPE 'Displays a visual representation of
the contents, in binary, of the UPPER,
LOWER, COMMAND and INDEX Register,

L-DISPLAY An eight-position rotary switch, the
setting of which determines the LOWER
Accumulator that will be displayed
when the LOWER is in the Eight-word mode,

STOP An indicator lamp that is lighted when
the computer is halted on HLT, INP, or
as a result of manual intervention by
depression of the ONE OPERATION button,

COMPUTE An indicater lamp, lighted when the
computer is executing instructions.



SELECTION

POWER MONITOR
. Pl6|s|a 3|2 |1

TYPEWRITER READERTO  AUX. TYPEWRITER
70 COMPUTER ~ COMPUTER  TO COMPUTER
COMPUTER TO  COMPUTER  COMPUTER T0

TYPEWRITER TOPUNCH  AUX. TYPEWRITER SYSTEM POWER
READER TAPE  PUNCH TAPE

MONITOR MONITOR

OFF LINE
P
CONDITIONAL SINGLE ARITY MONITOR
STOP TAPE FEED CHAR. MODE RESET INHIBIT
| P
TYPEWRITER READER PUNCH MASTER NPUT DUPLICATION
SELECT SELECT SELECT RESET RESET SELECT
SINGLE
START READ STOP READ CHAR. MODE START READ STOP READ START COMPUTE

b

FIGURE 20, RPC-4430 Reader/Punch Control Panels

133



RPC-4430 READER/PUNCH RIGHT CONTROL PANEL

BUTTON OR INDICATOR

SYSTEM POWER

SINGLE CHARACTER MODE

PARITY MONITOR INHIBIT

PARITY MONITOR RESET

MASTER RESET

FUNCTION

A two-position switch, active when depres-
sed and lighted when active, The button
controls power to all input-output devices
in the system, Individual power on switches
cannot be activated unless SYSTEM POWER is
ON,

A two-position switch, active when depres-
sed and lighted when active, When SINGLE
CHARACTER MODE is depressed, all legal

tape characters enter the accumulator and
input will be one character at a time,

with a start signal sent to the computer
after each character is read, When raised,
only tape codes 16 through 62 enter the com-
puter and a start signal is sent only when
a stop code is detected by the selected in-
put device or START COMPUIE is depressed,
SINGLE CHARACTER MODE cannot be controlled
by programming,

A two-position switch, active when depres-
sed and lighted when active, When active,
the parity checking circuitry is disabled,
When raised, the parity checking circuitry
is active,

A momentary switch, When the PARITY MONITOR
INHIBIT button is raised and a character
with bad parity (an uneven number of bits

in all 7 channels) is under the read-head,
the button is lighted, Depress the button
and parity checking is by-passed for the
character being read, (See also page 145),

A momentary switch which, when depressed,
deselects any input/output units selected
on-line, The button is lighted when the
RPC-4430 power is on,

134



INPUT DUPLICATION SELECT

INPUT DUPLICATION RESET

START READ

STOP READ

START COMPUTE

CHARACTER INDICATOR LIGHTS

A momentary switch lighted when active,
When depressed, the button turns on Copy
Mode whereby all selected output devices
duplicate the input data as it is read
into the computer,

A momentary switch which, when depressed,
turns OFF Copy Mode. Copy Mode can be
controlled by programming,

A momentary switch which, when depressed,
activates the input device that was selec-
ted manually after the initiation of the
programmed INP command or allows completion
of an INP command that was interrupted by
depression of STOP READ (RPR),

A momentary switch used to stop input by
the selected input device, START READ
(and only START READ) must be depressed
to resume input without interrupting the
input sequence, The button is lighted
when the RPC-4430 power is on,

A momentary switch initiating program
execution by the computer, Depressing
this button is the same as depressing the
START COMPUTE button on the computer
console, The button is lighted when the
RPC-4430 power is on,

These lights represent the bit-pattern of
the tape character being read by the RPC-
4430, They are lighted to show the
character code of the next character to

be read into the system by the tape reader,



RPC-4430 READER/PUNCH LEFT CONTROL PANEL

BUTTON OR INDICATOR

POWER ON

SELECTION MONITOR

TYPEWRITER TO COMPUTER

READER TO COMPUTER

AUXILIARY TYPEWRITER TO

COMPUTER

COMPUTER TO TYPEWRITER

COMPUTER TO PUNCH

FUNCTION

A two position switch used to control the
electrical power of the RPC-4500, It is
active when depressed and lighted when ac-
tive, POWER ON should be raised and left
raised until SYSTEM POWER is on.

An indicator lamp that is lighted when an
I1/0 device selected off-line is selected
by the computer, manually or by a program
step, (See page 123),

A momentary switch to select the typec.: iter
for input, The button is lighted when the
typewriter is selected on-line, *

A momentary switch to select the reader
for input, The button is lighted when
the reader is selected on-line, *

A momentary switch identical to TYPEWRITER
TO COMPUTER for the auxiliary typewriter
of the RPC-4430,

A momentary switch to select the typewriter
for output, It is lighted when the type-
writer is selected on-line, *

A momentary switch to select the punch for
output, It is lighted to indicate the
punch is selected on-line, *

These buttons will be lighted when the rela-
ted device is selected on-line manually or
by a program step, The computer does not
have access to the device if it is also se-
lected off-line., (See SELECTION MON ITOR
(above) and the discussion on page 123,

130



COMPUTER TO AUXILIARY
TYPEWRITER

READER TAPE MONITOR

PUNCH TAPE MONITOR

CONDITIONAL STOP

TAPE FEED

TYPEWRITER SELECT

(O3]

A momentary switch identical to -COMPUTER
TO TYPEWRITER for the auxiliary typewriter
of the RPC-4430.

Two interlock switches will turn on this
indicator, One is a pressure switch under
the reading head that will stop the reader
and turn on the indicator if the reader is
out of tape, The other is a pressure switch
at the point where the tape feeds over the
edge of the cabinet. When tension on the
tape as it feeds toward the reader becomes
too great the switch will stop the reader
and turn on the indicator, The appropriate
STOP READ button should be depressed before
corrective action is taken,

An indicator light, lighted when the punch
is out of tape or is jammed, Requires im-
mediate attention at any time,

A two-position switch, active when depres-
sed and lighted when active, When inactive
(raised), a stop code sensed by any se-
lected input device will terminate off-line
operation, Operation must be then resumed

by depressing START READ (RPL), When active
(depressed), stop codes have the same ef-
fect as other characters, Operation will
continue until STOP READ (RPL) is depressed,
Activation of CONDITIONAL STOP will override
SINGLE CHARACTER MODE (RPL), if it is active,

A momentary switch which, when the punch
is selected off-line, will feed blank tape
with sprocket holes for leading and trail-
ing ends of a tape. The button is lighted
when RPC-4430 power is on,

A two-position switch, active when depressed

and lighted when active, that will de-select

the typewriter if it is selected on-line and

select it off-line; for output if another in-
put device is selected off-line, or for input
if no other device is selected off-line.



