
COMPUTER TECHNOLOGY 

FORTRAN 77 
BASIC 

Internal Architecture 

35 NORTH EDISON WAY, SUITE 4· RENO, NEVADA 89502· (702) 322-6868 



A SUBSIDIARY OF SOFTECH 

UCSD p-SYSTEM 

A PRODUCT FOR MINI- AND MICRO-COMPUTERS 

Version IV.O 

FORTRAN REFERENCE MANUAL 

First edition: March 1981 

SofTech Microsystems, Inc. 
San Diego 1981 

9494 Black Mountain Rd., San Diego, CA 92126 (714) 578-6105 TWX: 910-335-1594 



UCSD, UCSD Pascal, and UCSD p-System are all trademarks of the Regents of the 
University of California. Use thereof in conjunction with any goods or services is 
authorized by specific license only, and any unauthorized use is contrary to the 
laws of the State of California. 

Copyright ©1980 by Silicon Valley Software, Inc. 
Revisions copyright @1980, 1981 by SofTech Microsystems, Inc. 

All rights reserved. No part of this work may be reproduced in any form or by 
any means or used to make a derivative work (such as a translation, 
transformation, or adaptation) without the permission in writing of SofTech. 
Microsystems, Inc. 



DISCLAIMER: 
This document and the software it describes are subject to change without 
notice. No warranty expressed or implied covers their use. Neither the 
manufacturer nor the seller is responsible or liable for any consequences of 
their use. 

ACKNOWLEDGEMENTS: 
This manual was written by Jeffrey Barth and R. Steven Glanville of Silicon 
Valley Software, and edited by Randy Clark and Stan Stringfellow of SofTech 
M icrosystems. Special thanks to Bill Franks, Al Irvine and Mark Overgaard of 
SofTech Microsystems for contributing useful comments. 



T ABLE OF CONTENTS 

Introduction - Overview of this Manual and Notational Conventions 

0.1. Manual Overview ••. 
0.2. Notational Conventions. 

Chapter 1 - How to use SofTech Microsystems FORTRAN 77 

1.1. 

1.2. 

1.3. 
1.4. 

How to Compile and Execute a FORTRAN Program.. • 
1.1.1. Compiling a FORTRAN program. • ••. 
1.1.2. Providing Runtime Support. .•• . ••. 
1.1.3. Executing a FORTRAN program. 

Form of Input Programs.. • . 0° 

1.2.1. $INCLUDE Statement. 
Compiler Listing. • • 
Code File. . . . • . . . • . . •. 

Chapter 2 - Basic Structure of a FORTRAN Program 

2.1. 
2.2. 
2.3. 
2.4. 
2.5. 

2.6. 
2.7. 

2.8. 

Character Set. 
Lines. •• 
Columns .•..• 
Blanks. • • • •. 
Compiler Directive Lines. 

2.5.1 $INCLUDE . • ••• 
2.5.2 $USES • 
2.5.3 $XREF •• 
2.5.4 $EXT • • • • ••• 

Comment Lines •• 
Statements, Initial Lines, Continuation Lines, and 

Labels.. • • • • 0 • • • • • • • 

2.7.1. Labels. •• • • • • • 
2.7.2. Initial Lines ••••• 
2.7.3. Continuation Lines. • • • • • •••• 
2.7.4. Statements. •••• • ••• 

Main Program and Subprogram Units and Ordering of 
Statements within Program Units. • ••••••• 
2.8.1. Program Units - Main Program and Subprogram 

Program Units. • • • • • • • • • • • • • • • • 
2.8.2. Statement Ordering Within a Program Unit •• 
2.8.3. The Final Statement of a Source Program. •••• 

Chapter 3 - Data Types 

3.1. The Integer Type ••• 
3.2. The Real Type. • • 

i i 

1 
1 
1 
2 
2 
2 
3 
5 

7 
7 
8 
8 
8 
8 
9 
9 
9 
9 

10 
10 
10 
10 
11 

11 

11 
II 
12 

15 
15 



3.3. The' Logical Type. •• 
3.4. The Character Type •• 

Chapter 4 - FORTRAN Names 

4.1. Scope of FORTRAN Names •••. 
4.2. Undeclared FORTRAN Names. 

Chapter 5 - Specification Statements 

5.1. IMPLICIT Statement ••••• 
5.2. DIMENSION Statement. •• 

5.2.1. Dimension Declarators. • • ••••••••••• 
5.2.2. Array Element Name.. • • • • • • • • 

5.3. Type Statements. • • • • • • • • • • • • • • • ••• 
5.3.1. INTEGER, REAL, and LOGICAL Type Statements. 
5.3.2. CHARACTER Type Statement. • ••• 

5.4. COMMON Statement.. • • • ••• 
5.5. EXTERNAL Statement •• 
5.6. INTRINSIC Statement. • . • • • • • • 
5.7. SAVE Statement. . • • • . • • • • . . • • • . • . • 
5.8. EQUIVALENCE Statement.. • . • • • • 

5.8.1. Restrictions on EQUIVALENCE Statements. • ••• 

Chapter 6 - DATA Statement . • • • • . . • • • • • • • • • • • • • ••• 

Chapter 7 - Expressi ons 

7.1. Arithmetic Expressions. • ••••••••••••• 
7.1.1. Integer Oi vision. • • • • • • • • • • • • • • 
7.1.2. Type Conversions and Result Types ot 

Arithmetic Operators. • • ••• 
7.2. Character Expressions. • •• 
7.3. Relational Expressions. • • • • • • • • • • • • • • •• 
7.4. Logical Expressions. ••••••••••••••••• 
7.5. Precedence of- Operators. • • • • • • • • • • •••• 
7.6. Evaluation Rules and Restrictions for Expressions. 

Chapter 8 - Assignment Statements 

8.1. Computational Assignment Statements ••• 
8.2. Label Assignment Statement. • ••••.• 

Chapter 9 - Control Statements 

9.1. Unconditional GOTO ••• 
9.2. Computed GOTD. • • • • • 
9.3. Assigned GOTO ••••• 

16 
16 

19 
20 

21 
22 
22 
23 
23 
23 
24 
24 
25 
25 
26 
26 
27 

29 

31 
32 

32 
33 
33 
34 
35 
35 

37 
38 

39 
39 
40 

/ 
\ 



9.4. Arithmetic IF.. . .• 
9.5. Logical IF.. . • • • 
9.6. Block if then else. 

9.6.1. Block IF •. 
9.6.2. ELSEIF •• 
9.6.3. ELSE ••. 
9.6.4. ENDIF ••• 

9.7. DO •••••• 
9.8. CONTINUE. 
9.9. STOP. • • 
9.10. PAUSE. • • 
9.11. END. 

Chapter 10 - I/O System 

10.1. 1/0 System Overview ••• 
10.1.1. Records. • • • • 
10.1.2. Files.. • • • . • • • • 
10.1.3. File Properties .•• 

10.1.3.1. File Name. 
10.1.3.2. File Position. 
10.1.3.3. Formatted and Unformatted Files •• 
10.1.3.4. Sequential and Direct Access 

Properties. • • • • • • • . • • • • 
10.1.4. Internal Files.. • • • • • • • • • • • • • • • • • • • 

10.1..4.1. Special Properties of Internal Files. 
10.1.5. Units. . ...................... . 

10.2. General Discussion of 1/0 System Concepts and 
Limitations. • • • • • • • • • • • • • • • • • • • • • • • 
10.2.1. General Discussion of FORTRAN 1/0 System ••• 
10.2.2. Example Program Illustrating Most Common 1/0 

Operations.. • • • • • • • . • • • • • • • • • • • 
10.2.3. Use of Less Common File Operations ••••••• 
10.2.4. Limitations of the FORTRAN I/O System. ••• 

10.2.4.1. Direct Files must be Associated with 
Blocked Devices. • • • • • • • • • 

10.2.4.2. BACKSPACE only Applies to Files 
Associated with Blocked Devices. 

10.2.4.3. BACKSPACE may not be Used on 
Unformatted Sequential Files. • 

10.2.4.4. Side Effects of Functions Called 
in I/O Statements ••••••••• 

10.3. 1/0 Statements. • • • • • • • • • • • • • • • • • • • • • 
10.3.1. Elements of I/o Statements. • ••••••• 

10.3.1.1. The Unit Specifier ('u') •••••• 
10.3.1.2. The Format Specifier ('f'). •• 
10.3.1.3. The Input-Output List ('iolist'). 

. 10.3.1.3.1. Input Enti ties. • • 
10.3.1.3.2. Output·Enti ties. 
10.3.1.3.3. Implied DO lists. 

10.3.2. I/o Statements'-. • • • • • • • • 
10.3.2.1. OPEN Statement •• 
10.3.2.2. CLOSE Statement. 

40 
41 
41 
43 
43 
44 
44 
44 
46 
46 
46 
47 

49 
49 
50 
50 
50 
51 
51 

51 
52 
52 
52 

53 
53 

53 
54 
55 

55 

55 

55 

56 
56 
56 
56 
57 
57 
57 
57 
58 
58 
58 
60 



10.3.2.3. READ Statement.. • • •• • • 61 
10.3.2 .. 4. WRITE Statement. • • • • • 62 
10.3.2.5. BACKSPACE Statement.. .. 63 
10.3.2.6. ENDFILE Statement. • • • • • 63 
10.3.2.7. REWIND Statement. • • •• • • • •• 63 

10.3.3. Restriction on I/O Side Effects of Functions... 63 

Chapter 11 - Formatted 1/0 and the FORMAT Statement 

11.1. Format Specifications and the FORMAT Statement.. 65 
11.2. Interaction between Format Specification and I/O List... 66 
11.3. Edit Descriptors.. • • • • • • • • • • • • • • • • • • 67 

11.3.1. Nonrepeatable Edit Descriptors.. • • • • • • . 68 
11.3.1.1. 'xxxx' -(Apostrophe Editing). • • 68 
11.3.1.2. H (Hollerith Editing).. • • • • • 68 
11.3.1.3. X (Positional Editing). • .• 68 
l1.3e1.4. I (Slash Editing). • . • • • • . . • 68 
11.3.1.5. \ (Backslash Editing).. • • • • • • •• 69 
11.3.1.6. P (Scale Factor Editing). •••• 69 
11.3.1.7. BN and BZ (Blank Interpretation).. 69 

11.3.2. Repeatable Edit Descriptors. ••••••••• 70 
11.3.2.1. 1, F, and E (Numeric Editing, 

General Descripti on). •••• 70 
11.3.2.2. I (Integer Editing). • • • • • • • • •• 70 
11.3.2.3. F (Real Editing). • • • • • • 71 
11.3.2.4. E (Real Editing). • • • • • • 71 
11.3.2.5. L (Logical Editing).. • • 72 
11.3.2.6. A (Character Editing). 72 

Chapter 12 - Programs, Subroutines and Functions 

12.1. Main Program. • • • • • • .• • • • • • 
12.2. Subroutines. ••••••••••••• 

12.2.1. SUBROUTINE Statement. 
12.2.2. CALL Statement •••••• 

12.3. Functions. •••••••••••••• 
12.3.1. External Functions. • • • • 
12.3.2 •. Intrinsic Functions ••••• 
12.3.3.· Statement Functions •• 

12.4. RETURN Statement. ••• 
12.5. Parameters. ••••• 

Chapter 13 - Compilation Units 

73 
73 
73 
74 . 
75 
75 
76 
76 
77 
78 

13.1. Units, Segments, Partial Compilation, and FORTRAN. •• 83 
13.2. The $USES Compiler Directive. • • • • • • • • • • • • • •• 84 

13.2.1. Separate CompilatioQ. • • • • • • • • • • • • 85 
13.3. Linking Pascal and FORTRAN.. • • • • • • • • • • • • • 85 
13~4. The $EXT Compiler Directive.. • • • • • • • • • • • • • •• 88 



Appendix A - Differences Between SofTech Miscrosystems FORTRAN 77 
and ANSI Standard Subset FORTRAN 77 

A.1. Unsupported Features •• 
A.2. Full-Language Features. 
A.3. Extensions to Standard. 

Appendix B - FORTRAN Error Messages 

B.1. Compile-Time Error Messages. • •••• 
B.2. Run-Time Error Messages •••.••••• 

91 
91 
92 

95 
99 





INTRODUCTION - Overview of this Manual and Notational Conventions 

0.1. Manual Overview. 

This manual is intended as a user reference manual for the SofTech Microsystems 
FORTRAN 77 language system. SofTech Microsystems FORTRAN 77 is a dialect 
of FORTRAN which is closely related to the ANSI Standard FORTRAN 77 Subset 
language defined in ANSI X3.9-1978. Readers familiar with the ANSI standard will 
find a concise descripti on of the di rferences bet ween SofTech Microsystems 
FORTRAN 77 and the standard in Appendix A; in general, this manual does not 
presume that the reader is familiar with the standard. 

SofTech Microsystems FORTRAN 77 runs on the UCSD P-machine architecture, 
which is available on a variety of host machines as a language system integrated 
into the UCSD Operating System. The reader is assumed to be somewhat familiar 
with the use of the UCSD Operating System and Text Editor, although the 
specifics of how to compile, link, and execute a FORTRAN program in the UCSD 
environment are covered in this manual. Refer to the UCSD Pascal Users' Manual 
for more details. 

This manual is intended primarily as a reference manual for the FORTRAN system, 
and contains all of the information necessary to fully utilize it. The reader is 
assumed to have some prior knowledge of some dialect of FORTRAN, although 
someone familiar with another high level language should be able to learn 
FOR TRAN from this manual. The manual is not a tutorial in the sense that it 
does not teach the reader, step by step, the concepts necessary to write 
successively more complex programs in FORTRAN; rather, each section of the 
manual fully explains one part of the FORTRAN language system. 

The manual is organized as follows: Chapters 0, 1, and 2 are general, and describe 
the manual and basics necessary in order to successfully use FORTRAN in· even a 
trivial way. Chapters 3, 4, and 5 describe the data types available in the language 
and how a program assigns a particular data type to an identifier or constant. 
Chapter 6 deals with the DATA statement, which is used for initialization of 
memory. Chapters 7, 8, 9, and 10 define the executable parts of programs and the 
meanings associated with the various executable constructs. 1/0 statements are 
presented in chapter 10, and the associated FORMAT statement and formatted 1/0 
are described in Chapter 11. The subroutine structure of a FORTRAN compilation, 
including parameter passing and intrinsic (system provided) functions, is the topic 
of Chapter 12. Finally, Chapter 13 discusses the rather sophisticated means which 
exist for compiling FORTRAN subroutines separately, overlaying, and linking in 
subroutines which are written in other languages. 



FORTRAN Reference Manual 
I ntrodu cti on 

0.2. Notational Conventions. 

These are the notational conventions used throughout this manual: 

Upper Case and Special Characters - are written as they would be in a program. 

Lower Case Letters and Words - indicate generalizations which must be replaced 
by actual FORTRAN syntax in a program, as described in the text. The reader 
may assume that once a lowercase entity is defined, it retains its meaning for the 
entire context of discussion. 

Example of Upper and Lower Case: The format which describes editing of integers 
is denoted 'Iw', where w is a nonzero, unsigned integer constant. Thus, in an 
actual statement, a program might contain 13 or 144. The format which describes 
editing of reals is 'Fw .d', where d is an unsigned integer constant. In an actual 
statement, F7.4 or F22.0 are valid. Notice that the period, as a special character, 
is taken literally. 

Brackets - indicate optional items. 

Example of Brackets: 'A[w]' indicates that either A or A12 are valid (as a means 
of . specifying a character format). 

••• - is used to indicate ellipsis. That is, the optional item preceding the three 
dots may appear one or more ti mes. 

Example of ••• : The computed GOTO statement is described by 'GOTO ( s [, s] ••• ) 
[,] i' indicating that the syntactic item denoted by s may be repeated any number 
of times with commas separating them. 

Blanks normally have no significance in the description of FORTRAN statements. 
The general· rules for blanks, covered in chapter 2, govern the interpretation of 
blanks in all contexts. 

ii 



INTRODUCTION - Overview of this Manual and Notational Conventions 

0.1. Manual Overview. 

This manual is intended as a user reference manual for the SofTech Microsystems 
FOR TRAN 77 language system. SofTech Microsystems FORTRAN 77 is a dialect 
of FORTRAN which is closely related to the ANSI Standard FORTRAN 77 Subset 
language defined in ANSI X3.9-1978. Readers familiar with the ANSI standard will 
find a concise description of the differences between SofTech Microsystems 
FOR TRAN 77 and the standard in Appendix A; in general, this manual does not 
presume that the reader is familiar with the standard. 

SofTech Microsystems FORTRAN 77 runs on the UCSD P-machine architecture, 
which is available on a variety of host machines as a language system integrated 
into the UCSD Operating System. The reader is assumed to be somewhat familiar 
with the use of the UCSD Operating System and Text Editor, although the 
specifics of how to compile, link, and execute a FORTRAN program in the UCSD 
environment are covered in this manual. Refer to the UCSD Pascal Users' Manual 
for more details. 

This manual is intended primarily as a reference manual for the FORTRAN system, 
and contains all of the information necessary to fully utilize it. The reader is 
assumed to have some prior knowledge of some dialect of FORTRAN, although 
someone familiar with another high level language should be able to learn 
FOR TRAN from this manual. The manual is not a tutorial in the sense that it 
does not teach the reader, step by step, the concepts necessary to write 
successively more complex programs in FORTRAN; rather, each section of the 
manual fully explains one part of the FORTRAN language system. 

The manual is organized as follows: Chapters 0, 1, and 2 are general, and describe 
the manual and basics necessary in order to successfully use FORTRAN in even a 
trivial way. Chapters 3, 4, and 5 describe the data types available in the language 
and how a program assigns a particular data type to an identifier or constant. 
Chapter 6 deals with the DA T A statement, which is used for initialization of 
memory. Chapters 7, 8, 9, and 10 define the executable parts of programs and the 
meanings associated with the various executable constructs. 1/0 statements are 
presented in chapter 10, and the associated FORMAT statement and formatted 1/0 
are described in Chapter 11. The subroutine structure of a FORTRAN compilation, 
including parameter passing and intrinsic (system provided) functions, is the topic 
of Chapter 12. Finally, Chapter 13 discusses the rather sophisticated means which 
exist for compiling FOR TRAN subroutines separately, overlaying, and linking in 
subroutines which are written in other languages. 



FORTRAN Reference Manual 
Introduction 

0.2. Notational Conventions. 

These are the notational conventions used throughout this manual: 

Upper Case and Special Characters - are written as they would be in a program. 

Lower Case Letters and Words - indicate generalizations which must be replaced 
by actu al FORTRAN syntax in a program, as described in the text. The reader 
may assume that once a lowercase entity is defined, it retains its meaning for the 
entire context of discussion. 

Example of Upper and Lower Case: The format which describes editing of integers 
is denoted 'I w', where w is a nonzero, unsigned integer constant. Thus, in an 
actual statement, a program might contain 13 or 144. The format which describes 
editing of reals is 'Fw.d', where d is an unsigned integer constant. In an actual 
statement, F7.4 or F22.0 are valid. Notice that the period, as a special character, 
is taken literally. 

Brackets - indicate optional items. 

Example of Brackets: 'A[w]' indicates that either A or A12 are valid (as a means 
of specifying a character format). 

••• - is used to indicate ellipsis. That is, the optional item preceding the three 
dots may appear one or more times. 

Example of ••• : The computed GOTO statement is described by 'GOTO ( s [, s] ••• ) 
[,] i' indicating that the syntactic item denoted by s may be repeated any number 
of times with commas separating them. 

Blanks normally have no significance in the description of FORTRAN statements. 
The general rules for blanks, covered in chapter 2, govern the interpretation of 
blanks in all, contexts. 

ii 



CHAPTER 1 

How to use SofTech Microsystems FORTRAN 77 

This chapter describes how to use SofTech Microsystems FORTRAN 77. It assumes 
that the reader is familiar with the basic operation of the UCSD Pascal Operating 
System. The mechanics of preparing, compiling, linking, and executing a 
FORTRAN program are outlined, and an explanation of the Compiler listing file is 
given. 

1.1. How to Compile, Link, and Execute a FORTRAN Program. 

1.1.1. Compiling a FORTRAN program. 

The SofTech Microsystems FORTRAN 77 Compiler is invoked as the Pascal 
Compiler would be invoked: by typing 'c' at the command level. The R(un 
command, which will compile and execute a program, may also be used. If the 
file has already been compiled, the R(un command will simply execute the code 
file. For these commands to call FORTRAN, the FORTRAN Compiler must be 
named SYSTEM.COMPILER. When your disk is shipped, the FORTRAN Compiler is 
named FORTRAN.CODE. To make it SYSTEM.COMPILER, type 'F' to enter the 
Filer, C(hange SYSTEM.COMPILER to PASCAL.CODE, and C(hange 
FORTRAN.CODE to SYSTEM.COMPILER. To start using Pascal again, reverse the 
renaming process. 

Typing 'c' or 'R' at the command level causes the compiler to use the workfiles 
SYSTEM. WRK. TEXT and SYSTEM. WRK.CODE. If no workfile is present, the 
Operating System will prompt for the name of a • TEXT file to use. 

The FOR TRAN Compiler will prompt for a listing file. If a <return> is typed, no 
listing will be generated. 

Once the prompts are all answered, the actual compilation begins. The progress 
of the compilatIon will be shown on the console by a successive display of dots. 
Each dot represents one line of source code. 

Remember that anything which applies to the Pascal SYSTEM.COMPILER will now 
apply to FORTRAN. The UCSD p-System Users' Manual should be referred to for 
more information. 

1.1.2. Providing Runtime Support. 

To ru n any program on the UCSD p-System, some runtime support is needed. The 
package of routines which do this for FORTRAN is distinct from the package 
which does this for Pascal, and is originally shipped in the file RTUNIT .CODE. 
When you change FORTRAN.CODE to SYSTEM.COMPILER, you must also change 



FORTRAN Reference Manual 
How to use SofTech Microsystems FORTRAN 77 

SYSTEM.LIBRARY to PASCAL.LIBRARY (or some other name you will remember), 
and RTUNIT.CODE to SYSTEM.LIBRARY. After this is done, you may run your 
FORTRAN programs. 

I t may be that you have placed programs of your own in SYSTEM.LIBRARY. In 
this case, you will be familiar with the use of the Librarian. RTUNIT.CODE should 
be added to the SYSTEM.LIBRARY file. The library text file facility described in 
Section lI.3.1 of the Users' Manual is also available to FORTRAN programmers. 

1.1.3. Executing a FORTRAN program. 

A compiled, linked FORTRAN program is executed in the same manner as any 
other user progam, i.e. by typing an 'X' at the command level, followed by the 
name of the file containing the linked program. 

1.2. Form of Input Programs. 

All input source files read by FORTRAN must be UCSD • TEXT files. This allows 
the Compiler to read large blocks of text from a disk file in a single operation, 
increasing the compile speed significantly. The simplest way to prepare .TEXT 
files is to use the Screen Oriented Editor. For a more precise description of the 
fields in a FORTRAN 77 source statement, see Chapter 2 which explains the basic 
structure of a FORTRAN program. 

1.2.1. $INCLUDE Statement. 

To facilitate the manipulation of large programs, the SofTech Microsystems 
Compiler has extended the FORTRAN 77 standard with an $INCLUDE Compiler 
directi vee The format of the directi ve is: 

$INCLUDE file.name 

wi th the $ appearing in column 1 (see Section 2.5 for an explanation of Compiler 
directi ves in genera!). The meaning is to compile the contents of the file 
'file.name', and insert the code into the current code file, before continuing with 
compilation of the current file. The incJ..uded file may contain additional 
$INCLUDE directives, up to a maximum of five levels of files (four levels of 
$INCLUDE directives). It is often useful to have the description of a COMMON 
block kept in a single file and to include it in each subroutine that references that 
COMMON area, rather than making and maintaining many copies of the same 
source, one in each subroutine. There is no limit to the number of $INCLUDE 
directives that can appear in a source file. 

2 



1.3. Compiler Listing. 

FORTRAN Reference Manual 
How to use SofTech Microsystems FORTRAN 77 

The Compiler listing, if requested, contains various information that may be useful 
to the FORTRAN programmer. The listing consists of the user's source code as 
read, along with line numbers, symbol tables, error messages, and optional cross­
reference information. 

The following is a sample listing: 

3 



FORTRAN Reference Manual 
How to use SofTech Microsystems FORTRAN 77 

FOR TRAN Compiler IV.O [0.0] 
o. a C 
1. a C -- Example Program 111234 
2. a C 
3. a 
4. a $XREF 
5. a 
6. a PROGRAM EX1234 
7. a 
S. a INTEGER A(10,10) 
9. 0 CHARACTER*4 C 

10. (} 
11. a CALL INIT(A,C) 
12. 6 I = 1 
13. 9 200. A(I) = I 

***** Error number: 57 in line: 13 
14. 20 I = I + 1 
15. 26 IF (IABS(10-I) .NE. 0) GOTO 200 
16. 37 
17. 37 END 

A INTEGER 3 
C CHAR* 4 103 
EX1234 PROGRAM 
I INTEGER 105 

lABS INTRINSIC 
INIT SUBROUTINE 2,FWD 

IS. a SUBROUTINE INIT(B,D) 
19. 
ZOe 
21. 
22. 
23. 

B 
D 
INIT 

a 
a 
D 
a 
2 

INTEGER 
CHAR* 4 

SUBROUTINE 

EX1234 PROGRAM 
INIT SUBROUTINE 

24 lines. 1 errors. 

INTEGER 8(10,10) 
CHARACTER*4 D 

RETURN 
END 

2* 
1* 

2 

2,7 

4 

S 
9 
6 
12 

14 
15 
11 

IS 
IS­
IS 

11 
11 

13 

15 

19 
20 

13 ~ 

13 14 



FORTRAN Reference Manual 
How to use SofTech Microsystems FORTRAN 77 

The first line indicates which version of the Compiler was used for this 
compilation. In the example it is version 0.0 for the UCSD Operating System 
version IV.O. The leftmost. column of numbers is the source-line number. The 
next column indicates the procedure-relative instruction counter that the 
corresponding line of source code occupies as object code. It is only meaningful 
for executable statements and data statements. To the right of the instruction 
counter is the source statement. 

Errors are indicated by a row of asterisks followed by the error number and line 
nu mber, as appears in the example between lines 13 and 14. In this case it is 
error number 57, "Too few subscripts", indicating that there are not enough 
subscripts in the array reference A(l). 

A t the end of each routine (function, subroutine, or main program), a local symbol 
table is printed. This table lists all identifiers that were referenced in that 
program unit, along with their definition. If the $XREF Compiler directive has 
been given, a table of all lines containing an instance of that identifier in the 
current program uni t is also pri nted. If the i denti fi er is a v ari able, it is 
accompanied by its type and location. If the variable is a parameter, its location 
is followed by an asterisk, such as the variables Band D in the SUBROUTINE 
INI T • If th e variable is in a common block, then the name of the block follows 
enclosed by slashes. If the identifier is not a variable, it is described appropriately. 
For subroutines and functions, the unit-relative procedure number is given. If it 
resides in a different segment, then the segment number follows. If the Compiler 
assumes that it will reside in the same segment, but has not appeared yet, it is 
listed as a forward program unit by the notation 'FWD'. 

A t the end of the compilation, the global symbol table is printed. It contains all 
global FOR TRAN symbols referenced in the compilation. No cross-reference is 
given. The number of source lines compiled and the number of errors encountered 
follows. If there were any errors, then no object file is produced. 

1.4. The Codefile. 

The object codefile generated by the FORTRAN Compiler is compatible with the 
UCSD Linker and Librarian. Indeed, it is hard to tell by examining a codefile 
whether it was created by the FORTRAN Compiler or the Pascal Compiler. For a 
description of the binary format of a codefile, see the UCSD p-System Users' 
Manual. 

5 



FORTRAN Reference Manual 
How to use SofTech Microsystems FORTRAN 77 

6 



CHAPTER 2 

Basic Structure of a FORTRAN Program 

In the most fundamental sense, a FORTRAN program is a sequence of characters 
which, when fed to the Compiler, are understood in various contexts as characters, 

. identi fiers, labels, constants, lines, statements, or other (possibly overlapping) 
syntactic substructure groupings of characters. The rules which the Compiler uses 
to group the character stream into certain substructures, as well as various 
constraints on how these substructures may be related to each other in the source 
program character stream will be the topic of this chapter. 

2.1. Character Set. 

A FOR TRAN source program consists of a stream of characters, originating in a 
.TEXT file, consisting of: 

Letters - The 52 upper and lower case letters A through Z and a 
through z. 

Digits - 0, 1, 2, 3, 4, 5, 6, 7 ,8,and 9. 

Speci al Characters - The remaining printable characters of the ASCll 
character set. 

The let ters and di gi ts, treated as a si ngle group, are called the alphanumeric 
characters. FORTRAN interprets lower case letters as upper case letters in all 
contexts except in character consta.nts and Hollerith fields. Thus, the following 
user-defined names are all" indistinguishable to the FORTRAN Compiler: 

ABCDE abcde AbCdE aBcDe 

In addition to the above, actual source programs given to the FORTRAN Compiler 
contain certain hidden (nonprintable) control characters inserted by the Text Editor 
which are invisible to the user. FORTRAN uses these control characters in 
exactly the same way as the Text Editor, and tr.ansfotms<'them,- 'usin'g' the~'rulesof 
UCSD .TEXT files, into the FORTRAN character set. 

The collating sequence for the FORTRAN character set is the ASCll sequence. 

2.2. Lines. 

A FOR TRAN source program may also be considered a sequence of lines, 
corresponding to the normal notion of line in the Text Editor. Only the first 72 
characters in a line are treated as significant by the Compiler, with any trailing 
characters in a line ignored. Note that lines with fewer than 72 characters are 
possi ble and, if shorter than 72 columns, the Compiler does treat as significant the 

7 



FORTRAN Reference Manual 
Basic Structure of a FORTRAN Program 

length of a line (see Section 3.4, which describes character constants, for an 
illustration of this). 

2.3. Columns. 

The characters in a given line fall into columns, with the first character being in 
column 1, the second in column 2, etc. The column in which a character resides 
is significant in FORTRAN, with columns 1 through 5 being reserved for statement 
labels, column 6 for continuation indicators and other column conventions, columns 
7 through 72 for actual statements. 

2.4. Blanks. 

The' blank character, with the exceptions noted below, has no significance in a 
FORTRAN source program and may be used for the purpose of improving the 
readability of FORTRAN programs. The exceptions are: 

Banks within string constants are significant 

Blanks within Hollerith fields are significant 

Blanks on Compiler directive lines are significant 

A blank in column 6 is used in distinguishing initial lines from 
continuation lines 

Blanks count in the total number of characters the Compiler processes 
per line and per statement 

2.5. Compiler Directive Lines. 

A line is treated as a Compiler directive if the $ character appears in column 1 
of an input line. Compiler directives are used to transmit various kinds of 
information to the Compiler. A Compiler directi ve line may appear any place that 
a comment line can appear, although certain directives are restricted to appear in 
c er tai n places. Blanks are significant on Compiler directi ve lines, and are used to 
delimit keywords and filenames. The set of directives is described below: 

2.5.1 $INCLUDE 

$lNCLUDE filename 

8 



FORTRAN Reference' Manual 
Basic Structure of a FORTRAN Program 

Include textually the file 'filename' at this point in the source. Nested includes are 
implemented to a depth of nesting of five files. Thus, for example, a program may 
include various files with subprograms, each of which includes various files which 
describe COMMON areas (which would be a depth of nesting of three files). 

2.5.2 $USES 

$USES ident 
[ IN filename ] 
[ OVERLAY] 

Similar to the USES command in the UCSD Pascal' Compiler. The already 
compiled FORTRAN subroutines or Pascal procedures contained in the .CODEfile 
'filename', (or in the file '*SYSTEM.LIBRARY' if no file name is present), become 
callable from the currently compiling code. This directive must appear before the 
initial non-comment input line. For more details, see Chapter 13. 

2.5.3 $XREF 

$XREF 

Produce a cross-reference listing at the end of each procedure compiled. 

2.5.4 $EXT 

$EXT SUBROUTINE name #params 
or 

$EXT [ type ] FUNCTION name #params 

The subroutine or function called 'name' is an Assembly Language routine. The 
routine has exactly '#params' reference parameters. :::,. \:;:.~ <: 

2.6. Comment Lines. 

A line is treated as a comment if anyone of the following conditions are met: 

A 'c' (or 'c') in column 1. 

A '*' in column 1. 

Line contains all blanks. 

9 



FORTRAN Reference Manual 
Basic Structure of a FORTRAN Program 

Comment lines do not effect the execution of the FORTRAN program in any way. 
Comment lines must be followed immediately by an initial line or another comment 
line. They must not be followed by a continuation line. Note that extra blank 
lines at the end of a FORTRAN program result in a compile time error since the 
system interprets them as comment lines but they are not followed by an initial 
line. 

2.7. Statements, Initial Lines, Continuation Lines, and Labels. 

Sections 2.7.1 through 2.7.4 define a FORTRAN statement in terms of the input 
character stream. The Compiler recognizes certain groups of input characters as 
complete statements according to the rules specified here. The remainder of this 
manual will further define the specific statements and their properties. When it is 
necessary to refer to specific kinds of statements here, they are simply referred to 
by name. 

2.7.1. Labels. 

A statement label is a sequence of from one to five digits. At least one digit 
must be nonzero. A label may be placed anywhere in columns 1 through 5 of an 
initial line. Blanks and leading zeros are not significant. 

2.7.2. Initial Lines. 

An initial line is any line which is not a comment line or a Compiler directi ve line 
and contains a blank or a 0 in column 6. The first five columns of the line must 
either be all blank or contain a label. With the exception of the statement 
following a logical IF, FORTRAN statements all begin with an initial line. 

2.7.3. Continuation Lines. 

A continuation line is any line which is not a comment line or a Compiler 
directive line and contains any character in column 6 other than a blank or a O. 
The first five columns of a continuation line must be blanks. A continuation line 
is used to increase the amount of room to write a given statement. If it will not 
fit on a single initial line, it may be extended to include up to 9 continuation 
lines. 

10 



2.7.4. Statements. 

FORTRAN Reference Manual 
Basic Structure of a FORTRAN Program 

A FORTRAN statement consists of an initial line, followed by up to 9 continuation 
lines. The characters of the statement are the up to 660 characters found in 
columns 7 through 72 of these lines. The END statement must be wholly written 
on an i ni ti al line, and no other statement may have an initial line which appears 
to be an END statement. 

2.8. Main Program and Subprogram Units and Ordering of 
Statements within Program Units. 

The FORTRAN language enforces a certain ordering among statements and lines 
which make make up a FORTRAN compilation. In general, a compilation consists 
of some number of subprograms (possibly zero), and at most one main program (see 
Sections on compilation units and subroutines). The various rules for ordering 
statements appear below. 

2.8.1. Program Units - Main Program and Subprogram Program Units. 

A subprogram begins with either a SUBROUTINE or a FUNCTION statement and 
ends with an END statement. A main program begins with a PROGRAM 
statement, or any other than a SUBROUTINE or FUNCTION statement, and ends 
wi th an END statement. A subprogram or the main program is referred to as a 
program unit. 

2.8.2. Statement Ordering Within a Program Unit. 

Within a program unit, whether a main program or a subprogram, statements must 
appear in an order consistent with the following rules: 

A SUBROUTINE or FUNCTION statement, or PROGRAM statement, if 
present, must appear as the first statement of the program unit. 

FORMAT statements may appear anywhere after the SUBROUTINE or 
FUNCTION statement, or PROGRAM statement if present. 

All specification statements must precede all OAT A statements, 
statement function statements, and executable statements. 

All OAT A statements must appear after the specification statements 
and precede all statement function statements and executable 
statements. 

II 



FORTRAN Reference Manual 
Basic Structure of a FORTRAN Program 

All statement function statements must precede all executable 
statements. 

Within the specification statements, the IMPLICIT statement must 
precede all other specification statements. 

These rules are illustrated in the following chart: 

PROGRAM, FUNCTION, or SUBROUTINE Statement 

IMPLICIT Statements 

Other Specification Statements 
Comment FORMAT 
Lines Statements DA T A Statements 

Statement Function Statements 

Executable Statements 

END Statement 

Table 2.1. Order of Statements within Program Units. 

The chart is to be interpreted as follows: 

Classes of lines or statements above or below other classes must 
appear in the designated order. 

Classes of lines or statements may be interspersed with other classes 
which appear across from one another. 

2.8.3. The Final Statement of a Source Program. 

When creating FORTRAN programs with the UCSD Editor, the final END statement 
must be entered as a complete line. That is, there must be a "return" character 
following the statement. Otherwise, the Compiler will not find the END statement 
and will issue an error message. In addition, that "return" character must be the 
final character in the program source file. Any further characters, even blanks, 
might be considered part of a subsequent subprogram by the Compiler. 

12 



CHAPTER 3 

Data Types 

There are four basic data types. in SofTech Microsystems FORTRAN 77: integer, 
real, logical, and character. This' chapter describes the properties of each type, 
the range of values for each type, and the form of constants for each type. 

3.1. The Integer Type. 

The integer data type consists of a subset of the integers. An integer value is an 
exact representation of the corresponding integer. An integer variable occupies 
one word (two bytes) of storage and can contain any value in the range -32768 to 
32767. Integer constants consist of a sequence of one or more decimal digits 
preceeded by an optional arithmetic sign, + or -, and must be in range. A 
decimal point is not allowed in an integer constant. The following are examples 
of integer constants: 

123 +123 -123 o 00000123 32767 -32768 

3.2. The Real Type. 

The real data type consists of a subset of the real numbers. A real value is 
normally an approximation of the real number desired. A real variable occupies 
two consecutive words (4 bytes) of storage. The range of real values is 
approximately: 

-1. 7E+38 .•. -5.8E-39 0.0 5.8E-39 ••• 1. 7E+38 (LSI-II) 

The actual range depends upon which computer is being used. The precision is 
greater than 6 decimal digits. 

A basic real constant consists of an optional sign followed by an integer part, a 
decimal point, and a fraction part. The integer and fraction parts consist ofl or 
more decimal digits, and the decimal point is a period, '.'. Either the integer part 
or the fraction part may be omitted, but not both. Some sample basic real 
constants follow: 

-123.456 
-123. 
-.456 

+123.456 
+123. 
+.456 

123.456 
123. 
.456 

An exponent part consists of the letter 'E' followed by an optionally signed integer 
constant. An exponent indicates that the value preceding it is to be multiplied by 
10 to the value of the exponent part's integer. Some sample exponent parts are: 

E12 E-12 E+12 EO 

13 



FORTRAN Reference Manual 
Data Types 

A real constant is either a basic real constant, a basic real constant followed by 
an exponent part, or an integer constant followed by an exponent part. For 
example: 

+1.000E-2 
+0.01 

l.E-2 
100.0E-4 

1E-2 
.0001E+2 

all represent the same real number, one one-hundredth. 

3.3. The Logical Type. 

The logical data type consists of the two logical values true and false. A logical 
variable occupies one word (two bytes) of storage. There are only two logical 
constants, • TRUE. and .F ALSE., representing the two corresponding logical values. 
The internal representation of .FALSE. is a word of all zeros, and the 
representation of • TRUE. is a word of all zeros but a one in the least significant 
bit. If a logical variable contains any other bit values, its logical meaning is 
undefined. 

3.4. The Character Type. 

The character data type consists of a sequence of ASCII characters. The length 
of a character value is equal to the number of characters in the sequence. The 
length of a particular constant or variable is fixed, and must be between 1 and 
127 characters. A character variable occupies one word of storage for each two 
characters in the sequence, plus one word if the length is odd. Character 
variables are always aligned on word boundaries. The blank character is allowed in 
a character value and is significant. 

A character constant consists of a sequence of one or more characters enclosed by 
a pair of apostrophes. Blank characters are allowed in character constants, and 
count as one character each. An apostrophe within a character constant is 
represented by two consecuti ve apostrophes with no blanks inbetween. The length 
of a character constant is equal to the number of characters between the 
apostrophes, with doubled apostrophes counting as a single apostrophe character. 
Some sample character constants are: 

'A' 'Help!"A very long CHARACTER constant' 

Note the last example, that represents a single apostrophe,'. 

FORTRAN allows source lines with up to 72 columns. Shorter lines are not 
padded out to 72 columns, but left as input. When a character constant extends 
across a line boundary, its value is as if the portion of the continuation line 

14 



FORTRAN Reference Manual 
Data Types 

beginning with column 7 is juxtapositioned immediately after the last character on 
the initial line. Thus, the FORTRAN source: 

200 CH = ' ABC<cr) 
X DEF' 

(where the '<cr)' indicates a carriage return, or the end of the source line) is 
equivalent to: 

200 CH = 'ABC DEF' 

with the single space between the C and 0 being the equivalent to the space in 
column 7 of the continuation line. Very long character constants can be 
represented in this manner. 

IS 



FORTRAN Reference Manual 
Data Types 

16 



CHAPTER 4 

FORTRAN Names 

A FORTRAN name, or identifier, consists of an initial alphabetic character 
followed by a sequence of 0 through 5 alphanumeric characters. Blanks', may 
appear within a FORTRAN name but have no significance. A name is useOto 
denote a user- or system-defined' variable, array, function, subroutine, etc. Any 
valid sequence of characters may be used for any FORTRAN name. There are 'no 
reserved names as in other languages. Sequences of alphabetic characters used as 
keywords are not to be confused with FORTRAN names. The Compiler recognizes 
keywords by their context and in no way restricts the use of user chosen names. 
Thus, a program can have, for example, an array named IF, READ, or GOTO,with 
no error indicated by the Compiler (as long as it conforms to the rules that all 
arrays must obey). Using such names, however, is not a recommended practice. 

4.1. Scope of FORTRAN Names. 

The scope of a name is the range of statements in which that name is known, or 
can be referenced, within a FORTRAN program. In general, the scope of a name 
is either global or local, although there are several exceptions. A name can only 
be used in accordance with a single definition within its scope. The same name, 
however, can have different definitions in distinct scopes. 

A name with global scope may be used in more than one program unit (a 
subrouti ne, function, or the main program) and still refer to the same entity. In 
fact, names wi th global scope can only be used in a single, consistent manner 
within the same program. All subroutine, function subprogram, and common 
names, as well as the program name, have global scope. Therefore, there cannot be 
a function subprogram that has the same name as a subroutine subprogram or as a 
common data area. Similarly, no two function subprograms in the same pr:pgram 
can have the same name. 

A name wi th local scope is only visible (known) within a single program unit~ A 
name wi th a local scope can be used in another program unit with a different 
meaning, or with a similar meaning, but is in no way required to have similar 
meanings in a different scope. The names of variables, arrays, parameter~t,; and 
statement functions all have local scope. A name with a local scope can be'used 
in the same compilation as another item with the same name but a global scope as 
long as the global name is not referenced within the program unit containing the 
loc al name. Thus, a function can be named FOO, and a local variable in another 
program unit can be named FOO without error, as long as the program unit 
containing the variable FOO does not call the function FOO. The Compiler 
detects all scope errors, and issues an error message when they occur, so the user 
need not worry about undetected scope errors causing bugs in programs. 

One exception to the scoping rules is the name given to common data blocks. It 
is possible to refer to a globally scoped common name in the same program unit 
that an identical locally scoped name appears. This is allowed because common 

17 



FORTRAN Reference Manual 
FORTRAN Names 

names are always enclosed in slashes, such as /NAME/, and are therefore always 
distinguishable from ordinary names by the Compiler. 

Another exception to the scoping rules is made for parameters to statement 
functions. The scope of statement function parameters is limited to the single 
statement forming that statement function. Any other use of those names within 
that statement function is not allowed, and any other use outside that statement 
functi on is allowed. 

4.2. Undeclared FORTRAN Names. 

When a user name that has not appeared before is encountered in an executable 
statement, the Compiler infers from the context of its use how to classify that 
name. If the name is used in the context of a variable, the Compiler creates an 
entry into the symbol table for a variable of that name. Its type is inferred from 
the first letter of its name. Normally, variables beginning with the letters 1, J, K, 
L, M, or N are considered integers, while all others are considered reals. These 
defaults can be overridden by an IMPLICIT statement (see Chapter 5). If an 
undeclared name is used in the context of a function call, a symbol table entry is 
created for a function of that name, with its type being inferred in the same 
manner as that of a variable. Similarly, a subroutine entry is created for a newly 
encountered name that is used as the target of a CALL statement. If an entry 
for such a subroutine or function name exists in the global symbol table, its 
attributes are coordinated with those of the newly created symbol table entry. If 
any inconsistencies are detected, such as a previously defined subroutine name 
being used as a function name, an error message is issued. 

In general, one is encour.aged to declare all names used within a program unit, 
since it helps to assure that the Compiler associates the proper definition with 
that name. Allowing the Compiler to use a default meaning can sometimes result 
in logical errors that are quite difficult to locate. Indeed, most modern 
programming languages require the programmer to declare all names, to avoid any 
such potential difficulties. 

18 



CHAPTER 5 

Specification Statements 

This chapter describes the specification statements in SofTech Microsystems 
FORTRAN 77. Specification statements are non-executable. They are used to 
define the attributes of user defined variable, array, and function names. There 
are eight kinds of specification statements: 

5.1. IMPLICIT 
5.2. DIMENSION 
5.3. Type Statements 
5.4. COMMON 
5.5. EXTERNAL 
5.6. INTRINSIC 
5.7. SAVE 
5.8. EQUIVALENCE 

Speci fication statements must precede all executable statements in a program unit. 
If present, any IMPLICIT statements must precede all other specification 
statements in a program unit as well. Otherwise, the specification statements 
may appear in any order within their own group. 

5.1. IMPLICIT Statement. 

An IMPLICIT statement is used to define the default type for user-declared names. 
The form of an IMPLICIT statement is: 

IMPLICIT type (a [,a] ••• ) [,type (a [,a] ••• )] ••• 

The 'type' is one of INTEGER, LOGICAL, REAL, or 
CHARACTER[*nnn] 

The 'a' is either a single letter or a range of letters. A range of 
letters is indicated by the first and last letters in the range separated 
by a minus sign. For a range, the letters must be in alphabetical 
order. 

The 'nnn' is the size of the character type that is to be associated 
with that letter or letters. It must be an unsigned integer in the 
range 1 to 127. If *nnn is not specified, it is assumed to be *1. 

An IMPLICI T statement defines the type and size for all user-defined names that 
begin wi th the letter or letters that appear in the specification. An IMPLICIT 
statement applies only to the program unit in which it appears. IMPLICIT 
statements do not change the type of any intrinsic functi ons. 

Implici t types can be overridden or confirmed for any specific user-name by the 
appearance of that name in a subsequent type statement. An explicit type in a 
FUNCTION statement also takes priority over an IMPLICIT statement. If the type 

19 



FORTRAN Reference Manual 
Specification Statements 

in question is a character type, the user-name's length is also overridden by a 
latter type defini tion. 

The program unit can have more than one IMPLICIT statement, but all implicit 
statements must precede all other specification statements in that program unit. 
The same letter cannot be defined more than once in an IMPLICIT statement in 
the same program unit. 

5.2. DIMENSION Statement. 

A DIMENSION statement is used to specify that a user-name is an array. The 
form of a DIMENSION statement is: 

DIMENSION var(dim) [, var(dim)) ••• 

where each 'var(dim)' is an array declarator. An array declarator is 
of the form: 

name(d [,d) ••• ) 

'name' is the user defined name of the array. 

'd' is a dimension declarator. 

5.2.1. Dimension Declarators. 

The nu mber of dimensions in the array is the number of dimension declarators in 
the array declarator. The maximum number of dimensions is three. A dimension 
declarator can be one of three forms: 

An unsigned integer constant. 

A user-name corresponding to a non-array integer formal argument. 

An asterisk. 

A dimension declarator specifies the upper bound of the dimension. The lower 
bound is always one. If a dimension declarator is an integer constant, then the 
array has the corresponding number of elements in that dimension. An array has a 
constant size if all of its dimensions are specified by integer constants. If a 
dimensi on declarator is an integer argument, then that dimension is defined to be 
of a size equ al to the initial value of the integer argument upon entry to the 
subprogram unit at execution time. In such a case the array is called an 
adjustable-sized array. If the dimension declarator is an asterisk, the array is an 
assumed-sized array and the upper bound of that dimension is not specified. 

20 



• >" • 

FORTRAN Reference M~lnual 
Specification Statements 

All adjustable- and assumed-sized arrays must also be formal arguments to the 
program uni t in which they appear. Addi ti onally, an assumed-size dimension 
declarator may only appear as the last dimension in an array declarator. 

The order of array elements in memory is column-major order. That is tq say, 
the leftmost subscript changes most rapidly in a memory-sequential reference to all 
array elements. 

5.2.2. Array Element Name. 

The form of an array element name is: 

arr(sub [,sub] ••• ) 

'arr' is the name of an array. 

'sub' is a subscript expression. 

A su bscri pt expression is an integer expression used in selecting a speci fic element 
of an arraYe The number of subscript expressions must match the number of 
di mensions in the array declarator. The value of a subscript expression must be 
between 1 and the upper bound for the dimension it represents. 

5.3. Type Statements. 

Type statements are used to specify the type of user- defined names. A type 
statement may confirm or override the implicit type of a name. Type statements 
may also specify dimension information. 

A user-name for a variable, array', external function, or statement function may 
appear in a type statement. Such an appearance defines the type of that name 
for the entire program unit. Within a program unit, a name may not have its 
type explicitly specified by a type statement more than once. A type statement 
may confirm the type of an intrinsic function, but is not required. The name of a 
subroutine or main program cannot appear in a type statement. 

5.3.1. INTEGER, REAL, and LOGICAL Type Statements. 

The form of an INTEGER, REAL, or LOGICAL type statement is: 

type var Lvar] ••• 

'type' is one of INTEGER, REAL, or LOGICAL. 

21 



FORTRAN Reference Manual 
Specification Statements 

'var' is a variable name, array name, function name, or an array 
declarator. For a definition of an array declarator, see Section 5.2, 
which describes the DIMENSION statement. 

5.3.2. CHARACTER Type Statement. 

The form of a CHARACTER type statement is: 
CHARACTER [*nnn [,]] var [*nnn] [, var [*nnn] ] ••• 

'var' is a variable name, array name, or an array declarator. For a 
definition of an array declarator, see 5.2. DIMENSION Statement. 

'nnn' is the length in number of characters of a character variable 
or character array element. It must be an unsigned integer in the 
range 1 to 127. 

The length nnn following the type name CHARACTER is the default length for any 
name not having its own length specified. If not present, the default length is 
assu med to be one. A length immediately following a variable or array overrides 
the default length for that item only. For an array, the length specifies the 
length of each element of that array. 

5.4. COMMON Statement. 

The COMMON statement provides a method of sharing storage between two or 
more program units. Such program units can share the same data without passing 
it as arguments. The form of the COMMON statement is: 

COMMON [/ [cname] /J nlist [[,] / [cname] / nlist] ••• 

'cname' is a common block name. If a 'cname' is omitted, then the 
blank common block is specified. 

'nlist' is a comma seperated list of variable names, array names, and 
array declarators. Formal argument names and function names cannot 
appear in a COMMON statement. 

In each COMMON statement, all variables and arrays appearing in each nlist 
following a common block name cname are declared to be in that common block. 
If the first cname is omitted, all elements appearing in the first nlist are specified 
to be in the blank common block. 

Any common block name can appear more than once in COMMON statements in 

22 



FORTRAN Reference Manual 
Specification Statements 

the same program unit. All elements in all nlists for the same common block are 
allocated storage sequentially in that common storage area in the order that they 
appear. 

All elements in a single common area must be either all of type CHARACTER or 
none of type character. Furthermore, if two program units reference the same 
named common containing character data, association of character variables of 
different length is not allowed. Two variables are said to be associated if they 
refer to the same actual storage. 

The si ze of a common block is equal to the number of bytes of storage required 
to hold all elements in that common block. If the same named common block is 
referenced by several distinct program units, the size must be the same in all 
program units. 

5.5. EXTERNAL Statement. 

An EXTERNAL statement is used to identify a user-defined name as an external' 
subroutine or function. The form of an EXTERNAL statement is: 

EXTERNAL name [,name] •.• 

'name' is the name of an external subroutine or function. 

Appearance of a name in an EXTERNAL statement declares that name to be an 
external procedure. ,Statement function names cannot appear in an EXTERNAL 
statement. If an intrinsic function name appears in an EXTERNAL statement, 
then that name becomes the name of an external procedure, and the corresponding 
intrinsic function can no longer be called from that program unit. A user-name 
can only appear once in an EXTERNAL statement. 

5.6. INTRINSIC Statement. 

An INTRINSIC statement is used to declare that a user-name is an intrinsic 
function. The form of an INTRINSIC statement is: 

INTRINSIC name [,name] ••• 

'name' is an intrinsic function name. 

Each user-name may only appear once in an INTRINSIC statement. If a name 
appears in an INTRINSIC statement, it cannot appear in an EXTERNAL statement. 
All names used in an INTRINSIC statement must be system-defined INTRINSIC 
functions. For a list of these functions, see ChapteI;' 12. 

23 



FORTRAN Reference Manual 
Specification Statements 

5.7. SAVE Statement. 

A SA VE statement is used to retain the definition of a common block after the 
return from a procedure that defines that common block. Within a subroutine or 
function, a common block that has been specified in a SAVE statement does not 
become undefined upon exit from the subroutine or function. The form of a SAVE 
statement is: 

SAVE /name/ [,/name/] ••• 

where: 'name' is the name of a common block. 

Note: In SofTech Microsystems FORTRAN 77 all common blocks are statically 
allocated, so the SAVE statement is not necessary. Common blocks are never 
disposed on exiting a procedure. The SAVE statement is implemented here for 
the sake of program portability. 

5.8. EQUIVALENCE Statement. 

An EQUI VALENCE statement is used to specify that two or more variables or 
arrays are to share the same' storage. If the shar'ed variables are of different 
types, the EQUIVALENCE does not cause any kind of automatic type conversion. 
The form 'of an EQUIVALENCE statement is: 

EQUIVALENCE (nlist) [, (nlist)] ••• 

where: 'nlist' is a list of at least two variable names, array names, or 
array element names.' Argument names may not appear in an 
EQUIVALENCE statement. Subscripts must be integer constants and 
must be wi thin the bounds of the array they index. 

¢{i'::': it', 

An EQUIVALENCE statement specifies that the storage sequences of the elements 
that appear in the list nlist have the same first storage location. Two Or more 
variables are said to be associated if they refer to the' same actual storage. Thus, 
an EQUIVALENCE statement causes its list of variables to becol}1e associated. An 
element of type character can only be associatedwithanother"element of type 
character with the same length. If an array name appears in an EQUIVALENCE 
statement, it refers to the first element of the array. 

24 



FORTRAN Reference Manual 
Specification Statelne,nts 

5.B.l. Restrictions on EQUIVALENCE Statements. 

An EQUIVALENCE statement cannot specify that the same storage location is to 
appear more than once, such as: 

REAL R,S(lO) 
EQUIVALENCE (R,S(1»,(R,S(5» 

which forces the variable R to appear in two distinct memory locations. 
Furthermore, an EQUIVALENCE statement cannot specify that consecutive array 
elements are not stored in sequential order. For example: 

REAL R(lO),S(lO) 
EQUIVALENCE (R(1),S(l)),{R(5),S{6)) 

is not allowed. 

When EQUIVALENCE statements and COMMON statements are used together, 
several further restrictions apply. An EQUIVALENCE statement cannot cause 
storage in two different common blocks to become equivalenced. An 
EQUIVALENCE statement can extend a common block by adding storage elements 
following the common block, but not preceding the common block. For example: 

COMMON /ABCDE/ R(lO) 
REAL 5(10) 
EQUIVALENCE (R(l),S(lO» 

is not allowed because it extends the common block by adding storage preceding 
the start of the block. 

25 



FORTRAN Reference Manual 
Specification Statements 

26 



CHAPTER 6 

DA T A Statement 

The DATA statement is used to assign initial values to variables. A DATA 
statement is a non-executable statement. If present, it must appear after all 
specification statements and prior to any statement function statements or 
executable statements. The form of a DATA statement is: 

DA T A nlist I clist 1[[,] nlist I clist I] ••• 

'nlist' is a list of variable, array element, or array names. 

'clist' is a list of constants or constants preceded by an integer 
constant repeat factor and an asterisk, such as: 

5*3.14159 3*'Help' 100*0 

A repeat factor followed by a constant is the equivalent of a list all 
of constants of that constant's value repeated a number of times 
equal to the repeat constant. 

There must be the same number of values in each clist as there are variables or 
array elements in the corresponding nlist. The appearance of an array in an nlist 
is the equ i valent to a list of all elements in that arr'ay in storage sequence order. 
Array elements must be indexed only by constant subscripts. 

The type of each non-character element in a clist must be the same as the type 
of the corresponding variable or array element in the accompanying nlist. Each 
character element in a clist must correspond to a character variable or array 
element in the nlist, and must have a length that is less than or equal to the 
length of that variable or array element. If the length of the constant is shorter, 
it is extended to the length of the variable by adding blank characters to the 
right. Note that a single character constant cannot be used to define more than 
one variable or even more than one array element. 

Onl y local variables and array elements can appear in a DATA statement. Formal 
arguments, variables in common, and function names cannot be assigned initial' 
values with a DATA statement. 

27 



FORTRAN Reference Manual 
Data Statement 

28 



CHAPTER 7 

Expressions 

This chapter describes the four classes of expressions found in the FORTRAN 
language. They are: 

7.1. Arithmetic Expressions. 
7.2. Character Expressions. 
7.3. Relational Expressions. 
7.4. Logical Expressions. 

7.1. Arithmetic Expressions. 

An ari thmetic expression produces a value which is either of type integer or of 
type real. The simplest forms of arithmetic expressions are: 

Unsigned integer or real constant. 
Integer or real variable reference. 
Integer or real array element reference. 
Integer or real function reference. 

The value of a variable reference or array element reference must be defined for 
it to appear in an arithmetic expression. Moreover, the value of an integer 
variable must be defined with an arithmetic value, rather than a statement label 
value previously set in an ASSIGN statement. 

Other ari thmetic expressions are buil t up from the above simple forms using 
parentheses and these arithmetic operators: 

Operator _ Representing Operation Precedence 

** Exponenti ation Highest 

/ Division, 
Intermedi ate 

* Multiplication 

- Subtraction or Negation 
Lowest 

+ Addition or Identity 

Table 7.1. Arithmetic Operators. 

All of the operators are binary operators, appearing between their arithmetic 
expression operands. The + and - may also be unary, preceding their operand. 

29 



FORTRAN Reference Manual 
Expressions 

Operati ons of equal precedence are left-associative except exponentiation which is 
right- associ ati vee Thus, A / B * C is the same as (A / B) * C and A ** B ** 
C is the same as A ** (B ** C). Arithmetic expressions may be formed in the 
usual algebraic sense, as in most programming languages, except that FORTRAN 
prohibits two operators from appearing consecutively. Thus, A ** -B is prohibited, 
although A ** (-B) is permissible. Note that unary minus is also of lowest 
precedence so that - A * B is interpreted as - (A * B). Parentheses may be used 
in a program to control the associativity and the order of operator evaluation in 
an expression. 

