
Scientific Control Corporation

-

sec 4700 COM PUTER
reference manual

SCC 52-11-26-81

see 4700

REFERENCE MANUAL

Scientific Control Corporation

DALLAS, TEXAS 75234

P.O. BOX 34529

Price: $3.50

Copyright © 1968 by Scientific Control Corporation

All Rights Reserved Printed in U. S. A.

INTRODUCTION

The SCC 4700 represents a new design approach to the

small computer field. Advanced hardware design techniques

and memory mapping concepts provide a cost performance

ratio that cannot be matched in any other small computer.

High speed logic forms and advanced construction techni­

ques have been used throughout to create a "state of the

art" machine which will have a high degree of reliability and

avoid premature obsolescence.

The 4700 is a general purpose, high-speed, binary computer

with a single address type of instruction. It features a high­

speed magnetic core memory module consisting of 4096

sixteen bit words, with a 920 nanosecond cycle time which

permits a wide variety of real time applications.

The 4700 has such outstanding design features as:

a. A microprogrammed read-only memory forflexible

internal logic.

b. Fully integrated circuitry using the most advanced

TTL integrated circuits.

c. An etched circuit back-plane board eliminating

"bird nest" wiring.

d. "Register slice" internal organization for easy

maintainability.

e. Programmable memory protection (optional) which

provides flexible read-only, write-only, or execute­

only protection.

f. Memory mapping (optional) for implementation of

multiprogramming techniques.

g. Byte addressable for efficient processing of charac­

ter strings, particularly those in ASCII or EBCDIC

code.

h. Real time I/O structure utilizing multiplexor and

high-speed selector channels for data transfer.

These and other advanced concepts make the 4700 faster

and more flexible than any other 16-bit machine.

FORMATS

INSTRUCTION

The format for each type of instruction is given in this

section. The format of each instruction is given with its

description in Section I V with the operation code filled in.

BASIC

o 3 4 5 6 7 15

DISPLACEMENT

.... ------Index Bit

"--------Relative Bit

.... --------- Indirect Bit

------------- Operation Code

LITERAL

o 3 4 5 6 7

9 bit, sign extending

Literal Extended
op code

'--________ Operation code

EXTENDED OP CODE

o 3 456 7

Modifier Bit

0110

Extended Operation Code

Type
00 Privileged
01 Shift
10 Operate Group
11 Non-Privileged

Operation Code = 0000

15

o 15

I t 01 RECT ADDRESS

: indicates POST-INDEXING

I n using the indirect address word format, if the primary

address of a basic instruction is the current location plus

one, the location counter is incremented to skip (L +2) the

next word in the instruction sequence. I n this way, both

operands and full addresses may be included "in-line". This

indirect address technique makes possible addressing up to

32K (7FFF 16).

OPE RATE GROUP

o 3 4 5 6 7 9 10 11 12 13 14 15

Source

~selected
Register

A=OO
B = 01
X= 10
E = 11 (optional)

Specify the test to be
performed on the results
of the function.

Specify the function to be
performed on the selected register

Identify the operate group

Operation code = 0000

SHIFT
o 3 4 5 6 7 8 9 10 11

Type

Shift
Count

Length
0= Short
1 = Long

Direction
0= Right
1 = Left

00 = Arithmetic
01 = Logical
10 = Rotate
11 = Circulate

Identify the shift group

1 = Indexing

OP Code - 0000

SYSTEM CALL

o 345

o

Not Used

Operation Code

SYSTEM CALL

9 10

Call Number

System Call =

SA + INS10_15

Extended op Code

15

15

All system calls are executed from a base address (BA). A

table of pointers to monitor entry points must follow the

base address. As many as 64 entry points may be designated

by INS 10_15. When encountered, a trap to BA+INS10_15
will occur and the instruction will be executed as defined.

Locations 284-347 are reserved for the table of monitor

entry points used by the system call. BA is equal to 284.

2

DOUBLE WORD

o 3 4 5 15

XOP

[I ndirect bit

o 1

I ~ Indexing

ADDRESS FI E LD

Certain instructions require two words. The first word is in

the extended op code format and the second has the format

of an indirect address. There is no relative bit, because the

fifteen bit address of the second word makes relative

.addressing unnecessary.

The instructions may be indexed and indirectly addressed,

the same as other instructions. Setting bit zero of the second

word specifies primary indexing. If indirect addressing

(bit 4) is specified, then the second word becomes a pointer

(which may be indexed) and the indirect address will be

post-indexed if bit zero of the indirectly addressed location

is also set.

Depending on the type of instruction, therefore, the second

word will contain an address, a pointer, or data. For

instance:

1. The optional arithmetic instructions require address

information in the second word.

2. Input/output control commands will contain con­

trol information for the channels and devices un­

less indirect addressing is specified.

The address portion of this type of instruction and the word

to which it points, are assembled in PAR statements. One

level of indirect addressing and two levels of indexing may

be specified, except in ACT and IOC instructions. These two

instructions allow only one level of indexing.

ADDRESSING MODES

STANDARD

Address modification in the 4700 is based on two concepts:

PRIMARY ADDRESS

The intermediate address which is determined before

indirect addressing and post-indexing are applied. It be­

comes the effective address if indirect addressing is not

applied.

EFFECTIVE ADDRESS

The final address wh ich is formed after all address

modification and indexing have been performed.

There are five possible modes available for instructions of

basic format, each of which results in a different effective

address when implemented, either singly or in combination.

They are:

Direct (Bit 5 = 0)

The primary address is determined by the address field of

the instruction. In the direct mode (without memory map­

ping), the primary address always refers to the first 512 lo­

cations of memory, unless indexed.

Relative (Bit 5 = 1)

The primary address is the sum of the address field with

sign extended of the instruction and the contents of the

location cou nter.

Primary Indexed (Bit 6 = 1)

Indexing may be applied to the primary address to form

the primary indexed address.

Direct indexed-the index register becomes a base re­

gister and the effective address is (X) + (INS)7-15.

Relative indexed-the index register is added to the re­

lative address; i.e., [(L) ± (INS)S-15] + (X).

3

Indirect (Bit 4 = 1)

The indirect address bit is always applied after the con­

tents of the primary address have been obtained. If the in­

direct address bit is zero, the contents of the location speci­

fied by the primary address is used as the operand of the in­

struction. If :the indirect address bit is a one, the contents

of the location specified by the primary address is inter­

preted not as an operand, but as a 15 bit operand address.

(Bit 0 of the indirectly addressed location is tested for post­

indexing). Indirect addressing requires one additional mem­

ory cycle (920 nanoseconds) on all instructions.

Post Indexed

In this mode, after the contents of the indirectly addressed

location specified by the basic instruction are obtained, bit

o is checked. If it is equal to one, the contents of the index

register are added to the other 15 bits to form the effec­

tive operand address.

BYTE ADDRESSING

Instructions that are byte addressable, such as Load half­

word, or Store Halfword, operate exactly the same as far as

address modification is concerned. However, it should be

remembered that the range (in number of words) will only

be half that of word oriented instructions.

All conversion of the byte address to align the data in the

proper half of the word is done automatically by the CPU.

The even numbered byte locations will be contained in the

most significant eight bits of each word. For example:

Location Byte Address

o 0 1

2 3

2 4 5

BASIC ADDRESSING MODE

(Figure 1)

RELATIVE?

Y

RELATIVE
P=(L).± INS

S
_
15

PRIMARY ADDRESS

INDEXED?

PRIMARY

INDEXED

INDIRECT?

INDIRECT
ADDRESS

POST­
INDEXED?

EFFECTIVE
ADDRESS

Y

P=P+(X)

Y

1= (P)

O=I+(X)

4

N

0=1

DIRECT

P= INS
7

_
15

O=P

DATA

Numerical data is represented in the see 4700 in four

ways:

1. Integer

2.

3.

Double Precision

Floating Point

a. Short

b. Long (Double Floating Point)

Integer

The basic data format is a 16-bit binary integer. The sign is

located in bit 0, as follows:

DATA

o

s =

15

0= positive

1 = negative

The number represented is defined as a binary or a Hexa­

decimal integer with bit one being the most significant

position and bit fifteen the least significant.

5

The maximum range of signed integers which may be repre­

sented by a single word is 800016 SiS 7FFF 16 or in

decimal,-32,768 ~ i ~ +32,767.

Negative quantities are expressed in two's complement

form. The two's complement of a number is obtained by in­

verting each bit of the binary number and adding one.

Double Precision

Double precision arithmetic utilizes two machine words to

represent a 31 bit, signed, binary integer with the following

format:

o

~~-------31------~.'

15 0

0= positive
S = 1 = negative

15

Numbers up to 231 may be represented in this form.

Minimum range is 8000000016 ::; i::; 7FFFFFFF 16 or

decimal 2,147,483,648::; i::; +2,147,483,647. Negative

double precision numbers are represented in two's comple­

ment form.

FLOATING POINT

Either of two for-mats may be used for floating point

numbers in the 4700. There are two types of optional

arithmetic instructions to handle the different floating

point formats.

Short Format

Signed
Signed Fraction Exponent

l·~.----- 24----~~ I+- 8-+1

o 15 0 8 15

S
0= positive
1 = negative

6

The short format uses two words to represent the float­

ing point number. The fraction occupies bits 1-23 and

the exponent, 25-31. The radix point of the fraction is as­

sumed to be immediately to the left of the high-order

fraction digit.

Long Format (Double Floating Point)

Signed Fraction

I~ 32

I s I
0 15 0

S =

Signed Exponent

.1+--16~1

lsi
15 0

0= positive
1 = negative

I
15

The long format uses three words to represent a floating

point number. The fraction occupies bits 1-32 and the

exponent, 33-48. The radix point of the fraction is assumed

to be immediately to the right of the sign bit (80).

INSTRUCTION DESCRIPTIONS

The instruction repertoire of the 4700 is separated into

standard and optional instruction sets. The optional in­

structions include four optional sets:

(1) Multiply-Divide

(2) Double Precision

(3) Floating Point

(4) Double Floating Point

The following conventions are used in describing the

functions of the instructions:

(1) A register name or address enclosed in paren­

theses denotes the contents of the register or

address.

(2) A location enclosed within two sets of paren­

theses indicates an indirect address.

(3) Subscription is used to denote bit positions with­

in a register or instruction.

(4) I = Indirect

X = Indexing

S = Sign

R = Relative

Y = Address Field

In this section the function of each instruction is described

and the format is given.

The location counter will normally be incremented by one

for basic and extended operation code instructions. But, if

the primary address of a basic instruction is L +1, the loca­

tion counter will then be incremented by two, skipping the

location containing the indirect address.

Double word instructions will increment the location

counter by two to skip the address field unless otherwise

noted.

Skip instructions increment the location counter as in­

dicated, depending on the result of the test of the contents

of the location or indicator.

7

Indirect addressing will be allowed only where indicated by

"I" in bit position 4.

Pre-indexing is allowed when indicated by an "X" in the

instruction format. In double-word instructions, this will

be bit 0 of the second word. Post-indexing is available only

when indirect addressing is specified. Then, it will be in­

dicated by setting (=1) bit 0 of the indirect address.

Example:

LOA LOAD ACCUMU LATOR 1.84Msec

o 456 7 15

y

The contents of the effective address are copied into the

A register. The contents of the location is unchanged.

The address mode of the instruction is determined by the

setting of the I, R, X bits in the following manner:

LOA

o

Hexadecimal

COXX

C2XX

C4XX

C6XX

C8XX

CAXX

CCXX

CEXX

LOAD ACCUMU LATOR 1.84Msec

15 4 5 6 7

y

Binary Address Mode

1100 0000 Load A Direct

1100 0010 Load A Direct Indexed

1100 0100 Load A Relative

1100 0110 Load A Relative Indexed

1100 10000 Load A I ndirect from

Direct Address

1100 1010 Load A I ndirect from

I ndexed Direct Address

1100 1100 Load A I ndirect from

Relative Address

1100 1110 Load A Indirect from

Relative I ndexed Address

The effective address is formed in this way, when the basic

instruction format is implemented. Post-indexing is im­

plemented when bit 0 of the indirectly addressed word is

set.

STANDARD INSTRUCTION SET

LOA LOAD ACCUMU LATOR 1.84p.sec

o 4 5 6 7 15

y

I

The contents of the effective address are copied into the A

Register. The contents of the location are unchanged.

STA STORE ACCUMULATOR 1.84 JJsec

o 4 5 6 7 15

y

I

The contents of the A Register are copied into the memory

location specified by the effective address. The contents of

the A register are unchanged.

LOB LOAD B REGISTER 1.84JJsec

0 4 5 6 7 15

1
0 olrHxlsl 0 1 y

I

The contents of the effective address are copied into the

B register. The contents of the location are unchanged.

8

STB STORE B REGISTER 1.84JJsec

o 4 5 6 7 15

y

I

The contents of the B register are copied into the memory

location specified by the effective address. The contents of

the register are unchanged.

LOX LOAD INDEX 2.76JJsec

o 4 5 6 9 10 11 12 15

10 0 0 o 0 o 0 01
xl

The contents of the effective address are copied into the X

Register. The contents of the memory location are un­

changed.

STX STORE INDEX 2.76JJsec

0 4 5 6 10 11 12 15

10 0 0 o I I 11 o 0 0 1 1 o 0 01
X I y

The contents of the X Register are copied into the memory

location specified by the effective address. The contents of

the register are unchanged.

LDH LOAD HALFWORD 1.84J.lsec

0 4 5 6 7 15

1
0 o 0 1 IIHXISI y

Bits 0-7 of the accumulator are set to zero and the contents

of the byte address specified by the effective address are

loaded into bits 8-15 of the accumulator. The contents of

the effective address are unchanged.

STH STORE HALFWORD 2.09J.lsec

o 4 5 6 7 15

y

The contents of bits 8-15 of the accumulator are copied in­

to the byte address specified by the effective address.
The contents of the accumulator and the other half of

the effective address word are unchanged.

LDL LOAD A, LITERAL .92J.lsec

o 4 5 6 7 15

o LITERAL

The sign (bit 7) is copied into bits 0-7 of the accumulator.

Bits 8-15 of the instruction are copied into bits 8-15 of the

accumulator.

9

LDLB LOAD B, LITERAL .92 J.lsec

0 4 5 6 7 15

1
0 0 o IS I LITERAL

The sign bit (bit 7) is copied and extended into bits 0-7 of

the B register. Bits 8-15 of the instruction are copied into

bits 8-15 of the B register.

LAS

o

10 0 0 0 0

LOAD ACCUMU LATOR
FROM SWITCHES

.95J.lsec

6 7 10 15

o 0 o 0 0 0 0 01

The contents of the switch register are placed into the A re­

gister. Data may be entered in the switch register by the

operator using the control panel. The contents of the

switch register are unchanged.

