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RECORDING SYSTEM CLASSIFICATION

Analog Recording Systems -~ CouTtinuoous

- Information (message) signal to be recorded has infinite number of
amplitude levels that change continuously with time.

- Typical Requirements: high signal-to-noise ratio (SNR), low dis-
tortion, and low cost.

Digital Recording Systems — Disceen Lewis

- Information (message) signal to be recorded has finite number
(usually 2) of amplitude levels that change at discrete time points.

- Typical Requirements: high reliability (low probability of error), fast
access to recorded information, and low cost (S/Mbyte).




RECORDING SYSTEM APPLICATIONS

Enclosure

Disk Stack
Electromagnetic
Actuator

- Rigid Disk Drives

Swing Arms

- Rigid disk file components. CF?mm Mee T Dc\n'n:f-l>

Jacket

- Flexible Disk Drives |
|
|

Stepping Motor .
Flexible diskette and head accessing system. (f:mm Mez T Dan \*):4>

Air-Bearing Guides

- Ta pe Drives Read-Write Heag

Take-up Reel

- . .. . e .. { T =
SCnemmartic or C.:.Itfidgé Crive ior daile recoraing. k‘ vort ﬁ‘}{\, .
Dar 12is)

[38]



RECORDING SYSTEM APPLICATIONS (contd.)

Audio Recording Systems

- Analog Audio Recording

Cassette

Record/Replay Heads
Capstan and

‘ Pressure Roller . j.,>
i . re 0
! Audio cassette recorder. ( Bz Me<x g Do

- Digital Audio Recording



RECORDING SYSTEM APPLICATIONS (contd.)

Image Recording Systems

- FM Video

Rotating-Head Drum

Read-Write Head

Cassette

- Helical-scan video . L)
recorder. (R M2 T Darmie

- Digital Video



RECORDING SYSTEM APPLICATIONS (contd.)

Instrumentation Systems

Magneto-optical Recording Systems

Signal
Photocetectors

Focus and Tracking
Detectors

Tracking Mirror

Mzgnetoeptical

read-write head for record-
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DIGITAL MAGNETIC RECORDING SYSTEMS

General Requirements
- Low Probability of Error

- Fast Access to Recorded Data ReAe Time S6nC Plocessid

- Low Cost

Parameters of Interest

- Linear Density, number of bits per unit length along a track
(bits/inch)

- Track Density, number of tracks per unit length (tracks/inch)

- Areal Density, number of bits per unit surface area (bits/inch?);
product of track and linear density.

- Volumetric Density, number of bytes per unit volume (MBytes/ cu.
ft.)



STATE-OF-THE-ART IN TPl AND BPI
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RECORDING CHANNEL
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Gaussian distribution

If X represents the sum of a large number of independent random components, and if each
component makes only a small contribution to the sum, then

(See Table T.6 for gaussian probabilities.)

Rayleigh distribution

If R2=Xx2+ Y?,
variance ¢?, then

where X and Y are independent gaussian r.v.’s with zero mean and




ts, and if each

T0 mean and

TABLE T.6
GAUSSIAN PROBABILITIES

P ek e e 1 s e e TN e e s e

The probability that a gaussian random variable with mean m and variance o? will have
an observed value greater than m + ko is given by the function

1 (= :
Q(k) & J e~ 4, ;
k

N
called the area under the gaussian tail. Thus
P(X > m + ko) = P(X <m — ko) = Q(k)
P(|X —m| > ko) = 2Q(k)
P(m<X5m+ka)=P(m—ka<Xsm)=1/z—Q(k)
P(|X —m| < ko)=1-2Q(k :
Pim—ko<X <m+kyo)=1—0Qk;) — Qks) k

Other functions related to Q(k) are as follows:

2 [k -
erf k& — J e”* di=1-20(/2k f
V7 Yo

>

2 (= _.,
erfc k —=j e di=1—erf k=20(/2k
k

[
VT

1 re :
k) & — e 4 4l = 1/2 — Q(k) B ‘

\/2ﬁ “0
All of the foregoing relations are for k > 0. If ¥ < 0, then

O(=1k|)=1-0Q(lk])
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Numerical values of Q(k) are plotted below for 0 < k < 7.0. For larger values of k, Q(k)

may be approximated by

which is quite accurate for k > 3.
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RESPONSE OF LINEAR SYSTEM
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PROBLEM OF DETECTION IN MAGNETIC RECORDING

lPULSE RESPONSE AS A FUNCTION OF LINEAR DENSITY
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INTERSYMIBOL INTERFERENCE (ISI) IS A KEY EFFECT OF
HIGH-DENSITY RECORDING

increased isi ===3» lowered signal-to-noise ratio (SNR)

lower SNR === higher error rate



SIGNAL PROCESSING AND CODING METHODS

- Peak Detection Method

Partial Response Methods

Equalization Methods

Maximume-likelihood detection (Optimum)

1

Codes for Peak Detection
- Codes for Partial Response Methods

- Signal space coding (trellis coding)

10
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Transforms
Function ut) V(f)
Rectangular H(é) 7 sinc f1
Triangular A<£> 1 sinc? f1
T
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for x from 0

sinc? x
0.000
0.002
0.007
0.013
0.016
0.016
0.014
0.009
0.004
0.001
0.000
0.001
0.003
0.006
~008
X8
0.007
0.005
0.002
0.001

-

Binomial distribution

TABLE T.5
PROBABILITY FUNCTIONS

Let the discrete r.v. I be the number of times an event A occurs in n independent trials. If

P(A) = «, then

i=na 2 = ng(l —a)

If n» 1, a « 1, and m = nx remains finite, then

P,(i) = e~ "m'/i!

Poisson distribution

Let the discrete r.v. I be the number of times an event A occurs in time T. If P(A) =
p AT « 1in a small interval AT, and if multiple occurrences are statistically independent,

then
P,y = e‘“T(pT)‘/i!

Uniform distribution

f=uT

If the continuous r.v. X is equally likely to be observed anywhere in 2 finite range, and

nowhere else, then

1
Px(x) = - a<x<b
<} a
s=Ya+b cl=Y.b-a?

Sinusoidal distribution

If X has 2 uniform distribution with b — a = 2%
are constanis, then

and Z

= A cos (X + 6), wh
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Least-squares
storage-channel
identification

by J. M. Cioffi

Pulse (dibit) and step (transition) responses for
magnetic-storage channels are important for
detection-circuitry design and for comparison of
various media, heads, and other channel
components. This paper presents a least-
squares procedure that can be used to identify
the dibit and transition responses from
measurements of the read-head response to any
known data sequence written on the medium.
The method yields significantly higher-quality
estimates for the dibit and step shapes than
does determining these same characteristics by
measuring the average response to isolated
transition or by performing a Discrete Fourier
Transform (DFT) on the response to a
pseudorandom data pattern. The new method
can be implemented off line but also can be
made sufficiently efficient to be implemented
with a microprocessor for use in self-optimizing
(adaptive) channel detection circuitry.

1. Introduction

Storage-channel identification is the measurement and/or
computation of the characteristics of the read-back channel
in a data storage device, such as a magnetic disk, magnetic
tape, or optical disk. The identified characteristics are most
often the channel’s response to a step input (the “transition”
response) or to a pulse (the “dibit” response). These
characteristics are important for many purposes, such as the
design of the detection circuitry (especially for equalizers and
©Copyright 1986 by International Business Machines Corporation.
Copyving in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and 1BM copyright
notice are included on the first page. The title and abstract. but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other

information-service svstems. Permission to republish any other
portion of this paper must be obtained from the Editor.
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for maximum-likelihood detectors), for determining the
maximum data density of the device, and for comparing
various media, heads, and other channel components.

This paper presents a least-squares procedure for
identification of the linear time-invariant filter that most
closely approximates the desired step or pulse responses. The
storage device is excited with a known data sequence, and,
later, the read-head response to the known sequence is
measured (or digitized) at regular intervals. The resulting
measurements are then processed via the least-squares
procedure to determine the step and/or pulse responses.

The resultant estimates of these responses are of
significantly higher resolution (higher quality) than those
produced by previous procedures, such as measuring the
average response to isolated transitions (or isolated dibits) or
computing the Discrete Fourier Transform (DFT) of the
response to some known (usually pseudorandom) data
pattern. Furthermore, the new method, although based on a
linear model of the channel as presented here, can indicate
the average accuracy of the linear model over any data
pattern, thus indicating the presence of potential
nonlinearities in the responses, unlike the aforementioned
methods. The degree of agreement between the linear model
and measurements can be useful in determining the data
rates at which various data detection methods do and do not
apply. .

Section 2 defines in more detail the quantities used in
channel identification and the least-squares procedure, and it
compares the quality of estimates of the new and previous
procedures. Section 3 studies some details of the solution
and displays the results of the new procedure for several
measurements taken from actual storage devices, including
magnetic disks with thin-film heads, tape systems with
magnetoresistive heads. and optical disks. Section 4 is a brief
conclusion. Appendix A extends the channel identification
procedure to apply at any digitizer sampling rate (an integer
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atio of the sampling to data rates is assumed in the main
body of the paper). Appendix B discusses streamlining of the
ieast-squares procedure for possible use with adaptive

Jetection methods, while Appendix C discusses the detection
af nonlinearities.