READER SELECT

PUNCH SELECT

START READ

STOP READ

SINGLE CHARACTER MODE

A two-position switch, active when depressed
and lighted when active, that will de-select
the reader if it is selected on-line and se-
lect it off-line, While the reader is se-
lected off-line, the typewriter may not be
used for off-line input,

A two-position switch, active when depressed
and lighted when active, that will de-select
the punch if it is selected on-line and se-
lect it off-line,

A momentary switch which, when depressed,
connects the device selected for off-line
input to the device selected for off-line
output and otherwise activates the input
device, The START READ signal is active

as specified by SINGLE CHARACTER MODE (RPL)
or CONDITIONAL STOP (RPL), The button is
lighted when RPC-4430 power is on,

A momentary switch which, when depressed,
terminates off-line input from the selected
input device, The button is lighted when
RPC-4430 power is on,

A two-position switch, active when depres-
sed and lighted when active, When depres-
sed, off-line input will be character by
character, 1If CONDITIONAL STOP is depres-
sed, SINGLE CHARACTER MODE will have no
effect, even though it will appear to be
active,

138



BOOTSTRAP

Bootstrapping is the process of entering a sufficient number of program

steps, which in harmony with manual operations, will allow the entry of

a short program loop that will load instruction words into the computer

memory, There is often some confusion in the use of the term bootstrap,
For this discussion, the terms bootstrap, load program and input program
will be used,

An input program is distinct from bootstrap or loading programs in that
the input program processes the information in some way, such as scaling,
binarization, conversion or a combination of these operations, The load
program is a complete program, in that the entry of information is inde-
pendent of manual intervention, so we may speak of the computer as being
"under program control',

The bootstrap is not separable from manual intervention, Part of a
bootstrap may be free of manual intervention but the computer is not
considered under program control until the program is free of manual
control and has reached the point where the program ceases to modify
itself through input, Once the program is in memory and instruction
words are being loaded in some assigned location by a program loop
that is not being changed as a result of that input, we are out of the
bootstrap and under control of the load program,

Bootstrapping for the RPC-4000 involves several manual operations but
it is very simple once the procedure has been used,

The bootstrapping operation consists of the following:

Depress READER TO COMPUTER (RPL)

Depress ONE OPERATION (cc)

Depress SET INPUT (CC)

Depress EXECUTE LOWER ACCUMULATOR (CC)

Depress START COMPUTE (CC)  (RPR)
Remembering that we are in One Operation Mode, we see that information
will be input until a stop code is detected by the reader, At this point,
the reader stops and a start signal is given to the computer, EXECUTE
LOWER ACCUMULATOR is active so the computer, upon receipt of the start
signal, transfers the contents of the LOWER to the COMMAND Register and
halts with the instruction word that was input now in the COMMAND Register
as the next instruction to be executed,

Depress START COMPUTE (CC) (RPR)

The instruction in the COMMAND Register is executed,

139



If the tape contained DFFOBF84D7F03F80*, we would recognize this as a
hexadecimal tape word of 16 characters consisting of two computer
words of 8 characters each, The equivalent ROAR language words would
be:

CLL 12702 12702
CLU 12700 12700

Since this word is now in the double-length accumulator with the in-
struction word in the LOWER just executed, let us examine the execu-

tion that has taken place,

ROAR language will be used in the discussion, but it must be remembered
that the bootstrap tape is a hexadecimal tape,

The instruction we placed in the COMMAND Register was:
CLU 12700 12700
The double-length accumulator contained:

UPPER  CLL 12702 12702
LOWER CLU 12700 12700

When the instruction in the COMMAND Register was executed by depressing
START COMPUTE (CC) (RPR), the contents of the UPPER was transferred to
12700,
The next-address specified is 12700, In memory, we have:

12700 CLL 12702 12702

NOW :

Raise EXECUTE LOWER ACCUMULATOR (CC)

Depress SET INPUT (CC)
Raise ONE OPERATION (CC)
Depress START COMPUTE (CC) (RPR)

When START COMPUTE (CC) (RPR) is depressed, the four-bit input order is
executed and the double-length accumulator contains:

UPPER INP 8] 12700
LOWER CLU 12707 12707

The computer is in Normal Mode, so when the stop code is detected by the
reader, a start signal is sent to the computer,

140



The next instruction to be executed is specified by the next-address of
the COMMAND Register which is:

12700 CLL 2702 12702

The instruction is executed and upon execution, memory looks like:

12700 CLL 12702 12702

12702 CLU _ 12707 12707
and we proceed:

12702 CLU 12707 12707

The UPPER is cleared by the execution, so that we have in memory:

12700 CLL 12702 12702
12702 CLU 12707 12707
12707 INP v 0 12700

On the execution of the instruction in 12707, the double-length ac-
cumulator will receive two additional words:

UPPER INSTRUCTION WORD
LOWER CLU X 12707

The UPPER will contain the instruction word to be stored in the location
specified by the data-address of the word in the LOWER,

This sequence is repeated until the load program has been stored in memory,

UPPER INSTRUCTION WORD
LOWER CLU X LOAD

where X in the last location in the load program and LOAD is the beginning
of the load program,

The load program should meet the following requirements:

input a tape word

determine where the word is to be stored
perform that storage

check for completion of input

[N T w i

1, if complete, transfer to routine
2, if not complete,loop to read next tape word

e. the load program might also checksum the tape or

audit the accuracy of the input device in some
way,

141



The following is a short routine which will read and store a hexadecimal
tape with the same word format as the ROAR output tape except that this

routine does not checksum and the final tape word must be stored in LOAD
for transfer to the routine,

LOAD INP 0 (A) TREAD 1 TAPE WORD

(A) SRL 114 (B) LOC, OF WORD TO D-ADDRESS
(B) EXC 498 (C) ADDRESS TO X

(C) SRL 14 (D) RESTORE TAPE WORD

(D) XCLL ' 0  LOAD STORE IN PROPER LOC,

142



OPERATING PROCEDURES

1,

RPC-4000 STARTING PROCEDURE
(Assume power off, all units)

1,1, RPC-4430 Reader/Punch

1.1.1, Make certain POWER ON (RPL) is raised,
1.1,2, Depress SYSTEM POWER (RPR)
1,1,3, Depress POWER ON (RPL)

1.2, RPC-4010 Computer Console

1.2.1, Depress POWER ON
1.2,2, Raise all SENSE SWITCHES

NOTE: Approximately three minutes are required
for the drum to reach the required speed,

BOOTSTRAPPING PROCEDURE

2.1, Depress MASTER RESET (RPR) to deselect all I/0 devices

selected on-line,

2.2, Deselect (by raising the appropriate button) any device

selected off-l1line, (RPL)

(If a device is selected off-line it is not available

to the RPC-4010,)

Place the tape in the reader,

Depress READER TQ COMPUTER (RPL)
Depress ONE OPERATION (CC)

Depress SET INPUT (CC)

Depress EXECUTE LOWER ACCUMULATOR (CC)
Depress START COMPUTE (CC) (RPR)

. WAIT for reader to stop

. Depress START COMPUTE (CC) (RPR)

Raise EXECUTE LOWER ACCUMULATOR (CC)

. Depress SET INPUT (CC)

WWwwwwwwwww

.

[SS IS TNAS J (C T O I (ST S I (S I \8
O 003 O Lt bWty

143

. The following steps read the bootstrap from tape:



2,3,10, Raise ONE OPERATION (CC) ,

2.3.11, Depress START COMPUTE (CC) (RPR)

2,3.12, The bootstrap will now read in and begin
loading the hexadecimal program tape with-
out stopping,

MANUAL ENTRANCE TO A PROGRAM

Depress MASTER RESET (RPR) to deselect all 1/0 devices se-
lected on-line,

Deselect any device selected off-line, (RPL)

Depress ONE OPERATION (CC)

Depress SET INPUT (CC) ,

Depress EXECUTE LOWER ACCUMULATOR (CC)

Depress TYPEWRITER TO COMPUTER (RPL)

Depress START COMPUTE (CC) (RPR)

Type the starting address of the program, in hexadecimal,
followed by a stop code "*",

Raise EXECUTE LOWER ACCUMULATOR (CC)

Raise ONE OPERATION (CC)

Depress START COMPUTE (CC) (RPR)

ERRORS IN LOADING MASTER TAPES

The two possible errors (other than manual errors) are checksum
and parity errors,

4.1,

Checksum Errors
If a checksum error is encountered, the typewriter prints

"ERROR" and the computer halts, Recovery from checksum
errors must be made by the procedure outlined below,

Remove the tape from the reader,

4.1,1,

4.1,2, Position the tape to the space between the
checksum of the record in which the error
was detected and the beginning of the last
record read correctly,

4.1,3, Depress START COMPUTE (RPR) (CC)

4.1.4, Try the procedure at least three times, If the

third attempt to read the record is unsuccessful,
go to 5.5,

144



4.2,

USE OF

wn

5.