LOS LOAD STATUS .95J.lsec

056 9 12 15

10 0 0 0 0 o 0 1 0 0 0 0 01

The contents of the status register are copied into the ac­

cumulator. The status register is a composite register which

includes the carryout, overflow, halt, mode, and interrupts

disabled indicators. The contents of the register are not

changed.

LDD LOAD DOUBLE 3.561lsec

o 4 5 6 8 15

10 0 0 o I 1 o 0 0,0 0 0 01
xl y

The contents of the effective address are copied into the A

register. The contents of the effective address plus one are

copied into the B register. The contents of memory are un­

changed.

STD STORE DOUBLE 3.68llsec

0 4 5 6 8 11 15

10 0 0 o I I 11 0 o 0 1 I 0 o 0 01 I

Y xl

The contents of the A register are copied into the effective

address. The contents of the B register are copied into the

effective address plus one. The contents of the registers are

unchanged.

LDF LOAD FLOATING 4.48llsec

o 4 5 6 8 12 15

0
1

1 000
y

The contents of the effective address are copied into the A

register. The contents of the effective address plus one are

placed in the B register. The contents of the effective ad­

dress plus two are transferred to the E register. The con­

tents of memory are unchanged.

10

STF STORE FLOATING 4.601lsec

o 456 8 11 12 15

o , 1 o 0
y

The contents of the A register are placed into the effective

address. The contents of the B register are copied into the

effective address plus one. The contents of the E register go

into the effective address plus two. The contents of the re­

gisters are unchanged.

ARITHMETIC INSTRUCTIONS

ADD ADD TO ACCUMULATOR 1.841lsec

04567 15

y

Then the contents of the effective address (16 bit operand)

are added to the current valu'e of the accumulator and the

result is placed in the accumulator. The eRO is set by the

carry from bit position O. If the resu It is greater than the

maximum size of the register, the overflow indicator is set.

If overflow does not occur the overflow indicator is not

altered.

SUB SUBTRACT FROM 1.84psec
ACCUMULATOR

0 456 7 15

1 0 'I+Hsl y

I

The contents of the effective address (16 bit operand) are

subtracted from the current value of the accumulator and

the result is placed in the accumulator. The eRO is set by
the carry from bit position O. If the resu It is greater than

the maximum size of the register, the overflow indicator is

set. If overflow does not occur, the overflow indicator is

not altered. If both numbers have the same sign, but the

sign of the result is different, an overflow has occurred. The

location counter is incremented by one. (By two, if the pri­

mary address is L +1.)

ADL

o

ADD TO A, LITERAL

4 5

o 0
I

LITERAL
I

1.10 psec

This instruction provides a convenient way to add or sub­

tract quantities in the range -256 :s X :s +255. The last nine

bits (7-15) of this instruction are interpreted as a nine bit,

two's complement number.

Bit 7 of the instruction is extended through bits 0-6, and

the nine bit operand is converted to a 16 bit, two's com­

plement operand and is added to the contents of the ac­

cumulator. The carryout indicator is set by the carryout

of bit position zero. If overflow does not occur, the over­

flow indicator is not altered.

11

ADLB ADD TO B, LITERAL 1.10psec

0 4 5 6 7 15

1

0 0 0 'is 1
LITERAL

1 I I

This instruction provides a convenient way to add or sub­

tract quantities in the range -256 :s X ~ +255. The last nine

bits (7-15) of this instruction are interpreted as a nine bit,

two's complement number.

Bit 7 of the instruction is extended through 0-6, and the

nine bit operand is connected to a 16 bit, two's complement

operand, which is added to the contents of the B register.

The carryout indicator is set by the carryout of bit position

zero. If overflow does not occur, the overflow indicator is

not altered.

The location counter is incremented by one. Indirect ad­

dressing and indexing are not allowed.

MIN

o

MEMORY INCREMENT;

SKIP ON ZERO

4 5 6 7

y

I

2.14psec

15

One is added to the contents of the memory location at

the effective address. The resu It is tested, and if the value

equals zero, the location cou nter is incremented by two.

(By three, if the primary address is L+1.) If the value is not

zero, the location counter is incremented by one. The carry­

out and overflow indicators are not affected.

If the primary address is L + 1, the location cou nter wi II be

incremented by two (Q F 0); or by three (Q = 0).

ADC

o

000 0

ADD CARRY

o
I

5

1 0 000 0
I

1.20p,sec

12 15

100

The carryout indicator is added to the accumu lator and the

result is placed in the accumulator.

If the results exceed the size of the accumulator, the OVF

indicator is set. The eRO indicator is set by the carryout

of bit zero. If overflow does not occur, the OVF indicator

is not altered. Indirect addressing and indexing are not al­

lowed.

MPY MULTIPLY

o 456 7

y

6.84 p,sec (m in)
8.44 p,sec (max)

15

This operation is a single-precision integer multiplication,

which leaves the most significant half of the 32-bit product

in the B register and the least significant half in the A regis­

ter. The multiplicand is placed in A, before the instruction

is executed. The multiplier is the contents of the effective

address of the double word multiply instruction. The multi­

plier and multiplicand must be right-adjusted. The product

will be right adjusted in the B and A registers after execu­

tion. Overflow is not affected; but the carryout indicator

may be set if carryout occurs on the last operation per­

formed. The contents of the effective address remain

unchanged.

DIV DIVIDE

o 567

o 0

8.14 J1,sec (min)
8.99 J1,sec (max)

12 15

This is a single-precision integer divide, with the dividend

right-adjusted in the B and A registers. (The most significant

part in the B register.)

12

The contents of the B register plus AO are sh if ted one place

to the left and compared to the contents of the effective

address. If equal to or greater than the contents of the

effective address, the overflow indicator is set; and the

divide is terminated.

If the division is completed, the quotient will be placed in A

and the remainder in B. The sign of the quotient is deter­

mined by the rules of division and the sign of the remainder

will be the sign of the dividend.

DAD DOUBLE ADD 3.91 p,sec

o 5 6 8 10 15

10000111 01 010 o 0

xl y

This is a 32-bit double-precision add, where the contents of

the effective address (Q) and (Q) + 1 are added to the con­

tents of the A and B register. The sum is placed in the A and

B registers, with the most significant part in A. If the signs

of the two operands are equal, but the sign of the result is

different, an overflow has occurred and the overflow in­

dicator is set. The carryout indicator is set if a carry occurs

from the sign bit of the adder.

DSB DOUBLE SUBTRACT 3.91 p,sec

o 5 6 8 10 12 15

o 0 11(1 01 010 100

y

DSB is a 32-bit double-precision subtract, where the con­

tents of the effective address (Q) and (Q) + 1 are subtracted

from the A and B registers. (The instruction takes the one's

complement of the quantity to be subtracted and adds it to

the A and B registers with a forced carry-in. The resu It is

placed in the A and B registers with the most significant

part in the A register. If the signs are different and the sign

of A changes, then overflow is set. The carryout indicator

set if a carry occu rs from the high order position of the

adder.

DMP DOUBLE MULTIPLY 25.30P.S8C

0 5 6 8 10 11 15

10 0
o 0 I I I 0 I 1 o 1 1 000 0

Xl y

This instruction provides a fixed point multiplication of 32

binary bits times 32 binary bits. It is a fractional multiply

which will yield a 32-bit product. Both the overflow and

carryout may be set. The resu It of 8000000016 x

80000000
16

will cause overflow.

The multiplier is contained in the effective address (Q) and

(0) + 1. The product will be placed in the A and B re­

gistef.S, with the most significant half in A.

DDV

o
o 0

DOUBLE DIVIDE 36.39 p.sec (min)
48.39 p.sec (max)

5 6 8 10 11 12 15

This is a fixed point, fractional divide of 32 bits into 64

binary bits. Registers A and B comprise the high order 32

bit positions of the dividend. The low order bits are as­

sumed to be zero. The effective address (0) and (0)+1 con­

tains the divisor. The quotient will be placed in A and B

with the most significant part in A.

The overflow is set ifIA,BI>10,0+11 . If overflow occurs,

the contents of the A and B register cannot be predicted.

FAD

o
o 0

FLOATING POINT ADD

5 6 8 9

o I
y

9.11 Jlsec (min)

12.01 p.sec (max)

15

This instruction is to be used with the short (or two word)

floating point format. The contents of the effective address

(0) and (0) + 1 are added to the A and B registers after

alignment of the binary point. (Alignment means that the

exponents of both numbers are set equal.)

If exponent overflow or underflow occurs, the system trap

indicator will be set.

13

FSB FLOATING POINT SUBTRACT 9.81 p.sec (min)
13.01 p.sec (max)

o 5 6 8 9 11 15

This instruction is to be used with the short (or two word)

floating point format. The contents of the effective address

(0) and (0) + 1 are subtracted from the A and B registers

after alignment of the binary point. (Alignment means that

the exponents of both numbers are set equal.)

If exponent overflow or underflow occurs, the system trap

ind icator wi II be set.

FMP

o

I 0 0 0
Xl

FLOATING POINT MULTIPLY
31.99 p.sec (min)
33.49 p.sec (max)

5 6 8 9 10 15

o I II 0 I 1 0 o 0 0 0

y

This instruction is to be used with the short (or two word)

floating point format. The contents of the effective address

are the multiplier; the contents of the A and B registers are

the multiplicand. The product is placed in the A and B

registers.

Both numbers must be normalized (AO * A 1) before multi­

plication; the answer will be normalized when returned.

If exponent overflow or underflow occurs, the system trap

indicator will be set.

FDV FLOATING POINT DIVIDE 40.74Jlsec (min)
47.99 Jlsec (max)

o 5 6 8 9 10 11 15

o I 1 1 o 0 0 0

y

This instruction is to be used with the short (or two word)

floating point format. The contents of the effective address

(0) and (0) + 1 is the divisor and the contents of the A and

B registers are the dividend. The quotient is placed in the A

and B registers.

Both numbers must be normalized (AO =1= A 1) before div­

ision; the answer will be normalized when returned. Round­

ing will be done on the 25th bit of the answer, before com­

bining with the exponent.

If exponent overflow or underflow occurs, the system trap

indicator will be set. The carryout is not significant.

DFA

o

DOUBLE FLOATING ADD 7.83Jlsec (min)
8.98 Jlsec (max) *

5 6 8 9 12 15

000

y

This instruction is to be used with the long (or three word)

floating point format. The floating point quantity at the

effective address (0), (0) + 1, and (0) + 2 is added to the

floating point quantity in the A,B, and E registers after

alignment of the binary point. (Alignment means that the

exponents of both numbers are set equal.)

If exponent overflow or underflow occurs, the system trap

indicator will be set.

14

DFS DOUBLE FLOATING SUBTRACT 7.83Jlsec (min)
8.98 Jlsec (max) *

o 5 6 8 9 11 12 15

0000111' 0 0 000

x y

This instruction is to be used with the long (or three word)

floating point format. The floating point quantity at the

effective address (0), (0) + 1, and (0) + 2 is subtracted from

the floating point quantity in the A,B, and E registers after

alignment of the binary point. (Alignment means that the

exponents of both numbers are set equal.)

If exponent overflow or underflow occurs, the system trap

indicator will be set.

DFM

O.

DOUBLE FLOATING MULTIPLY 29.91 Jlsec (min)
31.26 Jlsec (max)

5 6 8 9 10 12 15

l~x_0~IO __ 0 __ 0 __ 1_0_1_' ___ 0 __ y _____ '_0 ____ '_0 __ ~

This instruction is to be used with the long (or three word)

floating point format. The floating point quantity at the

effective address (0), (0) + 1 and (0) + 2 is multiplied times

the floating point quantity in the A,B, and E registers. The

product replaces the multiplicand in the A, B, and E

registers.

Both numbers must be normalized (AO =1= A 1) before

multiplication; the normalized answer will be returned.

If exponent overflow or underflow occurs, the system trap

indicator will be set.

* +.21N for alignment

DFD DOUBLE FLOATING DIVIDE 38.21 p.sec (min)
43.11 p.sec (max)

0 5 6 8 9 10 11 12 15

I ~I o 0 o I I I 01 0 1 1 1 1 I 0 0
I
y

This instruction is to be used with the long (or three word)

floating point format. The floating point quantity in the

A,B, and E registers is divided by the floating point quantity

at the effective address (0), (0) + 1, and (0) + 2. The

quotient replaces the dividend in the A,B, and E registers.

Both numbers must be normalized (AO =F A1) before

division; the answer will be normalized when returned.

If exponent overflow or underflow occurs, the system trap

indicator will be set.

LOGICAL INSTRUCTIONS

AND AND MEMORY WITH

ACCUMU LATOR

o 4 5 6 7

1.84p.sec

15

y

The content of the effective address is AND'd with the

contents of the accumulator. The contents of the memory

location remains unchanged. The location counter is incre­

mented by one. (By two, if the primary address is L+1.)

Logical AN D is defined as:

Q

0 1

0 0 0
A

1 0 1

15

XOR EXCLUSIVE OR WITH 1.84 p.sec

ACCUMULATOR

0 4 5 6 7 15

0 1 11'I R \xI s l Y

The contents of the effective address are exclusive 0 R'd

with the contents of the accumulator. The result is placed

in the accumu lator. The memory location is unchanged.

The following table defines the exclusive OR operation:

Q

0 1

0 0 1
A

1 1 0

The location counter is incremented by one. (By two, if the

primary address is L +1.)

AAB AND ACCUMULATOR 1.10 p.sec

WITH B REGISTER

0 5 6 15

I 0 0 0 o 0 0 0 o 0 o 0 0 0 01

The contents of the accumulator is AND'd with the contents

of the B register. The result is placed in the accumulator.

The contents of the B Register are unchanged, and the lo­

cation counter is incremented by one.

AOB OR ACCUMULATOR

WITH B REGISTER

1.10 Ilsec

o 5 6 11 15

10 0 0 0 0 1 1 0 0 0 0 0 0 0 01

The contents of the accumulator are OR'ed with the con­

tents of the B Register. The resu It is placed in the accumu­

lator. The content of the B Register is unchanged, and
the location counter is incremented by one. Indirect ad­

dressing and indexing are not allowed.

The following table defines the logical OR operation:

x
0 1

A 0 0 1

1 1 1

ANL AND THE ACCUMULATOR 1.10 Ilsec

LITERAL

0 4 5 6 7 8 15

1
0 1 1 0 0 0 01 s, LITERAL

Bits 7-15 of this instruction are interpreted as a nine bit,

two's complement number. Bit 7 of the instruction is ex­

tended through bits 0-6, and the 16 bit operand is AND'd

with the contents of the accumulator. The result is placed

in the accumulator.

The AND operation is defined in the description of the

AND instruction. The location counter is incremented by

one. Indirect addressing and indexing are not allowed.