A Storage-channel identification methods
“This section mathematically defines and analyzes the
q,«Jamilies and procedures used in storage-channel
td:ntification. Figures 1(a) and 1(b) summarize the
dedinitions used throughout this section.

o l'ariable definitions
ae read-back channel and associated identification
.rameters are illustrated in Figures 1(a) and 1(b). The

:ntinuous read-head output signal, d(7), can be modeled in
ae of two ways [1]:

A =3 x h(t = kT) + u(t), (la)
k

A=Y sh(t - kT) + u(1), (1b)

where A(t) and h(t) are the unknown linear time-invariant
p :Ise and step responses, respectively, and u(¢) denotes an
wacorrelated, additive, zero-mean noise,! x, takes on the
“ilues 1 (or +1 and O for some optical storage systems),

srresponding to 1’s and O’s, respectively, in the stored data
sequence at time k7, 1/T is the data rate, and k is an integer.
{2 Equation (1b), s, can take on the values +2 or 0 (1 or 0
fer optical) according to the relation

& =Ny (2)
{.ikewise, one determines for a linear channel
hit) = h(t) = h(t = T). 3)

It is a property of the method presented that the estimates

also obey Equation (3); however, it is sometimes informative

to separately identify A(¢) and A(t), rather than identify only

one and compute the other from it. It is assumed that d(¢) is

digitized at some rate T, such that

7,2l ()
p

where p is an integer (=1) oversampling factor. This

restriction is relaxed to a rational fraction in Appendix A.

The sampled read-head output is then, with t = mT,in (1),

dmT,) =Y x h(mT, = kT) + u(mT,)
’ k

=Y x.hl(m = kp)T,] + u(mT,) (Sa)
k

ven though the assumption that the noise 1s additive may not be completely true in
.actice. our objective 15 10 find the values for the parameters in such a model that
most closely appronimate the measured responses, and deviations from such a model
appear in the final results of the method in this paper.

'‘BM SJ
1BM J RES DEVELOP. VOL. 30 NO. 3 MAY 1986

Noise
u(t)
H——™ h(1) d(1)
Data Read
sequence Pulse response Signal
(€)]

Noise

u(t)

8 et hy(n d(1)
Three-level Read
data sequence Step response signal

(b)

1 Summary of storage quantity definitions (a) for pulse responses and
i (b) for step responses.

%

or#

dmT) = 3 sh(mT, — kT) + u(mT,)
k
=3 s;hl(m = kp)T,] + u(mT,). (5b)
k

The channel is estimated by

d(mT,) & ¥ x,w(mT, — kT), (6)
k

where w(t) is a linear filter response whose sampled values at
times mT, are to be computed via the channel identification
procedure [ideally w(t) = h(t)]. Likewise, for the step
response, the estimate is

d(mT,) & Y s,w(mT, — kpT,). (7)
A

We also define an error signal
o(mT,) & d(mT,) — d(mT,). 8)

As an example. note that, if x, or s, is a sequence
corresponding to an isolated pulse or transition input, (5a)
and (5b) reduce to

dmT,)) = h(mT,) + u(mT,) (9a)
or
d(mT,)) = h(mT,) + u(mT,), (9b)

respectively, the desired pulse shapes in noise. Then, w(mT,)

t The reader may note that (5a) and (5b) are equivalent to p subchannels, each at
spacing T~ this observation is exploited to reduce computation in the new procedure
in Section 3.
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and w (mT,) can be estimated by the averages

w(mT,) = E d(mT k), (10a)

!
n;

w(mT,) = )l T d(mT k). (10b)
k=1
where the index k denotes the kth experiment. That is, one
measures the response n times and averages, which is the
basis for the aforementioned isolated step and dibit
identification methods. Some deficiencies of the estimates
identified via such isolated step or pulse methods are
discussed later. Equations (9) and (10) were given only to
verify the utility of the definitions in (1)~(8). We now
proceed with a discussion of the least-squares channel-
identification procedure.

e The application of least squares
In the least-squares identification procedure, a known data
pattern is written on the storage device. The w(mT,) are
chosen to minimize

!

&= 3 omT), (11)
m=]

where ¢(mT,) is given in (8). If we denote W), , by the M x |

column vector

W/(O)
”".u.l 4 . s (12)
wl(M - 1)T,]

then the solution to (11) is conveniently written [2]

Wy, = (z X'HmX;lm) (2 Xumd(de)) (13)

m=1

where ' denotes transpose, and

X
Xyym & [ . ] (14)
xm-M+l

for p = 1. There are p — 1 zeros between entries in (14) if
p> 1. We have further assumed that M is large enough to
span the nonzero extent of the pulse (step) response in
intervals of sampling periods or MT, = NT data periods
containing p samples each, M = Np. Equation (13) can be
rewritten

Wy, = R;;.IPM.I B (15)

where

!

R,L é7 E XMmX:Im’

m=1

P, é—i Z Xy d(mT). (16)
A similar expression holds for the step response. with x's
replaced by s's and w’s replaced by w s in the solution. Note

J. M. CIOFFI
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that M X M matrix inversion is explicit in (13); however,
because of the special structure in this problem. no matrix
need ever be inverted directly. For more details, see Section
3 and especially [2].

e A4 performance measure
The mean of W,,, can be easily determined as

h(0)
ElW,)=H, = > (17)
h[((M - 1T,)
the desired solution, when the above least-squares method is
used. The Norm Tap Deviation is a mean-square measure of
statistically how far the estimated W,, ,is from H,,, and is

also easily computed, if u(t) is white (spectrally flat over the
frequency range of interest), as

1 1.2
Op, = ENl Wy, — IM.I"Z] = 7 trace (RMI.I)"; > (18)
where
A E[u(KT,)). (19)

We show in the next few sections that both the isolated
transition (or dibit) and DFT methods are special cases of
the general least-squares method with very special
restrictions on the input sequence and on M and /. Thus, we
are able to use (18) as a performance indicator for those
methods as well.

o Isolated transition example and analysis of resolution
As an example, once again consider an isolated dibit; then
X, » has only one nonnegative entry per column and (13)
reduces to (using generalized inverses, see [3D)

[d( MTd)}
wo=1 - | ‘ (20a)
d(T,)

A string of n “isolated” (far enough apart) dibits occurring
within a large data record (length /) has a least-squares
solution,

i [ d(kMT +T) }
d(kMT, + MT,)

r
l4\1/

(20b)

o

that is exactly the same as the isolated pulse solution in
(10a). The least-squares identification procedure is more
general in that the input need not be an isolated transition or
dibit.

Equation (18) allows us to compare the quality of the
least-squares estimates of H,,, (W', ) for different input
sequences. Note that. for a string of n isolated (MT, apart,
so [ = Mn) inputs. one determines for white zero-mean

B . M,
EWW,,—H,I = n g, - (21
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Pseudorandom sequences are generally desirable (4, 5] for
channel inputs because of their broadband spectral response.
An identity for R,,, can easily be determined, if / = length of
the pseudorandom sequence,$ as (see [6-8])

|
R,\I.I = '/'[([ + I, - lMl/’u]s (22a)

where 1,,1s an M X 1 vector of M ones. One can also easily
show that

_ / 1 ,
Ry, = 51 (JM A By 1M1M>' (22b)

Thus, (18) becomes, for a pseudorandom sequence of length
+{ repeated n times,

Lo {(n-—l)M2+2M 2 1, 23)
T M AT | n= DM+ 1 | T T n %

or n = 1, there is an improvement of (M + 1)/2 with
~2spect to (21). As n increases to a large value, there is an
“mprovement by a factor of M in estimate quality, or
-quivalently, M more digitized outputs from isolated dibits
1iust be processed in the isolated dibit identification schemes
' get the same resolution estimates as those produced by
2ast squares with a pseudorandom length-M input. For
aversampling (p > 1), the comparison favors the
sseudorandom input by the same amount. Heuristically,
~hen using pseudorandom or “scrambled” data in channel
-ientification, the input is more spectrally “rich” and all
requencies are more equally weighted than when a single
.:ulse 1s used. The resulting flat nature of the spectrum
~esults in the inverse autocorrelation matrix being close to an
~.ientity which makes 6,,,in (18) smaller (better). When x;
has a flat spectrum, s, does not have a flat spectrum, but a
similar slightly mere complex argument can be given to
justify the least-squares improvements.

In practice, it may not be difficult to average the extra data
tor the isolated input method. However, there is another
very practical advantage of using more random data, as was
first noted by C. M. Melas [9]. This is that in the isolated
transition or isolated dibit methods, the AGC (Automatic
Gain Control) must be removed from the channel to prevent
the sudden change in energy associated with the isolated
input from suddenly varying the gain parameter of the AGC.
Then, the identified pulse characteristics will not include the
effect of the AGC. This effect can commonly be more than a
simple gain factor and is determined by the bandwidth and
tracking rate of the AGC.

o Comparison with frequency-domain methods
Another more recent method used in storage-channel
identification is [4, 5, 10] to compute the DFT of the

-
Y brven when the output is oversampled. we show later that the only autocorrelation
matny of interest 1s at the data rate: thus all of the analysis here 1s also vahd tor p > 1.
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response to some prescribed pattern written on the media. In
order to invert the DFT to get a time-domain estimate of the
pulse response, one must first divide the measured DFT by
the DFT, including phase, of the input before the inverse
DFT, which [10] also observes. Using this last restriction,
one can also generalize the methods of [4, 5, 10] to estimate
the channel response for any inputs, including the +2, 0
normally associated with identification of the step
(transition) response.