7.1.1. Integer Division. 

The di vision of two integers results in a value which is the quotient of the two 
values, truncated toward O. Thus, 7 I 3 evaluates to 2, (-7) / 3 evaluates to -2, 9 
I 10 evaluates to 0 and 9 / (-10) evaluates to O. 

7.1.2. Type Conversions and Result Types of Arithmetic Operators. 

Arithmetic expressions may involve operations between operands which are of 
different type. The general rules for determining type conversions and the result 
type for an arithmetic expression are: 

An operation between two integers results in an expression of type 
integer. 

An operation between two reals results in an expression of type real. 

For any operator except **, an operation between a real and an 
integer converts the integer to type real and performs the operation, 
resulting in an expression of type real. 

F or the operator **, a real raised to an integer power is computed 
wilhout conversion of the integer, and results in an expression of type 
real. An integer raised to a real power is converted to type real and 
the operation results in an expression of type real. Note that for 
integer 1 and negative integer J, 1 ** J is the same as 1 / (I ** 
IABS(J)) which is subject to the rules of integer division so, for 
example, 2 ** (-4) is 1 / 16 which is O. 

Unary operators result in the same result type as their operand type. 

The type which results from the evaluation of an arithmetic operator is not 
dependent on the context in which the operation is specified. For example, 

30 



FORTRAN Reference Manual 
Expressions 

evaluation of an integer plus a real results in a real even if the value obtained is 
to be immediately assigned into an integer variable. 

7.2. Character Expressions. 

A character expression produces a value which is of type character. The forms of 
character expressions are: 

Character constant. 
Character variable reference. 
Character array element reference. 
Any character expression enclosed in parenthesis. 

There are no operators which result in character expressions. 

7.3. Relational Expressions. 

Relational expressions are used to compare the values of two arithmetic 
expressions or two character expressions. It is not allowed to compare an 
arithmetic value with a character value. The result of a relational expression is 
of type logical. 

Relational expressions may use any of these operators to compare values: 

Operator Representing Operation 

.L T • Less than 

• LE. Less than or equal to 

.EQ. Equal to 

.NE • Not equal to 

• GT. Greater than 

.GE. Greater than or equal to 

Table 7.2. Relational Operators. 

All of the operators are binary operators, appearing between their operands. There 
is no relative precedence or associativity among the relational operands since an 

31 



FORTRAN Reference Manual 
Expressions 

expression of the form' A .L T. B .NE. C violates the type rules for operands. 
Relational expressions may only appear within logical expressions. 

Relational expressions with arithmetic operands may have an operand of type 
i nt e ge r an d one of type real. In this case, the integer operand is converted to 
type real before the relational expression is evaluated. 

Relational expressions with character operands compare the position of their 
operands in the ASCII collating sequence. An operand is less than another if it 
appears earlier in the collating sequence, etc. If operands of unequal length are 
compared, the shorter operand is considered as if it were blank extended to the 
length of the longer operand. 

7.4. Logical Expressions. 

A logical expression produces a value which is of type logical. The simplest forms 
of logical expressions are: 

Logical constant. 
Logical variable reference. 
Logical array element reference. 
Logical function reference. 
Relational expression. 

Other logical expressions are built up from the above simple forms using 
parentheses and these logical operators: 

Operator Representing Operation Precedence 

.NOT. Negation Highest 

.AND. Conjuncti on 

'.OR. Inclusi ve dis junction Lowest 

Table 7.3. Logical Operators. 

The .AND. and .OR. operators are binary operators, appearing between their logical 
expression operands. The .NOT. operator is unary, preceding its operand. 
Operations of equal precedence are left associative so, for example, A .AND. 8 
.AND. C is equivalent to (A .AND. B) .AND. C. As an 'example of the precedence 
rules, .NOT. A .OR. B .AND. C is interpreted the same as (.NOT. A) .OR. (8 
.AND. C). It is not permitted to have two .NOT. operators adjacent to each 

32 



FORTRAN Reference Manual 
Expressions 

other, although A .AND •• NOT. B is an example of an allowable expression with 
two operators being adjacent. 

The meaning of the logical operators is their standard semantics, with .OR. being 
"nonexclusi ve"; that is, • TRUE. .OR. • TRUE. evaluates to the value • TRUE •• 

7.5. Precedence of Operators. 

When ari thmetic, relational, and logical operators appear in the same expression, 
their relative precedences are: 

Operator Precedence 

Arithmetic Highest 

Relational 

Logical Lowest 

Table 7.4. Relative Precedence of Operator Classes. 

7.6. Evaluation Rules and Restrictions for Expressions. 

Any variable, array element, or function referenced in an expression must be 
defined at the time of the reference. Integer variables must be defined with an 
arithmetic value, rather than a statement label value as set by an ASSIGN 
statement. 

Certai n ari thm et i c opera t ions are prohibited if they cannot be evaluated (e.g., 
di viding by zero). Other prohibited operations are raising a zero valued operand to 
a zero or negative power and raising a negative valued operand to a power of type 
real. 

33 



FORTRAN Reference Manual 
Expressions 

34 



CHAPTER 8 

Assignment Statements 

An assignment statement is used to assign a value to a variable or an array 
element. There are two basic kinds of assignment statements: computational 
assignment statements, and label assignment statements. 

8.1. Computational Assignment Statements. 

The form of a computational assignment statement is: 

var = expr 

'var' is a variable or array element name, and 

'expr' is an expression. 

Execution of a computational assignment statement evaluates the expression and 
assi gns the resulting value to the variable or array element appearing on the left. 
'The type of the variable or array element and the expression must be compatible. 
They must both be either numeric, logical, or character, in which case the 
assignment statement is called an arithmetic, logical, or character assignment 
statement. 

If the type of the elements of an arithmetic assignment statement are not 
identical, automatic conversion of the value of the expression to the type of the 
variable is done. The following table gives the conversion rules: 

Type of Type of expression 
variable or 
array element integer real 

\ 

integer expr INT(expr) 

real REAL(expr) expr 

Table 8.1. Type conversion for arithmetic assignment statements. 

If the length of the expression does not match the size of the variable in a 
character assignment statement, it is adjusted so that it does. If the expression is 
shorter, it is padded with enough blanks on the right to make the sizes equal 
before the assignment takes place. If the expression is longer, characters on the 
right are truncated to make the sizes the same. 

35 



FORTRAN Reference Manual 
Assignment Statements 

8.2. Label Assignment Statement. 

The label assignment statement is used to assign the value of a format or 
statement label to an integer variable. The form of the statement is: 

ASSIGN label TO var 

'label' is a format label or statement label, and 

'var' is an integer variable. 

Executi on of an ASSIGN statement sets the integer variable to the value of the 
label. The label can be either a format label or a statement label, and it must 
appear in the same program unit as the ASSIGN statement. When used in an 
assigned GOTO statement, a variable must currently have the value of a statement 
label. When used as a format specifier in an I/O statement, a variable must have 
th e v alu e of a format statement label. The ASSIGN statement is the only way to 
assign the value of a label to a variable. 

36 



CHAPTER 9 

Control Statements 

Control statements are used to control the order of execution of statements in the 
FORTRAN language. This chapter describes the following control statements: 

9.1. Unconditional GO TO. 
9.2. Computed GOTO. 
9.3. Assigned GO TO. 
9.4. Arithmetic IF. 
9.5. Logical IF. 
9.6. Block IF THEN ELSE. 
9.6.1. Block IF. 
9.6.2. ELSEIF. 
9.6.3. ELSE. 
9.6.4. ENDIF. 
9.7. DO. 
9.8. CONTINUE. 
9.9. STOP. 
9.10. PAUSE. 
9.11. END. 

The two remaining statements which control the order of execution of statements 
are the CALL statement and the RETURN statement, both of which are described 
in Chapter 12. 

9.1. Unconditional GOTO. 

The· syntax for an uncondi tional GOTO statement is: 

GOTO s 

where s is a statement label of an executable statement that is found in the same 
program unit as the GO TO statement. The effect of executing a GOTO statement 
is that the next statement executed is the statement labeled s. It. is not legal to 
jump into a DO, IF, ELSEIF, or ELSE block from outside the block (see the various 
sections for an explanation of the kinds of blocks). 

9.2. Computed GOTO. 

The syntax for a computed GOTO statement is: 

GOTO (s [, s] ••• )[,] i 

where i is an integer expression and each s is a statement label of an executable 
statement that is found in the same program unit as the computed GOTO 

37 



FORTRAN Reference Manual 
Control Stratements 

statement. The same statement label may appear 'repeatedly in the list of labels. 
The effect of the computed GOTO statement can be explained as follows: Suppose 
th at there are n labels in the list of labels. If i < 1 or i > n then the computed 
GOTO statement acts as if it were a CONTINUE statement, otherwise, the next 
statement executed will be the statement labeled by the ith label in the list of 
labels. I t is not allowed to jump into a DO, IF, ELSEIF, or ELSE block from 
outside the block (see the various sections for an explanation of the kinds of 
blocks). 

NOTE: computed GOTOs are often used to implement a CASE construct. 

9.3. Assigned GOTO. 

The syntax for an assigned GOTO statement is: 

GOTO i [[,] (s [, s] ••• )] 

where i is an integer variable name and each s is a statement label of an 
executable statement that is found in the same program unit as the assigned GOTO 
statement. The same statement label may appear repeatedly in the list of labels. 
When the assigned GOTO statement is executed, i must have been assigned the 
label of an executable statement that is found in the same program unit as the 
assigned GOTO statement. The effect of the statement is that the next statement 
executed will be the statement labelled by the label last assigned to i. If the 
optional list of labels is present, a runtime error is generated if the label last 
assigned to i is not among those listed. It is not legal to jump into a DO, IF, 
ELSEIF, or ELSE block from outside the block (see the various sections for an 
explanation of the kinds of blocks). 

9.4. Ari thmetic IF. 

The syntax for an arithmetic IF statement is: 

IF (e) sl, s2, s3 

wheree is an integer or real expression and each of sl, s2, and s3 are statement 
labels of executable statements found in the same program unit as the arithmetic 
IF statement. The same statement label may appear more than once among the 
three labels. The effect of the statement is to evaluate the expression and then 
select a label based on the value of the expression. Label sl is selected if the 
value of e is less than 0, s2 is selected if the value of e equals 0, and s3 is 
selected if the value of e exceeds 0. The next statement executed will be the 
statement labeled by the selected label. It is not legal to jump into a DO, IF, 
ELSEIF, or ELSE block from outside the block (see the various sections for an 

38 



explanation of the kinds of blocks). 

9.5. Logical IF. 

The syntax for a logical IF statement is: 

IF (e) st 

FORTRAN Reference Manual 
Control Stratements 

where e is a logical expression and st is any executable statement except a DO, 
block IF, ELSEIF, ELSE, ENDIF, END, or another logical IF statement. The 
statement causes the logical expression to be evaluated and, if the value of that 
expression is • TRUE., then the statement, st, is executed. Should the expression 
evaluate to .F ALSE., the statement st is not executed and the execution sequence 
continues as if a CONTINUE statement had been encountered. 

9.6. Block IF THEN ELSE. 

Sections 9.6.1 through 9.6.4 describe the block IF statement and the various 
statements associated with it. These statements are new to FORTRAN 77 and can 
be used to dramatically improve the readability of FORTRAN programs and to cut 
down the number of GOTOs of the various forms. As an overview of these 
sections, the following three code skeletons illustrate the basic concepts: 

Skeleton 1 - Simple Block IF which skips a group of statements if the expression is 
false: 

IF(l.L T .10)THEN 

Some statements executed only if I.l T.ID 

ENDIF 

Skeleton 2 - Block IF with a series of ELSEIF statements: 

IF(J.GT .1000)THEN 

Some statements executed only if J.GTolOOO 

ELSEIF(JeGT ,,1 OO)THEN 

Some statements executed only if J.GT .100 and 
J.lE.I0DO 

39 



FORTRAN Reference Manual 
Control Stratements 

ELSEIF(J.GT .10)THEN 

ELSE 

ENDIF 

Some statements executed only if J.GT .10 and 
J.LE.IOOO and J.LE.IOO 

Some statements executed only if none of above 
conditions were true 

Skeleton 3 - Illustrates that the constructs can be nested and that an ELSE 
statement can follow a block IF without intervening ELSEIF statements (indentation 
solely to enhance readability): 

IF(I.L T .100)THEN 

Some statements executed only if I.L T.I00 

IF(J.L T .10)THEN 

Some statements executed only if I.L T .100 
and J.L T.IO 

ENDIF 

Some statements executed only if I.L T.IOO 

ELSEIF(I.L T .IOOO)THEN 

ENDIF 

Some statements executed only if I.GE.IOO and 
I.L T.I000 

IF(J.L T .10)THEN 

Some statements executed only if I.GE.IOO 
and l.l T .1000 and J.L T .10 

ENDIF 

Some statements executed only if I.GE.IOO and 
1.L T.IOOO 

In order to understand, in detail, the block IF and associated statements, the 
concept of an IF -level is introduced. For any statement, its IF -level is 

nl - n2 

40 



FORTRAN Reference Manual 
Control Stratements 

where nl is the number of block IF statements from the beginning of the program 
unit that the statement is in, up to and including that statement, and n2 is is the 
nu mber of ENDIF statements from the beginning of the program unit up to, but 
not i nclu di ng, that statement. The IF-level of every statement must be greater 
than or equal to 0 and the IF-level of every block IF, ELSEIF, ELSE, and ENDIF 
must be greater than o. Finally, the IF-level of every END statement must be O. 
The IF -level will be used to define the nesting rules for the block IF and 
associated statements and to define the extent of IF blocks, ELSEIF blocks, and 
ELSE blocks. 

9.6.1. Block IF. 

The syntax for a block IF statement is: 

IF (e) THEN 

where e is a logical expression. The IF block associated with this block IF 
statement consists of all of the executable statements, possibly none, that appear 
following this statement up to, but not including, the next ELSEIF, ELSE, or 
ENDIF statement that has the same IF-level as this block IF statement (the IF­
level defines the notion of "matching" ELSEIF, ELSE, or ENDIF). Executing the 
block IF statement first causes the expression to be evaluated. If it evaluates to 
• TRUE. and there is at least one statement in the IF block, the next statement 
executed is the first statement of the IF block. FoHowing the execution of the 
last statement in the IF block, the next statement to be executed will be the next 
ENDIF statement at the same IF -level as this block IF statement. '-If' the 
expression in this block IF statement evaluates to • TRUE. and the IF block has no 
executable statements, the next statement executed is the next ENDIF sta.tement 
at the same IF level as the block IF statement. If the expression evaluates to 
.F ALSE., the next statement executed is the next ELSEIF, ELSE, or ENDIF 
statement that has the same IF -level as the block IF statement. Note that transfer 
of control into an IF block from outside that block is not allowed. 

9.6.2. ELSEIF. 

The syntax of an ELSEIF statement is: 

ELSEIF (e) THEN 

where e is a logical expression. The ELSEIF block associated with an ELSEIF 
statement consists of all of the executable statements, _ possibly none, that follow 
the ELSEIF statement up to, but not including, the next ELSEIF, ELSE, or ENDIF 
statement that has the same IF -level as this ELSEIF statement. The execution of 

41 



FORTRAN Reference Manual 
Control Stratements 

an ELSEIF statement begins by evaluating the expression. If its value is • TRUE. 
and there is at least one statement in the ELSEIF block, the next statement 
executed is the first statement of the ELSEIF block. Following the execution of 
the last statement in the ELSEIF block, the next statement to be executed will be 
t he next ENDIF statement at the same IF -level as this ELSEIF statement. If the 
expression in this ELSEIF statement evaluates to .TRUE. and the ELSEIF block has 
no executable statements, the next statement executed is the next ENDIF 
statement at the same IF level as the ELSEIF statement. If the expression 
evaluates to .F ALSE., the next statement executed is the next ELSEIF, ELSE, or 
ENDIF statement that has the same IF -level as the ELSEIF statement. Note that 
transfer of control into an ELSEIF block from outside that block is not allowed. 

9.6.3. ELSE. 

The syntax of an ELSE statement is: 

ELSE 

The ELSE block associ ated wi th an ELSE statement consists of all of the 
executable statements, (possibly none), that follow the ELSE statement up to, but 
not including, the next ENDIF statement that has the same IF-level as this ELSE 
statement. The "matching" ENDIF statement must appear before any intervening 
ELSE or ELSEIF statements of the same IF -level. Note that transfer of control 
into an ELSE block from outside that block is not allowed. 

9.6.4. ENDIF. 

The syntax of an ENDIF statement is: 

ENDIF 

There is no effect of executing an ENDIF statement. An ENDIF statement is 
required to "match" every block IF statement in a program unit in order to specify 
which statements are in a particular block IF statement. 

9.7. DO. 

The syntax of an DO statement is: 

DO s [,] i=el, e2 [, e3] 

where s is a statement label of an executable statement. The label must follow 
this DO statement and be contained in the same program unit. In the DO 

42 



FORTRAN Reference Manual 
Control Stratements 

statement, i is an integer variable, and e1, e2, and e2 are integer expressions. 
T he statement labeled by s is called the terminal statement of the DO loop. It 
must not be an unconditional GOTO, assigned GOTO, arithmetic IF, block IF, 
ELSEIF, ELSE, ENOIF, RETURN, STOP, END, or DO statement. If the terminal 
statement is a logical IF, it may contain any executable statement except those 
not permitted inside a logical IF statement. 

A DO 10 op is said to have a "range", beginning with the statement which follows 
the DO statement and ending with (and including) the terminal statement of the 
DO loop. If a DO statement appears in the range of another DO loop, its range 
must be entirely contained within the range of the enclosing DO loop, although the 
loops may share a terminal statement (not recommended). lfa DO statement 
appears within an IF block, ELSEIF block, or ELSE block, the range of the 
associated DO loop must be entirely contained in the particular block. If a block 
IF statement appears within the range of a DO loop, its associated ENDIF 
statement must also appear within the range of that DO loop. The DO variable, i, 
may not be set by the program within the range of the DO loop associated with 
it. It is not allowed to jump into the range of a DO loop from outside its range. 

The execution of a DO statement causes the following steps to happen in order: 

The expressions e1, e2, and e3 are evaluated. If e3 is not present, 
e3 defaults to 1 (e3 must not evaluate to 0). 

The DO variable, i, is set to the value of e1. 

The iteration count for the loop is computed to be MAXO(((e2 - e1 + 
e3)/ e3),0) which may be zero (Note: unlike FORTRAN 66) if either e1 
> e2 and e3 > 0, or e1 < e2 and e3 < 0. 

The iteration count is tested, and if it exceeds zero, the statements 
in the range of the DO loop are executed. 

Following the execution of the terminal statement of a DO loop, the following 
steps occur in order: -

The value of the DO variable, i, is incremented by the value of e3 
which was computed when the DO statement was executed. 

The iteration count is decremented by one. 

The iteration count is tested, and if it exceeds zero, the statements 
in the range of the DO loop are executed again. 

The value of the DO variable is well-defined after execution of the loop, 
regardless of whether the DO loop exi ts as a result of the iteration count 
becoming zero, as the result of a transfer of control out of the DO loop, or as 

43 



FORTRAN Reference Manual 
Control Stratements 

the result of a RETURN statement. 

Example of the final value of a DO variable: 

C This program fragment prints the number 1 to 11 on 
C the CONSOLE: 

DO 200 1=1,10 
200 WRITE(* ,'(15)')1 
WRITE(*, '(15)')1 

9.8. CONTINUE. 

The syntax of a CONTINUE statement is: 

CONTINUE 

There is no effect associated with execution of a CONTINUE statement. The 
primary use for the CONTINUE statement is a convenient statement to label, 
particularly as the terminal statement in a DO loop. 

9.9. STOP. 

The syntax of an STOP statement is: 

STOP [n] 

where n is either a character constant or a string of not more than 5 digits. The 
effect of executing a STOP statement is to cause the program to terminate. The· 
argument, n, if present, is displayed on CONSOLE: upon termination. 

9.10. PAUSE .. 

The syntax of an PAUSE statement is: 

PAUSE [n] 

where n is either a character constant or a string of not more than 5 digits. The 
effect of executing a PAUSE statement is to cause the program to be suspended 
pending an indication from the CONSOLE: that it is to continue. The argument, 
n, if present, is displayed on the CONSOLE: as part of the prompt requesting input 
from the CONSOLE:. If the indication from the CONSOLE: is received to 
continue execution of the program, execution resumes as if a CONTINUE statement 
had been executed. 

44 



9.11. END. 

The syntax of an END statement is: 

END 

FORTRAN Reference Manual 
Control Stratements 

Unlike other statements, an END statement must wholly appear on an initial line 
and contain no continuation lines. No other FORTRAN statement, such as the 
ENDIF statement, may have an initial line which appears to be an END statement. 
The effect of executing the END statement in a subprogram is the same as 
execution of a RETURN statement and the effect in the main program is to 
terminate execution of the program. The END statement must appear as the last 
statement in every program unit. 

45 



FORTRAN Reference Manual 
Control Stratements 

46 



CHAPTER 10 

I/O System 

Chapters 10 and 11 of this manual describe the FORTRAN 1/0 System. Chapter 
10 describes the basic FORTRAN I/o concepts and statements and Chapter 11 
describes the FORMAT statement. The four major Sections of these chapters are: 

10.1. I/O System Overview - Provides an overview of the FORTRAN 
file System. Defines the basic concepts of I/O records, I/O units, 
and the various kinds of file access available under the System. 

10.2. General Discussion of I/O System Concepts and Limitations -
The definitions made in Section 10.1 are related to how to 
accomplish various simple, as well as complex, tasks using the 1/0 
System. There is a general discussion of I/O System limitations. 

10.3. 1/0 Statements - The statements of the I/O System are 
presented with the exception of the FORMAT statement. 

11. Formatted I/O and the FORMA T Statement - The FORMAT 
statement and formats in general are described. 

NOTE: the reader is directed to Section 10.2 for a brief discussion of the most 
commonly used forms of files and I/O statements, and a complete sample program 
illustrating the most commonly used forms of I/O. 

10.1. I/O System Overview. 

In order to fully understand the I/O statements, it is necessary to be familiar with 
a variety of terms and concepts related to the structure of the FORTRAN I/o 
System. Most I/O tasks can be accomplished without a complete understanding of 
this material and the reader is encouraged to skip to Section 10.2 on first reading 
and subsequently use 10.1 primarily for reference. 

10.1.1. Records. 

'The building block of the FORTRAN file system is the Record. A Record is a 
sequence of characters or a sequence of values. There are three kinds of 
records: 

Formatted. 
Unformatted. 
Endfile. 

A formatted record is a sequence of characters terminated by the character value 
which corresponds to the "return" key on a terminal (character value 13). 

47 



F@RTRAN Reference Manual 
I/O System 

Formatted records are processed on input consistent with the way that the 
Operating System and Text Editor process characters. Thus, reading characters 
from formatted records in FORTRAN is identical to .. reading characters in other 
System programs and other languages on the System. Formatted files are normally 
transportable between di fferent UCSD interpreters. 

An unformatted record is a sequence of values, with no System alteration or 
processing; no physical representation for the end of record exists. Unformatted 
files generated on different processors are not generally interchangable, since the 
internal representations of integers and reals differ among the various UCSD 
interpreters. 

The System makes it appear as though an endfile record exists after the last 
record in a file, although no physical endfile mark ever exists. 

10.1.2. Files. 

A FORTRAN file is a sequence of records. FORTRAN files are one of two kinds: 

External. 
Internal. 

An external FORTRAN file is a file on a device, or the device itself. An internal 
FORTRAN file is a character variable which serves as the source or destination of 
some I/O action. From this point on, both FORTRAN files and the notion of a file 
as known to the Operating System and the Editor will be referred to simply as 
files, with the context determining which meaning is intended. (The OPEN 
statement provides the linkage between the two notions of files, and in most cases 
the ambigui ty disappears; since after a file has been opened, the two notions are 
one and the same.) 

10.1.3. File Properties. 

A file which is being acted upon by a FORTRAN program has a variety of 
properties. These properties are described in Sections 10.1.3.1 through 10.1.3.4. 

10.1.3.1. File Name. 

A file may have a name. If present, a name is a character string identical to the 
name by which it is known to the UCSD File System. There may be more than 
one name for the same file, such as SYS:A. TEXT and 114:A. TEXT. 

48 



10.1.3.2. File Position. 

FORTRAN 'Reference Manual 
I/O System 

A file has a position property which is usually set by the previous 1/0 operation. 
There is a notion of the initial point in the file, the terminal point in the file, the 
current record, the preceding record, and the next record of the file. It is 
possible to be between records in a file, in which case the next record is the 
successor to the previous record and there is no current record. The file position 
after sequential writes is at the end of file, but not beyond the endfile record. 
Executi on of the ENDFILE statement positions the file beyond the endfile record, 
as does a read statement executed at the end of file (but not beyond the endfile 
record). Reading an endfile record may be trapped by the user using the END= 
option in a READ statement. 

10.1.3.3. Formatted and Unformatted Files. 

An external file is opened as either formatted or unformatted. All internal files 
are formatted. Files which are formatted consist entirely of formatted records 
and files which are unformatted consist entirely of unformatted records. Files 
which are formatted obey all the structural rul.es of . TEXT files, so that they are 
fully compatible with the System Text Editor. 

10.1.3.4. Sequential and Direct Access Properties. 

An external file is opened as either sequential or direct. Sequential files contain 
records with an order property determined by the order in which the records were 
written (the normal sequential order). These files must not be read or written 
using the REC= option which specifies a position for direct access I/O. The 
System will attempt to extend sequential access files if a record is written beyond 
the old terminating boundary of the file, but, the success of this depends on the 
existence of room on the physical device at the appropriate location. 

Direct access files may be read or written in any order (they are random access 
files). Records in a direct access file are numbered sequentially, with the first 
record numbered one. All records in a direct access file have the same length, 
which is specified at the time the file is opened. Each record in the file is 
uniquely identified by its record number, which was specified when the record was 
written. It is entirely possible to write the records out of order, including, for 
example, writing record 9, 5, and 11 in that order without the records in between. 
It is not possible to delete a record once written, but it is possible to overwrite a 
record with a new value. It is an error to read a record from a direct access file 
which has not been written, but the System will not detect this error unless the 
record which is being read is beyond the last record written in the file (a non­
written record before the end-of-file contains garbage). Direct access files must 

49 



FORTRAN Reference Manual 
I/O System 

reside on block-structured peripheral devices such as the diskette, so that it is 
meaningful to speci fy a position in the file and reference it. The System will 
at tempt to extend direct access files if an attempt is made to write' to a position 
beyond the previous terminating boundary of the file, but the success of this 
depends on the existence of room on the physical device at the appropriate 
location. 

10.1.4. Internal Files. 

Internal files provide a mechanism for using the formatting capabilities of the I/o 
System to convert values to and from their external character representations, 
within the FORTRAN internal storage structures. That is, reading a character 
variable converts the character values into numeric, logical, or character values 
and writing into a character variable allows values to be converted into their 
(external) character representation. 

10.1.4.1. Special Properties of Internal Files. 

An internal file is a character variable or character array element. The file has 
exactly one record, which has the same .length as the character variable or 
character array element. Should less than the entire record be written by a WRITE 
statement, the remaining portion of the record is filled with blanks. The file 
posi tion is always at the beginning of the file prior to I/O statement execution. 
Only format ted, sequential 1/0 is permitted with internal files, and only the I/O 
statements READ and WRITE may specify an internal file. 

10.1.5. Units. 

A unit is a means of referring to a file. A unit specified in an I/o statement is 
one of: 

External unit specifier. 
Internal file specifier. 

External unit specifiers are either integer expressions which evaluate to non­
nega ti v e v alu es, or the character *, which stands for the CONSOLE:· device. In 
m os t cases, external unit specifier values are bound to physical devices (or files 
resident on those devices) by name (using the OPEN statement). Once this binding 
of value to System file name occurs, FORTRAN I/o statements refer to the unit 
number as a means of referring to the appropriate external entity. Once opened, 
the external unit specifier value is uniquely associated with a particular external 
entity until an explicit CLOSE occurs or until the program terminates. The only 
excepti on to the above binding rules is that the unit value 0 is initially associated 

50 



FORTRAN Reference Manual 
I/O System 

with the CONSOLE: device for reading and writing and no explicit OPEN is 
necessary. The character * is interpreted by the System as specifying unit o. 

An internal file specifier is a character variable or character array element which 
directly specifies an internal file. 

10.2. General Discussion of I/O System Concepts and Limitations. 

10.2.1. General Discussion of FORTRAN I/O System. 

FOR TRAN provides a rich combination of possible file structures. Choosing from 
among these many structures may at first seem somewhat confusing. However, 
two kinds of files will suffice for most applications. 

* - CONSOLE:, a sequential, formatted file, also known as unit 0 -
This particular unit has the special property that an entire line 
terminated by the return key, must be entered when reading from it, 
and the various backspace and line delete keys familiar to the System 
user serve their normal functions. Note that a READ from any other 
unit will not have these properties, even if that unit is bound to 
CONSOLE: by an explicit OPEN statement. 

Explicitly opened external, sequential, formatted files - These files are 
bound to a System file by name in an OPEN statement. They can be 
read and written in the System Text Editor compatible format. 

10.2.2. Example Program Illustrating Most Common I/O Operations. 

Here is a sample program which uses the kinds of files discussed in Section 10.2.1 
for reading and for writing. The various I/O statements are explained in detail in 
Section 10.3. 

C Copy a file with three columns of integers, each 7 
C columns wide, from a file whose name is input by the 
C user to another file named OUT. TEXT, reversing the 
C positions of the first and second column. 

PROGRAM COLSWP 
CHARACTER*23 FNAME 

C Prompt to the CONSOLE: by wri ti ng to * 
WRITE(* ,900) 

900 FORMA T('lnput file name - '\) 
C Read the file name from the CONSOLE: by reading from * 

READ(* ,910) FNAME 
910 FORMA T(A) 

51 



FORTRAN Reference Manual 
I/O System 

C Use unit 3 for input, any unit number except 0 will do 
OPEN(3,FILE=FNAME) 

C Use unit 4 for output, any unit number except 0 and 3 
C will do 

OPEN(4,FILE='OUT. TEXT' ,ST ATUS='NEW') 
C Read and write until end of file 
100 READ(3,920,END=200)1,J,K 

WRITE(4,920)J,1,K 
920 FORMAT(17) 

GOTO 100 
200 WRITE(* ,910)'Done' 

END 

10.2.3. Use of Less Common File Operations. 

The less commonly used file structures are appropriate for certain classes of 
applications. A very general indication of the intended usages for them are as 
follows: if the 1/0 is to be random access, such as in maintaining a database, 
direct ,access files are probably necessary. If the data is to be written by 
FOR TRAN and reread by FORTRAN (on the same brand of processor), unformatted 
files are more efficient both in file space and in 1/0 overhead. The combination 
of direct and unformatted is ideal for a database to be created, maintained, and 
accessed exclusively by FORTRAN. If the data must be transferred without any 
System interference, especially if all 256 possible bytes will be transferred, 
unformatted I/O will be necessary, since .TEXT files are constrained to contain 
o nl y the printable character set as data. An example of a usage of unformatted 
I/O would be in the control of a device which has a single byte, binary interface. 
Formatted I/O would, in this example, interpret certain characters, such as the 
ASCII representation for carriage return, and fail to pass them through to the 
program unaltered. Internal files are not 1/0 in the conventional sense but rather 
provide certain character string operations and conversions within a standard 
mechanism. 

Use of formatted direct files requires special caution. FORTRAN formatted files 
attempt to comply with the Operating System rules for .TEXT files (for a 
discussion of • TEXT files, see the Users' Manual). FORTRAN I/O is able to 
enforce these rules for sequential files, but it cannot always enforce them for 
direct files. Direct files are not necessarily legal • TEXT files, since any unwritten 
records contain undefined values which do not follow .TEXT file constraints. 
Direct files do, of course, obey FORTRAN I/O rules. 

A file opened in FORTRAN is either "old" or "new", but there is no concept of 
"opened for reading" as distinguished from "opened for writing". Therefore, you may 
open "old" (existing) files and write to them, with the effect of modifying existing 
files. Similarly, you may alternately write and read to the same file (providing 

52 



FORTRAN Reference Manual 
I/O System 

that one avoids reading beyond end of file, or reading unwritten records in a direct 
files). A write to a sequential file effectively deletes any records which had 
existed beyond the freshly written record. Normally, when a device is opened as a 
file (such as CONSOLE: or PRINTER:) it makes no difference whether the file is 
opened as "old" or "new". With diskette files, opening "new" creates a new 
temporary file. If that file is closed using the "keep" option, or if the program is 
terminated without doing a CLOSE on that file, a permanent file is created with 
the name gi ven when the file was opened. If a previous file existed with the 
same name, it is deleted. If closed using the "delete" option, the newly created 
temporary file is deleted, and any previous file of the same name is left intact. 
Opening a diskette file as "old" will generate a run time error if the file does not 
exist and alter the existing file if written. 

10.2.4. Limitations of the FORTRAN I/O System. 

10.2.4.1. Direct Files must be Associated with Blocked Devices. 

The Operating System uses two kinds of devices: block- structured and sequential. 
Sequential files may be thought of as streams of characters, with no explicit 
motion allowed except reading and/or writing. CONSOLE: and PRINTER: are 
examples of sequential devices. Block-structured devices, such as diskette files, 
allow the additional operation of seeking a specific location. They can be accessed 
ei ther sequentially or randomly and thus can support direct files. Since there is 
no notion of seeking a position on a file which is not block- structured, FORTRAN 
I/o does not allow direct file access to sequential devices. 

10.2.4.2. BACKSPACE only Applies to Files Associated with 
Blocked Devices. 

Sequential devices can not be backspaced meaningfully under the UCSD Operating 
System, so FORTRAN I/O disallows backspacing a file on a sequential device (see 
iO.2.2.1). 

10.2.4.3. BACKSPACE may not be Used on Unformatted Sequential 
Files. 

It is not possible to implement BACKSPACE on unformatted sequential files since 
there is no indication in the file itself of the record boundaries. It would be 
possible to append end of record marks to unformatted sequential files, but this 
would interfere with the notion of an unformatted file being a "pure" sequence of 
values, and would interfere with the most common usage for such files, such as 
the direct control of an external device. Direct files contain records of fixed and 

53 



FORTRAN Reference Manual 
I/O System 

specified length, so it is possible to backspace direct unformatted files. 

10.2.4.4. Side Effects of Functions Called in I/O Statements. 

During the course of executi ng any I/O statement, the evaluation of an expression 
may cause a function to be called. That function call must not cause any I/o 
statement to be executed. 

10.3. I/O Statements. 

This Section describes these I/O statements which are available from FORTRAN: 

10.3.2.1. OPEN 
10.3.2.2. CLOSE 
10.3.2.3. READ 
10.3.2.4. WRITE 
10.3.2.5. BACKSPACE 
10.3.2.6. ENDFILE 
10.3.2.7. REWIND 

In addi tion, there is an I/O intrinsic function EOF, presented 
in Chapter 12, which returns a logical value indicating whether the file associated 
with the unit specifier passed to it is at end-of-file. A familiarity with the 
FORTRAN file system, units, records, and access methods as described in the 
previous Sections is assumed. 

10.3.1. Elements of I/O Statements. 

The various I/o statements take certain parameters and 
argu ments which specify sources and destinations of data transfer, as well as other 
facets of the I/O operation. The abbreviations are used throughout Section 10.3 
are defined in Sections 10.3.1.1 through 10.3.1.3. 

10.3.1.1. The Unit Specifier ('u'). 

The unit specifier, 'u', can take one of these forms in an I/O statement: 

* - refers to the CONSOLE:. 

integer expression - refers to external file with unit number equal to 
the value of the expression (* is unit number 0). 

name of a character variable or character array element - refers to 

54 



FORTRAN Reference Manual 
I/O System 

the internal file which is the character datum. 

10.3.1.2. The Format Specifier ('f'). 

The format specifier, 'f', can take one of these forms in an 1/0 statement: 

"s'tatement label - refers to the FORMAT statement labeled by that 
label. 

integer variable name - refers to the FORMA T label which that 
integer variable has been assigned to using the' ASSIGN statement. 

character expression - the format which is specified is the current 
value of the character expression provided as the format specifier~ 

10.~.1.3. The Input-Output List ('iolist'). 
<; . 

The 'input-output list, 'iolist' ,specifiesthe entities whose values are transferred by 
READ and WRITE statements. An iolist is a possibly empty list, separated by 

.' commas, of items which consist of: 
~ . ", . 

" ~ l.' '. : Input or Output entities - see 10.3.1.3.1 and 10.3.1.3.2. 

Implied DO lists - see 10.3.1.3.3. 

10.3.1.3.1. Input Entities. 

·'An . fnpul entity maybe specified in the iolist of a READ statement and is of one 
. of 'these forms: 

Variable name. 

Array element name. 

Array name - this is a means of specifying all of the elements of the 
array in storage sequence order. 

10.3.1.3.2. Output Entities. 

An output entity may be specified in the iolist of a WRITE statement, and is of 
one of these forms: 

55 



FORTRAN Reference Manual 
I/O System 

Vari able name; 

Array element name; 

Array name - this is a means of specifying all of the elements of the 
array in storage sequence order; 

A ny other expression not beginning with the character '(' - to 
distinguish implied DO lists from expressions. 

10.3.1.3.3. Implied DO lists. 

Implied DO lists may be specified as items in the 1/0 list of READ and WRITE 
statements, and are of the form: 

(iolist, i = e1, e2 [, e3]) 

where the iolist is as above (including nested implied DO lists) and i, e1, e2 'and 
the optional e3 are as defined for the DO statement. That is, i is an integer 
v ari able and e1, e2, and e3 are integer expressions. In a READ statement, the DO 
v ari able i (or an associated entity) must not appear as an input list item in the 
embedded iolist, but may have been read in the same READ statement outside of 
the implied DO list. The embedded iolist is eff(3ctively repeated for each iteration 
of i with appropriate substitution of values for the DO variable i. 

10.3.2. I/O Statements. 

The following 1/0 statements are supported by FORTRAN. 'The possible form for 
each statement is specified first, with an explanation of the meanings for the 
forms following. Certain items are specified as required if they must appear in 
the statement, and are specified as optional if they need not appear. Typically, 
optional items have defaults. Examples are provided. 

10.3.2.1. OPEN Statement. 

OPEN( 

u, 

Required, must appear as the first argument. Must not be internal 
unit specifier. 

56 



FILE=fname, 

FORTRAN Referenc'e Manual 
I/O 'System 

The file name, 'fname', isa character expression. This argument to 
OPEN is required and must appear as the second argument. 

The following arguments are all optional, and may appear in any 
order. The options are character constants with optional trailing 
blanks (except RECl=). Defaults are indicated. 

ST A TUS='OlD' 

Default, for reading or writing existing files. 

ST A TUS='NEW' 

For writing new files. 

ACCESS='SEQ'UENTIAl' (Default) 

ACCESS='DIRECT' 

FORM='FORMATTED' (Default) 

FORM='UNFORMA TTED' 

RECl=rl) 

The record length, 'rl' is an integer expression. This argument to 
OPEN is for DIRECT access files only, for which it is required. 

The OPEN statement binds a unit number with an external device or file on an 
external device by specifying its file name. If the file is to be direct, the 
RECl=rl 'option specifies the length of the records in that file. 

Example program fragment 1: 

C Prompt user for a file name 
WRITE(* ,'(A \Y) 'Specify output file name -

C Presume that FNAME is specified to be CHARACTER*23 
C Read the file name from the CONSOLE: 

57 



FORTRAN Reference Manual 
I/O System 

READ(* ,'(AY) FNAME 
C Open the file as format ted sequential as unit 7, note 
C that the ACCESS specified need not have appeared since 
C it is the default. 

OPEN(7 ,FILE=FNAME,ACCESS='SEQUENTIAL' ,ST ATUS='NEW'); 

Example program fragment 2: 

C Open an existing file created by the editor called 
C DATA3.TEXT as unit 3 

OPEN(3,FILE='DA T A3. TEXT') 

10.3.2.2. CLOSE Statement. 

CLOSE( 

u, 

Required, must appear as the first. argument. Must not be internal 
unit specifier. 

STATUS='KEEP' 
ST A TUS='DELETE' 

Optional argument which applies only to files opened NEW , default 
is KEEP. The option is character constant. 

CLOSE disconnects th~ unit specified and prevents subsequent I/O from being 
directed to that unit (unless the same unit number is reopened, possibly bound to a 
di fferent file or device). Files opened NEW are temporaries and discarded if 
ST A TUS='DELETE' is speci fied. Normal termination of a FORTRAN program 
automatically closes all open files as if CLOSE with STATUS='KEEP' had been 
specified. 

Example program fragment: 

C Close the file opened in OPEN example, discarding the file 
CLOSE(7 ,ST A TUS='DELETE') 

58 



10.3.2.3. READ Statement. 

READ( 

u, 

Required, must be first argument. 

f, 

FORTRAN Reference Manual 
I/O System 

Required for formatted read as second argument, must not appear for 
unformatted read. 

REC=rn 

For direct access only, otherwise error. Positions to record number rn, 
where rn is a positive integer expression. If omitted for direct 
access file, reading continues from the current position in the file. 

Optional, statement label. If not present, reading end of file results 
in a run time error. If present, encountering an end of file condition 
resul ts in the transfer to the executable statement labeled s which 
must be in the same program unit as the READ statement. 

iolist 

The READ statement sets the items in iolist (assuming that no end of file or error 
condi tion occurs). If the read is internal, the character variable or character 
array element specified is the source of the input, otherwise the external unit is 
the source. 

Example program fragment: 

C Need a two dimensional array for the example 
DIMENSION lA(10,20) 

C Read in bounds for array off first line, hopefully less 
C than 10 and 20. Then read in the array in nested 

59 



FORTRAN Reference Manual 
I/O System 

C implied DO lists with input format of 8 columns of width 
C 5 each. 

READ(3, 990)I,J,((IA (I,J),J=l ,J),l=l ,1,1) 
990 FORMA T(215/ ,(815)) 

10.3.2.4. WRITE Statement. 

WRITE( 

u, 

Required, must be first argument. 

f, 

Required for formatted write as second argument, must not appear for 
unformatted write. 

REC=rn) 

For direct access only, otherwise error. Positions to record number rn, 
where rn is a posi ti ve integer expression. If omitted for direct 
access file, writing continues at the current position in the file. 

iolist 

The WRITE statement transfers the iolist items to the unit specified. If the write 
is internal, the character variable or character array element specified is the 
destination of the output, otherwise the external unit is the destination. 

Example program fragment: 

C Place message: "One = 1, Two = 2, Three = 3H on the 
C CONSOLE:, not doing things in the simplest way! 

WRITE(* ,980)'One =',1,1+1 ,'ee = ',+(1+1+1) 
980 FORMAT(A,12,', Two =',lX,ll,', Thr',A,ll) 

60 



10.3.2.5. BACKSPACE Statement. 

BACKSPACE u 

FORTRAN Reference Manual 
I/O System 

Uni t is not internal unit specifier. Can only be issued on units which 
are bound to blocked devices. Can only be issued on units which are 
direct or sequential formatted (i.e., not on sequential unformatted). 

BACKSPACE causes the file connected to the specified unit to be positioned 
before the preceding record. If there is no preceding record, the file position is 
not changed. Note that if the preceding record is the endfile record, the file 
becomes positioned before the endfile record. 

10.3.2.6. ENDFILE Statement. 

ENDFILE u 

Unit is not an internal unit specifier. 

ENDFILE "writes" an end of file record as the next record of the file connected 
to the specified unit. The file is then posi tioned after the end of file record, so 
further sequential data transfer is prohibited until either a BACKSPACE or 
REWIND is executed. An ENDFILE on a direct access file makes all records 
written beyond the position of the new end of file disappear. 

10.3.2.7. REWIND Statement. 

REWIND u 

Unit is not an internal unit specifier. 

Execution of a REWIND statement causes the file associated with the specified 
unit to be positioned at its initial point. 

10.3.3. Restriction on I/O Side Effects of Functions. 

Any function referenced in an expression within any 1/0 statement must not cause 
any I/o statement to be executed. 

61 



FORTRAN Reference Manual 
I/O System 

62 



CHAPTER 11 

Formatted I/O and the FORMAT Statement 

This chapter describes . formatted I/O and the FORMAT statement. A familiarity 
wi th the FORTRAN file system, units, records, access methods, and I/o statements 
as described in the previous chapters is assumed. 

11.1. Format Specifications and the FORMAT Statement. 

If a READ or WRITE statement specifies a format, it is considered a formatted, 
rather than an unformatted I/o statement. Such a format may be specified in one 
of three ways, as explained in the previous chapter. Two ways refer to 
FORMA T statements and one is an immediate format in the form of a character 
expression containing the format itself. The following are all valid and equivalent 
means of specifying a format: 

WRITE(* ,990)I,J,K 
990 FORMAT(215,13) 

ASSIGN 990 TO IFMT 
990· . FORMAT(215,13) 

WRITE(* ,1FMT)I,J,K 

WRITE(* ,'C215,13)')I,J,K 

CHARACTER*8 FMTCH 
FMTCH = '(215,13)' 
WRITEC* ,FMTCH)I,J,K 

The format specific.ation itself must begin with "(", 
possibly following initial blank characters, and end with a matching ")". 
Characters beyond the matching "),, are ignored. 

FORMA T statements must be labelled, and like all nonexecutable statements, may 
not be the target of a branching operation. 

Bet ween the initial "C" and terminating ")" is a list of items, separated by commas, 
each of which is one of: 

[r] ed - repeatable edit descriptors 

ned - nonrepeatable edit descripors 

[r] fs - a nested format specification. At most 3 levels of nested 
parenthesis are permitted within the outermost level. 

where r is an optionally present, nonzero, unsigned, integer constant called a 

63 



FORTRAN Reference Manual 
Formatted I/O and the FORMAT Statement 

repeat specification. The comma separating two list items may be omitted if the 
resulting format specification is still unambiguous, such as after a P edit descriptor 
or before or after· the / edit descriptor. 

The repeatable edit descriptors, explained in detail below, are: 

lw 
Fw.d 
Ew.d 
Ew.dEe 
Lw 
A 
Aw 

where I, F, E, L, and A indicate the manner of editing and, wand e 
are nonzero, unsigned, integer constants, and d is an unsigned integer 
constant. 

The nonrepeatable edit descriptors, which are also explained in detail 
below, are: 

'xxxx' - character constants of any length, see special rules below 

nHxxxx - another means of specifying character constants, see rules 
below 

nX 
/ 
\ 
kP 
BN 
BZ 

w here apostrophe, H, X, slash, backslash, P, BN, and BZ indicate the 
manner of edi ting and, x is any ascii character t n is a nonzero, 
unsigned, integer constant, and k is an optionally signed integer 
constant. 

11.2. Interaction between Format Specification and I/O List. 

Bef ore describing in greater detail the manner of editing specified by each of the 
above edit descriptors, it must be explained how the format specification interacts 
with the input/output list (iolist) in a given READ or WRITE statement. 

If an iolist contains at least one item, at least one repeatable edit descriptor 

64 



FORTRAN Reference Manual 
Formatted I/O and the FORMAT Statement 

must exist in the format specification. In particular, the empty edit specification, 
0, may be used only if no items are specified in the iolist (in which case the 
only action caused by the 1/0 statement is the implicit record skipping action 
associated with formats). Each item in the iolist will become associated with a 
repeatable edit descriptor during the 1/0 statement execution in turn. In contrast 
to this, the other format control items interact directly with the record and do 
not become associated with items in the iolist. 

The items in a format specification are interpreted from left to right. Repeatable 
edit descriptors act as if they were present r times (omitted r is treated as a 
repeat factor of 1). Similarly, a nested format specification is treated as if its 
items appeared r times. 

The formatted 1/0 process proceeds as follows: The "format controller" scans the 
format items in the order indicated above. When a repeatable edit descriptor is 
encountered, either 

a corresponding item appears in the iolist in which case the item and 
the edit descriptor become associated and 1/0 of that item proceeds 
under format control of the edit descriptor, or 

the "format controller" terminates 1/0. 

If the format controller encounters the matching final ) of the format specification 
and there are no further items in the iolist, the "format controller" terminates 1/0. 
If, however, there are further items in the iolist, the file is positioned at the 
beginning of the next record and the "format controller" continues by rescanning 
the format starting at the beginning of the format specification terminated by the 
last preceding right parenthesis. If there is no such preceding right parenthesis, 
the "format controller" will rescan the format from the beginning. Within the 
portion of the format rescanned, there must be at least one repeatable edit 
descriptor. Should the rescan of the format specification begin with a repeated 
nested format specification, the repeat factor is used to indicate the number of 
ti mes to repeat that nested format specification. The rescan· does not change the 
previously set scale factor or BN or BZ blank control in effect. When the "format 
controller" terminates, the remaining characters or an input record are skipped or 
an end of record is written on output, except as noted under the \ edit descriptor. 

11.3. Edit Descriptors. 

Here are the detailed explanations of the various format specification descriptors, 
beginning with the nonrepeatable edit descriptors: 

65 



FORTRAN Reference Manual 
Formatted I/O and the FORMAT Statement 

11.3.1. Nonrepeatable Edit Descriptors. 

Il.:l.l.l. 'xxxx' (Apostrophe Editing). 

The apostrophe edit descriptor has the form of a character constant. Embedded 
blanks are significant and double " are interpreted as a single'. Apostrophe 
editing may not be used in a READ statement. It causes the character constant 
to be transmitted to the output unit. 

11.3.1.2. H (Hollerith Editing). 

The nH edi t descriptor cause the following n characters, with blanks counted as 
significant, to be transmitted to the output. Hollerith editing may not be used in 
a READ. 

Examples of Apostrophe and Hollerith editing: 

C Each write outputs characters between the 
C slashes: / ABC'DEF! 

WRITE(* ,970) 
970 FORMA T(' ABC"DEF') 

WRITE(* ,'(" ABC""DEF"'Y) 
WRITE(* ,'(7HABC"DEF)') 
WRITE(* ,960) 

960 FORMA T(7HABC'DEF) 

11.3;.1.3. X (Positional Editing). 

On input (a READ), the nX edit descriptor causes the 
f Ue position to advance over rt characters, thus the next n characters are skipped. 
On output (a WRITE), the nX edit descriptor causes n blanks to be written, 
providing that further writing to the record occurs, otherwise, the nX descriptor 
results in no operation. 

11.3.1.4. / (Slash Editing). 

The slash indicates the end of data transfer on the current record. On input, the 
file is positioned to the beginning of the next record. On output, an end of 
record is written and the file is positioned to write on the beginning of the next 
record. 

66 

( 



FORTRAN Reference Manual 
Formatted I/O and the FORMAT Statement 

11.3.1.5. \ (Backslash Editing). 

Normally when the "format controller" terminates, the end of data transmission on 
the current record occurs. If the last edit descriptor encountered by the "format 
controller" is the backslash, this automatic end of record is inhibited. This allows 
subsequent 1/0 statements to continue reading (or writing) out of (or into) the 
same record. The most common use for this mechanism is to prompt to the 
CONSOLE: and read a response off the same line as in: 

WRITE(* ,'(A \)') 'Input an integer -> 
READ(* ,'(BN,16)') 1 

The backslash edit descriptor does not inhibit the automatic -en:d of rec'ord 
generated when reading from the * unit. Input from the CONSOLE:: must always 
be terminated by the return key. This permits the backspace character and" the 
line delete key to function properly. 

11.3.1.6. P (Scale Factor Editing). 

The kP edi t descriptor is used. to set the scale factor for subsequent F and E edit 
descriptors until another kP edit descriptor is encountered. At the" start of :each 
1/0 statement, the scale factor equals O. The scale factor affeots'~~for:mat-editirig 
in the following ways: 

On input, with F and E editing, providing that no explicit exponent exists in the 
field, and F output· editing, the externally represented number equals the internally 
represented number multiplied by lO**k. 

On input, with F and E editing, the scale factor has no effect if there is an 
explicit exponent in the input field. 

On output, with E editing, the real part of the quantity is output multiplied by 
lO**k and the exponent is reduced by k (effectively altering the column: position of 
the decimal point, but not the value that is output). 

11.3.1.7. BN and BZ (Blank Interpretation). 

These edit descriptors specify the interpretation of blanks in numeric input fields. 
The default, BZ, is set at the start of each 1/0 statement. This makes blanks, 
other than leading blanks, identical to zeros. If a BN edit descriptor is processed 
by the "format controller", blanks in subsequent input fields will be ignored unless, 
and until, a BZ edit descriptor is processed. The effect of ignoring blanks is to 
take all the nonblank characters in the input field, and treat them as if they were 

67 



FORTRAN Reference Manual 
Formatted I/O and the FORMAT Statement 

right justified in the field with the number of leading blanks equal to the number 
of ignored blanks. For instance, the following READ statement shown accepts the 
characters shown between the slashes as the value 123 (where <cr> indicates 
hitting the return key): 

READ(* ,100) I 
100 FORMA T(BN,I6) 

1123 <cr>l, 
1123 456<cr->I, 
1123<cr>l, or 
I 123<cr>l. 

The BN edit descriptor, in conjunction with the infinite blank padding at the end 
of fo:rmatted records, makes interactive input very convenient. 

11.3.2. Repeatable Edit Descriptors. 

11.3.2.1. 1, F, and E(Numeric Editing, General Description). 

The 1, F", ans E edit descriptors are used for 1/0 of integer and real data. The 
followi ng general rules apply to all three of them: 

On input, leading blanks are not significant. Other blanks are 
interpreted differently depending on the BN or BZ flag in effect, but 
all blank fields always become the value o. Plus signs_ are optional. 

On input, with F and E editing, an explicit decimal point appearing in 
the input field overrides the edit descriptor specification of the 
decimal point position. 

On output, the characters generated are right justified in the field 
with padding leading blanks if necessary. 

On output, if the number of characters produced exceeds the field 
width or the exponent exceeds is specified width, the entire field is 
filled with asterisks. 

11.3.2.2. 1 (Integer Editing). 

The edi t descriptor lw must be associated with an iolist item which is of type 
integer. The field width is w characters in length. On input, an optional sign 
may appear in the field. The general rules of Section 11.3.2.1 apply to the I edit 
descriptor. 

68 



11.3.2.3. F (Real Editing). 

FORTRAN Reference Manual 
Formatted I/O and the FORMAT Statement 

The edi t descriptor Fw.d must be associated with an iolist item which is of type 
real. The width of the field is w positions, the fractional part of which consists 
of d digits. The input field begins with an optional sign followed by a string of 
digits optionally containing a decimal point. If the decimal point is present, it 
overrides the d specified in the edit descriptor, otherwise the rightmost d digits of 
the string are interpreted as following the decimal point (with leading blanks 
converted to zeros if necessary). Following this is an optional exponent which is 
one of 

plus or minus followed by an integer, or 

E orD followed by zero or more blanks followed by an optional sign 
followed by an integer (E and D are treated identically). 

The ou tpu t field occupies w digits, d of which fall beyond the decimal point, and 
the value output is controlled both by the iolist item and the current scale factor. 
The output value is rounded rather than truncated. 

The general rules of Section 11.3.2.1 apply to the F edit descriptor. 

11.3.2.4. E(Real Editing). 

An E edit descriptor either takes the form Ew.d or Ew.dEe. In either case the 
fie ld width is w characters. The e has no effect- on input. The input field for an 
E edi t descriptor is identical to that described by an F edit descriptor with the 
same wand d. The form of .the output field depends on the scale factor (set by 
the P edi t descriptor) which is in effect. For a scale factor of 0, the output field 
is a minus sign (if necessary), followed by a decimal point, followed by a string of 
digits, followed by an exponent field for exponent, exp, of one of the following 
forms: 

Ew.d -99 <= exp <= 99 
E followed by plus or minus followed by the two digit exponent. 

Ew.d -999 <= exp <= 999 
Plus or minus followed by three digit exponent. 

Ew.dEe -((10**e) - 1) <= exp <= (10**e) -1 
E followed by plus or minus followed by e digits which are the 
exponent with possible leading zeros. 

69 



FORTRAN Reference Manual 
Formatted I/O and the FORMAT Statement 

The form Ew.d must not be used if the absolute value of the exponent to be 
printed exceeds 999. 

The scale factor controls the decimal normalization of the printed E field. ·Ifthe 
scale factor, k, is in the range -d < k <= a then the output field contains exactly 
-k leading zeros after the decimal point and d + k significant digits after this. If 
a < k < d+2 then the output field contains exactly k significant digits to the left 
of the decimal point and d - k - 1 places after the decimal pOint. Other values 
of k are errors. 

The general rules of Section 11.3.2.1 apply to the E edit descriptor. 

11.3.2.5. L (Logical Editing). 

The edit descriptor is Lw, indicating that the. field width is w characters. The 
iolist element which becomes associated with an L edit descriptor must be of type 
logical. On input, the field consists of optional blanks, followed by an optional 
decimal point, followed by a T (for • TRUE.) or and F (for .F ALSE.). Any further 
characters in the field are ignored, but accepted on input, so that .TRUE. and 
.F ALSE. are valid inputs. On output, w - 1 blanks are followed by either T or F 
as appropriate. 

11.3.2.6. A (Character Editing). 

The forms of the edit descriptor are A or Aw. If w is 'not present, the number of 
characters in the iolist item with which it becomes associated determines the 
length (an implicit w). The iolist item must be of character type if it is to be 
associated with an A or Aw edit descriptor. On input, if w exceeds or equals the 
number of characters in the iolist element, the rightmost characters of the input 
field are used as the input characters, otherwise the input characters are left 
justified in the input iolist item and trailing blanks are provided. On output, if w 
should exceed the characters produced by the iolist item, leading blanks are 
provided, otherwise, the leftmost w characters of the iolist item are output. 

70 



CHAPTER 12 

Programs, Subroutines and Functions 

This chapter describes the format of program units. A program unit is either a 
main program, a subroutine, or a function program unit. The term procedure is 
use d to refer to either a function or a subroutine. This chapter also describes the 
CALL and RETURN statements as well as function calls. 

12.1. Main Program. 

A main program is any program unit that does 'not have a FUNCTION or 
SUBROUTINE statement as its first statement. It may have a PROGRAM 
statement as its first statement. The execution of a program always begins with 
the first executable statement in the main program. Consequently, there must be 
precisely one main program in every executable program. The form of a 
PROGRAM statement is: 

PROGRAM pname 

where: 'pname' is a user defined name that is the name of the main 
program. 

The name pname IS a global name. Therefore, it cannot be the same as another 
external procedure's name or a common block's name. It is also a local name to 
the main program, and must not conflict with any local name in the main program. 
The PROGRAM statement may only appear as the first statement of a main 
program. 