[\S

.

Parity Errors

When a parity error occurs, the light under the PARITY
MONITOR RESET button (RPR) lights up and the computer

stops,

1
.2,
3.
4.
5,

Depress STOP READ (RPR)

Check the tape character

Depress PARITY MONITOR RESET (RPR)

Depress START READ (RPR)

If the computer does not stop on a checksum

error at the end of the record, the parity

was false and the character was correct,

Checksums are the most reliable checks.

If a checksum error was detected, follow the
procedure 4,1,3, (See page 123 if any difficulty),

NOTE: Generally one tape word will be read from
the next record before the checksum error
is detected,

ROAR TO ASSEMBLE PROGRAMS

Set SENSE SWITCHES (See ROAR Manual)
Place the ROAR input tape in the reader,

v L L
DD DD
wmh W

Depress MASTER RESET (RPR)

Deselect any equipment selected off-line (RPL)
Depress READER TO COMPUTER (RPL)

Depress COMPUTER TO TYPEWRITER (RPL)

If the computer is stopped on a HLT command,
depress START COMPUTE (CC) (RPR)

If the computer is stopped on INP command,
depress START READ (RPR)

ROAR will read the input tape and assemble the
program,

Errors during ROAR assembly

The errors considered in this section are:

Input
Parity
Machine Malfunctions

145



5

3.

1,

Correction of input errors,

These errors are either punching or coding
errors that ROAR will detect and log out
with appropriate comment,

Follow the recovery procedure below for manual correction
of these errors:

DO NOT MOVE THE INPUT TAPE

With the computer halted, depress
MASTER RESET (RPR)

Depress TYPEWRITER TO COMPUTER (RPL)
Depress START COMPUTE (CC) (RPR)
Starting with the location of the in-
struction in which the error occurred,
type the decimal location assigned by

I—'l—'
NH

3,
5.3,

W
w‘w
[T
u s W

ROAR (or in some cases the last location

assembled correctly,) Refer to the

coding sheet and type the correct infor-
mation up to and including the last stop
code previously read by ROAR, ROAR will

assemble the manual input as each stop
code is entered,

Depress MASTER RESET (RPR)

Depress READER TO COMPUTER (RPL)
Depress COMPUTER TO TYPEWRITER (RPL)
Depress START READ (RPR)

.10, ROAR will resume assembly,

TN
Wwww w
(SRR

0 @ o

Parity Errors

¥ )]

h
BN

TN

L L L n
EEN S SN
Nelle JEN I o)

IS

S

w

Depress STOP READ (RPR)

Mark the tape so the character causing the parity
stop will be easy to remember, DO NOT REMOVE THE
TAPE, (See also 6), '

Depress PARITY MONITOR RESET (RPR)

Depress TYPEWRITER TO COMPUTER (RPL)

Type any six hexadecimal characters, other than
zero, followed by a stop code to cause an error
print-out,

Depress MASTER RESET (RPR)

Depress READER SELECT off-line (RPL)

Make sure CONDITIONAL STOP (RPL) is raised,
Depress START READ (RPL)

The tape will now be positioned at the first
character of the field immediately following

the field where the parity occurred,

146



5.4.10, Raise READER SELECT (RPL), (Raise buttons depressed
5.4,7. through 5,4.8,)

5,4,11, Refer to coding sheet and follow procedure in
5.3,1,1, through 5.3,1,10,

5.5, Machine Malfunctions

It is generally best to try the procedures outlined above,
If after several tries, recovery proves impossible, call
your friendly service man,

If it is desirable to correct a tape off-line, this may be done by
deselecting the Reader and leaving ROAR intact in the computer with
its output undisturbed, 1In this case, the recovery would be by
means of the following steps,

Place the corrected tape in the Reader and positioh it to
the beginning of the last non-blank location assembled by
ROAR and follow steps 5,2,1. through 5,2,7,

USE OF THE RPC-4500 TAPE-TYPEWRITER SYSTEM OFF-LINE

To use the RPC-4500 to punch tapes off-line, the following sequence
should be followed:

7.1, Depress MASTER RESET (RPR)
(Deselects all on-line units)
Depress TYPEWRITER SELECT (RPL)
Depress PUNCH SELECT (RPL)
Depress CONDITIONAL STOP (RPL)
Depress START READ (RPL)

Whatever is typed will be punched

NN NN
- SRR RN

POWER OFF PROCEDURE

When the computer is not to be used for a considerable time or the
installation is closing shop for the day, the following procedure
is recommended for powering down,

147



The sequence will leave the system in a condition that will make
it difficult for the next user to make mistakes in selection and
switch settings,

1, Raise EXECUTE LOWER ACCUMULATOR (CC)

2. Depress ONE OPERATION (CC)

3, Raise all SENSE SWITCHES (CC)

4. Depress POWER OFF (CC)

5 Depress MASTER RESET (RPR)

6 Deselect any I/O devices in the system that are selected
off-line,

8.7. Raise POWER ON buttons (RPL, etc,) of the various I/0
devices in the system,

8, Raise SYSTEM POWER (RPR)

.9, The RPC-4000 ELECTRONIC COMPUTING SYSTEM is now in the

best condition for use by the next person who has need

of its capabilities,

148



SUMMARY LISTS
AND TABLES

ALGEBRAIC EXPRESSION OF THE RPC-4000 COMMANDS

This section contains a description, in algebraic notation, of the in-
ternal result of execution of RPC-4000 commands. The symbols used are
defined on the following pages. The methods used in the notation and
the assumptions on which the algebraic descriptions are based are
discussed,

149



DEFINITION OF SYMBOLS

Cl

will meah the contents of fhe déta-track portion (bits 5 thru 11;
of a register or location,

will mean the contents of the data-sector portion (bits 12 thru
17) of a register or location,

will mean the data-address field (bits 5 thru 17) of a register
or location, d will always mean that the data-track (t) and
sector (s) fields are each of significance either as track and
sector of an address or that the track and/or sector are used to
modify the execution of an instruction,

will mean the next-address field (bits 18 thru 30) of a register
or location,

will mean the index indicator bit (bit 31) of a register or location

will mean "contents of' the bit positions or location denoted by

the symbol modified by ¢, The notation c(d) would mean the contents
of bits 5 thru 17 of a register or location, c(U) would mean the
contents of the UPPER Accumulator,

will be used to denote the contents of bits 5 thru 17 (the data-
address field) of a register or location when these bits specify
some memory location,

will mean the contents of bits 18 thru 30 (the next-address field)
of a register or location when these bits specify a location in
memory,

will mean the COMMAND Register,

will mean the command field (bits O thru 4) of a register or
location, The contents of the command field [C(C') Jwila generally
be expressed as the mnemonic code for a given command,

will mean bits 5 thru 17 of a register or location when these bits
contain some value to be used by the instruction word. (See LDX
and CXE, pages 30 and 36,)