Nevertheless, with the division by input spectra. the
frequency-domain method is the same as the time-domain
least-squares method of this paper if M = /, and as we shall
see, the case M = / gives very poor estimate quality. In the
case that u(mT,) is white and Gaussian, the least-squares
method (see [11]) achieves the famed Cramer-Rao bound for
a fixed / and M; that is, no other estimator has higher
resolution for the given data. If the assumption on u(?) is
just white (not also necessarily Gaussian), then the least-
squares estimator is a Best Linear Unbiased Estimator
(BLUE) [3].

Theoretically, the difference between the DFT technique
and the time-domain least-squares method can be quantified
via the following analysis. It is usually wise to pick M </ so
as to introduce more noise averaging, or equivalently, to
make the Cramer-Rao bound lower for fewer parameters.
Generally speaking, in any estimation scheme. we desire
/> M to get good quality estimates. Nevertheless. picking M
too small can introduce extraneous harmonic distortion in
the estimated step response. The time-domain least-squares
method can be rewritten as that W, that minimizes [2]

Epit = Earitan = "55/4/”2’ ) (24)
where
ers =di = XouWa (25)
and
d(kT,) X,
d,= : : Xk = : ) (26a)
di(k =1+ 1T,] N1

where p — 1 zeros can be inserted between nonzero entries in
X, and

Xoraw = [Xiwo Xppmrs = X kearar)- (26b)

The DFT-based method is a special case of a linear M X /
transformation on ¢, ,. that is. let

Ey = dcys (27

where ¢ is an M X [ (possibly complex) matrix representing
the linear transformation. Then

EXEy, = ey, - (28)

where * denotes conjugate transpose. If ¢ is a unitary

transformation (¢*¢ = /). then 313
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Magnitude (dB)

Frequency (units of I/T)

Comparison of DFT and least squares for (a) 8-bit and (b) 16-bit
periods.

NEy/l* = New I, (29)
and the minimized €4, 1s obtained by
Ery = O Eyy, - (30)

In the DFT methods of [4, 5], the matrix ¢ is chosen, under
the very special assumptions that M = | and the input is
periodic ( pseudorandom) of length | = M, as

! ! T (lM nr
1 1 e7" . et
p=0¢y=—=|. . . ¢ . > @1
‘/‘M 1 e»/w,,_,r . e—/wu_,(u—l)r
where
2
%=q% i=0,.-, M-l (32)

¢,, can easily be shown to be unitary [12]. so the relation in
(29) holds. apparently yielding the time-domain least-squares
solution. ¢%, is the inverse DFT in this case. However. in the
time-domain method of this paper. .}/ i1s much less than

[/ to average the effects of noise and other nonideal effects.
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Using our performance measure in (18) and (23) (n = 1,
| = M) again, one determines the estimate quality as

, ' (33)

while the general formula for a pseudorandom sequence of
length / with M parameters is

oo MMM,
M AF =M+ )T

(34)

Substitution of / = 10M, a good practical rule of thumb, into
(34) yields the advantage

20091+ 1)
T 0092 + 02/

097+ 1)

20 09/ +2)°

0.1
oﬂl./ (35)
Even for / = 1000, another reasonable number, the
improvement in (35) is close to its limiting value of 20. This
large improvement is typically evident when comparing the
spectra of a pulse produced by the time-domain least squares
and by the DFT method, as we have illustrated in Figures
2(a) and 2(b). Note from the level of “frequency ripple” in
the DFT plot that the time-domain least squares is at least
an order of magnitude improvement. Also note the lower
“noise level” at higher frequencies with the least-squares
identification procedure. It is also important to note that

/= M =2'—1(ia positive integer) for a pseudorandom
input, which, at least, requires special attention for efficient
DFT implementation [12-14]. The reason for the two
different lengths (A’s) in Figures 3(a) and 3(b) is discussed
later.

o An averaged DFT identification scheme

Here, we propose an averaged DFT method for the special
case that / = nM, where n is an integer greater than 1, and
the input sequence is periodic with period M. [The case of
oversampling (p > 1) is identical for each of the subchannels
(see Section 3).] There is a very special set of circumstances
when the inverted matrix in (13) is Toeplitz and DFTs can
be used. Generally, (13) is not Toeplitz and DFTs are not
appropnate. This method is equivalent to least squares, as
can be seen from the following. Define ¢, by

¢, 0 -0
g8 |00 0 (36)
0 0 - ¢,
Multiplication by ¢ is equivalent to n M-point DFTs
performed on the n groups of M inputs. Note that ¢, is
unitary,
0,87 = 1. 37

The least-squares estimates in the frequency domain are
given for each frequency bin by
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Y 8(k. Dx*(k)
wk) == =
T x(k)x*(k)

i=1

Y 8k, §)
x(k)

S |-

k=0,---,M-1, (38)

where »(k) and x(k) are the M-point DFTs of W', and
\'y, .- Tespectively. 8(k, i) is the M-point DFT of the time
series d, in the ith of the n groups. Equation (38) is really the
average of n uses of the original DFT method, when a
period-M input is recycled to fill / time periods. Then, some
averaging will be introduced, in the optimal least-squares
-ense, into the DFT identification scheme. The method of
:36) and (38). because of (37), is equivalent to an /-point
‘cast-squares time-domain procedure. Of course, an inverse
2FT on the quantities in (38) must be performed to obtain
‘ne desired time-domain parameters, W, . This method
2quires the unnecessary imposition of an integer ratio
«estriction on / and m, which is not required in the more
wneral and straightforward time-domain least-squares
olution (13).

A note on maximum-likelihood detection schemes

“he identified responses can be used in Maximum-
i.ikelihood Sequence Detection (MLSD) [15, 16]. In this
case, the Mean Square Error (MSE) is a more useful estimate
~f performance than (18). It is shown in [17] that (given a
certain input sequence)

VSE = E[E(mT)] = a7y, » (39)
where v,,,is given by

=1 XA/\LIR;II.IXMJ (40)
and " denotes transpose. One also can show (see [17]) that
Osy,=s1 41

thus. the worst (because the desired value is ai) MSE after M
measurements is

worst -

MSE,. =0, (42)

which is exactly the value given by a length-M
pseudorandom sequence. In fact, it is shown in [8] that
choices for x, other than length-A pseudorandom sequences
can yield MSE between 0 and o“ after M data points, while
still maintaining good (low) E[|| W,,, — H,,,I’]. Thus the
length-1f pseudorandom sequence may not be the best
training sequence if MLSD is used. Some data with statistics
equivalent to what is expected in actual use would be the
best choice for MLSD and other similar sampling detection
schemes.

o Signal-to-noise ratio estimation
The SNR for the read-head response can be estimated (when
M < )by
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(= N) | Wall’
P&y

SNR = . (43) h

where || W', |l z/p is the signal power for the binary input to

the pulse response, and £,,,// — N is the noise power.

However, one must ensure that data measured at the read-

head output have NOT BEEN AVERAGED before

digitizing to ensure a meaningful estimate in (43). Also, as

Howell [4] has noted, that distortion in the measuring

devices, particularly the nonlinearities in the CRT sweep rate

if a storage scope is used, can add appreciable noise not

inherent in the actual storage channel. Of course, such

contamination would leave (37) as a measure of the mean-

square distortion in the measuring procedure, rather than

the desired channel noise + media noise + modeling mean-

square errors. Even if measurements are carefully taken, (43)

is usually more indicative of the levels of nonlinear :
mismatch to the model and can therefore be very useful in
evaluating the potential success or failure of advanced
detection schemes.

e Determination of M :
We have previously assumed that the order M (number of P
identified parameters) was overestimated or known a priori. '
However, the best quality estimate for / data points is given

by the so-called “Minimum Description Length” principle of

[18], which jointly estimates M and the corresponding W',

for /-points. The improvement in the general storage-channel

identification problem is negligible if / = 10M. It is

interesting to understand just what happens if M is chosen

too small. Suppose A(kT,) # 0 for k <0, k> M. Then

u(kT,) can be modeled as the sum of white noise and the

distortion caused by the neglected terms in 4. This second

distortion term is just a linear filter acting on the

pseudorandom pattern. When oversampled, the output of

such a filter is the product of its transfer function and the

transform of the oversampled pseudorandom pattern. The

response of the oversampled pseudorandom pattern can

easily be shown to be maximum at multiples of 1/7. thus

explaining why choosing M larger in Figure 2(b) than in

Figure 2(a) caused the “harmonics” to disappear. Of course,

picking M too large as in the DFT methods has a far more

distorting effect on the output because of the lack of noise

averaging. Generally speaking, conservative values for A and

[ are 15 bit periods and / = 10, respectively.

o Summary

In this section. we have introduced the least-squares channel-
identification procedure, compared its performance with

other commonly used procedures, and found the least-

squares method superior in the quality of estimates that it

produces. We now turn to implementation/programming of

this new procedure. 315

J. M. CIOFFI!



1000

= 1000

0 100 200 300

Signal level
g

0 200 400 600

Time (ns)

Pulse responses at 27 Mb/s for (a) thin-film medium and thin-film
head and (b) particulate medium and thin-film head.