12.2. Subroutines. 

A subroutine is a program unit that can be called from other program units by a 
CALL statement. When envoked, it performs the set of actions defined by its 
executable statements, and then returns control to the statement immediately 
following the statement that called it. A subroutine does not directly return a 
value, although values can be passed back to the calling program unit via 
parameters or common variables. 

12.2.1. SUBROUTINE Statement. 

A subroutine begins with a SUBROUTINE statement, and ends with the first 
following END statement. It may contain any kind of statement other than a 
PROGRAM statement or a FUNCTION statement. The form of a SUBROUTINE 
statement is: 

71 



FORTRAN Reference Manual 
Programs, Subroutines and Functions 

SUBROUTINE sname [( [farg [, farg] ••• ] )] 

'sname' is the user defined name of the subroutine. 

'farg' is a user defined name of a formal argument. 

The name 'sname' is a global name, and it is also local to the subroutine it names. 
The list of argument names defines the number and, with any subsequent IMPLICIT, 
type, or DIMENSION statements, the type of arguments to that subroutine. 
Argu ment names cannot appear in COMMON, DATA, EQUIVALENCE, or INTRINSIC 
statements. 

12.2.2. CALL Statement. 

A subroutine is executed as a consequence of executing a CALL statement in 
another program unit that references that subroutine. The form of a CALL 
statement is: 

CALL sname [( [arg [,arg] ••• J )] 

'sname' is the name of a subroutine. 

'arg' is an actual argument. 

An actual argument may be either an expression or the name of an array. The 
actual arguments in the CALL statement must agree in type and number with the 
corresponding formal arguments specified in the SUBROUTINE statement of the 
referenced subroutine. If there are no arguments in the SUBROUTINE statement, 
then a CALL statement referencing that subroutine must not have any actual 
arguments, . but may optionally have a matched pair of parentheses following the 
name of the subroutine. Note that a formal argument may be used as an actual 
argument in another subprogram call. 

Execution of a CALL statement proceeds as follows: All arguments that are 
expressions are evaluated. All actual arguments are associated with their 
corresponding formal arguments, and the body of the speci fied subroutine is 
executed. Control is returned to the statement following the CALL statement 
upon exi ting the subroutine, by executing either' a RETURN statement or an END 
statement in that subroutine. 

A subroutine specified in any program unit may be called from any other program 
u ni t within the same executable program. Recursive subroutine calls, however, are 
not allowed in FORTRAN. That is, a subroutine cannot call itself directly, nor 
can it call another subroutine that will result in the first subroutine being called 

72 



again before it returns cO.ntrol to its caller. 

12.3. Functions. 

FORTRAN Reference Manual 
Programs, Subroutines and Functions 

A function is referenced in an expression and returns a value that is used in the 
computation of that expression. There are three kinds of functions: external 
functions, intrinsic functions, and statement functions. This section describes the 
three kinds of functions. 

A function reference may appear in an arithmetic expression. Execution of a 
function reference causes the function to be evaluated, and the resulting value is 
used as an operand in the containing expression. The form of a function 
reference is: 

fname ( [arg [,arg] ••• ] ) 

'fname' is the name of an external, intrinsic, or statement function. 

'arg' is an actual argument. 

An actual argument may be an arithmetic expression or an array. The number of 
actual· arguments must be the same as in the definition of the function, 'and the 
corresponding types must agree. 

12.3.1. External Functions. 

An external function is specified by a function program unit. It begins with a 
FUNCTION statement and ends with an END statement. It may contain any kind 
of statement other than a PROGRAM statement or a SUBROUTINE statement. 
The form of a FUNCTION statement is: 

[type] FUNCTION fname ( [farg [, farg] ••• ] ) 

'type' is one of INTEGER, REAL, or LOGICAL. 

'fname' is the user defined name of the function. 

'farg' is a formal argument name. 

The name 'fname' is a global name, and it is also local to the function it names. 
If no type is present in the FUNCTION statement, the function's type is 
determined by default and any subsequent IMPLICIT or type statements that would 
determine the type of an ordinary variable. If a type is present, then the function 
name cannot appear in any additional type statements. In any case, an external 

73 



FORTRAN Reference Manual 
Programs, Subroutines and Functions 

function cannot be of type character. The list of argument names defines the 
number and, with any subsequent IMPLICIT, type, or DIMENSION statements, the 
type of arguments to that subroutine. Neither argument names nor 'fname' can 
appear in COMMON, DATA, EQUIVALENCE, or INTRINSIC statements. 

The functi on name must appear as a variable in the program unit defining the 
function. Every execution of that function must assign a value to that variable. 
The final value of this variable, upon execution of a RETURN or of an END 
statement, defines the value of the function. After being defined, the value of 
this variable can be referenced in an expression, exactly like any other variable. 
An external function may return values in addition to the value of the function by 
assignment to one or more of its formal arguments. 

12.3.2. Intrinsic Functions. 

Intrinsic functions are functions that are predefined by the FORTRAN compiler and 
are available for use in a FORTRAN program. Table 12.1 gives the name, 
definition, number of parameters, and type of the intrinsic functions available in 
UCSD System FORTRAN 77. An IMPLICIT statement does not alter the type of 
an intrinsic function. For those intrinsic functions that allow several types of 
arguments, all arguments in a single reference must be of the same type. 

All intrinsic functions used in a program unit must appear in an INTRINSIC 
statement. 

An intrinsic function name may appear in an INTRINSIC statement, but only those 
intrinsic functions listed in table 12.1 may do so. An intrinsic function name also 
may appear in a type statement, but only if the type is the same as the standard 
type of that intrinsic function. 

Arguments to certain intrinsic functions are limited by the definition of the 
function begin computed. For example, the logarithm of a negative number is 
undefined, and therefore not allowed. 

12.3.3. Statement Functions. 

A statement function is a function that is defined by a single statement. It is 
si m ilar in form to an assignment statement. A statement function statement can 
only appear after the specification statements and before any executable 
statements in the program unit in which it appears. A statement function is not 
an executable statement; since it is not executed in order as the first statement in 
its particular program unit. Rather, the body of a statement function serves to 
define the meaning of the statement function. It is executed, as any other 
function, by the execution of a function reference. The form of a statement 

74 



function is: 

fname ( [arg [, arg] ••• ] ) = expr 

FORTRAN Reference Manual 
Programs, Subroutines and Functions 

'fname' is the name of the statement function. 

'arg' is a formal argument name. 

'expr' is an expression. 

The type of the 'expr' must be assignment compatible with the type. of the 
statement function name. The list of formal argument names serves to define the 
number and type of arguments to the statement function. The sc'ope of formal 
argument names is the statement function. Therefore, formar argument names 
may be used as other user defined names in the rest of the program unit enclosing 
the statement function definition. The name of the statement function, however, 
is local to the enclosing program unit, and must not be used otherwise (except as 
the name of a common block, or as the name of a formal argument to another 
statement function). The type of all such uses, however, must be the same. If a 
formal argument name is the same as another local name, then a reference to that 
name wi thin the statement function defining it always refers to the formal 
argument, never to the other usage. 

Within the expression 'expr', references to variables, formal arguments, other 
functions, array elements, and constants are allowed. Statement function 
references, however, must refer to statement functions that have been defined 
prior to the statement function in which they appear. Statement functions cannot 
be recursively called, either. directly or indirectly. 

A statement function can only be referenced in the program unit in which it is 
defined. The name of a statement function cannot appear in any specification 
statement, except in a type statement which may not define that name as an 
array, and in a COMMON statement as the name of a common block. A 
statement function cannot be of type character. 

12.4. RETURN Statement. 

A RETURN statement causes return of control to the calling program unit. It 
may only appear in a function or subroutine. The form of a RETURN statement 
is: 

RETURN 

Execution of a RETURN statement terminates the execution of the enclosing 
subroutine or function. If the RETURN statement is in a function, then the value 

75 



FORTRAN Reference Manual 
Programs, Subroutines and Functions 

of that function is equal to the current value of the variable with the same name 
as the function. Execution of an END statement in a function or subroutine is 
equivalent to execution of a RETURN statement. 

12.5. Parameters. 

This section discusses the relationship between formal and actual arguments in a 
function or subroutine call.. A formal argument refers to the name by which the 
argument is known within the function or subroutine, and an actual argument is the 
specific variable, expression, array, etc., passed to the procedure in question at any 
specific calli-ng location~ 

Arguments are used to pass values into and out of procedures. Variables in 
common can be used to perform this task as well. The number of actual 
arguments must be the same as formal arguments, and the corresponding types 
must agree. 

On entry to a subroutine or function, the actual arguments become associated with 
the formal arguments, much as an EQUIVALENCE statement associates two or 
more arrays or variables, and COMMON statements in two or more program units 
associate lists of variables. This association remains in effect until execution of 
the subroutine or function is terminated. Thus, assigning a value to a formal 
argu ment during execution of a subroutine or function may alter the value of the 
corresponding actual argument. If an actual argument is a constant, function 
reference, or an expression other than a simple variable, assigning a value to the 
corresponding formal argument is not allowed, and may have some strange side 
effects. In particular, assigning a value to a formal argument of type character, 
when the actual argument is a literal, can be disastrous. 

If an actual argument is an expression, it is evaluated immediately prior to the 
associati on of formal and actual arguments. If an actual argument is an array 
element, its subscript expression is evaluated just prior to the association, and 
remai ns constant throughout the execution of the procedure, even if it contains 
variables that are redefined during the execution of the procedure. 

A formal argument that is a variable may be associated with an actual argument 
that is a variable, an array element, or an expression. 

A formal argument that is an array may be associated with an actual argument 
that is an array or an array element. The number and size of dimensions in a 
formal argument may be di fferent than those of the actual argument, but any 
reference to the formal array must be within the limits of the storage sequence in 
the actu al array. While a reference to an element outside these bounds is not 
detected as an error in a running FOR TRAN program, the results are 
unpredictable. 

76 



Intrinsic 
Function 

Type Conversion 

Truncation 

Nearest Whole 
Number 

Nearest Integer 

Absolute Value 

Remaindering 

Transfer of Sign 

Positive 
Difference 

BASIC User Reference Manual 
Programs, Subroutines and Functions 

Table 12.1 Intrinsic Functions 

No. Type of 
Definition Args Name Argument Function 

Conversion 1 INT Real Integer 
to Integer IFIX Real Integer 
int(a) 
See Note 1 

Conversion 1 REAL Integer Real 
to Real FLOAT Integer Real 
See Note 2 

Conversion 1 ICHAR Character Integer 
to Integer 
See Note 3 

Conversion 1 CHAR Integer Character 
to Character 

int(a) 1 AINT Real Real 
See Note 1 

int(a.5} a>=O 1 ANINT Real Real 
int(a.5) a<O 

int(a.5) a>=O 1 NINT Real Integer 
int(a.5) a<O 

a 1 lABS Integer Integer 
1 ABS Real Real 

alint(al/a2)*a2 2 MOD Integer Integer 
See Note 1 AMOD Real Real 

al if a2>=0 2 ISIGN Integer Integer 
al if a2<0 SIGN Real Real 

ala2 if a1>a2 2 101M Integer Integer 
Oif a1<=a2 DIM Real Real 

77 



BASIC User Reference Manual 
Programs, Subroutines and Functions 

Intrinsic 
Function Definition 

Choosing Largest max(aI,a2, ••• ) 
Value 

Choosing Small min(al,a2, ••• ) 
est Value 

Square Root a**0.5 

Exponential e**a 

Natural Logarithm log (a) 

Common Logarithm logI0(a) 

Sine sin(a) 

Cosine cos(a) 

Tangent tan (a) 

Arcsine arcsin(a) 

Arccosine arccos(a) 

Arctangent arctan(a) 

arctan(al/ a2) 

Hyperbolic Sine sinh(a) 

Hyperbolic Cosine cosh(a) 

Hyperbolic tanh(a) 
Tangent 

Lexically Greater a1 >= a2 
Than or Equal See Note 4 

No. 
Args 

>=2 

>=2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

1 

1 

2 

78 

Type of 
Name Argument Function 

MAXO Integer Integer 
AMAXI Real Real 

AMAXO Integer Real 
MAXI Real Integer 

MIND Integer Integer 
AMINI Real Real 

AMINO Integer Real 
MINI Real Integer 

SQRT Real Real 

EXP Real Real 

ALOG Real Real 

ALOGI0 Real Real 

SIN Real Real 

COS Real Real 

TAN Real Real 

ASIN Real Real 

ACOS Real Real 

ATAN Real Real 

ATAN2 Real Real 

SINH Real Real 

COSH Real Real 

TANH Real Real 

LGE Character Logical 



Intrinsic 
Function Defi'nition 

Lexically a1 > a2 
Greater Than See Note 4 

Lexically Less a1 <= a2 
Than or Equ al See Note 4 

Lexically a1 < a2 
Less Than See Note 4 

End of File End Of File(a) 
See -Note 5 

Table 12.1 Notes 

No. 
Args 

2 

2 

2 

1 

BASIC User Reference Manual 
Programs, Subroutines and Functions 

Type of 
Name Argument Function 

LGT Character Logical 

LLE Character Logical 

LLT Character Logical 

EOF Integer Logical 

(1) For a of type real, if a >= 0 then int(a) is the largest integer not greater than 
a, if a < a then int(a) is the most negative integer not less than a. IFIX(a) is the 
same as INT(a). 

(2) For a of type integer J REAL(a) is to the greatest possible precision. This 
varies from processof to processor. FLOA T(a) is the same as REAL(a). 

(3) lCHAR converts a character value into an integer value. The integer value of 
a character is the ASCII internal representation of that character, and is in the 
range 0 to 127. For any two characters, c1 and c2, (cl .LE. c1) is • TRUE. if and 
only if (ICHAR(c1) .LE. lCHAR(c2)) is .. TRUE •• 

(4) LGE(al,a2) returns the value .TRUE •• if a1 = a2 or if a1 follows a2 in the 
ASCll collating sequence.. Otherwise it returns .F ALSE •• 

LGTCal,a2) returns .. TRUE. if a1 follows a2 in the ASCll collating sequence, 
otherwise it returns .F ALSE ... 

LLE(al,a2) returns .. TRUE. if a1 = a2 or if a1 precedes a2 in the ASCll collating 
sequence, otherwise it returns .F ALSE •. 

LL T(a1,a2) returns .. TRUE. if a1 precedes a2 in the ASCll collating sequence, 
otherwise it returns .F ALSE •• 

The operands or LGE, LGT, LLE, and LL T must be of the same length. 

(5) EOF(a) returns the value .TRUE. if the unit specified by its argument is at or 

79 



BASIC User Reference Manual 
Programs, Subroutines and Functions 

past the end of file record, otherwise it returns .F ALSE.. The value of a must 
correspond to an open file, or to zero (which indicates CONSOLE:). 

(6) All angles are expressed in radians. 

(7) All arguments in an intrinsic function reference must be of the same type. 

80 



CHAPTER 13 

Compilation Units 

This chapter describes the relationship between FORTRAN and the UCSD Pascal 
se g me n t mechanism. In normal use, the user need not be aware of such 
intricacies. However, if the user desires to interface FORTRAN with Pascal, to 
create overlays, or to take advantage of separate compilation or libraries, the 
details contained here are helpful. This chapter consists of the following sections: 

13.1. Units, Segments, Partial Compilation, and FORTRAN. 
13.2. The $USES Compiler Directive. 
13.3. Linking Pascal and FORTRAN. 
13.4. The $EXT Compiler Directive. 

The first section discusses the general form of a FORTRAN program in terms of 
the UCSD operating system object code structure. The next section describes the 
$USES compiler directive. This directive provides access libraries or already 
compiled procedures" and provides overlays in FORTRAN. The next section 
describes how one links FORTRAN with pascal. The final section explains the 
$EXT compiler directive. 

13.1. Units, Segments, Partial Compilation, and FORTRAN. 

If a FORTRAN: c:O'mpiJation contains flO' main procedure,. then it is output as if it 
were a Pas~cal unit. c'ompilation.. The unit is given the nam!e 'u' foHowed by th.e 
name o'f its first procedure., For example: 

C -- No PIROG'RAM: statement present 
SUBROUTINE X. 

END 
SUBROUTINE Y 

lEND 

SUBROU71NE Z 

END 

would be compiled into a single unit named 'UX'. (Assume for later examples 
that the object code is output to fHe 'X.CODE'.) All procedures called from within 
unit UX must be defined within unit UX" unless a $USES or a $EXT statement has 
shown them' to res;ide in another unit. Similarly ~ procedures in unit UX cannot be 
caBed from other un~ts: unless the other units contain a $USES UX statement. 
Thus" a typical m~ai:n pt'OgF'am that would can X might be: 

81 



FORTRAf>.I Reference Manual 
Compilation Units 

C 
C -- This is the main program BIGGIE 
C 

$USES UX IN X.CODE 

PROGRAM BIGGIE 

CALL X 

END 
SUBROUTINE W 

CALL Y 

END 

If the $USES statement were not present, the FORTRAN compiler would expect 
subroutines X and Y to appear in the same compilation, somewhere after 
su brouti ne W. Assume that the object code for this compilation is output to the 
file 'BIGGIE.CODE'. 

Thus, the user can create libraries of functions, partial compilations, etc., and save 
compilation time and disk space, by a simple use of the $USES statement. For 
more inforation on the $USES statement, see the section on the $USES statement. 

13.2. The $USES Compiler Directive. 

The $USES compiler directive provides several distinct functions to the user. It 
allows procedures and functions in separately compiled units, such as the system 
library, to be called from FORTRAN. It provides the user a relatively secure 
form of separate compilation for FORTRAN compilations. It allows the user to 
call Pascal routines that have been compiled into Pascal units. 

The format of the $USES control statement is: 

$USES unitname [ IN filename ] [ OVERLAY] 

where: 'unitname' is the name of a unit. 

'filename' is a valid UCSD file name. 

As with all $ control statements, the $ must appear in column one. This compiler 
directive directs the compiler to open the .CODE file 'filename', locate the unit 

82 



FORTRAN Reference Manual 
Compilation Units 

'unitname', and process the INTERFACE information associated with that unit, 
generating a reasonable FORTRAN equivalent declaration for the FORTRAN 
compilation in progress. All $USES commands must appear before any FORTRAN 
statements, specification or executable, but they are allowed to follow comment 
lines and other $ control lines. If the optional 'IN filename' is present, the name 
'filename' is used as the file to process. If it is not, the file '*SYSTEM.LIBRARY' 
is used as a default. The optional field OVERLAY has no effect on program 
execution, and is included in version IV.O only for compatibility with version 11.0. 

Warning: If a FORTRAN main program $USES a Pascal unit, any global variables in 
the INTERF ACE part of that unit will not be accessible from FORTRAN. See 
section 13.3 for further information. 

13.2.1. Separate Compilation. 

Separate compilation is accomplished by compiling a set of subroutines and 
functions without any main program. Each such compilation creates a code file 
containing a single UCSD unit. Then, when the main program is compiled, possibly 
along with many subroutines or functions, it $USES the separately compiled units. 
The routi nes compiled with the main program obtain the correct definition of each 
externally compiled procedure through the $USES directive. 

In the simplest form, when no $USES statements appear in any of the separate 
compilations, the user simply $USES all separately compiled FORTRAN units in the 
main program. However, this limits the procedure calls in each of the separately 
compiled units to procedures defined in the same unit. If there are calls to 
procedures in unit A from unit B, then unit B must contain a $USES A statement. 
The main program must then contain a $USES A statement as its first $USES 
statement, followed by a $USES B statement. This is necessary for the compiler 
to get the unit numbers allocated consistently. 

In more complicated cases, the user must insure that all references to procedures 
in outside units are preceded by the proper $USES statement in the same order, 
and not missing any units. If unit B $USES unit A, and unit C $USES unit B, then 
u ni t C must first $USES unit A. Likewise, if units 0 and E both $USES unit F, 
they both must contain exactly the same $USES statements prior to the $USES F 
statement. 

13.3. Linking Pascal and FORTRAN. 

In order to call Pascal routines form FORTRAN, the Pascal routines must first be 
compiled into a Pascal unit. The FORTRAN program can then $USES that unit. 
Unf ortunately, the exceedingly rich type structure present in Pascal is not present 
in FORTRAN. Also, the I/O systems of FORTRAN and Pascal are not compatible. 

83 



FORTRAN Reference Manual 
Compilation Units 

Therefore it is not possible to do everything one might desire. This section does, 
however, help the user do what is possible in interfacing the two languages. 

It is not generally possible to do I/o from Pascal routines called from a main 
program that is written in FORTRAN. Normal Pascal I/O to and from the 
console, however, can always be done from Pascal routines providing that there is 
no file name in the I/O statement. The Pascal routines RESET, REWRITE, 
CLOSE, etc., should not be called from Pascal routines running under a FORTRAN 
main program. 

It is possible to do I/O from a FORTRAN procedure that is called from a Pascal 
main program. In general, however, this practice should be avoided. This section 
is provided to allow the user who absolutely must mix I/O operations from both 
languages to do what is possible. While the following information is believed to be 
correct, it is neither warranted to work nor guaranteed to remain valid in future 
releases. Again, mixed I/O is not supported. It is done at the user's risk. 

There are several precautions that the user must take for FORTRAN I/o to work 
from Pascal programs. The FORTRAN I/O procedures use the heap for the 
allocation of file related storage, so the user should not force the deallocation of 
heap memory via calls to M.ARK and/or RELEASE. Other restrictions may 
apply in special cases. As stated above, one should avoid doing I/O from both 
FORTRAN and Pascal in the same program as the two systems are not totaly 
compatible. 

Since there are Pascal types that have no FORTRAN equivalent, the way 
FORTRAN looks at Pascal parameters is somewhat limited. FORTRAN does 
recognize both reference and value parameters when calling Pascal subroutines. 
The following table shows how FORTRAN views Pascal declarations: 

84 



Pascal Declaration: 

CONST anything ••• 
TYPE anything ••• ; 
V AR anythi ng ••• ; 
PROCEDURE X(arg-list); 
FUNCTION X(arg-list): type; 

type: 
REAL 
BOOLEAN 
CHAR 
STRING or 
PACKED ARRAY of CHAR 
any other identifier 

arg-list: 
(V AR I,J: type) 

(l,J: type) 

FORTRAN Reference Manual 
Compilation Units 

FORTRAN's View: 

Ignored. 
Ignored. 
Ignored. 
SUBROUTINE X(arg-list) 
type FUNCTION X(arg-list) 
Note: type must be INTEGER, 
LOGICAL, or REAL. 

REAL 
LOGICAL 
CHARACTER*l 

CHARACTER*n 1 <= n <= 127 
INTEGER 

(l,J) 
type I,J 
*** There is no proper 
FORTRAN equivalent to value 
parameters, but the FORTRAN 
compiler does generate the 
correct calling sequence for 
Pascal routines with value 
parameters. 

Likewise, when the INTERFACE information for a FORTRAN program is output, it 
must be mapped onto Pascal declarations. The following table gives the 
corresponding declarations: 

FORTRAN Declarati on: 

SUBROUTINE X(arg-list) 
type FUNCTION X(arg-list) 

type: 
INTEGER 
REAL 
LOGICAL 
CHARACTER*n 

85 

Pascal's View: 

PROCEDURE X(arg-list); 
FUNCTION X(arg-list): type; 

INTEGER 
REAL 
BOOLEAN 
CHAR n = 1 
STRING or PACKED ARRAY 
of CHAR 2 <= n <= 127 



FORTRAN Reference Manual 
Compilation Units 

arg-list: 
(1) 
type 1 

(VAR 1: type) 

Note: When a Pascal compilation USES a FORTRAN unit, it is the responsibility of 
the Pascal program to make sure that any needed type declarations for the ALF An 
types are properly defined. This cannot consistently be done by FORTRAN as it 
would lead to duplicate type definitions should a user use two FORTRAN units in 
which each declares the same type. There is another point that must be made for 
Pascal programs that call FORTRAN subroutines. If the subroutine has a REAL 
parameter that is in actuality an array, the Pascal program must pass a scalar 
instead of an array. This should not be a problem. Since the Pascal program can 
pass the first element of the array, and all FORTRAN parameters are reference 
parameters, the FORTRAN subroutine has access to the whole array. The user is 
cautioned to remember that Pascal stores its arrays in row- major order, while 
FORTRAN stores them in column-major order. 

When a FORTRAN program $USES a Pascal unit, the interface section variables in 
that Pascal unit are not accessible from FORTRAN. 

13.4. The $EXT Compiler Directive. 

The $EXT compiler directi ve is used when one desires to call assembly language 
routines, or routines in $SEPARATE FORTRAN or Pascal units, from a FORTRAN 
77 routine. The form of the $EXT directive is: 

{

SUBROUTINE 
$EXT 

[ type ] FUNCTION 
} procname IIparams 

where: 'type' is either INTEGER, LOGICAL, or REAL, 

'procname' is the. name of the subroutine or function, and 

'llparams' is an integer equal to the number of parameters that 
this procedure requires. 

This directive must appear before any FORTRAN statements, either specification 
or execu table, but may follow comment lines or other $ compiler directives. All 
parameters are passed by reference (called VAR parameters if Pascal) to 
procedures defined by the $EXT directive. It is up to the user to follow this 
convention, as the linker does not enforce it. The linker does, however, check the 
number of parameters. 

86 



APPENDIX A - Differences Between SofTech Microsystems 

FORTRAN 77 and ANSI Standard Subset FORTRAN 77 

This appendi x is directed at the reader who is familiar with the ANSI Standard 
FORTRAN 77 Subset language as defined in ANSI X3.9-1978. It concisely 
describes how SofTech Microsystems FORTRAN 77 differs from the standard 
language. The differences fall into three general categories: 

A.I. Unsupported Features. 
A.2. Full-Language Features. 
A.3. Extensions to Standard. 

A.I. Unsupported Features. 

There are two significant places where SofTech Microsystems FORTRAN 77 does 
not comply with the standard. One is that procedures cannot be passed as 
parameters and the other is that INTEGER and REAL data types do not occupy 
the same amount of storage. Both differences are due to limitations of the UCSD 
P-machine architecture. 

Parametric procedures are not supported simply because there is no practical way 
to do so in the USCD P-machine. The instruction set does not allow the loading 
of a procedure's address onto the stack, and more significantly, does not provide 
for the calling of a procedure whose address is on the stack. 

REAL variables require 4 bytes of storage while INTEGER and LOGICAL variables 
only requ ire 2 bytes. This is due to the fact that the UCSD P-machine supported 
operations on those types are implemented in those sizes. 

A.2. Full-Language Features. 

There are several features from the full language that have been included in this 
implementation for a variety of reasons. Some were done at either minimal or 
zero cost, such as allowing arbitrary expressions in subscript calculations. Others 
were included because it was felt that they would significantly increase the utility 
of the implementation, especially in an engineering or laboratory application. An 
example is the generalized I/O that allows easier control of peripherals. In all 
cases, a program which is written to comply with the subset restrictions will 
compile and execute properly, since the full language properly includes the subset 
constructs. A short description of full language features included in the 
implementation follows. 

Subscript Expressions - The subset does not allow function calls or array element 
references in subscript expressions, but the full language and this implementation 
do. 

87 



FORTRAN Reference Manual 
Oi fferences from ANSI Standard 

Do Variable Expressions - The subset restricts expressions that define the limits of 
a DO statement, but the full language does not. SofTech Microsystems FORTRAN 
also allows full integer expressions in DO statement limit computations. Similarly, 
arbitrary integer integer expressions are allowed in implied DO loops associated 
wi th READ and WRITE statements. 

Unit 1/0 Number - SofTech Microsystems FORTRAN allows an 1/0 unit to be 
specified by an integer expression, as does the full language. 

Expressions in 1/0 list - The subset does not allow expressions to appear in an 1/0 
list whereas the full language does allow expressions in the 1/0 list of a WRITE 
statement. SofTech Microsystems FORTRAN allows expressions in the 1/0 list of 
a WRITE statement, providing that they do not begin with an initial left 
parenthesis. 

NOTE: the expression (A+B)*(C+D) can be specified in an output list as 
+ (A+B)*(C+D) which, incidently, does not generate any extra code to evaluate the 
leading +. 

Expression in computed GOTO - SofTech Microsystems FORTRAN allows an 
expression for the value of a computed GOTO, consistent with the full language 
rather than the .subset language. 

Generalized 1/0 - SofTech Microsystems FORTRAN allows both sequential and 
direct access files to be either formatted or unformatted. The subset language 
restricts direct access files to be unformatted, and sequential files to be 
formatted. SofTech Microsystems FORTRAN also contains an augmented OPEN 
statement which takes additional parameters that are not included in the subset. 
There is also a form of the CLOSE statement, which is not included at all in the 
subset. 1/0 is described in more detail in Chapters 10 and 11. 

A.3. Extensions to Standard. 

The language implemented has several minor extensions to the full language 
standard. These are briefly described below: 

Compiler Dir~cti ves - Compiler directives have been added to allow the 
programmer to communicate certain information to the Compiler. An additional 
kind of line, called a Compiler directive line, has been added. It is characterized 
by a dollar sign '$' appearing in column 1. A Compiler directive line may appear 
any place that a comment line can appear, although certain directi ves are 
restricted to appear in certain places. A Compiler directive line is used to convey 
certain compile-time information to the System about the nature of the current 
compilation. The set of directives is briefly listed below: 

88 



$INCLUDE filename 

FORTRAN Reference Manual 
Differences from ANSI Standard 

Include textually the file 'filename' at this point in the source. Nested includes 
are implemented to a depth of nesting of five files. Thus, for example, a program 
may include various files with subprograms, each of which includes various files 
which describe common areas (which would be a depth of nesting of three files). 

$USES ident 
[ IN filename ] 
[ OVERLAY] 

S i m ilar to a USES command in the UCSD Pascal Compiler. The already compiled 
FORTRAN subroutines or Pascal procedures contained in the .CODE file 'filename', 
or in the file '*SYSTEM.LIBRARY' Of no file name is present), become callable 
from the currently compiling code. This directive must appear before the initial 
non- comment input line. For more details, see Chapter 13. 

$XREF 

Produce a cross-reference listing at the end of each procedure compiled. 

$EXT SUBROUTINE name IIparms 
or 

$EXT [type ] FUNCTION name IIparams 

The subroutine or function named 'name' is either an assembly language routine 
or a routine in a $SEPARATE unit (either FORTRAN or Pascal). The routine has 
exactly 'llparams' reference parameters. 

Backslash Edit Control - The edit control character \ can be used in formats to 
inhibit the normal advancement to the next record which is associated with the 
completion of a READ or a WRITE statement. This is particularly useful when 
prompting to an interactive device, such as CONSOLE:, so that a response can be 
on the same li ne as the prompt. 

End of File Intrinsic Function - An intrinsic function, EOF, has been provided. 
The function accepts a unit specifier as an argument and returns a logical value 
which indicates whether the specified unit is at its end of file. 

Lower Case Input - Upper and lowercase source input is allowed. In most 

89 



FORTRAN Reference Manual 
Differences from ANSI Standard 

contexts, lowercase characters are treated as indistinguishable from their uppercase 
counterparts. Lower case is significant in character constants and Hollerith fields. 

90 



Appendix B - FORTRAN Error Messages 

B.1. Compile-Time Error Messages. 

1 Fatal error reading source block 
2 Nonnumeric characters in label field 
3 Too many continuation lines 
4 Fatal end of file encountered 
5 Labeled continuation line 
6 Missing field on $ compiler directive line 
7 Unable to open listing file specified on $ compiler 

directi ve Ii ne 
8 Unrecognizable $ compiler directi ve 
9 Input source file not valid textfile format 
10 Maximum depth of include file nesting exceeded 
11 Integer constant overflow 
12 Error in real constant 
13 Too many digits in constant 
14 Identifier too long 
15 Character constant extends to end of line 
16 Character constant zero length 
17 111egal character in input 
18 Integer constant expected 
19 Label expected 
20 Error in label 
21 Type name expected (INTEGER, REAL, LOGICAL, or 

CHARACTER[*n]) 
22 Integer constant expected 
23 Extra characters at end of statement 
24 '(' expected 
25 Letter IMPLICIT'ed more than once 
26 ')' expected 
27 Letter expected 
28 Identifier expected 
29 Dimension(s) required in DIMENSION statement 
30 Array dimensioned more than once 
31 Maximum of 3 dimensions in an array 
32 Incompatible arguments to EQUIVALENCE 
33 Variable appears more than once in a type specification 

statement 
34 This identifier has already been declared 
35 This intrinsic function cannot be passed as an argument 
36 Identifier must be a variable 
37 Identifier must be" a variable or the current FUNCTION 
38 l' expected 
39 Named COMMON block already saved 
40 Variable already appears in a COMMON block 

91 



· FORTRAN Reference Manual 
Appendix B - FORTRAN Error Messages 

41 Variables in two different COMMON blocks cannot be 
equi valenced 

42 Number of subscripts in EQUIVALENCE statement does not 
agree with variable dt:'!claration 

43 EQUIV ALENCE subscript out of range 
44 Two distinct cells EQUIVALENCE'd to the same location in 

a COMMON block 
45 EQUIV ALENCE statement extends a COMMON block in the 

negati ve direction 
46 EQUIV ALENCE statement forces a variable to two distinct 

locations, not in a COMMON block 
47 Statement number expected 
48 Mixed CHARACTER and numeric items not allowed in same 

COMMON block 
49 CHARACTER items cannot be EQUIVALENCE'd with non-character 

items 
50 111egal symbol in expression 
51 Can't use SUBROUTINE name in an expression 
52 Type of argument must be INTEGER or REAL 
53 Type of argument must be INTEGER, REAL, or CHARACTER 
54 Types of comparisons must be compatible 
55 Type of expression must be LOGICAL 
56 Too many subscripts 
57 Too few su bscri pts 
58 Variable expected 
59 ' =' expected 
60 Size of EQUIVALENCE'd CHARACTER items must be the same 
61 111egal assignment - types do not match 
62 Can only call SUBROUTINES 
63 Dummy parameters cannot appear in COMMON statements 
64 Dummy parameters cannot appear in EQUIVALENCE statements 
65 Assumed-size array declarations can only be used for dummy 

arrays 
66 Adjustable-size array declarations can only be used for 

dummy arrays 
67 Assumed-size array dimension specifier must be last dimension 
68 Adjustable bound must be either parameter or in COMMON 

prior to appearance 
69 Adjustable bound must be simple integer variable 
70 Cannot have more than 1 main program 
71 The size of a named COMMON must be the same in all procedures 
72 Dummy arguments cannot appear in DATA statements 
73 COMMON variables cannot appear in DATA statements 
74 SUBROUTINE names, FUNCTION names, INTRINSIC names, etc. 

cannot appear in DATA statements 
75 Subscript out of range in DATA statement 

92 



76 Repeat count must be >= 1 
77 . Constant expected 
78 Type conflict in DATA statement 

FORTRAN Reference Manual 
Appendi x B - FORTRAN Error Messages 

79 Number of variables does not match number of values in DATA 
statement list 

80 Statement cannot have label 
81 No such INTRINSIC function 
82 Type declaration for INTRINSIC function does not match 

actual type of INTRINSIC function 
83 Let ter expected 
84 Type of FUNCTION does not agree with a previous call 
85 This procedure has already appeared in this compilation 
86 This procedure has already been defined to exist in 

another unit via a $USES command 
87 Error in type of argument to an INTRINSIC FUNCTION 
88 SUBROUTINE/FUNCTION was previously used as a 

FUNCTION/SUBROUTINE 
89 Unrecognizable statement 
90 Functions cannot be of type CHARACTER 
91 Missing END statement 
92 A program unit cannot appear in a $SEPARA TE compilation 
93 Fewer actual arguments than formal arguments in 

FUNCTION/SUBROUTINE call 
94 More actual arguments than formal arguments in 

FUNCTION/SUBROUTINE call 
95 Type of actual argument does not agree with type of 

format argument 
96 The following procedures were called but not defined: 
97 This procedure was already defined by a $EXT directive 
98 Maximum size of type CHARACTER is 255, minimum is 1 

100 Statement out of order 
101 Unrecognizable statement 
102 Illegal jump into block 
103 Label already used for FORMAT 
104 Label already defined 
105 Jump to format label 
106 DO statement forbidden in this context 
107 DO label must follow DO statement 
108 ENDIF forbidden in this context 
109 No matching IF for this ENDIF 
110 Improperly nested DO block in IF block 
III ELSEIF forbidden in this context 
112 No matching IF for ELSEIF 
113 Improperly nested DO or ELSE block 
114 ,(, expected 

93 



FORTRAN Reference Manual 
Appendix B - FORTRAN Error Messages 

115 ')' expected 
116 THEN expected 
117 Logical expression expected 
118 ELSE statement forbidden in this context 
119 No matching IF for ELSE 
120 Unconditional GOTO forbidden in this context 
121 Assigned GO TO forbidden in this context 
122 Block IF statement forbidden in this context 
123 Logical IF statement forbidden in this context 
124 Arithmetic IF statement forbidden in this context 
125 ' " expected 
126 Expression of wrong type 
127 RETURN forbidden in this context 
128 STOP forbidden in this context 
129 END forbidden in this context 

131 Label referenced but not defined 
132 DO or IF block not terminated 
133 FORMAT statement not permitted in this context 
134 FORMAT label already referenced 
135 FORMAT must be labeled 
136 Identifier expected 
137 Integer variable expected 
138 'TO' expected 
139 Integer expression expected 
140 Assigned GOTO but no ASSIGN statements 
141 Unrecognizable character constant as option 
142 Character constant expected as option 
143 Integer expression expected for unit designation 
144 STATUS option expected after ',' in CLOSE statement 
145 Character expression as filename in OPEN 
146 FILE= option must be present in OPEN statement 
147 RECL= option specified twice in OPEN statement 
148 Integer expression expected for RECL= option in OPEN 

statement 
149 Unrecognizable option in OPEN statement 
150 Direct access files must specify RECL= in OPEN statement 
151 Adjustable arrays not allowed as I/O list elements 
152 End of statement encountered in implied DO, expressions 

beginning with '(' not allowed as 1/0 list elements 
153 Variable required as control for implied DO 
154 Expressions not allowed as reading 1/0 list elements 
155 REC= option appears twice in statement 
156 REC= expects integer expression 
157 END= option only allowed in READ statement 
158 END= option appears twice in statement 

94 



159 Unrecognizable I/O unit 

FORTRAN Reference Manual 
Appendix B - FORTRAN Error Messages 

160 Unrecognizable format in I/O statement 
161 Options expected after ',' in I/o statement 
162 Unrecognizable I/o list element 
163 Label used as format but not defined in format statement 
164 Integer variable used as assigned format but no ASSIGN 

statements 
165 Label of an executable statement used as a format 
166 Integer variable expected for assigned format 
167 Label defined more than once as format 

200 Error in reading $USES file 
201 Syntax error in $USES file 
202 SUBROUTINE/FUNCTION name in $USES file has already 

been declared 
203 FUNCTIONS cannot return values of type CHARACTER 
204 Unable to open $USES file 
205 Too many $USES statements 
206 No .TEXT info for this unit in $USES file 
207 Illegal segment kind in $USES file . 
208 There is no such unit in this $USES file 
209 Missing UNIT name in $USES statement 
210 Extra characters at end of $USES directive 
211 Intrinsic units cannot be overlayed 
212 Syntax error in $EXT directive 
213 A SUBROUTINE cannot have a type 
214 SUBROUTINE/FUNCTION name in $EXT directive has already 

been defined 

400 Code file write error 
401 Too many entries in JTAB 
402 Too many SUBROUTINES/FUNCTIONS in segment 
403 Procedure too large (code buffer too small) 
404 Insufficient room for scratch file on system disk 
405 Read error on scratch fHe 

95 



FORTRAN Reference Manual 
Appendix B - FORTRAN Error Messages 

B.2. Run-Time Error Messages. 

600 Format mIssIng final ')' 
601 Sign not expected In input 
602 Sign not followed by digit in input 
603 Digit expected in input 
604 Missing N or Z after B in format 
605 Unexpected character in format 
606 Zero repetition factor in format not allowed 
607 Integer expected for w field in format 
608 Positive integer required for w field in format 
609 '.' expected in format 
610 Integer expected ford field in format 
611 Integer expected for e field in format 
612 Positive integer requireq for e field in format 
613 Positive integer required for w field in A format 
614 Hollerith field in format must not appear for reading 
615 Holleri th field in format requires repetition factor 
616 X field in format requires repetition factor 
617 P field in format requires repetition factor 
618 Integer appears before ' +' or ' -' in format 
619 Integer expected after '+' or '-' in format 
620 P format expected after signed repetition factor in format 
621 Maximum nesting level for formats exceeded 
622 ')' has repeti tion factor in format 
623 Integer followed by',: illegal in format 
624 '.' is illegal format control character 
625 Character constant must not appear in format for reading 
626 Character constant i'n format must not be repeated 
627 ' /' in format must not be repeated 
628 '\' in format must not be repeated 
629 BN or BZ format control must not be repeated 
630 Attempt to perform I/O on unknown unit number 
631 Formatted I/O attempted on file opened as unformatted 
632 Format fails to begin with '(' 
633 I format expected for integer read 
634 F or E format expected for real read 
635 Two'.' characters in formatted real read 
636 Digit expected in formatted real read 
637 L format expected for logical read 
639 T or F expected in logical read 
640 A format expected for character read 
641 I format expected for integer write 
642 w field in F format not greater than d field + 1 
643 Scale factor out of range of d field in E format 

96 



FORTRAN Reference Manual 
Appendix B - FORTRAN Error Messages 

644 E or F format expected for real write 
645 L format expected for logical write 
646 A format expected for character write 
647 Attempt to do unformatted 1/0 to a unit opened as formatted 
648 Unable to write blocked output, possibly no room on device 

for file 
649 Unable to read blocked input 
650 Error in formatted textfile, no <cr> in last 512 bytes 
651 Integer overflow on input 
652 Too many bytes read out of direct access unit record 
653 Incorrect number of bytes read from a direct access 

unit record 
654 Attempt to open direct access unit on unblocked device 
655 Attempt to do external 1/0 on a unit beyond end of 

file record 
656 Attempt to position a unit for direct access on a 

nonpositive record number 
657 Attempt to do direct access to a unit opened as sequential 
658 Attempt to position direct access unit on unblocked device 
659 Attempt to posi tion direct access unit beyond end of file 

for reading 
660 Attempt to backspace unit connected to unblocked device 
661 Attempt to backspace sequential, unformatted unit 
662 Argument to ASIN or ACOS out of bounds (ABS(X) .GT. 1.0) 
663 Argument to SIN or COS too large (ABS(X) .GT. 10E6) 
664 Attempt to do unformatted 1/0 to internal unit 
665 Attempt to put more than one record into internal unit 
666 Attempt to write more characters to internal unit than 

its length 
667 EOF called on unknown unit 

697 Integer variable not currently assigned a format label 
698 End of file encountered on read with no END= option 
699 Integer variable not ASSIGNed a label used in assigned goto 

1000+ Compiler debug error messages - should never appear in 
correct programs 

97 



NOTES 



A SUBSIDIARY OF SOFTECH 

UCSD p-SYSTEM 

A PRODUCT FOR MINI- AND MICRO-COMPUTERS 

Version IV.O 

FORTRAN REFERENCE MANUAL 

First edition: March 1981 

SofTech Microsystems, Inc. 
San Diego 1981 

9494 Black Mountain Rd., San Diego, CA 92126 (714) 578-6105 TWX: 910-335-1594 



UCSD, UCSD Pascal, and UCSD p-System are all trademarks of the Regents of the 
Uni versity of California. Use thereof in conjunction with any goods or services is 
authorized by specific license only, and any unauthorized use is contrary to the 
laws of the State of California. 

Copyright ©1980 by Silicon Valley Software, Inc. 
Revisions copyright @1980, 1981 by SofTech Microsystems, Inc. 

All rights reserved. No part of this work may be reproduced in any' form or by 
any means or used to make a derivative work (such as a translation, 
transformation, or adaptation) without the permission in writing of SofTech 
Microsystems, Inc. 



DISCLAIMER: 
This document and the software it describes are subject to change without 
notice. No warranty expressed or implied covers their use. Neither the 
manufacturer nor the seller is responsible or liable for any consequences of 
their use. 

ACKNOWLEDGEMENTS: 
This document was written by Stan Stringfellow at SofTech Microsystems. 
Special thanks are due to Dan LaDage of LaDage Computer Systems, as well 
as Gail Anderson, Blake Berry, and Randy Clark of SofTech Microsystems, 
for providing information and assistance. Also, thanks are due to Texas 
Instruments Incorporated, for providing useful information. 

iii 





TABLE OF CONTENTS 

SECTION 

1 THE UCSD p-SYSTEM AND SOFTECH MICROSYSTEM BASIC 

1 Introducti on. • • • • • • • • 
2 Editing BASIC Programs •• 
3 Compiling BASIC Programs • 
4 Compiler Options. • • • • • 
5 Comment Delimiters. • ••• 
6 Multiple Line Statements 
7 Multiple Statement Lines 

2 DA T A TYPES AND EXPRESSIONS 

1 

2 

3 

4 

5 
6 

"1 
8 
9 

10 
11 

Data Types. . • • • • • •••• 
1 Numeric Data • • • • • 
2 String Data • • • • • • • ••• 
Constants. • • • • . ••••••••• 
1 Numeric Constants . • • • • 
2 String Constants. • • •••••.•• 
Variables • • • • • • • • • • • • • • • • ••• 
1 Numeric Varaibles. • . •••• 

1 Numeric Variable Naming Conventions •••••• 0 

2 Numeric Variable Declarations ••••• 
2 . String Variables •• 0 •• 0 0 ••• 0 0 • 0 0 

1 String Variable Naming Conventions 
2 String Variable Declarations •••••••• 

Arrays .................... . 
1 The DIM Statement ••••••••••• 
2 Type Specification of Numeric Arrays 
3 Size Specification of String Arrays ••••• 
4 The OPTION BASE Statement • 
The LET Statement • 
Arithmetic Operators •••••• 
String Operator • • • • • • • 
Relational Operators. • •.• 

-. . . .-

Logical Operators _. • • • • • • • • ............... 
Precedence of Operators •••••••• 
Evaluation of Expressions • 
1 •. Arithmetic Expressions •• 
2 Logical Expressions •• 
3 String Expressions ••••••• 
4 Relations Expr"essions • 

v 

• • •. Ii • • ., • • • • 

,. , . .' . . . . 

PAGE 

1 
1 
2 
3 
5 
5 
5 

7 
7 
7 
7 
7 
8 
8 
9 
9 
9 
10 
10 
11 
11 
11 
12 

" 13; 
13 
14 
14 
15 
15 
16 
11 
18 
18 
18 
18 
19 

.. '. / ,. ),/ ; 



3 I/O STATEMENTS 

1 The PRINT and DISPLAY Statements • · · · · · · · · · 21 .J. · .. 
2 PRINT and DISPLAY Options · · · · 0 · · · · · · · · · · · 23 

1 The ERASE ALL Option · · · · · · · · · · · · · · · e · 23 
2 The A T Option . . · · · · · · · · · · · · · · · · · · · · 23 
3 The SIZE Option . · · · · · · · · · · · · · · · · · · · · · · · 23 
4 The BELL Option • · · · · · · · · · · · · · · · · $ · · · · · · 24 
5 The USING Option · · · · · · · e · · · · · · · · · · · · · · · 24 
6 The IMAGE Statement · · · · '. · · · · · · · · · · · · · · · · 25 

1 Format Control Characters · · · · · .' . · · · · · · · · · 25 
2 Fields Within IMAGE Definitions · · · · · · · · · · · · · 26 
3 The PUNCTUATION Statement. · · · · · · · · · · · · · 27 

3 The INPUT Statement. · · · · · · · · · · · · · · · · · · · · · · · 28 
1 The AT Option With the INPUT Statement · · · · · · · · · 28 
2 The SIZE Option With the INPUT Statement · · · · · · · · 28 
3 The BELL Option With the INPUT Statement · · · · . · . · 29 

4 The ACCEPT Statement · · · · · · · · · · · · · .. . · · · · · · · 29 
5 The DATA Statement. · · · · · · · · · · · · · · · · · · · · · · · 29 
6 The READ Statement. · · · · · · · · · · · · · · · · · · · · · · · 30 
7 The RESTORE Statement. · · · · · · · · · · · · · · . · · · · .' . 31 

4 CONTROL FLOW STATEMENTS 

1 The GOTO Statement. • • • • • • • • • • ••• 
2 The ON-GO TO Statement. • • • • • • • • • • • • • 
3 The IF -THEN-ELSE Statement • • • • • • • • • • • • • • • • • 
4 The FOR-TO-STEP and NEXT Statements • • • • ' •••••• 
5 The GOSUS and RETURN Statements. • • • • • • • • • • • • • • 
6 The ON-GOSUB Statement • • • • • • • • • • • • 0- • • • • • • • • 

7 The STOP and END Statements • • • • • • • •• • • • • • • • • • 

5 ST ANDARD FUNCTlONS 

32 
32 
33 
34 
35 
36 
37 

1 The Numeric Functions •• •••••••• - •• • • • • • • • • • •• 38 
1 The ASS Function. • • • • • • • • • • • • •• • • • •• • • •• 38 
2 The SIN Function •••••••••••••• ~ .•• - .:. • .. • •• 38 
3 The COS Function ••••••••••••••••••••••• 38 
4 The TAN Function ... • • •• • • • • • • • • • • • • • • • •• 39 
5 The ATN Function • • • • • • • • .. • • • • • • • • • • •• 3-9 
6 The EXP Function ••••••••••••••••••••••• 39 
7 The LOG Function • • •• • • • • • • • • • • • • • • • • • •• 39 
8 Tne ,INT Function. • • • • • • • .. • • • •• • • • .. • • • • •• 40 
9 The SGN Function ••••••••••••••••••••••• 40 

10 The SQR Function ••• '. • • • • •• ;. •• ~ • • • • • • • • •• 40 
11 The RND Function and RANDOMIZE Statement. • • • • •• 40 

· vi 



2 String Functions . . . . · · · · · · · . . 1 The ASC Function · · · · · · · 2 The BREAK Function. · · · · · . · 3 The SPAN Function •• · · · · · . · · · · · · · · 4 The LEN Function · · · · · · · · · · · · . · · · · 5 The NUMERIC Function · · · · 6 The VAL Function · · · · · · · . · · · · · · 7 The STR$ Function. · · · . · · . · . . · . · · · · 8 The POS Function. · · · · . · · · · · · · · . · · · · 9 The RPT$ Function • · · · · · · . · · · · · · · · · 10 The UPRC$ Function · · · · · · · · 11 The CHR$ Function. · · · . · · · · · · · · 12 The SEG$ Function · · · . · 3 Miscellaneous Functions. · · · . · · . · · · · · 1 The DA T$ Function. · · · · · · · · · · 2 The FREESPACE Function. · · . · · · · · · 3 The INKEY and INKEY$ Functions · · · · · · 4 The EOF Function · · · · · · · · · · · · · 5 The FTYPE Function • · · · · · · · · · · · · 6 T~ TAB Function · · · · · · · · · · 7 The ERR Function · · · · · · · · · · · · · 8 The TIME$ Function · · · · · · . · · · · · · · . · · · · · 
6 USER DEFINED FUNCTIONS AND SUBROUTINES 

1 

2 

3 
4 
5 
6 
7 
8 

Functions ••••••••••• 
1 
2 
3 

The DEF Statement. • • 
The FNEND Statement ••• 
Calling Functions •••• 

Subroutines •••••••••• 
1 The SUB Statement. • • • • • • • • • • • • • • • 
2 The SUBEND and SUBEXIT Statements. • • • • 
The CALL Statement • • • • • • • • • • • • • • • • 
Local Variables and Parameters •••••••••• 
Line ,Numbers and Data Lists • • • • • • • • • • • • • • • • 
The USES and LIBRARY Statements • • • • • • • • • • • '. 
Pascal Interface Text Restrictions • • • • • •••• 
The UNIT Statement •••••• ' ••••••••••••••• 

vii 

· · 

· · 

· · · · 
· · · · · · 

41 
41 
41 
42 
43 
43 
43 
44 
44 
44 
45 
45 
45 
46 
46 
46 
46 
47 
47 
'47 
48 
48 

49 
49 
50 
51 
51 
51 
52 
52 
53 
54 
54 
55 
56 



7 FILE I/o AND VIRTUAL ARRAYS 

1 

2 

Opening and Closing Files • • • 0 ••• 

1 The OPEN Statement. 
2 File Acces Modes • • ••• 
3 File Organization •••• 
4 File Length • • • • • • • • • • • • • • • • • • 
5 File Format • • • • • • • • • • • • • • • • •• 
6 Record Length. • • • • • • • • • • • • • • • 
7 The ASSIGN Statement and Virtual Arrays. 
8 The CLOSE Statement • • 
File I/O Statements. • • • • • 
1 Sequential File 1/0 •••• 
2 Relative File 1/0 ••••• 
3 The RESTORE Statement 

APPENDIX A BASIC Reserved Words 

APPENDIX B Error Numbers • • • • • • 

viii 

59 
59 
59 
60 
61 
61 
62 
62 
63 
64 
64 
65 
66 

69 

70 



CHAPTER 1 

THE UCSD p-SYSTEM AND SOFTECH MICROSYSTEM BASIC 

1.1 Introduction 

SofTech Microsystems' BASIC is a compiled BASIC that runs under the UCSD p­
System. Since it was designed to be used with the Screen Oriented Editor, it has 
an expanded syntax that allows indented and unnumbered statements as well as 
statements which are not in numeric order by line number. Because it is intended 
to be one language in a multi-language software development environment, BASIC 
subroutines can be separately compiled and linked into Pascal, FORTRAN, and 
BASIC host programs without recompilation. Also, BASIC programs may host 
separately compiled Pascal procedures and FORTRAN subroutines. 

SofTech M icrosystem's BASIC allows arrays wi th unlimited di mensions and 
subroutines with unlimited numbers of parameters. Virtual arrays which reside on 
disk, and may be very large, are permitted. Large programs may be split into 
many disk files, which can include each other using the $1 compile option, and be 
compiled into a single codefile. 

The following secti ons describe how to use the UCSD p-System to create and 
compile BASIC programs. The compiler options are described, and the simple BASIC 
constructs relating to the text of the program itself are explained. 

1.2 Editing BASIC Programs 

The UCSD p-System Screen Oriented Editor is used to create and modify BASIC 
programs. This section will give a cursory explanation of how to use this Editor. 
For a more complete description of the Screen Oriented Editor, see the UCSD p­
System Users' Manual. 

To enter the Editor from the main system promptline, type "E". The system will 
respond by asking what file is to be edited. An existing text file may be specified 
(e.g., 115:PROG<return> will indicate the file PROG.TEXT on the disk in drive 115:) 
or a new file may be created by simply typing <return>. 

Once the Editor has been entered, text may be inserted after typing .'an "I". A new 
line of text will automatically be indented to correspond to the line above it. This 
makes it easy to use the indentation feature of SofTech Microsystem's BASIC· to 
increase readability: 

1 



BASIC User Reference Manual 
The UCSD p-System and BASIC 

FOR 1=1 TO 100 
FOR J=l TO 100 

A(I,J)=O 
B(I,J)=J 

NEXT J 
IF 1 > = 50 THEN GOTO 10 
DISPLAY "1 < 50" 

10 NEXT 1 
END 

Note that line numbers are optional, and are really only necessary if a statement 
is to be the target of a GOTO or GOSUB statement (described in Chapter 4). 
When line numbers are used, they do NOT need to appear in increasing order. 

Once the program has been typed in, the ETX key is typed to accept the text, and 
the Editor is exited by typing "Q" for quit. Then the user may U(pdate or W(rite 
the file. In the first case, the file will be saved as SYSTEM.WRK.TEXT and in the 
second case a name may be specified (e.g., 115:PROG<return> will save the file as 
PROG. TEXT on the disk in drive 115:). 

1.3 Compiling BASIC Programs 

Before the BASIC compiler can be invoked, the following steps must be followed: 

1. Enter the Filer (by typing "F") and use the C(hange command to 
change the names of SYSTEM.COMPILER and SYSTEM.LIBRARY to 
some other names (such as PASCAL.COMPILER and SAVE.LIBRARY). 

2. Change the names of BASIC.CODE and BASIC.LIBRARY to 
SYSTEM.COMPILER and SYSTEM.LIBRARY. If the new 
SYSTEM.LIBRARY is not on the * system disk, it must be T(ransfered 
there. 

It may be desirable to create an entirely separate system disk to be used only 
with the BASIC language. 

When the BASIC compiler is properly set up, it may be invoked from the main 
system promptline by typing "C". If the program text was U(pdated from the 
Editor, it will be automatically compiled. 

If the program was W(ritten to a file (and no SYSTEM.WRK.TEXT already eXisted), 
the system will prompt for the name of the file to be compiled. The user should 
respond, for example U5:PROG<return> if the file is PROG.TEXT on 115. Then the 
system will prompt for the name of the codefile to be produced. The response 

2 



BASIC User Reference Manual 
The UCSD p-Systemand BASIC 

should be 115:PROG<return) if PROG.CODE on 115 is to be created. 

A t this point, the two pass compiler will execute, printing a dot for each line in 
the text. After compilation, "R" (for run) should be typed, and the program will 
execute (usually after linking the object with code from the Library). 

If a syntax error is encountered by the compiler, the bell will sound, compilation 
will temporarily halt, and an error. message will be displayed. The editor may be 
re-entered at this point by typing "E", and the error may be corrected 
immediately. Compilation may also· be either continued or aborted. 

Other errors, such as runtime arithmetic overflows, will be caught during program 
execution. 

1.4 Compiler Options 

The Compiler Options are used to control various aspects of the BASIC compiler's 
output. These options are specified in the following manner: 

C*$<option) <parameters) *) 

The INCLUDE option indicates to the Compiler that the specified file is to be 
compiled as though it were placed directly in line within the current file. The 
following is an example of this directi ve: 

(*$1 115:PROG2.TEXT *) 

The LIST option causes the compiler to emit a compiled listing to the CONSOLE, 
PRINTER or specified disk file: 

C*$L CONSOLE: *) 
(*$L PRINTER: *) 
(*$L 114:LIST. TEXT *) 

The listing can be opti onally turned on or off at any point in the source text 
(after it has been started using one of the above forms of this directive) by 
following the directive with a "+" for on, or a "_If for off: 

C*$L+*) 
(*$L-*) 

The PAGE option causes a form feed in a compiled listing at the point where it 
occurs in the source text: 

(*$P*) 

3 



BASIC User Reference Manual 
The UCSD p-System and BASIC 

The FLIP opti on is used only in the II.D version of the compiler. This causes the 
byte sex of the object to be of opposite sex from the host machine: 

(*$F*) 

The QUIET opti on controls the "quiet/noisy" mode of the compiler. In the noisy 
mode, $Q-, the compiler displays a dot (period) on the system console for each 
statement compiled. In quiet mode, $Q-, the dots are not displayed. The default is 
$Q- unless the machine has a "slow terminal" (designated by a data item in 
SYSTEM.MISCINFO), in which case the default is $Q+. 