ANLB

o

AND THE B REGISTER

LITERAL

4 5 6 7 8

1.10 Ilsec

15

o 1 ools, LITERAL

16

Bits 7-15 of th is instruction are interpreted as a nine bit,

two's complement number. Bit 7 of the instruction is ex­

tended through bits 0-6, and the 16 bit operand is AN D' d

with the contents of the B register. The result is placed in

the B register.

The AND operation is defined in the description of the

AND instruction. The location counter is incremented by

one. Indirect addressing and indexing are not allowed.

XOL

o

EXCLUSIVE OR THE

ACCUMULATOR

4 5 6 7 8

1.10 Ilsec

15

10 1 1 0 0 0 LITERAL

Bits 7-15 of this instruction are interpreted as a nine bit,

two's complement number. Bit 7 of the instruction is ex·

tended through bits 0-6, and the 16 bit operand is ex­

clusive OR'd with the contents of the accumulator. The

result is placed in the accumulator.

The exclusive OR operation is defined in the description

of the XOR instruction. The location counter is incremen­

ted by one. Indirect addressing and indexing are not al­

lowed.

XOLB EXCLUSIVE OR THE 1.10 Ilsec

B REGISTER, LITERAL

o 4 5 678 15

1 0 o LITERAL

Bits 7-15 of this instruction are interpreted as a nine bit,

sign, extending, two's complement number. Bit 7 of the in­

struction is extended through bits 0-6, and the 16 bit oper­

and is exclusive OR'd with the contents of the B register.

The result is placed in the B register.

The exclusive OR operation is defined in the description of

the XOR instruction. The location counter is incremented

by one. Indirect addressing and indexing are not allowed.

REGISTER MANIPULATION

XAX EXCHANGE ACCUMULATOR 1.10 psec

AND INDEX

0 5 6 11 12 15

I 0 o 0 0 0 1 o 0 o 0 1 1 0 0 01

The contents of the accumu lator are switched into the

index and the contents of the index are placed in the ac­

cumulator in a single operation. The location counter is in­

cremented by one. Indirect addressing and indexing are not

allowed.

XBX EXCHANGE B AND X 1.10 psec

o 5 6 9 10 11 15

10 0 0 0 0 o 0 1 0 0 0 01

The contents of the B Register are placed in the index and

the contents of the index are placed in the B Register in

one operation. The location counter is incremented by one.

Indirect addressing and indexing are not allowed.

ESA

o

EXTEND SIGN OF

ACCUMULATOR

5 6 10

10 0 0 0 0 o 0 0

15

o 0 0 0 01

The sign (bit 0) of the accumulator is extended through the

B Register (BO-15)' The accumulator is unchanged. The lo­

cation counter is incremented by one. Indirect addressing

and indexing are not allowed.

17

OPERATE GROUP

This is a special group of instructions which perform inter­

register manipulations. With them, arithmetic and logical

functions can be performed on a register, or between two

registers, asynchronously of memory. Testing of the con­

tents of the destination register takes place after the function

is complete. The test, if specified, does not require any

additional time.

FUNCTIONS

BITS

..1.!L

000

001

010

011

100

101

110

111

TESTS

DESCRIPTION

Copy Contents

I ncrement Register

Add Source to

Destination

Exclusive 0 R

One's Complement

Two's Complement

Decrement Register

Subtract Destination

from Source

BITS

10 & 11

00 No Skip

FUNCTION

S~D

S + 1 ~ D

S+ D~D

S@D~D

S~D

S + 1 ~ D

S-1~D

S-D~D

01 Skip if positive (> 0)

10

11

Skip if negative

Skip if Zero

MICRO-

SECONDS

1.05

1.10

1.40

1.40

1.25

1.25

1.25

1.40

REGISTERS (Source or Destination)

CODE

00 A Register

01 B Register

10 X Register

11 E Register (Optional) *

The assembler will implement the following mnemonics for

operate instructions

RCPY Register Copy

RINC Register Increment

RADD Register ADD

RXOR Register Exclusive OR

RCMP Register Complement

RNEG Register Negate

RDEC Register Decrement

RSUB Register Subtract

The form of the operate instruction in the assembler is as

follows:

OP S,D,T

where OP is one of the eight mnemonics above, S which

represents the source field is A,B,X or E and D which rep­

resents the destination register is A,B,X or E. T can be G,N

18

or Z or can be null. Testing is performed on the destination

register after the indicated function has been performed.

Examples:

RINC A,A Increment A

RXOR A,B AEBB~B

RINC A,B A+ 1 ~B

RCPY A,X,Z A ~ X Skip if X = 0

* This option is available only when

floating point hardware has been

implemented.

SHIFT INSTRUCTIONS

Sh ifts may be indexed by setting bit 4 (= 1) of the instruc­

tion. Indexing will not be allowed to change the type of

shift. However, it may modify the direction, length, and

count. For logical shifts, if bit 11 of the instruction is set

(count >16) the direction may not be changed. If it is, the

result of the shift cannot be predicted.

For logical and rotate instructions, bit 11 cannot be changed

by indexing. The instruction will execute the original setting

regardless of indexing.

SAR SHORT ARITHMETIC 1.38 + .23N M

RIGHT SHI FT 1.38 + .23N Ilsec

o 4 6 15

COUNT

The number of binary positions which the instruction will

cause the data to be shifted is determined by the number

placed in the "count" field. (0 < i < 32). The contents of

the accumulator will be shifted to the right, the desired

number of binary places. The data being shifted out of A 15
is lost. The sign bit is propagated from one position to the

next, the length of the shift. The location counter is incre­

mented by one after the required number of shifts have

been performed. The index register will be added to the

instruction, if bit 4 is equal to one. This will result in

(INS)0_15 + (X)0-15'

A Register
o 15

~E ~
SAL SHORT ARITHMETIC 1.38 + .23N Ilsec

LEFT SHIFT

o 4 6 9 15

COUNT

The number of binary positions to be shifted is determined

by the number placed in the "count" field (0< i < 32). The

contents of the accumulator will be shifted to the left, the

desired number of binary places. Zeros are inserted into

A 15, and data is lost from AO' However, the overflow indi-

19

cator is set if the sign changes. The location counter is in­

cremented by one after completion of the command. The

index register will be added to the instruction if bit 4 is

equal to one. This will result in (INS)0_15 + (X)0-15'

A Register
0 15 r s 1

-4 14
0

LAR LONG ARITHMETIC 1.38 + .23N Ilsec

o 4 6 10 15

10 0 0 COUNT

The long shift links both the A and B register and shifts

them as one 32 bit register. The number of binary positions

to be shifted is determined by the number placed in the

"count" field (0 < i < 32). The contents of both registers

will be shifted to the right, the desired number of places.

The sign bit is propagated from AO to Al and data is lost

from B 15' The location counter is incremented by one. The

index register will be added to the instruction if bit 4 is

equal to one. This will result in (lNS)0-15 +(X)0-15.

A Register
o

B Register

LAL LONG ARITHMETIC 1.38 + .23N J.lsec
LEFT SHIFT

0 4 6 9 10 15

0 000 1+ 0 0
1 1

COUNT
f

The long shift links both the A and B register and shifts

them as one 32 bit register. The number of binary positions

to be shifted is determined by the number placed in the

"count" field (0 < i < 32). The contents of the A and B

registers will be shifted to the left, the desired number of

binary places. Zeros are inserted into B 15' and data is lost

from AO. The overflow indicator is set if the sign changes.

The location counter is incremented by one. The index

register will be added to the instruction, if bit 4 is equal to

one. This will result in (INS)0_15 + (X)0-15.

SLR

o

A Register

000

SHORT LOGICAL
RIGHT SHIFT

4 6 B

1+ 1 0

B Register

1.38 + .23N J.lsec

15

COUNT 1

The number of binary positions to be shifted is determined

by the number placed in the "count" field (0 < i < 32). The

contents of the accumulator will be shifted to the right. The

20

desired number of places. Zeros are inserted into AO and

data is lost from A 15. The location counter is incremented

by one. The index register will be added to the instruction

ifbit4isequaltoone. This will result in (INS)0-15+(X)0-15.

SLL

o

A register

o 15

SHORT LOGICAL

LEFT SHIFT

4 6 8 9

o 1
I

1.38 + .23N J.lsec

15

o COUNT

The number of binary positions to be shifted is determined

by the number placed in the "count" field (0 < i < 32). The

contents of the accumulator will be shifted to the left, the

desired number of places. Zeros are inserted into A
15

and

data is lost from AO. The location counter is incremented

by one when complete. The index register will be added to

the instruction, if bit 4 is equal to one. This will result in

(INS)0-15+(X)0-15.

A register

o 15

rll------------I" 1.-0

LLR

o

000

LONG LOGICAL
RIGHT SHIFT

4 6 8 9 10

o 1

.23N - 2.07 Jl.sec

15

COUNT

The number of binary positions to be shifted is determined

by the number placed in the "count" field (0 < i < 32). The

contents of the accu mu lator and B Register wi II be sh if ted

to the right, the desired number of places. Zeros are inserted

into AO and data is lost from B15. The location counter is

incremented by one when complete. The index register will

be added to the instruction if bit 4 is equal to one. This will

result in (lNS)0_15 + (X)o-15'

A Register B Register
0 15 0 15

0 ·1 ~ I ·1 ~ 1
LLL LONG LOGICAL 1.38 + .23N Jl.sec

LEFT SHIFT

0 4 6 8 9 10 15

1
0 0 0 oHo 0

11 1 I COUNT

The number of binary positions to be shifted is determined

by the number placed in the "count" field (0 < i < 32). The

contents of the accumulator and B Register will be shifted

to the left, the desired number of places. Zeros are inserted

into B 15 and data is lost from AO' The location counter is

incremented by one when complete. The index register will

be added to the instruction if bit 4 is equal to one. This will

result in (lNS)0_15 + (X)o-15'

A Register B Register
0 15 0 15

r ... I~
1

~ I~ 0

21

SRR SHORT ROTATE RIGHT 1.38 + .23N Jl.sec

o 4 6 7 15

o 0 COUNT

The number of binary positions to be shifted is determined

by the number placed in the "count" field (0 < i < 32).

The contents of the accumulator will be shifted to the right,

the desired number of places. No data is lost. The content

of A 15 is inserted in AO and the shift continues in a circular

manner. The location counter is incremented when the shift

is completed. The index register will be added to the

instruction, if bit 4 is equal to one. This will result in

(lNS)0_15 + (X)0-15'

A Register
o 15

SRL SHORT ROTATE LEFT 1.38 + .23N Jl.sec

o 4 6 7 9 15

COUNT

The number of binary positions to be shifted is determined

by the number placed in the "count" field (0 < i < 32).

The contents of the accumulator will be shifted to the left,

the desired number of places. No data is lost. The content of

AO is inserted into A 15 and the shift continues in a circular

manner. The location counter is incremented by one when

the shift is completed. The index register will be added to

the instruction, if bit 4 is equal to one. This will result in

(lNS)0_15 +(X)0-15

A Register
o 15

lRl lONG ROTATE lEFT .23N - 2.07 psec

0 4 6 7 9 10 15

HO I I 0 000 0 1 1 COUNT
I

The number of binary positions to be shifted is determined

by the number placed in the "count" field (0 < i < 32). The

contents of the accumulator and B Register will be shifted

to the left, until i = O. No data is lost. The content of AO is

inserted into B 15 and BO is transferred to A15; the shift

continues in a circular manner. The location counter is in­

cremented by one when the shift is completed. The index

register will be added to the instruction, if bit 4 is equal to

one. This will result in (INS)0_15 + (X)0-15'

A Register B Register
0 15 0 15

C 4 I~ I ~
lRR lONG ROTATE RIGHT .23N - 2.07 psec

o 4 6 7 10 15

000 001 COUNT I
The number of binary positions to be shifted is determined

by the number placed in the "count" field (0 < i < 32).

The contents of the accumulator and B Register will be

shifted to the right, until i = O. No data is lost. The contents

of B 15 is inserted into AO and A15 is transferred to BO; the

shift continues in a circular manner. The location counter is

incremented by one when the shift is completed. The index

register will be added to the instruction, if bit 4 is equal to

one. This will result in (INS)0_15 + (X)0-15' However, (X)8

must be zero, and the addition of the index register must

not cause a carry from I NSg.

A Register
o 15

22

SCR SHORT CIRCULATE 1.38 + .23N psec
RIGHT

0 4

I 0
o 0 Ojxl o 1 1 1 o 0 COUNT

I

The number of binary positions to be shifted is determined

by the number placed in the "count" field (0 < i < 32).

The contents of the accumulator will be shifted to the right,

until i = O. No data is lost, the content of A 15 is inserted in

the carryout indicator (CRO) and the carryout indicator is

transferred to AO until i = 0; while the shift continues in a

circular manner. The location counter is incremented by one

when the shift is completed. The index register will be added

to the instruction, if bit 4 is equal to one. This will result in

(lNS)0_15 + (X)0-15' However, (X)s must be zero, and the

addition of the index register must not cause a carry from

INSg.
A Register CRO

SCl SHORT CIRCULATE 1.38 + .23N psec

lEFT

o 4 6 7

000 1 1

8 9

1 1
I

COUNT 15

1

The number of binary positions to be shifted is determined

by the number placed in the "count" field (0 <i < 32).

The contents of the accumulator will be shifted to the left,

until i = O. No data is lost. The content of the carryout in­

dicator (CRO) is inserted into A15 and AO is transferred to

the carryout, until i = 0; while the shift continues in a cir­

cular manner. The location counter is incremented by one

when the shift is completed. The index register will be added

to the instruction, if bit 4 is equal to one. This will result in

(INS)0_15 + (X)0-15' However, (X)s must be zero, and the

addition of the index register must not cause a carry from

INSg.

A Register CRO

LCR LONG CIRCULATE RIGHT 1.38 + .23N p.sec

o 4 6 8 10 15

COUNT

The number of binary positions to be shifted is determined

by the number placed in the "count" field (0 < i < 32).

The contents of the accumulator and 8 register will be

shifted to the right, until i = O. No data is lost. The content

of the carryout indicator (CRO) is inserted into AO; A 15 is

transferred into 8 0; and 8 15 is moved to the carryout indi­

cator, until i = O. The shift continues in a circular manner

until complete; then the location counter is incremented by

one. The index register will be added to the instruction, if

bit 4 is equal to one. This will result in (I NS)0_15 + (X) 0-15'

However, (X)a must be zero, and the addition of the index

register must not cause a carry from I NSg.

A Register B Register CRO

LCL LONG CIRCULATE LEFT 1.38 + .23N p.sec

o 4 6 7 8 15

COUNT

The number of binary positions to be shifted is determined

by the number placed in the "count" field (0- < i < 32).

The contents of the accumulator and 8 register will be

shifted to the left, until i = O. No data is lost. The content of

the carryout indicator (CRO) is inserted into 8 15; 8 0 is

transferred into A 15; and AO is brougnt into the carryout

indicator, until i = O. The shift continues in a circular man­

ner until complete; then the location counter is incremented

by one. The index register will be added to the instruction,

if bit 4 is equal to one. This will result in (I NS)O_15+(X) 0-15'

23

However, (X)a must be zero, and the addition of the index

register must not cause a carry from I NSg.