3. Efficient implementation of the off-line least-
squares identification procedure

The time-domain least-squares solution is described using a
matrix inverse in (13). This matrix can be large, requiring
large storage and long processing time in an off-line
computer program implementing the inversion. However,
matrix inversion can be avoided to simplify the
determination of W, . This section describes several special
features of the least-squares procedure that can be used to
reduce considerably the computation and storage in an off-
line implementation. Such simplifications could also become
important if the characteristics of each particular storage
device, and possibly at several different radii on each, were
to be computed during the manufacturing process either for
identifying defective devices or for optimization of the
channel-detection circuitry for each particular unit. An
efficient on-line procedure. similar to that of [8]. is suggested
in Appendix B.

o Subchannels
In most cases of practical interest. the oversampling factor p
is greater than one. Then, one writes m7T,= nT + iT, where

J. M. CIOFF1 ‘BM SJ 433

1)

where | denotes the “greatest integer less than.” and i takes
the values O, - - -, p — 1. Equation (5a) is rewritten [(5b) can
be similarly rewritten)

dnT +iT,) = ¥ x,h{(n — K)T + iT,) + u(nT + iT,).  (45)
k

The index / has no effect upon the convolution operation,
and the p phases of d(mT,) per sample period, T = pT,, are
described by

‘d, =T xh,_,—u, i=0,--,p-1, (46)
k

where the 4, are i independent “subchannels.” With minor
algebra, one can reduce the least-squares identification
procedure to p subprocedures that can all be solved
separately. The p solutions can be interspersed to obtain
W, = Wy,,» where N = M/p (we assume that p divides M
or that M is picked slightly larger so that it does). Then, only
one N X N matrix need be inverted (it is the same for all
subchannels), rather than one M X M matrix, a considerable
computational and storage saving. This matrix is the
autocorrelation matrix of the input data alluded to in an
earlier footnote (§). However, much greater savings are also
available.

e Use of fast algorithms

The most efficient solution to the general least-squares
identification problem appears in [2]. The DFT cannot be
used in the general least-squares filtering problem because a
Toeplitz structure must be imposed on (13) for its use. This
solution requires about

<’il;-—l> IN + 45N + pN? 47)

multiplications, divisions, and additions in comparison to
O(N’) for straightforward matrix inversion. [O(x) is a
number that asymptotically rises no faster than in direct
proportion to x.] The term (IN/p) + 4.5N? is the fixed cost
of the equivalent of inverting the matrix R, (fixed because
it is the same for each subchannel); the remaining term

pN? + IN is the additional cost, at N? + IN/p per subchannel,
for computing the equivalent of the product R}, Py, =
"W\, for each of the p subchannels. The storage
requirements are about 6 N + 2/ locations for the algorithm
in [2]. The cost reductions accrue to the shifted nature of
X, . with respect to X, ,_,. or equivalently. that R, can be
rewritten as a product of Toeplitz matrices,

R.\://p =X r\'.//pAIZK.\'.I/[I.I ’ (48)

where X, is defined in (26b). For more details, see {2].
e Choice of the input sequence

Further computational and storage reductions are possible if
the length-/ sequence x,, is chosen beforehand for all storage
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zannels to be identified. A currently popular choice is a 63-
it pseudorandom sequence. When the input data sequence
i~ xnown beforehand, many of the quantities in the Fast
BETF) algorithm of [2] can be precomputed and stored
ence. reducing computation to

AT 4N (49)

inuluplications and additions (no divides) and storage
trandom access) to about

2N+ (50)
locations. Neither these counts nor the counts in (47) and
(49) can be matched by the DFT or other methods of
comparable estimate quality for reasonable N (20 or less).
Asymptotically, because of the N log, N computation in FFT
implementations of the DFT, these FFT methods may have
an advantage in terms of computational requirements, but N
is never chosen that large in practice.

* Ixperimental results
'o demonstrate the robustness of the new least-squares
identification method. several channel pulse shapes are
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(a) Pulse response of optical medium at | Mb/s (dc removed) and
(b) Fourier transform of pulse response.

plotted in Figures 3(a) and 3(b), while the corresponding
steps are plotted in Figures 4(a) and 4(b). These responses
were obtained using the new procedure for a 63-bit
pseudorandom sequence on digitized measurements of a
thin-film disk/thin-film head channel [Figures 3(a) and 4(a)].
and on a particulate disk/thin-film head channel [Figures
3(b) and 4(b)]. The measurements were taken at several
different diameters on each device. The diameters for Figures
3(a) and 4(a) were 105, 120, 135, 150, and 165 mm. while
those for 3(b) and 4(b) were 103, 136. and 172 mm. Figures
5(a) and 5(b) show the pulse response and its spectrum,
respectively, for an optical storage device. In Figures 6(a)
and 6(b). we have plotted pulse and step responses for a
magnetoresistive head in a magnetic-tape system: this time a
62-bit pattern corresponding to NRZI coding of two cycles
of a 31-bit pseudorandom data pattern was used [10]. In
Figure 7. the delay for the magnetoresistive head is plotted
to illustrate the ability of the new least-squares identification
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procedure to capture that quantity as well. The dc level was
removed from the desired signal for the optical device to
facilitate inspection of the plots: the true optical channel is a
baseband channel. The plots in Figures 3. 4, and 5
demonstrate the robust utility of the least-squares procedure.

4. Conclusions

In this paper, we have introduced a new least-squares
storage-channel identification procedure. We have analyzed
the procedure thoroughly and demonstrated via experiment
its utility and its improvements over existing methods.
Several methods for reducing the implementational cost of
the procedure were also discussed. The procedure can
become a uniform standard for identifying and comparing
the channel characteristics of various storage media.
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Appendix A: Arbitrary sampling rates
In this appendix. the sampling interva! T, is permitted to
take the values

g
n:;t (A1)

where g and p are relatively prime positive integers such that
g < p. Any arbitrary ratio of sampling to data rates can be as
closely approximated as desired by the relation in (A1), as
long as it is known, which implies some synchronization
between digitizer and write ciock. We also define a smaller
time interval = by

T, T

Ty (A2)
or

gpr = pT, = qT. (A3)

The samples at rate T, can be organized into successive
disjoint sets of p members and of duration pT, = pgr. Then
any sampling instant m7T, can be rewritten as

mT, = npgr + igr = (np + )T,
i=0,--,p=1  (Ad)
The equivalent of (37) becomes

dlnpgr + igr] = ¥ h(npgr — kpr + igr)x,
. k

+ u(npqr + iqr). (AS)

Note that, if p and g are relatively prime. as was assumed
earlier. then /1 will be specified at intervals of 7 in (A5). or
equivalently at all time instants that are integer multiples of
7. At sample / within each group of p samples, only the
values h(kpr + igt), where k is any integer, contribute to
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d(npgt + ig7). Thus. d has p phases per group of p samples
that can be independently modeled as

'd,m=z,\k'/zw_k-"unp i=0,...,p—1, (A6)
where, again,

‘h,= h(nT + iT,) (A7)
and

'd, = d(nT, + iT,); ‘u, = w(nT + iT,) (A8)

fori=0. .., p— 1. Each of the subchannels can be
identified independently and the resultant responses overlaid
(with delays of 7 with respect to one another). The overall
response can then be used directly or decimated to pr (the
data rate). g7 (the sampling rate), or any other integer divisor
of the rate 1/7. An important point to note is that there is a
loss in resolution of a factor of approximately g for any fixed
data length / with respect to the case where 7, = T/p. This
iast fact makes the alternative of resampling the data or
phase-locking the ADC used to acquire the data (set g = 1)
very attractive from a performance viewpoint.

Appendix B: On-line efficiency
It is possible to implement the least-squares storage-channel
identification method in a sample-recursive manner. The
procedure becomes a special case of the one considered
previously by this author for echo cancelers in data
transmission in [8]. The storage identification procedure
could be performed on line, for example, to initialize, and
possibly update (see [15, 16]. a Maximum-Likelihood
Sequence Detection Circuit.

A brief summary of the procedure is, where k is the
recursive time index,

Won= Wy + ‘-"/';.k “ Crrse s (BI)
and where
f’\‘u =dk) - Wk X - (B2)

C,,. isan M X 1 function of the input (presumably known
or “training”) data sequence and is given by

k
Cyu = ( 2 XM.I(X,'MJ() l Xars s

m=0

(B3)

and is presumably precomputed and stored prior to use. For
more details on this procedure, and for an efficient recursive
computation of C,,, when there is no prespecified training
sequence. see [2. 8. 17, 19]. A final note is that. if the signal
written just prior to the start of training is an erasure. then
the prewindowed exact-initialization method of [8. 17]
applies. rendering extremely low computational
requirements: (B!) and (B3) simplify dramatically in that
case.
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Appendix C: Methods for nonlinear identification
The study ct nonlinear identification of a data channel is an
entire subject area in itself. For instance, one can refer to
[20] and [21] for methods based on simplification of
Volterra series under the constraints of a binary input. Here,
a simple method suffices to verify the presence/absence of
appreciable nonlineanties and to roughly quantify their
magnitudes relative to the linear component of the channel
response.