The RANGE CHECKING option controls runtime range checking on references to 
array variables aOnd string variables. When $R+ is in effect, runtime range errors 
cause the program to abort with an execution error. If $R- is in effect, the 
compiler does not emit code to do range checking during execution. The default is 
$R+. 

(*$R+*) 
C*$R-*) 

The I/O CHECK option directs the compiler to emit code which will cause I/o 
errors to be handled by the system if the $1+ option is on. The $1- option causes 
the I/o status to be recorded and made available, through the built in function 
IORESUL T, but no execution error results from I/O errors. The default is $1+. 

The T option, when $T + is used, causes code to be emitted which handles the 
transcendentals in the library in a manner consistent with the TI machines. The 
default is T +. 

(*$-T +*) 
(*$T -*) 

The Copyright option will place a copyright notice within the codefile: 

C*$C Copyright (c) 1981, SofTech Microsystems *) 

4 



1.5 Comment Delimiters 

BASIC User Reference Manual 
The UCSD p-System and BASIC 

The REM statement and the exclamation point (!) are treated identically by the 
BASIC compiler. They represent the start of a comment which is terminated by 
the end of the li ne: 

REM This is a comment 
A=l REM This is a comment 
! This is a comment 
A=2 ! This is a comment 

The two delimiters (* and *) can also be used to enclose comments. The comments 
between these two delimiters may cross line boundaries: 

A=l (* This is a comment *) 
B=2 (* This is a comment: At this point we have 

decided to set B equal to 2 *) 

1.6 Multiple Line Statements 

Since placing an end of line between the delimiters (* and *) essentially causes 
that end of line to be invisible to the compiler, statements which are allowed to 
fill onl y one line may be expanded to several lines by commenting out the EOL 
character. For example, the following DIM statement (see Chapter 2) is used to 
declare two lines of arrays: 

DIM A(4), B(5,6,7), C(lO,lO), (* 
*) 0(8,9), E(20) 

And the following FUNCTION (see Chapter 6) is defined with more parameters 
than might fit on one line: 

DEF A FUNC(A,B,C,D,E,F ,G,H,I,J,K, (* 
- *) L,M,N,O,P,Q,R,S) 

1.7 Multiple Statement Lines 

Normally, only one statement is allowed on a line. The double colon (::) is used to 
separate statements so that two or more may appear on a single line as in the 
followi ng example: 

A=l :: 8=2 :: C=3 



BASIC User Reference Manual 
The UCSD p-System and BASIC 

6 



CHAPTER 2 

DATA TYPES AND EXPRESSIONS 

2.1 Data Types 

SofTech Microsystems' BASIC handles both numeric and character string data types. 
Numeric data is expressed as INTEGER, REAL, or DECIMAL numbers. In the 
current version, the DECIMAL data type is identical to the REAL type. Arithmetic 
operations can be performed on this type of data. Character string data consists of 
sequences of printable ASCll characters. String operations may be performed on 
data of this type. 

2.1.1 Numeric Data 

Integers have no decimal point and are allowed to have values between 32767 and 
-32767. 

Real or floating point numbers may have a decimal point and/or an 'E' followed by 
an exponent. If an exponent is specified, the floating point number will be raised 
to that power of ten. For example 2.0E7 is equivalent to 2.0 times ten to the 
seventh power. The minimum and maximum values for real numbers are machine 
dependent. 

Decimal numbers are identical to real numbers. There are some syntax differences, 
but there is no difference at all in the way they are treated in the current 
version. 

2.1.2 String Data 

String data is nonnumeric information expressed as words or other character 
sequences. A string may contain numeric symbols, but arithmetic may not be 
performed on it. The string operations are described in Sections 2.7, 2.8, and 
Chapter 5. 

2.2 Constants 

Data may be in the form of constants. The value of a constant is specified at the 
time the program is written and does not change during program execution. 

2.2.1 Numeric Constants 

A numeric constant may be an integer or floating point number, and may be either 
positive or negative. The following are examples of numeric constants: 

7 



BASIC User Reference Manual 
Data Types and Expressions 

27 
1981 
123.4567 
0.333 
.333 
333.0 
10.0E3 
10E3 
-1 
-765.4321 
-0.001 
-001.0 
-12.234E5 
-lE-15 

The following are incorrect numeric constants: 

25x2 
7,999.99 
10.0E2E3 

2.2.2 String Constants 

The 'x' is not allowed 
Commas are not allowed 
Onl y one 'E' is allowed 

A string constant is a sequence of printable ASCII characters enclosed within 
double quotes. A quote may be inserted into a string by entering two consecutive 
quotes (""). The following are examples of string constants: 

"Now is the ti me for all good men ••• " 
"765.4321" 
"<>,. ?/;: !@II$ %0/0&* 0'+ =" 
"Quoth the Raven, ""NEVER-MORE!""" 

The following are incorrect string constants: 

'Incorrect' 
"WOW 
"She said, "Hi!'''' 

2.3 Variables 

Single quotes are not string delimiters 
Second quote missing 
Second quote is taken as end of string 

Variables are data items which may have their values changed during the execution 
of a program. Like constants, variables may be numeric data or character strings. 
Vari abIes may also be grouped into arrays. Within an array they may be accessed 
individually by specifying the array name and a subscript. For more information 
about arrays, see Section 2.4. 

8 



2.3.1 Numeric Variables 

BASIC User Reference Manual 
Data Types and Expressions 

Numeric variables may be INTEGER, REAL, or DECIMAL format. The range of 
values which are valid for numeric variables is the same as for numeric constants. 
If, during program execution, an attempt is made to assign a variable to a value 
outside that range, a runtime error will result. (The exception to this is when a 
computed integer value overflows. An error will be produced only if the sign bit is 
changed due to an overflow. Other integer overflow errors are not detected.) 

2.3.1.1 Numeric Variable Naming Conventions 

Numeric variable names must begin with a letter of the alphabet. This letter may 
be followed by as many as 254 alpha-numeric characters or any of the special 
characters: @, [, ], \ or • All the characters in a variable name (up to 255) are 
used to distinguish it from-other variables. The following are valid numeric variable 
names: 

ONE 
F[2]NUM 
P 123 
VERY LONG IDENTIFIERS ARE OK 
L@PTR 

Variable names may not be the same as reserved words used in SofTech 
Microsystems Basic. For example, a variable can not be named GOTO. A compiler 
error will result if this is attempted. A list of these reserved words appears in 
Appendix A. 

2.3.1.2 Numeric Variable Declarations 

All numeric variables are assumed to be of type REAL unless otherwise specifiedo 
The default type can be changed by using the ALL clause as shown below: 

INTEGER ALL 
REAL ALL 
DECIMAL ALL 

Changes default type to INTEGER 
Changes default type REAL 
Changes default type to DECIMAL 

The ALL statement, if used, must precede the first occurrence of any of the 
following statements: 

9 



BASIC User Reference Manual 
Data Types and Expressions 

INTEGER 
REAL 
DECIMAL 
DIM 
DEF 
SUB 

Numeric variables can be individually declared to be of a particular type, 
regardless of what the default type is by using the INTEGER, REAL or DECIMAL 
statements. (Numeric variables can also be declared within the DIM statement, see 
section 2.4.2.) The type name is followed by a list of variables separated by 
commas as follows: 

INTEGER I,J,K 
REAL R 
DECIMAL A1,A2,A3,A4,A5 
DECIMAL (2) B1,B2,B3,B4,B5,B6 
DECIMAL (-4) Cl,C2,C3,C4,C5,C6,C7 

The INTEGER declaration above specifies I, J, and K as integers. The REAL 
statement declares R as a REAL. The rest of the variables are declared to be 
DECIMAL nurnbers. The second and third DECIMAL statements contain an optional 
nu mber in parentheses. In the current version, this number has no meaning, and 
DECIMAL statements are equivalent to REAL statements. 

2.302 String Variables 

String variables, like numeric variables, may have their values altered during 
program execution. A string may contain up to 255 printable ASCII characters. 
Stri ngs are used to hold data for input and output and to express nonnumeric data 
such as names, descriptions, etc. 

2.3.2.1 String Variable Naming Conventions 

String variables are named according to the same conventions as numeric variables. 
The only di fference is that string variable names must end with a dollar sign. The 
following are correct examples of string variables: 

ASTRING$ 
ANOTHER STRING$ 
5[22]$ -
A\B\C\$ 

10 



2.3.2.2 String Declarations 

BASIC User Reference Manual 
Data Types and Expressions 

Strings do not have to be declared, but declaring them may save memory space. If 
they are not declared, or if the declaration does not specify a size, they are 
allocated a default length of 255 bytes at compile time. This allocated space does 
not change dynamically during program execution. But a maximum size. can be 
specified using the DIM statement: 

DIM ASTRING$*20 

This limits ASTRING$ to a maximum length of 20 bytes. For further information 
concerning the DIM statement in this context, see section 2.4.3. 

2.4 Arrays 

Vari abIes may be grouped together into an ARRAY. The array is given a name, a 
nu mber of dimensions, and a size for each dimension. By specifying the array name 
followed by the one or more index values, a specific variable within the array may 
be accessed. For example, a two dimensional array, ARl, would be refered to as 
ARl(4,3) in order to obtain the indicated element. An array may have any number 
of dimensions, but the total number of elements may not exceed 32767. 

Virtual Arrays are arrays which reside on disk. This allows programs to use large 
arrays which will not fit into memory. This type of array is discussed in Chapter 
7. 

2.4.1 The DIM Statement 

In order to declare an array, the DIM statement is used. This statement defines 
the number of dimensions and the number of entries within each dimension of the 
array. 

In the declaration, DIM is followed by the array name. Then, in parentheses, one 
or more integers are specified, separated by commas. The array name should follow 
the conventions for numeric variable names if it is an array of numeric variables. 
Likewise, it should· follow the conventions for string variable names if it is an 
array of strings. 

The integers in parentheses are zero-based. (This may be changed, however, by the 
OPTION BASE statemenL See Section 2.4.4.) This means that the array can be 
indexed from zero up to the number specified, and that the number of entries is 
one greater than that number. 

More than one name may be defined in a DIM statement, if each name is 
separated by a comma. 

11 



BASIC User Reference Manual 
Data Types and Expressions 

The following are correct examples of array declarations: 

DIM ARID (9) 
DIM ONE ELEMENT ARRA yeO) 
DIM S\ARRA Y$ (20;20) 
DIM. MUL TI@ (3,7,15,31) 
DIM A 7(100,10,10),A8(l00,10,10) 
DIM LARGE(32000), W$(9,9,9), LIST _ NUMS(0,17) 

I t is not always necessary to declare arrays. If the maximum dimension is less than 
or equal to 10 (e.g. DIM A(10,10,5)) then the array may be implicitly declared 
when it is first referenced. The default lower boundary for each dimension is 0 and 
the default upper boundary is 10. However, it may save considerable space to 
declare small multi-dimensional arrays anyway. For example, an integer array of 
dimension (2,2,2,2) would only take up 3 to the fourth (81) words of memory. If 
undeclared, however, this same array would default to a (10,10,10,10) dimensional 
array and take up 14641 words. 

2.4.2 Type Specification of Numeric Arrays 

All of the arrays declared in Section 2.4.1 above, except for S\ARRAY$ and W$, 
are numeric arrays. The variable type of the entries within those arrays will be 
the numeric variable default type (REAL unless otherwise specified by using the 
ALL statement). Numeric arrays may be declared to be of a particular type using 
either a DIM statement or an INTEGER, REAL, or DECIMAL statement as in the 
following examples: 

DIM A(7,2), INTEGER B(2,3), C(12,1,O) 
DIM REAL 0(5,7), DECIMAL E(10,10,10), INTEGER F(D) 
INTEGER I,J,K(7,7,7) 
REAL R(12),S 

In the first line above, B is an array of type integer. A and C are arrays of the 
default type. In the second line, 0 is a real array, E is a decimal array, and F is 
an integer array. In the third line, I and J are integer variables and K is an 
integer array. The fourth line declares R to be a real array and S to be a real 
variable. 

A DIM statement may also include single variables. These variables may optionally 
be preceded by a type declaration: 

DIM A(99,9),B,C(49) 
DIM E(4,5), INTEGER Fl,F2, G(6,7) 
DIM REAL H 

The first line above declares arrays A and C and variable B. Both arrays and the 

12 



BASIC User Reference Manual 
Data Types and Expressions 

variable are of the default type. The second line declares arrays E and G to be of 
the default type. Variable Fl is aeclared to be an integer and variable F2 is 
declared as the default type. In the third line, real variable H is declared. 

2.4.3 Size Specification of String Arrays 

An array is declared as a string array by naming it according to string variable 
naming conventions: 

DIM 5_ ARRA Y$(2,3,4) 

However each string in 5 ARRAY$ above will consume 256 bytes of memory. A 
maximum size for each string in an array can be indicated by following the 
declaration with an asterisk (*) and a number between 1 and 255 inclusive. Also, 
string variables can be declared within DIM statements in the same way. The 
following are examples: 

DIM 5 ARRA Y$(2,3,4)*20 
DIM 51$(2)*10, 52$(20)*11 
DIM A$(10,10)*I, B$*25, C$(5,6,7), 0$*1 

The first line above declares three-dimensional 5 ARRA Y$ to consist of strings 
with a maximum length of 20 bytes. The second line declares 51$ and 52$ as one­
dimensional arrays containing strings with a maximum length of 10 and 11 bytes. In 
the third line, A$ is a 10 by 10 array of one character strings, B$ is a string 
variable wi th a maximum length of 25, C$ is a three dimensional string array of 
256 byte strings, and 0$ is a string variable containing at most one character. 

This string length specification may occur anywhere that a string declaration is 
legal. 

2.4.4 The OPTION BASE Statement 

Array indices, whether declared in a DIM statement or not, are zero-based by 
defaul t. This means that the statement, DIM A(ID), declares A to be indexed from 
o to 10. By using the OPTION BA5E statement, array indices can be based at 1 or 
0: 

OPTION BA5E 0 
OPTION BA5E 1 

The first statement leaves the indexing base at the default value of 0 and the 
second makes the base 1. The OPTION BA5E statement may be used, at most, 
once in a program. If it is used, it must come before any statement which 
declares or references array elements. If 1 is declared to be the base, no 
statement may declare or reference an array with an index of zero. 

13 



BASIC User Reference Manual 
Data Types and Expressions 

2.5 The LET Statement 

The LET statement is used to make numeric or string assignments. The word LET, 
which is optional, is followed by the variable to which a value is to be assigned. 
This is followed by an equal sign and an expression, the value of which will be 
assigned to the variable. 

LET statement syntax: 

LET numeric variable = numeric expression 
LET string variable string expression 
numeric variable = numeric expression 
string_varible = string_expression 

LET statement examples: 
LET A=l 
LET R1=2.0 * (Rl+l) 
LET Sl$="STRING" 
LET S2$="ANOTHER "&51$ 
A=2 
Rl=R2+1.0 
52$=51$ 

The variables on the left of the equal sign may be subscripted variables (indexed 
arrays). Likewise, the expressions on the right of the equal sign may contain 
subscripted variables. Both sides of the LET statement must be of the same type. 

2.6 Arithmetic Operators 

The arithmetic operators are used to combine numeric constants and variables 
into expressions. The following table illustrates these operators: 

SYMBOL 

+ 

* 
I 

OPERATION 
Negation 
Addition 
Subtraction 
Multiplication 
Division 
Exponenti ati on 

FIGURE 2.6.1 Arithmetic Operators 

14 

EXAMPLE 
-A 
A+B 
A-B 
A*B 
AlB 
A"2 



BASIC User Reference Manual 
Data Types and Expressions 

The unary minus negates the value following it. The four arithmetic operators 
perform the standard arithmetic fllnctions. And the exponentiation symbol r'aises 
the first value to the power of the second. 

2.7 String Operator 

String variables, constants and expressions can be concatenated (joined together 
into a single string) by using the the ' &' operation. When this symbol is placed 
between two strings, they are concatenated. In the following example, S1$ is set 
equal to "AECDEFGHIJ": 

S2$ = "EF" & "G" 
S1$ ="ABCD" & S2$ & "HIJ" 

2.8 Relational Operators 

Relational operators are used to compare two expressions of the same type 
(numeric or string). Relational expressions can be employed within control flow 
statements. They may also be used to evaluate to the numeric values of -1 for 
true and 0 for false. These values (-1 and 0) may then be used within arithmetic 
expressions or they may be printed. The relational operators all have the same 
precedence. The following table lists them: 

SYMBOL OPERATION EXAMPLE 
= equal to A = B 
< less than A < B 
> greater than A > B 

<= or =< less or equ al A <= B 
>= or => greater or equal A >= B 
<> or >< not equal A <> B 

FIGURE 2.8.1 Relational Operators 

The following example shows how relational expressions can be evaluated to 
numeric quanti ties: 

DISPLAY 7+8=15; 2 = 2.0/.1; 100 >= 1 

-1 0 -1 

Comparisons between strings are based on the ASCll value of their characters. For 
example "A BIRD" < "A bird" because the ASCll value for lower case b is greater 
then the value for upper case B. Also "$ZEBRA" <= "AARDVARK" becaust!(~the 
code for $ is less then (or equal to) the code for A. If strings are identical exc'e:pt 

15 



BASIC User Reference Manual 
Data Types and Expressions 

that one string has addtional characters, then the longer string is greater: "COW" < 
"COWBOY". 

2.9 Logical Operators 

Logical operators are used within expressions to create results which have the 
values of TRUE or FALSE. The three logical operators are NOT, AND and OR. 
The following truth table illustrates the actions of these operators: 

X 
F 
F 
T 
T 

Y 
F 
T 
F 
T 

NOT X 
T 
T 
F 
F 

FIGURE 2.9.1 Logical Operators 

X AND Y 
F 
F 
F 
T 

X OR Y 
F 
T 
T 
T 

The NOT operator yields the value which is logically opposite the value of the 
argument. 

The AND operator produces a TRUE if and only if both arguments are true. 

The OR operator produces a FALSE if and only if both arguments are false. 

The precedence of these operators is: NOT, AND, OR. This precedence may be 
overridden by using parentheses. The following examples illustrate the use of the 
logical operators: 

A=l 
B=2 
C=3 
IF NOT A > 0 THEN DISPLAY "TRUE" ELSE DISPLAY "FALSE" 
IF A < BAND C < B THEN DISPLAY "TRUE" ELSE DISPLAY "FALSE" 
IF A < B OR C < B THEN DISPLAY "TRUE" ELSE DISPLAY "FALSE" 
IF NOT A<B AND C<B THEN DISPLAY "TRUE" ELSE DISPLAY "FALSE" 
IF NOT (A<B AND C<B) THEN DISPLAY "TRUE" ELSE DISPLAY "FALSE" 

FALSE 
FALSE 
TRUE 
FALSE 
TRUE 

These operators can also be used to manipulate integer values. The meaning of the 
logical operations on arithmetic bits is given by replacing every F with a 0, and 

16 



BASIC User Reference Manual 
Data Types and Expressions 

every T with a 1 in FIGURE 2.9.1. The NOT of an integer is equal to the NOT of 
each individual bit within it (the one's complement value). Likewise, the AND or 
OR of t.wo integers is the bitwise AND or OR operation performed on them. For 
example: 

DISPLAY NOT 0 
DISPLAY NOT -2 
DISPLAY 1981 AND 255 
DISPLAY 1981 OR 255 

-1 
1 
189 
2047 

Negative one is the bitwise complement of zero. Similarly, one is the complement 
of negative two. The number 255 is a byte of all ones. The AND of 255 and 1981 
represents the lower byte of 1981. The OR of 255 and 1981 is the upper byte of 
1981 and a lower byte of 255. 

Floating point numbers may be used with the logical operators. However, they are 
converted to integer form before they are operated upon. 

2.10 Precedence of Operators 

The arithmetic and logical operations discussed in this chapter are evaluated 
according to the following priorities: 

PRIORITY 
1 
2 
3 
4 
5 
6 
7 
8 

OPERATION 
Exponentiation 
Unary Minus 
Multiplication and Di vision 
Addition and Subtraction 
Relational Operators 
Logical NOT 
Logical AND 
Logical OR 

FIGURE 2.10.1 Precedence of Operators 

SYMBOL 

*,1 
+,~ , 

=,<,>,<=,>=,<> 
NOT 
AND 
OR 

Using these priorities, expressions are evaluated from left to right. A por,tion of an 
expression may be placed inside parentheses. In this case, it will be evaluated 
separately before being combined with the rest of the expression. Within the 
parentheses, the same order of precedence is held. Parentheses may oe nested, and 

17 





2.11.4 Relational Expressions 

BASIC User Reference Manual 
Data Types and Expressions 

Constants and variables may be combined with arithmetic and logical operators to 
form relational expressions. The only requirement is that the last operation 
performed must" be a relaUonal operation. Relational operations are often used 
within control flow constructs such as IF THEN ELSE statements. 

19 





CHAPTER J 

I/O STATEMENT S 

J.l The PRINT and DISPLAY Statements 

String or numeric expressions may be output using the DISPLAY or PRINT 
statements. Usually the expressions to be output are constants or single variables. 
The formatting of the output can be controlled with these statements. 

The PRINT statement directs output to the printer unless another unit is specified. 
If there is no printer, the PRINT statement directs its output to the console. The 
DISPLAY statement directs output to the console (video terminal). If a PRINT 
statement is re-directed to the console, it acts on all of the options described in 
this chapter. If not, it ignores the following options: ERASE ALL, AT, SIZE and 
BELL. Except for these differences, the two statements are identical. The 
description in this chapter of the DISPLAY statement and its options applies 
equally to the PRINT statement. 

The DISPLAY statement may be used with or without an expression following it: 

DISPLAY 
DISPLAY expression 

If no expression is indicated, then a carriage return is output. Otherwise, the value 
of the (numeric or string) expression is output, followed by a carriage return. When 
string values are displayed, no automatic formatting is done. Numeric values, 
however, are displayed with a leading character and a trailing blank. The leading 
character is a space if the value is positive, a minus sign is the value is negative. 
The trailing blank is used to separate numbers which are directly adjacent on the 
same line. The following are examples of the DISPLAY statement using expressions: 

DISPLAY "Roses are red, Violets are blue" 
DISPLAY 2+2 

Roses are red, Violets are blue 
4 

The DISPLAY statement may be followed by a list of expressions: 

DISPLAY list 

A list is several expressions, separated by commas, semicolons, or apostrophes. 
These expressions may be mixtures of string and numeric types. The commas, 
semicolons, and apostrophes are known as data separators. The effect of each data 
separator is different. But ending a list with any of them causes the cursor to stay 
on the current line after the DISPLAY statement is executed. In this way, it is 
possible to use more than one DISPLAY statement to print characters on a single 
line. 

21 



BASIC Reference Manual 
I/O Statements 

An output line is divided into display zones which are 16 characters wide~ The 
comma causes the cursor to advance to the next display zone. If the cursor is 
currently in the last zone, then it advances to the first zone on the next line. 
Data is left-justified within each zone. The following is an example of the use of 
the comma as a data separator: 

DISPLAY 1,2,3 
DISPLA Y "DOG" ,"eA T" ,"BIRD" 

1 
DOG 

2 
CAT 

3 
BIRD 

This same effect can be achieved by using separate DISPLAY statements separated 
by commas: 

·DISPLAY 1, 
DISPLAY 2, 
DISPLAY 3 
DISPLA Y "DOG", 
DISPLA Y fICA Tn, 
DISPLA Y "BIRD" 

1 
DOG 

2 
CAT 

3. 
BIRD 

Using a semicolon between expressions causes NO separation between them: 

DISPLAY 1;2;3 
DISPLAY "DOG";"CA T";"BIRD" 

1 2 3 
DOGCATBIRD 

The spaces between the 1, 2, and 3 represent the leading and trailing blanks which 
always accompany numeric values. 

Usi ng an apostrophe between expressions causes a comma to be inserted between 
them: 

DISPLA Y 1'2'3 
DISPLAY "DOG"'IICA T"'''BIRD'' 

1 , 2 , 3 
DOG,CAT ,BIRD 

22 



BASIC Reference Manual 
I/O Statements 

3.2 Options available with the PRINT and DISPLAY statements 

This section discusses the several options which can be used with the DISPLAY and 
PRINT statements. These options may be combined to fully 'fiormat the output as 
desired. The list of options follow the DISPLAY or PRINT command. A colon is 
placed after the last option, and the expressions to be output are then specified. If 
more than one of the options ERASE ALL, AT, SIZE, or BELL are used, they must 
be in the order shown in this sentence. 

3.2.1 The ERASE ALL Option 

The ERASE ALL option causes the screen to be cleared before values are 
displayed. The following example illustrates the syntax for this option: 

DISPLA Y ERASE ALL: "DOGS"," CATS"," and lots of BIRDS" 

3.2.2 The AT Option 

The AT option can be used to indicate a starting line and column number for the 
display to appear on the screen. Column and line numbers start at 1. The format 
for this option is: 

AT (line_number,column_number) 

The default line number is 24 (the bottom line on the screen). The default column 
number is 1. If a DISPLAY statement which uses an AT option is followed by a 
DISPLA Y statement which does not, the second statement starts in the default 
position regardless of where the first was positioned. The following example 
illustrates the use of the AT option: 

COL=10 
DISPLAY AT (12,COL): "Where am I?" 

3.2.3 The SIZE Option 

The SIZE option can be used to specify the maximum number of characters to be 
output by a DISPLAY statement. The format for the SIZE option is: 

SIZE (n) 

If this option is not used, the default size is large enough to hold all of the 
characters to be output, plus enough extra blank spaces to fill the end of the last 
line onto which the DISPLAY statement is writing. When this option is used, the 
line will be cleared, after the output is performed, only as far as the indicated 
size. If it is desired to leave portions of a line intact when displaying to the same 

23 



BASI~Refer.ence Manual 
I/Pns'tatements 

line, this can be done with the SIZE option~ The semicolon data separator should 
be placed at the end of the display list so that no clearing. will be done beyond 
the end of the last character being -displayed. Strings which have a length greater 
thaD the specified size will be truncated on the right. If a negative size is given, 
its absolute value will be used .. The following example illustrates the use of the 
SIZE option: 

DISPLA Y SIZE(38): "There are 38 characters in this string" 

3.2.4 The BELL Option 

The BELL option causes the terminal bell to ring when the dispfay statement is 
e~ecuted •. The following are examples: 

DISPLA Y BELL: "There were bells on the hills" 
DISPLAY A T(10,10) BELL: "But I never heard them ringing" 

3.2.5 The USING Option 

Tne USING option controls the output of a DISPLAY statement. (The USING option 
may .also be employed within the ASSIGN statement in conjunction with Virtual 
Arrays, see Section 7.1.7, and within the PRINT statement in conjunction with file 
I/O, see Section 7.2.1.) It has the following format: 

USING line number 
USING string_expression 

The line number is the nu mber of a line containing an IMAGE statement (see 
Section 3.2.6). The string expression contains the elements of an IMAGE' statement. 

If a DISPLAY statement employs a USING statement, then the list of expressions 
to be displayed must use commas as data separators. Also, the only data separator 
that may terminate this list is a semicolon. The following illustrates the use of the 
USING option: 

NUM=999.999 
FORMA T$="IIIIII.IIII" 

10 IMAGE 1111:/1.1111 
DISPLA Y USING "IIIIII.IIII":NUM 
DISPLAY USING FORMA T$:NUM 
DISPLAY USING 10:NUM 

999.99 
999.99 
999.99 

24 



BASIC Reference Manual 
I/O Statements 

All of the above statements produce the same output. If a DISPLAY statement list 
contains more expressions than the corresponding IMAGE statement contains 
formats, a new line is begun. This new line is formatted according to the same 
IMAGE statement. If there are fewer expressions than IMAGE formats, the 
DISPLAY terminates after the last expression. 

3.2.6 The IMAGE Statement 

The IMAGE statement is referred to by line number within the USING clause of a 
DISPLAY or PRINT statement. It provides a format for the expressions to be 
output. It has the format: 

IMAGE string_constant 

The quotes around the string constant are optional. Text may be inserted into the 
string constant and this text will appear in exactly the same position in the actual 
output. Text consists of all characters which are not format control characters. 

3.2.6.1 Format Control Characters 

There are nine format control characters: 1/, .... , -, +, ., <>, " $, and *. 

The 1/ (number sign) indicates the place of a data character. 

The ,. (exponent sign) indicates how many places an exponent should fill. If there 
are more places indicated then the actual exponent has, leading zeros are inserted. 
Either four or five exonent signs should be used. If less than four exponent signs 
are used, they will be printed as a literal string rather than used to indicate an 
exponent field. 

The - (minus sign) specifies the position of the minus sign if the value is negative. 
If the value is positive, this position will be left blank. The minus sign may be 
placed before or after the value. 

The + (plus sign) may be placed to the left of a numeric field. It indicates that 
posi ti ve numbers are to be displayed with a plus sign preceding them. Negative 
numbers are displayed with a minus sign as usual. 

The • (decimal point) is used to indicate the position of the decimal place. 

The <> (angle brackets) are used to enclose numeric IMAGE fields if it is desired 
to have negati ve numbers appear wi thin angle brackets. Positive numbers will 
appear without the brackets. 

The , (comma) will produce a comma at the specified position within a numeric 
value. 

25 



BASIC Reference Manual 
I/O Statements 

The $ (dollar sign) will cause a dollar sign to appear at the beginning of the 
indicated field. A $$ (double dollar sign) allows the dollar sign to float (otherwise 
it is left justified). 

Two ** (asterisks) produce asterisk fill wherever the numeric value does not fill 
the field. This is used in protecting checks. 

The following is an example of the use of these format characters: 

A=999.999 
B=88.8888 
S$="OCEAN" 

10 IMAGE 1111111111 BLUE <111111.1111> 
DISPLAY USING 10:A,B 
DISPLAY USING 10:S$,-B 

1000 BLUE 88.89 
OCEAN BLUE <88.89> 

3.2.6.2 Fields Within IMAGE Definitions 

An integer field of an IMAGE definition or string has no decimal point. It may 
have a sign. If the value overflows the field, asterisks will be produced instead of 
the value. The integer is right-justified within the field, and is rounded. The 
following example illustrates integer fields: 

10 IMAGE "11111111 1111111111 111111" 
1=999 :: J=-88 :: K= 7777 
DISPLAY USING 10: I,J,K 

999 -88 *** 

A decimal field consists of a string of number signs and may have a plus/minus 
sign. A decimal point may appear within it, just before it, or just after it. The 
value is rounded according to the quantity of number signs which follow the 
decimal point in the IMAGE format. The number is right-justified within the field. 
The decimal point is placed in the position indicated in the field definition. If the 
number overflows, asterisks are displayed instead of the value. The following 
example illustrates decimal fields: 

10 IMAGE "11111111 1111111111 111111" 
1=111.11 :: J=-88.888 :: K= 7777.7777 
DISPLAY USING 10: I,J,K 

III -89 *** 

26 



BASIC Reference Manual 
I/O Statements 

A n ex ponent field is a series of four pr five exponent signs (") which reserve space 
for the exponent. The number is rounded similarly to decimal fields. A leftmost 
plus/minus sign reserves space for the appropriate sign. If the minus sign is used, a 
blank will appear if the value is positive. There must be at least one character (//, 
+ or -) to the left of the decimal point if the number to be displayed is negative. 
The following example illustrates exponent fields: 

2 0 1M AGE "11.1111111111"""" 1111.111111"""" 111111."""" 11.1111""""" 
A=lll.lll :: B=-66.666 :: C=55.5 :: D=-.077 
DISPLAY USING 20:A,B,C,D 

.11111E+03 -6.667E+Ol 56.E+00 -.78E-Ol 

A string field may be indicated by any sequence of control characters. If the 
string is shorter than the indicated field, blank spaces will be padded on the right. 
If the string exceeds the specified length, it will be truncated on the right. 

Fields consisting of characters other than the control characters are taken as text 
to be literally inserted into the displayed output. 

3.2.6.3 The PUNCTUATION Statement 

The PUNCTUA TION statement can be used to alter the monetary symbols for 
currency ($), di git separators (,) and decimal point (.). This statement takes the 
following form: 

PUNCTUA TION string_expression 

The first character in the string expression is used for the currency symbol. The 
second is used for the decimal point. The third character is used for the· digit 
separator symbol. The default values for these are the same as they would be if 
the following statement was executed: 

PUNCTUA TION "$.," 

The following example demonstrates the use of the PUNCTUATION statement: 

10 IMAGE $$111111,111111.1111 
AMOUNT =999999.25 
DISPLAY USING 10:AMOUNT 
PUNCTUA TION "L,." 
DISPLA Y USING 10:AMOUNT 

$999,999.25 
L999.999,25 

27 



BASIC Reference Manual 
I/O Statements 

3.3 The INPUT Statement 

The INPUT statement accepts values typed in from the keyboard during program 
execution. The basic form of this statement is: 

INPUT variable 

A question mark, followed by a blank space, appears when this statement is 
executed. When a value is entered, followed by a <return>, the variable is assigned 
accordingly. If it is a string variable, the input will be interpreted as a string. If 
it is a numeric variable, the input must represent a correct numeric value. Leading 
and trailing blanks are removed from string variables. 

Several variables may be included within the INPUT statement if they are 
separated by commas. The keyboard input must be made on a single line and the 
input values must be separated by commas. All the variables must be within a 
single INPUT statement for each line input form the keyboard. This last constraint 
does not apply when input is being done from files. 

A quoted string followed by a colon may precede the variable list. The string will 
be used as a prompt to replace the question mark. If no prompt and no question 
mark are desired, a null string (II") may be used. The following are examples of the 
INPUT statement: 

INPUT RATE 
INPUT "":HEIGHT ,WIDTH,NAME(l) 
INPUT "Type a character string:":STRINGl$ 

3.3.1 The AT Option With the INPUT statement 

The A T option may be used with the INPUT statement in a manner similar the 
DISPLAY statement. The cursor is positioned according to the AT clause 
specifications. The following are examples of the AT clause: 

INPUT AT(lO,lO):PAY 
INPUT AT(lO,lO)"Enter Pay":PAY 

3.3.2 The SIZE Option With the INPUT statement 

The SIZE option can be used to specify the maximum number of characters that 
may be input. If the number specified is positive, the line will be cleared before a 
prompt for input is made. If that number is negative the line will not be cleared. 
The bell will sound if more characters are entered than the SIZE clause allows. 
The default size is the remainder of the line after the input prompt. If a size is 

28 



BASIC Reference Manual 
'I/O Statements 

specified, it does not include the length of an input prompt if one is issued. The 
b!lollowing are examples of the use of the SIZE; option with the I~PUT statement: 

INPUT AT (10,18) SIZE(2),"What ,year?": YEAR 
INPUT SIZE(-3):S$ 

If the input exceeds the specified size, the bell will sound for each extra character 
typed until a <space> or <return> is input. 

3.3.3 The BELL Option With the INPUT statement 

When the BELL option is used with the INPUT statement, the bell will ring, 
prompting the user to input. The following is an example of this: 

INPUT A T(10,20) BELL,"l hear bells, do you?": S$ 

3.4 The ACCEPT Statement 
~~;(~~"·'i 

(JJ\he ACCEPT statement is used like the INPUT statement, except that. it can take 
'.£1'901 y, one variaqle. The· ACCEPT s~atement reads. the entire line as input and does 
ullQt.edit out. commas or quotes. Since commas are used as data separators for the 
sJ~NPIJT statement, the ACCEPT statem~nt is useful because a comma can be' a 
Ci~ia.rt of an input string. The ACCEPT statement, therefore, is most useful when 
'. reading into. a string variable. The INPUT statement options. described above may 

also be used with the ACCEPT statement. The following are examples of the 
ACCEPT statement: 

ACCEPT S$ . 
ACCEPT "What Company? ": (:0$ 

ac A~CEPT 'AT(lO,10) SlZE(2): DAY _OF ~MONTH 

3.5 The DATA Statement 

The DA T A statement defines values that will be used as data within a program. 
These values may be numeric or string constants. Quotes may opticmally"'be', used to 
enclose string data. Strings must be enclosed in quotes if commas ar,e 'contained 
wi thi n them. Otherwise, commas are interpreted as data separators. A~so, leading 
and trailing blanks will be removed from strings which are not within qU,btes. The 
following is the DATA statement format: .. 

DATA list 

The list is one or more constants separated by comnlas. These constants may be 
numeric or string types$ 

29 



'BASIC Reference Manual 
I/O Statements 

Several DATA statements may appear within a program. They may be placed 
anywhere in the program source text and need not be grouped together. As one 
DA T A statem ent is exhausted, the next one in the file will be used. The following 
are examples of the OAT A statement: 

DA T A 20,40,60,80 
OAT A 100,120,140,160 

DA T A "CALIFORNIAn 
DA T A "TEXAS" 

3.6 The READ Statement 

The READ statement uses the values specified in DATA statements. It assigns 
these values to vari abIes which are listed in the READ statement. The READ 
statement variables:im,ay be numeric or string and they may be subscripted or 
unsubscripted. The OAT A statements will be used in the order that they appear in 
the source text. The specified variables and the corresponding data values must be 
of the same type and have the same range. The READ st~tement has the following 
form: 

READ list 

The list is one or more variables separated by commas. 

If a READ statement is encountered and no corresponding DATA statement has 
been declared, or if all the DATA statements have been exhausted, then an error 
will occur. The following illustrates the use of the READ statement: 

READ I,J 
DISPLAY l;J; 
READ I,J 
DISPLAY I;J 
OAT A 2,4,6,8 

246 8 

30 



3.7 The RESTORE Statement 

· BASIC Reference Manual 
I/O Statements 

Duri ng program execution an internal data pointer is kept. This pointer indicates 
the next DATA statement value tp pe .. read" The RESTORE statement resets this 
pointer to the first DATA statement in the program. Alternatively, the line number 
of a particular OAT A statement may be specified, and the RESTORE statement 
will reset the data pointer to that statement. After th~:~ESTORE ~tatement is 
executed, the next READ statement will take its input from where the reset data 
pointer indicates:. The .RESTORE statement take$ the following forms: 

RESTORE 
RESTORE line number 

If a line number is indicated and that line does not contain a DATA statement, 
the n the next line which, d.oes cpntain a .D.AT A statement is; used. If ther.e is no 
DA T A statement on the indicated line or following it, then an error will occur at 
the next READ statement. The following illustrates the use of the RESTORE 
statement: 

DATA 1,2 
20 DATA 3',4 
30 DATA 5,6 

READ I,J,K,L 
DISPLA Y l;J;K;L 
RESTORE 
READ 1,J,K,L 
DISPLAY I;J;K;L 
RESTORE 20 
READ 1,J,K,L 
DISPLAY I;J;K;L· 

1 2 3 4 
1 2 3 4 

·3. 4' 5 6 

"31 



BASIC Reference Manual 
I/O Statements 

CHAPTER 4 

CONTROL FLOW STATEMENTS 

4.1 The GOTO Statement 

The GOTO statement unconditionally transfers control to a specified line number. 
It has the following format: 

GOTO line number 
GO TO line numer 

The following sample program shows the use of the GOTO statement: 

1=1 
10 DISPLAY 1 

1=1*2 
GOTO 10 

1 2 4 8 16 

4.2 The ON-GOTO Statement 

The ON-GOTO statement allows a multiple switch mechanism for control flow. This 
statement has the format: 

The expression is any valid numeric expression. If necessary it will be rounded to 
an integer. If the expression evaluates to 1, control is transfered to the first line 
number. If the expression evaluates to 2, control is transfered to the second, etc. 
1 f the expression is less than 1 or greater than the number of listed line numbers, 
an error will result. The following example illustrates the use of the ON-GOTO 
statement: 

32 



1::0 
10 1=1+1 

ON I GOTO 20,30,40 
20 DISPLAY "AT LINE 20 

GOTD 10 
30 DISPLAY "AT LINE 30 

GOTO 10 
40 DISPLAY "AT LINE 40 
END 

AT LINE 20 
AT LINE 30 
AT LINE 40 

4.3 The IF -THEN-ELSE Statement 

BASIC User Reference Manual 
Control Flow Statements 

The IF -THEN-ELSE statement provides conditional transfer of control flow based on 
the value of a relational expression. It has the following forms: 

IF condition THEN action 
IF condition THEN action a ELSE action b 

The condition is a relational expression. If the expression evaluates to true, the 
THEN clause is executed. Otherwise, the ELSE clause is executed (if there is no 
ELSE clause, the next statement in the program is executed). The action is either 
a single executable statement, or a line number to which control will be 
transfered. The entire statement must fit on one line (or several lines joined 
together with comment delimiters, see Chapter 1). The following example 
demonstrates the use of this statement: 

SI$="ABC" 
52$="123n 

IF 51$=52$ THEN 10 ELSE 20 
10 DISPLAY "WHAT ??" 

STOP 
20 DISPLAY "GOOD" 

END 

GOOD 

The IF clause condition may be a numeric expression. In this case the resulting 
value is taken to be false if its least significant bit is zero, and true otherwise. 

33 



BASIC User Refer:enc'eManual 
Control Flow Statements' 

A=lO 
IF A=lO THEN GOOD=l ELSE GOOD=O 
IF GOOD THEN DISPLAY "GOOD" ELSE DISPLAY "BAD" , 

GOOD 

4.4 The FOR-TO-STEP and NEXT Statements 

These statements are used to create programming loops. They have the f,o,llowing 
formats: 

FOR variable = init val TO final val 
FOR variable = init-val TO final-val STEP increment 
NEXT 
NEXT variable 

The variable is any subscripted or unsubscripted numeric variable. If it is a 
su bscripted variable such as A(lO,J),its actual location is confirmed the first time' 
the loop is executed and does not change within the loop. Init val, final val and 
increment are any valid numeric expressions. They are also bound at' the first 
execution of the loop, and do not change. When the FOR statement is first 
executed, the variable is assigned the value of init val. When the NEXT statement 
encountered, the'value of increment is added to it: If no increment is specified,l 
is added. If the value of the increment is positive and the new value of variable 
does not exceed final val, the loop is re-executed. Likewise, if the value of the 
increment is negative and the new value of variable is not less than final val, the 
IOdp'is performed again. -

The loop consists of those statements which lie between the FOR statement and 
the NEXT statement. It is possible that the loop will never be executed if the 
increment is posi ti ve and final val is less than init val, or if the increment is 
negative and final_val is greater than init_val. -

The NEXT statement may be followed by the loop variable. If this is, the case, 
that variable must match the variable specified in the preceding FOR statement. If 
the loop variable is an array element, the NEXT statement should only specify the 
array name. 

The following demonstrates the use of these statements: 

34 



FOR J=O TO 10 STEP 2 
DISPLAY " J="; 
DISPLAY J; 

NEXT 

J= 0 J= 2 J= 4 J= 6 J= 8 J= 10 

FOR statement loops may be nested as follows: 

FOR 1=1 TO 10 

. 
FOR J(2,3,4)=A TO B STEP C 

NEXT J 

NEXT I 

4.5 The GOSUB and RETURN Statements 

BASIC User Reference Manual 
Control Flow Statem,ents 

Basic programs may have procedure blocks within them. A procedure block is a 
group of statements which are called by the GOSUB statement. When a RETURN 
statement is encountered the block is exited and execution is continued at the first 
statement after the GOSUB call. These statements have the following format: 

GOSUB line number 

RETURN 

The line number indicates the start of the procedure block. When the RETURN is 
encountered the block is exited. The following example illustrates the use of these 
statements: 

35 



BASIC, User RefereRce Manual 
Control Flow Statements 

1=10 
J=20 
GOSUB 100 
1=100 
J=200 
GOSUB 100 

100 DISPLAY I;J; 
DISPLAY I+J 
RETURN 

10 20 30 
100 200 300 

Procedure blocks may be nested in the following fashion: 

1=10 
GOSUB 100 
1=20 
GOSUB 100 

100 IF 1=20 THEN GOSUB 200 ELSE DISPLAY "In block 100" 
DISPLA Y "This is the second statement in block lOa" 
RETURN 

200 DISPLAY "In block 200" 
RETURN 

In block 100 
This is the second statement in block 100 
In block 200 
This is the second statement in block 100 

4.6' The ON-GOSUB -Statement 

The GOSUB statement has a computed format similar to the computed GOTO 
statement: 

ON expression GOSUB line_I, line_2, ••• 

I f the expression is equal to 1, control is transfered to the first line indicated. If 

36 



BASIC User Reference Manual 
Control Flow Statements 

the expression is equ al to 2, the second line indicated is chosen, etc. Like the 
computed GOTO statement, an error will result if the expression is less than one 
or greater than the number of listed line numbers. The following example 
illustrates the use of the computed GOSUS statement: 

1=1 
10 ON 1 GOSUB 100,200-,300 

1=1+1 
IF I <= 3 THEN 10 

100 DISPLAY "Block 100" 
RETURN 

200 DISPLAY "Block 200" 
RETURN 

300 DISPLAY "Block 300" 
RETURN 

Block 100 
Block 200 
Block 300 

4.7 The END and STOP Statements 

The END statement is used to indicate that the end of a program has been 
reached. It must be the last statement in a program. It has the format: 

END 

The STOP statement causes execution to terminate. There may be mdr~ than one 
STOP statement in a program. It has the form: 

STOP 

The following illustrates the use of these statements: 

ACCEPT "Enter a number": 1 
IF 1 > 0 THEN 10 
DISPLAY 1 
STOP 

10 1=-1 
DISPLAY I 
END 

37 



BASIC User Reference Manual 
Control Flow Statements 

CHAPTER 5 

ST ANDARD FUNCTIONS 

5.1 The Numeric Functions 

The numeric functions take as an argument a numeric constant, variable, or 
expression. These functions may be used within assignment statements, PRINT or 
DISPLAY statements, ON statements, and function definitions. 

5.1.1 The ABS Function 

The ABS function returns the absolute value of the argument. A nonnegative 
argument will be returned unaltered. The following is an example of the ABS 
function: 

1=2 
J=-3 
DISPLAY ABS(I); ABS(J) 

2 3 

5.1.2 The SIN Function 

The SIN function returns the sine of the argument passed in radians. In order to 
convert an angle from degrees to radians, multiply the number of degrees by 
PI/IBO. The following example illustrates the SIN function: 

1=25.0 
DISPLA Y SINO) 

-.13235175 

5.1.3 The COS Function 

The COS function returns the cosine of the argument passed in radians. In order to 
convert an angle from degrees to radians, multiply the number of degrees by 
PI/IBO. The following example illustrates the COS function: 

1=25.0 
DISPLAY COSO) 

.99120292 

38 



5.1.4 The TAN Function 

BASIC User Reference Manual 
Standard Functions 

The TAN function returns the tangent of the argument passed in radians. In order 
to convert an angle from degrees to radians, multiply the number of degrees by 
PI/180. The following example illustrates the TAN function: 

1=25.0 
DISPLAY T AN(I) 

-.1335264 

5.1.5 The A TN Function 

The ATN (arctangent) function returns the angle in radians, which has the tangent 
equ al to the argument passed. If degrees are desired, multiplying the output of the 
A TN function by 180/PI performs the conversion. The following example,' illustrates 
the A TN function: 

1=25.0 
DISPLAY A TN(!) 

1.5308176 

5.1.6 The EXP Function 

The EXP function yields the value of e, the base of natural logarithms, raised to 
the power' of the argument passed. The following example illustrates the EXP 
function: 

1=25.0 
DISPLAY EXPO) 

72005171000.0 

5.1.7 The LOG Function 

The LOG function yields the natural logarithm (base e) of the argument passed. 
The following example illustrates this function: 

1=25.0 
DISPLAY LOG(I) 

3.2188754 

39 



BASIC:.User Reference Manual 
Standard Functions 

5.1.8 The INT Function 

The INT function returns the largest integer which is not greater than the 
argument: 

DISPLA Y INT(25.9); INT(-3.2) 

25 -4 

5.1.9 The SGN Function 

The SGN function returns 0 if the argument is zero, 1 if the argument is positive, 
and -1 if the argument is negative: 

1=0 
J=749 
K=-1024 
DISPLA Y SGN(I); SGN(J); SGN(K) 

o 1-1 

5.1.10 The SQR Function 

The SQR function yields the square root of the value passed. If the argument is 
negati ve, an error results. The following example illustrates the use of the SQR 
function: 

1=25 
DISPLAY SQRO) 

5 

5.1.11 The RND Function and RANDOMIZE Statement 

The RND function produces evenly distributed pseudo-random numbers which, fall in 
the range X: 0 <= X < 1. It has the format: 

RND 

The RANDOMIZE statement can be used to specify a "seed value" which will 
generate a new sequence of numbers. It has the following format: 

RANDOMIZE numeric_expression 
RANDOMIZE 

40 



BASIC User Reference. Manual 
Standard Functions 

The same sequence of values will be produced by the RND function in different 
programs whenever no RANDOMIZE statement is used, or whenever there are two 
occurrences of the RANDOMIZE statement with the same seed value. If the 
RANDOMIZE statement is used without specifying a value, the seed value will be 
taken from the real-time clock. If there is no clock, the user will be prompted to 
enter a seed value. This will provide for an uncontrolled sequence of numbers. 

The following example illustrates the use' of these statements: 

RANDOMIZE (.12345678) 
FOR 1=1 TO 5 

DISPLAY RND 
NEXT I 

.6213 

.97039985 

.41409874 

.51999116 

.2612381 

5.2 String Functions 

The string functions are used in conjunction with string variables. These functions 
may be used within assignment statements, PRINT or DISPLAY statements, ON 
statements, and function definitions. 

5.2.1 The ASC Function 

The ASC function returns the decimal value of the ASCll code for the first 
character in the string argument. It has the format: 

ASC (string) 

The string may be any valid string expression. The following example illustrates' the 
use of the' ASC function: 

S$=" &" 
DISPLAY ASC(S$) 

38 

5.2.2 The BREAK Function 

The BREAK function finds the first character in a string that appears in a second 
string. It has the format: 

41 



BASIC User·· Reference Manual 
Standard Functions 

Strings 1 and 2 are any valid string expressions. This function compares the first 
character in string 1 to all the characters in string 2. If there is no match, it 
compares the second-character in string 1 to all the characters in string 2, etc. It 
returns the number of characters in string 1 which did not match any character in 
string 2 before a matching character was fuund. If no match was found, it returns 
the total number of characters in string 1. The following example illustrates this 
function: -

Sl$="ABC" 
52$="COW" 
S3$="XXXX1" 
DISPLAY BREAK (51$,52$) 
DISPLAY BREAK (52$,51$) 
DISPLAY BREAK (51$,53$) 
DISPLAY BREAK (53$,51$) 

2 
o 
3 
5 

5.2.3 The SPAN Function 

The SPAN function compares the characters in one string with the characters in a 
second string until a character in the first string is not found in the second string~ 
It has the format: 

String 1 and string 2 are any valid string expressions. Consecutive characters of 
string -1 are compared to characters in string 2. When a character in string 1 is 
found-which is not in string 2, SPAN returns-the number of characters that did 
match .. The following example shows the use of the SPAN function: . 

51$="$$$ Hi there" 
52$="-$" 
DISPLAY 5PAN(51$,S2$-) 

3 

42 



5.2.4 The LEN Function 

BASIC-User Reference Manual 
Standard Functions 

The LEN function yields the number of characters in the string passed. It has the 
following format: 

LEN (string) 

The string is any valid string expression. The following example shows the use of 
the LEN function: 

Sl$="ABC" 
S2$="ABCDEFGHIJKLMNOPQRSTUVWXYZ" 
DISPLAY LEN (51$) 
DISPLAY LEN (52$) 

3 
26 

5.2.5 The NUMERIC Function 

The NUMERIC function will determine whether or not the string passed represents 
a valid number. A -1 will be returned if it does, and a 0 will be returned if it 
does not. If a string represents a valid number, it may be passed to the VAL 
function (see Section 5.2.6). The following example illustrates the use of the 
NUMERIC functi on: 

DISPLAY NUMERIC ("1234"); NUMERIC ("12ABC") 

-1 0 

5.2.6 The VAL Function 

The VAL function returns the numeric value of the string argument. Leading and 
trailing blanks are permitted. Any string expression which is accepted by the 
NUMERIC function (see Section 5.2.5) may be passed to the VAL function without 
error. The following example illustrates the use of the VAL function: 

5$="1.234" 
K=VAL(S$) 
DISPLAY K+D 

1.234 

43 



BASIC ·User :'Reference Manual 
Standard Functions· 

5.2.1 The STR$ Function 

The STR$ function provides a counterpart to the VAL function. The STR$ function 
is passed a numeric value and returns the corresponding string valu~. It has the 
format: 

STR$(nu meric _ expressi on) 

The string returned is identical to the numeric value as it would appear on the 
console, i.e. it is preceded by a blank space or a minus sign, etc.· The following 
example illustrates the use of the STR$ function: 

1=1.234 
S$=STR$(I) 
DISPLA Y (5$) 

1.234 

5.2.8 The POS Function 

The pas function is used to determine the position of one string within. another. It 
has the following format: 

pas (string.)., string_2, start) 

String 1 and string 2 are any valid strings, and start is a numeric value. This 
function returns the position of the first occurrence of .string 2 within string 1. The 
search will begin at character position start within string 1. Start is rounded to an 
integer value if necessary. If string 2 is not found within string 1, a 0 will be 
returned. The following example illustrates the pas function: -

DISPLAY POS(tlRDW ROW ROW YOUR BOAT", "ROW", 1); 
. DISPLAY POS("RDW ROW ROW YOUR BOA Ttf

, "ROW", 2); 

1 5 

5.2.9 The RPT$ Function 

The RPT$ function returns a string which is a specified number of repetitions of 
the argument string.. It has this format: 

RPT$ (string, numeric_expression) 

The string is any valid string. The numeric expression may evaluate to/any 
nonnegative number less than 256. The string returned is that number of repetitions 

44 



BASIC User Reference Manual 
Standard Functions 

of the string passed. If the resulting string has a length greater than 255 an error 
will result. The following example shows the use of this function: 

DISPLAY RPT$("Cats ",3) 

Cats Cats Cats 

5.2.10 The UPRC$ Function 

The UPRC$ function changes all lowercase letters in the string passed to upper 
case letters. Nonalphabetic characters remain the same. The following example 
illustrates the use of this functi on: 

S$="Once upon a ti me •.• " 
DISPLAY UPRC$(S$) 

ONCE UPON A TIME ••. 

5 .. 2.11 The CHR$ Function 

The CHR$ function takes a numeric argument, the value of which must fall 
between ° and 255 inclusive. It returns a single-character string whose ASCll value 
is equ al to that nurnber. This complements the ASC function (see Section 5.2.1). 
Special control characters within DISPLAY or PRINT statements can be generated 
with this function. The following example shows the use of this statement: 

DISPLAY CHR$(65) 

A 

5.2.12 The SEG$ Function 

The SEG$ function extracts a segment of a string. It has the following format: 

SEG$(string, posi tion, length) 

The string is any valid string expressiono Position and length are numeric 
expressions which will be rounded to integers if necessary. Starting at position 
characters into the string, length characters will be extracted by the SEG$ 
function. If position is less than or equal to zero an error will result. If position is' 
greater than the length of the string, a null string will be returned. If length is 
less than 0, an error w ill result. If length is equal to 0, a null string will be 
returned. If length plus posi tion are greater than the remaining portion of the 
string, all of the string will be extracted starting at position. The following is an 
example of the use of the SEG$ function: 

45 



BASIC User Reference Manual 
Standard Functions 

S$ ="But don't you step on my Blue Suede Shoes ••• " 
DISPLA Y SEG$ (5$,26,16) 

Blue Suede Shoes 

5.3 Miscellaneous Functions 

The remaining standard functions discussed in this section are used in the same 
way as numeric and string functions. 

5.3.1 The OATS Function 

The DAT$ function returns the month, day and year in the form: 

month/day/year 

Month, day, and year are two-digit numbers. The following example displays the 
date using this function: 

DISPLAY DAT$ 

02/16/81 

5.3.2 The FREESPACE Function 

The FREESPACE function returns the number of bytes available in memory. It has 
the following format: 

FREESPACE(O) 

If there were 5000 bytes available, the following would occur: 

DISPLAY FREESPACE(O) 

5000 

5.3.3 The INKEY and INKEY$ Functions 

The INKEY function always returns zero. The INKEY$ function reads and removes 
a character from the keyboa-rd input buffer, and returns a string consisting of that 
character. These functions have the following formats: 

INKEY(O) 
INKEY$(O) 

46 



BASIC User Reference Manual 
Standard Functions 

The following example shows the use of the INKEY$ function: 

S$=lNKEY$(O) 

5.3.4 The EOF Function 

The EOF function is used to determine whether or not the end of a file has been 
read. It has the following format: 

EOF(X) 

X is a numeric expression that evaluates to the file number which was assigned 
when the file was opened. (See Chapter 7 for further information about files.) A 
zero is returned by the EOF function if the last record of the file has not yet 
been read. A 1 is returned if the last record has been read. A 2 is returned if an 
attempt has been made to read beyond the end of the file. A 4 is returned if the 
specified file number is not in use. 

5.3.5 The FTYPE Function 

This functi on al ways returns O. The type of a file is determined by the name 
associated with it. See Chapter 7 for further information on files. 

5.3.6 The TAB Function 

The TAB function advances the cursor or printer head to a specified position. It 
has the following form: 

T AB(position) 

Position is the column number where the next output will begin. The position may 
be a numeric constant, variable, or expression. This number will be rounded to an 
integer if necessary. It must be nonnegative, and the value actually used is this 
number modulus the output width of the device. If the cursor is already past the 
specified position, it will be advanced to that position on the next line. The 
following illustrates the use of this function: 

DISPLAY TAB(lO);CAT; 
DISPLAY TAB(12);CAT; 

CAT 
CAT 

47 



BASIC User Reference Manual 
Standard Functions 

5.3.7 The ERR Function 

The ERR function returns an integer error number which indicates the last 
exception which took place. If there has been no error, a zero is returned. The 
following illustrates the use of the ERR function: 

IF ERR > 0 THEN DISPLAY "ERROR ";ERR 

5.3.8 The TIMES Function 

The TIME$ function returns a string which represents the current time based on 
the real time clock (if the computer is equipped with one). The following example 
shows the use of this function: 

DISPLA Y TIME$ 

11:24:10 

This call to TIME$ yielded 24 minutes and 10 seconds after 11. 