150



With the above terms we can express any instruction word, Statements
concerning an instruction word assume that the instruction exists in
the COMMAND Register, The contents of a COMMAND Register can be ex-
pressed as the c(C'), c(d), c(n), and the c(i). More properly, the
assumption is made that the COMMAND Register will contain:

(Mnemonic code) D N

Certain other symbols are needed to denote other bit positions and
locations of significance, These symbols identify portions of registers
and locations acted upon by instructions or describe some unique effect
of the execution of an instruction,

U will mean the UPPER Accumulétor, c(U) will mean the contents of
the UPPER Accumulator,

L will mean the LOWER Accumulator, c(L) will mean the contents of
the LOWER Accumulator,

e will mean some one of the eight words in the Eight-word LOWER
Accumulator, e will be equal to 0, 1, 2, —-———-- or 7, e will
never be greater than 7,

Le will designate the Eight-word LOWER Accumulator where e is equal
to the modulo 8 equivalent of the data-sector of the effective
operand address, (See the discussion page 24),

X will mean the INDEX Register. c¢(X) will mean the contents of the
INDEX Register,

r will mean bits 18 thru 24 (the Repeat Count) of a register or
location, Thus C(Dr) will mean the contents of bits 18 thru 24
of the location specified by D,

T will mean the Sector Reference Timing Track. c(T) will be the
contents of the Sector Reference Timing Track. (See page 20.)

f will mean bits 25 thru 30 of a register or location, f will gen-
erally refer to those bits holding the '"Found Sector", (See also
pages 50 and 51),

151



The operators used to describe the effect of the execution of an instruction
are as follows:

+ will mean addition,

- will mean subtraction

X will mean multiplication,

a will mean division,

b

= will mean equal,

£ will mean not equal,

< will mean less than,

> will mean greater than,

< will mean less than or equal to,

= will mean greater than or equal to,

: will mean therefore,

—_— will mean replaces,
—F will mean replacement terminates,

These are generally arithmetic operators; no attempt is made in
this section to describe logical addition, etc. as a result of
the execution of an instruction,

BC will mean the Branch Control flip-flop. Branch Control is as-
sumed to be on unless otherwise specified,

BC means not Branch Control or Branch Control gfi.

The expression BC — BC will mean Branch Control off replaces
Branch Control regardless of its state; BC — BC will mean
Branch Control on replaces Branch control regardless of its state,

Modifiers are necessary in some expressions, The problem of describing
which bits in which registers are affected is a necessity for those in-
structions that affect only part of a register or location, An LDC in-
struction acts only on bits 18 thru 24 of the operand address and the
INDEX Register; other instructions such as CXE, LDX, and SAU, pose
similar problems,

Subscripts are used to show which bits in a given register or location
are affected (or used), X, would mean only bits 18 thru 24 of the INDEX
Register are used/affected by an instruction., D, would mean only bits 5
thru 17 of the location specified by the data-address are used/affected
by the execution of an instruction,

Similarly any lower case symbol may be used as a subscript, The subscript
means that only those bit positions designated by the lower case symbol
are used/affected or are of special significance such as determining the
LOWER Accumulator affected when the LOWER is 8-words,

152



The use of masks will be shown as follows:

mu

ml

md"

will be used as a prefix to denote that the effect of an instruction's
execution is determined by a mask in the locationvdesignated,

means the contents of the UPPER is used as a mask,
means the contents of the LOWER is used as a mask,

means the contents of the location specified by the data-address
is used as a mask,

Thus c(mlU) means the contents of the UPPER modified (specified)
by the mask in the LOWER, c(md'U) means the contents of the UPPER
modified (specified) by the mask in the location specified by the
data-address,

The symbols above will describe most instructions executed in the Normal

Mode,

The COMMAND Register contains an instruction word, The search for

sector begins and then:

c(N)—>» c(C)

Any sequence of instructions can be represented by:

c(N)—> c(C)=> c(Ny)—> c(C)
c(NZ)-—-> c(C)=—retc.

THE INDEXING EQUATION

io= 1

C(Nd) + c(Xy)—>c(Cy)

as opposed to

i = 0

c(Ny)—>c(Cq)



REPEAT MODE

The symbols as explained above would allow us to describe the execution
of any instruction in the Normal Mode. There will be many instances
when an instruction will be executed in the Repeat Mode, Several terms
are necessary to describe that phenomena,

R will mean Repeat Mode
R will mean Normal Mode
J will be the momentary value by which the sector portion of the

effective operand address is incremented during execution of
an instruction in the Repeat Mode. At the first execution j
will equal O, on the second j will equal 1 and the final exe-
cution j will equal the value of the Repeat Count loaded by
the LDC instruction initiating the Repeat Mode, (See page 25).

By "effective operand address" is meant the data-address used for any
one execution of an instruction, If the instruction is not indexed
and is being executed in the Normal Mode the effective operand address
and the data-address are the same, If an instruction is indexed, the
data-address of the instruction word is incremented by the index value
and the sum is placed in the COMMAND Register as the data-address, We
are concerned here with the three different "data-address fields", but
only one effective operand address,

If an instruction is being executed in the Repeat Mode, the data-address
(which may be indexed) is placed in the COMMAND Register and remains un-
changed, However, the instruction is executed once and then the effective
operand address is incremented by one (COMMAND Register unchanged), exe-
cuted again, the effective operand address is incremented by one again,
etc., This sequence is repeated until the effective operand address is
equal to the data-address (D) of the COMMAND Register plus the value (r)
loaded by the LDC instruction word initiating the Repeat Mode.

The statement of an instruction where R = R is concerned with each indi-
vidual execution, not with all of the executions which transpire, The
expression Dg,; will mean that the sector portion of D is incremented by
the momentary value of j to determine which sector is affected by (or is
used by) that particular execution., This is extremely important when
the instruction uses/affects the Eight-word LOWER,

To illustrate, RAL repeated with one-word LOWER requires knowledge about
the final execution and no other; the use of RAL repeated with an Eight-
word LOWER requires knowledge about each and every execution, The latter
is the usual case; we are most often concerned with each execution or a
particular execution, but not with the final result of all the executions,

154



FINDING L,

e
uses/affects the Eight-word LOWER,

In Normal Mode,

e = the remainder of Cs

8

In Repeat Mode, e is obtained by:

e = the remainder of C_+j

DESCRIPTION OF COMMAND EXECUTION

(A1l numeric values are decimal,)

HLT d N
t must equal 0

The computer stops,

SNS d N
0 <t <128

Initially BC—»BC, then if any bit in t that is equal to 1
corresponds to any depressed SENSE SWITCH, BC-—» BC; otherwise

BC—BC,
CXE v N
BC—=BC; if c(Xy) = c(Cy): BC— BC
BC—=BC; if c(X) # c(C,): BC—>BC
NOTE : xCXE (v = 1) N BC guaranteed OFF
xCXE (v = 0) N BC guaranteed ON

155

L. is determined by the effective operand address of the instruction that



SAU

N
R
c (D)= c(U)
R
C(Ds‘f—j)""*C(U)
N
R, L = L
¢ (D)= c (L)
R, L = L,
c(Dg)=—>=c(Le)
R, L = L
c(Ds+j)—+c(L)
R, L = L
c(DS+j)—->c(Le)
N
E C(Ud)—>C(Dd)
R c(Ug)—>c(D(g45y4)

156



MST

LDC

LDX

o

=

=|

x|

|

L = L

L = L

L = L

L = L,
R—>R,
C(Ci) = 0
C(Cl) = l,

No difference,

157

¢ (muL)=—>» c (muD)

c¢(muLg)—c(muDy)

)

c(mul)—c (muDs,,,J

¢ (muLg)——-c(muDg )