SNR measurement

Estimation of the SNR was discussed earlier. The minimized
sum of squared errors, £,,,, contains a component due to
modeling error. If M is sufficiently large. most of this
modeling error is due to nonlinearities. The size of the SNR
is indicative of the level of nonlinearities. Generally
speaking. SNRs well below those expected can be indicative
of large modeling errors due to nonlinearities. Thus. one can
use the size of the SNR as an indicator of nonlinearities.
given that he has some prior experience with the particular
media and head and knows what to expect in terms of a
nominal SNR value. This type of procedure requires a very
accurate phase-lock to the underlying data rate to ensure
that nonlinearities are not artificially inserted by sampling-
phase errors in the measurement process.
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lEcTure 4 ¢ 4.2

RECORDING CHANNEL (REVIEW)
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APPLICATIONS OF A PEAK DETECTION CHANNEL MODEL

P. H. Siegel

Abstract - A computer model of a peak detecting magnetic recording
channel has been implemented and used for channel design and perform-
ance evaluation. The model predicts raw error rate, ontrack and off-
track, as a function of linear density, run-length-limited (RLL) modu-
lation code, write precompensation rules, and tapped-delay-line (TDL)
equalizer. It assumes noise additivity and validity of linear superposi-
tion, and it bases calculations on a measured disk/electronics noise
spectrim and digitized isolated transition readback signals from the data
track and adjacent tracks. Details of the model are described, and
illustrative applications to RLL (d,k) code selection and pulse slimming
equalizer design for a specific channel are discussed.

INTRODUCTION

There are a number of signal processing options available which
have the potential to increase areal density and reliability of peak de-
tecting magnetic recording channels. Among these are modulation
coding, write precompensation, and pulse slimming equalization. Assum-
ing additivity of disk/electronics noise and adjacent track noise, and
validity of linear superposition in the readback process, we have devel-
oped a model of a peak detection channel which predicts raw error rate
as a function of linear density and specified signal processing. The basic
methodology employed is similar to that suggested by Katz and Camp-
bell [1].

.Novel features of the model, in addition to the implementation
of a general f f the Katz-C bell

exible write precompensation rules, and the incorporation of
a TDL equalizer for general read equalization capability.

We discuss below some of the technical aspects of the model.
We then address two applications to a specific disk channel: a compari-
son of RLL code performance, and the selection of a minimum noise
pulse slimming equalizer.

INTERSYMBOL INTERFERENCE AND CODE PATTERNS

Intersymbol interference (ISI) affects the peak position and peak
amplitude of the pulse resulting from a given transition. We compute an
odd ISI length L, where L is the number of bits needed to account for
pulse interactions. We calculate a cubic spline fit of a digitized read-
back pulse from the data track, as shown in Fig. 1. Then, using linear
superposition, we simulate the readback signal corresponding to each
(d.k) pattern of length L having a central transition. The differentiated
signal is also calculated with the spline coefficients. The position of the
central peak is located by use of a Newton-Raphson iterative search for
a zero-crossing in the differentiated waveform, and the central peak
amplitude is then found. The model next computes the values of the
differentiated waveform at the edges of the detection window corre-
sponding to the central transition. Two types of clocking are consid-
ered: an absolute clock and a mean-centered clock. The window for the
mean-centered clock is centered around the average peak position
described below, and represents an approximation to the window found
in a channel with a PLL (phase locked loop). The waveform derivatives
at the detection window edges are required for the bit shift error rate
prediction. The average peak position is found by weighting the calcu-
lated peak positions for all patterns according to the Shannon pattern
probabilities, and summing. The pattern probabilities indicate the
frequency of occurrence of each pattern in encoded random data for an
ideal (d,k) code. Since run-lengths are uncorrelated in an ideal code,
the pattern probabilities are found by taking suitable products of run-
length probabilities which we compute using techniques from informa-
tion theory.

Manuscript received June 16, 1982.
The author is with IBM Research Laboratory, San Jose,
95193, U.S.A.

California

Write precompensation rules can be specified in order to reduce
the effects of intersymbol interference. The rules are pattern dependent
adjustments of the recorded transition positions: a transition is advanced

or delayed by a specified amount according to the code pattern context
in which it occurs.

40 1%
1 < 020 n-N10. 052
E 30l _§ 0"~ N0, 0,2i
= 3015
20 z
= s § 0.10
E 10 o
| § 0.05}
0 o
P . 0 " .
0 100 200 300 400 500 0 5 10 15 20
Time (ns) Frequency (MHz)
Fig. 1. Digitized isolated transition Fig. 2. Digitized disk/electronics

readback signal. noise power spectrum.

NOISE STATISTICS

The error rate calculation also requires a probability density
function for noise and differentiated noise. For the disk/electronics
noise, we digitize a noise power spectrum measured on a spectrum
analyzer, as shown in Fig. 2. Normal probability plots of noise sample
values measured from a dc-erased disk indicate that a Gaussian distribu-
tion fits the data out to at least three standard deviations. We take a
Gaussian distribution for the disk/electronics noise, with mean zero and
variance given by the numerical integral of the measured spectrum. A
Gaussian distribution for the noise leads to simplifications in dealing
with the differentiated noise as well. The derivative, n’, of a Gaussian
noise process n is again Gaussian [4], and the power spectrum T(f) of
the differentiated noise is related to that of the original noise spectrum
S(f) by the expression:

T = @N° S¢. )

From the digitized S(f), we then compute the variance of the differenti-
ated noise as the numerical integral of T(f). We model the distribution
of n’ as Gaussian with mean zero and with this variance.

40 1 > 30t
3 2
E 30 3 20t Far
2 20 N“Z'B‘mf( Far track Z Convolved
= BN /34y 3 near and far
g 10 L/ { 2 w0t Near /
< | TN {& | /

0 0 /

0 200 400 600 800 1000 -0.2 0 0.2
Time (ns) Normalized Amplitude

Fig. 3. Digitized adjacent track
readback pulses, 4u offtrack.

Fig. 4. Sample histograms from
simulated adjacent track waveforms.

For adjacent track interference (cross-talk), we assume that
side-reading of the nearest adjacent track on each side of the data track
dominates the cross-talk signal. The readback signal from an isolated
transition written on the adjacent track is digitized for the head position
of interest. Figure 3 shows the readback pulses from the near and far
adjacent tracks when the head is 4u offtrack. Using a cubic spline fit
and linear superposition, the readback waveform from several hundred
bits of a pseudorandom (d,k) coded sequence is simulated and sampled
up to 20 times per clock period. A histogram is made from the sample
set ‘as an estimate of the distribution density of samples from the adja-
cent track. If we assume no correlation between signals from different
tracks, the total cross-talk density is estimated by taking the discrete

0018-9464/82/1100-1250800.75©1982 IEEE



convolution of the histogram densities from the two tracks. Histograms
from a 4p head offset at a linear density of 18 kbpi with the (2,7) code
are shown in Fig. 4, along with their convolution. The analogous calcu-
lation is then carried out for the samples of the waveform derivative.
The distribution for combined disk/electronics and cross-talk noise can
then be computed by discrete convolution.

ERROR RATE CALCULATION

Given that the signal has a pulse peak in the detection window
W, the probability of noise-induced bit shift error. is the probability that
the differentiated signal plus differentiated noise waveform will fail to
have a zero crossing within W:

Pr(s'(t) + n'(1) < 0ors’(t) + n'(1) >0, fortin W) . (2)

Solving for this level-crossing probability exactly is a difficult mathemat-
ical problem, even when n is a Gaussian process. We use instead a
convenient approximation, suggested by A. Milewski, which is a reason-
ably tight upper bound in the case of bandlimited noise. The probability
is bounded above by the sum of the probabilities of the two events, for
which simple upper bounds exist. For the first event, let 7, be the time
where the signal derivative is positive and of largest magnitude. Then,

Pr(s'(t) + n'(1) < 0, fortin W) < Pr(n'(1;) < =5'(¢}) ). (3)

Similarly, if 1, is the time where the signal derivative is negative and of
largest absolute value,

Pr(s'(t) + n'(1) > 0, fortin W) € Pr(n'(1) > =5'(15) ). (4)

In practice, r; and 7, have been found to lie at the detection window
edges for the channels and densities studied. So, the approximations are
evaluated at those points, using the waveform derivatives at the window
edges and the noise distributions described above. We note that this
upper bound has proven to be tighter than the approximation suggested
in [1] which extrapolates the waveform derivatives at the window edges
from the zero-crossing 1, along a line of slope s"(1y) . See Fig. 5.

The probability of missing bit error depends on the clip level C,
which represents the minimum amplitude necessary to detect a peak in
the readback signal. The probability of interest is

Pr( |s() + n()| < C, fortinW). (5)

This represents a level-crossing probability which we approximate with
the simple upper bound

Pr( |s(tg) + n(ip) | < C). (6)

This probability is evaluated with the computed signal peak amplitude
s(1y) and the noise distributions. See Fig. 6.