48 



CHAPTER 6 

BASIC User Reference Manual 
Standard Functions 

USER-DEFINED FUNCTIONS AND SUBROUTINES 

6;~T Functions 

Functions are defined using the DEF and FNEND statements. A function consists of 
one or more statements which are executed each time the function is called. A 
ldriCti on may have parameters passed to it, and it may have local variables. 
FUnctions may also reference variables which are global to them. In the body of 
the 'function, a value is assigned to the function name. This value will be evaluated 
w'hen the function is called, and then returned as the value of the function. A 
fUh'ction may call itself and other functions recursively. Subroutines may also be 
called by functions and call functions in the same way (see Section 6.2). Functions 
an'dsubroutines may be nested to any depth. ' 

6.1.1 The DEF Statement 

The DEF statement is used to indicate a function definition. It has the following 
formats: 

DEF func name 
DEF func -name (par am list) 
DEF func-type func name 
DEF func =type func = name (param _list) 

The func type and param_list are optional and are described in the following 
paragraphS': 

For single-statement functions, the DEF statement defines the entire function. For 
multiple-statement functions, the DEF statement defines the function name, type, 
and parameters. Function definitions are commonly placed at the beginning of a 
program. The following example shows the use of the DEF statement to define a 
single statement-function: 

DEF A .fUNC(I,J,K)=I* J*K+200 

A FUNC is the name of this function. I, J, andK are parameters passed to it. The 
specified number of parameters must be passed each time the function 'is called. 
The value returned is the expression on the right side of the equal sign. The 
following is an example of a multiple statement function-definition: 

49 



BASIC User Reference Manual 
User-Defined Functions and Subroutines 

DEF A FUNC(I,J,K) 
A FUNC=I* J*K+200 
FNEND 

This function is equivalent to the one line function above. If the function name is 
assigned a value more than once in the body of the function definition, the last 
assignment before the execution of the FNEND statement determines the runtime 
function value. 

Function parameters are always passed by value& (Subroutine parameters are passed 
by reference, see Section 6.2.) Any number of parameters may be passed to a 
function. If necessary, the comment delimiters (* and *) may be used to comment 
ou t the end of the line so that more than one line may be used to declare the 
parameters. The parameters may be subscripted variables. In this case, they are 
defined exactly as they would be within a DIM statement. The following illustrates 
the use of comments to extend parameter lists and subscripted variables within 
parameter lists: 

DEF A FUNC(A,B,C,D,E,F ,G,H,I, (* 
- *) J,K,L,M) 

DEF ~FUNC( A(3,4), B$(5)*4 ) 

The function name may be any legal variable name which corresponds to the 
function type (numeric or string). If the function returns a numeric value, the 
functi on type may be optionally specified as INTEGER, REAL or DECIMAL. For 
example: 

DEF INTEGER A FUNC (I,J,K)=I* J*K+200 
DEF REAL B JUNC (I,J,K)=I* J*K+200 

String functions may be defined to return a string that has a maximum length: 

DEF MONTH$ (JULIAN)*3 

6.1.2 The FNEND Statement 

The FNEND statement indicates the end of a multiple statement function 
defini tion. This statement must be the last statement within the function body. A 
single statement function does not require an FNEND statement. The following 
example illustrates the use of this statement: 

50 



DEF F 

FNEND 

6.1.3 Calling Functions 

BASIC User Reference Manual 
User-Defined Functions and Subroutines 

User-defined functions, like the standard functions, may appear any place an 
expression of the function type is permitted. The type and number of parameters 
specified in the function definition must be passed at the call. An array element 
or an entire array may be passed (or any other type of variable which matches the 
definition). Only the array name is specified when an entire array is passed. The 
following are examples of function calls: 

I=FUNC1(I,J,K) 
S$=FUNC2$( Sl ARRAY$(I,J), S2 ARRA Y$, INT ) 
DISPLA Y FUNC3 -
DEF FUNC4(I)=I*FUNC3 

6.2 Subroutin.es 

Subroutines are similar to functions. There are three differences between them. 
First, the subroutine name may not be assigned a value as in a function. Rather 
than being used within assignment statements like functions, subroutines are called 
usi ng the CAL L statement (see Section 6.3). Second, parameters are passed to 
subroutines by reference (not by value as they are to functions). This means that if 
an assignment is made to a parameter within a subroutine, the contents of the 
actual location of that vari able within the caller will be altered. And third, a 
subroutine may not reference variables which are global to it (see Section 6.4)~ 
This includes other subroutines or functions. 

Subroutines, like functions, may be nested to any depth. Subroutines may call 
themselves recursively. Subroutines may also have any number of parameters. 

6.2.1 The SUB Statement 

Subroutines are defined using the SUB statement. The SUB statement has the 
following formats: 

SUB subr name 
SUB subr-name (param_list) 

This statement is similar to the DEF statement for functions (see Section 6.1.1). 

51 



BASIC User Reference Manual 
User~DefinedFunctions and Subroutines 

Like functi ons, this heading is followed by one or more statements. The parameter 
list follows the same rules as for functions. 

6 .. 2.2 The SUB END and SUBEXIT Statements 

Subroutines are terminated with the SUBEND statement in the same way that 
functions are terminated with the FNEND statement. But subroutines must always 
include the SUBEND statement, unlike one-line functions which do not need the 
FNEND statement. A subroutine may be specified on a single line by using double 
colons to separate statements. The SUBEND statement must be the last statement 
of subroutine. 

There may be zero or more SUBEXIT statements within the subroutine body. When 
a SUBEXIT statement is encountered, the subroutine is exited in the same manner 
as it would be had the SUBEND statement been executed. The following examples 
illustrate the use of the SUBEND and SUBEXIT statements: 

100 

SUB Sl (A) :: A=l :: SUBEND 

SUB S2 O,J) 
IF I=J THEN 100 

SUBEXIT 

SUBEND 

6.3 The CALL Statement 

The CALL statement is used to invoke a subroutine. It has the following formats: 

CALL subrou tine name 
CALL subrouti ne = name (param _list) 

When the subroutine returns, execution resumes at the statement immediately 
following the CALL statement. The number and type of the parameters within the 
CALL statement must match the definition of the subroutine. The actual variables 
passed as parameters may be altered by the subroutine. The following examples 
demonstrate the CALL statement; 

CALL SUBI 
CALL SUB2 (I,J,K) 

52 



BASIC User Reference Manual 
User-Defined Functions and Subroutines 

CALL SUB3 ( A(l,J), S _ ARRA Y$(,) ) 

6.,4 Local Variables and Parameters 

Parameters and local variables are valid only within the body of the function or 
subroutine. Numeric parameters may be defined to be INTEGER, REAL, or 
DECIMAL by using those statements when the parameters are declared. String 
parameters may be declared using the DIM statement if desired. Local variables 
are declared using the INTEGER, REAL, DECIMAL, and DIM statements on the 
lines which follow the function or subroutine heading. The following examples 
illustrate the declaration of function and subroutine parameters and local variables: 

DEF FUNC1 
INTEGER A,B 
REAL R1,R2 
DIM S$*10 

. 
SUB SUB1(INTEGER J,K, S ARRAY$(2,3)*10, 5$ ) 

DIM C$*20 -
INTEGER AN _ ARRA Y(2,3,4) 

In the above examples, FUNC1 is defined to have local variables A and B as 
integers, R1 and R2 as reals, and S$ as a ten-byte string. Subroutine SUB1 has 
parameters integer J, default type K (real unless otherwise specified), two­
di mensional string array S ARRAY$ and string S$. SUB1 also has local variables 
8$, a twenty-byte string, and AN_ARRAY, a three-dimensional integer array. 

All local variables are cleared to zero, and local strings are set to null, each time 
the function or subroutine is invoked. 

All variables within a subroutine are local to it. A subroutine may not access any 
variables external to it except through its parameter list. 

A function may access variables in the standard block-structured manner. Any 
variables which are global to a function up to the subroutine (or program) 
definition may be accessed. If variables are not declared as parameters or local 
variables within functions, they will be assumed to be global. 

53 



BASIC User Reference Manual 
User-Defined Functions and Subroutines 

6.5 Line Numbers and Data Lists Within Subroutines and Functions 

Statement line numbers are local to functions and subroutines .. This means that any 
GOTO, GOSUB, ON, RESTORE line number or PRINT USING line number 
statements will refer to line numbers within the function or subroutine only: 

DA T A lists and READ data statements are local to subroutines and functions. A 
RESTORE is executed automatically on entry to subroutines and functions. 

6.6 The USES and LIBRARY Statements 

BASIC programs may use separately compiled BASIC, Pascal, or FORTRAN units. 
These u ni ts contain functions and subroutines (or procedures) which may be called 
by a BASIC program. Units reside on disk, either in SYSTEM.LIBRARY or in some 
user-created file. 

Units may have interface text which declares variables, functions, and subroutines 
(or procedures) to be ext~rn911y recognized by the host program. This text is 
compiled when, during compIlatIon of the host BASIC program, a USES statement 
is encountered. The USES statement indicates that one or more specified unites) 
wi thin SYSTEM.LIBRARY are to be used by the BASIC program. It has the 
following format: 

USES unit_namel, unit_name2, unit_name3, ••• 

If the unites) reside in a file other than SYSTEM.LIBRARY, that file may be 
specified with the LIBRARY statement. It has the format: 

LIBRARY "file name" 

The default library is SYSTEM.LIBRARY. Once the LIBRARY statement has been 
executed, the indicated file will serve as the library where all units are to be 
found by all USES statements, until another LIBRARY statement is executed. The 
following is an example of these two statements: 

USES PASCALIO 

LIBRAR Y "MY.LIB.CODE" 
USES MY UNITl, MY UNIT2, MY UNIT3 
USES MY-UNIT4 - -

LIBRARY "1I5:ANOTHER.CODE" 
USES ANOTHER UNIT 

In this example, PASCALIO will be found in SYSTEM.LIBRARY, MY _UNITl through 

54 



BASIC User Reference Manual 
User-Defined Functions and Subroutines 

MY UNIT4 will be found in MY.LIB.CODE on the prefixed disk, and 
ANOTHER UNIT will be found in ANOTHER.CODE on the disk in drive 115. 

In the 11.0 version of the UCSD p-System, after compilation the unit must be 
linked into the codefile. This may be done by invoking the Linker or, if the unit 
resides within SYSTEM.LIBRARY, by simply R(UNning the program from the main 
system prompt which will automatically use the Linker. In the IV.O version of the 
UCSD p-System, the unit must be connected to the host codefile usLng the 
Librarian, or if the unit resides in SYSTEM.LIBRARY, it will be called directly 
from there during program execution. More information on units, the Linker and 
the Librarian may be found in the UCSD Pascal Users' Manual. 

6.7 Pascal Interface Text Restrictions 

The BASIC compiler will parse the interface sections of Pascal units subject to 
some restrictions. First, only the following simple types (which corespond to BASIC 
types) are allowed: 

INTEGER 
REAL 
STRING or STRING[ <size> ] 
ARRAY [ <dimensions> ] OF <one of the preceding simple types> 
ARRAY [ <dimensions> ] OF ARRAY[ <dimensions>] OF ••• 

No other types, and no user-defined types are permitted. A second restriction is 
that no constants are allowed within interface sections. For example, the following 
would not be correct: 

ARRAY [LOW_INDEX, HIGH_INDEX] OF INTEGER; 

Arrays such as this may be declared if the indices are ordinary integers. 

Procedure and Function declarations are allowed, as long as the type of the 
parameters and the function type conform to these same restrictions. 

The BASIC program should refer to any numeric Pascal variables which exceed 
eight characters in length by the first eight characters only. Alternatively, the 
Pascal program may be written so that no externally reconizable numeric variables 
exceed that length. If a Pascal string variable does not exceed eight characters in 
length, it should be refered to by BASIC with a dollar sign appended. If it does 
exceed that length, if should be referred to by BASIC as its first eight. characters 
with a dollar sign appended. 

55 



BASIC User Reference Manual 
User-Defined Functions and Subroutines 

6.8 The UNIT Statement 

In order to create a BASIC unit, which is separately compiled and used by a host 
BASIC, Pascal, or FORTRAN program, the UNIT statement is used. This statement 
has the following format: 

UNIT unit name 

The UNIT statement should be at the beginning of the text. Following this heRding, 
an interface section may be declared using the INTEGER, REAL, DECIMAL, and 
DIM statements. Following this, Functions and Subroutines may be declared. These 
routines will be accessible to the host program. There should be no main program 
in the unit. The following is an example of a BASIC unit: 

UNIT MY UNIT 
INTEGER I,J 
DIM S$*20 

DEF A FUNC (A,B,C) 
IF A-> 0 THEN GOTO 10 

10 FNEND 

SUB A SUB (PARAM$) 
IF S$=PARAM$ THEN 1=2 

SUBEND 

END 

In the above unit, integers I and J, and string S$ are able to be referenced from 
the host program. They are essentially global variables in the host. A FUNC and 
A SUB are accessible to the host program also. They are global routines- within the 
host as if they had been declared, like any other function or procedure, at the 
beginning of the host. 

All variable, function and subroutine names should be distinguishable by their first 
eight characters if the unit is to be used by a Pascal host program. This is 
because Pascal only distinguishes identifiers by their first eight characters. Also, no 
special characters may be used in the BASIC variable, function and subroutine 
names because Pascal allows only alpha-numeric characters within identifiers. The 

56 



BASIC User Reference Manual 
User-Defined Functions and Subroutines 

single exception to this is the dollar sign required at the end of a string variable 
name. 

The BASIC compiler will convert the externally recognizable BASIC text into a 
Pasc al interface section so that the Pascal compiler may use the compiled BASIC 
unit. 

57 



BASIC User Reference Manual 
User-Defined Functions" and Subroutines 

58 



CHAPTER 7 

FILE I/O AND VIRTUAL ARRAYS 

7.1 Opening and Closing Files 

SofTech M icrosystems BASIC allows the user to access disk files. The file must be 
created, or opened if it already exists, before it can be accessed. The file should 
be closed before the program terminates. If an error occurs during program 
execution, the files left open will remain open. 

7.1.1 The OPEN Statement 

The OPEN statement will either open an existing file or create a new one. Once 
the file is open, records within it may be accessed until the file is closed. The 
OPEN statement has the following format: 

OPEN IIfile_num: "file_name", attributes 

File num is a numeric expression which has a positive value less than 256. This 
nu mber will be associated with the file as long as it is open. File num should not 
be assigned to any other file until this file is closed. File name is a valid UCSD p­
System file name. This name may include a unit number (such as 114:FILE.TEXT) or 
a unit name (such as DISKl:FILE.TEXT). The attributes are one or more of the file 
attributes which determine: File Access Mode, File Organization, File Length, File 
Format, Record Type, and Record Length. These are discussed in the following 
sections. 

If any of the attributes in the following two lists are used, they must appear in 
the order shown: 

SEQUENTIAL - DISPLAY - VARIABLE - File Access Modes 
RELA TIVE - INTERNAL - FIXED - File Access Modes 

7.1.2 File Access Modes 

The OUTPUT access mode indicates that the file to be opened is to be created as 
a new file. New records may be written to a file declared with this mode. This 
mode must be used if a new file is to be created. A device, such as a disk drive, 
may not be opened with this mode, because a device cannot be created. The 
following example will create FILE.TEXT on the disk in drive 114 and associate the 
file with file number 1: 

OPEN Ill: "1I4:FILE.TEXT", OUTPUT 

The INPUT access mode indicates that the file may be read from. If INPUT is the 
only attribute used, an attempt to write to the file will result in an error. If both 
the OUTPUT and INPUT attributes are used, a new file will be created which can 
be wri tten to and read from. The following examples illustrate the use of the 
INPUT at tri bu te: 

59 



BASIC User Reference Manual 
File I/O and Virtual Arrays 

OPEN Ill: "1I4:FILE.TEXT", INPUT 
OPEN Ill: "1I4:FILE. TEXT", INPUT, OUTPUT 

The UPDATE access mode indicates that the file may be read from and written 
to. This is the default mode. If this mode is used with the OUTPUT mode, a new 
file will be created which can be read from and written to (this is equivalent to 
using the combination of INPUT and OUTPUT access modes). The following is an 
example of the use of the UPDATE mode: 

OPEN Ill: "1I4:FILE. TEXT", UPDATE 

The APPEND access mode is used only with sequential files and indicates that 
records may be written to the end of the file. No reads may be done, nor may a 
RESTORE statement be used on the file. All records will be written, sequentially, 
starting at the end of the file. The following is an example of the use of the 
APPEND access mode: 

OPEN Ill: "1I4:FILE. TEXT", APPEND 

7 .1.3 File Organization 

Files may be opened with either of two file organization attributes: SEQUENTIAL 
or RELATIVE. If no attribute is specified, SEQUENTIAL is assumed. Virtual Arrays, 
which allow a file to be accessed as though it were an array in memory, are 
RELATIVE files. 

SEQUENTIAL files are identical to Pascal text files. SEQUENTIAL files are written 
to and read from in sequential order, beginning with the first record in the file. 
Also, records may be appended to the end of existi ng SEQUENTIAL files. 

Peripheral devices are treated as SEQUENTIAL files. A device may be opened and, 
if the device allows, written to or read from. The following examples illustrate 
opening the Printer (LPOI and PRINTER: are treated identically): 

OPEN 1I1:"PRINTER:" 
OPEN 112:"LPOl" 

An ordinary SEQUENTIAL file may be opened as follows: 

OPEN 1I1:"1I5:FILE. TEXT", INPUT, SEQUENTIAL 

RELA TIVE files allow sequential access and random access to the records within a 
file. If a RELATIVE file is to be opened, the keyword RELATIVE must be one of 
the specified attributes. If a new RELATIVE file is to be created, the attributes 

60 



BASIC User Reference Manual 
File I/O and Virtual Arrays 

INTERNAL and FIXED must also be specified. The following examples illustrate 
how relative files are opened: 

OPEN 1f1:"1f5:FILE1", RELA TIVE, INPUT 
OPEN 1f2:"1I5:FILE2", RELATIVE, INTERNAL, FIXED, OUTPUT 

If a record in a RELATIVE file is to be accessed out of sequence, that record is 
specified by a number which represents its position within the file. The first record 
wi thi n a file is record number zero. If it is desired to access the 12'th record in 
the file, the number eleven should be specified. This record number is specified 
wi thin the REC clause of an INPUT, ACCEPT, RESTORE, or PRINT statement (see 
Section 7.2.2). 

7.1!4 File Length 

When a RELATIVE file is created, it is assigned a maximum file length. It may 
not expand beyond that size. This file length may be specified as one of the 
attributes. If it is not, a default size of 144 logical records will be assumed. After 
a file reaches its maximum size, it must be copied into a larger file before more 
records may beadded to it. The following is an example of file length specification: 

OPEN 1I1:"1I5:FILE2", RELATIVE 700, INTERNAL, FIXED, OUTPUT 

7.1.5 File Format 

The information within files may be stored in either of two formats: DISPLAY or 
INTERNAL. 

The DISPLAY format is used with sequential files and indicates that the data is 
stored in ASCll format. This type of file typically contains text and string data. 
DISPLAY is the default file format attribute, and may be used only with 
SEQUENTIAL files. The following example shows the use of the DISPLAY attribute: 

OPEN 1I1:"1I5:F 1. TEXT", SEQUENTIAL, DISPLAY, UPDATE 

The INTERNAL format must be specified when opening or creating RELATIVE 
files. The INTERNAL format indicates that the data within the file is stored in 
binary format. This type of format is especially useful when dealing with numeric 
quantities. When a value is written to this type of file, it is stored in the format 
which corresponds to its declaration within the program, e.g. INTEGER, REAL or 
DECIMAL. It is important, therefore, that the data be read and written using 
variables of the same type. The following example illustrates the use of the 
INTERNAL file format" attribute: 

OPEN 112:H II5:FILE2", RELATIVE 700, INTERNAL, FIXED, OUTPUT 

61 



BASIC User Reference Manual 
File I/O and Virtual Arrays 

7.1.6 Record Length 

Records in a SEQUENTIAL file may have a fixed or variable length. The length 
attribute should be specified in the OPEN statement when a file is created. This 
"logical record length" should be greater than or equal to 2, and less than 32767 
(bytes), and must be an even number. 

The VARIABLE attribute indicates that records in the file may be of different 
lengths. An optional maximum length may be specified by a number following the 
keyword VARIABLE. If no maximum length is specified, a default of 80 bytes will 
be assumed. If a record being written to the file exceeds the maximum record 
size, the current record slot is terminated, and the remaining data is written into 
the next record. The VARIABLE attribute is assumed if no record length attribute 
is indicated. The VARIABLE attibute may be used in conjunction with sequential 
files only. In the following example, records have a variable length with a 
maximum size of 200 bytes: 

OPEN IIl:"1I5:Fl.TEXT", SEQUENTIAL 500, VARIABLE 200, OUTPUT 

The FIXED attribute indicates that the records in the file are all of the same 
size. The size is specified to the right of the keyword FIXED. Any valid INTEGER 
expression may be used to specify this length. An attempt to read or write records 
which are not of the correct size will result in an error. RELATIVE files must be 
created with the FIXED attribute. Also, when an existing RELATIVE file is 
opened, the FIXED attribute must be specified and the record size must match the 
size specified when the file was created. The default length for fixed records is 
256 bytes. The following example creates a RELATIVE file with 32-byte records: 

OPEN 112:"1I5:FILE2", RELATIVE 700, INTERNAL, FIXED 32, OUTPUT 

7 .1. 7 The ASSIGN Statement and Virtual Arrays 

The ASSIGN statement is used to associate a Virtual Array with a disk file. After 
the ASSIGN statement has been executed, assignments may be made to the Virtual 
Array, in which case the disk file is written to. Also, variables may be assigned 
from the Virtual Array, in which case the disk file is read in order to obtain the 
needed values. In this way Virtual Arrays may be used as ordinary arrays, but 
instead of taking up space in main memory, they actually exist on disk. Very large 
arrays may be used in this manner, without the danger of running out of memory 
space. The total number of elements within an array, however, may not exceed 
32767. The following is an example of the use of the ASSIGN statement to create 
a Virtual Array: 

ASSIGN "1I4:REAL.FILE" USING V _ ARRA Y(lOO,lOO) 

62 



BASIC· User Reference Manual 
File I/O and Virtual Arrays 

In this example, REAL.FILE on disk 114: is opened and associated with V ARRAY. 
V ARRAY may now be used as any other array, but whenever it is accessed, 
114:REAL.FILE is really used. V ARRAY is declared as it would be within a DIM 
statement and maybe preceded by iNTEGER, REAL or DECIMAL. The following 
example shows the use of Virtu al Arrays: 

ASSIGN "1I4:REALFILE" USING INTEGER V ARRAY(100,100) 
ASSIGN "1I5:REALFILE2" USING STRINGS$(IO,10,100)*10 
V ARRA Y(99,97) = 1234 
STRINGS$(2,B,97) = STR$( V _ ARRA Y(99,97) ) 

CLOSE V ARRAY 
CLOSE STRINGS$ 

The CLOSE statements are used to close the disk files, see Section 7.1.B. 

7.1.8 The CLOSE Statement 

The CLOSE statement ends the association between an opened file and its file 
number. The CLOSE statement is also used to end the association between a disk 
file and a virtual array name. The file number or virtual array name is then 
available to be re-usedif desired. The closed disk file is inaccessible to the 
program unless it is re-opened. If the file number is not associated with an open 
file when the CLOSE statement is executed, an error will result. The EOF function 
can be used to determine if this association exists. The CLOSE statement has the 
following formats: 

CLOSE IIfile number 
CLOSE virtual_array _name 

Virtual arrays are also impliCitly closed when a STOP, END, or RUN statement is 
executed. 

When a new file is opened, it must be explicitly closed with the CLOSE statement 
if it is to remain on disk after the program has finished execution. By adding the 
word DELETE to a CLOSE statement, the closed file will be removed from the 
disk directory even if it existed before the program opened it. The following shows 
the use of the DELETE option: 

OPEN 112:"1I4:JUNK. TEXT" 
CLOSEII2:DELETE 

63 



BASIC User Reference Manual 
F He I/O and Virtual Arrays 

7.2 File I/O Statements 

Records within a file may be accessed using the INPUT, ACCEPT, and PRINT 
statements. After the file has been opened, the execution of one of these 
statements causes a record to be read from or written to the indicated file. If a 
data separator (comma, semicolon, or apostrophe) is used to terminate one of these 
statements, I/O will be defered. The RESTORE statement is used to select, in a 
random access manner, the next record on which I/o statements will perform their 
function. The following are the simplest formats of these statements: 

PRINT IIfile number: variable list 
INPUT IIfile -number: variable list 
ACCEPT IIfile number: variable 
RESTORE IIfHe number 

The PRINT statement outputs the variables listed to the indicated file. The INPUT 
and ACCEPT statements input from the file indicated, to the variables in the list. 
A fter one of these statements is executed, an internal record pointer is advanced 
to the next record. The RESTORE statement points the internal record pointer to 
the first record in the file. 

If a record contains more variables than can be listed on one line, the I/o 
statement may be terminated with a data separator and further statements can be 
used to complete the 1/0. 

7.2.1 Sequential File I/O 

Because sequential files use the DISPLAY format, variables written to them will be 
in the same format as if they were written to the console. In the following 
example the variables 1, J, and K are written with trailing blanks, and a preceding 
blank or minus sign (because of the comma data separator, see Section 3.1). The 
file is then restored, and the variables are read back into a string. The Standard 
Functions could then be used to convert the string into three separate numeric 
values again. 

PRINT Ill: I,J,K 
RESTORE III 
INPUT IIl:THREE_VARS$ 

In the next example 1, J, and K are written with commas between them (because 
of the apostrophe data separator, see Section 3.1). This allows the INPUT 
statement to read the three separate vari abIes directly as numeric values. 
Alternatively, the ACCEPT statement (which doesn't treat commas as data 
separators) can be used to read the variables into a string. 

64 



PRINT 112: I'J'K 
RESTORE 112 
INPUT 112: I,J ,K 
RESTORE 112 
ACCEPT 112:THREE VARS$ 

BASIC User Reference Manual 
File I/O and Virtual Arrays 

If there are fewer vari abIes in a record than in the variable list of an INPUT 
statement, subsequent records will be read until enough variables are. obtained. If 
there are more variables in a record than in the variable list of an INPUT 
statement, the remaining variables will be discarded unless the variable list is 
terminated with a data separator. In this case the next input operation will read 
further data from the same record. 

The following example shows how 40 variables may be written to the same record: 

FOR 1=1 TO 40 DO 
PRINT 1I1:0ATA ARRAY(l)' 

NEXT -
PRINT Ill: 

In this example, the apostrophe indicates that more data is still to be written to 
the same record after the current PRINT statement is finished. (The apostrophe 
also inserts commas between each value written to the file.) The PRINT statement 
after the loop completes the record. Future PRINT statements to this file will 
wri te to the next record. 

The USING option (see Section 3.2.5) can be used in conjunction wi~h. the PRINT 
statement to files. This allows formatting of the file contents. The following is an 
example of the PRINT-USING statement to a file: 

PRINT III USING 111111.1111: NUM 

7.2.2 Relative File I/O 

Relati ve files always contain data in the INTERNAL format. This format may be 
INTEGER, REAL, DECIMAL, or string. Because of this, the apostrophe data 
separator, which produces commas in the output, may not be used with relative 
files. The input variables used to read in data should be identical in number and 
type to the output variables used to write the data originally. Otherwise, incorrect 
results will occur. If string variables are written to relative files, the runtime 
length of the string determines the number of characters written. 

A particular record in a relative file may be accessed using the REC clause. The 
keyword REC is followed by the number of the record (zero is the first record in 
the file). 

65 



BASIC User Reference Manual 
F He I/O and Virtual Arrays 

In the following example two strings are written and then read from the lO'th 
record in a f He: 

Sl$="5TRING" 
52$="FELLOW" 
PRINT Ill, REC 9: 51$,S2$ 
INPUT Ill, REC 9: S3$,54$ 

Fourteen bytes are written, a length byte and six characters for both Sl$ and 52$. 
The INPUT statement assumes the first character is a length byte and assigns S3$ 
accordingly. The byte which follows the first string is then assumed to be the 
length byte for the second string, which is assigned to S4$. 

If several statements are needed to write to or read ,from a single record, a data 
separator can be placed at the end of each statement~ This defers the final 1/0 to 
that record. Only the first such statement should contain a REC clause, however, 
since each occurrence of a REC clause will cause a new record to be accessed. 
The following example writes 40 values to record N: 

PRINT Ill, REC N: INFO(l); 
FOR 1=2 TO 40 • < 

PRINT Ill: INFO(I); 
NEXT 
PRINT III 

7.2.3 The RESTORE Statement 

The RESTORE statement is used to reposition the internal file record pointer to a 
specific record. SEQUENTIAL files use the RESTORE' statement with the following 
format: 

RESTORE file number 

The indicated SEQUENTIAL file is repositioned to the first record within it. 

RELA TIVE files use the RESTORE statement with the following formats: 

RESTORE file number 
RESTORE file=number, REC record number 

The indicated file's internal record pointer is set to the record number specified in 
the REC clause. If no REC clause is specified, the file is repositioned to the 
beginning. In the following example, the file is reset to the tenth record: 

RESTORE Ill, REC 9 

66 



The next read operation reads that record. 

67 

BASIC User Reference Manual 
File I/O and- Virtual Arrays 



BASIC User Reference <Manual 
F He 1/0 and Virtual Arrays 

68 



ABS 
APPEND 
AT 
BELL 
CHR$ 
DAT$ 
DEF 
ELSE 
ERASE 
EXP 
FOR 
GO 
IF 
INKEY$ 
INTEGER 
LET 
NOT 
OPTION 
PRINT 
READ 
RELATIVE 
RETURN 
SEG$ 
SIN 
SQR 
STR$ 
SUBEXIT 
THEN 
UNIT 
VAL 

APPENDIX A 

BASIC RESERVED WORDS 

ACCEPT 
ASC 
ATN 
BREAK 
CLOSE 
DATA 
DIM 
END 
ERR 
FIXED 
FREESPACE 
GOSUB 
IMAGE 
INPUT 
INTERNAL 
LIBRARY 
ON 
OUTPUT 
PUNCTUA TION 
REAL 
REM 
RND 
SEQUENTIAL 
SIZE 
STEP 
SUB 
TAB 
TIME$ 
USES 
VARIABLE 

69 

ALL 
ASSIGN 
BASE 
CALL 
COS 
DECIMAL 
DISPLAY 
EOF 
ERROR 
FNEND 
FTYPE 
GOTO 
INKEY 
INT 
LEN 
LOG 
OPEN 
POS 
RANDOMIZE 
REC 
RESTORE 
RPT$ 
SGN 
SPAN 
STOP 
SUBEND 
TAN 
TO 
USING 



APPENDIX B 

BASIC ERROR NUMBERS 

Compiler Errors 

1. Illegal or missing label 
2. Illegal or missing variable name 
3~ Duplicate ALL statements 
4. Doubly-defined variable 
5.· Right parenthesis or comma is expected here 
6. Bad format 
7. Integer is expected here 
8. No scale in decimal statement 
9. Illegal character in text 
10. Illegal statement 
11. FOR without matching NEXT 
12. Array is too large 
13. Illegal variable type 
14. Illegal operator in statement. 
15. Wrong number of dimensions 
16. Wrong number of arguments to function or subroutine 
17. Missing BASE in OPTION statement 
18. Bad number in OPTION statement 
19. Too many OPTION statements 
20. Function reference is not allowed here 

.21. Expression should start with a constant or variable 
22. Doubly-defined label 
23. Too much stuff in statement 
24. Missing equal-sign in assignment statement 
25. Missing THEN in IF· statement 
26~ Missing GOTO in ON statement 
27. Missing equal-sign in FOR statement 
28. NEXT statement without FOR statement 
29. Missing TO in FOR statement 
30. Undefined label 
~1. Colon is expected here 
32. Missing ALL after ERASE 
33. Left parenthesis expected here 
34. REC clause is expected here 
35. Too many input variables in the ACCEPT statement 
36. Variable is expected here 
37. String is expected here 
38. Array dimension is too small 
39. Pound (II) is expected here 
40. Delete is expected here 
41. Comma is expected here 
42. File types conflict or are inconsistent 
43. Modes conflict 

70 



44. USING is expected here 
45. Missing exponent in number 
46. FNEND not expected 
47. SUBENO not expected 
48. Function name not expected 
49. Too many jumps 
50. Too much object code 
51. Out of memory space 
52. Number is too large 
53. Number is expected here 
54. Missing GOTO or GOSUB 

BASIC User Reference Manual 
Error Numbers 

55. Right parenthesis or semicolon is expected here 
56. Semicolon is expected here 
57. Too many units are included 
58. Unit not found in library 
59. Error attempti ng to open include or uses file 
60. Variable in NEXT statement does not match FOR statement 
61. Too many UNIT statements 
62. Too many subroutines and functions 
63. Subroutine call is expected here 
64. SUBEND or FNEND is expected here 
65. END expected 

71 



BASIC User Reference Manual 
Error Numbers 

Execution Errors 

1. String size error 
2. Missing or bad number 
3. File is not open 
4. Not enough input 
5. Bad number (conversion from string) 
6. Too much input 
7. Too many variables for print image 
8. Image fi eld error 
9. End of data list 
10. Wrong type of data in data list 
11. File types do not match 
12. You tried to open an open file 
13. You cannot restore a sequential file 
14. Read record overflow of relative file 
15. Write record overflow of relative file 
16. Bad arguments to SEG$ function 
17. Number too large for exponentiation 
18. Negati ve argument in exponentiation 
19. ON statement index is out of bounds 
20. You cannot write to a read-only file 
21. You cannot read from a write-only file 
22. You cannot close file 110. 
23. You cannot close a closed file 
24. You cannot open-for-output an existing file 
25. You cannot open-for-output a device 
26. Relative record number is too large or too small 
27. You cannot restore an APPEND file 
28. The number of records in the OPEN statement is bad 
29. The record size in the OPEN statement is bad 
30. Too many returns from GOSUB 
31. Too many GOSUB statements 
32. FREESPACE argument is not zero 

72 



73 

BASIC User Reference Manual 
Error Nu mbers 



NOTES 



NOTES 



NOTES 



A SUBSIDIARY OF SOFTECH 

UCSD p-SYSTEM and UCSD PASCAL-

A PRODUCT FOR MINI- AND MICRO-COMPUTERS 

Version IV.O 

INTERNAL ARCHITECTURE GUIDE 

First edition: March 1981 

SofTech Microsystems, Inc. 
San Diego 1981 

9494 Black Mountain Rd., San Diego, CA 92126 (714) 578-6105 TWX: 910-335-1594 



This guide was written by Gail Anderson, Randy Clark, Chip Chapin, Bill Franks, 
Mark Overgaard, and Stan Stringfellow, and edited by Randy Clark. Much advice 
and information was supplied by Rich Gleaves, Steve Koehler, and Mark Overgaard. 

The e di tor feels this is the appropriate place to thank all the people at Arts & 
Crafts Press, both for the quality of their work, and their truly admirable 
patience. 

UCSD, UCSD Pascal, and UCSD p-System are all trademarks of the Regents of the 
University of California. Use thereof in conjunction with any goods or services is 
authorized by specific license only, and any unauthorized use is contrary to the 
laws of the State of California. 

CP/M® is a registered trademark of Digital Research Corporation. 

Copyright © 1981 by SofTech Microsystems, Inc. 
All rights reserved. No part of this work may be reproduced in any form or by 
any means or used to make a derivative work (such as a translation, 
transformation, or adaptation) without the permission in writing of SofTech 
Microsystems, Inc. 



TABLE OF CONTENTS 

SECTION 

INTRODUCTION 

1 
2 

Purpose of this Guide ••••• 
A Brief History of the System 

11 THE P-MACHINE 

1 

2 

3 
4 

Overview •••••••••• 
1 Interpretive Execution 
2 The Stack and the Heap 
3 Code Segments 
4 Device I/o 
Program Code 
1 Code Segments 

2 

3 

1 Code Segments and Byte Sex 
2 Routine Dictionaries 
3 Routine Code ••••• 
4 The Constant Pool •• •••••••• 
5 The Relocation List 
6 Segment Reference List 
7 Linker Information 
Codefile Organization • • ••••••• 
1 The Segment Dictionary 
2 Assembler-Generated Codefiles 
Code Segment Environments 
1 Segment Information Blocks (SIBs) 
2 Environment Records (E RECs) 

T ask Environments • • • • •• -
P:-Machine Instru ctions ••••• 
1 The Intrinsic P MACHINE 
2 P-Code Instruction Set 

1 Operands and Notati on ••••• 

2 

1 Instruction Parameters • • • • 
2 Dynamic Operands 
3 Activation Records 
4 Conventions •• •• 
Individual Instructions 

. . . . 

PAGE 

1 
2 

5 
5 
5 
6 
7 
8 
8 

10 
10 
11 
12 
17 
21 
23 
27 
27 
33 
34 
34 
37 
40 
44 
44 
46 
46 
46 
47 
48 
50 
52 

iii 



111 LOW-LEVEL I/o 

1 
2 

3 

4 

5 

Introduction to the 1/0 Subsystem ............. ••• 
The Language Level: Device I/O Routines 
1 Calling the RSP/IO 
2 10RESUL T and Completion Codes 
3 Logical Disk Structure 
The Interpreter Level: The RSP /10 
1 Calling Mechanisms 
2 Semantics 
The Machine Level: The BIOS 
1 Design Goals •••• 
2 Completion Code.s •• ••• 
3 Calling Mechanisms 
4 Character Codes • • •••• 
5 Semantics 
6 Special BIOS Calls 
Appendices 
1. Appendix A Summary of BIOS Calling Sequences •••••• 
2 Appendix B -- Processor-Specific BIOS Calls •••• 

IV THE OPERATING SYSTEM 

V 

1 

2 

3 

4 

Organization ••••••••••••••• 
1 Structured Overview of the System •••• 
P-Machine Support 
1 The Heap ••••••••••••• 
2 The Codepool 
3 F aul t Handling • • • • • • • • • • • • • • • • • 
4 Concurrency 
I/o Support 
1 File Information Blocks (FIBs) 
2 Directories •••••••••• 
3 Varieties of I/o 
Using the Screen Control Unit 

PROG~AM EXECUTION 

VI APPENDICES 

iv 

A 
B 
C 

Glossary •••••• 
P-Machine Opcodes 
ASCll • • • • • • • • 

71 
74 
74 
77 
78 
81 
81 
85 
88 
88 
88 
89 
91 
92 

101 
103 
103 
105 

III 
III 
113 
113 
118 
120 
122 
123 
123 
124 
126 
127 

133 

135 
138 
143 



FIGURES: 

l. Executable Code Segment Format . . · · · · · · · · · · · · · . 9 
2. Constant Pool . . . . · · · · · · . . . · · · . . · · · · 13 
3. Relocation List . . · · · . · · · · 19 
4. Main Memory Usage · · · · · · · · · · · · · . . · · · · 43 
5. Procedure Activation Record · · · · · · · · 49 
6. Directory Format . . · · · · · · . . . . . · · · . . 125 

v 





Archi tec,t:ur.~ ,p ... j,~e 
. ~, . ;1~·t~9~4·¢.~:ijon 

1. INTRODUCTION 

1.1 Purpose of this Guide ; 
", . 

. ~ 

This guide describes the internal design of the UCSD p-S'ystem: the P-:ffla~/liD.e, 
Operating System" ba,~ic 1.I0f and the way in which these elem.ents are organi,~e.9"Jo 
support the running of a program written in UCSD Pascal (qr BASl~., .. or 
FORTRAN).' .' 

It should serve as a. guide and reference for more advanced users' of ttJe. 'j 'S:y~ie:~, 
but is not intended to., be a standalone definition for the us~,. ·of· Impl~;r;T:l~Eltqf~. 
Such a definition does not yet exist;. if one is written, it will probably be",Qa~d.::Qn 
the format of this book. . . , 

Perhaps the b,estway to use this guide is to read it sequentially, skipping'~l~~p~e 
sections (such . as the list of P-codes) that go into very specific . detqil~,,'l 'Tihis 

. should gi ve'the reader ,a fairly complete picture of what goes on . within the 
System. If the user then needs to know specific internal details, th,e" r~levant 
section can be referred to later. . ,; 

While few users will want or need to implement a p-System from,sc~9t9h:,~, ,toe 
internal descriptions provided in. this guide should be useful to a>nJ,u:nqe~ ;9f 
:audiences. 

The largest audience' is probably those who will make no specific: (u~~).pf!:~Jtjle 
~·il'Jformation. To thes~.l)sers, the benefit will be a better understanding \q~";:!:J:~e 
System's operation and a 'general improvement in their ability to enginee~:·pJ;'19gr,ams 
for effective execution i~ the p-System environment. t'~ 

'/'10:; ~'; 

'Second, there are the;Jmplementors of system software facilities that co~pt~ment 
existing System capabilities: for instance, new language translators, new);i},'ste81 
utilities, or Interpreter~ for additional processors. For this group of progr..pmmer;> , 
the Architecture Guide presents more information than was available in th~ P?!?t-::,; 

Finally, there are the implementors with a compelling need to use ,facilit.i§~, s;4c.h 
as, for instance, the 'ability to explicitly generate P-codes in a Pascal program, 
where dn ordinary Pascal construct would not suffice (we take it for grqAt:~d _t:t1tat 
only a compelling need would lead a user to take such steps). 

All of these audiences (but particularly the last) should understand that;,,:tn.e 
principal commitment of SofTech Microsystems (and its licensees) is. to, t.h~;.;user 
facilities described in the Users' Manual, and not to any of the specific 
i mple mentation strategies that are described in this guide. Programmers who taKe 
advantage of "internal tricks" do so at their own risk. 



Architecture Guide 
Introduction 

1.2 A Brief History of the System 

The software system that is now called the UCSD p-System began when Kenneth 
Bowles was responsible for teaching the introductory programming course at the 
University of California, San Diego. In late 1974, under Bowles' direction, a 
group of undergraduate and graduate students began to implement Pascal for 
microcomputers. 

Before this time, the introductory programming course had been taught using a 
large time-shared computer (on campus it was popularly called "The Beast"). This 
presented a bottleneck: many people used the machine, so its turnaround was 
someti mes quite slow, and a student's productivity was to some extent limited by 
the availabili ty of the card punches. Furthermore, the machine's time-sharing 
environment, its accounting system, its complexity, and the amount of sensitive 
information that it stored prevented the student from any extensive "hands on" use 
of the machine or its facilities. In brief, the Beast was intimidating. 

These were the main reasons for the decision to change the nature of the 
beginning programming course. It would be self-paced, to accommodate the large 
number of students, and each individual student's study habits (UC -- Irvine's 
physics program had been doing this successfully for a couple of years). It would 
use Pascal, rather than the dialect of Algol that was specific to the University's 
large time-sharing computer. And it would use microcomputers. 

The decision to use small computers was motivated partly by their low cost, and 
partly by the desire to give students an opportunity to program in an interactive 
environment. The System was first implemented for a number of PDP-II/IO's with 
floppy disks and VT -50 terminals. Students were expected to buy their own 
floppy disk, and use it for storing the System and their own programs. 

I t was the interactive environment that led to some of UCSD Pascal's deviations 
from the standard language, mostly as regards INTERACTIVE files and the 
handling of EOF and EOLN. The type STRING came about from the desire to 
teach basic programming concepts without recourse to numerical problems (which 
distracted many students from the actual problems of programmlng). 

The user interface of the System, by which we mean the philosophy of displaying 
a promptline at every level of the System, and organizing these promptlines in a 
tree structure, was intended to be easy to learn for the complete novice, yet 
usable (i.e., not cumbersome) for the experienced user. This proved very 
successful, and has been retained. 

The interpretive approach to executing Pascal was present from the beginning. P­
code, adapted from the original design by Urs Amman of the Eidgenossische 
Technische Hochschule in Zurich, was designed to be compact and easily generated 

2 



Architecture Guide 
Introduction 

by a Compiler; because of the constraints of the microprocessor environment, the 
goal was to keep the Compiler and thecodefiles as small as possible. The 
tradeoff in execution time was felt to be an affordable cost (time has borne out 
this decision). 

All of the original implementations were on PDP-II/LSI-II machines. Because of 
the interpretive approach, it was a relatively straightforward matter to re- write 
the Interpreter for the 8080 and Z80, and subsequently for many other processors. 

This adaptation of the Interpreter was originally motivated by the search for 
cheaper hardware, but it was soon recognized that software portability was 
valuable in itself. The economics of the computer business, especially the 
microprocessor field, dictated this: it is not a new observation that hardware costs 
continue to plummet, while software, being "hand-made", continues to be very 
expensi ve; it is relati vel y new to encounter a software system that, through 
modularity and portability, addresses the problem as thoroughly as does the" p­
System. 

This is a brief view of the System as it was first created at UCSD. It was 
created to fill a need within the University, and other issues were subordinate to 
that need. Thus, despite the innovations within the System, it came as quite a 
surprise to learn that there was considerable commercial interest in the System. 
This commercial interest ultimately led the University to turn the "Pascal Project" 
over to a licensee, and proceed with other projects. The firm of SofTech 
Microsystems was created with the original purpose of supporting, maintaining, 
licensing, and further developing UCSD Pascal and the System that supports it. 

3 



Architecture Guide 
Introduction 

4 

I 
i 

\ 



1I. THE P-MACHINE 

1I.l Overview 

Architecture Guide 
The P-Machine 

The P-machine is an idealized machine. The Operating System itself, System 
programs such as the Filer, and compiled user programs all run on the P-machine. 
Code for the P-machine is known as P-code, and all codefiles in the System 
consist of either P-code or native code (that is, code for a particular physical 
processor ). 

P-code is designed to be compact, so that programs in P-code are much shorter 
than equivalent programs in native code. P-code is also designed to be easily 
generated by a compiler. 

Because P-code is compact and simple, relative to native codes, it is fairly easy to 
implement the P-machine on a variety of actual processors. It is also easier (and 
cheaper) to maintain a System that runs on one P-machine, rather than a family of 
Systems, each dedicated to a particular physical processor. This is the essential 
key to the portabili ty of the p-System. 

1I.l.l Interpretive Execution 

The "P" in "P-code" and "P-machine" stands for "pseudo." The P-machine may be 
implemented as a physical processor, or emulated by an interpreter. The 
Interpreter is a program written in the native code of some particular processor. 
It is responsible for executing P-code instructions, and controlling machine­
d~pendent 1/0. 

At runti me, the user's program (or a portion of it) is in main memory. The 
Interpreter fetches each P-code instruction, in sequence, and performs the 
appropriate action. The process of bootstrapping involves loading the Interpreter 
(if necessary) and starting its execution (the next step is to call the Operating 
System, which runs on the P-machine). 

1l.1.2 The Stack and the Heap 

The System maintains memory-resident data in two dynamic structures called the 
Stack and the Heap. The Stack is used for static variables, bookkeeping 
information about procedure and function calls, and evaluation of expressions. 
The Heap is used for dynamic variables, including the structures that describe a 
program's environment. 

5 



Architecture Guide 
The P-Machine 

The Stack can be considered part of the P-machine. Most P-code instructions 
affect the Stack in one way or another. 

The Heap is an integral part of the System, but is primarily supported by the 
Operating System, rather than the P-machine. 

Both the Stack and the Heap reside in main memory, and grow toward each other 
in a (largely) First-In-First-Out manner. Between them is an area of memory that 
is partly unused, but also contains the Codepool (see below). 

The Heap is more fully described in Chapter IV. 

11.1.3 Code Segments 

In the p-System, program code is stored in one or more segments. A code 
segment may contain either P-code or native code (or both). Besides the code 
itself, each code segment contains bookkeeping information for the System's use, 
and (usu all y) a pool of constants. 

Every "compilation unit" (a separately compiled Pascal PROGRAM or UNIT) results 
in a "principal segment" of code. In addition, there may be "subsidiary segments," 
if the program or unit contained SEGMENT routines or EXTERNAL native code 
rou tines. Information embedded in the compilation's codefile contains the 
references among the (possibly) various compilation units that are part of the full 
program. 

When a program is eX(ecuted, the Operating System reads this reference 
information and resolves the references by finding the location of all compilation 
u ni ts needed by the program (including subsidiary segments and indirect references, 
such as a UNIT using another UNIT). Tables are built that may be used at 
runtime to make references (such as procedure calls) from one segment to another. 

The segments of a running program compete for space in main memory with each 
other and with the Stack and the Heap. The principal constraint (as far as code 
segments are concerned) is that both the calling and called segment must both be 
present in main memory for an inter-segment call to succeed. 

Segments in main memory are all stored contiguously in an area called the 
Codepool. The Codepool resides between the Stack and the Heap, and may be 
moved about to create more room. 

Code segments are described iii this chapter. Codepool handling is described in 
Chapter IV. 

6 



1l.1.4 Device I/O 

Architecture Guide 
The P-Machine 

Device 1/0 and control is accomplished by calls from the language level to routines 
wi thin the Interpreter. The device 1/0 routines then call on the routines of the 
Interpreter's BIOS (for Basic I/O Subsystem), and the BIOS routines control the 
peripheral hardware directly. TfE5 environment dependencies are thus isolated in 
the BIOS, and it is possible to adapt the p-System to a new hardware environment 
by changing only the BIOS (not the entire Interpreter). 

On Adaptable Systems, the BIOS itself has a standard interface to the 58105, or 
Simplified BIOS. The SBIOS is a set of simple I/O routines, and is intended to 
allow the user to rapidly adapt the System to a new I/O environment. 

The BIOS is dealt with in Chapter HI, ana the S810S is fully descrIbed in tne 
Installation Guide. 

7 



Architecture Guide 
The P-Machine 

H.2 Program Code 

11.2.1 Code Segments 

A code segment is a collection of routines, together with descriptive information. 
The code and information in a segment is contiguous, since the code segment is 
the "unit of movement" for code; code is loaded into memory a segment at a 
time. 

There are up to 255 routines within a segment, numbered 1 •• 255. 

At compile time, segments are assigned a name and a number. The name is 8 
characters long. It is used by the Operating System to handle inter-segment 
references at associate time. It is also used when maintaining codefiles with 

I LIBRARY. The number is used to reference the segment at runtime. 

The beginning (low address) of a code segment is a record that contains the 
following information about the segment: 

pointer to the routine dictionary 
pointer to the relocation list 
the 8-character name of the segment (4 words) 
byte sex indicator word 
pointer to the constant pool 
real size word 
space ;reserved for future use (2 words) 

Figure 1 illustrates a code segment as it would be loaded into memory. The 
various substructures of a code segment are described below. 

8 



procedure 
dictionary 

procedure 

code for 

procedure 

#2 

odd 

/, ' / 

/ 

/ 

~: 

/ ' 

--

high address 
even 

relocation list 

number of procedures 

pointer to procedure 1 

pointer to procedure 2 

••• 

pointer to procedure N 

Constant Pool 

/ " /;//' /, 

procedure code 
>---:>-::./ ~.~~ - -~>::.. 

/ - /~ 
>/'/,,----, / 

procedure#2 

object code 

datasize 

exitic 
/ -/ , .. -" >; 

./ /.-..--

orocedure code, 
:- /.,..-'./ .-.-

/;::-;::>/~/~> ~-/::-; '. -- / >-
reserved for future use 

reserved for future use 

realsize 

constant pool pointer 

byte sex indicator word = 1 

8 chacter symbolic 

name of segment 

relocation list pointer 

proc dictionary pointer 

low address 

-

-

-

~ 

.. -
,.---

-

Architecture Guide 
The P-Machine 

I 
I 
I 

I 
I 
I 

I 

I 

EXECUTABLE CODE SEGMENT FORMAT 

FIGURE 1 
9 



Architecture Guide 
The P-Machine 

B.2.I.1 Code Segments and Byte Sex 

Code segments are independent of the byte sex of the host processor. A number 
of System components cooperate to achieve this independence. 

There are two groups of word-oriented (byte-sex-dependent) information. The first 
is superstructure information, such as the routine dictionary. This information is 
flipped by the Operating System when a segment is loaded. The second is 
embedded information, such as, for example, constants (accessed by LDC) or XJP 
tables. This sort of information is flipped by the Interpreter. 

The Compiler produces code segments that contain word information in the natural 
order of the machine on which the Compiler was run. Immediately following the 
segment's 8-character name is a flag that always contains the constant 1, in the 
byte sex of the original machine; if read in the opposite byte sex, it appears to be 
a 256. 

When a segment is loaded by the Operating System, and its byte sex flag 
indicates that the sex of the segment is opposite that of the running machine, 
routi ne dictionaries are byte-swapped. Embedded information is then flipped by 
the Interpreter. 

The net result is that segments of either sex can run on any machine. 

I1.2.I.2 Routine Dictionaries 

The first word in a code segment points to word 0 of the segment's routine 
dictionary (also called the "procedure dictionary"). The routine dictionary is a list 
of pointers to the code for each routine in the segment. Each routine dictionary 
pointer is a seg-relative word pointer. 

Routines within a segment are numbered 1 •• 255. A routine's number is an index 
into the routine dictionary: the n'th word in the dictionary contains a pointer to 
the code for routine n. 

The first word (word 0) of the dictionary contains the number of routines in the 
segment. 

In the case of EXTERNAL and FORWARD routines, the source code may contain a 
routine's declaration but not its code. The corresponding routine dictionary entry 
is zero (at least, before linking). 

10 



1l.2.1.3 Routine Code 

Architecture Guide 
The P-Machine 

The code of a routine consists of two words: OAT ASIZE and EXITIC, followed by 
the executable object code. The object code may be entirely P-code, entirely 
nati ve code, or a mixture of the two. 

OA T ASIZE is the number of words of local data space that must be allocated 
when the procedure is called. OAT ASIZE does not include parameters: the 
routine's parameters are assumed to already be on the Stack. The first executable 
instru ction starts at the byte or word immediately following the, OAT ASIZE word. 
If the first executable instruction is nati ve code, OAT ASIZE is one's-complemented. 

1 f this first instruction is a P-code instruction, then EXITIC is a seg-relative byte 
pointer to the code that must be executed when the procedure is exited. If this 
first instruction is a native code instruction, then EXITIC is undefined at runtime.' 

If the code of the routine contains both P-code and native code, it is still the 
first instruction of the routine that determines these conditions. 

11 



Architecture Guide 
The P-Machine 

1l.2.1.4 The Constant Pool 

In Version IV .. O, multi-word constants are stored together in a single constant pool 
for the entire segment. The constant pool begins immediately after the last body 
of procedure code in the segment. 

The location of the constant pool is contained in the constant pool pointer, a seg­
relati ve word pointer that immediately follows the byte sex indicator word at the 
beginning of the segment. It points to the low address of the constant pool. If 
the constant pool pointer is equal to zero, the segment does not contain a 
constant pool. 

Constants are referenced by word offsets relative to the beginning (low address) 
of the constant pool. 

The constant pool is divided into two subpools: the real pool and the main pool. 

The first word of the constant pool points to the beginning of the real pool. 
This is a word pointer relative to the start of the constant pool; if there are no 
real constants in the code segment, this word must be O. The first word of the 
real pool contains the number of real constants in the real pool. 

Figure 2 illustrates a constant pool with an embedded real subpool. 

12 



high 

address 

low 
address 

pointer to procedure N 

real subpool 

number of 
real constants 

real subpool ptr 

CONSTANT POOL 

-FIGURE 2 

Architecture Guide 
The P-Machine 

I 
constant 

pool 
ptr 

13 



Architecture Guide 
The P-Machine 

Real constants are generated for either 32- or 64-bit floating point BCD (Binary 
Coded Decimal) data formats: real values (and operations upon them) can be 
transported across all processors with the same-sized representation of floating 
point numbers, but cannot be transported to machines with floating point formats 
of a different size. 

Only one size is likely to be available for a particular processor, since real 
constant handling is done by machine-dependent software (i.e., within the 
Interpreter). Within a single program, all compilation units must share the same 
size for real constants and variables. --

The Pascal Compiler is configured (when it is compHed) to default either to 32-bit 
or 64-bit reals. A directive is available to override the default: 

!$R2J - sets realsize to 2 words (32 bits) 
$R4 - sets realsize to 4 words (64 bits) 

This directive must occur before the first symbol in a compilation that is not a 
comment. The active realsize for a particular compilation is displayed after the 
Compiler's version number at the beginning of the console' output during a 
compilation (and in a"compiled listing). 

The realsize at compilation time is also embedded in every code segment (even 
though it may not reference any reals). 'The word REAL SIZE at the base of the 
segment contains this value. 

A 32-bit real constant is represented by a three-word record. The first word 
contains a signed integer representing the exponent value. The following two 
words contain the~mantissa digits. A mantissa word. representing significant 
mantissa digit~ contains an integer whose absolute value is·between 0 and 9999; its 
value corresponds tQ four mantissa digits. The first mantissa' word is signed, and 
thus contains the"imantissa sign. The second mantissa word may contain a negative 
value; in this case, it does not contCiio any ~ignificant digits and is disregarded 
when constructing the internal representation dfthe real constant. It serves as a 
terminator word for the constant conversion routines. The decimal point is defined 
to lie to the right of the four digits in:, the last valid (used) mantissa word. The 
digits in the last mantissa word are left-justified. 

For example, if the real value is 1.1, the first mantissa word contains 1100 
(BCD). 

Example: 

1 •• 4 significant mantissa digits: 
The first mantissa word contains a signed value between 0 

14 



Architecture Guide 
The P-Machine 

and 9999. The second word contains a negative value. The 
implied decimal point position is at the end of the first 
word. 

5 •• 8 significant mantissa digi ts: 
The second mantissa word contains a positive value between 
1 and 9999, and represents up to 4 low-order digits. 
The first word contains a signed value between 1 and 9999; 
it represents the 4 high-order digits. The 
implied decimal point position is at the end of the second 
word. 

A 64-bit real constant is represented by a record whose length may vary between 
4 and 6 words, depending upon the number of significant digits in the constant. 
The first 2 words of a 64-bit constant are identical in format to those of a 32-bit 
real constant; thus, the format always contains an exponent word and a first 
mantissa word. An enumeration of the remaining words for all cases follows: 

1 •• 4 significant mantissa digits: 
Mantissa word 2 contains a negative terminator. 
Mantissa word 3 is zeroed and is present solely 
to provide sufficient space for the native format. 

5 •• 8 significant mantissa digits: 
Mantissa word 2 contains 1 to 4 digits (left-justified). 
Mantissa word 3 contains a negative terminator. 

9 •• 12 significant mantissa digits: 
Mantissa word 2 contain 4 digit~. 
Mantissa word 3 contains 1 to 4 digits (left-justified). 
Mantissa word 4 contains a negative terminator. 

13 •• 16 significant mantissa digits: 
Mantissa words 2 - 3 contain 4 digits. 
Mantissa word 4 contains 1 to 4 digits. 
Mantissa word 5 contains a negative terminator. 

17 •• 20 significant mantissa digits: 
Mantissa words 2 - 4 contain 4 digits. 
Mantissa word 5 contains 1 to 4 digits. 

Real constants are converted to native machine format when a code segment is 
loaded into memory; this may result in a significant runtime overhead for programs 
that are memory-bound. Ti me-cri tical program.s of this nature may sacrifice 
portability for execution speed by using a native constant generator utility program 

15 



Architecture Guide 
The P-Machine 

(not yet available) to convert their real subpools into native machine format. This 
is done by replacing the canonical form of each real constant in the codefile with 
a nati ve real constant. The modified subpool is merged with the main pool by 
setting the real pool pointer to zero, thus eliminating the usual conversion process 
dur i ng a segment load. Because the constant pool is transformed in place, constant 
offsets embedded in the codefile do not require updating. 

16 



Architecture Guide 
The P-Machine 

1l.2.1.5 The Relocation List 

The last (high address) body of information in a (memory-resident) code segment is 
the relocation list. The second pointer at the beginning of the code segment 
points to the last (highest address) word in the relocation list. This pointer is a 
seg-relati ve word pointer; if there is no relocation list, it is equ al to zero. 