*

c(Dp)=—>c(X.), R—=R

Is an impossibility,

c(CV)—+c(XV)

c(Cy) + (X)) —c(Xy)



INP d N Not considered,

EXC d N

s NOT USED
R = R, L = L
t = 0
NO OPERATION
t >= 1
c(U)=—>c(L)
t = 2
c(L)~—>c ()
t = 4
c(U)=—>c(X)
t = 8
c(X)—>c ()
t = 16
L —> L
t = 32
L — Le
R = R, L = L,
R = R, L = L NOT CONSIDERED
R = R, L = L

158



DvVU D N

c(U) —»-c(U), positive remainder of
c(D)

c(U) = c (L)

c(D)
R = R L = Lg
R = R, L = L Not considered,
R = R, L o= L, |
DIV D N
R = R, L = L
c(UL)—=c(U), positive remainder of
c(D)
c(UL) = <(L)
c (D>
R = i, L = Le
R = R, L = L Not considered,
R = R, L = 1



SLC d N

A normalized number in the double-length accumulator is a
number whose most significant digit (bit) is in bit 1,

normalized c(UL)—c(U), O-=—»c(L), number of
shifts + c(CS) modulo 64—c(Ly),

NOTE: If the number of shifts plus c(Cg) equals 64,
shifting stops and O—>c(L)., The above is
true unless the c(UL) is a normalized number,
If ¢(UL) is normalized then c(Cg)—c(Lg);
if c¢(UL) = 0 then number of shifts will equal
64 - c(Cy) and 0—>c(Lg)

R = R, L = L,
R = R, L = L Not considered,
R = R, L = L,
MPY D N
R = R, L = L
c(U) X c(D)—>c(UL)

R = R, L = L,
R = R, L = L Not considered,
R = R, L = L

e

160



MPT d N

R = R

t = 0

c(U) X 10=»c(U)
R = R, L = L

t = 64

c(L) X 10=>»c(L)
R = R, L = L,

c(Le) X 10=—>»c(Lg)
R = R

t = 0

c(U) X 10—»c(U)
R = R, L = L

t = 64

c(L) X 10=—c(L)
R = R, L = L,

t = 64

c(Lg X 10—>c(Ly)

Overflow is ignored,

NOTE: It is specified that these descriptions are concerned
with each single execution, In this case we may be
concerned with exponentiation so that a repeazza MPT
could be considered as

c(U or L) X loj-—+—c(U or L),
In the case L = L, R = R
if j > 7 exponentiation would take piace for those

words of the Eight-word LOWER that were acted upon
more than once,

161



PRD

PRU

EXT

D N

NOT CONSIDERED

D N

NOT CONSIDERED

D N

c(D) = md'
R = R

c(md'U)—— c (U)
R = R

c(md's+jU)—->c(U)
‘D N
R = R, L = L

¢ (muD) = ¢ (mul)
R = R, L = L,

c(muDS)—->c(muLe)
R = R, L = L

c(muDs+j)——+—c(muL)
R = R, L = L

c (muDs-a»j )~ (muLe)

162



CME

.l

or if

=l

or if

then if

or if

then if

or if

L = L
BC—>BC then if
c(mlU) = c¢(mlD): BC—>BC,

c(miU) # c(mlD): BC—»BC,

L = L
e
BC—BC then if
c(mleU) = c(mlgDg): BC—BC,

c(mlel) # c(mlgDy): BC—BC,

L = L
BC—BC, c(T+j)—>c(Xf)
c(mll) = c(mlDg+j): BC—>BC,

c(T+j) — c(Xg);
c(mlU) # c(mlDg4j): BC—BC,

c(T+j) —> c(Xp),

L = Lg
BC—BC, ¢ (T+j)=>c(Xg),
c(ml U) = c(mleDs+j): BC—>BC,

c(T+j) — c(Xf);

c(mlel) # c(mleDgsj): BC—BC,.

c(T+j)—>c(Xg).

163



CMG

=1

then if

or if

then if

or if

then if

or if

then if

or if

c(mlU) < ¢(mlD): BC=>BC

c(mlU) > ¢(mlD): BC—>BC

BC~—>BC
c(ml.U) < c(mleDS): BC == BC

c(ml U) >  c(ml.Dg): BC—BC,

L = L

BC—>BC c(T+j)—->c(Xf),
c(mlu) < c(mlDS+j): BC—>BC,
c(T+j) v'ﬁ‘*C(Xf);

:): BC—>BC,

\
c(miyy > c(mle+J

c(T+j)—>c(Xg),

L = L

€

BC—>BC, c(T+3)~—>c(Xg),

c(mleU) < c(mleD BC—>BC

orj)
c(T+]) —c(Xg);

c(ml U) > c(miD_,.): BC—>BC

e7s+j

c(T+3) —>» c(Xg),

164

¥



T™I

TBC

STU

=i

o

Bit QO of U =
C(N)—>»c(C),
Bit 0 of U =

c(D)=>c(C)

NOT CONSIDERED

N
BC = BC

BC = BC

NOT CONSIDERED

165

0 (positive)

(negative)

(See page 25)

¢ (N)—>c(C)

¢ (D)—> ¢ (C)—> BC—>BC,

(See page 25)

c(U)—>c (D)

c(U)—»c(Ds+j)



STL

CLU

NOTE :

R, L = L
c(L)—>c(D)
R, L = L,
c(Lg)=—>c(Dg)
R, L = L
c(L)—-»c(Ds+j)
R, L = Le
¢(Le)—>c(Dg4 j)
N
R
c(U)==>c(D), O—>c(U)
K
R

c(U)—>c(Dg4j) O=ac(U)
After the initial execution, the contents of U will
be O and hence

0—>c(Dg4 3) when j # 0,

166



CLL D N

c(L)=»c(D), O=—>c(l)

c(Le)—->c(Ds), 0—>c (L)

NOTE: After the initial execution, the contents of L will
be 0 and hence,

0—->c(DS+j) when j # 0
R = R, L = L
c(L‘)——F?c(Ds*.j), O0—>c (L)
R = R, L = Lg

c(Le)—>c(Ds+j), 0—>c(Lg)

NOTE: 1If the Repeat Count is greater than 7 then QO=»c (D

i)
s+
after j > 8. J

167



ADU

ADL

=1

]

=l

168

c(U) + c(D)y==>c(U)

c(U) + c(Ds+j)—->-c(U)

c(L) + c(D)=—>c(L)

c(Lg) + c(DS)——>c(Le)

c(L) + c(D )—>c (L)

S+j



SBU D N

R = R

c(U) - c(D)=>c(U)
R = R

c(U) - (Dgyj)—>c(U)

SBL D N

R = R, L = L

c(L) - c(D)y=—>c(L)
R = R, L = L,

c(Ly) - c(Ds)——>c(Le)
R = R, L = L

c(L) - C(D5+j)‘—>C(L)
R = R, L = Lg

c(Le) - c(Ds+j)——>c(Le)

169



uor3irsod-om3i = J,

Axejuauwow = K

(4dy)
FINdWOD
I4VLS
YIMOT
FINDOIXH
s3ed - - - - =
uor3draosap INdNI LES
2yl 23s 3inqg - - - -
USPPTIISA0 HINdWOD NOILWIEdO
L 3q jouued 0¢ v P—-0dYd NRILARY ON v X aNO
(4dy)
HLNdWOD
dOILs IdVIS
NM — —— wm wm e
NOILYIddO HILNdNOD NOILVYHdO
W aINO HIOd 0TOp-0dY¥ gNO ON N X FLNdWOD
IYVLS
W NO ¥IMOd 0T0p~Dd¥ ON X 440 ¥aMOd
W 440 JIMOd 0T0¥-DdY ON v X NO JdIMOd
NOILONYLSNI
O TYIRION
HOLIMS NoLINg YOLVIIANI NOLINg NOT.LONILSNI h: (0] INIT [ANIT | MOLVOIANI
J0 xg HIIM IINN HLIM HLIM HAIIOV | d440f NO JO
HdAL | NHQAIYYTAO |AILVIODOSSY| SIOFddV | AFIvIDOSSY AILVIDOSSY | IIHOI1 agsn NOLLNd