A Register B Register CRO
o 15 0 15 rr-------'4 r 1r------'4 14 ~

LLO LOCATE LEADING ONE 1.05p.sec

o 5 6 10 12 15

10 0 0 0 a o 0 0 o

If the A register is equal to zero, the location counter is in­

cremented by one and the next sequential instruction is ex­

ecuted.

If A is not equal to zero, then the contents of A are shift­

ed to the left one binary position. Then, the X register is

incremented by one and (A)O is tested. If it is not equal

to one, the short logical left shift continues, and the X

register is incremented by one for each bit position shift­

ed. When (A)O is found equal to one, the location

counter is incremented by two and AO is reset (made

equal to zero).

If A = 0

IfA*O

1.15 p.sec

1.84 + .23N p.sec

(N = bit position which is equal to one)

One use for this instruction is to determine what interrupt

has occurred in interrupt or device service routines. It will

quickly indicate which bit in the A register was set (=1).

The number (1\1) being already in the index register, a jump

can quickly be made to the proper servicing routine.

NDX NORMALIZE AND DECREMENT 1.50 p.sec
INDEX

o 567 11 15

If A and 8 are both zero, the index register is reset to zero

and the next sequential instruction is executed.

If either the A or B register are not equal to zero, then the

two registers are linked and their contents are shifted left

until (A)O =I (A)1' For each bit position shifted, the index

register is decremented by one.

The normalize instruction is used in arithmetic subroutines

to give greater precision for quantities represented in floating

point notation. Usually, the exponent is placed in the X

register and the normalize instruction is then executed.

24

The time of execution is:

= 0

= 0 1.38
A

:j:: 0 1.61

B

:4: 0

1.84 + .46N

2.07 + .46N

LLO

(L) + 1 ~L

N

SHORT LOGICAL

LEFT ONE

POSITION

(X) + 1 ~X

y

y (L) + 1 ~L

NEXT

LOCATE LEADING ONES

25

NDX

(L) + 1 -+L

N

LONG LOGICAL

LEFT SHIFT

ONE POSITION

(X) - 1 -+X

NORMALIZE AND DECREMENT INDEX

26

NEXT

JUMP & SKIP INSTRUCTIONS

JMP JUMP .92Jlsec

o 4 5 6 7 15

Y I I

After all modifications indicated by the address control bits,

the effective address is placed in the location counter.

Control is then transferred to the instruction sequence at

that location. See section on addressing modes for a detailed

description of how the effective address is calculated.

JSL JUMP AND STORE LOCATION 2.76 Jlsec

o 4 5 6 7

y
I

15

The contents of the location counter plus one is stored at

the address specified by the contents of the effective

address. Then, the effective address value plus one is placed

in the location counter, and control is transferred to that

location.

Example: (addresses in decimal)

JRT

500

501

600

601

JSL

LOA

SUB

SUB

TAX

PAR

RINC

SAVE

A,A,Z

Location < I 500 1 -
Counter [§§I] -

before

after

SAVE ~

JUMP RETURN 2.76 Jlsec

o 5 6 10 11 15

o 0 0 0 I I J1 0 I 0 0 1 J 0 0 0 0
xl y

The contents of the effective address are copied into the

location counter and control transferred to that location.

27

Example: (addresses in decimal)

600

601

610

SKN

o

SUB PAR SAVE

RINC A,A,Z

JRT

PAR SAVE

Location ~ - Before

Counter ~ _ After

SAVE 501 I

SKIP I F A # MEMORY

4 5 6 7

1.84Jlsec

15

y

The contents of the A register are compared to the contents

of the effective address. I f they are equal, the location

counter is incremented by one. If they are not equal, the

location counter is incremented by two.

COT CARRYOUT TEST 1.15 Jlsec

o 5 6 9 11 15

10 0 0 0 o 000 00001
I·

The carry out indicator is tested. I f it is set (= 1), the location

counter is incremented by one and the CRO is reset.

If the CRO is reset (=0), when tested, the location counter

is incremented by two.

OFT

o

10 0 0 0

OVERFLOW TEST

o
I

5 6 9

o 0 o

1.15 Jlsec

11 12 15

1 000

The overflow indicator is tested. If it is set (=1), the location

counter is incremented by one and the OV F is reset.

If the OVF is reset (=0) when tested, the location counter is

incremented by two.

CONTROL INSTRUCTIONS

HlT HALT

o 15

000000000000,00001

The mach ine decodes the halt instruction and switches from

the run to halt mode. To return it to the run mode, the op­

erator presses the run switch on the console. The 4700 can

also switch to the run mode as a result of an interrupt. All

of the following interrupts will cause it to be placed in the

run mode:

1. Power Off

2. Power On

3. Channel Interrupt

4. Console Interrupt

5. Any external interrupt

Halt is a privileged instruction when memory mapping is

implemented.

ENA ENABLE INTERRUPTS .92J.lsec

o 8 15

o 0 0 0 o 000 000

This instruction activates the interrupt system.

Until it is executed, no interrupt will be honored. However,

any armed interrupts which occur will be "remembered"

and serviced in priority sequence, when the system is

enabled.

Once the interrupt system has been activated, it can be de­

activated only by the Disable Interrupts instruction or by

pressing the system reset button on the console which will

disable the interrupt system and disarm the interrupts.

DIS DISABLE INTERRUPTS .92Msec

o 15

10000000011000000

This instruction deactivates the interrupt system.

After it is executed, interrupts will not be serviced, even if

armed. It is a privileged instruction if memory mapping is

implemented.

28

Cli CLEAR INTERRUPT .92J.lsec

15 o 7

0000000 00000000
I

This instruction clears the active interrupt which has highest

priority. Since only one interrupt can be serviced at a time,

all lower priority interrupts requesting service stay in the

waiting state, until this instruction is executed; then, the

next highest will become active.

This instruction resets the active and waiting flip-flops of

interrupt being serviced. See priority interrupt system. CLI

is a privileged instruction if memory mapping is implement­

ed. Interrupt requests will not be allowed to go active un­

til completion of the instruction following a CLI instruc­
tion.

ARM ARM INTERRUPTS 1.84J.lsec

o 7 8 15

o 0

COMMAND

The arm interrupts instruction controls the individual arm­

ing of the programmable internal interrupts. Control in­

formation is transmitted to the internal interrupt systerp

from the following location by execution of the ARM in­

struction. The command information will be located in the

address contained in the second word if bit 4 is set. It is

a privileged instruction when memory mapping is imple­

mented.

The format of the command to be loaded into the A register

before executing the instruction is:

SELECT

The SELECT and ARM/DISARM bits for a given chan­

nel are interpreted as follows:

SELECT ARM/DISARM Action

0 X unchanged

0 X unchanged

0 DISARM

ARM

SCO SET CARRY OUT .95 11 sec

o 5 6 9 10 15

10 0 0 0 o 0

This instruction causes the carry out indicator to be set (=1).

SOF SET OVERFLOW .95 11 sec

o 5 6 9 10 12 15

00000 00 10 0001

This instruction causes the overflow indicator to be set (=1).

SYSTEM INSTRUCTIONS

SYCL SYSTEM CALL 7.36 11 sec

5 6 7 9

o 0

The system call causes a trap to a reserved area of 64 loca­

tions starting at the base address (28410), The call number

in bits 11 to 15 of the instruction, plus the base address

gives the location through which control is transferred.

Control is transferred to the address stored in the reserved

location. The instruction automatically stores the contents

of the L, ST, X, A, and B registers in five locations starting

with the address specified in the first word of the routine

being called.

The mode, eRa, and OVF indicators of the status regis­

ter will be reset (=0) before control is transferred.

Example:

Base Address

User Program BA 284 § READ SYCL 3 285

286

287 []ill
System Monitor

GET PAR SVE 1

SVE 1 (L)

In (ST)

System (X)

Area (A)

(B)

29

SRT SYSTEM RETURN 6.44 11 sec

o 7 9 15

o 0 0 0 000 I 0 o 0 000 0

Y

The system return is used to return control to the inter­

rupted program after an interrupt or system call. It is a

privileged instruction when memory mapping is imple­

mented.

The instruction restores the contents of the L, ST, X, A and

B registers at the time of the interrupt or system call, by
returning on the same "save" location assembled in the

first word of the subroutine and reloading the regis­

ters with the values stored in the five reserved locations.

Example:

SUB SAVE

SRT

PAR SAVE

SAVE BSS 5 SAVE (L)

(ST)

(X)

(A)

(B)

TSL TEST AND SET LOCK 3.06 11 sec

049 15

X I y

For systems operating in a multiple processor environment,

this instruction provides the capability of restricting access

to routines which might be executed by both processors at

the same time.

I n such situations, each CPU must perform this instruction

prior to entering the restricted sequence of instructions.

Thus, protection is accomplished by individual routines and

not by physical core locations.

This is a privileged instruction. It will test the effective

location for zero; if it is, the location counter is incre­

mented by one.

If the effective location is not zero, the location counter is

incremented by two and the lock location is set to zero.

This instruction may be indexed and indirectly addressed:

Example

SYSTEM TSL

MONITOR PAR LOCK

CPU-1 JMP *-2

JSL COMMON

COMMON PAR XSAV

COMMON

ROUTINE

MODULE No.5

LDL -1

STA LOCK

LOCK BSS

SYSTEM {~L MONITOR PAR LOCK

CPU-2 JMP *-2

JSL COMMON

30

INPUT/OUTPUT SYSTEM

The capabilities of the 4700 system are:

1. Data chaining which permits scatter read; gather write

techniques.

2. Mixed mode operations with different devices on same

multiplexor channel.

3. Servicing of multiple slow devices on same channel.

4. High data transfer rates for fast devices.

5. Full word or byte data transfer.

I/O control operations are separated into three categories

which direct the functions of three kinds of control equip­

ment. To avoid the confusion of calling all of them instruc­

tions, the following nomenclature will be used;

I nstructions are executed by the CPU;

Commands are executed by the channel;

Orders are executed by the device.

Data transfers may be either byte or word oriented.

Full word data transfer is performed through the parallel

I/O interface and is controlled by the Read Parallel and

Write Parallel instructions.

The parallel I/O interface is used to read and control all

devices on the parallel I/O bus, such as: interrupts and

special devices. The memory mapping unit uses an internal

parallel I/O bus for the LSMP and LUMP instructions. The

particular device is selected by the address data contained in

the ACT command.

PARALLEL I/O (16 bit word oriented)

The ACT instruction is used to activate any I/O device

which utilizes the parallel I/O interface. It is a double

word instruction, the first word of whioh is in the ex­

tended op code format. The second word contains the

control information or the address of the control infor­

mation. The double-word instruction must occupy cont­

iguous memory locations and may start on even or odd

numbered locations.

PARALLEL I/O INSTRUCTIONS

ACT ACTIVATE PARALLEL I/O 1.84J,Lsec

31

o 4 7 8 9 11 15

o 0 0 0 I I 10 0 1 1 0 1 000

COMMAND

The ACT instruction is used to activate any I/O device

which utilizes the parallel I/O interface. It is necessary to

give an ACT only if more than one device is connected to
the parallel interface.

The interpretation of the control information depends on

the device and the user's system requirements. It may be

indirectly addressed. If bit 4 of the ACT equals one, the

second word becomes a pointer to the command infor­

mation. The pointer is in the indirect address format and

may be indexed.

ADDRESS FIE LD

2nd word if I = 1

The I/O command is output directly from memory (L+1),

without being loaded into the accumulator by the program.

The RDP and WTP use the extended op code format with

the data being input into the accumulator or output from

the accumu lator. Transfer of each word is done under con­

trol of the CPU, using RDP or WTP, as necessary.

WTP WRITE PARALLEL 2.07 J,Lsec

o 4 7 8 9 10 15

I 0 0 0 0 1 0 o 0 0 0 I 000

I

The WTP transfers a 16-bit data word from the A register to

the active device on the parallel I/O interface. The A regis­

ter must previously have been loaded with the data to be

transferred.

The transfer occurs if the device is ready; and the location

counter is incremented by two.

If the device is not ready when tested by the instruction,

the transfer is not performed. Instead, the machine pro­

ceeds to the next instruction.

RDP READ PARALLEL 2.07 J.l,sec

o 4 7 8 9 10 11 15

0000000 1100001

The R DP transfers a 16-b it data word into the A register

from active device on the parallel I/O interface.

The transfer occurs when the device is ready; and the loca­

tion counter is incremented by two.

If the device is not ready when tested by the instruc­

tion, the transfer is not performed. I nstead, the m a­

chine proceeds to the next instruction.

I/O CHANNELS (8 bit byte oriented)

The 4700 may have from one to four byte oriented data

channels. The basic 4700 is equipped with one multiplexor

channel. Additional optional channels may be added in any

combination of either multiplexor or selector channels.

MULTIPLEXOR CHANNEL

The mUltiplexor channel is designed to service up to 64

half-duplex device controllers on a multiplex or "party­

line" basis. The multiplexor channel is under direct con­

trol of the CPU and utilizes the CPU data and address

paths to memory.

A SCC 4700 system may have one to four multiplexor

channels. The multiplexor channel may operate in one of

two modes:

1. Single Byte

2. Block

When in either the byte or block mode, more than one

device controller may be actively engaged in data trans­

fer at anyone time. In either case, data transfer between

the channel and the device controllers is on a byte orien­

ted multiplex basis. The active device controllers need not

operate in the same mode: i.e., some device controllers

may be engaged in data transfer in the byte mode while

other device controllers are transferring data in the block

mode.

32

SELECTOR CHANNEL

A selector channel provides a buffered channel for up to 64

byte oriented device controllers on a block transfer basis.

The selector channel provides for direct memory access at

a high data rate between an I/O device and memory.

Only one device at °a time may be active on a selector

channel.

The selector channel is activated by the CPU and proceeds

autonomously of the CPU to access memory for command

and control information. Utilizing the start address and

byte count specified by the command and control infor­

mation, the selector channel performs the data transfer

asynchronously and independently of the CPU; the selector

channel deactivates the channel at the end of the data trans­

fer. Block transfers may be chained (that is, the selector

channel can sequentially execute a series of block trans­

fers).

I/O SYSTEM OPERATION

The 10C instruction controls the operation of the mul­

tiplexor and selector channels. Each 10C transmits a chan­

nel command to the appropriate channel controller, which

in turn selects the desired device.

CHANNEL I/O INSTRUCTION

The IOC instruction transmits the control information re­

quired by either the multiplexor or selector channel con­

troller. This control information is called an I/O command

and is sent directly to the channel controller which changes

it to a sequence of signals acceptable to the control unit.