The relocation list contains all the information necessary to fix any absolute 
addresses used by code within the segment, whenever the segment is loaded or 
moved in memory. Such absolute addresses are only needed by native code: 
Segments containing exclusively P-code are completely position-independent; no 
relocation list is needed. 

A relocation list consists of zero or more relocation sublists. Each sublist contains 
code offsets for objects that must be relocated, and specifies the type of 
relocation that must be done. Sublists can occur in any order, and more than one 
sublist can have the same type of relocation. 

The following code fragment shows the format of the heading of a sublist: 

LocTypes=(RelocEnd, {sir:nals end of entire relocation list} 
SegRel, relative to address of base of this segment} 
BaseRel, relative to data segment given in OAT ASEGNUM} 
InterpRel,{relative to Interpreter's interp-relative table} 
ProcReI); {relative to address of 1st instruction in proc} 

ListHeader=PACKED RECORD 
ListSize: integer; {number of pointers in sublist} 
DataSegNum: 0 •• 255; {local segment number for BaseRel} 
RelocType: LocTypes; {relocation type of sublist entries} 

END; 

Each sublist contains a ListHeader and zero or more seg-relative byte pointers to 
the objects which must be relocated. The RelocType field in the ListHeader 
defines what kind of relocation will be applied. to all objects designated by the 
sublist. 

The relocation type ProcRel is generated by the Assembler, but changed by the 
Linker into SegRel. ProcRel sublists should never be encountered when loading and 
relocating assembly code. 

The DataSegNum field in the ListHeader is only used in sublists with a RelocType 
of BaseRel, and 'all other cases should be zeroed. It specifies the local segment 
number of';· the data segment that all of the sublist's pointers are relative to. 

17 



Architecture Guide 
The P .. Machine 

Si nce the Assembler cannot know this segment number in advance, it should zero­
fill the field and leave the responsibility for correctly setting this field to the 
Linker. 

The ListSize field in the ListHeader contains the number of pointers in the sublist. 

Figure 3 illustrates a relocation list with multiple sublists: 

IB 



relocation 
sublist 

high address 

reloctype datasegnum 

listsize 

relocation pointers 

reloctype 
%::::: 

, datasegnum 
~ 

~~ ./ listsize 
~ 

.~ 
relocation pointers 

reloctype= 
RELOCEND 

// / 

~ 

datasegnu m=O 

low address 

RELOCATION LIST 

FIGURE 3 

Architecture Guide 
The P-Machine 

relocation 
list pointer 

19 



Architecture Guide 
The P-Machine 

The relocation list is intended to be used from high address down to low address. 
Each su blist in turn from high to low is processed until a sublist with a relocation 
type of RelocEnd is encountered. The DataSegNum and ListSize should be 0 for 
this terminating entry. 

The relocation list is located at the end of the code segment, since it is 
sometimes possible to discard the relocation information after the segment has 
been loaded into memory. 

20 



1l.2.1.6 Segment Reference List 

Architecture Guide 
The P-Machine 

In the P-machine, Version IV.O, each code segment is associated at runtime with 
an "environment vector" that defines the mapping of each segment number to the 
segment or unit that it designates. Each compilation unit has its own 
independent (i.e., local) series of segment numbers, and its own environment 
vector. In this wa-y,-8particular unit may be referenced by more than one unit, 
and each unit that references it may use a different segment number. (More 
about environment vectors appears in Section 1l~2.3.) 

When a compilation unit references one or more other compilation units, the 
principal segment of the compilation contains a segment reference list. This list 
defines the connection between the segment numbers that appear in the object 
code (they are created by the Compiler), and the names of the units to which they 
refer. Only principal segments contain segment reference lists. 

The segment reference list, when present, is located above the relocation list (it 
grows toward higher memory addresses). The list is used by the Operating 
System at associate time. It does not occupy any space in memory during the 
program's execution. 

The segment reference list associates the name of each compilation unit (which 
does not change) with the number by which that that compilation unit is 
referenced. 

The following fragment of Pascal code describes a record in the segment 
reference list: 

SegRec=PACKED RECORD 
SegName: PACKED ARRAY [0 •• 7] OF CHAR; {referenced segment name} 
SegNum: 0 •• 255; {associated segment number} 
Filler: 0 •• 255; {reserved for future use} 

END; 

The Seg Refs entry in the segment dictionary (described below) contains the 
number of words in the segment reference list. The Code Leng field in the 
segment dictionary can be used as a seg-relative word pointer to the start of the 
segment reference list. The segment reference list consists of one or more 
SegRec's, starting directly above the relocation lists and continuing towards higher 
memory addresses. A SegRec consists of SegName, which contains the name of 
the segment, SegNum, which contains the nu mber by which the segment is 
reference within this current code segment, and some Filler. 

21 



Archi tecture Guide 
The P-Machine 

The segment reference list is terminated by a SegRec with a blank-filled 
SegName and SegNum of zero. 

SegRec's wi th a SegName of '*** are generated so the Operating System 
can execute the initialization and termination code sections of a unit: before 
executing a host program, the Operating System constructs a list of all used units 
that contain a reference to '***', and uses this list to execute the 
initialization/termination sections of all used units before/after the invocation of 
the host program. 

When the initialization/term~nation section of a unit (which is procedure 1) is 
compiled, a <CXG <***'s seg num>, 1> instruction is emitted between the 
ini tialization and termination parts. A local segment number is reserved for the 
'***' segment reference, and the Operating System creates a linear list that links 
together the units of a program that require initialization. At the end of this list 
is the outer body of the main program. The Operating System invokes the 
program by calling the first initialization code on this list, which calls the next, 
and so forth up to the body of the main program itself. When the main program 
terminates, the calling chain is "popped", and termination sections are executed in 
the reverse order. 

22 



Archi tecture Guide 
The P-Machine 

11.2.1.7 Linker Information 

Linker information (Linker info) is a portion of a code segment that allows the 
Linker to resolve references between P-code and native code. Segments output by 
an assembler always have Linker info. Segments output by a compiler have Linker 
info only if they contain an EXTERNAL routine. Only principal segments may 
contain EXTERNAL routines. 

Linker info is a sequence of 8-word records, starting on the block boundary 
following the end (high address) of the segment reference list. The end of the 
sequence contains the value EOFMark. Linker info records are always 8 words 
long: unused records and unused fields are zero-filled. 

I f a code segment has Linker info, the HasLinkerlnfo Boolean in Seg Misc in the 
segment dictionary is TRUE. The starting block of Linker info, rclative to the 
start of the codefile, can be calculated from the formula: 

Code _ Addr + ((Code_ Leng + Seg_ Refs + 255) DIV 256) 

where Code Addr, Code_Leng, and Seg_Refs are all values in the segment 
dictionary (see below). 

Two fields are common to all Linker info records. The Name field contains an 8-
character segment name. The LIType field determines the nature of the Linker 
information in the remainder of the record. 

The following fragment of psuedo-Pascal code describes a Linker info record: 

PtrRecNum = {an integral number of 8-word pointer records} 
{this is variable from record to record}; 

LITypes = (EOFMark, GlobRef, PublRef, PrivRef, ConstRef, GlobDef, PublDef, 
ConstDef, ExtProc, ExtFunc, SepProc, SepFunc); 

LIEntry = RECORD 
Name: PACKED ARRAY [0 •. 7] OF CHAR; 
CASE LIType: LITypes OF 

GlobRef, PublRef, ConstRef 
(Format: (Word, Byte, Big); 

NRefs: integer); 

PrivRef: (Format: (Word, Byte, Big); 
NRefs: integer; 
NWords: integer); 

23 



Archi tecture Guide 
The P-Machine 

ExtProc, ExtFunc 
(SrcProc: integer; 

NParams: integer); 

SepProc, SepFunc 
(SrcProc: integer; 

NParams: integer; 
KoolBit: Boolean); 

GlobDef: (HomeProc: integer; 
ICOffSet: integer); 

PublDef: (SaseOffset: integer; 
PubDataSeg: integer); 

ConstDef: (ConstVal: integer); 

EOFMark: 
END {CASE}; 

PtrList:. ARRAY [O •• PtrRecNum] OF 
ARRAY [0 •• 7] OF integer 

END {LIEntry}; 

GlobRef, PublRef, ConstRef, and PrivRef are all Linker info types generated by an 
assembler.. They all consist of two fields that precede a list (PtrList) of seg­
relati ve . byte pointers into the associated segment. Format contains the size of 
the fields pointed to by the accompanying list. NRefs contains the number of 
poi nters in the list. PtrList contains multiples of 8 words; all unused words should 
be zero. 

For these types of Linker info records, PtrRecNum = ceiIing(NRefs/8), where 
ceiling(n} is the smallest integer >= n. 

GlobRef is used to link identifiers in two or more assembled routines. Name is an 
identifier that is referenced within the segment, and defined in some other 
assembled routine. Format should always be Word. The Linker must add the final 
segment offset of the referenced object to all words pointed at by PtrList. This 
offset must be in the correct addressing mode: i.e., bytes or words, depending on 
the processor being used. 

PublRef is used to link an identifier in an assembled routine to a global variable in 
a compilation unit. Name is an identifier that is referenced in the segment, and 

24 



Architecture Guide 
The P-Machine 

defined as a global variable in some other compilation unit. Format should always 
be Word. The Linker must add the offset of the referenced object to all words 
pointed at by PtrList. 

ConstRef is used to link an identifier in an assembled routine to a global constant 
in a co mpilation unit. Name is an identifier that is referenced in the segment, 
and defined as a global constant in some compilation unit. Format may be either 
Byte or Word. The Linker must place the constant value into all locations pointed 
at by PtrList. 

Pri vRef is used to allocate space in the global data segment. Format should 
always be Word. NWords specifies the number of words to allocate. The Linker 
must add the offset of the start of the allocated area within the global data 
segment to all words pointed at by PtrList. 

ExtProc and ExtFunc are generated by a compiler to reference EXTERNAL 
routines. There is no PtrList. SrcProc is the number assigned to the routine. 
NParams is the number of words allocated for parameter passing. 

SepProc and SepFunc are generated by an assembler for routine declarations. 
There is no PtrList. SrcProc is the number assi.gned to the routine. NParams is 
the number of words allocated for parameter passing. KoolBit is TRUE if the 
routine is relocatable, FALSE otherwise. Thus, .PROC and .FUNC generate 
SepProc or SepFunc records with KoolBit = FALSE, and .RELPROC and .RELFUNC 
generate SepProc or SepFunc records with KoolBit = TRUE. 

GlobDef declares a global identifier in an assembled routine. A GlobDef record is 
generated for each label defined by a .DEF, .PROC, .FUNC, .RELPROC, or 
.RELFUNC directive. There is no PtrList. Name is an identifier defined within 
the segment, and may be referenced by any other assembled routines within the 
same segment. HomeProc contains the number of the routine in which Name is 
defined. ICOffset is a byte offset to Name, relati ve to the start of the routine in 
which Name is defined. 

PublDef declares a global variable in a compilation unit. A PublDef record is 
generated for each global variable in a compilation unit that is visible to any 
EXTERNAL routines. There is no PtrList. BaseOffset is the word offset of the 
variable, relative to the start of the data segment that contains it. PubDataSeg is 
the local number of the data segment that contains the variable. 

ConstDef declares a global constant in a compilation unit. A ConstDef record is 
generated for each global constant in a compilation unit that is visible to any 
EXTERNAL routines. There is no PtrList. ConstVal contains the value of the 
constant. 

25 



Architecture Guide 
The P-Machine 

EOFMark indicates the end of used Linker info records. Name should be blank­
filled. 

The following table shows the types of segments (as defined in the segment 
dictionary), and the types of segment reference records that can be contained in 
the associated Linker info. Note that Proc _ Seg's cannot have Linker info at all: 

Prog_Seg Un it Seg Seprt Seg 
GlobRef yes 
Pub IRef yes 
Pr i vRef yes 
ConstRef yes 
ExtProc yes yes 
ExtFunc yes yes 
SepProc yes 
SepFunc yes 
GlobOef yes 
Pub IOef yes yes 
ConstOef yes yes 
EOFMark yes yes yes 

26 



11.2.2 Codefile Organization 

B.2.2.I The Segment Dictionary 

Architecture Guide 
The P-Machine 

The first block of a codefile contains the first record of that file's segment 
dictionary. In Version IV.O, a segment dictionary consists of a linked list of 
dictionary records; if the dictionary is longer than one record, subsequent records 
are embedded in the codefile. These are each one block long, and are located 
between code segments. 

A single dictionary record can describe up to 16 distinct segments. The 
information describing a segment is contained in 6 different arrays: the information 
describing a segment is found by using a single index value to select a component 
from each of these arrays. Entries in the segment dictionary describe only 
segments whose code bodies are included in the codefile. 

The following fragment of Pascal code describes a segment dictionary record: 

27 



Architecture Guide 
The P-Machine 

CONST Max_Dic_Seg = 15; {maximum segment dictionary record entry} 

TYPE SegDic R,ange = O •• Max Dic Seg; {range for segment dictionary entries} - ~ - -

28 

Segment_Name = PA~KED ARRAY [0 •• 7] OF CHAR; {segment name} 

{segment types} 
Seg Types :::: (No Seg, {empty dictionary entry} 

- -Prog Seg, lprogram outer segment} 
, ." ".' Unit -Seg, unit outer segment} 

. Proc=Seg, segment procedure inside 
. Seprt_ Seg); native code segment} 

program or unit} 

{machine types} 
M _Types = (M _Psuedo, M 6809, M PDP 11, M 8080, M Z 80, 

- M GA -440, -M 6502, M 6800, -M 9900, 
M=8086 , M _Z8000, M _68000); -

{p-machine versions} 
Versions = (Unknown, 11, 11_1, Ill, IV, V, VI, VB); 

{s~gment dictionary record} 
Seg Dict = RECORD 

Disk Info: 
ARRAY [Seg_Dic yange] OF {disk info entries} 

RECORD 
Code Addr: integer; {segment starting block} 
Code-Leng: integer; {number of words in segment} 

END {of RECORD}; 
Seg Name: 

ARRAY [Seg Dic Range] OF Segment Name; {segment name entries} 
Seg Mise: - - -

ARRAY [Seg Dic Range] OF {misc entries} 
PACKED RECORD 

Seg Type: Seg Types; { segment type} 
Filier: 0 •• 31; - {reserved for future use} 
Has Link Info: Boolean; {need to be linked?} 
Relocatable: Boolean; {segment relocatable?} 

END {of PACKED RECORD}; 
Seg Text: 

ARRAY [Seg Dic Range] OF integer; {start blk of interface text 
Seg Info: --

ARRAY [Seg Dic Range] OF {segment information entries} 
PACKED RECORD 

Seg_Num: 0 •• 255; {local segment number} 



Architecture Guide 
The P-Machine 

M Type: M Types; {machine type} 
FITler: 0 •• 1; {reserved for future use} 
Mat·or _Version: Versions; {P-machine version} 

END of PACKED RECORD}; 
Seg Famly: 

ARRAY [Seg Dic Range] OF {segment family entries} 
RECORD - -

CASE Seg Types OF 
Unit Seg, Prog Seg: 

(Data Size: integer; {data size} 
Seg Refs: integer; {segments in compilation unit} 
Max Seg Num: integer; {number of segments in file} 
TexCSize: integer); {II of blks interface text} 

Seprt Seg, Proc Seg: 
(PrDg Name: Segment Name); {outer program/unit name} 

END {of Seg Famly}; -
Next Dict: integer; {block number of next dictionary record} 
Filler: ARRAY [0 •• 6] OF integer; {reserved for future use} 
Copy Note: string[77]; {copyright notice} 
Sex: integer; {machine sex (Sex = I)} 

END {of SEG_DICT}; 

29 



Architecture Guide 
The P-Machine 

Disk Info contains information about the segment's location within the file. 
Segment code always starts on a block boundary. Code Addr is the number of the 
block where the segment code starts (relative to the start of the codefile). 
Code Leng is the number of 16-bit words in the segment. This size includes the 
relocati on list but does not include the segment reference list. All unused entries 
in this array should be zeroed. 

Seg Name contains the first 8 characters of the program, unit, segment, or 
asse-mbly procedure name. Unused entries should be blank-filled. 

Seg Misc contains miscellaneous information about the segment. Seg Type indicates 
the-type of segment: Prog Seg and Unit Seg are outer segments of programs and 
uni ts respectively; Proc Seg is a segment-routine within either a unit or a program 
outer segment; Seprt Seg is an unlinked native code segment. Has Link Info 
indicates whether Linker information has been generated for this segment:" Linker 
info resides in the blocks that directly follow the segment reference list. Linker 
info starts on a block boundary. The _Boolean Relocatable sp~cifies whether a code 
segment is statically at dynamically relocatable~- ' 

Dynamically relocatable code segments reside in the code pool; their position in 
memory may change many times during execution. Statically relocatable code 
segments are loaded only once, in a fixed position on the system heap: they remain 
position-locked and memory-locked throughout their lifetime. 

All segments that contain only P-code are position-independent and thus 
dynamically relocatable. Segments that contain native code may be dynamically 
relocatable provided they make no assumptions about either the lifetime of any 
modifications made to the segment body itself, or the exact location of the 
segment body in memory across the execution of a single P-code. 

Dynamically relocatable native code is generated by assembling routines using the 
RELPROC or RELFUNC assembler directives; a linked code segment containing 
assembly routines is dynamically relocatable only if all of its assembly routines 
were originally specified as dynamically relocatable. Note that the use of these 
asse mbler directi ves 1s an assertion by the programmer that the routines they 
declare behave properly; the System does not enforce this, so caution must be 
used. If a routine is to be dynamically relocatable, it cannot store information 
into the segment body, be self-modifying, or store any pointers to the code 
segment in data variables, and then assume that things will behave correctly the 
next time it is called. 

The Boolean Relocatable is unaffected by the presence or absence of relocation 
lists, and is not relevant to concurrency considerations. 

Seg_ Text contains the starting block of the segment's INTERFACE text section, 
relati ve to the start of the codefile. The INTERFACE text section can appear 

30 



Architecture Guide 
The P-Machine 

anywhere within the codefile that contains the code segment it describes. The 
Seg Text array entry, in conjunction with the Text Size field in the Seg Family 
record, indicates the address and length of the INTERFACE section in blocks. The 
INTERF ACE text section always starts on a block boundary and follows all of the 
conventions of a textfile, with the exception that the last page of the section may 
be either 1 or 2 blocks long. Only segments with a Seg Type of Unit Seghave 
INTERF ACE sections. All other segments and unused entries should be zero-filled. 

Seg_Info contains further information about the segment. Seg Num is the segment 
number .. M Type tells what kind of object code is in the segment. If there -is 
any native code in the segment, then M Type will have one of the processor­
specific M Type's. If the segment consists exclusively of P-code, then its M Type 
is M Psuedo. Major Version gi ves the version of the P-machine on which the 
codefile is intended to-run. 

Seg F amly contains information about the code segment's compilation unit. The 
information contained in this array depends on whether Seg_Type indicates a 
principal or a subsidiary segment. 

If the segment is a subsidiary segment, then Seg Famly contains the first 8 
characters of the parent compilation unit's name, Stored in Prog Name. If this 
name is not known at codefile generation time (as is the case with Seprt Seg's), 
the field should be blank-filled. -

If segment is a principal segment, then the information in Seg_Famly consists of 
four fields: 

Data Size is the number of words in this segment's base data segment. 
The variables of principal segments are referenced from any location, including 
their own outer routine bodies, via global loads and stores (rather than local 
operations). Therefore, the Data Size field associated with the body of an 
outer routine in a code segment should be zero, so that no superfluous memory 
will be allocated in an unused local data area. 

Seg_ Refs is the size in words of the. segment reference list for this segment. 

Max Seg Num is the total number of segment numbers assigned to this 
compilation unit. Max Seg Num includes all segments with assigned numbers, 
regardless of whether the segment body is contained in this file or not. 

Text Size is the number of blocks of INTERFACE text within the compilation 
unit.- Text Size is used in conjunction with the Seg Text array to specify the 
INTERF ACE text for a compilation unit of type Unit Seg; it is zero-filled for 
all other compilation unit types. -

31 



Architecture Guide 
The P-Machine 

If the segment is unused (Seg_Type = No_Seg), then SegJ"amly should be zero­
filled. 

Next Dict contains the block number of the next segment dictionary record, 
relative to the start of the codefile. In the last record of the segment dictionary, 
Next Dict should be zero. 

Filler is reserved for future use and should always be zero-filled. 

Copy Note is reserved for a copyright message, which can be created with either 
the LIBRARY utility or a Compiler directive. 

Sex corresponds to the byte sex of the codefile. It is a full word that contains 
the value 1, with the same byte sex as the rest of the dictionary record. Thus, 
when this word is examined by a program running on a machine with the same 
byte sex as the codefile, it will appear as a 1; on a machine of opposite sex, it 
will appear as a 256. System programs use this word to detect the sex of the 
codefile, and if necessary, byte-swap the word-oriented fields of the dictionary. 

32 



11.2.2.2 Assembler-Generated Codefiles 

Architecture Guide 
The P-Machine 

Codefiles generated by an assembler have a slightly different structure from those 
generated by a compiler. A relocation list is generated for each procedure in an 
assembler-generated segment (instead of one relocation list for the whole segment). 
These are the only sort of lists that may contain ProcRel relocation. These lists 
are placed immediately after the body of the procedure they describe. The start 
or high end address of each list is pointed at by the seg-relative word pointer 
contained in the ExitlC field of each assembler-generated procedure. 

An assembler-generated segment is also unique in that during the linking process, 
the code bodies of all its procedures and functions may be copied into one of 'the 
segments of the compilation unit it is being bound to. Further, the name of the 
segment or segments that the assembly code may be linked to is never known at 
assembly time. It is, however, always assumed that any number of assembly 
procedures or functions that communicate via REFs and DEFs are always bound 
into the same segment, regardless of whether they were assembled together. 

The DataSize word generated by the assembler for each routine should have a 
value of -1 (OFFFF HEX): this indicates a data size of zero that is one's 
complemented, to signal that the first instr.uction of the code body is native 
code. 

Finally, since the assembler-generated code segments cannot know what program or 
unit they are to be linked to, the Prog Name entry in the Seg Famly array of the 
segment dictionary should be blank-filled, and the DataSegNum field in the 
ListHeader record of all BaseRel relocation sublists should be zero-filled. 

It is the Linker's responsibili ty, when linking assembler-generated segments, to 
convert all ProcRel relocation sublists into SegRel relocation lists, to correctly set 
the DataSegNum field in the ListHeader of all BaseRel relocation sublists, and to 
collect all relocation sublists and place them after the procedure dictionary of the 
code segment. The Linker should also update the Relocatable bit in the Seg Misc 
array, depending on the information supplied in Linker info. -

33 



Architecture Guide 
The P-Machine 

1l.2.3 Code Segment Environments 

1l.2.3.1 Segment Information Blocks (SIBs) 

A Segment Information Block (SIB) is a record that contains information about an 
"active" code segment. A code segment is active if it may be used by a 
program that is running. A SIB is allocated on the Heap, and remains there as 
long as the segment is active. There is only one SIB for each code segment, no 
matter how many other segments may be using it. 

Note that a code segment need not be in memory to be active: an active code 
segment may be on disk or in the Codepool, but its SIB will always be on the 
Heap. 

The following fragment of Pascal code describes a SIB: 

SIB = RECORD 
Seg Base: Mem Ptr; segment's memory location} 
Ref-='Count: integer; /I of active calls to the seg} 
Activity: integer; memory swap activity} 
Link_Count: integer; number of links to the SIB} 
Residency: -l..maxint; -1 = pos lock, 0 = swap, n = mem lock} 
Seg Name: PACKED ARRAY [0 •• 7J OF CHAR; 
Seg-Leng: integer; /I of words in segment} 
Seg-Addr: integer; disk address of segment} 
Vol-Info: VI Ptr; pointer to disk drive info} 
Data Size: integer; number of words in data segment} 
Res SIBs: RECORD code pool management record} 

Next SIB: SIB P; lnext SIB in list} 
Prev -SIB: SIB -P; previou$ SIB in list} 
CASE Boolean OF scratch area} 

TRUE: (Sort SIB: SIB P); {next SIB in sort list} 
FALSE: (New -Loc: Mem Ptr); {temporary address} 

END {of Res_SIBs}; -
END { of SIB}; 

Seg Base contains the current memory address of the code segment. If the code 
segment is not in memory, Seg_Base contains NIL. 

Ref_Count contains the number of outstanding calls to the segment. It is 
incremented whenever a routine outside the segment executes a CXP to a routine 
within the segment. It is decremented whenever a RET from a routine within the 
segment returns to a routine outside the segment • 

. 34 



Architecture Guide 
The P-Machine 

Activity contains a value based on the number of times a segment is used; it 
increases over time. It is incremented by 6 whenever a call is made to a routine 
outside the segment. It is also incremented by 6 whenever a routine within the 
segment returns to a routine outside the segment. Finally, it is incremented by 6 
whenever a task switch suspends the segment that is currently executing. 

Link Count contains the number of links to the SIB from other Operating System 
data structures. When Link Count becomes zero, the SIB is removed from the 
Heap (the space it occupied is available again). 

Residency contains a value between -1 and maxint. A -1 indicates that the 
segment is Posi tion Locked (this occurs when the Boolean Relocatable in the 
segment dictionary IS TRUE). A zero indicates that the segment is Swappable 
(that is, it can be removed from memory if necessary). A value greater than zero 
indicates that the segment is Memory Locked. In this case, the value is a count 
of the number of memory lock operations that have been applied to that segment. 
Residency is incremented when a program declares the segment to be 
Memory Locked, and decremented when a program declares it to be Swappable. It 
becomes actually Swappable when Residency is equal to zero (i.e., when no 
outstanding Mem Lock operations remain). Programs can control the residency of 
segments by using the intrinsics MEMLOCK and MEMSWAP. 

Seg_ Name contains the first 8 characters of the segment's name. 

Seg Leng contains the number of words that the code segment occupies (including 
any -relocation lists, but excluding segment reference lists). 

Seg_ Addr contains the segment's first block number on disk. 

Vol Info contains a pointer (VI Ptr) to a volume information record that contains 
the drive number and volume name of the disk on which the segment is resident. 

Data Size contains the number of words in the code segment's data segment. This 
only applies to principal segments: otherwise, Data_Size should be zero. 

Res SIBs is used to maintain the Code Pool. All SIBs of segments in the Code 
Pool are on a doubly-linked list formed by the Prev SIB and Next SIB pointers. The 
Sort SIB and New Loc fields are used for temporary values while managing the 
Code- Pool. 

The Operating System uses several data structures to manage code segments by 
maintaining active SIBs and managing the Code Pool. All of these data structures 
refer to SIBs through pointers. 

When a program being prepared for execution requires a code segment that is not 
yet active, the appropriate SIB is allocated on the Heap and initialized. The 

35 



Archi tecture Guide 
The P-Machine 

Operating System creates a pointer to the SIB, and the SIB's Link Count is 
incremented. When the segment is no longer needed, the pointer is removed, and 
the Link Count is decremented. When Link Count becomes zero, the SIB is 
removed from the Heap. 

36 



Architecture Guide 
The P-Machine 

1l.2.J.2 Environment Records (E_ RECs) 

A code segment's "environment" is the mapping of segments it may access into 
local segment numbers. Segment numbers only have local meaning; a segment may 
only refer to segments that have been assigned local segment numbers. It may 
not refer to segments outside of this scope. 

F or each segment, there is an Environment Record (E Rec). This record designates 
an Environment Vector (E Vec) that describes the mapping of local segment 
numbers to actual code segments. 

The following fragment of pseudo-Pascal describes environment records and vectors: 

E Vect P = "E _ Vect; 
E Rec P = "E_ Rec; 

E Vect 

E Rec 

= RECORD 
Vec Length: integer; {number of local segments} 
Map: ARRAY [1 •• Vec Length] OF E Rec P; 

- {local-envIronment mapping} 
END {Of E_Vecth 

= RECORD 
Env Data: Mem _Ptr; 
Env -SIB: SIB P; 
Env-Vect: E Vect P; 
CAst Boolean OF 

TRUE : (Link Count: 
Next Rec: 

END {Of E_Rech 

{pointer to global data} 
{pointer to SIB for seg number} 
{pointer to environment} 

integer; {number of links to E Rec} 
E_Rec_P); {next environment record} 

Env Data points to the segment's global data. (The data segment is allocated on 
the Heap when the program is invoked.) 

Env SIB points to the segment's SIB. (Also placed on the Heap when the program 
is invoked.) 

Env Vect is an array of pointers to E Rec's. It is indexed by a segment number: 
the -pOinter indicates an E Rec that describes a code segment. In this way, a 
mapping from local segment numbers to actual segments is accomplished. 

Link Count indicates the number of active compilation units that are currently 
USE'ing the seg; :ent. This only applies to the principal E _ Rec of a compilation 
unit. Link Count is maintained in the same way a SIB's Link Count is 

37 



Architecture Guide 
The P-Machi ne 

maintained. 

Next Rec is a pointer on a chain of all active compilation units. This chain is 
called Unit List. This field also applies only to the principal E Rec's of a 
compilation unit. 

In order to minimize index manipulations, the Map array in an E Vect record starts 
at 1. Thus it may be indexed by local segment numbers (these must be 1 or 
greater). The Vec Length field of the record may be considered to occupy the 
zero'th posi tion of the map. 

The Operating System uses a recursive routine to construct the environments of a 
program's USEd units, and then its subsidiary segments and principal segment (its 
"native segments"). The algorithm is roughly: 

FUNCTION Build Env (5eg Dict): E _ Rec _P; 
BEGIN - -
IF outer block segment E Rec exists in Unit List THEN BEGIN 

increment Link Count; -
return existing -E Rec P 

END ELSE BEGIN -
create E Vect; 
create Env Data for outer block data space; 
IF there are USEd units indicated in Seg_ Diet THEN 

FOR all USEd units DO 
install Build Env (New Seg Diet) into current E _ Vect; 

FOR all native segments DO -
BEGIN 

create E Rec and SIB for native segment; 
install E-Vect, SIB, and Env Data in E Rec; 
install E-Rec for native segments in E-Vect 

END; -" -
install E Rec for outer block segment on Uni t_ List; 
return E-Rec P for outer block segment 

END 
END 

The Build Env function returns a pointer to the E Rec for the outer block of the 
program being executed. This pointer is instalTed into the Operating System's 
User_Program E_Vect entry. 

After a program's execution, a recursive routine is used to de-link the environment 
for the program's outer block and all subsidiary units and segments. The algorithm 
is roughly: 

38 



Architecture Guide 
The P-Machine 

PROCEDURE Dump Env (E Rec P); 
BEGIN - --
decrement Link Count; 
IF Link Count ;; 0 THEN 
BEGIN -

de-link from Unit List; 
DISPOSE (Env Data); 
FOR all E Rec's on E Vect whose Seg_Vect (> E_Rec.Seg_Vect DO 

Dump Env (those E -Rec's); 
FOR all-E Rec's on E-Vect whose Seg_Vect = E Rec.Sec Vect DO 
BEGIN 

de link E REC''.SEG SIB; 
DiSPOSE lthose E _ RECs); 

END; 
DISPOSE (E_ Rec.Seg_ Vect); 

END 
END 

The Operating System sets its E Vect entry for the terminating program to NIL, 
and calls Dump Env for the outer-block's E Rec. After Dump Env returns, a pass 
is made through the Res SIBs list to find all segments whose Link Count = 1, and 
remove them from the Heap. -

39 



Architecture Guide 
The P-Machine 

1l.J Task Environments 

A task is a routi ne that is executed concurrently with other routines. task is 
implemented by three data structures: the body, the Task Information Block (TIB), 
and the task stack. In Pascal, a task is known as a PROCESS. 

The "main task" of the p-System is the thread of execution that runs from 
Operating System initialization and all System utility or user program -executions to 
the termination of the Operating System. A program may have subsidiary tasks. 

During execution, each subsidiary task uses its own stack instead of the System 
Stack. The task's activation record is actually contained in the task stack: both 
are allocated on the Heap, along with an amount of free space into which the 
stack may grow. 

The task body is a portion of a P-code segment. In structure it is no different 
from the body of a procedure or function. 

The amount of space allocated to the task stack depends on the ST ACKSIZE 
parameter of the START intrinsic. The default is 200 words. 

The main task uses the System Stack for expression evaluation and activation 
records. The Heap is shared by the main task and all subsidiary tasks. 

The TIB of a subsidiary task is allocated on the Heap when the task is started. It 
contains information about a task's execution environment. This must be 
maintained, and restored whenever a task is restarted after having been idle. 

At any given time, the P-machine may have: 

one task running 
several tasks ready to run, and 
several tasks waiting for semaphores. 

The tasks that are ready to run are organized into a queue. 
of waiting tasks for each semaphore (it may be empty). 
ordered by their priority. 

There is also a queue 
Tasks in queues are 

The P-machine register CURTSK always points to the TIB of the currently 
executing task. The register READYQ points to the first in the list of tasks 
ready to run. 

40 



The following fragment of Pascal code describes a TIB: 

TIB = RECORD {Task Information Block} 
Regs: PACKED RECORD 

Wait Q: TIB Ptr; 
Prior: byte;­
Flags: byte; 
SP Low:Mem Ptr; 
SP-Upr: Mem Ptr; 
SP: Mem Ptr; 
MP: MSC-W Ptr; 
BP: MSCWPtr; 
IPC: integer; 
Env: ERec Ptr; 
ProcNum: byte; 
TIBIOResult: byte; 
Hang Ptr: Sem Ptr; 
M Depend: integer; 

END -{ of Regs} 
MainTask: Boolean; 
Start MSCW: MSCW Ptr; 

END {of TIB} -

Architecture Guide 
The P-Machine 

SP is the P-machine Stack Pointer. SP _Low and SP _Upr are the limits on SP for 
this task. 

MP and BP designate (respectively) the local and global activation records for this 
task. 

IPC is the P-code Instruction Counter (a seg-relative byte pointer), and ProcNum is 
the number of the executing routine. 

Priority contains the task's priority. This is a number from 0 •• 255. The lower the 
value, the more urgent the priority. 

Wai t Q is used when the task is waiting to run, or waiting on a semaphore. Wait Q 
is one link in a linked list of TIBs. 

When a task is waiting on a semaphore, Hang Ptr points to that semaphore. If the 
task is not waiting on a semaphore, Hang_Ptr is NIL. Hang_Ptr allows a task to 
be removed from a semaphore's wait queue if the task is being terminated. 

Flags is reserved for future use. 

41 



Architecture Guide 
The P-Machine 

Env is a pointer to the task's E Rec. The task's SIB (Segment Information Block) 
may be found through the E _ Rec:-

TIBIOResul t will in the future be used to save an IORESUL T that is local to the 
task. 

M Depend contains machine-dependent data maintained by the Interpreter. It is 
inItialized to O. 

MainTask, if TRUE, indicates that this is the TIB of a "root" ("parent") task. 

StartMSCW points to the MSCW (Mark Stack Control Word) of the routine that 
ST AR T'ed this task. 

Further information about tasks appears below in Chapter IV. Figure 4 shows the 
layout of main memory while the System is running, including the location of task 
stacks as discussed in this section. 

42 



The following fragment of Pascal code describes a TIB: 

TIB = RECORD {Task Information Block} 
Regs: PACKED RECORD 

Wait Q: TIB Ptr; 
Prior: byte;­
Flags: byte; 
SP Low: Mem Ptr; 
SP-Upr: Mem -Ptr; 
SP: Mem Ptr; 
MP: MSC-W Ptr; 
BP: MSCW -Ptr; 
IPC: integer; 
Env: ERec Ptr; 
ProcNum: byte; 
TIBIOResult: byte; 
Hang Ptr: Sem Ptr; 
M Depend: integer; 

END-{of Regs} 
Main Task: Boolean; 
Start MSCW: MSCW Ptr; 

END {of TIB} -

Architecture Guide 
The P-Machine 

SP is the P-machine Stack Pointer. SP Low and SP _ Upr are the limits on SP for 
this task. 

MP and BP designate (respectively) the local and global activation records for this 
task. 

IPC is the P-code Instruction Counter (a seg-relative byte pointer), and ProcNum is 
the number of the executing routine. 

Priority contains the task's priority. This is a number from 0 •• 255. The lower the 
value, the more urgent the priority. 

Wait Q is used when the task is waiting to run, or waiting on a semaphore. Wait Q 

is one link in a linked list of TIBs. 

When a task is waiting on a semaphore, Hang Ptr points to that semaphore. If the 
task is not waiting on a semaphore, Hang Ptr is NIL. Hang Ptr allows a task to 
be removed from a semaphore's wait queue-if the task is being terminated. 

Flags is reserved for future use. 

41 



Architecture Guide 
The P-Machine 

Env is a pointer to the task's E Rec. The task's SIB (Segment Information Block) 
may be found through the E _ Rec:-

TIBIOResul t will in the future be used to save an IORESUL T that is local to the 
task. 

M Depend contains machine-dependent data maintained by the Interpreter. It is 
initialized to o. 

MainTask, if TRUE, indicates that this is the TIB of a "root" ("parent") task. 

StartMSCW points to the MSCW (Mark Stack Control Word) of the routine that 
ST ART'ed this task. 

Further information about tasks appears below in Chapter IV. Figure 4 shows the 
layout of main memory while the System is running,including the location of task 
stacks as discussed in this section. 

42 



high address 

low address 

odd even 

OPERATING SYSTEM 
(subset always resident) 

STACK 

CODE P-OOL 

HEAP 

PROCESS1 STACK 

PROCESS 2 STACK 

---.:::::----:::: 

--==--~:: 

GLOBAL DATA SEG1 

GLOBAL DATA SEG2 

INTERPRETER 

MAIN MEMORY USAGE 

FIGURE 4 

Architecture Guide 
The P-Machine 

43 



Architecture Guide 
The P":Machine 

11.4 P-Machine Instructions 

1l.4.1 The Intrinsic P MACHINE 

A Pascal compilation unit may directly generate in-line P-code. This is done by 
calling the intrinsic procedure 'P MACHINE'. Producing in-line P-code may be 
useful in very low-level system programming. Absolutely no protection is 
provided by this intrinsic or the System; it can only be used at the user's risk, 
and extreme cauti on should be exerCised. 

The form of a call to P...,. MAC~-nNE ~ay be sketched as follows: 

P _MACHINE ( <P-machine item> {, <P-machine item>} ) 

that is, the parameters to the procedure are '8 list of one or more <P-machine 
i tem>s. A <P-ma.chine item> describes a portion of P-code, and causes one or 
more bytes to be generated •. 

There are three varieties of <P-machine item>: 

1) P-code syllable: the simplest item is a '(non-real) scalar constant. This 
item produces a single byte of P-code which is the least significant byte of 
the specified constant. 

2) Expression value: if the ftem is an expression enclosed in parentheses, 
then a P-code sequence is generated which will compute the value of the 
expression and leave it on the stack. 

3) Address Reference: if the first token of the item is ""', then the item is 
the specification of a variable, and P-code is generated which leaves the 
address of that variable on the stack • 

••• A <P-machine item> may not be a string constant. 

44 



EXAMPLE: 

Gi ven these declarations: 

CONST STO = 196; 

TYPE Records = RECORD 
FirstField, SecondField: integer 

END; 
PRe cords = "Records; 

VAR Vector: ARRAY [0 •• 9] OF PRe cord; 
i: integer; 

••• the following call to P _MACHINE ••• 

PMACHINE ( "Vector[Sj.FirstFleld, 0*0, STO) 

Archi tecture Guide 
The P-Machine 

••• would cause the square of i to be stored in the first field of the record 
designated by the sixth element of the array Vector. 



Archi tecture Guide 
The P-Machine 

11.4.2 P-Code Instruction Set 

1l.4.2.1 Operands and Notation 

11.4.2.1.1 Instruction Parameters 

The parameters to a P-code instruction contain information about the location and 
size of that instruction's operands. They are generated at compile time, and are 
therefore static. Each P-code uses i some (fixed) combination of these parameters. 

These are the five possible parameter formats (there are no others): 

UB - Unsigned Byte 

Represents a positive integer in the range 0 •• 255. When converted to a 16-bit 
two's complement value, the most significant byte is zeroed. 

SB - Signed Byte 

Represents a two's complement 8-bit integer in the range -128 •• 127.' When 
converted to a 16-bit two's complement value, the most significant byte is a 
sign extension (all bits equal bit 7 of the low byte (5B». 

DB - Don't care Byte 

Represents a positive integer in the range 0 •• 127. It may thus be treated as 
either an 5B or UB. Bit 7 is always O. 

B - Big 

This is a parameter with variable length. If bit 7 of the first byte is 0, the 
remaining 7 bits represent a positive integer in the range 0 •• 127. If bit 7 of 
the first byte is 1, then bit 7 should be cleared; the first byte is the high­
order byte of a 16-bit word, and the following byte is the low-order byte of 
that word. The Big format may represent positive integers in the range 
0 •• 32767. 

W - Word 

46 

This is a two-byte parameter. It is a 16-bit two's complement value that 
represents an integer in the range -32768 •• 32767. The word is always least­
signi ficant-byte-first. 



Architecture Guide 
The P-Machine 

1l.4.2.1.2 Dynamic Operands 

In the P-machine instruction descriptions below, stack-oriented dynamic operands of 
the P-codes will be discussed. This section describes those operands. 

Acti vation Record 

See the following section. 

Addr (address) 

A 16-bit hardware word address (on byte-addressable processors, this is 
typically an even quantity). 

B 001 (Boolean) 

A 16-bit quantity treated as a logical value. 

Byte-ptr (byte pointer) 

A 32-bit quantity. TOS is an index into an array of bytes. TOS-l is the 
word address of the base of the byte array. Two words are used in a byte­
ptr so that individual bytes may be specified even on word-addressed 
processors. 

I nt (integer) 

Nil 

A 16-bit two's complement integer. 

A constant that references an invalid address. The actual value varies from 
processor to processor. 

47 



Architecture Guide 
The P-Machine 

Offset 

An offset into a code segment. This is either a word or a byte offset, 
dep~ndingon the natural addressing unit pf the host processor. 

Pack-ptr (packed array pointer) 

Real 

Set 

Word 

Three words that designate a bit field within a 16-bit word. T05 is the 
nu mber of the rightmost bit of the field, T05-1 is the 'nulT)ber of bits in the 
field, and T05-2 is the address of the word. 

A 32-bit or 64-bit floating point quantity. 

A set is 0 •• 255 words of bit flags, preceded by-a word that contains the 
number of words in the set. 

A 16-bit quantity that may be treated in any way: as an integer, Boolean, 
address, etc. 

Word-block 

A group of zero or more words. 

1l.4.2.1.3 Activation Records 

An activation record is created for each invocation of an active routine. Figure 5 
illustrates an activation record. 

48 



Mark 
Stack 

high address 

function value 

parameters 

locals 
and 

temporaries 

MSPROC 

MSENV 

MSIPC 

MSDYN 

MSSTAT 

low address 

Architecture Guide 
The P-Machine 

DATASIZE 
words 

least significant 
byte 

PROCEDURE ACTIVATION RECORD 

FIGURE 5 

49 



Archi tecture Guide 
The P-Machine 

The parts of an activation record are: 

1) Mark Stack. 
Five (full) words of housekeeping information: 
a) MSST A T - pointer to the activation record of the lexical 

parent. 
b) MSDYN - pointer to the acti vation record of the caller. 
c) MSIPC - seg-relative byte pointer to point of call in 

the caller. 
d) MSENV - E Rec pointer o't the, caller 
e) MSPROC - -procedure number of caller 

2) Local and temporary variables. This area' is DataSize .words long. 

3) Parameters. 
This area (which may be empty) contains: 
a) Addresses - for VAR parameters, and record and array 

value parameters. 
b) Values - for other value' parameters. 

4) Function value. This area is present only for functions, and is 
either one or two words (or four words, if reals are that size). 

1l.4.2.1.4 Conventions 

Secti on 1l.4.2.2 describes individual P-machine instructions, grouped by the nature 
of their operation. 

On the left is the mnemonic for the instruction, followed by its value (all P-code 
instructions are represented by a single byte). This is followed by the format for 
the parameters, if any. 

If the the instruction has more than one parameter of the same format, then they 
are distinguished by an underscore followed by a number '(parameters of a given 
kind are numbered left to right, starting from 1). 

On the right is a verbal description of tbe instruction. 

Below the opcode value is a notational description of the P-machine Stack before 
and after the P-code's execution. Only the expression-evaluation portion (the top 
words of the stack) is shown. 

On the left is a depiction of the Stack before the opcode is executed, followed by 
a colon (:), followed by a depiction of the stack after the opcode is executed. 
Each depiction of the Stack is enclosed in angle brackets «». Within the 

50 



Architecture Guide 
The P-Machine 

brackets, the stack grows from left to right. Individual operands are separated by 
commas, and vertical bars represent exclusive alternatives (one or the other value, 
but not both). Thus the operand closest to the right bracket (» is the top-of­
stack (TOS). Brackets that do not enclose any operands represent an empty 
evaluation stack. 

51 



Architecture Guide 
The P-Machine 

11.4.2.2 The Individual P-Code Instructions 

11.4.2.2.1 Constant One-Word Loads. 

SLOC 0 •• 31 
<>:<word> 

LOCN 152 
<>:<NIL> 

LOCB 128 UB 
<>:<word> 

LOCI 129 W 
<>:<word> 

LCD 130 B 
<>:<offset> 

Short Load Word Constant. Push the 
opcode, with the high byte zero. 

Load Constant NIL. Push NIL. 
The value may vary across processors. 

Load Constant Byte. Push UB, with 
high byte zero. 

Load Constant Word. Push W. 

Load Constant Offset. B is a word 
offset into the constant pool of the 
current segment. Convert B to a seg­
relati ve word offset. If operating 
on a byte addressed machine, then 
convert to a byte offset. Push the 
offset on the Stack. 

11.4.2.2.2 Local One-Word Loads and Stores 

SLOL1 

SLOL16 

LOL 

SLLAI 

SLLA8 

LLA 

52 

32 

47 
<>:<word> 

135 B 
<>:<word> 

96 

103 
<>:<addr> 

132 B 
<>:<addr> 

Short Load Local Word. SLDLx: fetch 
the word with offset x in the local 
acti vation record and push it. 

Load Local Word. Fetch the word with 
offset B in the local activation record 
and push it. 

Short Load Local Address. Push the 
address of the indicated offset in the 
local activation record. 

Load Local Address. CalculatEt address 
of the word with offset B in the local 
activation record and push it. 



SSTLI 

SSTL8 

STL 

104 

III 
<word>:<> 

164 B 
<word>:<> 

Architecture Guide 
The P-Machine 

Short Store Local Word. Store TOS in 
the indicated offset in the local 
activation record. 

Store Local Word. Store TOS into word 
with offset B in the local activation 
record. 

1l.4.2.2.3 Global One-Word Loads and Store 

SLOOI 

SL0016 

LOO 

LAO 

SRO 

48 

63 
<>:<word> 

133 B 
<>:<word> 

134 B 
<>:<addr> 

165 B 
<word>:<> 

Short Load Global Word. SLDOx: fetch 
the word with offset x in the global 
data area of the current segment and 
push it. 

Load Global Word. Fetch the word with 
offset B in the global data area of the 
of the current segment and push it. 

Load Global Address. Push the word 
address of the word with offset B in the 
global data area of the current segment. 

Store Global Word. Store TOS into the 
word with offset B in global data area 
of the current segment. 

11.4.2.2.4 Intermediate One-Word Loads and Store 

SLOOI 
SL002 

LOD 

173 B 
174 B 
<>:<word> 

137 DB,B 
<>:<word> 

Short Load Intermediate Word. Push 
the word at offset B in the 
activation record of the parent 
(LOD1) or grandparent (LOD2) of 
the local acti vation record. 

Load Intermediate Word. DB indicates 
the number of static links to traverse 
to find the activation record to use. 
Push the word at offset B in that 
activation record. 

53 



Architecture Guide 
The P-Machine 

LOA 

STR 

136 DB, B 
<>:<addr> 

166 DB, B 
<word>:<> 

Load Intermediate Address. DB 
indicates the activation record as for 
LOD. Push the address of offset B in 
that record. 

Store intermediate word. Store IDS 
at offset B in the acti vation record 
indicated by DB. 

11.4.2.2.5 Extended One-Word Loads and Store 

LOE 

LAE 

STE 

154 UB, B 
<>:<word> 

155 UB, B 
<>:<addr> 

217 UB, B 
<word>:<> 

Load Extended Word. Push the word at 
offset B in the global data area qf 
local segment UB. 

Load extended address. Push the 
address of the word at offset B in the 
global data area of local segment UB. 

Store extended word. Store IDS at 
offset B in the global data area of 
local segment UB. 

11.4.2.2.6 Indirect One-Word Loads and Store 

SINOO 

SlND7 

IND 

STO 

54 

120 

127 
<addr>:<word> 

230 B 
<addr>:<word> 

196 
<addr ,word>:<> 

Short Index and Load Word. IDS is the 
address of a record. SINDx: replace it 
wi th word x of the record. 

Index and Load Word. IDS is the 
address of a record. Replace it with 
the B'th word in the record. 

Store Indirect. Store IDS into the 
word pointed to by I~S-I. 



Architecture Guide 
The P-Machine 

Il.4.2.2.7 Multiple-Word Loads and Stores 

LDC 

LDM 

STM 

LDCRL 

LDRL 

STRL 

131 UB 1, B, UB 2 
<>:<word-=-block> 

208 UB 
<addr>:<word-block> 

142 UB 
<addr,word-block>:<> 

242 B 
<>:<real> 

243 
<addr>:<real> 

244 
<addr,real>:<> 

Load Multiple Word Constant. B is a 
word offset into the constant pool of 
the current segment. Push 
the UB 2 words starting at that offset 
onto the evaluation Stack. If UB 1, the 
mode, is 2, and the current segment is 
of opposi te byte sex from the host, swap 
the bytes of each word as it is pushed. 
If less than B+20 words available to 
the Stack, issue a Stack fault. 

Load Multiple Words. TOS is a pointer 
to the beginning of a block of UB 
words. Push the block onto the Stack, 
preserving the order of words in 
the block. If less than UB+20 
words available to the Stack, 
issue a Stack fault. 

Store Multiple Words. TOS is a block 
of UB words. Transfer the block from 
the Stack to the destination block 
starting at the address TOS-1, and 
preserving the order of words in 
the block. 

Load Real Constant. Push the real 
constant designated by the constant pool 
index B in the current segment. The 
constant is guaranteed to be in the 
nati ve byte sex of the host, so no byte 
flipping is necessary during the load. 

Load Real. TOS is the address of a 
real variable. Replace the address 
by the value of the variable. 

Store Real. TOS is the value of a 
real variable. TOS-l is an address. 
Store TOS at the address in TOS-l. 

55 



Architecture Guide 
The P-Machine . 

1l.4.2.2.8 String and Packed Array of Char Parameter Copying 

To copy value parameters of type string or packed array of char into the 
acti vation record of a called routine, the calling routine generates a "parameter 
descriptor." This descriptor is a 2-word record. The first (low address) word is 
either NIL, or a pointer to an E Rec. If the first word is NIL, the second word is 
the address of the parameter. -If the first word points to an E Rec, the second 
word is an offset relative to the designated segment (the offset is- generated by an 
LCD instruction). 

The called routine uses a CAP or CSP instruction to copy the parameter into its 
acti vation record. CAP and CSP use the parameter descriptor to do this. 

CAP 

CSP 

Cause 

56 

171 B 
<addr,addr>:<> 

172 UB 
<addr,addr>:<> 

Copy Array Parameter. TOS is the 
address of the parameter descriptor for 
a packed array of characters. Cause a 
segment fault if the parameter 
descriptor designates a non-resident 
segment. Otherwise, copy the source 
(which is B words big) into the 
destination address at TOS-l. 

Copy String Parameter. TOS is the 
address of the parameter descriptor for 
a string. Cause a segment fault if the 
descriptor designates a non-resident 
segment. Otherwise, compare the 
dynamic length of the designated string 
to UB, the declared size (in bytes) of 
the destination formal parameter. 

a string overflow fault if the length of 
the source is greater than the capacity 
of the destination. Otherwise, copy, 
for the length of the source, into the 
destination, whose address is in TOS-l. 



1l.4.2.2.9 Byte Load and Store 

LDB 

STB 

167 
<byte-ptr>:<wbrd> 

200 
<byte-ptr ,word>:<> 

Architecture Guide 
The P-Machine 

Load Byte. IDS is a byte pointer. Pop 
it and push a word with the byte it 
desi§f'lated in the least significant bits 
and a most signi fant byte of zero. 

Store Byte. Store byte IDS into 
the location specified br: byte 
pointer IDS-I. 

1l.4.2.2.10 Packed Field Load and Store 

LDP 

STP 

201 
<pack-ptr>:<word> 

202 
<pack-ptr ,word>:<> 

Load a Packed Field. Replace the 
packed field pointer IDS with the field 
it designates. Before being pushed on 
the Stack, the field is right-justified 
and zero-filled. 

Store into a Packed Field. IDS is the 
right-justified data, 10S-1 a packed 
field pointer. Store IDS into the field 
described by I~S-I. 

57 



Architecture Guide 
TheP-Machine 

11.4.2.2.11 Record and Array Indexing and Assignment 

MOV 

INC 

IXA 

IXP 

58 

197 US, B 
<addr,addr>:<> 

231 S 
<addr>:<addr> 

215 B 
<addr,word>:<addr> 

216 US_I, UB_2 
<addr,word>:<pack-ptr> 

Move. Move B words from the source 
designated by TOS to the destination 
designated by TOS-l. TOS is either the 
address of a word block (if US is zero) 
of the offset of a constant word block 
in the current segment. If US is 2, and 
the current segment has opposi te byte 
sex from the host, swap the bytes of 
each word as it is moved. 

Increment Field Pointer. The word 
pointer TOS is indexed by S words and 
the resultant pointer is pushed. 

Index Array. TOS is an integer 
index, TOS-l is the array base word 
pointer, and S is the size (in words) of 
an array element. Push a word pointer 
to the indexed element. 

Index Packed Array. TOS is an 
integer index, TOS-l is the array base 
word pointer. US 1 is the number of 
elements per word~ and US 2 is the 
field-width (in bits). Compute 
and push a packed field pointer. 



1I.4.2.2.12 Logical Oparators 

LAND 161 
<word,word>:<word> 

LOR 160 
<word,word>:<word> 

LNOT 229 
<word>:<word> 

BNOT 159 
<Baal> :<Bool> 

LEUSW 180 
<word,word>:<Bool> 

GEUSW 181 
<word,word>:<Bool> 

1I.4.2.2.1J Integer Arithmetic 

AB} 224 
<int>:<int> 

NGI 225 
<int>:<int> 

INCI 237 
<int>:<int> 

DECI 238 
<int>:<int> 

ADI 162 
<int,int>:<int> 

SBI 163 
<int,int>:<int> 

Architecture Guide 
The P-Machine 

Logical And. AND TOS into TOS-l. 

Logical Or. OR TOS into TOS-l. 

Logical Not. Take one's complement of 
TOS. 

Boolean Not. Complement the low 
bi t and clear the remainder of TOS. 

Less Than or Equal Unsigned. Push 
Boolean result of unsigned comparison 
TOS-l <= TOS. 

Greater Than or Equ al Unsigned. Push 
Boolean result of unsigned comparison 
TOS-l >= TOS. 

Absolute Value Integer. Take absolute 
value of integer TOS. Result is 
undefined if TOS is initially -32768. 

Negate Integer. Take the two's 
complement of TOS. '" 

Increment Integer. Add 1 to TOS. 

Decrement Integer. Subtract 1 from 
TOS. 

Add Integers. Add TOS into TOS-l. 

Subtract Integers. Subtract TOS from 
TOS-l. 

59 



Architecture Guide 
The P-Machine 

MPI 

DVI 

MODI 

CHK 

EQUI 

NEQI 

LEQI 

GEQI 

140 
<int,int>:<int> 

141 
<int,int>:<int> 

143 
<int,int>:<int> 

203 
<i nt,int;int):<int> 

176 
<int,int>:<Bool> 

177 
<int,int>:<Bool> 

178 
<int,int>:<bool> 

179 
<int,int>:<bool> 

11.4.2.2.14 Real Arithmetic 

Multiply Integers. Multiply TOS into 
TOS-l. This instruction may cause 
overflow if result is larger than 
16 bits. 

Divide Integers. Divide TOS-1 by TOS 
and push quotient. 
If TOS is 0, cause an execution error. 

Modulo Integers. Divide TOS-1 by TOS 
and push the remainder. 

Check Subrange Bounds. Insure that 
TOS-1 <= TOS-2 <= TOS, leaving T'OS-2 
on the Stack. if conditions are not 
satisfied, cause a runtime error. 

Equal Integer. Push Boolean 
result of integer comparison 
TOS-l = TOS. 

Not Equal Integer. Push Boolean 
resul t of integer comparison 
TOS-l <> TOS. 

Less than or Equal Integer. Push 
Boolean result of integer comparison 
TOS-l <= TOS. 

Greater than or Equ al Integer. Push 
Boolean result of integer comparison 
TOS-1 >= TOS. 

All overflows and underflows cause a runtime error. 

FLT 

TNC 

60 

204 
<int>:<real> 

190 
<real>:<int> 

Float Top-of-Stack. Convert the 
integer TOS to a floating point number. 

Truncate Real. Convert the real TOS 
to an integer by truncating. 



RND 191 
<real>:<int> 

ABR 227 
<real>:<real> 

NGR 228 
<real>:<real> 

ADR 192 
<real,real>:<real> 

SBR 193 
<real,real>:<real> 

MPR 194 
<real,real>:<real> 

DVR 195 
<real,real>:<real> 

EQREAL 205 
<real,real>:<Bool> 

LEREAL 206 
<real,real>:<Bool> 

GEREAL 207 
<real,real>:<Bool> 

11.4.2.2.15 Set Operations 

ADJ 199 UB 
<set>:<word-block> 

Archi tecture Guide 
The P-Machine 

Round Real. Convert the real TOS to 
an integer by rounding. 

Absolute Value of Real. Take the 
absolute value of the real TOS. 

Negate Real. Negate the real TOS. 

Add Reals. Add TOS into TOS-1. 

Subtract Reals. Subtract TOS from 
TOS-1. 

Multiply Reals. Multiply TOS into 
TOS-1. 

Divide Reals. Divide TOS into TOS-1. 
If TOS is 0, cause a runtime error. 

Equal Real. Push Boolean result of 
real comparison TOS-1 = TOS. 

Less than or Equal Real. Push Boolean 
result of real comparison TOS-1 <= TOS. 

Greater than or Equal Real. Push 
Boolean result of real comparison 
TOS-1 < = TOS. 

Adjust Set. Force the set TOS to 
occupy UB words, either by expansion 
(adding zeroes "between" TOS and 
TOS-1) or compression (chopping of high 
words of set), and discard its length 
word. After this operation, if less 
than 20 words are available to the 
Stack, cause a Stack fault. 