TTIOSNOD 0T0P—-Dd¥

170



uorjtsod-omy = [ AIBjUswow = |y

Jpou : NOILVYddO
TewIiou ut HNO
J30 3T suing MOTLYHAO
uo3l3ing STyl SNS
Jo uors pPa3y3dIt D uo st
-saxdap ‘uo uayuMm OO TOI3uU0>d
ST J0I3u0) J03eoTpUl X0 youeaq TOYLNOD
W youeig JT ST 0T0P-0dd oL uaym A1uo X HONVY E
ILOdNI 13§
passaxdap Y3TM pasn
3q 31snu ATTeRWIOU
YOLVINWNDOY
NOILVYIdO NOILVYHdO YIMOT
L gNO 010¥-0dY gNO ON i X IINDIXT
‘passaxdap sT
NOILVYIdO dNO sduriias
9TTUM pajea 0/1 uo
1308 3q ATuo juaduriuod
ued 3T pue
INdNI 19S J¥o dIMOT
353332 sajeu , H2IN09XT
-TwIa) T[eudTs : NOILVITJO
W 3Ieis 4ue OTOVP—0dY gNO ON Y X JAdNI I1HS
NOILONYLISNI
bite] TYWION
HOLIMY NOLLNg YOLVOIANI NOLINg NOILONYISNI ki) INTT]INIT YOLVOIANI
d0 P: HLIM LINN HLIM HLIM HAILOV 140 NO ¥o
IdAL NHAAIYITIAO | AILVIDOSSY SI2944dV | dILVIDOSSY JHILVIDOSSY| dHIHOIT agsn NOLLNE

171



uor3isod-om3 = Axejuswow = [
NOILVYHJO
HNO
10 ‘dNI
ZLNdWOD ‘LI uo
LIVLS paddoys
TVYNDIS HLNdWOD - - - - - ST
LAVLIS 40 NOILWVYHdO LTH 133ndwod
ANV HLISOddO 0TO¥—-DdY INO dNI uaym X dOols
NOIL
~IS0d
q1d TdOOS (2e B 9T)
—ILINW| -0TT1IDSO OTOv—-0dd 0).¢4 X AVIdSIQ@ I
‘s133ST831 QuTYydRW INOJ 9Y} SYALSIDHY
JO sjul3juod A1eUTqQ 94yl JOo ABTASIp TensIA ® sapraoxd 3dodSOTTTISO 3yl X HdOJSOTTIIOSO
TOYLNOD SHHOLIMS
L HONWIE 0TOP-Dd¥ SNS v X HSNAS
NOILONYISNI
k: (0] TVIWION
HOLIMS NOL1LNE JOLVYDIANI NOLILNg NOILOMILSNI R (0] INIT|INIT YOLVOIANI
40 Xg HLIM LINN HIIM HLIM TAILOY 440 NO 4o
HdAL | NHAATYYTAO |QILYIOOSSY | SIOFAdY | dILVIOOSSY J41VIOOSSY | HLHOI'T agsn NOLINd

172



NOIIV¥HdO
aNO
(4d¥)
dNI 2LNdW0D
- - = = - RRIAARY dNI [SUOT1oNnIls
LTH - - - - : (o) -utr  3ur}
- - - - - dolLs (22) E(((00) ~NJ3xX3 ST
. NOILVYHdO 40 2INdWOD S(ONAY 133ndwo>d
gNO HLISOddO |0TOP-2dd LYVLS LTH uaym X ZINdWOD
NOILONYISNI
40 TYIWION
HOLIMS NOLLNg YOLYOIANI NOLINg NOI.LONY.ISNI 40 ENIT[ENIT |, ¥OLYDIANI
40 xd HIIM LINN HLIIM HIIM FAILOV | d4d0f NO 40
AL | NIAAI¥TAO | AHLVIOOSSY| SIOFIdV | QILVIDOSSY @IIVIOOSSY] QHIHOIT agsn NOLLNd

173



uoT3jrsod-omy = J, Axejuswow = |
MOLI NOW
ALI¥Vd
- - - - - LIGIHNI LIGIHNI
SIHOIT YOLI NOW YO.LINOW
L ON MALOVIVHD O£ P #—0dY ALIYVA dNI v X ALI¥Vd
JOLINOW
ALI¥NVd pa133unod
- - - - - LIGIHNI -u3 ST LIFGIHNI
SIHOIT JOLINOW £3taed MOLINOW
NMALOVIVHD o v b-0dy ALIYvd dNI peq usym X KLYV
¥O.LINOW
ALTYVd
- - - == NOILDTT19S HAOW
. SIHOIT 08¥-0dd INdNI YLLOVIVHD
L ON YILOVIVHD  |0Epb-0dd INIT-NO dNI N X TIONIS
WALSAS
NI
STOIATA
SIOIAHA 0/1 uo St
- 0/1 SNOIYVA ramod AIMOd
L SNOIYVA TIV NO ¥dIMod ON usaym X X WALSAS
NOIIDNYISNI
b:(6] TYWION
HOLIMS NOLINdg YOLVDIANI NoLINg NOILDNYISNI 0 INIT{INIT | JOLVDOIANI
40 x4 HLIM LINN HLIM HLIM FAILOV 440| NO J0
HdAL | NIAAI¥YEAQ) QIIVIDOSSY| SIOFLdY | AILVIOOSSY QILVIDOSSY | QaIHOIT agsn Norlndg

TENVd TOYINOD IHOIY O£vi—Odd

174



uorjrsod-om3 = Alejusuwouw = |y
SYOLVOIANI
0/1
Teudrts SNOIYVA
jxels Aue 3
- - = - - - YOLINOW NOILOHTIdS
L1ISTq ALIYVd LNdNI
YHLSYI - === - INIT-NO
- - - - = YOLINONW 08vb-0dd - - - - = @dd avad
W AVIHVY dOLS| NOILODHIAS o€ v—-0dd INdNI IIS dNI N X JAVLS
ONILIAS (2AOW Ad0D)
NOILVOITdNna LOHTHS LISTY
LOdNI 08vv—D2d¥ | NOILVYDI'1dNa INOILVOIT1dNd
N ININOISANS SNOIAVA OEvb-0dd LNdNI @4d X INdNI
LISy (4aOW Ad0J)
NOILVYDITdNd LISTA LOTTHS
INdNT 08v¥-D0dd | NOI.LVDI1dNa INOILVOITdNda
W ININdDISENS SNOIY¥VYA OEvP-0dy LNdNI qad Y X JAdNI
NOILOHTHS
NOILDTIdS 0/1
INIT-NO 08+t ¥—0dy INIT-NO LASHd
W INFNdIsdans SNOITYVA 0E¥¥—-0dd TIVY add N X YILSYIW
NOI.LONYILSNI
- (0] TYIWION
HOLIMS NOLLOg YOLVOIANI NOLLNY NOILOMY.LSNI 40 ANITJENIT] YOLVOIQNI
40 g HLIM LINN HLIM HIIM FAILOV 440 NO Jo
HdAL NIAATIIIAO | ATLVIOOSSY SIOHddY] dILVIIJ0SSY QILVIDOSSY | QH4IHOIT agsn NOLLNg