The IOC is in the extended format and must be followed

immediately by a channel command or the address of the

channel command.

IOC INPUT/OUTPUT CONTROL 2.99 J.l,sec

o 4 7 8 9 15

o 0 0 0 1110 0 1 1 1 0 0 000

CHANNEL COMMAND

The IOC is a CPU instruction which transmits the control

information required by either the multiplexor or selector

channel controller. This control information is called a

channel command and is sent directly to the channel con­

troller which changes it to a sequence of signals acceptable

to the control unit.

The 10C must always be followed immediately by a channel

command or the address of a channel command. One level

of indirect addressing and indexing is allowed.

x ADDRESS OF CHANNEL COMMAND

2nd word if I = 1

The 10C is executed in 2.99 p,sec, providing an acknowledge

is received from the device immediately. Otherwise, it delays,

0_30 p,sec before checking availability again.

CHANNEL I/O COMMANDS

The I/O commands have a single word format. They are

sent directly to the channel controller and specify infor­

mation to select the following.

1. Indexing

2. Channel Operation

3. Block or character mode

(used only with SIO)

4. Arm/Disarm interrupt

(used only with SIO)

5. Channel

6. Device controller

There are 10 channel commands available to the programmer

and they are:

Format

HIO Halt I/O CC

SIO Start I/O CC

XMT Transmit Character CC

EOA Execute Order in A CC

OUS Output Unit Status CC

33

TWC Terminate when complete CC

SDR Skip if Device Ready CC

SDA Skip if Device Available CC

"U Input Interrupting Unit CC

IUS Input Unit Status CC

Each channel command must be immediately preceded by

an 10C instruction or contained in the location specified

by the indirect address of the 10C.
(See Figure 1)

FUNCTIONS OF I/O CHANNEL COMMANDS

HIO - Halt I/O

Causes addressed device to immediately halt and clears

settings of the entire device including status register.

I nhibits interrupt from the device. May cause infor­

mation to be lost.

SIO - Start I/O

Causes channel controller to be activated so that order

may be passed to device. Sets block and interrupt

mode bits. I nitiates channel operation for block trans­

fers by starting automatic transmission of data under

control of the multiplexor or selector channel.

XMT - Transm it

Inputs or outputs character to/from least significant

half of A. Direction of transfer will be determined by

the device code:

even - input

odd - output

EOA - Execute Order in Accumu lator

This command is device dependent. Data in the least

significant half of the A register will be output to the

device controller to initiate the desired operation.

IDN - Input Device Number

This command is not available to the programmer. It

is used by the micro code of the CPU to identify an

interrupting device when servicing the M-channel for

block tramsfers.

OUS - Output Unit Status

Transmits 8 bits of data from the least significant half

of the A register to the status register of the device

controller. Bits of the status register may be set only;

the device status cannot be reset to cleared by this

command.

TWC - Terminate when Complete

This is the usual command to be given to stop a device.

Device will stop data transfer, but completes current

mechanical operation. The status register is not

cleared. Device will give a channel interrupt, if armed.

SO R - Skip if Device is Ready

Tests status register of device and increments L re­

gister by two, if the device is not ready.

IIU - Input Interrupting Unit

Device number of interrupting unit is input into the

least significant 6 bits of the index register.

IUS - Input Unit Status

The status register of the device being addressed is in­

put into the least significant 8 bits of the A register.

SDA - Skip if Device is Available

Tests status register of device and increments L re­

gister by two, if the device is available.

34

I/O DEVICE ORDERS

To initiate the I/O operation, for either input or output

a device order must be transmitted to the device control­

ler. They give specific instructions to the device and must

be transmitted before the operation can be performed.

The interpretation of the control information depends on

the device. The codes for each device and the format of or­

ders for them are contained in the manual concerning the

individual peripheral device.

BYTE TRANSFERS

Both the multiplexor and selector channels accept data in

either byte or block oriented modes. In the single byte

mode, data transfers usually are under program control,

with data being output or input to the low order eight bits

of the accumulator.

BLOCK TRANSFERS

Block transfers directly to or from memory can be made

through either the multiplexor or selector channel. In the

selector channel, block transfers of mu Itip Ie bytes of data

occur asynchronously and independently of the CPU.

Memory cycles may be stolen, if the same memory mo­

dule is accessed simultaneously.

In the multiplexor channel, block transfers are initiated by

execution of the Start I/O command as in the selector ch­

annel. Transfer of data then procedes automatically until

completion, without further attention from the program.

The format used for these channel commands is:

15

~ce Number or Address

'---- Channel Number

L..-____ Must be a

'------ Interrupt
1 = Arm
a = Disarm

Transfer Mode
1 = Block
a = Byte

~-----I/O Command
0000 = HIO
0001 = SIO
0010 = XMT
0011 = EOA

Indexing = 1
INS = (X) + ONS)0_15

Figure 1.

0100 = IDN
0101 = OUS
0110 = Unassigned
0111 = TWC
1000 = Unassigned
1001 = SDR
1010 = SDA
1011 = IIU
1100 = IUS
1101 = Unassigned *
1110= Unassigned *
1111 = Unassigned *

35

* If used, these codes will also
cause data to be input to the
A register from the channel.

Block transfers on the mUltiplexor channel are program­

med exactly the same way as for the selector channel. The

only differences occur in the way the hardware handles

the data transfer. Those to be considered are:

1.

2.

3.

slower data rate.

address and byte count are kept in core memory,

rather than channel registers.

the micro-code of the CPU handles the interrupt

and data transfer, which results in stealing some

CPU time and memory cycles.

4. multiple devices can be active on the multiplexor

channel at the same time, but only one device at a

time can be active on the selector channel.

To perform a block transfer on either the multiplexor or

selector channel, certain steps must be accomplished.

1. An input/output data area is reserved in memory

2. A pointer to the Data Control Double Word

(DCDW) controlling this transfer is placed at the

proper location in dedicated core memory for the

particular device and channel. The CPU will look

to that location (designated in the channel com­

mand) for a pointer to the necessary DCDW.

(The channel end bit should be set to zero.)

The format of the DCDW pointer is:

o 15

WORD ADDRESS OF DCDW-;-2

t~------CHANNELEND
DCDW POINTER

The byte address in the pointer real core must be doubled

to determine the location of the DCDW.

Therefore, it is necessary that the first DCDW of a data

chain begins on an even location. All DCDW's in the chain

must follow in contiguous locations.

36

After transfer is complete, the channel end bit of the

pointer is set. If the program logic uses this bit to de­

termine completion of transfer, it must be reset before the

same pointer is referenced again.

3. The DCDW (or series of DCDW's) may be as­

sembled anywhere in core storage. They give the

byte count and byte address of the data area

(or areas) to/from which data will be transferred.

Format of the DCDW is:

4.

I
Low order bit of byte address

(indicates left or right half of word)

r 1 = Data Chaining

I r 1 = New Pointer

o 1 2

o I C I P I BYTE COUNT

BYTE ADDRESS

DATA CONTROL DOUBLE WORD

15

A device order must be written to initiate the de­

vice controller. It must be the first byte to be out­

put. The device order may be placed with the data

to be output; or output from a table of device

orders.

A device order must be transmitted to activate the device

controller for all transfers, either input or output. For block

transfers, it will be output from memory. (For the charac­

ter mode, it must be placed in the accumulator and trans­

mitted with an EOA (Execute Order in A) channel com­

mand).

The format of the device orders are device dependent and

may be found in the peripheral manual for the device being

used. However, the device order for "normal" operation

(forward, with leader, etc.) will be 000000002,

5. After this information has been prepared and as­

sembled in the proper sequence and format, the

desired data transfer can be accomplished by

writing an IDe instruction followed by an SID

channel command.

Example:

IDe

SID OE05

37

On execution of the SID command, the selector channel

will locate the data to be transferred by means of the

DCDW and perform the transfer asynchronously and in­

dependently of the CPU.

For block transfers on the mUltiplex channel, the CPU per­

forms the necessary update and transfers each byte directly

from memory as each device becomes available. The ac­

cumulator is not affected for either input or output.

BLOCK TRANSFER OPERATION

DCDW POINTER TABLE
For format, See Detail A

l- in reserved core locations

for each channel

Detail A

DCDWPOINTER

I CE I D C D W ADDRESS +2 I
t.-- CHANNE LEND

Detail 8

Low order bit of byte address

(indicates left or right half of word)