These error probability bounds may be used for approximate
worst case pattern analysis. A weighted average using Shannon pattern
probabilities provides an estimate of the overall error rate for encoded
random data. :

X [ /s'(t)
11 S
b \ l A
\\ J 2

P, < Prin’(t;) <-4,) °
+ Prin(ty) = 4,) p

< Prn{tg) <- A)

e

Fig. 6. Missing bit error rate
approximation.

Fig. 5. Peak shift error rate
approximation.

APPLICATIONS

We now discuss two applications of the model to a disk channel
with a thin film head and particulate medium. Measurements were made
at the inner diameter. Track pitch was 30pu.
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RLL code comparison

We predicted the performance of (1,8) and (2,7) codes at three
head positions - ontrack, 2p offtrack and 4u offtrack. The clip level
was assumed to be 40% of the base-to-peak amplitude of the data track
pulse. No write precompensation or pulse slimming equalization was
used. The resulting error rate/linear density tradeoff curves are shown
in Figs. 7 and 8. For the (1,8) code, peak shift errors dominated at
densities less than 20 kbpi, while missing bits were the major error
mechanism at higher densities. For the (2,7) code, however, peak shift
errors were the primary determinant of error rate at all densities consid-
ered. The model indicates that at densities less than 20 kbpi, the (1,8)
code has lower average error rates than the (2,7) code. At higher
densities, the loss of signal amplitude degrades the (1,8) performance.
In the range of error rates from 1E-12 to 1E-8, the (1,8) code provides
a density advantage of slightly more than 5%. This result is consistent
with the conclusions reached by Fisher and Newman in [5].

Table I shows a list of worst case patterns with L = 15 for the
density 18 kbpi, as calculated by the model, along with peak shift, peak
amplitude, and probability of error for ontrack operation. In general,
the worst case patterns highlight features of the digitized pulses and can
be used to assess the impact of peculiarities of pulse shape on error rate.
Here, patterns with a minimum length run followed by a long run clearly §
affect the performance most severely, reflecting the pulse asymmetry.

=

T
//“74\’{ 4u offtrack
/'/ ———+ 2u offtrack

//4\—Ontrack
-12 7

Log Error Probability
|
o
N

-16
14 16 18 20 22 24

- Linear Density (kbpi)

Fig. 7. Simulated performance of (1,8) code.
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= A

0
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o

J

-16 : -

14 16 18 20 22 24

Linear Density (kbpi)

Fig. 8. Simulated performance of (2,7) code.
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Peakshift Relative  Probability Pattern
(ns) Amplitude of Error
7.1 .85 4.13E-5 100001010000101
7.0 .84 3.14E-5 010001010000101
7.1 .86 2.94E-5 100001010000100
7.2 .83 2.59E-5 000101010000101
7.0 .86 2.23E-5 010001010000100
(1,8) code, 25.1 ns window
5.6 .90 1.73E-3 010010010000001
. 53 .89 8.83E-4 000010010000001
5.5 91 7.40E-4 100010010000001
5.6 .92 5.77E-4 010010010000010
52 87 4.22E-4 010010010000000

(2,7) code, 18.9 ns window

TABLE I: Worst case patterns at 18 kbpi.

Pulse slimming equalizer evaluation

Barbosa [6] has reported on a design method for minimum noise
pulse slimming equalizers. For a given channel and linear density, he
constructs a one-parameter family of TDL equalizers, each of which
maximizes the degree of slimming subject to a noise penalty constraint.
At densities from 14 to 24 kbpi, we used the model to select the noise
penalty for which the corresponding equalizer gives the smallest average
ontrack error rate. The (2,7) code was used, and no cross-talk was
considered. The ontrack and offtrack performance of the selected
equalizer was then calculated, with cross-talk included. The results for
the equalized channel with (2,7) code are shown in Fig. 9.

The conclusion based on the ontrack performance is that these
equalizers can increase linear density between 10% and 20% in the
range of ontrack error rates from 1E-12 to 1E-8. The equalized channel
is not sensitive to small offtrack excursions, but the offtrack perform-
ance deteriorates as offtrack distance increases from 2p to 4u because
of the enhancement of the cross-talk signal by the equalizer.

The worst case patterns were found to reflect the positions of
the sidelobes of the equalized pulse. For example, at 20 kbpi, with a
detection window of 17.05 ns, and with the equalized pulse shown in
Fig. 10, the worst case patterns had runs of 4 zeros preceding and
following the central transition, thatis, 10000100001.

O T T T T T T T i ! _I

Unequalized

>
= =5
©
S Equalized
o -10% 4y offtrack -
§ "~ Equalized 2u offtrack 1
w45 i, Equalized ontrack ]
(@]
(@)
- B
__20 l I ! L 1 — L ] ! L
14 16 18 20 22 24

Linear Density (kbpi)

Fig. 9. Simulated performance of TDL equalizer with (2,7) code.

1.0 -

o
Sos
= i .
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<
T 04}
'T-; b
E 0.2
o
4

0

0 100 200 300 400 500
Time (ns)

Fig. 10. Comparison of unequalized
pulse and 20 kbpi equalizer pulse.

CONCLUSIONS

We have described a computer model which predicts raw error
rates for a peak detecting magnetic recording channel. Offtrack per-
formance is predicted by inclusion of adjacent track interference effects.
Calculations are based on measured channel characteristics: step respon-
ses from the data and adjacent tracks, and a disk/electronics noise
spectrum. The model also permits the evaluation of several signal
processing options, individually and in combination: RLL code, write
precompensation, and pulse slimming equalization. In addition to error
rates, the model provides useful information about dominant error
mechanisms and error sources both for worst case code patterns and for
random coded data. Results of (d,k) code comparison and TDL equaliz-
er evaluation for a specific disk channel were discussed.
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Peak Shift Caused by Gaussian Noise in Digital
Magnetic Recording
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SUMMARY

The peak shift generated in digital magnetic
recording processes is one of the most important
obstacles to high-density recording. The princi-
pal causes of peak shifts are waveform interfer-
ence effects and noise, Of these causes, only tke
poise components have been subjected to empiri-
cal treatment. In this paper we developed a prob-
ebilistic analysis of the peak shift due to noise.
Geperations of the peak shift are treated as prob-
abilistic distributions and the corresponding dis-
tribution functions and coatribution to the phase
margin are theoretically derived. The results
show that when Gaussian noise is superimposed
oa read-out signals from the bead, generation of
peak shifts due to the noise also exhibits a Gaus-
sian distribution. With the variance of the dis-
tribution as o2, the maximum peak shift is 55
~ 7 o and the loss of phase margin is 11 ~ 14 ¢,
The theory is applied to the MFM recording sys-
tem and the peak shifts of 2F, 1F and |110| pat~
tercs due to the white noise are obtained. The
ratio of these peak shifts takes an almost con-
stact value of 1:1.3:1.2 In the region where the
resolving power is 50 to 70%. It is found that
the theoretical prediction and the experimental
data agree very well for |110| patterns,

1, h&odmtion

Improvement of recording deasity is an im-
portant problem in magnetic devices such as mag-
petic disks and drums. Ogne of difficulties en-
countered in high-density recording systems is
the generation of peak shifts. Information writ-
ten on disks and drums as magnpetic reversal pat-
teras is read out at magnetic heads and regea-
erated by detecting the peaks of read-out wave-
forms. When the recording density on disks aad
drums s increased, peak shifts in the read-out
waveforms become larger due to interbit wavefcr=
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interference, resulting in degrasdaticn of the SN
ratio., If peak ski%s become excessively large,
read-out errors o¢ceur and it is no longer possible
to derive recorded informations from the read-
oul waveforms.

Principel causes of peak shifts are waveiorm
interference and waveform jitter due to noise,
A number of theoretical and experimental studies
bave beea conducted on the waveform icterfereace
effects [1-3] and some efforts to reduce peak
skifts have been tested using circ it techricgues,
such as wavefor= equalization, that make nse cf
waveform characteristics [4, 5]. On the other
band, only empirica! treatments have been doae
on peak shifts caused by noise aad no specific
quantitative analysis has beea conducted, In
present-day magnetic recording devices, SN
ratios are steadily decreasing because of tte re-
duction of read-out valtages in the head as accor~-
panied with increased recording deasities ard be-
cause of the increase in noise bandwidth due to
bigher recording and regenerating freguencies,
As a result, the effect of the noise bas locreased
and methods must be developed for quantitative
analysis of peak shifts caused by the noise. Fur-
thermore, 2 design procedure for recording and
regeperating systems is peeded by which the over-
all peak shifts caused by both waveform interier-
ence and noise effects may be minimized,

One of the characteristics of the peak shift
caused by the noise is its randomness. This is
because the noise generation is also random.
Beace, for quantitative treatment of the peak
shifts caused by noise it is necessary to introduce
2 probabilistic approach, Although Mzlirsoa [6] .
2nd Kobayashi [7] analyzed poise in NRZ record-
ing systems in a probabilistic maaner, they have
pot considered peak shifts at all,

In this paper, a method previously proposed by
the authors [5] is exteaded to the probabilistic



analysis of peak shifts caused by noise, and the
probability distribution of peak shifts and their
coatribution to the phase margin are quantitatively
derived. The theory is applied to the case of
MM recording systems, and the amounts of
peak shifts caused by the noise are computed for
several practical patterns, Finally, experimental
results are compared with theoretical predictions.