175



uorirsod-omi = 1, Alejusuwow = I
Tauueyd
) Surtpuods
LIGIHNI -9I102
8 LISHY ut yound
LISTY 3 $30219p
LIAIHNI Iapesa SIHOIT
JOLINOW JOLINOW YOLINOW SUTT-uo YOLVOIUNI
ALIYVd ALT¥Vd |OSvv—-Ddd ALTYVd dNI U3} uaym X YILOVEVHD
(0D)
AINdWOD
- T - - (20)
(22) HLOdWOD TLNdWOD
W dOLS 0TOP-0dY IAVLS N X LUVLS
LIsTy
NOILVOI1dNd
LNdNI
YOLINONW I
ALIT¥vVd LISTY
- - - - YALSYIN
dNI YOLINOW |08Pb~Dd¥d|- - - - - - @dd avay
W avdy IAdVIS NOTLIOHTHS |0s vb-0dd] avI IMVIS dNI N X dO.LS
NOIIDNYISNI
(0] TYIWION
HOLIMS NOLLng JYOLVOIANI NOL1Nng NOILDNYISNI - 40 INIT {ENIT | YOLVOIUNI
d0 Ag HLIM LINN HLIM HIIM TAILOY 440 NO JO
HdAL NHAATYITAO | QILVIDOSSY| SIOTI1V| TILVIDOSSY dHLVIDOOSSY daIHOIT assn NOLLNg

176



uorjrsod-om3} = T A1ejusuwouw = y
YILNdWOD
OL ¥davad
JLLNdWOD - - - - - -
OL Ydavad ID09T14dS
ININOISANS YILIYMAJ AL
adyd LOHT1dS ANIT-440
YALIYMAIdAL - - - - - -
ANIT-440 08¥¥—-0d¥ | Aavad dOLS YILNdWOD
LISTH JOLINOW ocry-0dd |- - - - - - dNT oL
W YTLSVI NOILDHTHS OTOP—-Od¥ | Avdy IdVIS qud Y X [YHLIYMIdAL
aurl JFJjo
SNOILDHIHS R UG po3
INIT-440 -2a2T3s ST
amiIndIy SYOLVIIANI 08v¥—-0dY LY (S)22TA3D
NOILODV NOILOHTIHIS 0ePr-0dd ANIT-NO Sues YO.LINOW
HAT LOTHHOD SNOIYVA OT0P-Ddy TV ON Syl usym X X NOILODHETHS
YIMOd 08y+-0dY ¥amod
L WHLSAS OEvP—DdY WHLSAS X X NO ¥aMOd
NOILDNYISNI
:(¢] TYINION
HOLIMS NOLLNg YOLVOIANI NOL1ng NOILDNYLSNI (6] INIT [INIT{ YOILVOIANI
d0 Ad HLIM LINN HLIM HLIM HAILOY J40 NO (0]
HdAL NHAATYITAO|] AILYIDOSSY SIO3ddV| dELVIDOSSY QILVIOOSSY] JHIHDIT aasn NOLLNg

TINVd TOYLNOD LJIHT HONNA ¥HAVAY Ofry-0dy

177



uot3jrsod-om)

=3

Alevjuswouw = |

ayd
AALNdIWOD
oL
NIAVTY
ININOISANS YALNdNOD
- - - - - 08vt-0dd avaid dOLS 0L
LISTd JOLINOW |OStb-0dd -~ - - - - - dNI MILIYMIJXL
N ATLS VI NOILOHIHS [0TOy-0dd avay I¥ViS aid \'4 X X0V
ayd
YILNINOD
oL
YILTIMIJAL
ININOISENS YIINIWOD OL
- - - - - - YTLITYMIdAL
IO9714S 10TTIS YHA VT
YILITIMIJAL INIT-J40
INIT-440 - - - - - -
- - - == 08vy—0d¥] avdd dOLS YALNdWOD
1ISTY YOLINOW |OSty-Ood¥l - - - - - - dNI oL
W YALSYW NOILDITHS JOTOy-0d¥| avay LAVLIS @id v X JIAYTd
NOILONYISNI
pi[e) TYINION
HOLIMS NOLINg JOLVOIANI NOILILNg NOIIONYISNI O INIT[INIT | YOLVOIANI
J0 g HIIM LINN HIIM HLIM FAILOY | 40| NO (o)
JdAL NIAAITYITAO | AHLVIOOSSY| SIOdddW QIIVIDOSSY dIIVIDOSSY | AdIHOIT assn NOLLNd

178



uotjisod-omy

= 3

Axejusuwow =

HAOW AdOD
add - - - - -
- - - - - 08vv¥—0dd NOILDOHTHS YILITIMIdAL
LISTYT YOLINONW 0€Pv-D0dd HINIT-NO nad "XV OL
N dHLSYIN NOILOAIdS | 0TO¥-0d¥ SNOTYVA @ad v X YTINdNOD
LO9T9dS HONNd
LOHTAS HONNd INIT-J40
INIT-440 - - - - = -
- - - - - - HAOW AdOD
LISTY - - - - = -
YHLSYIW 08+ ¥-0dd NOILDATHS
- - - - - - JOLINOW 0P ¥—Ddd INIT-NO ndd HONNd OL
W @dd NOIIOHTHS | OTOP-Ody SNOIY¥vA @ad Y X JHLNAWOD
HAOW Ad0OD
Qdd - - - - -
- - - - T - L1O09719S
IOdTgS YHLITYMIJAL
YIITYMIJAL INIT-440
INIT-440 - - - - -
- T - - 08v+—D2d¥ NOILOHTHS YHLIYMIdAL
LASTY YOLINOW 0gPpr-0dd INIT-NO mid OL
W YTLS YW NOILOHTHS | OTO¥~-0dd SNOI¥VYA qdd v X JILNdWOD
NOILOMYLSNI
(6] TYWION
HOLIMS NOLILNd JOLVYOIANI NOLINg NOILONYISNI 4o INIT{EINIT| ¥YOLVDIANI
40 Ad HLIM LINN HLIM HIIM JAILOV 440 NO k(o]
ddAL NIAAIIITAO TILYIDOSSY SRPOLEEN 4 d4IVIDOSSY QHLVIDOSSY | QHIHOIT agsn NOLINg

179



(1d4)
JaAoOW
FILOVIVHD
dTONIS
LOTI149S
INdNI
INIT~-440
SADIAFA SNOIYVA
INdNI (1d9)
ANTT-440| = = - - - -
0fbb-0dy | AVdd I¥VIS dOLS
I OCvH-2ad INIT-d440 14 X TYNOI.LIANOD
dd9d94 ddvlL
- - - - = LNVL
LOFTHdS ST YOLINOW
08vv-2dy HONN4 qdd 4dVL Ad V1L
0EPP-Dd¥ | INIT-440-NO 9 SNS NIHM X X HONNd
inej
ST
adey3
Io
adey
Jo 3ino
ST ¥OLI NOW
O0TOP-0dY Ispeax IdVL
OetvP~0dy dd usaym X X IIq vy
NOT.LONYLSNI
:(8) TYIEON
HOLIMS NOLLNg YC.LVDIANI NOLINg NOILDNYISNI (0] INIT|INIT HOLVDIANI
J0 Ad HIIM LINN HLIM HLIM dAILOY 490 NO Jo
TdAL NIAAIYYIAO TILVYIDOSSY SLOTddVY ILVIDOSSY d4LVIDOSSY dQILHDIT agsn NOL1Nng