C 1 = Data Chaining

111 = New Pointer

o 1 2 15
I'CIPI BYTE COUNT I

BYTE ADDRESS

DATA CONTROL DOUBLE WORD

Detail C

DCDW NEW POINTER FORMAT
012

~~~~ o111~~tt~~~~~~m~~~~~~~~~~~~~~~~~~~~~~~~~~~m~~~m~~~~~~~~~~~~~~~~~~ 
o NEW POINTER /15 

l tSAME FORMAT AS 

DCDW POINTER 

MUST BE ZERO 

~ 

38 

DCDW LIST 

For format, 
See Detail 8 and C 

DEVICE ORDER 

DATA 

DATA 

DATA 

NEW DCDW LIST 



M EMORY MAPPING 

Memory mapping is a technique which facilitates operation 

in a multiprogrammed environment. The concept of virtual 

and real memory is essential to understanding memory 

mapping. 

Virtual memory for the see 4700 is an imiginary 

memory space of 32K, contiguous, 16-bit words. 

Virtual memory allows the programmer to write a 

program on the assumption that he may utilize the 

entire core memory. 

Real memory is the actual memory space of the 

program being executed. Real memory may be larger 

or smaller than 32K. 

Virtual memory is an abstraction and exists only in the 

mind of the programmer. It is, however, an important con­

cept in the creation of a multiprogra"mming system because 

it allows a program to be divided into segments. A segment 

of virtual memory is called a page and contains 512 words 

or locations. The 32K of virtual memory is divided into 64 

pages of 512 words. 

Real memory is also divided into 512 word segments which 

are called blocks. Since the maximum size addressable by 

the see 4700 is 64K, there may be 128 blocks in real 

memory. 

By segmenting the program in virtual memory and putting it 

into blocks of real memory, virtual memory is mapped onto 

the real core memory area. These concepts are illustrated in 

the following diagram: 

VI RTUAL MEMORY 
(Pages) 

2 

Program 3 

4 

5 

Program 2 

2 3 

4 

Figure 1 

REAL CORE MEMORY 
(Blocks) 

o 

39 

Since every program is assembled independently (without 

regard to where it may be placed at execution ti me), its real 

location is determined by the executive system through the 

use of the associative registers in the memory map unit. 

The program is broken down into pages and loaded into 

blocks of real core locations. The blocks need not be consec­

utive, nor does the whole program need to reside in core at 

a given time. 

o 1 6 7 15 

III I I 
PAGE NO. WORD LOCATION 

WITHIN PAGE OR BLOCK 

MEMORY ADDRESS FROM CPU 

Figure 1 is an example where no two consecutive blocks 

follow one another. 

Whole programs or only a page or two at a time may be in 

core. The executive system maintains a page table which 

identifies the block location of each page for each program 

being executed. 

When an instruction is executed, a match for the desired 

page is sought in the memory map registers. If it is not 

found, the hardware traps to either the system or the user 

page table pointer, depending on the setting of the mode bit, 

and loads the desired page table word in the next available 

register. 

The page table pointer contains the starting address (a) of a 

list of pages being used by the program. 

There are mUltiple page tables as required. One system and 

one user page table are in use by the system at any given 

time. 

The next available memory map register is then loaded auto­

matically and indirectly from the page table with the con­

tents of a + page number. 



The format of the page table word and consequently of the 

memory map register is shown in Figure 3. By means of the 

memory map registers, the virtual addresses of the assembled 

program instructions are transformed to the addresses of 

real core locations where they are actually stored. 

COMPARE 
FOR PAGE 

NUMBER (PN) 

FIGURE 2 

MEMORY MAPPING UNIT 

~------------------~ 

t 

The associative registers are loaded by the map unit from an 

entry in the 64 word page table contained in memory. The 

entry from the program page table is combined with current 

machine conditions to form the format described above. 

The entry is assumed to have the following format: 

o 5 6 7 8 9 15 

PAGE BLOCK 

The memory map unit also contains two 16-bit registers 

designated the System Map Table Pointer (SMTP) register 

and the User Map Table Pointer (UMTP) register. These re­

gisters are loaded with the starting address of the system 

map table and a user map table, respectively. The mechan­

ism for loading each of these registers is a LSMP or LUMP 

40 

When memory mapping is implemented, every effective 

address formed by memory reference instructions must be 

transformed into a real address before execution. 

When a program instruction is executed, it forms a 15-bit 

effective address after all address modification is complete. 

This is placed in the S register of the CPU. 

NO TABLE POINTER 
MATCH 

INDIRECT 

instruction. Note that since these are 16-bit registers, the 

tables may be located anywhere in memory on any word 

boundary. Loading of either of these registers automatically 

clears the associative registers. 

There is one-bit register in the machine designated the 

MODE which indicates whether the computer is in the 

user or system mode. The MODE indicator is part of the 

machine status register and thus is automatically saved 

when an interrupt occurs. System calls, system traps, or 

interrupts set MODE to the system state (after saving its 

current status). 



FIGURE 3 

MEMORY MAPPING 

15-BIT EFFECTIVE ADDRESS 

6 7 

--l ________ --.! I PAGE I 

MEMORY MAP UNIT 

Virtual memory page number is com­
pared to the page numbers contained 
in the associative registers of MM unit. 

o " 5 6 789 

PAGE RWX BLOCK 

1516 

M 
o 
D 
E 

L r-1 'L-----r--...... ' L r--
SYSTEM = 1 

MM REGISTER 

FORMAT USER =0 
"--

IF FOUND 

MEMORY PROTECTION UNIT 

Page protection is checked. If access 
is not authorized, a trap occurs to the 
SYSTEM TRAP location. 

ACCESS 

AUTHORIZED 

.. .. 

" 

~ 

15 

WORD J S REGISTER 

" o 6 7 15 

REAL CORE WORD 
BLOCK ADDRESS ADDRESS 

I I 
~ o 15 

I MEMORY ADDRESS REGISTER I 

41 



MEMORY PROTECTION 

The SCC 4700 memory map and protection unit contains 8 

to 32 associative registers and two address registers. A 

minimum of eight registers (two units) must be implemented 

initially. The number of associative registers may be in­

creased in groups of four. The format of each associative 

register is as follows: 

6 7 8 910 16171819 

BLOCK 

Where Page is a 6-bit page number to be compared with the 

high order 6 bits of the address. 

R = 0 if read access is not permitted for this page. 

R = 1 if read access is permitted. 

W = 0 if this page cannot be written into. 

W = 1 if the page may be written. 

E = 0 if the page may not be executed. 

E = 1 if execution is permitted 

Block is a 7-bit block number which is used as the high 

order portion of the 16-bit address presented to memory. 

Mode = 1 if this register contains system mapping 

information. 

Mode = 0 if this register contains user map information. 

Load = 1 if this register is loaded. 

Load = 0 if this register is empty. 

Next = 1 if this is the next associative register to be 

loaded. 

Memory requests are generated by the CPU and are present­

ed to the map unit. The memory request consists of the 

following: 

A. A 15-bit address. 

B. A bit indicating whether this request is to be made 

to the user's space or to the system's space. 

C. The type request being made, i.e., read, write, 

execute. 

The map unit partitions the 15-bit address from the CPU 

into two fields: a 6 bit page number field and a 9 bit word 

address field. 

42 

The map unit compares the information presented with the 

memory request to all the associative registers simulta­

neously for a match. The map unit compares the MODE bit 

in the associative register with the mode of the current re­

quest. If the modes agree, the page number from the CPU 

is compared with the page number in the associative re­

gister. These bits are decoded and compared simultaneously. 

A match causes the request type to be checked against the 

protection bits in the associative register. An allowable 

request results in the block number in the associative register 

being linked with the 9-bit word address to form a 16-bit 

memory address. Memory is then accessed with this address. 

If the memory request cycle is one which is not allowed by 

the memory protection bits, an interrupt signal is sent to the 

CPU. 

The hardware, upon detecting that the page number in 

question is not presently in any associative register, initiates 

the following actions: 

A. The current page number is added to the SMT P or 

the UMTP depending upon whether the current 

mode is system or user, respectively. This forms the 

address of the entry in the map table which corre­

sponds to the current page. 

B. This address is used to load the next available 

associative register and is assumed to contain mem­

ory protection bits and the block number for the 

page in question. Associative registers are allocated 

in a simple round robin fashion. Loading of an 

associative register causes the register NEXT bit to 

be read and the NEXT bit in the following assoc­

iative register to be set. 

System page 0 is not mapped; hence, all interrupts and 

traps are routed to block zero. 



CONTROL CONSOLE 

and 

DISPLAY PANEL 

The display/control console itself is only eight inches high, 

by 22-5/16" wide and 5-1/4" deep. The console is mounted 

on the basic machine in the front of the blue and grey 

cabinet. I nserted into the cabinet at a 10° slant, the console 

is placed above a convenient 16" X 26" writing shelf. 

Chrome-plated pushbuttons and knobs accent its black 

satin-finished surface. 

The register displays and status indicator lights are hidden 

behind a pane of glare-free black glass. Only when lighted 

are the back-lighted indicators visible. However, a shadow 

grid in the display panel marks the relative position of the 

indicators when they are off. 

Permanent lettering identifies the switches and the display 

registers. The indicator lights of the display panel are differ­

ent colors for better visibility and the status indicators are 

colored and labeled for quick identification. 

Color scheme for display registers and status indicators: 

Yellow - L (register) 

Wh ite Reg (select) 

Orange - SW (register) 

- Carryout (CRO) 

- Overflow (OVF) 

Red - Halt 

Memory Parity Error (MPE) 

Green - Power 

This display panel contains 64 lamps (28 volt, 40 milliamp), 

which give a medium bright, diffused light. These lamps are 

replaceable from the rear without removing the display 

panel from the cabinet. 

Thirty-one chrome-plated pushbuttons and two rotary 

switches are utilized in this operator interface station to 

control the computer system. If desired, the display/control 

console can be mounted as a remote unit. Connected to the 

CPU by up to 30 feet of cable, this optional remote console 

may also contain a selectric typewriter for operator messages 

and commands. 

43 

The contents of the display registers are normally updated 

at the line voltage rate (50-60 cycles) while the CPU is in the 

run mode. It is possible to inhibit the update of the displays 

either manually, by a switch on the maintenance panel inside 

the cabinet; or under program control, by disarming the 60 

cycle real-time clock. 

If the display update is inhibited, the register displays will 

be updated only on execution of a halt, and when data is 

entered or displayed by use of the control console. 

If display update is not inhibited, the M register will contain 

the current reading of the real-time clock. (This is equal to 

the contents of Location 2.) 

If memory mapping is not implemented, all addresses dis­

played will be real core addresses. 

If memory mapping option is implemented, then addresses 

displayed will normally be virtual memory addresses (or 

addresses before mapping is performed). However, provision 

has been made to show the real core address when desired. * 

* A switch on the maintenance panel inside the machine will 

inhibit mapping. (These will be the real core locations of the 

instructions or data.) 

The switches which will be operative while the CPU is in the 

run mode and power switch is in ON position will be: 

1. Lamp test 

2. Console interrupt 

3. System reset 

4. Halt 

5. Reg Select 

6. Power 

7. Run 

8. The 16 switches of the Switch Register. 

A. DISPLAY PANEL 

1. Status (of CPU) 

The status indicators show the state of certain internal 

conditions. Each indicator is marked to indicate the 



corresponding function. When lighted, their color calls 

the attention of the operator to the internal state of 

the CPU. 

The indicators and their colors are: 

Color 

1. CRO (carryout) orange 

2.0VF (overflow) orange 

3. MPE (memory parity 

error) red 

4. HALT red 

5. POWE R (power on) green 

2. L (L-register) 

This register display shows the contents of the location 

counter. I t will contain the address of the next instruc­

tion to be executed. Th is is the real core address, 

except when memory mapping is implemented. * 

* A switch on the maintenance panel inside the machine will 

inhibit mapping. (These will be the real core locations of the 

instructions or data.) 

3. REG (Register) 

The desired register is selected by use of the Reg Select 

switch. When the display button is depressed, the 

contents of the register indicated by the Reg Select 

knob (M, S, A, B, or E) are displayed in this row of 

indicator lights (ON= 1). 

The M register is the path to and from memory. On 

execution of a halt, the M register contains the next 

instruction. 

If the M register is selected and the display button is 

pressed, the contents of the address specified by the 

location counter is displayed in the Reg indicators. 

4. SW (Switch Register) 

Data to be entered in a register or memory location 

from the console is placed in the switch register by the 

operator. These indicators show the current contents 

of the switch register (ON=1). 

44 

The switch register is an external holding register. 

Data entered in this register by use of the 16 console 

switches is retained in the switch register until stored 

by the operator or under program control. The register 

may be changed or cleared as necessary without effect­

ing either memory or the registers of the CPU. 

B. CONTROL CONSOLE 

1. Switch Register 

a) Depressing one of these 16 buttons will set (=1) 

the corresponding bit of the switch register and 

illuminate the indicator in the SW row of indicators 

(ON = 1) for that binary position. Contents of the 