2. Peak Shifts Caused by Noise
2.1 Noise

In magnetic disks and drums, information writ-
ten on the recording medium as magnetization re=-
versal patterns is read out at the magnetic head
and immediately amplified by a preamplifier
located near the head., The amplified signal is
then sent to a peak detector at the later stage of
the sygtem. Principal causes of noise are (see
Fig. 1: :

1. Preamplifier noise
2. Head impedance noise

3. Medium noise

The first of these causes arises from semi-
conductor noise geanerated In the preamplifier and
consists of thermal noise, shot noise and 1/f
noise, At the 1 to 10 MHz used in magnetic disks
and drums, 1/f noise [s negligible, arc hence
thermal noise and shot noise are predominant,
The spectrum of the latter two is almost Identical
to that of white noise, The bead impecance noise
is a kind of thermal noise caused by tke composite
impedance of the bead and head termication circuit
as seen from the preamplifier, The spectrum
distribution is concentrated near the resonance
frequency of the head [9). The redium noise is
caused by noouniform dispersion of magnetic
particles in the recording medium (10, 11), R is
read out with the information signal by the head,

These kinds of noise are generated randomly
and hence the poise distribution can be treated as
Gaussian,

Let us expand the goise voltage Vp(t) into Four-
jerseriesat -T stsT

Valt)= f(a‘sincq.t+ 4 cos w,t) ()
[~}
where
v, =2zf,=zn/T )

and ap and bp are probability variables that inde-
pendently obey Ganssian distributions, Distribu-
tion functions of ap and bp are identical and their
mean values are zero.

el = E; }
&=I5=0 @
The power spectral density of this noise (de=-
fined as the mean square poise voltage per unit
bandwidth at frequeacy of fp) is given by
| ——— — ——
(q2+42) q At
Ni=Z == @
af 4af af

where Af=1/2T,

2.2 Peak shift caused by noise—sinusoidal
waves

Let us comider what kind of peak shifts will be
produced when the noise described above (s super-
posed on the regenerated signals, We first ex-
amine the most fundamental case, in which the
read-out waveforms are described in terms of
sinusoidal waves., The total regeneraied signal
valtage V(1) is

V(£)==-%V. cos Wyt + 'z‘(d.sin Wt + dacos wyt) (5)
where Vo and wg are the amplitude and angular
frequency of the regenerated signal, respectively.

We shall now obtain the shift of the peak, origi-
pally located at t = 0, caused by the noise, Fir"
V(t) is differeatiated and expanded around t = 0,

assuming the amourt of the peak shift is srzall,
The result is

(6)

N

am]

The mean square value of o2 of At Is given by

2
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where N(w) = N(fp).
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Fig. 1. Noise spectrum in magnetic recording file,
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Fig. 2. Read circuit,

Next, let us examine the distribution function
of the peak shift At. Notice that ag in (7) has a
Gaussian distribution. In general, when variables
xi (=1, ..., N) bave independeat Gaussian dis-
tributicns the variable x given by

(9)

where the ¢ are constants, also bas a Gaussian
distribution and its variance is given by

L

where ]2 is the variance of x; [12]. Hence, if
an bas a Gaussian distribution, so does At. Tke
variance of At is of course givea by (8). The dis~-
tribution function p(At) is now

(3¢)?
exp 2 o?
where o2 is givea by (8).

2.3 Peak shift caused by the noise—gezeral
case

o= 7Y c?q?

1

(10)

p(at)=

i (11)

let us now derive a2 method for computicg peak
shifts in geceral cases, The read circuit of a

digital magnetic recordirg device generaily con-
sists of an amplifier, low-pass {filter, differectia-
tion circuit, and zero—crussing detector as sktown
in Fig. 2. Sizce operation of these circuits is not
ideal, the effects of their frequency characteris-
tics on the peak shift cannot be peglected,

For sirmplicity, we represent the frequency
characteristics of the eatire read circuit by that
of a low=-pass filter, When the transfer functica
of the low-pass filter is F(s), the transfer func-
tion H(s) of the read circuit, which cantaiprs a dif-
ferentiation circuit, is given by

U(s)=s-F(s) (12)
as is seen from Fig. 2. If an RC approximate dif
ferentiation circuit shown in Fig. 3 is used in plac
of a true differentiation circuit, the tracsisr func-
tion H(s) becomes

/I(:)=—:T-F(:)= e F(s) (13
]va— l#-a';

where wd = 1/RC. Hence, if another first-order
low-pass filter is inserted, the transier function
can be reduced to that of (12).

Consider pow the case in which a read-out sig-
nal f(t) is indicest at the circuit, Since the total
input signal includirg the noise is
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Fig. 3. Apprcximate dif-
ferentiation circuit.

Y(t)=f(t)+ T (o sinut+ beoswt) (14)

the output Vp(t) of the differentiation circuit is
Sird _
Volt)=h(t)+ L ar|FUw,)]

X{a cos(u t+0,)=4sin(ot+6,)] (15)

where h(t) is the output signal of the differentiation
circuit for the read-out signal f(t) and is given by

ZA(t))=8(s)-2(f(¢)) (16)

using the transfer furnction H(s). @p is the phase
of F(jwp).

Let the zero-crossing point of h(t) be tp and
the slope of h(t) near tg be Go, l.e.,

d
B a— ¢
G, u"() - a7

Then the zero-crossing point of the output VAt)
is given by

1§ :
t=t+— | w-|FUQ)]
G° =l
x{a, cos (W tg+0,) =4, sin(w ¢ +0a)]} (18)
The first term to represents the peak shift caused
by the waveform interference and the phase delay
in the circuit, whereas the second term corre-
sponds to that caused by the noise. Hence, the

mean square value of the peak shift caused by the
poise Is

=f'l.7' .;_z.j.’ F |FUW) | N w)dw (19)
or, using (12), Is givea by

oz=z%.?l;f|11()‘@)}’ N (w)dw (20)
4]

where the term

=110 Vw)do

Tepresents the ncise power contained in the output

of the differeatiation circuit. Therefore, the peak
shift caused by the noise can be described in terms
of the noise power in the output and the slope at the
Zero-crossing point.

3. Peak Shifts of Various Patterns in MFM
Recording Systems Due to Noise

In conventional digital magnetic recording de-
vices, the recording and read-out of informaticn
are performed using PM, FM or MFM recording
processes [n which self-locking can be incorpor-
ated. In most recent large-capacity recording de-
vices, the MF)M process is employed. In this sec-
tion, the effect of waveform interference on the
peak shift caused by noise is investigated, To this
end, peak shifts caused by white noise are calcu-
lated and compared for 2F, 1F and {110} patterns
(Fig. 4.

3.1 2F pattern

Io the MF)M recording processes, the 2F pat-
terns have the highest magnetization reversal fre-
Quency. Ordinarily, the recording density in the
MTF ) process (s such that the resclution is 60 to
70%, within which range the read-out signals of the
2F patterans are almost sinusoidal and the contri-
bution of harmonics is negligible. Heace, the
read-out sigral waveform fa(t) is

jz (t)=-12-}/z’cosw°t (.

where Vo F is the peak-to-peak amplitude, Here
wQ (= 27{g is the recordirg and read-out angular
frequency and [s related to the bit cell tirre T via

w,=x/T (22)
Let the power spectrum of the white poise be
N(w)=a? (23

We assume that the low-pass filter Is an Ideal with
the characteristics

. 1 s/
Fljw)= { . s (29
0 r>/f
Then the peak shift is computed from (19).
VY2
a =_£_21_ 25)
S 2 Vv (
If the noise power is written as Nrms®
M=% Ce)
then o2F
f N

Oop= e o —
¥ V32 2F
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Notice that the amount of the peak shil is pro-
portional to £c3/2, as shown In (25). This is be-
cause the higher frequency content of the noise
contributes more to the peak shift, Hence, intke
read-out of magnetic recording systerxs the im-
portance of elimination of high-frequeacy noise by
the low-pass filter is more than just for improve-
ment of the SN ratlo.

3.2 1F patterns

The 1F patterns have the lowest magnetization
reversal frequency in MFM rccording processes.,
As seen from Fig. 4 (b), the read-out signals
contain the 3F barmonics., letting the amplitude
of the read-out signal be V1 and the ratio of the
3F components be 5, we can write the read-ouxt
waveforms of 1F patterns as

f;p(‘)=7_!,:‘{;{(l°ﬁ)cos%w,l+Icos%w°1} (29)

where £ Is uasuzlly 0.1 to 0,2. The amount of
peak shifts of 1F patterns caused by the white
pnoise can be obtained in a manner similar to the
case of 2F patterns and is given by

. 4 Veme
F=F2 2 (1+83) by

The peak shift of 1F patterns depends oo ViF
as well as 8. This is because the amourt of shift
is not a function of the amplitude but of the sharp-
ness of the peak. Hence, the pezk shift caused by
the noise is less likely to occur for the case with
larger resolving power and 8.