180



uort3irsod-om3 = [ Axejusuwow = W

LOHdTHS
YOLINOW YILIYMAIdAL
adVL INIT-440
Jqavayd - - - - - =
- <~ = = = J0T0b-0dyq ¥IINdWOD
YOLINOW 08t+-0dY ol dNI LOd13S
L ON NOILDTIIS |0¢vb—-DdY Jaavayd ayad v X X VIAVTd
LOFT14dS
qqavad
INIT-440
*ind3ino QurT - - - - - -
-FJFO I0J pasn JILITIMEIdAL
3q ATuo ued oL
(P232313s JT) HALNdWOD
133T1taImadLy - - - - - -
Sy} SUrT-jJJo 08¢ P-0d¥ YILOIWOD
pP23133T9s sT JOLINOW OTO+-D0d Y oL dNI 1D0d7149S
1opEaI 3Yl} JT | NOIIOHTIIS |0€Pv-Odd] YALIYMAdAL Tad Y X X [¥IL1IYMAdAL
FAILDY
dd LSNNW
HONd YOLINOW LOFTHS
40 4dVL HONN4d agqad
W NOILOIT4SHd HONNd 0€¥1—-0dY ANIT-4d40 N X dd VL
NOILONYILSNI
d0 TYWION
HOLIMS NOLLNH JOLVDIANI NOLLNE NOILOMNYISNI ¥O INITIINIT] YOLVOIANI
40 g HLIM LINN HLIM HLIM HATLOV 340 NO d0
Ad AL NIZAAITYETAO | AHLVIDOSSY| S10d4dW CQHIVIDOSSY THLVIDOSSY d4IHOIT aIsn NOLINg

181



uorirsod-omi = J,

Axejuswouw = [

(1d¥) NOIIDHTHS
avay 08t p=0dd LNdNI
W LAVIS ON Oevy—0dd INIT-440 ON N X avdy dOoLs
NOIIDHTHS
INdNI
INIT-440
(1d¥) dOLS
TYNOILIONOD
(1d¥) JOLINOW ('Id¥) Haow
avay dV.L 08+v+¥-Dd¥| ¥ILOVIVHO avdd
W dOLSs AIqVTY O¢vv-0dd HTONIS ON N X INVLS
JOLINOW
ELAAR
HONNd
- - - - - HONNd
YOLINOW |OTO+-0dd OL nad LOHTdS
L ON NOILDOTTHS | O¢ P ¥—-D0d¥ JIINdNOD @ad v X X HONNd
NOI.LOMILSNI
q0 TYIRION
HOLIMS NOLLINg JOLVOIANI NOLLNg NOILDNYLSNI 40 HNIT]ENIT JOLVYIIANI
10 Agq HIIM LINN HLIM HLIM HAILLOY 440 NO 40
ddAL NHAATYYTAO | QILYIDOSSY| SI0F44V| QHIVIDOSSY JHLVIDOSSY | QIIHOIT agsn NOLLNd

132



uotjrsod-omy = T Alejuauwow = [y
avad
LYVLS
(I NOIIOFT1dS FaOn
d01S 08+ y-0dd INdNI ATLOVEVID
L TVNOILIANOD ON 0evb-2dd INIT-4d40 ON v X JIONIS
NOILONYLSNI
(8] TYWION
IDLIMS NOLLNg YOLVOIANI NOLLNg NOILONYLSNI o HNIT|INIT YOLVOIANI
J0 Ad HLIM IINN HLIM HLIM FAILOY 440 NO :{0]
TdXL NIQATYYTAO | AHLVIDOSSY| S1OTAdVY | aTLVIDOSSY daILvIDOSSY A3IHOIT adsn NOLINd

183



RPC-4000 INPUT/QUTPUT SELECTION CODES FOR INSTRUCTION PRD

D track Input Selected Output

64 Reader ,

65 Reader Punch

66 Reader Typewriter )

67 Reader Punch & Typewriter

68 Typewriter ’

69  Typewriter Punch

70 Typewriter Typewriter ]

71 Typewriter Punch & Typewriter’

72 Photo~--Fwd & Search : : : -

73 Photo--Rev & Search .

74 Photo--Fwd K

75 Photo-Rev . . .

76-94 Available for additional units--probably input

95 Master Reset--Reset all units -

96 _ Available _ ,

97 Punch .

98 Typewriter )

99 Punch & Typewriter
100 : i :
101 Punch
102 Typewriter
103 Punch & Typewriter
104, 105 . Search mode ‘ : T
106 High Speed Punch
107-124 Available, probably for output units
125 Copy mode on
126 Copy mode off
127 Reset output units
NOTES :

1, Selection of a new input device automatically resets the previous
one, Only one input device may be in the system at a time,

2, Output devices may be added in any combination that they are in-
cluded in the user's possession, A reset command is necessary to
drop an output device from the system,

3. Because the basic system is standard, multiple selection codes
have been included for sections of it,

184



ALPHANUMERIC CODES

The following list gives the tape codes and the computer's internal
configurations of the typewriter keyboard,

NUMERIC

00
01

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

DEFINITION

Tape feed
Carriage
return
Tab
Backspace

Upper Case
Lower Case
Line feed

*Stop Code

Photo Reader

End of Block

0 )
1 0
2 11}
3 #
4

5 A
6 @
7 &
8 13
9 (
a A
b B
c C
d D
e E
f F

BINARY

000000

000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111

NUMERIC

32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

DEFINITION
g G
h H
i I
3 J
k X
1 L
m M
n N
o (0]
p P
q Q
r R
s S
t T
u U
\% A%
w w
b'e X
y Y
z Z
) $
[ ;
] %
+ 7
Space

/ KX

Code delete

BINARY

100000

100001
100010
100011
100100
100101
100110
100111
101000
101001
101010
101011
101100
101101
101110
101111
110000
110001
110010
110011
110100
110101
110110
110111
111000
111001
111010
111011
111100
111101
111110
111111



TABLE OF BASIC EXC DATA-TRACK SETTINGS

DATA NEXT
COMMAND ADDRESS ADDRESS EFFECT

EXC 098 ANY No Operation

EXC 198 ANY Exchange UPPER into LOWER

EXC 298 ANY ‘Exchange LOWER into UPPER

EXC 498 ANY Exchange UPPER into INDEX, If
this instruction is repeated it
is an effective No Operation,

EXC 898 ANY Exchange INDEX into UPPER

EXC 1698 ANY Change LOWER to 8-words

EXC 3298 ANY Change LOWER to 1 word

EXC 4898 ANY Change state of LOWER

EXC 6498 ANY RESERVED, if used it is at present

an effective No Operation

MODULO 8 TABLE

RECRCO or RECRCS 00 08 16 24 32 40 48 56
RECRC1 01 09 17 25 33 41 49 57
RECRC2 02 10 18 26 34 42 50 58
RECRC3 03 11 19 27 35 43 51 59
RECRC4 04 12 20 28 36 44 52 60
RECRC5 05 13 21 29 37 45 53 61
RECRC6 06 14 22 30 38 46 54 62
RECRC7 07 15 23 31 39 47 55 63

186



162 256

048
097
194
388

777
554
108
217

435
870
741
483

512
024
048

096
192
384
768

536
072
144
288

576
152
304
608

216
432
864
728

456
912
828
648

wNeR O

~N O A

10
11

12
13

14

15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

TABLE OF POWERS OF 2

AND POWERS OF 16

244
122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

125
562
281

140
070
035
517

258
629
814
907

053
476
238
119

059
029
014
007

003
001
000
000

187

674
837
418
209

604
802
901
450

725
862
931
465

316
158
579
289

644
322
161
580

290
645
322
661

775
387
193
596

298
149
574
287

461
230
615
307

914
957
478
739

062 5-—---16-7
031 25

515 625

257 812 5



	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187