switch register may be entered into one of the 

other registers or a memory location from the 

control console; or into the accumulator under 

program control. (See instruction description of 

Load Accumulator from Switches.) 

b) Sw Clear (Switch Register Clear) 

Resets (=0) entire switch register and all switch 

register indicators on display panel (OFF = 0). 

2. Function Switches (L to R) 

a) Power (rotary key switch) 

1) OFF - all power supplies off. 

2) ON - all power supplies on; master clear of all 

internal and external interrupts when bringing 

power up occurs automatically. 

All console switches are operative. 

3) SW - only following switches are operative in run 

or halt mode: 

1. sw clear 

2. switch register 

3. lamp test 

4. console interrupt 

Data may be entered into switch register for 

program modification and control - but registers 

and memory locations cannot be altered or 

examined from the control console. 



4) LOCK 

Power is on and all control console switches 

except lamp test are inoperative. Program exec­

ution cannot be interrupted or data entered 

from the console. 

b) Lamp Test 

Supplies power to all indicator lamps on display 

panel at same time regardless of state. No data is 

altered nor functions affected. This switch is al­

ways operative, as long as machine power is on. 

c) Console Interrupt 

Causes a trap to location 4 to occur. The console 

interrupt will be serviced by the software routine 

written to handle this condition for the system 

being executed. If the console interrupt occurs 

while the CPU is in the halt mode - the CPU will 

transfer to the run mode. 

d) System Reset 

Operative only when power switch is in ON pos­

ition; disabled in the run mode. This causes all the 

indicators and switch settings to be reset. It is the 

master clear signal which will initialize the central 

processor and all channel interrupts. 

The interrupt system will be disabled and all inter­

rupts disarmed. The status register will be reset; 

except for Halt and I nterrupts Disabled, which will 

be set. 

Data in core memory and the programmable regis­

ters (A,8,X,E and F) will not be changed. 

e) Program Load 

Operative only when power switch is in ON pos­

ition; disabled in the run mode. Programs may be 

loaded from any device. See description of Initial 

Program Load for steps required to use this feature. 

45 

f) Store 

Operative only when power switch is in ON pos­

ition; disabled in the run mode. Used to store data 

from the switch register into the address specified 

by the L-Register. 

Since data stored must pass through the M register, 

the data last transferred to memory can be dis­

played in the Reg row of indicators by selecting 

the M register. 

g) I ncrement and Store 

Operative only when power switch is in ON pos­

ition; disabled in run mode. The L register is incre­

mented by one (L+1), and then, the contents of the 

switch register are stored into the address specified 

by the new value of the location counter. 

h) I ncrement and Display 

Operative only when power switch is in ON posi­

tion; disabled in the run mode. The L register is 

incremented by one (L +1), and then, the contents 

of the memory location specified by the new value 

of the location counter are brought into the M 

register. This data may be displayed in the Reg row 

of indicators by selecting the M register with the 

Reg Select knob. 

i) Display 

Operative only when the power switch is in ON 

position; disabled in the run mode. 

This switch brings the contents of the memory 

address specified in the L register into the M 

register. This data may be displayed in the Reg row 

of indicators by selecting the M register with the 

Reg Select knob. 



j) Set Status (Register) 

Operative only when the power switch is in ON 

position; disabled in the run mode. 

This switch transfers the contents of the switch 

registers to the corresponding indicators in the 

status register. The format of the status register is: 

The Halt indicator cannot be set (=1) or reset from 

the switch register. It can be set only by the Halt 

button, Halt instruction and System Reset Button. 

k) Set L (L register) 

Operative only when the power switch is in ON 

position; disabled in the run mode. 

Th is switch transfers the contents of the switch 

register to the location counter. 

I) Set Reg (indicated by Reg Select) 

Operative only when the power switch is in ON 

position; disabled in the run mode. 

This switch transfers the contents of the switch 

register to the register indicated by the setting of 

the Reg Select knob. They are: 

m)Run 

M - Memory register 

X - Index 

A - Accumulator 

B - Extended Accumulator 

E - Exponent register (optiona I) 

Operative only when the power switch is in ON 

position. 

Resets halt indicator and puts machine in run mode. 

46 

n) Halt 

Operative only when the power switch is in ON 

position. 

This switch stops program execution. If sets (= 1) 

the halt indicator and updates the display registers. 

Only the CPU is halted; it will not affect input/ 

output devices which are running. The CPU is in a 

"wait" state and may be interrupted from a halt by 

the following interrupts: 

1. Power off 

2. Power on 

3. Console interrupt 

4. Channel interrupts 

5. External interrupts 

6. Real-Time clock (traps on zero) 

These interrupts cause the machine to go to run. 

The RTC update does not cause machine to run 

(except when the trap location goes to zero). 

0) Reg Select 

Operative only when the power switch is in ON 

By using this switch, the operator may select which 

register (M. X, A, B or E) is to be displayed in the 

Reg row of indicators; or the register into which 

data will be entered by the Set Reg button. 

THE STATUS REGISTER 

The status register is a composite of five condition indi­

cators, which set the mode of operation of the machine and/ 

or indicate certain special conditions have occurred. 

The format of the status register is: 



The state of these indicators (0 or 1) can be changed from 

the control console; under program control; or by the CPU 

in response to changes in processing or the operating 

environment. 

MODE INDICATOR 

The user mode indicator is meaningful only when 

memory mapping is implemented. When the optional 

memory mapping unit is installed and operating, bit 

11 of the register indicates the mode of the machine; 

if set (=1), the CPU is in the user mode. It will be 

reset (=0) when executing instructions in the system 

mode .. 

The machine will always be in the system mode if 

memory mapping is not implemented. 

Mode I nd icator 

-{

=user 

Bit 11 

0= system 

INTERRUPT INDICATOR 

The interrupt system may be enabled or disabled 

under program control. If enabled, interrupts will be 

allowed to go active according to their priority. If 

disabled, interrupts will be remembered if armed but 

will not be allowed to alter the execution of the 

program. 

I nterru pt System 

{

= Disabled 

Bit 12 

o = Enabled 

47 

HALT INDICATOR 

The CPU may be halted by execution of the Halt in­

struction or by pressing the Halt button on the control 

console. Only single step execution of instructions can 

be performed while this indicator is set. 

Halt 

{

=Halt 

Bit 13 ---
0= Run 

The Halt indicator can be set (=1) only by the Halt 

button, the Halt instruction and the System Reset 

button. It can be reset (=0) only by certain interrupts; 

some traps; and the Run button. 

It can be neither set nor reset by transferring data 

from the switch register by use of the set status button 

on the control console. 

OVERFLOW INDICATOR 

This indicator (Bit 14) will be set if the result of the 

arithmetic operation in the adder exceeds the max­

imum signed magnitude quantity which can be con­

tained in the accumulator. I n other words, if the sign 

of the two operands are equal, but the sign of the 

result is different, the overflow indicator will be set. 

An arithmetic operation may resu It in both an over­

flow and carryout. 

If overflow occurs, the results of the operation (con­

tents of the register) are not valid. When overflow 

occurs, it always set~ the OVF indicator (bit 14); 

however, if overflow does not occur, this will not 

reset (=0) the indicator. 

CARRYOUT INDICATOR 

This indicator (Bit 15) will be set if a carry occurs in 

the adder from the high order (Bit 0) position. Thus, 

if the arithmetic operation results in a quantity greater 

than the accumulator, the carryout indicator is set. 

Carryout occurs according to the result of the arith­

metic operation. 



SYSTEM TRAP INDICATOR 

Location five in core memory is reserved for the system trap 

indicator, If a system trap occurs, a system call will be ex­

ecuted on the location stored in location six. At that time 

the system trap indicator will be set to show what condi­

tion caused the trap, 

I f bits 3, 5, 6, or 7 are set (= 1), it wi II ind icate the con­

dition shown on the diagram. If more than one error con -

dition occurs simultaneously, all of the corresponding bits 

in the trap indicator will be set. 

If the system interrupt occurs and bits 3,5,6, and 7 are all 

equal to zero, this will indicate that an attempt was made to 

execute an unimplemented instruction. 

Since all sixteen possible combinations are utilized in the 

o 3 5 6 7 

I 0 
0 o I I 0 I I 0 0 

standard machine for basic operation codes, any unimple­

mented instruction must be of the extended op code set. 

These commands have the format: 

The operation code is 0000 (bits a to 3); the extended 

operation code is contained in bits 7 to 12. When the trap 

occurs, bits 3,5,6, and 7 of the system trap indicator are set 

zero and bits 7 to 12 of the instruction which caused the 

trap are stored in bits 10 to 15 of the indicator word. The 

location counter will contain the address of the instruction 

which caused the trap. 

In the basic machine (without memory parity, memory 

mapping unit, or optional instruction sets)' only the un­

implemented instruction trap is operative. 

10 15 

0 

I I 

'"-, Invalid Exte nded op code 

-- Memory Parity 
Error 

.1- Privileged Instr. 
Violation 

"--- Protection Key Violation 
(Memory Map) 
Read 
Write 
Execute 

---- Flo tOn Po'nt Over Under Flow Error a I 9 I I 
(L = next instruction) 

48 



DEFINITIONS: 

Bits 

0- Ready 

1 - Device Available 
2 - Device Dependent 

3 - Device Dependent 

4 - Device Dependent 

5 - Length Exception 

6 - Device Exception 

7 - Error@ @ * 

* Notes 

1. Input or output 

2. May be set by OU S 

Ready 

* 

DEVICE STATUS BYTE 

Error 

Device Exception 

Length Exception 

Device Dependent 

Device Available 

4. Types of conditions: 

Tape mark on tape 

Special character 

End of tape (EOT) 

Beginning of tape (BOT) 

Out of paper 

5. Types of conditions: 

Parity error 

Rate overru n 

Card jam 

I nterlocks open 

6. Status byte is cleared by HIO, SIO, and MCLR. 

7. Interrupts are generated only on termination (except for 

HIO and MCLR). 

8. Devices are automatically term inated for emergency con­

ditions, such as: 

(a) broken tape 

3. Error flip-flops not set; device not terminated. (b) interlocks open 

(c) mechanical problems 

49 



PERIPHERAL DEVICE CODES 

(700 Series) 

INPUT OUTPUT REMARKS 

OCTAL HEXA- FUNCTION OCTAL 
HEXA-

FUNCTION 
STANDARD 

DECIMAL DECIMAL DEVICES 

00 00 01 01 

02 02 Read Storage No. 1 03 03 Write Storage No.1 Drum or Disk 

04 04 Keyboard No. 1 05 05 Printer No.1 Teletype 

06 06 Tape Reader No.1 07 07 Tape Punch No.1 ASR 33 

10 08 Byte Input No.1 11 09 Byte Output No.1 

12 OA Read Storage No.2 13 OB Write Storage No.2 Drum or Disk 

14 OC Keyboard No.2 15 OD Printer No.2 Teletype 

16 OE Tape Reader No.2 17 OF Tape Punch No.2 ASR 35 

20 10 21 11 Line Printer 

22 12 23 13 X- Y Plotter No.1 

24 14 Keyboard No.3 25 15 Printer No.3 I BM Selectric 

26 16 Card Reader 27 17 Card Punch 

30 18 Byte Input No.2 31 19 Byte Output No.2 

32 1A 33 1B X- Y Plotter No.2 

34 1C 35 1D 

36 1E 37 1F 

40 20 Incremental 41 21 Incremental 

Tape Read A Tape Write A 

42 22 Analog - Digital 43 23 Digital - Analog 

Converter (in) Converter (out) 

44 24 System in A No.1 45 25 System Out A No.1 Unique Device 

46 26 SYstem in B No.1 47 27 SYstem Out B No.1 (Controller Oriented) 

50 28 Byte Input No.3 51 29 Byte Output No.3 

52 2A 53 2B 

54 2C System in A No.2 55 20 System Out A No.2 Unique Device 

56 2E System in B No.2 57 2F System Out B No.2 (Controller Oriented) 

60 30 Magnetic Tape A 61 31 Magnetic Tape A 

No.1 Read No.1 Write 

62 32 Magnetic Tape B 63 33 Magnetic Tape B 

No.1 Read No.1 Write 

64 34 Magnetic Tape C 65 35 Magnetic Tape C 

No.1 Read No.1 Write 

66 36 Magnetic Tape 0 67 37 Magnetic Tape 0 

No.1 Read No.1 Write 

70 38 Magnetic Tape A 71 39 Magnetic Tape A 

No.2 Read No.2 Write 

72 3A Magnetic Tape B 73 3B Magnetic Tape B 

No.2 Read No.2 Write 

74 3C Magnetic Tape C 75 3D Magnetic Tape C 

No.2 Read No.2 Write 

76 3E Magnetic Tape 0 77 3F Magnetic Tape 0 

No.2 Read No.2 Write 

50 



DECIMALS 

o 

2 

3 

4 

5 

0'1 ..... 
6 

7 

8 

9 

10 

11 

12- 27 

28 -283 

284 -347 

see 4700 TRAPS & INTERRUPTS 

RESERVED CORE ASSIGNMENTS PRIORITY LEVELS TIMING 

HEXADECIMAL 

o 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C -1B 

1C-11B 

11C-15B 

DESCRIPTION SEQUENCE REMARKS /Jsec MULTIPLE FUNCTIONS 

Power Up Interrupt 2 6.67 

__ P2':!Ye.! p~~'!.I~t~r~uEt _______ • ______ 5 _____ -+ ___________ +-___ 6_.6_7 ___ +-__________________ -I 

Real-Time Clock 

(location being decremented) 

Real-Time Clock Trap 

location 

8 

1.38 

6.67 

Decrement 

Location 

Decrement, 

Test and Trap 

__ <2<>~~I!: I!'t.:r~u£t _________ + ______ 9 _____ + ____ ~_:_--__:---.----6-.6-7---t---------------___ ........ 
Unimplemented 
Instruction System Trap Indicator 

__ !d!!,!s!i1l.n~.9 ____________ _ 

Channel 1 Interrupt 

Channel 2 Interrupt 
7 

Channel 3 Interrupt 

Channel 4 Interrupt 

Reserved for External Interrupts 

Instruct 

Service 

Request 

(lowest location 

has highest 

priority) 

7.59 

7.68 

6.90 

Protection Violation 

Privileged Instruction 

Memory Parity 

Service Request 

(I/O or external 

interrupts) 

---------------------I~-----------------;------------------~~----------+-------------------------------, Normal Transfer (block mode) 7.60 
10.12 
12.40 

Reserved for DCDW Pointers 

(64/channel) 

Reserved for System Calls 

(64 monitor entry points) 

6 

Transfer 
Request 

G> In basic machine, only unimplemented instruction trap 