61 



Archi tecture Guide 
The P-Machine 

SRS 

INN 

UNI 

INT 

DIF 

EQPWR 

LEPWR 

GEPWR 

62 

188 
<int,int):<set) 

218 
<int,set):<Bool) 

219 
<set,set):<set) 

220 
<set,set):<set) 

221 
<set,set):<set) 

182 
<set,set):<bool) 

183 
<set,set):<Bool) 

184 
<set,set):<Bool) 

Build a 5ubrange 5et. The integers 
T05 and T05-1 must be in [0 •• 4079]. 
If not, cause a runtime error, else 
push the set • If T05-1 
) T05, push the empty set. 
Before this operation, if less than 
20 words available to the 5tack, 
cause a 5tack fault. 

5et Membership. Push Boolean result 
of T05-1 IN T05. 

5et Union. Push the union of sets T05 
and T05-1. (T05 OR T05:-1) 

5et Intersection. Push the 
intersection of sets T05 and T05-l. 
(T05 AND T05-1) 

5et Difference. Push the difference 
of sets T05 and T05-1. 
(T05-1 AND NOT T05) 

Equal Set. Push the Boolean result of 
set comparison T05-1 = TOS. 

Less than or Equal 5et. Push true if 
T05-1 is a subset of T05, else 
push false. 

Greater than or Equ al 5et. Push true 
if T05 is a superset of T05, else 
push false. 



II.4.2.2.16 Byte Array Comparisons 

Architecture Guide 
The P-Machine 

EQBYT 185 UB 1, UB 2, B Equal Byte Array. T05 and T05-1 are 
<addrloffset,addrloffset>:<Bool> each a pointer to a byte array (if the 

corresponding UB is zero) or the offset 
of the constant byte array in the 
current segment. B is the size (in 
bytes) of that array. UB 1 and UB 2 
are mode flags. They refer to T05 and 
T05-1, respectively. If the byte sex of" 
the segment is di fferent from the host, 
and the corresponding mode is 2, swap 
the bytes of each word of that operand, 
before doing the comparison. Push the 
Boolean result of the byte array 
comparison T05-1 = T05. 

LEBYT 186 UB 1, UB 2, B Less than or Equal Byte Array. T05 
<addrloffset,addrloffset):<Bool> and T05-1 each point to a byte array 

(if the corresponding UB is zero) or the 
offset of the constant byte array in the 
current segment. B is the size (in 
bytes) of that array. UB 1 and UB 2 
are mode flags. They refer to T05 and 
T05-1, respectively. If the byte sex of 
the segment is opposite from the host, 
and the corresponding mode is 2, swap 
the bytes of each word of that operand, 
before doing the comparison. Push the 
Boolean result of the byte array 
comparison T05-;1 <= T05.· 

63 



Architecture Guide 
The P-Machine 

GEBYT 

1l.4.2.2.17 

UJP 

FJP 

TJP 

EFJ 

NFJ 

JPL 

FJPL 

64 

187 UB 1, UB 2, B Greater than or Equal Byte Array. 
<addrloffset,addrloffset>:<Bool> T05 and T05-1 each point to a byte 

array (if the corresponding UB is zero) 
or the offset of a constant byte array 
in the current segment. B is the size 
On bytes) of that array. UB 1 and 

Jumps 

138 5B 
<>:<> 

212 5B 
<8001>:<> 

241 58 
<8001>:<> 

210 58 
<int,int>:<> 

211 58 
<int,int>:<> 

139 W 
<>:<> 

213 W 
<8001>:<> 

UB 2 are mode flags. They refer to 
TOS and T05-1, respectively. If the 
byte sex of the segment is opposite 
the host, and the corresponding mode 
is 2, swap the bytes of each word of 
that operand before doing the 
comparison. Push the Boolean result 
of the byte array comparison 
T05-1 <= T05. 

Unconditional Jump. Jump 
by byte offset 58. 

False Jump. Jump by byte offset 5B 
if T05 is false. 

True Jump. Jump by byte offset 58 if 
T05 is true. 

Equal False Jump. Jump by byte offset 
58 if T05 <> T05-1. 

Not Equal False Jump. Jump by byte 
offset 5B if T05 = T05-1. 

Unconditional Long Jump. Jump W 
bytes from current location. 

False Long Jump. Jump W bytes 
from current location if T05 is false. 



XJP 214 B 
<int>:<> 

11.4.2.2.18 Routine Calls and Returns 

Architecture Guide 
The P-Machine 

Case jump. The first word, WI, with' 
word offset B in the constant pool of 
the current segment is word-aligned and 
is the minimum index of the table. The 
next word, W2, is the maximum index. 
The case table is the next (W2-Wl)+1 
words. If the byte sex of the segment 
is opposi te to the host, any of these 
words must be byte-swapped before they 
are used. 

If TOS, the actual index, is in the 
range Wl.. W2, then jump W3 words from 
the current location, where 
W3 is the contents of the word pointed 
at by TOS. Otherwise do nothin'g. 

F or all procedure call instructions, after the MSCW and Datasize words have been 
pushed on the Stack,a check is made to see that there are still at least 40 words 
a vail able between the Stack and the Codepool. If there are not, a Stack fault is 
issued. 

F or all calls to external procedures, issue a segment fault if the desired segment 
is not already in memory. 

CPL 

CPG 

SCPll 
SCPl2 

144 UB 
<param>:<acti vation> 

145 UB 
<param>:<acti vati on> 

239 UB 
240 UB 
<param>:<acti vation> 

Call Local Procedure. Call procedure 
UB, which is an immediate child of the 
currently executing procedure and iri>the 
same segment. Static link of the new 
MSCW is set to old MP. 

Call Global Procedure. Call procedure 
UB, which is at lex level 1 and in the 
same segment. The static link of the 
MSCW is set to BASE. 

Short Call Intermediate Procedure. Set 
the static chain to point to the lexical 
parent (CPll) or grandparent (CPI2) of 
the calling environment. 
Call procedure UB. 

65 



Architecture Guide 
The P-Machine 

CPl 

M5CW. 

CXL 

SCXGl 

SCXG8 

CXG 

CXI 

CPF 

66 

146 DB, US 
<param>:<acti vation> 

147 US 1, US 2 
<param>:(activation> 

112 US 

119 US 
<param>:<acti vation> 

148 US 1, US 2 
<param>:<acti vation> 

149 UB 1, DB, US 2 
<param>:<:acti vation> 

151 
<param,proc-ptr> 
:<activation> 

Call Intermediate Procedure. Call 
procedure US, which is at lex level DB 
less than the currently executing 
procedure and in the same segment. 
Use that acti vati on record's static 
link as the static link of the new 

Call Local External Procedure. Call 
procedure US 2, which is an immediate 
child of the currently executing 
procedure and in the segment US_1. 

Short Call External Global Procedure. 
The segment number is indicated by the 
opcode (1-8) and US is the procedure 
number. 
SCXGl may refer to a procedure 
embedded in the Interpreter. If 
this is the case, an Interpreter 
table contains the procedure's 
location. 

Call Global External Procedure. Call 
procedure UB 2 which is at lex level 1 
and in the segment US I. 
If the segment number IS 1, then the 
procedure code may be embedded in 
the Interpreter; an Interpreter 
table contains its location. 

Call Intermediate External Procedure. 
Call procedure UB 2 which is at lex 
level OS less than-the currently 
executing procedure, and in the 
segment US_I. 

Call Formal Procedure. T05 contains a 
procedure number. T05-1 contains an 
E _ Rec pointer. T05-2 contains a static 
link. Call the indicated procedure. 



RPU 

LSL 

BPT 

150 B 
<acti vation>:<func> 

153 DB 
<>:<addr> 

158 
<>:<acti vation> 

Architecture Guide 
The P-Machine 

Return from Procedure. Restore 
state of calling procedure from MSCW 
and discard. Pop MSCW from Stack. 
Cut back an additional B words from 
Stack, leaving function value, 
if appropriate. 
If returning to di fferent segment 
(Mark Stack E Rec <> current E Rec) 
then issue a segment fault if necessary. 
If procedure number in MSCW is < 0, 
return to EXITIC of procedure, not 
MSCW's IPC. 

Load Static Link onto Stack. DB 
indicates the number of static 
links to traverse. 
Push the indicated static link. 

Breakpoint. Unconditionally call 
execution error procedure. 

67 



Architecture Guide 
The P-Machine 

11.4.2.2.19 Concurrency Support 

SIGNAL 

WAIT 

222 
<addr>:<> 

223 
<addr>:<> 

11.4.2.2.20 String Instructions 

Signal. TOS is a semaphore address. 
Signal this semaphore. 

Wait. TOS is a semaphore address. 
Wait on this semaphore. 

EQSTR 232 UB 1, UB 2 Equal String. TOS and TOS-l each 
<addrloffset,addrloffset):<Bool) point to a string variable 

Cif the corresponding UB is zero) or the 
offset of a constant string in the 
current segment. UB 1 and UB 2 refer 
to TOS and TOS-l, respectively:- Push 
the Boolean result of the string 
comparison TOS-l = T05. 

LESTR 233 UB 1, UB 2 Less or Equal String. TOS and TOS-l 
<addrloffset,addrloffset>:<Bool> each point to a string variable 

(if the corresponding UB is zero) or the 
offset of a constant string in the 
current segment. UB 1 and UB 2 refer 
to TOS and TOS-I, respectively:- Push 
the Boolean result of the string 
comparison TOS-I <= TOS. 

GESTR 234 UB 1, UB 2 Greater or Equal String. TOS and 

68 

<addrloffset,addi-loffset>:<Bool) TOS-I each point to a string variable 
(if the corresponding UB is zero) or the 
offset of a constant string in the 
current segment. UB I and US 2 refer 
to TOS and TOS-l, respectively:- Push 
the Boolean result of the string 
comparisonT OS-1 >= TOS. 



ASTR 

CSTR 

235 UB 1, UB 2 
<addr,addrloffset>:<> 

236 
<>:<> . 

11.4.2.2.21 Miscellaneous Instructions 

LPR 

SPR 

DUP1 

157 
<int>:<word> 

209 
<int,word>:<> 

226 
<word>:<word, word> 

Architecture Guide 
The P:'Maclline 

Assign String. TOS-l is the address of 
the destination string variable. UB 2 
is the declared size of that string; 
TOS represents the source for the 
assignment. It is either the address of 
a string variable (if the mode, UB 1, 
is 0) or the offset of a string constant 
in the current segment. Cause a string 
overflow fault if the dynamic size " 
of the source string is greater than 
the declared size of the destination. 
Otherwise, copy the source into the 
destination. 

Check String Index. TOS-l 
is the address of a string variable. 
T05 is an index into that variable. 
Check that the index is between 1 and 
the current dynamic length of the.,:.,~ 
variable. If not, cause a range--cheCk 
execu tion error. 

Load Processor Register. T05 is a 
register nu mber. Push the contents of 
the register indicated in this fashion: 
(for SPR, also): 
a) register number is positi ve: it is a 

word index into the current TIB. 
b) register number is negative: 

-1 indicates the pointer to the TIB 
of the currently running task 

-2 indicates the current E Vec P 
-3 indicates the pointer to the- TIB 

at the head of the ready queue 

Store Processor Register. T05-1 is a 
register number (defined as for LPR). 
Store TOS in indicated register. 

Duplicate One Word. Duplicate one 
word on TOS. 

69 



Architecture Guide 
The P-Machine 

DUPR 

SWAP 

NOP 

NAT 

198 
(word-block>:<word-block> 

189 
(word,word):(word,word) 

156 
(>:() 

168 
():() 

NAT-INFO 169 B 
():() 

RESERVEI 250 

RESERVE6 255 

70 

Duplicate Real. Duplicate the real 
on TOS. 

Swap. Swap TOS with TOS-l. 

No Operation. Continue execution. 

Native Code. Transfer control to 
nati vecode that begins directly after 
this instruction. Details are 
machine-dependent. 

Native Code Information. Ignore the 
next B bytes in the P-code stream. 
This information is used in the 
generation of native code. Treat 
the instruction as a long form of NOP. 

These codes ~re reserved for use by 
the Compiler to identify embedded 
compiler directives. They must not be 
explicitly generated by programs. 



Ill. LOW-LEVEL I/O 

Ill.l· Introduction to the I/O Subsystem 

Architecture Guide 
The BIOS 

Besides emulating the P-machine, each interpreter must contain some native code 
to perform certain time-critical operations, and deal with hardware dependencies 
such as 1/0 devices. The body of code that is not devoted to emulating P-code 
is called the Runtime Support Package (RSP). The portion of the RSP that is 
responsible for 1/0 is called the RSP/IO. 

To make the System as portable as possible, the RSP/IO is machine-independent, 
except for a portion called the Basic Input/Output Subsystem (BIOS). The BIOS 
must vary depending on the hardware in use, but the interface between the BIOS 
and the RSP/IO is standard: calls to routines in the BIOS are clearly defined. 

Thus, we have the 1/0 Hierarchy shown in Diagram 1.0: The user's I/O calls (e.g., 
RE ADLN, WRITELN) are mapped by the Compiler and Operating System into calls 
to the RSP (i.e., UNITREAD, UNITWRITE). The RSP/IO itself calls the BIOS 
which controls the actual 'device operations. It is important for 'the reader to 
recognize that here we are discussing a synchronous 1/0 system. In other words, 
when an 1/0 request has been initiated by a user program, control does not return 
to that· program until the I/O operation is completed. 

This chapter describes the behavior and interfaces of the RSP/IO and BIOS. The 
SBIOS (Simpli fied BIOS) is described in detail in the Installation Guide. The 
easiest way to describe its relation to the BIOS and RSP/IO is to sketch the 
history of I/O support within the p-System. 

The first implementation was for the PDP-II, which has well-establisheds'tandard 
interfaces to peripheral devices (regardless of manufacturer). In this environment, 
there was no need for 1/0 adaptation. 

When the p-System was adapted to the 8080 and Z80, the widespread availability 
of CP/M ® was used: p-System 1/0 called CP/M BIOS routines. In this way, any 
hardware environment that CP/M already supported could then host the p-System. 

As adaptations for additional processers (e.g., the 9900, 6502, and 6800) were 
begun, it became clear that the p-System needed some analog to the CP/M BIOS. 
It was at this point that the p-System BIOS, essentially as described in this 
chapter, was created and standardized. 

71 



Architecture Guide 
The BIOS 

The final step in this 1/0 development took place at sofTech Microsystems, where 
it was realized that: 

1) The BIOS definition did not address the problem of 
standardizing bootstrap mechanisms, and 

2) Implementing a 8105 was a difficult task, and virtually 
required the use of an already running p-System. 

The Adaptable System was created to address these problems. The SBIOS is as 
si mple a hardware interface as possible, so that it can be written by a relatively 
inexperienced programmer. It is called from a unit of "interface code" that 
accepts BIOS-style calls and emits SBIOS routine calls. This interface code allows 
the Interpreter/SBIOs interface to be simpler than the BIOS interface. The 
RsP/IO is essentially unchanged. 

The Adaptable System also addresses the bootstrap problem by defining a hierarchy 
of bootstrap components, only some of which need to be implemented by the user 
installing a p-System. 

A user who has access to a running p-System and the source code for the 
Interpreter and SBIOs interface code may wish to implement a BIOS-level I/o 
interface. This is potentially more efficient than an SBIOS-Ievel adaptation, since 
the more elaborate BIOS interface allows the implementor to take advantage of 
such performance characteristics as DMA support in the disk interface. 

Both BIOS and SBIOS 1/0 interfaces have been created as the System was adapted 
to new environments. Earlier adaptations (such as for the PDP-II) do not always 
use these conventions (though in the future they may). 

72 



Architeeture Guide 
The BIOS 

"Language Level" A UrER 
v 

-" i nte~p~eter Leve i" _:p :', "'.r~;~ ~ Sl;;~:~:~g~, data :r:a - a~d~e: s: 
1[, block no., control word] 
v 

DEVICE I/O 
(parameter checking) 

I 
v 

r~::::~:---------r~:~::::----- ~~::---------l~:~:::-----+user-
v v v defined 

SPECIAL G-iAR SPECIAL G-iAR SPECIAL G-iAR Devices 
~I~ ~I~' ~I~ 

(OLE's ,ffi' s ,ECF (OLE's I CR' s, EOF (OLE's I ffi' s, EOF 
& al hal ck) & a' halock) & a phalock) 

write read drive no., 
data area 

address, 
byte count, 
logical 
block no. 

single 
data 
byte 

"BIOS 
Level" 

single 
data 
byte 

single 
data 
byte 

v 
PRINTER 

PRIMITIVES 
+--------r 

V 
TYPE -A/-E.AD QJF 

v 
<------SPECIAL G-iAR 

. HlV'DLI~ 

v v 

single 
data 
byte 

DISK SERIAL LINE 
~PPER PRIMITIVES 

(Map logical 
blocKs into 

track r sector) 
v 

DISK 
PRIMITIVES 

(~tart/sto~, flush, break) 

v 
SCREEN 

PRIMITIVES 

v 
KEYBOARD 

PRIMITIVES 

Diagram 1.0 ---- I/O Subsystem Hierarchy 

v 

device no., 
data area 

address, 
byte count, 
logical 
block no. 

MI SCELL.AAEClJS 
DEVICE 
[RIVERS 

73 



Architecture Guide 
The BIOS 

111.2 The Language Level: De~ine If/JJ) Routines 

As mentioned above, all language.Uevel lfro requests are eventually mapped by the 
Compiler and Operating System irttDcnalls to a group of intrinsic routines known as 
the Device I/O Routines. The plttqJUBIJJllter may call the Device Routines directly, 
or may use the standard I/O syntax of tthe language in use. The exact details of 
how this mapping is accomplished caD rnot concern us here. The Device I/O 
Routines are not written in Pascal, tbut iin fact are the native code procedures that 
comprise the RSP/IO. The way that tthe&e procedures are called is described next. 

Throughout this chapter, it is assUl'TlBtl ttI18t all I/O support at or below the device 
I/O level is implemented in asseniliw llargJuage. If P-code is the native language 
of the host processor, these routines rtl'llW iin fact be implemented in Pascal. 

The RSP/IO routines are implelltelitetJ cand accessed as routines of the Operating 
System's unit KERNEL. KERNEL iiB cam:ressible as segment 1 of every compilation 
unit. The actual code for the routines rmay reside in the Interpreter itself, instead 
of in KERNEL. 

111.2.1 Calling the RSP /10 

To the user making direct calls ttD r:IDevice I/O Routines, they look like any other 
intrinsic routine. If they actually \Ware declared in Pascal, the declarations would 
have the following format (allowi'l1g ca 'ffew illegitimate constructs such as optional 
parameters and variable-length arewS): 

74 

PROCEDURE UNITREAD( LmJ~ER : INTEGER; 
VAR DATAAREA : ~ ~RRAY [O •• BYTESTOTRANSFER-l] 

OF 0 •• 255; 
BYTESTOTRAN5fTHlR.:: llNTEGER 
[; LOGICALBLOJOf((::' IlNTEGER] 
[; CONTROL : ItmIIEHCJHR] ); 

PROCEDURE UNITWRITE( mme'C8S3 for UNITREAD> ); 

FUNCTION UNITBUSY( UN~ : INTEGER ) : BOOLEAN; 

PROCEDURE UNITWAIT( UttJ~ER : INTEGER ); 

PROCEDURE UNITCLEAR( lUINIrmiJUJMBER : INTEGER ); 

PROCEDURE UNITST A TUS( wmll1TNWMBER : INTEGER; 
VAR STATUSWORDS ::~W [0 •• 29] OF INTEGER; 

CONTROL : INlEHlilE±Ri»; 



Architecture Guide 
The BIOS 

Remember that no such declarations actually exist in the System. They are 
intended to model the parameters passed and returned by the native code RSP/IO 
routines. 

Ill.2.I.1 Devices and Device Numbers 

As described elsewhere, each device is referred to in the System by a given 
number. The formal parameter UNITNUMBER in the declarations above determines 
which physical unit the operation is intended for. Thus, the Device 1/0 Routines 
are device-transparent to the Pascal programmer; the same procedure will handle 
any physical unit. Diagram 2.0 is a list of the pre-defined unit numbers associated 
with each physical unit. The meaning of the other parameters is discussed later in 
this chapter. 

Unitnumber 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13-127 

Volume name 

<Reserved for the system> 
CONSOLE 
SYSTERM 
<Reserved for the system> 
diskO 
disk 1 
PRINTER 
REMIN 
REMOUT 
disk2 
disk3 
disk4 
disk5 
<Reserved for future expansion) 

Diagram 2.0 -- Unitnumbers 

Ill.2.I.I.1 User-Defined Devices 

The System reserves all device numbers above 127 for user-defined devices. They 
have no pre-assigned names, yet can be accessed through the UNIT intrinsics just 
as devices with pre-assigned numbers. 

75 



Arehiteeture Guide 
The BIOS 

lILZ.l,..Z CONTROL Parameters 

The 'CONTROL paI".a1'Reter to UNlTR£AD., tJNITWRIl£ and UNflfSTi\lUS i:s award 
used to passspecitrl inrormati'OA to the RSP/IO -and 8IOS regarding 'the bandlingof 
the l/Ol'equest.. The fOI'Wfat:s of the CONTROL words ;are shawn in Diagrams 2,.1 
andU .. 

MSB LSB 
I 15-13 12-4 I J 2 1 I 
I USER I I I I 
I OCFlt£D I (Reserved) I NXRLF I'DSPEC I R-IY5SECT I 
i I ! I 

Valuel I I 8 4 I 2 

Bit o ASYNC Set (1) implies asynchronous I/o request. 
Reset (0) implies synchronous Uo request. 

(This bit should always be reset.) 
Bit 1 PHYSSECT Set implies "Physical Sector Mode" for disk I/O. 

Reset implies "Logical Block Mode" for disk I/O. 
(See section 2.3.1 for details.) 

Bit 2 NOSPEC Set implies "no special character handling". 
Reset implies "special character handling'l .. 

(See sections 3.2.1 and 3.2.2 for details.) 

I , 

Bit J NOCRLF Set implies no LFs are to be appended CRs during 
non-disk I/o. 

0 

AS"(t.C 

1 

Reset implies LFsare to be appended to CRs during 
non-disk I/O. 
(See sections 3.2 .. 1.2 and 3.2..1.3 for details.) 

Bits 4-12 Reserved for future expansion. 
Bits 13-15 User-defined functions. 

The default setting for all these bits is reset (0). 

Diagram 2.1 - CONTRCL word fonnat for UNlTREAD and UNlTWRITE 

76 

, 
I 
I 
I 
J 



Architecture Guide 
The BIOS 

MSB I 15-13 
I USER 

12-1 I 0 
I I 

LSB 

I DEFINED 
I 

I (Reserved) I IQ)IR 
I I 

Value I I I 1 

Bit 0 IODIR 

Bits 1-12 
Bits 13-15 

Set (1) implies the status of the input channel 
is to be returned. 

Reset (0) implies the status of the output 
channel is to be returned. 

Reserved for future expansion. 
User-defined functions. 

Diagram 2.2 - CONTROL word format for UNITST A TUS 

IIl.2.2 10RESUL T and Completion Codes 

At times, an I/O request will terminate abnormally. To handle error conditions, a 
program may use the intrinsic IORESUL T. The integer value returned by 
IORESUL T describes the status of the last I/O request. 

Each call to UNITREAD, UNITWRITE, UNITCLEAR or UNITST ATUS causes a 
"completion code" to be set in the SYSCOM data area (SYSCOM, for SYStem 
COM mu nication area, is conventionally the only data space that may be directly 
accessed by both the Operating System and the Interpreter). Programmers may 
test the completion code by using IORESUL T. 

The standard completion codes are given in Diagram 2.3 below. 

77 



ArcItilel:bH'e Guide 
The BID5 

CDde 

o 
1 
2 , 
4-
.5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 - 121 

Meaning 

No error 
Bad block, eRe errol" (parity) 
Bad device .number 
megal 1/0 request 
Data-com timeout 
Volume is no longer on-line 
File is no longer in directory 
Illegal file name 
No room; insufficient space on disk 
No such volu·me on-line 
No such filename in directory 
Duplicate file 
Not closed; attempt to open an open file 
Not open; attempt to access a closed file 
Bad format; error reading real or integer 
Ring Buffer Overflow 
Write attempt to protected disk 
Illegal block number 
llle~ buffer address 
Reserved for future expansion 

Codes 128 through 255 are available for non-predefined, device"':dependent errors. 

Diagram 2.3 - I/O Completion Codes 

m.!.3 Logical·Disk Structure 

The System views a disk as a zero-based linear array of 512-byte logical blocks. 
All disks in the System have this logical structure, regardless of their physical 
format. The physical allocation units of a disk are commonly known as sectors; 
these may vary widely from one model of drive to another. The BIOS is responsible 
for mapping the logical structure of a System disk onto the physical structure of 
the device, i.e., mapping logical blocks onto physical sectors. 

78 



111.2.3.1 Physical Sector Addressing Mode 

Architecture Guide 
The BIOS 

To provide enhanced flexibility for systems programming at a machine-specific 
level, a mechanism has been provided for directly accessing the physical sectors of 
the disk. When the PHYSSECT bit (bit 1, value 2) of the CONTROL word is set 
on a call to UNITREAD or UNITWRITE involving a disk unit, the 1/0 is performed 
in Physical Sector Mode. This has the following effects: 

1) The parameter LOGICALBLOCK is interpreted by the BIOS' as· the physical 
sector number (PSN). (In the future, this may become the least significant 15 or 16 
bits of the PSN.) 

2) The parameter BYTESTOTRANSFER must be o. (In the future, this may 
become the most significant 16 bits of the PSN.) 

111.2.3.1.1 Physical Sector Numbers 

Typically, the physical sectors of a disk are addressed by specifying both track and 
sector numbers. That is, the disk is viewed as an array of tracks where each 
track is an array of sectors. If this data structure were declared in Pascal, it 
would look like this: 

type 

BYTE = 0 •• 255; 

SECTOR = array [O •• (BYTESperSECTOR-l)] of BYTE; 

TRACK = array [1 .. SECTORSperTRACK] of SECTOR; 

DISK = array [O •• (TRACKSperDISK-l)] of TRACK; 

(Note that here, we are using the convention that track numbers are zero-based 
but sector numbers start from one.) 

We can convert the type DISK into a linear array of SECTOR as follows: \ 

type 

DISK = array [O.,,(TRACKSperDISK*SECTORSperTRACK)-l] of SECTOR; 

We use this linear representation for addressing the disk by physical sector number 
(PSN). The relations between the PSN, and track and sector numbers are: 

79 



Architecture Guide 
The BIOS 

PSN = (TRACKNUMBER*SECTORSperTRACK) + SECTORNUMBER-1; 
TRACKNUMBER = PSN div SECTORSperTRACK; 
SECTORNUMBER = (PSN mod SECTORSperTRACK) + 1; 

111.2.3.1.2 Physical Sector Size 

Any physical sector size may be accomodated. An 1/0 request in Physical Sector 
Mode simply causes a full sector to be transferred. The programmer is responsible 
for ensuring that the data area is at least large enough for one physical sector. 

Programs written using physical sector mode are not expected to be portable to 
different disk hardware without some modification. 

80 



111.3 The Interpreter Level: The RSP /10 

Architecture Guide 
The BIOS 

This section details the design and operation of the Input/Output portion of the 
Runtime Support Package (RSP/IO). While the design itself is processor- and 
hardware-independent, it is intended to be realized in native code. Thus, the final 
product will be processor-specific but still independent of the exact peripherals 
used. 

111.3.1 Calling Mechanisms 

This section now discusses how each routine in the RSP/IO is called from the 
Pascal level (or the level of another compiled language). The level of detail is 
intended to be such that an implementor of the R-SP will know how to pop 
parameters off the Stack when the RSP is called, and how the Stack should look 
when the RSP returns. The detailed semantics of each routine are discussed in 
Section llI.3.2. 

111.3.1.1 UNIT READ and UNITWRITE 

PROCEDURE UNITREAD( UNITNUMBER : INTEGER; 
VAR DATAAREA : PACKED ARRAY [O •• BYTESTOTRANSFER-l] 

OF 0 •• 255; 
BYTESTOTRANSFER : INTEGER 
[; LOGICALBLOCK :INTEGER] 
[; CONTROL : INTEGER] ); 

PROCEDURE UNITWRITE( <same as for UNIT READ> ); 

111.3.1.1.1 Parameter Description 

UNITNUMBER has already been discussed. 

DA T AAREA is the user's buffer to or from which the data will be transferred. 
Describing it as a VAR parameter signifies that UNITREAD and UNITWRITE .are 
passed a pointer to the start of the data area. This .pointeT is actually 
represented as an address couple, consisting of a word base and a byte offset. On 
processors which use byte addressing, the effective address is computed by simply 
adding the base and the offset, since both quantities are in bytes. For processors 
using word addressing, the effective address is computed by indexing byte-wise 
from the base address (always toward higher locations). Generally, the address of 
the start of the data area mayor may not be on a word boundary. In the case 
of disk units, however, it is only defined in the case that it is on a word 
boundary; that is, a Pascal programmer must not allow actual parameters with odd 

81 



Architecture Guide 
The BIOS 

nu mbe red indices (like A[3]) to occur when transferring to or from the disk. The 
reason for this inconsistency is to avoid restricting disk data to being moved byte­
by-byte. 

The third item in the parameter list, BYTESTOTRANSFER, contains the number of 
bytes to move between the user's data area and the physical unit. 

Two optional parameters follow for UN1TREAD and UN1TWR1TE: LOG1CALBLOCK 
and CONTROL. These parameters are optional for the Pascal programmer; the 
compiler will assign them both the default value zero. LOG1CALBLOCK is only 
relevant for disk reads or writes; as discussed in Section 111.2.3, it specifies the 
Pascal logical block to be accessed. The CONTROL word has been discussed 
above in Section 111.2.1.2. 

111.3.1.1.2 Parameter Stack Format 

UN1TREAD and UNITWRITE receive their parameters on the evaluation stack in 
the following order (each box represents a 16-bit quantity): 

++++ 1111111111111111 
1---------------
I Un it Number 
1---------------
I Word Base 
1---------------
I Byte Offset 
1---------------
I Byte Count 
1---------------
1 Block Number 
1---------------
I Control 
1---------------

<- - - - - - (on return, SP 
points here) 

(The stack shown here 
grows down) 

<------------- SP 

Diagram 3.0 - Stack state on entering UNITREAD or UNITWRITE 

Like ordinary Pascal procedures, these RSP routines pop their parameters from the 
stack when they are finished. 

82 



Architecture Guide 
The BIOS 

111.3.1.2 UNITBUSY 

FUNCTION UNITBUSY( UNITNUMBER : INTEGER ) : BOOLEAN 

The UNITBUSY function has meaning only in an asynchronous environment and 
thus will always return FALSE (0) for this synchronous speci ficatLon. The use of 
the stack is illustrated in Diagram 3.1. 

++++ 11111111111111111 11111111111111111 
1---------------1 I--~------------I 
I Unit Number 1<---- SP ----->1 False I 
1---------------1 1---------------1 

before after 

Diagram 3.1 - Stack state before and after UNITBUSY 

111.3.1.3 UNIT WAIT 

PROCEDURE UNITWAIT( UNITNUMBER : INTEGER ); 

Like UNITBUSY, UNIT WAIT is only useful in an asynphronpus environment. In a 
synchronous system, as described here, UNIT WAIT becomes essentially a no-op, 
si nce no unit will have a 1/0 request pending. A single parameter is on the top­
of-stack when the procedure is called and is popped off before the procedure 
returns. The use of the stack is illustrated in Diagram 3.2. 

++++ 11111111111111111 SP ---->11/11111/1//11/11 
I--------------~I I----~----------I 
I Unit Number 1<---- SP I <empty> 1 

1---------------1 1---------------1 

before after 

Diagram 3.2 - Stack state before and after UNITW AIT and UNITCLEAR 

83 



Architecture Guide 
The BIOS 

llI.3.1.4 UNITCLEAR 

PROCEDURE UNITCLEAR( UNITNUMBER : INTEGER ); 

The purpose of UNITCLEAR is to restore the specified unit to its "initial" state. 
At the RSP level, this would mean clearing any state flags pertaining to the 
specified unit (see sections Ill.3.2.1.1 and llI.3.2.2.2). The "initial" state for each 
device at the BIOS level is defined in Section Ill.4.S. The stack format is identical 
to that of UNITWAIT (see Diagram 3.2 above). 

IIl.3.1.5 UNITST A TUS 

PROCEDURE UNIT~ST A TUS( UNITNl,Jty1BER : INTEGER; 
VAR ST A TUSWORDS : ARRAY [0 •• 29] OF INTEGER; 

CONTROL : INTEGER ); 

The purpose of UNITSTATUS is to acquire various device dependent information 
from the specified UNIT. The procedure is passed a pointer to a status record 
(whose length is a maximum of 30 words) into (which the status words are 
sequentially stored (Note: Users may define words starting at word 29 and 
all oc ati ng toward word 0, to allow for the system's use of the first words of the 
record) and a CONTROL word (see Section Ill.2.1.1). 

UNITST ATUS receives its parameters on the evaluation stack in the following order 
(each box represents a 16-bit quantity): 

++++ 1///////////////1<----------- (on return, SP 
1---------------1 points here) 
1 Unit Number 1 
1---------------1 
1 Status 1 
I Record 1 (The stack shown here 
I Pointer 1 grows down) 
1---------------1 
l Control 1<------------- SP 
1---------------1 

Diagram 3.3 - Stack state before and after UNITST ATUS 

84 



111.3.2 Semantics 

Architecture Guide 
The BIOS 

This section will detail the processing to be performed by the RSP/IO. The primary 
function of the RSP/IO is to manage calls to the BIOS. Secondarily, the RSP/IO is 
responsible for handling certain special functions which shall be described here. 
Appendix A contains a Pascal realization of the RSP/IO which should be considered 
the most precise reference for the semantics. 

111.3.2.1 Special Character Handling on Output 

Output to the printer, console or remote units must properly handle Blank 
Compression Codes and Carriage Returns. 

Ill.3.2,,1.1 Blank Compression Code (DLE's) 

The System supports textfiles that contain a two-byte blank compression code (only 
at the beginning of a line). It is the responsibility of the RSP/IO to decode the 
blank compression code and send an appropriate number of blanks. The first byte 
is an ASCII OLE (decimal 16) which signals that the next byte contains the excess-
32 nu mberof blanks to insert (i.e., it should be interpreted as being the <number 
of blanks to be sent>+32). Therefore, the next byte following the OLE should. be 
processed by subtracting 32 from its value and sending that number of blanks. 
Note that negative results, obviously in error, are translated to a value of zero. 
Note also that the blank-count byte may not be the next input hyteprocessed, du'e 
to device switching. This, therefore, requires the maintenance of a flag for each 
device to indicate that it is currently processing a OLE. The OLE character and 
the blank-count byte are not normally sent to the device (see Section 11l.3.2.3). 

111.3.2.1.2 Carriage Return -- Line Feed 

Textfiles contain ASCll CR's (decimal 13) at the end of lines. We define this 
character as meaning "New Line", i.e., a carriage return followed by a line feed. 
Thus, it is the responsibility of the RSP/IO to send an ASCII' LF (decimal 10) after 
sending each CR (also see Section 11l.3.2.1.3). 

111.3.2.1.3 NOCRLF Bit in CONTROL Parameter 

When, bit 3 (value 8) of the CONTROL parameter is set, the special handling 
accorded CR's is turned:, off,i.e., a LF is not automatically appehded, and they are 
sent out like other characters. 

85 



Archi tecture Guide 
The BIOS 

Ill.3.2.2 Special Character Handling on Input 

There are several characters which should receive special treatment when received 
from the console, the printer or the remote devices, in a complete implementation 
of this 1/0 system. All but two of them, however, are handled by the BIOS. 
Those which are handled in the RSP/IO are the EOF and ALPHALOCK characters. 

111.3.2.2.1 EOF Character 

The EOF character, when received from the console, printer or remote devices, 
signals that the "end-of-file" has been reached on that particular unit. Rather 
than being a fixed ASCll code, this is a "soft character". That is, the exact 
character code which will be interpreted as "End-Of-File" may be changed during 
system execution by the Pascal user. Further discussion of the soft characters 
used by the I/O Subsystem may be found in Section 111.4.4. The EOF character is 
in the SYSCOM data area and must be accessed by the RSP/IO to determine what 
character to look for. When the EOF character is found in the input stream, the 
action to be taken depends somewhat upon which device was referenced. If we 
are reading from UNIT 1 (CONSOLE:), then the rest of the user's buffer, starting 
at the current position, is packed with nulls (decimal 0). For UNIT 2 (SYSTERM:), 
the printer and the remote, the EOF character is put into the user's buffer. In 
all cases, no further characters are transferred to the buffer and control returns 
immediately. 

111.3.2.2.2 ALPHALOCK Character 

The ALPHALOCK character, when received from a device by the RSP/IO, signals a 
default case change for all alphabetic characters. All lower case alphabetic 
characters (i.e., 'a' to 'z') received after the ALPHALOCK character will be 
converted to upper case. Receipt of another ALPHALOCK character will cause 
the case to revert back to non-converting mode (the default mode). As for OLE 
handling described above, a flag for each device to indicate that it is currently in 
the ALPHALOCK state should be maintained to ensure proper handling when 
devices are switched. The ALPHALOCK character is not normally returned in the 
buffer (see Section 111.3.2.3). 

111.3.2.2.3 BIOS Functions 

The remaining special input characters BREAK, START/STOP and FLUSH are used 
only for input from the console, not from the printer or remote devices. They are 
handled by the BIOS and are described in Section 111.4.5.1.4. 

86 



111.3.2.3 NOSPEC Bit in CONTROL Parameter 

Architecture Guide 
The BIOS 

When bit 2 (value 4) of the CONTROL parameter is set, the special handling 
accorded OLE's, and the EOF and ALPHALOCK sensing functions described above 
are turned off. These characters should then be transferred as any other 
character. The BIOS functions are not affected. 

87 



Archi tecture Guide 
The BIOS 

111.4 The Machine Level: The BIOS 

As explained above, the Basic Input/Output Subsystem is responsible for providing 
the actual access to 1/0 devices. Both the design and implementation of the BIOS 
are speci fic to a given processor and 1/0 configuration. In this section we will 
attempt to specify the nature of the BIOS in sufficient detail for an experienced 
programmer to write the code for a given processor and set of peripherals. 

The general scheme discussed below uses vectors from the RSP/IO to the BIOS 
subroutines for reading, writing, initializing and controlling, and answering status 
requests. The exact vector scheme and means of passing parameters must be 
worked out separately for each processor. Arrangements that have already been 
worked out for certain processors are illustrated in Section 111.6.2. 

111.4.1 Design Goals 

The speed of the BIOS code is fairly insignificant, compared to the (slow) speed of 
the 1/0 devices that it handles. When peripherals are changed, which may occur 
frequently, it often proves that only minor changes need to be made to an existing 
BIOS to service the new hardware. Also, since the BIOS always resides in main 
memory, each byte. it occupies is one less available to the programmer. For these 
reasons, we suggest that major design goals (assuming correctness!) be (1) 
compactness and (2) clarity. 

Like the rest of the Interpreter, the BIOS should be ROM-able. Obviously, it will 
also require access to some RAM. The addresses that the BIOS references should 
be spe ci fied in the assembly code by equates, so that it is a simple matter to 
change them and reassemble the BIOS whenever there is a change in the 1/0 
ports or the memory configuration. 

111.4.2 Completion Codes 

All read, write, initialization and control, and status calls to the BIOS must return 
a byte to the RSP that contains status information about the 1/0 request just 
serviced. The valu e of this byte is the "completion code" discussed in Section 
111.2.2. Most of the standard completion codes are not relevant to the BIOS -­
they are returned by the Operating System for file errors and the like. The 
following standard errors can be returned by the BIOS: 

o No error 
1 CRC error 
2 Illegal device number 
3 Illegal operation on device 
4 Undefined hardware error 

88 



9 Device not on line 
15 Ring Buffer Overflow 
16 Write protect; wrttempt to protected disk 
17 Illegal block number 
18 Illegal buffer address 

Architecture· Guide 
The BIOS 

All other errors are considered hardware-dependent. For these, the BIOS should 
return codes in the range 128 •• 255. The selection of appropriate codes is left to 
the BIOS 'wri ter. 

Note that any re-defined devices not implemented must arrange to return a 
completion code of 9 "DevICe not Qn line") when ~n attempt is made to initialize 
or· use them. 

Any user-defined devices not implemented should return a completion code of 2 
("Illegal device number") when an attempt is made to access them. 

11l.4.3Calling Mechanisms 

In this section we discuss the parameters required in the BIOS calls for each 
device. Each device has four BIOS calls associated with it: READ, WRITE, 
CONTROL (CTR L)and STATUS. Each device has varying needs for info~mation 
associated with these functions. Remember that· all calls must 'r~t8;rh' a 
completion-code byte. For a summary of the BIOS calling requirements, see 
Section 1l1.6.1. r 

11l.4.3.1 Console 

Only one parameter is needed fClr reading and writing:' the data byte:to' be 
transferred. The status request requires two parameters: the CONTROLwotd and 
the pointer to the status record. For initialization and control of the console,>lhe 
BIOS requires a number of special control characters. These are provided by 
passing the BIOS console initialization routine a pointer to the base of 'the 
SYSCOM data area, and a pointer to a break-handler routine. 

11l.4.3.2 Printer 

To read and wri te to the printer, a single parameter is required: the byte that 
contains the data. To check the status, the CONTROL word and the pointer to 
the status record are required. For initialization and control, no parameters are 
needed. 

89 



Architecture Guide 
The BIOS 

111.4.3.3 Disks 

Reading and writing with disk devices requires five parameters: 

(1) a starting logical block number as described above 
(2) a count of the number of bytes to transfer 

(positive signed 16 bits, i.e., 0 to 32K-1) 
(3) tne address of the data area to transfer to or from 
(4) a drive number (O •• n-l, given n drives. Currently n=6 is assumed) 
(5) the CONTROL parameter. 

To check the status, the CONTROL word and a pointer to the status record are 
passed as parameters. For initialization and control, the drive number is passed. 

1l1.4.3.4 Remote 

The remote device requires a single parameter for reading and writing: a byte 
that contains the data being transferred. As with the devices just described, the 
status requires the CONTROL word and the pointer to the status record. 
Initialization and control of the remote device requires no parameters. 

111.4.3.5 User-defined Devices 

Reading and writing with a user-defined device requires five parameters: 

(1) a starting logical block number as described above 
(2) a count of the number of bytes to transfer 

(positive signed 16 bits, i.e., 0 to 32K-1) 
(3) the address of the data area to transfer to or from 
(4) a device number (this will be the same as UNITNUMBER) 
(5) the CONTROL parameter. 

The nati ve code in the BIOS may choose to ignore some of this information, of 
course. 

When checking status, the CONTROL word, device number, and a pointer to the 
status record are passed. For initialization and control, the device number is 
passed. It is left up to the device handler to decode the specific device from its 
device number. 

90 



Ill.4.4 Character Codes 

Architecture Guide 
The BIOS 

The System assumes that the printer and console devices will support the use of 
printable ASCII characters and a few standard control codes (CR, LF, SP, NUL and 
BEL). The remaining control codes that may be useful (such as cursor positioning. 
and screen erasure) are "soft" characters that may be changed by the user (using 
the utility SETUP) to meet the requirements of some particular hardware. 

These soft characters, along with all other information that is entered using 
SETUP, are stored in the file *SYSTEM.MISCINFO. SYSTEM.MISCINFO is read 
into a portion of the global data area SYSCOM whenever the System is booted or 
re-initialized. 

The reason for keeping this hardware-dependent information at such a high level is 
that the control codes for terminals vary widely, and users change terminals fairly 
often, and so it was necessary to be able to change a terminal without creating a 
new BIOS. The basic issue is one of mapping logical control symbols into the 
control codes that are recognized by t.'le hardware. 

Suppose, for example, that there is a pre-declared procedure CURSORBACK which 
causes the cursor on a screen terminal to move left one column. Somewhere in 
the System, CURSORBACK must cause a control code to be sent to the terminal, 
which will cause the desired re$ponse: control-U, control-H, or an escape sequence. 
One way to do this would be for the Compiler to emit a standard code which the 
BIOS then translates into whatever is correct for' the current terminal. This has 
the disadvantage of requiring a new BIOS for every slightly different terminal. 
The approach which we have taken sees to it that the correct code is sent to the 
BIOS for the terminal that is currently online. The details of how this is done are 
described elsewhere. 

Since many devices can make use of eight-bit control codes, the System makes no 
assumptions about the relevance of the high-order bit, and transfers the whole byte 
unchanged. When using seven-bit ASCll, the value of the high- order bit is defined 
to be zero. This means that the BIOS must return ASCll codes with the high­
order bit off for all standard characters received from the console. This is not 
required of any of the other devices that are driven by the BIOS. 

The RSP sends both upper- and lower-case characters to the BIOS. If a device can 
handle only upper-case characters, the BIOS must map lower case into upper case. 

91 



Architecture Guide 
The BIOS 

111.4.5 Semantics 

Ill.4.S.1 Console 

In the following discussion, the console device is assumed to be a CRT terminal. 
A typewriter device may also be used for the console. 

111.4.5.1.1 Output Requirements 

As noted in above, we depend on the action of certain ASCII control codes. These 
are the minimum requirements for a console device: 

CR <carriage return> (hex 00) -- Move cursor to the beginning of the 
current line (column 0). 

LF <line feed> (hex OA) -- Move cursor down one line while the column 
position remains the same. Starting from any but the last line on the 
screen, the contents of the screen should remain the same while the cursor 
moves downward. If the cursor is on the last line when the LF is issued, it 
should remain in the same posi tion while the rest of the display scrolls 
upward one line and the bottom line clears. 

BEL <bell> (hex 07) -- If an audio signal is available, it should sound. If 
one is not available, the terminal should do nothing. The delay time 
required while doing nothing is immaterial. 

SP <space> (hex 20) -- Write a space at the current cursor position (erasing 
whatever is there) and advance the cursor position by one column. If the 
cursor is already at the last position in a line, the position of the cursor 
after the SP is undefined. We prefer that the cursor remain in its prior 
position in this case. If the cursor is in the last column of the last line on 
the screen, not only is the position of the cursor undefined after the SP, but 
so is the state of the screen: maybe it scrolled and maybe it didn't. As 
above, we would prefer that the cursor remain where it was and that the 
screen not scroll. 

NUL <null> ( 00 ) -- Delay for the time required to write one character. 
The state of the console should not change. 

any printable character -- Same as the discussion for SP, except, of 
course, write the character. 

Note that the effect of sending non-printable characters other than those described 
above is not defined, since it is known to vary from terminal to terminal. 

92 



1l1.4.5.1.2 Output Options 

Archi tectureGuide 
The' BIOS 

The following set of cursor and screen functions should be provided if possible. 
However, they are optional in the sense that almost all major functions of the 
System will still be available even if they are not provided. The control 
characters or sequences of characters which provide these functions are left 
unspecified (these are soft characters). If a standalone ASCII terminal is 
connected to the host system, these functions may be provided by the terminal 
itself. In this case, all the BIOS need do is pass the appropriate control 
characters. 

Reverse Line Feed: Move the cursor to the next line higher on the screen 
without changing the column or the contents of the screen. If theCtlrSords 
already on the top line, the result is undefined. If possible, the screen 
should reverse-scroll in such a case, or if that is not feasible, the 'cursor 
and screen should just remain as they were. 

Non-destructive Forward and Backward Space: Move the cursor in the 
direction indicated without changing the contents of the screen (i.e., move it 
non-destructively). The position of the cursor is undefined if an attempt is 
made to move. it beyond the beginning or the end of a line. The preferred 
result is that cursor and screen remain unchanged in such a case . 

. Cursor HOME: Move the cursor to the upper left-hand corner of the .screen 
without changing the contents of the screen. 

Cursor X, Y Positioning: Move the cursor to some absolutely determined 
row and column without disturbing the contents of the screen. The result is 
undefined if an attempt is made to move the cursor to a non-existent 
posi tion. 

Erase to End of Screen: Erase from the cursor position to the end of the 
screen, leaving the cursor where it started and the other contents of the 
screen undisturbed. 

Erase to End of Line: Erase from the cursor position to the end of the 
current line, leaving the cursor where it started and the rest of the screen 
undisturbed. 



Architecture Guide 
The BIOS 

IIl.4.5.1.3 Input Requirements 

Input from the console should not be echoed to the screen by the BIOS; this 
function is handled by RSP/IO. Keys which represent ASCll characters should 
generate 8-bit codes between 0 and 127. Other [non-ASCll, e.g., special function] 
keys can generate codes between 128 and 255, if desired. 

1I1.4.5.1.4 Input Options 

If possible, we recommend that the console input BIOS be responsible for the 
following special functions: 

111.4.5.1.4.1 ST ART/STOP 

The START/STOP character is used to control console output. When START/STOP 
(a soft character) is received, console output is suspended until (a) another 
ST ART /STOP character is received, (b) a FLUSH character is received, Cc) the 
console BIOS is reinitialized, or (d) the BREAK character is received. The action 
to take in the last three cases is discussed below. Should another START/STOP 
character be received, the suspended activities should resume exactly as they left 
off. The chief benefit of this arrangement is that the user can suspend output 
processes which are proceeding too fast: e.g., a text file is scrolling across the 
screen at 9600 baud, or a printer must be brought online before the program starts 
sending it characters. The suspension process takes place wholly within the BIOS, 
and requires no communication to the RSP. (Note that the START/STOP character 
is never returned to the RSP. The gueueing of keyboard input, if implemented, 
should continue during the suspension.) 

IV.1.4.5.1.4.2 FLUSH 

FLUSH is another soft control character; when FLUSH is typed, the console output 
BIOS discards all output characters (i.e., does not display them) until (a) FLUSH is 
typed again, (b) input is requested from the console BIOS, (c) the console BIOS is 
re-initialized or Cd) the BREAK character is received. The FLUSH character is 
never returned to the RSP. If FLUSH is received while a START/STOP suspension 
is pending, the suspension is cancelled and FLUSH has its usual effect. This 
feature is useful when a long textfile is being displayed on the console and you're 
tired of looking at it. Push FLUSH and it terminates rather quickly. It is also 
useful when a process is generating console output that is irrelevant, but slows 
down the process. Note that FLUSH applies only to console output. 

94 



111.4.5.1.4.3 BREAK 

Architecture Guide 
The BIOS 

When BREAK (also a soft character) is typed, the console input BIOS should 
immediately give control to a special Interpreter routine. The vector to this 
routine is passed at console initialization time. After execution of the BREAK 
routine, the BIOS should continue as before. The BREAK routine is responsible for 
noti fying the Interpreter that a BREAK should be executed before the next P-code 
is interpreted. (Note that the BREAK character is never returned to the RSP. 
Receipt of BREAK should terminate any ST ART/STOP or FLUSH suspension 
pending.) 

111.4.5.1.4.4 Type-Ahead 

When non-special characters (i.e., not described in the sections above) are received 
from the keyboard when no read request is pending, they should be queued until 
the next read request. The next read request should remove the first character 
from the queue. When characters in excess of the maximum queue size are 
recei ved, they should be ignored; the queue should remain intact. While a type­
ahead of even one character is better than none at all, we recommend a minimum 
queue size of about 20 characters. If possible, the bell should be sounded for each 
character entered from the keyboard after no room remains in the queue. 

111.4.5.1.5 Initialization and Control 

The initialization and control part of the console BIOS is responsible for the 
following tasks (and whatever else the BIOS implementor finds expedient): 

50ft character recognition: The System stores the soft characters START/STOP, 
FLUSH and BREAK in a data area called SYSCOM. One parameter to console 
initialization and control is a pointer to the start of the SYSCOM area. The 
offsets to these characters from that pointer are (expressed as positive byte 
offsets): 

FLUSH - 83 decimal (53 hex and 123 octal) 

BREAK - 84 decimal (54 hex and 124 octal) 

STOP/START - 85 decimal (55 hex and 125 octal) 

BREAK vector: Another initialization and control parameter is the address of the 
Interpreter routine which handles BREAK. The console initialization code is 
responsible for setting upa vector to this address via its private data area and 
calling this routine when the BREAK character is received. 

95 



Architecture Guide 
Tl)e BIOS 

F lags: Initialization should cause the ST ART/STOP and FLUSH flags to be cleared 
(or whatever else may be required to return to norma!). 

. ,. 

Type-ahead que'ue: Initialization should cause any characters currently waiting in 
the type-ahead queue to be discar~ed. 

11l.4.5.1.6 Status 

As described in Section 111.2.1.2, bit 0 (value 1) of the CONTROL word defines the 
direction of the status request. The request should return, in the first word of 
the status record, the nu mber of characters currently queued, for the. direction 
speci fied. If some form of buffering is being used, this will simply be the number 
of characters in the buffer. If . no buffering j~L implemented, the output status will 
always' return 0, but the input st,atus will return 1 if a ch?racter is waiting to be 
read, or 0 if none is waiting. . ' 

96 

f11 
I, 
II 

'" 



111.4.5.2 Printer 

Architecture Guide 
The' BIOS 

The printer is concei ved as being a line printer or other hardcopy device. In 
actual practice, any ASCll display device may be used. 

111.4.5.2.1 Output Requirements 

In order to serve the widest variety of hardcopy devices, the RSP/IO does not 
buffer a line of text and send it all at once. Rather, it sends the printer BIOS a 
single character at a time. Many line printers must buffer a line and then print 
it all at once: if this is the case, it is the BIOS that must do so. If this is the 
case, the BIOS must recognize the end of a line. EOLN is signalled by a certain 
character: the possibilities are listed below: 

CR <carriage return> (hex 00) -- Print the line and return the carriage to 
the first column. An automatic line feed should not be done. 

LF <line feed> (hex DA) -- In normal operation, the RSP/IO will only send 
an LF to the BIOS immediately after a CR. If the hardware allows a 
simple line feed to be performed (without a return) then this should be done. 
If a complete "new line" operation (i.e., return and line feed) is the only 
way your printer can print a line, then do so at an LF: don't do anything 
about a CR. 

FF <form feed> (hex DC) -- The printer should advance the paper to tbp­
of-form; if possible, and perform a carriage return. If no such feature is 
available, the printer may execute a "new line" operation, i.e., a return 
followed by a line feed. 

111.4.5.2.2 Input Requirements 

There are no strict requirements for input from the printer device. If the printer 
device has the capability to transmit data, then the printer input BIOS should 
return all eight data bits unchanged. If not, then input should not be allowed and 
should return completion code 3 ("Illegal operation on device"). 

111.4.5.2.3 Initialization and Control 

Ini ti ali zation of the printer device should make it ready to print at the beginning 
of a blank ljne. A "new line" (carriage return and line feed) operation may be in 
order here. Any characters that have been buffered but not printed are lost. The 
printer does not need to do a form feed each time it is initialized. 

97 



Architecture ,Guide 
The ,BIOS ' 

Ill.4.5.2.4 Status 

As described above, the number of bytes buffered for the direction specified in the 
CONTROL word should be returned in the first status word. If the printer has 
no form of self-checking, return o. 

111.4.5.3 Disk 

IIl.4.5.3.1Mapping Pascal Logical Blocks onto Phy,sical Sectors 

The disk device may be any type of disk'drive '(e.g., 'floppy or hard disk). The 
actu al sectoring arrangements of the disk are immaterial.' The' System addresses 
the disk in terms of consecutive logical blocks of 512 bytes each. A primary 
function of the disk BIOS, therefore, is to provide an appropriate mapping scheme 
into the actual (physical) sectors used on the disk'~ The sector interleaving 
algorithm should be optimal for the hardware. 

The System makes no assumptions about the interleaving method used by the BIOS 
(except that it works!). 

1l1.4.5.3.1.1 Bootstrap Location 

While bootslrap schemes vary, typical implementations make use of a hardware 
(usually ROM) bootstrap to load and execute a primary software bootstrap which, 
'in turn, load~ and executes a secondary software bootstrap. ,The secondary 
bootstrap then loads the Interpreter and Operating System, performs required 
initializations, and starts the System. 

To be accessible to the hardware bootstrap, the primary software bootstrap must 
reside at a location on the disk which is predetermined by the hardware vendor. 
Since these locations can vary widely, it is necessary that the System's 
requirements for a physical disk format be flexible in this regard. 

The pri mary bootstrap area must not overlap disk data structures maintained by 
the System (chiefly the directory and the bootstrap itself). , 

Logical blocks 0 and 1 of each disk are usually reserved for bootstrap, code (a 
total of 1024 bytes). This is the most convenient al ternati vee 

If 1024 bytes are not enough room, or if the interleaving format is unacceptable to 
the hardware bootstrap, the primary bootstrap area must be outside of the "Pascal 
disk". The Pascal logical blocks must be mapped onto the disk' in such a way that 

98 



Architecture Guide 
The BIOS 

the hardware-defined bootstrap area is inaccessible to the Pascal system as a 
logical block. (It will still be accessible in Physical Sector Mode (see Section 
Ill.2.3.1)). 

F or Adaptable Systems, full details about bootstrap locations and the mechanisms 
of booting may be found in the Installation Guide. 

111.4.5.3.1.2 Physical Sector Mode 

When bit 1 (value 2) of the CONTROL word is set, disk access should be 
performed in Physical Sector Mode, as described in Section 1l1.2.3.1. 

111.4.5.3.2 Output Requirements 

The disk device BIOS must transfer as many actual sectors as are needed to 
accommodate the data. To simplify a disk-write in which (BYTESTOTRANSFER) 
mod 512 is not equal to zero (i.e., a block is partially written to), the remaining 
contents of the last block are undefined. This makes it possible to write as much 
of whatever garbage remains in the buffer, if that is most convenient, to fill up a 
whole sector. Diagram 4.0 illustrates this situation. The language level is 
responsible for keeping track (in logical block numbers and byte counts) of where 
the good data is. 

EXAMPLE: Write to disk. 

Number of bytes to transfer = 1174 
Starting logical block number = 72 
Data area address = DA T AAREA 

, 
Block 72 Block 73 Block 74 , 

(512 bytes) (512 bytes) '150 :(362 bytes)' 
, , Ibytes: I 
,<-----------------data------------------>:<undefined>, 
I I I , 
,. 

I 
start of data area 

, 
end of data area 

, , 
, 

end of last block 

Diagram 4.0 -- State of blocks on Disk after being written 

99 



Architecture Guide 
The BIOS 

111.4.5.3.3 Input Requirements 

On input from a disk device,' it is not permissible to over-write the end of the 
assigned data area. Therefore, th'e BIOS is responsIble for transferring no more 
than the number of bytes requested. One way to accomplish this is to buffer the 
last sector and then transfer only the requested part. 