Next, the magnitudes of peak shifts of 1F and
2F patterns will be compared. If the noises are
identical in both cases, the ratio of o1F and o2 F
is obtained from (27) and (29) as

o AR
',',';= 1+87 (30)

where R is the resolving power given by
R= Ve V5 (31

Let an isolated read-out waveform be
e(t)=A- (22)

a4 3

where A and 2 are constants for expressing wave-
forms. If we assume that the read-out sigral
waveforms can be expressed in terms of a super-
position of isclated waveforms, £ ls given by

1-1-R (33)
2,
2




(see the Appendix). Hence, (30) becomes
%p 4R
G.p 5-4V/1-F

Figure § shows o1 F/o2F versus R, From the
figure, it is clear that 1F patterns are approxi-
mately 30% more likely to be affected by noise
30%.

3.3 {110} patterns

(34)

In MFM recording systems the maximum peak
shift caused by waveform interference occurs for
"110110'" patterns, The read-out waveforms of
these (110} patterns can be represented by using
(4/3F and (8/J F components as

/,,,(l)--é- "(smgu,t r:m%w t) (39)

where V110 is the amplitude of (4/3)F components
and 7 {s the amplitude ratio of (8/3)F to (4/3F

" components, Peaks of these {110} patterns are
located at

(38)

«

T (1-Jl+3273)

{= — cos
87

and the amount of peak shifts AT1310 caused by
waveform interference is

3 1=/1-3272
ATm-—T{l--é-;cos ( T ) (3D

When white noise s superimposed on these {110}
patterns, the amount of peak shift caused by the
poise is

. 3J§f _ Nrms (38
TR AT, )
(1+32r2 )(.s+~/1+3zr’ )

A(T)= (39)

1+v1+3277)

As In the case of 1F patterns, we consider the
ratio of 0110 to o2F. I we assume that (32)
represents the isalated read-out waveform, we
obtain (see the Appeadix)

/3
= (’ . 1"’?) (40)
R
Ko _ _1
Vo V3T (41)

Hence, if the poise is identical In both cases, we
bhave

110
—
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Fig. 5. Relative strengths of the peak shifts
csused by noise as a function of resolution.

Figure 5 shows 0110/02F versus R, From the
figure, we observe that {110} patterns are almost
20% more likely to be affected by noise.

The electromagnetic conversion characteristics
of magnetic heads are often expressed in terms of
the resolving power and the output voltage of 2F
patterns, Actual peak shifts caused by tke noise
are larger for 1F and {110} patterns than for 2F
patterns, For resolving power of 30 to 70%, the
amount of shifts exhibits a constant ratio of1:1.3:
:1.2. Therefore, the magnitude of phase shifts
due to noise can be predicted from the output volt-
age, and hence from the SN ratio, of 2F pazerms.

4. Phase Margin ard Error Rate

The demodulation process In usual digital mag-
petic recording systems coonsists of the fallowing
steps, First, using a phase-lock loop, clock sig-
pals are generated from the data pulse train
emerging from the peak detector. From tkese
clock signals, window pulses are then created,
Discrimination of 1 and 0 is done by detecting
whether a particular data pulse is within the win~
dow pulse, The phase margin is defined as the dif-
ference between the maximum peak shift actually
generated and the width of the window pulse. This
qQuantity Is viewed as a figure of reliability for mag-
petic recording devices, Whean the phase margin
is sufficiently large, correct demodulation {s pos-
sible even if new peak shifts are generated due to
small defects on the recording medium or to track-
ing errors, as long as their magnitudes fall within
the phase margir,

As shown in Fig. 6, measurements of the phase
margin are performed by shifiing the window pulse
with respect to the data pulse and by detecticg the
error rate. The phase margin is the width of the
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Principle of the measurement of phase

margin,

window pulse shift for which the error rate Is be-
low a certain value,

Let us derive the probability P(AT) at which a
data pulse creates a peak shift larger than AT
due to noise, The result is

- a7
P(AT )= f‘r pldt)ddt=ceric (—-‘—) (43)

where eric(x) is the error function. Figure 7
shows P(AT) versus AT/c. Sioce the error rate
in m.getic recording devices sbould be 10-8

~ 10-i<, we see that a maximum peak shift of
§.5~ 70 Is created. The phase margin is re-
duced by 11 ~ 14c due to the noise.

Iz general, when a peak shift of ATk (k =1,
esey N) already exists due to waveform interfer-
ence, the probability of generating peak shifts
largerthan AT is

83

N
B(AT)= L w, P(4T-4T)

kwml

(49

where wk is the ratio of pulses which cause the
peak shift of A Tk.

§. Comparisca with Experimrent

In the experiment two kinds of magnetic bezds
and disks, A and B, were used to record and read
out and the variation of the error rate was mea-
sured with respect to the location of the window
pulse. The recording process was MFM and the
recording and read-out frequency was 6.45 MEz.
The cutoff frequeacy of the low=-pass filter in the
read=-out circuit was 11,7 MHz, Tbhe read output
of the head (V2F), resolving power and noise were
measured and are listed in Table 1. Although the
head output of A s larger, so is the poise in A,
The SN ratio of B is better by abcut 1 dB. Kezce,



Tablel Recording and read-out characteristics

of Aand B

A B

Head output 132mV— | LO8mY,,
Resolving power| 61% 67%

Noise

3L28vm 22.7Jvmo

0

A7/ ==

10°

107!
10-2 b
107!
_ 107t

[
S0

L0t
1077
10-! -
107
lo-lo 9

10"

Flg. 7. Probability of peak shift larger than

AT caused by noise,

it is expected that the resolving power and SN
ratio are better and the peak shift smaller in B.

Figure 8 shows measured results of the error
rate with respect to the window pulse location
when { 110} patterns are recorded and read out.
As expected, the peak shift of A is much larger
and the loss of phase margin is greater.

Values in Table 2 were calculated from the

measured values in Table 1. In Table 2, the peak
shift caused by waveform interference and the peak
jitter due to noise are listed. Computed results
of the error rate are solid lines in Fig. 8. Their
agreement with experimeatal data is excelleat.
In the present experiment, the loss of phase mar-
gin due to noise was 30 to 40% of the window pulse
width and we can see that the effect of noise on the
peak shift Is quite [mporiant,

6. Conclusicn

The peak shift caused by noise was analyzed in
a probabilistic manner and several examples were
computed. The distribution and magnitude of the
peak shift and its contribution to the phase margin
were studied. Although, to date, peak shifis have
been analyzed using empirical methods, the pew
method in this paper is capable of predicting more

Table 2, Cormputed values of peak shifts

—— | A B

Waveform interfer. 47,,, | 6.0ns| 4. 6as
Jitter by noise ¢,

1.46ns| 128 ns

Error rale

107?

o e measured
- C3iculated

-%-15 -10 -5

0 5 10 15 20

Window pulse position (ns)

Fig. 8. Experimental results of the error rate for
the {110} pattern.



accurate values, In future designs of magnetic
beads or recording and reading circuits, the total
peak shift caused both by waveform interference
and by noise must be taken into account. The
present method (s useful for the optimum design
of such devices,

One of the problems yet to be analyzed is
waveform equalization by such circuits as pulse-
parrowing petworks. When the read-out wave-
forms go through a waveform equalizer, the peak
shift due to waveform interference may be re-
duced, whereas that due to noise may increase.
Waveform equalization Is useful only when the re-
duction of the peak shift due to waveform inter-
ference (s larger than the increase of the peak
shift caused by noise, Slnce the SN ratio grado-
ally decreases as the recording density is in-
creased, the design of equalizers must be done
with extreme caution,

In the present paper the peak shift was as-
sumed small in order to simplify calculation was
simplified, When the peak shift is extremely
large, this simplification {s no longer valid and
the distributlon is degraded from a Gaussian
form. HEowever, in conventional devices, the SN
ratio {s larger than 20 dB and the simplification
ld:scribed above is believed not to cause any prob-

m.
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APPENDIX

Let the isolated read-out waveform be

(= TTE

and the bit cell time be T. The read-dut wave-
forms of 2F patterns in MF) recording systems
are

..fzp(1)= f (‘l).f(/' ne)

Fourier transforming the above, we obtain

fi(t)=2 4w, -i ep{=(27+1) welms{(2n+1) w, ¢ }
Al



where
w,=z/T

Since contributions of the second- and higher-
order terms are small, they are neglected

Sop(t)=2Aw, exp(~wya) cos wy ¢
In the case of 1T patterns, contributions of the

third- and higher-order terms are similariy ne-
glected,

f;r“) = Ao, {cxp (’% W, “) COSwlz w, ¢

+ exp (—%«.c) cos %W,t }

k= 2Aw.u== pr(-%w‘ a)

Then, V2F and V1¥ become
Vip=2kc
Ve=k(a+a)

From these equations, we obtain

_ Ky _ 2a

"% T

@ 1-J1-g

1+a? 2

A=

The read-out sigral waveforms of {110} patterns
are

2 2 2
fuo(‘)=‘7—3‘ Aw, { ep "3@,&) sing<, ¢

-exp (— %w.‘c) sin%wat }

. A
= —-k(a"’ m%uot-a

V3

8 sin%m° z)

Bence,

Vll°=J3- ka
1-ﬁ-_3’)‘/’

r=wﬂ=(
R

From the above, we have

| 4 1 1

N0 __ —

Vy V3aY /3T
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