111.4.5.3.4 Initializ~tion and Control 

Initialization of a disk device should bring it to a state in which it is ready to 
read or write from any gi ven track or sector. For some drives with simple 
controllers, the head may need to be stepped to track 0 to facilitate the BIOS disk 
driver's remembering the current· track. Any buffered data is lost.· 

111.4.5.3.5 Status 

Status requests from, the disk will return the following words in the status record: 

Word 1 - The number of bytes currently buffered for the dire~tion, specified 
in the CONTROL word, as described in Section IV.4.5.1.6 above. If no 
capability for checking is available, it should be set to O. 

.'"; ,~<. : • 

Word 2 - The number of bytes per sector 

Word 3 - The number of sectors per track 

Word 4 - The number of tracks per disk 

111.4.5.4 Remote 

This unit is intended to be an RS-232 serial line for supporting various types of 
com mu nication. It is important' that it transfer raw data without changing ~t in 
any way. All eight bits of the transferred byte should be considered significant. 
The transfer rate is usually 'set to 9600 baud. 

100 



111.4.5.4.1 Output Requirements 

Architecture Guide 
The BIOS 

As noted above, all eight bits of the data byte should be transmitted. The remote 
BIOS driver is sent one byte at a time. 

111.4.5.4.2 Input Requirements 

Input from a remote device should be buffered, if possible, by the scheme 
suggested in Section 111.4.5.1.4.4. As noted above, all eight data bits must be 
returned. 

111.4.5.4.3 Initialization and Control 

Initialization of the remote device should bring it to a state in which it is ready 
to read or write. 

111.4.5.4.4 Status 

The nu mber of bytes buffered for the direction specified in the CONTROL word 
should be returned in the first status word, as described in Section 111.4.5.1.6 
above. If no capability for checking is available, it should return o. 

111.4.5.5 User-Defined Devices 

These devices are intended to allow the user the freedom to implement devices not 
speci fically defined in this document. The actual implementation is left entirely 
to the user. The only requirement is that they return a completion code when 
finished and, if the UNITNUMBER is not defined, that it return code 2 (IIlllegal 
uni t nu Inber"). Users should use device numbers starting from 128 (see Section 
111.2.1.1.1). 

111.4.6 Special BIOS Calls 

These functions are provided by the BIOS to make configuration-specific functions 
accessible to the Interpreter. Although these functions are not related to 
Input/Output, they are put into the BIOS as the repository for configuration­
speci fic code. 

As with all other routines in the BIOS, each should return a completion code. 

101 



Architecture Guide 
The BIO.S 

III.4.6.1 System Output 

System Output is reserved for future expansion and, at this time, should cause the 
system to HALT. (Note that HALT may actually cause a reboot on some (few) 
implementations.) 

11I.4.6.2 System Input 

System Input is also reserved for futur~. use, and like, System Output, should cause 
a' HALT. 

III.4.6.3 System Initialization and Control 

The System Initialization and Control BIOS routine should initialize such things as 
the clock (reset it to 0) and'the interrupt system, if either is to be used. 

1l1.4.6.4 System Status 

The System Status BIOS routine should return the following information in the 
status record: 

Word l' - The address of the last word in accessible contiguous RAM 
memory, e.g., on an 8080 system with 64K bytes of RAM, the last byte 
address may be 'FFFF', but the last word add~ys~ is~,. ',FFFE'. 

Word 2 - The least .significant part of the 32-bit word used by the system 
clock. If a clock is not present" then this must be set to 0.' 

Word 3 :;.: The most significant part of the 32-bit 'word used by the system 
clock. If a clock is not p~esent, then this must: be set to, O. 

Note: If a clock is used, the System assumes that the two words returned are 
representative of the time in 60ths of a second. It is the clock driver's 
responsibility to maintain the closest approximati0r'l' ,t,o this time." The tim~ is 
defined to be 0 at clock initialization. Currently the'CDNTROL word is ignored. 

102 



111.5 Appendices 

Architecture Guide 
The BIOS 

111.5.1 Appendix A -- Summary of BIOS Calling Sequences 

The following is a summary of the calling conventions described in Section 111.4.3. 
Processor-specific protocols for certain machines are shown in the following 
section. All calls to the BIOS return a completion code. 

Entry Point 
===== ===== 

CONSOLEREAD 
CONSOLEWRITE 
CONSOLECTRL 

CONSOLEST A T 

PRINTER READ 
PRINTERWRITE 
PRINTERCTRL 
PRINTERST A T 

DISKREAD 

DISKWRITE 
DISKCTRL 
DISKSTAT 

REMOTEREAD 
REMOTEWRITE 
REMOTECTRL 
REMOTESTAT 

Parameters 
========== 
single data byte 
single data byte 
BREAK vector 
SYSCOM pointer 
ST A TREC pointer 
CONTROL word 
single data byte 
single data byte 
(none) 
ST A TREC pointer 
CONTROL word 

block nu mber 
byte count 
data area address 
dri ve nu mber 
CONTROL word 
(same as DISKREAD) 
dri ve number 
drive number 
ST A TREC pointer 
CONTROL word 

single data byte 
single data byte 
(none) 
ST A TREC pointer 
CONTROL word 

103 



Architecture Guide 
The BIOS 

Entry Point 
===== ===== 
USERREAD 

USERWRITE 
USERCTRL 
USERSTAT 

SYSREAD 

SYSWRITE 
SYSCTRL 
SYSSTAT 

104 

Parameters 
========== 
block number 
byte count 
data area address 
device number 
CONTROL word 
(same as USERREAD) 
device number 
device number 
ST A TREC pointer 
CONTROL word 

block number 
byte count 
data area address 
device number 
CONTROL word 
(same as SYSREAD) 
device number 
ST A TREC pointer 
CONTROL word 



Architecture Guide 
The BIOS 

111.5.2 Appendix B -- Processor-Specific BIOS Calls 

111.5.2.1 8080/Z-80 

Entry Points: All BIOS entry points are given as positive offsets from the beginning 
of the BIOS code space. These locations should contain a JMP instruction to the 
appropriate address in the BIOS. 

Parameters: When parameters are not being passed in a specified register, they are 
pushed on the stack. Offsets from top-of-stack are given, recognizing that the 
stack grows down. 

Completion Code: Return in register A. 

Calling Sequence: The RSP will use the CALL instruction to call the BIOS. Thus 
the return address is at (SP),(SP)+l. All registers are available for use by the 
BIOS. The BIOS should clean off the stack" before returning to the RSP. 

Entry Point Offset(hex) Parameters 

CONSOLEREAD 00 return data byte in Reg C 
CONSOLEWRITE 03 write data byte in Reg C 
CONSOLECTRL 06 BREAK vector at (SP)+2,(SP)+3 

SYSCOM pointer at (SP)+4,(SP)+S 
CONSOLEST A T 09 ST ATREC pointer at (SP)+2,(SP)+3 

CONTROL word at (SP)+4,(SP)+S 

PRINTER READ OC return data byte in Reg C 
PRINTERWRITE OF write data byte in Reg C 
PRINTERCTRL 12 (none) 
PRINTERST AT IS ST ATREC pointer at (SP)+2,(SP)+3 

CONTROL word at (SP)+4,(SP)+S 

DISKREAD IS block number at (SP)+2,(SP)+3 
byte count at (SP)+4,(SP)+S 
data area address at (SP)+6,(SP)+ 7 
drive number at (SP)+S,(SP)+9 
CONTROL word at (SP)+A,(SP)+B 

DISK WRITE 1B (same as DISKREAD) 
DISKCTRL IE drive number in Reg C 
DISKSTAT 21 drive number in Reg C 

ST A TREC pointer at (SP)+2,(SP)+3 
CONTROL word at (SP)+4,(SP)+S 

REMOTEREAD 24 return data byte in Reg C 

IDS 



Architecture Guide 
The BIOS 

REMOTEWRITE 
REMOTECTRL 
REMOTESTAT 

USERREAO 

USERWRITE 
USERCTRL 
USERSTAT 

SYSREAO 

SYSWRITE 
SYSCTRL 
SYSSTAT 

111.5.2.2 6500 Series 

27 
2A 
20 

30 

33 
36 
39 

3C 

3F 
42 
45 

write data byte in Reg C 
(none) 
ST ATREC pointer at (SP)+2,(SP)+3 
CONTROL word at (SP)+4,(SP)+5 

block number at (SP)+2,(SP)+3 
byte count at (SP)+4,(SP)+5 
data area address at (SP)+6,(SP)+ 7 
device number at (SP)+8,(SP)+9 
CONTROL word at (SP)+A,(SP)+B 
(same as USERREAO) 
device number in Reg C 
device number in Reg C 
ST ATREC pointer at (SP)+2,(SP)+3 
CONTROL word at (SP)+4,(SP)+5 

block number at (SP)+2,(SP)+3 
byte count at (SP)+4,(SP)+5 
data area address at (SP)+6,(SP)+ 7 
device number at (SP)+8,(SP)+9 
CONTROL word at (SP)+A,(SP)+B 
(same as SYSREAO) 
device number in Reg C 
device number in Reg C 
ST ATREC pointer at (SP)+2,(SP)+3 
CONTROL word at (SP)+4,(SP)+5 

Entry Points: All BIOS entry points are given as positive offsets from the beginning 
of the BIOS code space.These locations should contain a JMP instruction to the 
appropriate address in BIOS. 

Parameters: When parameters are not being passed in a specified register, they are 
pushed on the stack. Offsets from the address pointed to by 5 (described as (5) ) 
are given, recognizing that the stack grows down and that 5 normally points to the 
first available address below valid data. 

Completion Code: Return in register X. 

Calling Sequence: The RSP will use the JSR instruction to call the BIOS. Thus 
the return address is at (5)+1, (5)+2. All registers are available for use. The 
stack should be cleaned off by the BIOS before returning to the RSP. 

106 



Entry Point Offset(hex) 

CONSOLEREAD 00 
CONSOLEWRITE 03 
CONSOLECTRL 06 

CONSOLEST A T 09 

PRINTERREAO OC 
PRINTER WRITE OF 
PRINTERCTRL 12 
PRINTERST AT 15 

DISKREAO 18 

OISKWRITE IB 
OISKCTRL IE 
OISKSTAT 21 

REMOTEREAO 24 
REMOTEWRITE 27 
REMOTECTRL 2A 
REMOTESTAT 20 

USERREAD 30 

USERWRITE 33 
USERCTRL 36 
USERSTAT 39 

SYSREAD 3C 

Architecture Guide 
The BIOS 

Parameters 

return data byte in Reg A 
wri te data byte in Reg A 
BREAK vector at (S)+3,(S)+4 
SYSCOM pointer at (S)+5,(S)+6 
STATREC pointer at (S)+3,(S)+4 
CONTROL word at (S)+5,(S)+6 

return data byte in Reg A 
wri te data byte in Reg A 
(none) 
ST A TREC pointer at (S)+3,(S)+4 
CONTROL word at (S)+5,(S)+6 

block number at (S)+3,(S)+4 
byte count at (S)+5,(S)+6 
data area address at (S)+ 7 ,(S)+8 
drive number at (S)+9,(S)+A 
CONTROL word at (S)+B,(S)+C 
(same as OISKREAO) 
dri ve number in Reg A 
drive number in Reg A 
STATREC pointer at (S)+3,(S)+4 
CONTROL word at (S)+5t~5}r,6 

return data byte in Reg A 
write data byte in Reg A 
(none) 
ST ATREC pointer at (S)+3,(S)+4 
CONTROL word at (S)+5,(S)+6 

block number at (S)+3,(S)+4 
byte count at (S)+5,(S)+6 
data area address at (S)+ 7 ,(S)+8 
device number at (S)+9,(S)+A 
CONTROL word at (S)+B,(S)+C 
(same as USERREAO) 
device number in Reg A 
device number in Reg A 
ST ATREC pointer at (S)+3,(S)+4 
CONTROL word at (S)+5,(S)+6 

block number at (S)+3,(S)+4 
byte count at (S)+5,(S)+6 

107 



Architecture Guide 
The BIOS 

SYSWRITE 
SYSCTRL 
SYSSTAT 

lIl.5.2.3 6809 

3F 
42 
45 

data area address at (S)+ 7 ,(S)+8 
device number. at (S)+9,(S)+A 
CONTROL word at (S)+B,(S)+C 
(same as' SYSREAD) 
device number in Reg A 
device number in Reg A 
STATREC pointer at (S)+3,(S)+4 
CONTROL word at (S)+5,(S)+6 

Entry Point$: All BIOS entry points are given as positive offsets from the ~beginning 
of the BIOS code space. These locations should contain a vector to the 
appropriate address in the BIOS~;,'· 

Parameters: When parameters are not being passed in a specified register, they are 
pushed on the stack. Offsets from the.address pointed to by SP (described as 
(SP)) are given, recognizing that the stack grows down and that SP normally points 
to the first available address below, valid data. 

Completion Code: Return in registerS. 

Calling Sequence: The RSP will use the JSR instruction to call the BIOS. 'Thus 
the return address will be at (SP)+O, (SP)+l. The U and Y registers contain 
interpreter information which must be preserved/restored by the BIOS prior to 
returning to the RSP. All other registers are available for use. The stack should 
be cleaned off by the BI()S before returning to the RSP. 

Entry Point Offset(hex) Parameters 

CONSOLEREAD 00 return data byte in Reg A 
CONSOLEWRITE 02 write data byte in Reg A 
CONSOLECTRL ~04 BREAK vector at (SP)+2,(SP)+3 

SYSCOM pointer at (SP)+4,(SP)+5 
CONSOLEST AT 06 ST ATREC pointer; at (SP)+2,(SP)+3 

CONTROL word 'at (SP)+4,(SP)+5 

PRINTERREAD 08 return d~ta byte in Reg A 
PRINTERWRITE OA write data byte in Reg A 
PRINTERCTRL OC (none) 
PRINT ERST A T OE STATREC pointer at (SP)+2,(SP)+3 

CONTROL word at (SP)+4,(SP)+5 

DISKREAD 10 block number at (SP)+2,(SP)+3 
byte count at (SP)+4,(SP)+5 

108 



DISK WRITE 12 
DIsKCTRL 14 
DlsKsTAT 16 

REMOTEREAD 18 
REMOTEWRITE lA 
REMOTECTRL lC 
REMOTEsTAT IE 

UsERREAD 20 

UsERWRITE 22 
UsERCTRL 24 
UsERsTAT 26 

sysREAD 28 

sYSWRITE 2A 
sysCTRl. 2C 
syssTAT 2E 

Architecture Guide 
The BIOS 

data area address at (sP)+6,(sP)+ 7 
dri ve number at (sP)+8,(sP)+9 
CONTROL word at (sP)+A,(sP)+B 
(same as DlsKREAD) 
dri ve number in Reg A 
drive number in Reg A 
sT ATREC pointer at (SP)+2,(SP)+3 
CONTROL word at (sP)+4,(sP)+5 

return data byte in Reg A 
wri te data byte in Reg A 
(none) 
sT A TREC pointer at (SP)+2,(SP)+3 
CONTROL word at (sP)+4,(sP)+5 

block number at (sP)+2,(sP)+3 
byte count at (sP)+4,(sP)+5 
data area address at (sP)+6,(sP)+ 7 
device number at (sP)+8,(sP)+9 
CONTROL word at (sP)+A,(sP)+B 
(same as USER READ ) 
device number in Reg A 
device number in Reg A 
sT ATREC pointer at (SP)+2,(SP)+3 
CONTROL word at (sP)+4,(sP)+5 

block number at (sP)+2,(sP)+3 
byte count at (sP)+4,(sP)+5 
data area address at (sP)+6,(sP)+ 7 
device number at (sP)+8,(sP)+9 
CONTROL word at (sP)+A,(sP)+B 
(same as sysREAD) 
device number in Reg A 
device number in Reg A 
sT A TREC pointer at (SP)+2,(SP)+3 
CONTROL word at (sP)+4,(sP)+5 

109 



Architecture Guide 
The BIOS 

110 



IV. THE OPERATING SYSTEM 

IV.l Organization 

Architecture Guide 
Operating System 

IV.l.l Structured Overview of the System 

The I V.O Operating System is a collection of Pascal UNITs. The organization of 
UNITs in the Operating System was determined by three considerations: functional 
grouping, space and language restrictions, and necessary code-sharing with other 
portions of the System. Some UNITs (such as SCREENOPS) are intended to be 
accessible to user programs as well. The name of a UNIT in the Operating 
System generally reflects its function. This is a full list of Operating System 
UNITs: 

Unit Name 

HEAPOPS 
EXTRAHEAP 
PERMHEAP 

SCREENOPS 

FILEOPS 

PASCALIO 
EXTRAIO 
SOFTOPS 

SMALLCOMMAND 
COMMANDIO 

STRINGOPS 

OSUTIL 

CONCURRENCY 

REALOPS 

LONGOPS 

GOTOXY 

KERNEL 

Function 

Heap operators 

Screen control 

File and Directory operations 

File-level I/o 

1/0 redirection and chaining 

String intrinsics 

Conversion utilities 

Concurrency 

Floating Point Functions and Real Number I/o 

Long Integer operations 

Screen cursor control (may be user-supplied) 

Nonswappable central facilities of Ope System 
(always resident in main memory) 

III 



Architecture Guide 
Operating System 

GETCMD 
USERPROG 
INITIALIZE 
PRINTERROR 

Subsidiary segrnents of KERNEL 
(swappable) 

KERNEL contains the resident code necessary to maintain the codepool, handle 
faults, and read segments. The Kernel also contains four subsidiary segments, 
which are swappable: 

GETCMD processes user input at the main command level, and builds a user 
program's runtime environment; 

USERPROG is the reserved segment slot for the user's program (at bootstrap 
time it contains the Pascal-level code which builds the initial runtime 
environment for the Operating System); 

INITIALIZE is called when the System is booted or re-initialized:. it reads 
SYSTEM.MISCINFO, locates the System codefiles, and sets up the table of 
devices; 

PRINT ERROR prints runtime error messages. 

The Operating System UNITs are compiled separately. They are bound together 
in a single codefile, SYSTEM.PASCAL, by using the utility LIBRARY. 

Because of certain bootstrap restrictions, KERNEL must always reside in segment­
slot 0 and USERPROG must always reside in slot 15. There are no other 
restrictions on the location of units within SYSTEM.PASCAL. 

112 



IV.2 P-Machine Support 

IV.2.1 The Heap 

IV.2.I.1 Overview 

Architecture Guide 
The Operating System 

The Heap is an area in low memory used for the allocation of dynamically stored 
variables. The upper bound of the Heap depends upon the size of the Stack and 
the Codepool. The area between the Heap and the Codepool is provisionally 
available to the Heap: Stack faults and segment faults may change the size of thIS 
area. Heap faults are used by the Heap operators to request that more space be 
allocated to the heap. 

The Heap is manipulated by a number of intrinsic routines. These either allocate 
or de-allocate Heap space in a particular way. The rest of this section is an 
introduction to these routines. 

IV.2.I.1.1 MARK and RELEASE 

MARK saves the location of the current top of the Heap. RELEASE cuts the 
Heap back to the location of the corresponding mark. Variables which were 
allocated between the time of the MARK and the time of the RELEASE are 
removed from the Heap, except for variables allocated by PERMNEW. MARK and 
RELEASE may be nested; the integrity of the Heap requires that they be correctly 
paired. 

IV.2.I.1.2 NEW and VARNEW 

NEW and VARNEW cause variables to be allocated on the Heap above the 
"topmost" mark. NEW(P), where variable P is a pointer to type T, causes the 
number of words in type T to be allocated. P is assigned the address of the first 
location allocated to P on the Heap. If T is a record with variants, space for the 
largest variant is allocated. In Pascal, a call to NEW may designate a particular 
variant, so that space for this particular variant is allocated (which may be less 
than the largest variant in that record). 

VARNEW(P,NWords), where P is a pointer to type T, causes N\I/ords to be 
allocated on the Heap. T would most commonly be an array. NWords (indirectly) 
determines how many elements of the array are actually available in this instance. 
P returns the address of the first location allocated on the Heap. 

VARNEW is a function, and returns the number of words that actually were 
allocated: this should equal NWords; if it is 0, then there was less than NWords 
of available space, and if it is some other number, something went wrong. 

113 



Architecture Guide 
The Operating System 

IV.2.1.1.3 DISPOSE and VARDISPOSE 

DISPOSE and V ARDISPOSE de-allocate space reserved by NEW and VARNEW, 
respectively. DISPOSE(P) frees the number of words pointed to by P. 
VARDISPOSE(P,NWords) frees NWords words. In both cases, P is assigned the 
value NIL. 

T a avoid destroying important information that is on the Heap, extreme caution 
should be used with these intrinsics, which do little error-checking of their own. 
Heap space allocated by a VARNEW should be freed only by a VARDISPOSE with 
the same NWords parameter, and MARK/RELEASE pairs should always match. 
Furthermore, if the NEW is called for a specific variant, the same variant should 
be used to DISPOSE that area. 

If these intrinsics are misused, the System is likely to crash: this is the least 
mysterious of the symptoms that may occur. 

IV.2.1.1.4 PERMNEW and PERMDISPOSE 

A variable can be allocated on the Heap by PERMNEW(P), where P is a pointer· to 
the variable's type. > A variable allocated by PERMNEW can only be de-allocated 
by PERMDISPOSE-CP). Even a RELEASE cannot remove it. These routines· are 
meant for System use, and are not user routines. 

The Operating System uses these routines to allow variables to remain defined 
across MARK/RELEASE pairs. Program CHAIN corpmands .are saved on the Heap 
with PERMNEW, so that even after the chaining program terminates, and its Heap 
space is released, these com mands are still available to determine the further 
actions of the System. 

I V.2.1.2 Heap Implementation 

IV.2.1.2.1 Operating System Interface 

I V .2.1.2.1.1 Unit Organization 

Code for the Heap operators is contained in three units: HEAPOPS, EXTRAHEAP, 
and PERMHEAP. HEAPOPS contains MARK, RELEASE, and NEW. EXTRAHEAP 
contains DISPOSE, VARNEW, VARAVAIL, MEMLOCK, and MEMSWAP. 
PERMHEAP contains PERMNEW, PERM DISPOSE, and PERM RELEASE. 
(VARAVAIL, MEMLOCK, and MEMSWAP are for segment management and are 
discussed elsewhere.) 

114 



IV.2.1.2.1.2 Heap Globals 

Architecture Guide 
The Operating System 

The Operating System uses several variables to manage the Heap. The Heap is 
maintained by a linked list of MARKs. The topmost MARK is indicated by 
Heapinfo. TopMark. A MARK (also called an HMR, for Heap Mark Record) has the 
following structure: 

TYPE 
MemLink = RECORD 

Avail list: MemPtr; 
NWords: integer; 
CASE Boolean OF 

true: (Last A vail, 
Prev Mark: MemPtr); 

END; 

In a MARK, NWords is always 0, and the variant is always TRUE. NWords is 0 
because the MARK merely marks a location on the Heap, and does not reserve any 
space. 

Each MARK points to an Avail List, which is a list of records of type MemLink. 
These records are FALSE variantS of MemLink, and NWords contains the number of 
words of available space (including the two words of the record itself). The 
Avail_List chain is ended by an Avail_List of NIL. 

The first MARK on the Heap contains a Prev Mark of NIL. All successive MARKs 
point back to their predecessor, so that the M-ARK chain can be traversed. 

For each MARK, the first Avail List record is the lowest unallocated space above 
the MARK. Last Avail points to the last of the available space. This is 
typically bounded by allocated Heap space or by another MARK; if the MARK is 
TopMark, Last_Avail is bounded by the Codepool. 

The Heap maintenance variables have the following structure: 

VAR 
Heapinfo: RECORD 

Lock: semaphore; 
TopMark, 
Heap Top: MemPtr; 

END; 
PoolBase: MemPtr; 

115 



Architecture Guide 
The Operating System 

PermList: MemPtr; 

The Lock semaphore guarantees that the Heap is· modified by only one process at a 
time. TopMark points to the highest MARK. HeapTop points to the highest 
allocated space on the Heap. The fault handler uses HeapTop to determine how 
close the Codepool can be moved towards the Heap. PoolBase points to the base 
of the Codepool. PermList points to a linked list of PERMNEW'ed variables. The 
list is identical in structure to an Avail List, but each NWords indicates the 
number of words allocated by a PERMNEW. -If PermList is NIL, then no variables 
have been PERMNEW'ed. 

I V.2.1.2.1.3 Tactics 

In general, a request for Heap space through a MARK, NEW, VARNEW, or 
PERMNEW causes HeapTop to be set to the new top of the Heap. The fault 
handler always places the Codepool (located at PoolBase) above HeapTop; thus, 
HeapTop reserves space for the Heap as soon as a Heap operator requests it. This 
is necessary because of possible interactions between Stack fault handling and Heap 
space allocation. 

The Operating System uses the global variable SysCom''.GDirP (global directory 
pointer) to allocate a disk directory on the Heap. The Operating System's use of 
this Heap space is meant to be invisible to the user. Therefore, before any Heap 
operation (except DISPOSE), SysCom''.GDirP is DISPOSE'd to make the space 
occupied by the directory available again. 

IV.2.1.2.2 Runtime Environment 

Since both the user and the Operating System use the Heap, the Operating 
System MARK's the Heap immediately before the execution of a user program by 
the call: 

MARK (EMPTYHEAP); 

after the user program terminates, the Operating System calls: 

RELEASE (EMPTYHEAP); 

Thus, all user space is freed after the program terminates, unless space has been 
allocated by one or more calls to PERMNEW. 

MARK (EMPTYHEAP) occurs after the runtime environment for the user program 
has been built. The program's runtime environment structures such as SIBs, 
E_Rec's, and E_Vec's, are for the use of the Operating System,and are allocated 

116 



Architecture ·Guide 
The Operating System 

space before EMPTYHEAP. Data that is global to the user program and any units 
it USES also appears before EMPTYHEAP. Heap space that follows EMPTYHEAP 
is intended only for the local use of the user program. 

The Heap is shared by all tasks in the System. 

117 



Architecture Guide 
T he Operating System 

IV.2.2 The Codepool 

The Codepool resides in main memory between the Stack and the Heap. It 
contains executable code segments that may possibly be discarded, or swapped in 
from disk again. Thus, the contents, size, and position of the Codepool may 
change during a program's execution. The flexibility of the Codepool handling 
can provide a runni ng program with more free memory space than in previous 
versions. 

A segment in the Codepool must be either P-code or relocatable native code. 
NOhrelocatable native code segments reside on the Heap: they are placed there at 
associate time. 

The Codepool is a contiguous block of code segments: whenever a segment is 
discarded, the surrounding segments are fTloved together. Segments being swapped 
in are given space at either end of the Codepool. 

Segments in the Codepool are organized into a doubly-linked list by pointers in 
each segment's SIB (described in the previous chapter). 

The routines that manage the Codepool are in the Operating System's KERNEL 
unit. They make use of the pointers within the SIB, and the following global 
values: 

Pool Head: SIB _Ptr; 

PermSIB: SIB_Ptr; 

Points to the SIB of the segment at the base 
of the Codepool (next to the Heap). 
Points to the SIB of the segment that is always 
resident in the Codepool (currently, GOTOXY). 
Points to the memory location at the base of 
the Codepool. 
The lowest possible bound of the Stack; this 
points to the address which is one word above 
the top of, the Code pool. 
Points to the top of the Heap. 

When space is requested either for the Heap or the Stack, the Codepool 
management routines first attempt to re-position the Codepool without swapping 
out any segments. 

The actual bounds of the Codepool are in Pool Base, which points to the low end 
of the Codepool, and SP Low, which points to one word above, the top of the 
Codepool. The Codepool operators may move it all the way to HeapTop on the 
Heap side, or up to SP minus a 40-word margin on the Stack side. 

118 



Architecture Guide 
The Operating System 

The Codepool may be modified by any of the following circumstances: 

(1) A Heap fault is detected, and the Codepool is moved up in memory toward 
the Stack to free the needed number of words for the Heap. 

(2) A Stack fault is detected, and the Codepool is moved down in memory 
toward the Heap to free the needed number of words for the Stack. 

(3) A Heap fault or Stack fault is detected, and the Codepool cannot be moved 
to allocate the space: one or more segments are swapped out, the remaIning 
segments are moved together, and the Codepool is positioned to allow for the 
needed Heap or Stack space. 

(4) A Heap or Stack fault is detected, and even after swappping out all of the 
swappable segments, not enough space is available: a STACK OVERFLOW is 
reported, and the System is re-initialized. 

(5) A segment fault is detected. The Codepool management routines first try 
to read the segment in at either end of the Codepool without moving it. If 
this is impossible, they attempt to create more room by moving the Codepool 
toward either the Stack or the Heap, and then read the segment. If this too 
is impossible, segments are swapped out to make room, and the new segment is 
then read in. If this last effort also fails, a STACK OVERFLOW is reported, 
and the System is re-initialized. 

The Codepool management routines are only called by the Faulthandler. Since the 
Faulthandler is a subsidiary task, its own stack is statically allocated. Thus, the 
Faulthandler can manipulate the Codepool freely, without fear of causing a Stack 
fault. 

119 



Architecture Guide 
T he Operating System 

IV.2.3 Fault Handling 

\Vhen memory space is required by the Stack or Heap, or entry into a non-resident 
segment is attempted, a fault is issued. The Faulthandler process is activated, and 
uses the Codepool management routines to rearrange main memory (as described in 
the previous section). 

The F aulthandler is a process that is ST ART'ed at bootstrap time. Most of the 
time it is idle, WAIT'ing on a semaphore. When the semaphore is SIGNAL'ed, 
the Faulthandler is activated and performs its memory management functions. 

Faults can be SIGNAL'ed by the Interpreter (Stack and segment faults), or by the 
EXECERROR procedure in the Operating System (Heap faults and one segment 
fault). 

The semaphore record used by the Faulthandler resides in SYSCOM. It is declared 
as follows: 

Fault_Message = RECORD 
Fault TIB: TIB Ptr; 
Fault-E Rec: E Rec Ptr; 
Fault-Words: integer; 
Fault-Type: Seg Fault •• Heap Fault; 

END; - - -

Fault Sem: RECORD 
Real Sem, Message Sem: semaphore; 
Message: Fault_Message; 

END; 

The Interpreter detects only Stack and segment faults. When the Interpreter 
detects a fault, it places the appropriate information in Fault Sem.Message and 
SIGNAL's Fault Sem.Message Sem. The SIGNAL causes a task switch to the 
Faulthandler, and the fault is processed. After it has dealt with the Codepool, 
Faulthandler WAlT's: this causes a task switch back to the previously running 
process. The instruction that caused the fault is re-executed. 

The Operati ng System issues Heap faults, and in one instance, a segment fault. 
Heap faults are detected by the Heap operators when requests are made for Heap 
space by MARK, NEW, VARNEW, and PERMNEW. The one segment fault is issued 
by MEMLOCK if a segment to be locked in the Codepool is not already resident. 

120 



Architecture Guide 
The Operating System 

To issue a fault, the Operating System calls the execution error procedure 
(EXECERROR), and passes it the needed information. EXECERROR then performs 
a SIGNAL on Message _ Sem. 

The F aulthandler first ensures that the currently running segment is not swapped 
out, and then uses the Codepool management routines to adjust the main memory 
layout. 

1 f a Stack fault is caused by a call to a routine in a di fferent segment, 
Faulthandler must lock both calling and called segments into memory. 

121 



Architecture Guide 
The Operating System 

IV.2.4 Concurrency 

Operating System routines support concurrency only by the activation and de­
acti vation of processes: actual task switching is accomplished by the P-machine 
operations SIGNAL and WAIT. 

Concurrency support in Version IV.O is intended for low-level tasks. Most System­
level facilities, particularly 1/0, are synchronous. For instance, a READ or 
UNITREAD from the console does not return to the caller until a character is 
available. No task switch can occur during the waiting period. 

The Operating System global variable Task Info is used to keep track of some of 
the data for subsidiary processes. Its structure is as follows: 

Task Info: RECORD 
Lock, 
Task Done: semaphore; 
N Tasks: integer; 

END-{ of Task_Info}; 

Task Info.Lock is used to ensure mutual exclusion while changing the values of 
other Task Info fields. Task Done is used to WAIT on the termination of any 
subsidiary processes. N Tasks- is the number of subsidiary tasks that have been 
START'ed. 

The unit CONCURRENCY has three routines: START, STOP, and BLK EXIT. For 
each process initiation, the Compiler emits initialization code that- signals the 
semaphore passed to START. The Compiler also emits a call to STOP in the exit 
code of each process; a call to BLK EXIT is part of the exit code of a main 
process. 

ST AR T builds the data structures for a new task and sets it in execution. The 
task's TIB, activation record, and stack space are allocated on the Heap, and the 
Operating System forces a task switch by issuing a WAIT. Presumably, the new 
process starts executing, and switches back to START by doing a SIGNAL after its 
parameters have been copied. Actually, when START performs the WAIT, it is the 
process with the highest priority that begins executing. 

STOP records the termination of a process. It decrements Task Info.N Tasks, 
SIGNAL's Task_Info.Task_Done, and then initializes and waits an a dummy 
semaphore in order to force a permanent task switch from the terminating process. 

BLK_EXIT is called by a main task, and waits for the termination of all subsidiary 
tasks. It waits on Task_Done, and terminates the main task when N Tasks equals 
zero. 

122 



IV.3 I/O Support 

IV.3.l FIBs 

Architecture Guide 
T he Operating System 

File 1/0 is controlled with a structure called a FIB (File Information Block). When 
a user declares a file, the Compiler emits code to initialize a FIB for that file. 
A FIB is declared as follows: 

FIB = RECORD 
FWindow: Window P; 
FEOF, FEOLN: Boolean; 
FState: (F JandW, FNeedChar, FGotChar); 
FRecSize: integer; 
FLock: semaphore; 
CASE FisOpen: Boolean OF 

true: (FlsBlkd: Boolean; 
FDev: DevNu m; 
FVolID: VolID; 
FReptCnt, 

END {of FIB} 

FNxtBlk, 
FMaxBlk: integer; 
FModified: Boolean; 
FHeader: DirEntry; 
CASE FSoftBuf: Boolean OF 

true: (FNxtByte, FMaxByte: integer; 
FBufChngd: Boolean; 
FBuffer: PACKED ARRAY [O •• FBlkSize] 

OF CHAR)) 

FWindow points to the current character in the file's buffer. FEOF and FEOLN 
are the EOF and EOLN flags. FState indicates that the file is either a standard 
(Jensen & Wirth) file, an INTERACTIVE file awaiting a character, or an 
INTERACTIVE file with a character. FRecSize is 0 for untyped files, 1 for 
INTERACTIVE files and textfiles; if it is larger than zero, it indicates the size (in 
bytes) of a record. FLock is used to ensure that only one process at a time may 
modify the file. FisOpen is TRUE only when the file is open. 

If FisOpen is TRUE, then several other fields become relevant. FlsBlkd is TRUE 
if the file resides on a block-structured device. FDev is the number of that 
device, and FVollD the name of the volume. FReptCnt contains a count of the 
number of times the window value is valid before another GET is needed. 
FNxtBlk is the next (relative) block to access. FMaxBlk is the maximum (relative) 
block that can be accessed. FModified becomes TRUE if the file is modified: a 
new date is then set in the directory. FHeader is a copy of the file's directory 

123 



Archi tecture Guide 
T he Operating System 

entry. FSoftBuf is TRUE if soft-buffered 1/0 is used: this is the case for all files 
on block-structured volumes, except untyped files. 

If FSoftBuf is TRUE, then the last set of FIB fields are used: FNxtByte and 
FMaxByte are used for buffer handling, FBufChngd indicates that the buffer 
contents have been modified, and FBuffer' is the buffer itself. 

IV.3.2 Directories 

Figure 6 illustrates the structure of a directory (as on a disk or other block­
structured volume): 

124 



status 
bit ~ 

I 
dti d 

I 

, 

'II' 

DIRENTRY RECORD (0) 
for dfkind=securedir, untyped file (dir[O] ) 

dfirstblk 
dlastblk 
filler_1 J dfkind 
length (7) 1 

2 3 
4 5 
6 7 

deovblk 
dnumfiles 
dloadtime 

(year) I (month) I (day) 

DIRENTRY RECORD ( 1-77) 

dfirstblk 
dlastblk 

1 filler_2 J dfkind 
length (15) 1 

2 3 
4 5 
6 7 
8 9 
10 11 

12 13 
14 15 

dlastbyte 
(year) I (month) I (day) 

DIRECTORY: array [0 .. 77] of direntry; 

o 1 • • • 

DIRECTORY FORMAT 

FIGURE 6 

Architecture Guide 
The Operating System 

} dlastboot 

l daccess 

77 

125 



Architecture Guide 
The Operating System 

IV.3.3 Varieties of I/O 

Record I/O 

Record 1/0 applies to typed Pascal files, using the intrinsics GET and PUT. 

Screen I/O 

Screen 1/0 may be handled by the unit SCREENOPS, whose routines are described 
in the following section. 

Input from the screen is accomplished by the procedure CHAR DEV GET, which 
uses SC CHECK CHAR (in SCREENOPS) and SYSCOM''.MISCIN-FO to determine 
whether any spedal handling needs to be done. 

Output to the screen is accomplished by a simple UNITWRITE. 

Block I/O 

Block 1/0 applies to untyped files. The routines BLOCKREAD and BLOCKWRITE 
are used. These are part of the System routine FBLOCKIO in the EXTRAIO unit. 

When a file is accessed as an untyped file, all other file formatting is disabled. 

Text I/O 

A textf ile is a file of ASCll characters. It has a 2-block header that contains 
formatting information used by the Screen Oriented Editor. When a textfile is 
used by a System program other than the Editor, the Operating, System ignores this 
header. When a new textfile is created, the Operating System writes a 2-block 
header filled with NULs. 

Textfiles always have an even number of blocks. Thus, the smallest possible 
textfile is 4 blocks long. Any extra space is padded with NULs. 

Each record in a textfile is one line of text, terminated by a <return> character. 
If the first character in a textfile record is a OLE (decimal 16), it is interpreted 
as a blank-compression code: the following byte is (32+n), where n is the number 
of leading blanks. This blank-compression code is generated by the Editor (chiefly 
for the purpose of saving space in indented program source). 

User programs typically handle textfilf3s with READ, REAOLN, WRITE, and 
WRITELN. GET and PUT may be used, and follow the Jensen & Wirth standard 
for files of type TEXT. 

126 



IV.4 Using the Screen Control Uni t 

Architecture Guide 
The Operating System 

This section describes how the Screen Control Unit may be used to perform various 
CRT-related tasks. 

In order to use the Screen Control Unit, the programmer must have a copy of 
SCREENOPS.CODE with its INTERFACE section. The program must contain the 
following USES declaration: 

USES {$U SCREENOPS.CODE} SCREENOPS; 

IV.4.1 Routines within the Screen Control Unit 

All of the routines described in this section may be called from your program. The 
text ports mentioned below are rectangular portions of the screen which may be 
defined to be of a different size than the real screen. At present, this feature is 
not fully utilized by all of the UCSD p-System. Where text ports are mentioned 
in this section, the entire screen should be understood to be the default. 

PROCEDURE SC _Init; 

Usually this procedure is only called by the Operating System. It initializes all 
the Screen Control tables and variables. 

Erases the current line. 

PROCEDURE SC_Clr_Line ( Y: integer ); 

Clears line number Y within the current text port. 

Clears the screen. 

PROCEDURE SC_Erase_to_EOL ( X, Line: integer ); 

Starting at position (X, Line) within the current text port, everything to the end of 
the line is erased. 

127 



Architecture Guide 
The Operating System 

PROCEDURE SC_Eras_EOS ( X, Line: integer ); 

Starting at position ex, Line) within the current text port, everything to the end of 
the screen is erased. 

PROCEDURE SC_Left; 

Moves the cursor one character to the left. 

PROCEDURE SC_Right; 

Moves the cursor one character to the right. 

PROCEDURE SC _Up; 

Moves the cursor one line up (in the same column). 

PROCEDURE SC _Down; 

Moves the cursor one line down. 

PROCEDURE SC_HQme; 

Moves the cursor to position 0,0 within the current text port. 

PROCEDURE SC_GOTO_XY ( X, Line: integer ); 

Moves the cursor to position (X, Line). 

FUNCTION SC_Find_X: integer; 

Returns the column position of the cursor, relative to the current text port. 

FUNCTION SC Find V: integer; 

Returns the row position of the cursor, relative to the current text port. 

128 



Architecture Guide 
The Operating System 

PROCEDURE SC GetC CH ( V AR CH: char; 
Return on Match: SC _ ChSet ); 

SC ChSet is a SET OF CHAR. This procedure repeatedly reads from the keyboard 
into CH until CH is equal to a member of Return on Match. The characters that 
you pass in this set should all be capitals (if they -are alphabetic). If a lower case 
alphabetic character is recieved from the keyboard, it will be translated into upper 
case before it is compared to the characters within Return_on_Match. 

FUNCTION SC_Space_Wait ( Flush: Boolean ): Boolean; 

This function repeatedly reads from the keyboard until a <space> or the AL TMODE 
character is recieved. Before doing this it does a UNITCLEAR(l) if Flush is 
TRUE, and writes 'Type <space> to continue'. It returns TRUE if a <space> was 
not read. 

FUNCTION SC _Prompt ( Line: SC Long String; 
X Cursor, V-Cursor, X Pos, Where: 
Return on Match: SC ChSet; 
No Char Back: Boolean; 
Break_Char: char): char; 

integer; 

This function displays the promptline, Line (SC Long String is a STRING [255]) in 
the current text port at (X Pos, Where). The cursor is placed at (X Cursor, 
Y Cursor) after the prompt is-printed. If X Cursor is less than 0, the cursor is 
placed at the end of the prompt. If the prompt is too large to fit within the 
current text port, it is broken up into several pieces, but only at the Break_Char 
-- the user can view different parts of the prompt (cycling through them) by 
typing '?'. If a character is being prompted for, No Char Back should be sent as 
false. The keyboard is repeatedly read until the- character read matches one 
within Return on Match. 

FUNCTION SC Check Char ( V AR Buf: SC Window; 
V AR Buf Index, 
Bytes_LeTt: integer): Boolean; 

While a string is being read, this function may be called to see if a <backspace> 
or a <rubout> (DEL) has been read. If so, the input buffer is altered accordingly, 
and TRUE is returned. Buf is a line on the screen, Buf Index indicates the cursor 
position within Buf, and Bytes_Left is the number of characters to the right of the 
cursor. 

129 



Architecture Guide 
The Operating System 

SC Key Command is a type consisting of the following elements: 
(SC-Backspace Key, SC DCl Key, SC EOF Key, SC ETX Key, SC Escape Key, 
S C -0 ELK e y -;- S CUp -K e y;- S COo W n Key, S C L eft Key, S C -R i g h t T< e y , 
sc _Not_Legal). The character passed is mapped into one of these elements. -

SC Scrn Command is a type consisting of the following elements: (SC Home, 
SC-Eras S, SC Eras EOL, SC Clear Lne, SC Clear Sen, SC Up Cursor, 
sc Down Cursor, SC Left Cursor, SC Right Cursor). -This function returns-TRUE if 
the CRT-has the control character passed.-

SC Key Command consists of the elements listed in the description of 
SC-Map -CRT Command above. This function returns true if the CRT generates 
the- keybOard character passed. 

PROCEDURE SC Use Info ( Do What: SC Choice; 
-VAR T _In10: SC _Info_Type ); 

This function is used to pass information back and forth between a program and 
the Screen Control Unit. Do What may either be SC Get or SC Give, and 
indicates whether the program- is getting or giving information to the Screen 
Control Unit. T Info contains various items to be either passed or received. The 
following information is contained within T Info: 

SC Version: string; 
SC-Date: PACKED RECORD 

Month: 0 •• 12; 
Day: 0 •• 31; 
Year: 0 •• 99; 

END; 
Spec Char: SET OF char; (* Characters not to echo *) 
Mise-Info: PACKED RECORD 

130 

Height, Width: 0 •• 255; 
Can Break, Slow, XY CRT, LC CRT, 
Can -UpScroll, Can DownScroll: -Boolean; 

END; - -



Architecture Guide 
The Operating System 

PROCEDURE SC Use Port ( Do What: SC Choice; 
- - -VAR TYOrt: SC_TX_Port); 

This function works like SC Use Info above. The contents of T Port are either 
passed or recieved from the -Screen Control Unit. T Port contains the following 
information: 

Row, Col, 
Height, Width, 
Cur_X, Cur _ Y : integer; 

131 





V. PROGRAM EXECUTION 

Architecture Guide 
Program Execution 

The runtime environment for a user program is created by the Operating System's 
GETCMD unit. GETCMD starts the execution of System programs such as the 
Compiler, Linker, Filer, etc., and user programs named in the eX(ecute command. 
In all such cases, GETCMD calls the procedure ASSOCIATE, which finds the 
appropriate codefile, and then calls BUILDENV. BUILDENV constructs a program's 
runtime environment, as outlined in Chapter lI. 

BUILDENV recursively traverses the segments used by a program. For each 
segment, it initializes an E Vec, E Rec, and SIB. As each E Rec is created, it is 
linked to a chain of segments that are already active: in thIS way, the Operating 
System can keep track of all acti ve segments. Before BUILDENV initializes 
segment information, it checks to see if that segment is already active, and if it 
is, it does nothing but initialize the proper pointers. Otherwise, the E Vec, E Rec, 
and SIB must be created from information present in the codefile. - -

SEGREFs are segment reference assignments emitted by the Compiler. Segment 
numbers are local to a code segment. The main program is segment 2, and 
subsidiary segments, if any, are numbered starting from 3. Segment 1 is always 
the Operating System's KERNEL unit. SEGREFs are emitted for any principal 
segments used by the compilation (such as a used unit). At associate time, 
BUILDE~V uses the SEGREF list to find the segments that the program uses. 

All runtime errors detected by the System cause the current program to halt. The 
System displays an error message, and when the user types a <space>, the System 
is re-initialized. The program's runtime environment is lost. 

When a program terminates, control returns to GETCMD, which waits for further 
instructions. When a program terminates normally, its environment is not lost, and 
the program can be re-started with the U(ser restart command. The System may 
or may not need to call BUILDENV again. 

133 





VI. APPENDICES 

VI.A Glossary 

Archi tecture Guide 
Appendices 

This is intended as an aid to readers who are unfamiliar with many "buzz words" 
used in this document, and is not meant to be either comprehensive or precise. 

ASSOCIATE TIME ~ That part of a program's lifetime in which the segments 
and their various references to each other are associated by the Operating 
System. This occurs when the program is prepared for execution. 

BLANK-FILLED - All 8-bit bytes within the specified region are filled with 
blanks (ASCII 32). 

BLOCK - An area of memory (usually on a disk) with a fixed size of 512 
contiguous 8-bit bytes (256 contiguous 16 bit-words). 

BLOCK BOUNDARY -Byte zero of any block. 

BYTE POINTER - A byte address (as opposed to a word address). 

BYTE SEX - Some processors address 16-bit words with the most-significant­
byte first, others with the least-significant-byte first. Byte sex refers to this 
di fference in addressing; two machines with different addressing styles are said 
to have different (or opposite) byte sex. 

COMPILATION UNIT - A program or portion of a program that can be 
compiled by itself: in other words, a program or a UNIT. 

COMPILE TIME - That part of a program's lifetime in which it is being 
compiled (or assembled). 

CONCURRENCY - The executi on of two or more tasks or processes in 
parallel, i.e. at the same time. Synonymous with multitasking. 

DYNAMIC - Information which changes during program execution (or is not 
known before runtime). 

FILLER - A field in a data structure that is at present unused. If this area 
is described as "reserved for future use" then it usually should be zero-filled. 
This avoids confusion when future versions of the System make use of filler 
space. 

INTER-SEGMENT - The data (or program) in question occupies more than one 
segment, or contains pointers to another segment. 

135 



Archi tecture Guide 
Appendices 

136 

LINK TIME - That part of a program's lifetime in which it is being operated 
on by the Linker. 

MUL TIPROGRAMMING - An environment that supports more than one user, 
where each user can perform multitasking. (The p-System does not support 
multiprogramming.) 

MUL TIT ASKING - The execution of two or more tasks in parallel, i.e. at the 
same ti me. A task is a PROCESS from the user's point of view; from the 
System's point of view it might be a program. (The p-System does support 
multitasking.) --

MUL TIWORD - Some positive integral number of words. 

NATIVE CODE - Assembled code for some physical (as opposed to ideal) 
processor. Also called machine code or (sometimes) hard code. 

ONE'S COMPLEMENT - All bits in the designated field are flipped. 

P-CODE - Assembled code for an ideal 'processor. P-code stands for "pseudo­
code." The p-System Interpreter implements a "pseudo-machine." 

POSTPROCESSOR - A program which is executed after the completion of 
some other program, and uses as input the output of that previous program. A 
postprocessor that creates output which can be used by still another program 
is often called a "filter." 

PRINCIPAL SEGMENT - A segment that has a segment reference list, i.e., a 
segment with a SEG TYPE of PROG SEG or UNIT SEG. Corresponds to the 
outer segment of any- compilation unit: UNITs, FORTRAN programs, and the 
outermost block of a Pascal program are all principal segments. 

RECURSION - see RECURSION. 

RELOCAT ABLE - A portion of object code that can be moved to different 
locations in memory without changing its meaning. P;..code is relocatable. 
Nati ve code mayor may not be. 

RUNTIME - That part of a program's lifetime in which it is being executed 
(or "run"). 

SELF -MODIFYING - Code which overwrites or modifies itself during 
execution, thus changing its meaning. This is not recommended! 



Architecture Guide 
Appendices 

SEG-RELA TIVE - The address of an object is specified as an offset from the 
beginning of the code segment in which it resides. 

ST ATIC - Information which does not change throughout program execution (it 
is known before runtime). 

SUBSIDIARY SEGMENT - A segment that has no segment reference list, i.e., 
a segment with a SEG TYPE of PROC SEG or SEPRT SEG. Corresponds to 
the object code of any segment whose sOurce text is not-separately compilable. 
Pascal segment procedures and segments producedby the UCSD Adaptable 
Assembler are subsidiary segments. 

T OS - Short for "top of stack." The object that is on the top of the P­
machine stack (which is the object that was most recently pushed). 

UPWARD COMPATIBILITY - Code that runs on current versions of a system 
will run on future versions of that system. A more limited and more easily 
obtained version of upward compatibility requires source code to be recompiled 
on new versions, but ensures that it will run when recompiled. 

WORD - 16 bits aligned on an even byte-address boundary. The byte which is 
most significant is determined by the byte sex of the machine for which it was 
generated. 

WORD POINTER - A word address (as opposed to a byte address). The 
address of a word must be even. 

ZERO-FILLED - A field of data that contains nothing but zeroes (all bits 
must be 0). 

137 



Architecture Guide 
Appendices 

VI.B P-Codes 

SLDC 0 •• 31 
LOCN 152 
LOCB 128 
LOCI 129 
LCO 130 

SLOLI 32 

SLOL16 47 

LOL 135 

SLLAI 96 

SLLA8 103 

LLA 132 

SSTL1 104 

SSTL8 III 

STL 164 

SLOOI 48 

SLOO16 63 

LOO 133 
LAO 134 
SRO 165 

SLOOI 173 
SLOO2 174 
LOO 137 
LOA 136 
STR 166 

LOE 154 

138 

Short Load Word Constant 
Load Constant NIL 
Load Constant Byte 
Load Constant Word 
Load Contant Offset 

Short Load Local Word 

Load. Local Word 

Short Load Local Address 

Load Local Address 

Short Store Local Word 

Store Local Word 

Short Load Global Word 

Load Global Word 
Load Global Address 
Store Global Word 

Short Load Intermediate Word 

Load Intermedi ate Word 
Load Intermediate Address 
Store Intermediate Word 

Load Extended Word 



LAE 
STE 

SINDO 

155 
217 

120 

SIND7 127 

IND 
STO 

LDC 
LDM 
STM 
LDCRL 
LORD 
STRL 

CAP 
CSP 

LOB 
STB 

LOP 
STP 

MOV 
INC 
IXA 
IXP 

LAND 
LOR 
LNOT 
BNOT 
LEUSW 
GEUSW 

230 
196 

131 
208 
142 
242 
243 
244 

171 
172 

167 
200 

201 
202 

197 
231 
215 
216 

161 
160 
229 
159 
180 
181 

Load Extended Address 
Store Extended Word 

Short Index and Load Word 

Index and Load Word 
Store Indirect 

Load Multiple Word Constant 
Load Multiple Words 
Store Multiple Words 
Load Real Constant 
Load Real 
Store Real 

Copy Array Parameter 
Copy String Parameter 

Load Byte 
Store Byte 

Load a Packed Field 
Store into a Packed Field 

Move 
Increment Field Pointer 
Index Array 
Index Packed Array 

Logical And 
Logical Or 
Logical Not 
Boolean Not 
Less Than or Equal Unsigned 
Greater Than or Equal Unsigned 

Architecture Guide 
Appendices 

139 



Archi tecture Guide 
Appendices 

ASl 
NGl 
INC I 
DECl 
ADl 
SSl 
MPI 
DVI 
MODI 
CHK 
EQUI 
NEQI 
LEQI 
GEQI 

FLT 
TNC 
RND 
ABR 
NGR 
ADR 
SBR 
MPR 
DVR 
EQREAL 
LEREAL 
GEREAL 

ADJ 
SRS 
INN 
UNI 
INT 
DIF 
EQPWR 
LEPWR 
GEPWR 

EQBYT 
LEBYT 
GEBYT 

140 

224 
225 
237 
238 
162 
163 
140 
141 
143 
203 
176 
177 
178 
179 

204 
190 
191 
227 
228 
192 
193 
194 
195 
205 
206 
207 

199 
188 
218 
219 
220 
221 
182 
183 
184 

185 
186 
187 

Absolute Value Integer 
Negate Integer 
Increment Integer 
Decrement Integer 
Add Integers 
Subtract Integers 
Multiply Integers 
Divide Integers 
Modulo Integers 
Check Subrange Bounds 
Equal Integer 
No t Equ al Integer 
Less Than or Equal Integer 
Greater Than or Equal Integer 

Float Top-of-Stack 
Truncate Real 
Round Real 
Absolute Value of Real 
Negate Real 
Add Reals 
Subtract Reals 
Multiply Reals 
Di vide Reals 
Equal Real 
Less Than or Equal Real 
Greater Than or Equal Real 

Adjust Set 
Build a Subrange Set 
Set Membership 
Set Union 
Set Intersection 
Set Difference 
Equal Set 
Less Than or Equal Set 
Greater Than or Equal Set 

Equal Byte Array 
Less Than or Equal Byte Array 
Greater Than or Equal Byte Array 



UJP 138 
FJP 212 
TJP 241 
EFJ 210 
NFJ 211 
JPL 139 
FJPL 213 
XJP 214 

CPL 144 
CPG 145 

SCPII 239 
SCPI2 240 

CPI 146 
CXL 147 

SCXGl 112 

SCXG8 119 

CXG 148 
CXI 149 
CPF 151 
RPU 150 
LSL 153 
BPT i58 

SIGNAL 222 
WAIT 223 

EQSTR 232 
LESTR 233 
GESTR 234 
ASTR 235 
CSTR 236 

LPR 157 
SPR 209 
DUPI 226 
DUPR 198 

Unconditional Jump 
False Jump 
True Jump 
Equal False Jump 
Not Equal False Jump 
Unconditional Long Jump 
False Long Ju mp 
Case Jump 

Call Local Procedure 
Call Global Procedure 

Short Call Intermediate Procedure 

Call Intermediate Procedure 
Call Local External Procedure 

Short Call External Global Procedure 

Call Global External Procedure 
Call Intermediate External Procedure 
Call Formal Procedure 
Return from Procedure 
Load Static Link 
Breakpoint 

Signal 
Wait 

Equal String 
Less Than or Equal String 
Greater Than or Equal String 
Assign String 
Check String Index 

Load Processor Register 
Store Processor Register 
Duplicate One Word 
Duplicate Real 

Architecture Guide 
Appendices 

141 



Architecture Guide 
Appendices 

SWAP 189 
NOP 156 
NAT 168 
NAT-INFO 169 

RESERVE1 250 

RESERVE6 255 

142 

Swap 
No Operation 
Native Code 
Nati ve Code Information 

reserved 



VI.C Appendix C 

0 000 00 f\UL 32 
1 001 01 srn 33 
2 002 02 STX 34 
3 003 03 ETX 35 
4 004 04 EOT 36 
5 005 05 EI\G 37 
6 006 06 ACK 38 
7 007 07 BEL 39 
8 010 08 BS 40 
9 011 09 HT 41 

10 012 OA LF 42 
11 013 DB VT 43 
12 014 DC FF 44 
13 015 00 CR 45 
14 016 DE SO 46 
15 017 OF 51 47 
16 020 10 OLE 48 
17 021 11 DCl 49 
18 022 12 DC2 50 
19 023 13 DC3 51 
20 024 14 DC4 52 
21 025 15 NAK 53 
22 026 16 SYN 54 
23 027 17 ETB 55 
24 030 18 CAN 56 
25 031 19 EM 57 
26 032 1A SUB 58 
27 033 1B ESC 59 
28 034 1C FS 60 
29 035 10 GS 61 
30 036 IE RS 62 
31 037 IF US 63 

Architecture Guide 
Appendices 

American Standard Code for Information Interchange 

040 20 SP 64 100 40 @ 96 140 60 
041 21 65 101 41 A 97 141 61 a 
042 22 " 66 102 42 B 98 142 62 b 
043 23 /I 67 103 43 C 99 143 63 c 
044 24 $ 68 104 44 0 100 144 64 d 
045 25 0/0 69 105 45 E 101 145 65 e 
046 26 & 70 106 46 F 102 146 66 f 
047 27 71 107 47 G 103 147 67 9 
050 28 ( 72 110 48 H 104 150 68 h 
051 29 ) 73 III 49 1 105 151 69 
052 2A * 74 112 4A J 106 152 6A j 
053 2B + 75 113 4B K 107 153 6B k 
054 2C 76 114 4C L 108 154 6C 1 
055 20 77 115 40 M 109 155 60 m 
056 2E . 78 116 4E N 110 156 6E n 
057 2F / 79 117 4F 0 III 157 6F 0 

060 30 0 80 120 50 P 112 160 70 P 
061 31 1 81 121 51 Q 113 161 71 q 
062 32 2 82 122 52 R 114 162 72 r 
063 33 3 83 123 53 5 115 163 73 s 
064 34 4 84 124 54 T 116 164 74 t 
065 35 5 85 125 55 U 117 165 75 u 
066 36 6 86 126 56 V 118 166 76 v 
067 37 7 87 127 57 W 119 167 77 w 
070 38 8 88 130 58 X 120 170 78 x 
071 39 9 89 131 59 Y 121 171 79 y 
072 3A 90 132 5A Z 122 172 7A z 
073 3B ; 91 133 5B [ 123 173 7B { 
074 3C < 92 134 5C \ 124 174 7C I 
075 3D = 93 135 50 ] 125 175 70 } 
076 3E > 94 136 5E 126 176 7E 
077 3F ? 95 137 5F 127 177 7F DEL 

143 



NOTES 



NOTES 



NOTES 