of the system interrupts is operative. 

7.36 

Transfer with data chaining 
Transfer with chaining and new pointer. 

Storage of 

register plus 

transfer 

@ Another interrupt is implemented with memory mapping. 

Called "Map No-match", it is 4th in priority sequence. 



FUNCTIONAL MNEMONIC LIST 

LOAD AND STORE INSTRUCTIONS 

MNEMONIC OP INSTRUCTION NAME LOGICAL FUNCTION FORMAT TIME INSTRUC-
CODE TYPE psec TION 

SET 

LAS 0640 Load Accumulator (Switches) ~ A E .95 ST 
From Switches 

LOA CXXX Load Accumulator (O)~A B 1.84 ST 

LOB 2XXX Load B Register (O)~B B 1.84 ST 

LDD 0680 Load Double (0) ~A; (0+1) ~B 0 3.56 DP 

LDF 0688 Load Floating (0) ~A; (0+1) ~B; (0+2) ~E 0 4.48 FP 

LDH 1XXX Load Halfword O~Ao_i (0) ~A8-15 B 2.09 ST 

LDL 64XX Load A, Literal (lNS)7 ~INSO_6; (INS) ~A L .92 ST 

LDLB 6CXX Load B, Litera I (lNS)7 ~INSO_6; (INS) ~B L .92 ST 

LOS 0648 Load Status (Status) ~A E .95 ST 

LOX 0678 Load Index (O)~X 0 2.76 ST 

STA 7XXX Store Accumulator (A)~O B 1.84 ST 

STB 3XXX Store B Register (B)~O B 1.84 ST 

STD 0690 Store Double (A) ~O; (B) ~0+1 0 3.68 DP 

STF 0698 Store Floating (A) ~O; (B) ~0+1; (E) ~0+2 0 4.60 FP 

STH 5XXX Store Halfword (A)8-15 ~O B 1.84 ST 

STX 0638 Store Index (X)~A 0 2.76 ST 

ARITHMETIC INSTRUCTIONS 

ADC 0608 Add Carry (A)+(CRO) ~A; Carry ~CRO; E 1.20 ST 
1 ~OVF, if overflow 

ADD 9XXX Add to Accumulator (A)+(O) ~A B 1.84 ST 

ADL 66XX Add to A, Literal (lNS)7 ~INSO_6; (lNS)+(A) ~A L 1.05 ST 

ADLB 6EXX Add to B, Literal (INS)7 ~ INSO_6; (lNS)+(B) ~ B L 1.05 ST 

DAD 06AO Double Add (A,B)+(0,0+1) ~ A,B 0 3.91 DP 
If overflow, 1 ~OFV 
If carryout, 1 ~ CRO 

DDV 06B8 Double Divide (A,B) -7 (0,0+1) ~ A,B 0 33.54-39.19 DP 
If overflow, 1 ~OVF; 0 ~CRO 

DFA 06C8 Double Floating Add (A,B,E)+(0,0+1 ,0+2) ~ A,B,E 0 8.03-8.58 til DFP 
+ denotes floating add 

DFD 06F8 Double Floating Divide (A,B,E) -7 (0,0+1 ,0+2) ~ A,B,E 0 35.26-40.91 Il DFP 
-7 denotes floating divide 

DFM 06E8 Double Floating Multiply (A,B,E) X (0,0+1 ,0+2) ~ A,B,E 0 29.61-29.91 Il DFP 
X denotes floating mUltiply 

DFS 0608 Double Floating Subtract (A,B,E) - (0,0+1 ,0+2) ~ A,B,E 0 8.03-8.58 :fll DFP 
- denotes floating subtract 

DIV 0708 Divide (B,A)/(O) ~ A; remainder ~ B 0 7.29-7.94 MD 

DMP 06BO Double Multiply (A,B,) X (0,0+1) ~A,B 0 27.84-28.14 DP 
If overflow, 1~OVF; 0 ~CRO 

DSB 06A8 Double Subtract (A,B) - (0,0+1) ~ A,B 0 3.91 DP 
If overflow, 1~OVF; If carryout, 1 ~CRO 

FAD 06CO Floating Point Add (A,B) + (0,0+1) ~A,B 0 9.11-12.01 :fll FP 
+ denotes floating add 

FDV 06FO Floating Point Divide (A,B) -7 (0,0+1) ~ A,B 0 38.1 4-46.09 Il FP 
-7 denotes floating divide 

52 



ARITHMETIC INSTRUCTIONS (CONTINUED) 

MNE- OP INSTRUCTION NAME LOGICAL FUNCTION FORMAT TIME INSTRUC-

MONIC CODE TYPE p.sec TION 

SET 

FMP 06EO Floating Point Multiply (A,B) X (0,0+1) ~A,B 0 30.59-33.19 tt FP 
X denotes floating multiply 

FSB 0600 Floating Point Subtract (A,B) - (0,0+1) ~A,B 0 9.81-13.06 =l=tt FP 
- denotes floating subtract 

MIN 8XXX Memory Increment (0) + 1 ~O B 2.14 ST 
Skip on Zero If (0)=0, (L)+2 ~ L 

If (0)4'0, (L)+1 ~ L 

MPY 0700 Multiply (A) X (0) ~B,A 0 6.84-8.29 MD 

SUB DXXX Subtract from Accumulator (A) - (0) ~A B 1.84 ST 

LOGICAL INSTRUCTIONS 

AAB 0600 AND Accumulator (A) n(B) ~A E 1.10 ST 
With B Register 

AND FXXX AND with Accumulator (A) n(Q) ~A B 1.84 ST 

ANL 60XX AND The Accumulator, (lNS)7,~INSO_6; (INS) n (A) ~A L 1.05 ST 
Literal 

ANLB 68XX AN 0 the B register, Literal (INS)7 ~INSO_6; (INS) n (B) ~B L 1.05 ST 

AOB 0610 OR Accumulator (A) U(B) ~A E 1.10 ST 
With B register 

XOL 62XX Exclusive OR the 
Accumulator, Literal 

(INS)7 ~INSO_6; (INS) $ (A) ~A L 1.05 ST 

XOLB 6AXX Exclusive OR the B register (INS)7 ~ I NS
O

_
6

; (INS) $ (B) ~ B L 1.05 ST 
Literal 

XOR BXXX Exclusive OR With (A) $(0) ~A B 1.84 ST 
Accumulator 

REGISTER MANIPULATION 

ESA 0620 Extend Sign of Accumulator (A)O ~BO-15 E 1.00 ST 

XAX 0618 Exchange Accumulator and (A) ~X; (X) ~A E 1.10 ST 
Index 

XBX 0670 Exchange B register (B) ~X; (X) ~B E 1.10 ST 
and Index 

OPERATE GROUP 

RADD Register Add S+ D~D 1.45 

RCMP Register Complement S~D 1.25 

RCPY Register Copy S~D 1.05 

RDEC Register Decrement S-1 ~D 1.25 

RINC Register Increment S+ 1 ~D 1.10 

RNEG Register Negate S+ 1 ~D 1.25 

RSUB Register Subtract S-D~D 1.45 

RXOR Register Exclusive OR S$D~D 1.45 

=1= +.25N for alignment 

53 II +.55N for normalize 



SHIFT INSTRUCTIONS 

LAL 0260 Long Arithmetic, Left Shift (A)i ~Ai_1' (B)i ~Bi-1' 0<i<16 S 1.38+.23N ST 

(B)0~A15;0~ B15 
OVF Set if sign changes 

LAR 0220 Long Arithmetic, Right Shift (A)i ~Ai+1' (B)i ~Bi+1' for O<i < 16 S 1.38+.23N ST 

(A)0~A1; (A)15~BO 

LCL 03EO Long Circulate, Left (A)i ~Ai-1' (B)i ~Bi-1' 0<i<16 S 1.38+.23N ST 

(CRO) ~B15; (B)O ~A15; (A)O ~CRO 

LCR 03AO Long Circulate, Right (A)i ~Ai+1' (B)i ~Bi+1' 0<i<15 S 1.38+.23N ST 

(CRO) ~AO; (A)15 ~BO; (B)O ~CRO 

LLL 02EO Long Logical, Left Shift (A)i ~Ai-1' (B)i ~Bi-1; 0<i<16 S .23N - 2.07 ST 

(B)O ~A15; 0 ~B15 

LLO 0628 Locate Leading Ones If A = 0, (L) + 1 ~L; If A f- 0, (A)i ~Ai-1 E 1.05 (min.) ST 

until (A)O = 1. (X) + 1 ~ X for each position 1.65 + .20N (max.) 

shifted. (L) + 2 ~ L when (A)O = 1; and 0 ~AO 

LLR 02AO Long Logical, Right Shift (A)i ~Ai+1' (B)i ~Bi+1' 0 <i <15 S .23N - 2.07 ST 

O~AO; (A)15 -+(B)O 

LRL 0360 Long Rotate Left (A)i ~Ai_1' (B)i ~Bi_1' O<i <16 S .23N - 2.07 ST 

(B)O ~A15; (A)a ~B15 

LRR 0320 Long Rotate Right (A)i ~Ai+1' (B)i ~Bi+1' for a <i < 15 S .23N - 2.07 ST 

(B)15 ~AO; (A)15 ~BO 

NDX 0710 Normalize and Decrement X If A and B = 0; set X = 0 and (L) + 1 ~ L. E 1.50 (min,) ST 

If A or B 1" 0; then, Ai ~Ai_1; Bi ~Bi_1; 
A "4 0, 1.45 + .45N (max,) BO ~A15 until (A)O = 1. 

(X) - 1 ~ X for each position shifted; and A = 0,1.70 + .45N (max.) 

(L)+1~L. 

SAL 0240 Short Arithmetic, (A)i~Ai-1 forO<i<16;0~A15' S 1.38+.23N ST 

Left Shift OVF set if sign changes 

SAR 0200 Short Arithmetic (A)i~Ai+1 forO<i<15; (A)0~A1 S 1.38+.23N ST 
Right Shift 

SCL 03CO Short Circulate, Left (A)i ~Ai-1' 0 <i <16; (A)O ~CRO; s 1.38+.23N ST 

(CRO) ~A15 

SCR 0380 Short Circulate, Right (A)i ~Ai+1' 0 <i < 15 S 1.38+.23N ST 

(A)15 ~CRO; (CRO) ~AO 

SLL 02CO Short Logical, Left Shift (A)i ~Ai-1' 0 <i <16; 0 ~A15 S 1.38+.23N ST 

SLR 0280 Short Logical, Right Shift (A)i ~Ai+1' 0 <i <15; O~AO S 1.38+.23N ST 

SRL 0340 Short Rotate Left (A)i ~Ai_1 for O<i <16; (A)O ~A15 S 1.38+.23N ST 

SRR 0300 Short Rotate Right (A) ~Ai+1 forO<i<15; (A)15 ~AO S 1.38+.23N ST 

JUMP AND SKIP INSTRUCTIONS 

COT 0650 Carry Out Test (L) + 1 ~ L if CRO = 1 E 1.15 ST 

(L) + 2 ~ L if CRO = 0; 0 ~CRO 

JMP 4XXX Jump Q~L B .92 ST 

JRT 0630 Jump Return (Q) ~L D 2.76 ST 

JSL AXXX Jump and Store Location (L) + 1 ~ (Q); Q + 1 ~ L B 2.76 ST 

OFT 0658 Overflow Test (L) + 1 ~ L, 0 ~OVF, if OVF = 1 E 1.15 ST 

(L) + 2 ~ L, if OVF = a 

54 



JUMP AND SKIP INSTRUCTIONS (CONTINUED) 

SKN EXXX Skip if A =I to Memory 

CONTROL INSTRUCTIONS 

ARM 

CLI 

DIS 

ENA 

HLT 

SCO 

SOF 

0180 

0100 

OOCO 

0080 

0000 

0660 

0668 

Arm Interrupts 

Clear Interrupt 

Disable Interrupts 

Enable Interrupts 

Halt 

Set Carry Out 

Set Overflow 

SYSTEM INSTRUCTIONS 

SRT 0140 System Return 

SYCL 0740 System Call 

TSL 0040 Test and Set Lock 

1/0 INSTRUCTIONS 

ACT 

10C 

RDP 

WTP 

0100 

01CO 

01FO 

01EO 

Activate Parallel I/O 

I nput/Output Control 

Read Parallel 

Write Parallel 

CHANNEL COMMANDS 

EOA 

HIO 

IIU 

IUS 

OUS 

SDA 

SDR 

SIO 

TWC 

XMT 

Execute Order in A 

Halt I/O 

I nput Interrupt Unit 

Input Unit Status 

Output Unit Status 

Skip If Device Available 

Skip if Device Ready 

Start 1/0 

Terminate when complete 

Transmit Characters 

(L) + 1 -+ L, If (A) (Q) 

(L) + 2 -+ L, If (A) -:P (Q) 

Arm selected interrupts 

Clear Current Priority Interrupt 

Disable I nterrupt System 

Enable I nterrupt System 

1 -+CRO 

1 -+OVF 

(Q) -+L 
(Q + 1) -+Status 
(Q+2)-+X 
(Q+ 3)-+A 
(Q + 4) -+B 

(L) -+((BA + INS
10

_
15

)) 

(ST) -+((BA + INS10_15)) + 1 

(X) -+((BA + INS
10

_15)) + 2 

(A) -+((BA + INS1O_15)) + 3 

(B) -+((BA + INS1O_15)) + 4 

O-+CRO,OVF 

(BA + INS1O_15) + 1 -+ L 

If (Q) = 0, (L) + 1-+L 

IF (Q) "# 0, (L) + 2 -+ L 

O-+Q 

(DEVICE) -+A, L+2 if device ready 

(A) -+ (DEVICE), L+2 if device ready 

55 

B 

o 
E 

E 

E 

E 

E 

E 

o 

SCL 

o 

o 
o 
E 

E 

CC 

CC 

CC 

CC 

CC 

CC 

CC 

CC 

CC 

CC 

1.84 

1.84 

.92 

.92 

.92 

.95 

.95 

6.44 

7.66 

3.06 

1.84 

3.19 - 3.44 

1.80 

1.80 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 



NUMERIC MNEMONIC LIST 

HEXADECIMAL MNEMONIC HEXADECIMAL MNEMONIC 
CODE CODE 

0000 HLT 0678 LDX 
0040 TSL 0680 LDD 
0080 ENA 0688 LDF 
OOCO DIS 0690 STD 
0100 CLI 0698 STF 
0140 SRT 06AO DAD 
0180 ARM 06A8 DSB 
01CO IOC 06BO DMP 
01DO ACT 06B8 DDV 
OlEO WTP 06CO FAD 
01FO RDP 06C8 DFA 
0200 SAR 06DO FSB 
0220 LAR 06D8 DFS 
0240 SAL 06EO FMP 
0260 LAL 06E8 DFM 
0280 SLR 06FO FDV 
02AO LLR 06F8 DFD 
02CO SLL 0700 MPY 
02EO LLL 0708 DIV 
0300 SRR 0710 NDX 
0320 LRR 0740 SYCL 
0340 SRL lXXX LDH 
0360 LRL 2XXX LDB 
0380 SCR 3XXX STB 
03AO LCR 4XXX JMP 
03CO SCL 5XXX STH 
03EO LCL 60XX ANL 
0600 AAB 62XX XOL 
0608 ADC 64XX LDL 
0610 AOB 66XX ADL 
0618 XAX 68XX ANLB 
0620 ESA 6AXX XOLB 
0628 LLO 6CXX LDLB 
0630 JRT 6EXX ADLB 
0638 STX 7XXX STA 
0640 LAS 8XXX MIN 
0648 LDS 9XXX ADD 
0650 COT AXXX JSL 
0658 OFT BXXX XOR 
0660 SCO CXXX LDA 
0668 SOF DXXX SUB 
0670 XBX EXXX SKN 

FXXX AND 

56 



ALPHABETIC INSTRUCTION LIST 

OPERATION CODE TIME 
MNEMONIC INSTRUCTION NAME HEX. BINARY MICRO-SECONDS 

Min. Max. 

AAB AND Accumulator & B Register 0600 0000011000000000 1.10 

ACT Activate Channel 0100 0000000111010000 

ADC Add Carry 0608 0000011000001000 1.20 

ADD Add to Accumulator 9XXX 1001 XXXXXXXXXXX 1.84 

ADL Add to A, Literal 66XX 01100110XXXXXXXX 1.10 

ADLB Add to B, Literal 6EXX 01101110XXXXXXXX 1.10 

AND AND with Accumulator FXXX 1111 XXXXXXXXXXX 1.84 

ANL AND the Accumulator, Literal 60XX 01100000XXXXXXXX 1.10 

ANLB AND the B Register, Literal 68XX 01101000XXXXXXXX 1.10 

AOB OR Accumulator with B Register 0610 0000011000010000 1.10 

ARM Arm Interrupts 0180 0000000110000000 1.84 

CLI Clear Interrupt 0100 0000000100000000 0.92 

COT Carryout Test 0650 0000011001010000 1.15 

DAD Double Add 06AO 0000011010100000 3.91 

DDV Double Divide 06B8 0000011010111000 36.39 - 48.39 

DFA Double Floating Add 06C8 0000011011001000 7.83 - 8.98=1= 

DFD Double Floating Divide 06F8 0000011011111000 38.21 - 43.11 

DFM Double Floating Multiply 06E8 0000011011101000 29.91 - 31.26 

DFS Double Floating Subtract 06D8 0000011011011000 7.83 - 8.98=1= 

DIS Disable Interrupts OOCO 0000000011000000 0.92 

DIV Divide 0708 0000011100001000 8.14 - 8.99 

DMP Double Multiply 06BO 0000011010110000 28.29 - 28.84 

DSB Double Subtract 06A8 0000011010101000 3.91 

ENA Enable Interrupts 0080 0000000010000000 0.92 

EOA Execute Order in A * XOOll XXOXXXXXXXX 

ESA Extend Sign of Accumulator 0620 0000011000100000 1.00 

FAD Floating Point Add 06CO 0000011011000000 9.11 - 12.01 

FDV Floating Point Divide 06FO 0000011011110000 40.74 - 47.99 

FMP Floating Point Mu Itiply 06EO 0000011011100000 31.99 - 33.49 

FSB Floating Point Subtract 06DO 0000011011010000 9.81 - 13.06 

HIO Halt I/O * XOOOOXXOXXXXXXXX 

HLT Halt 0000 0000000000000000 

IDN Input Device Number * X0100XXOXXXXXXXX 

IIU Input Interrupting Unit * Xl011XXOXXXXXXXX 

IOC I/O Control 01CO 0000000111000000 

IUS Input Unit Status * X 11 OOXXOXXXXXXXX 

JMP Jump 4XXX 01 OOXXXXXXXXXXXX 0.92 

JRT Jump Return 0630 0000011000110000 2.76 

JSL Jump and Store Location AXXX 1010XXXXXXXXXXXX 2.76 

LAL Long Arithmetic Left Sh ift 0260 00000010011XXXXX 1.38 + .23N 

LAS Load Accumulator from Switches 0640 0000011001000000 0.95 

* I/O Commands 

=1= +.21 N for alignment 

):{ +.55N for normalize 
57 



OPERATION CODE TIME 
MNEMONIC INSTRUCTION NAME HEX. BINARY MICRO-SECONDS 

Min. Max. 

LAR Long Arithmetic Right Sh ift 0220 00000010001XXXXX 1.38 + .23N 

LCL Long Circu late Left 03EO 00000011111 XXXXX 1.38 + .23N 

LCR Long Circulate Right 03AO 00000011101 XXXXX 1.38 + .23N 

LDA Load Accumulator CXXX 1100XXXXXXXXXXXX 1.84 

LDB Load B Register 2XXX 0010XXXXXXXXXXXX 1.84 

LDD Load Double 0680 0000011010000000 3.56 

LDF Load Floating 0688 0000011010001000 4.48 

LDH Load Halfword lXXX 0001 XXXXXXXXXXXX 2.09 

LDL Load A, Literal 64XX 01100100XXXXXXXX 0.92 

LDLB Load B, Literal 6CXX 01101100XXXXXXXX 0.92 

LDS Load Status A 0648 0000011001001000 0.95 

LDX Load Index 0678 0000011001111000 2.76 

LLL Long Logical Left Shift 02EO 00000010111 XXXXX .23N -2.07 

LLO Locate Leading Ones 0628 0000011000101000 1.05 

LLR Long Logical Right Shift 02AO 00000010101 XXX XX .23N -2.07 

LRL Long Rotate Left 0360 00000011011 XXXXX .23N -2.07 

LRR Long Rotate Right 0320 00000011001 XXX XX .23N -2.07 

MIN Memory Increment & Skip on Zero 8XXX 1000XXXXXXXXXXXX 2.14 

MPY Multiply 0700 0000011100000000 6.84 - 8.44 

NDX Normalize & Decrement Index 0710 0000011100010000 1.50 

OFT Overflow Test 0658 0000011001011000 1.15 

OUS Output Unit Status * X0101XXOXXXXXXXX 
RADD Register Add ** 1.45 

RCMP Register Complement ** 1.25 

RCPY Register Copy ** 1.05 

RDEC Register Decrement ** 1.25 

RDP Read Parallel 01FO 0000000111110000 
RINC Register Increment ** 1.10 

RNEG Register Negate ** 1.25 

RSUB Register Subtract ** 1.45 

RXOR Register Exclusive OR ** 1.45 
SAL Short Arithmetic Left Sh ift 0240 00000010010XXXXX 1.38 + .23N 

SAR Short Arithmetic Right Shift 0200 00000010000XXXXX 1.38 + .23N 

SCL Short Circu late Left 03CO 00000011110XXXXX 1.38 + .23N 

SCO Set Carryout 0660 0000011000100000 0.95 

SCR Short Circu late Right 0380 00000001100XXXXX 1.38 + .23N 

SDA Skip if Device Available * Xl 01 OXXOXXXXXXXX 

SDR Skip if Device Ready * X 1 001 XXOXXXXXXXX 

SIO Start 1/0 * XOOOl XXOXXXXXXXX 

SKN Skip if A I- to Memory EXXX 1110XXXXXXXXXXXX 1.84 

SLL Short Logical Left Sh ift 02CO 00000010110XXXXX 1.38 + .23N 

* I/O Commands 

** Operate Group 

58 



OPERATION CODE TIME 
MNEMONIC INSTRUCTION NAME HEX. BINARY MICRO-SECONDS 

Min. Max. 

SLR Short Logical Right Shift 0280 00000010100XXXXX 1.38 + .23N 

SOF Set Overflow 0668 0000011001101000 0.95 

SRL Short Rotate Left 0340 00000011010XXXXX 1.38 + .23N 

SRR Short Rotate Right 0300 00000011000XXXXX 1.38 + .23N 

SRT System Return 0140 0000000101000000 6.44 

STA Store Accumulator 7XXX 0111XXXXXXXXXXXX 1.84 

STB Store B Register 3XXX 0011 XXXXXXXXXXXX 1.84 

STD Store Double 0690 0000011010010000 3.68 
STF Store Floating 0698 0000011010011000 4.60 

STH Store Halfword 5XXX 0101000000000000 1.84 

STX Store Index 0638 0000011000111000 2.76 

SUB Subtract from Accumulator DXXX 1101 XXXXXXXXXXXX 1.84 

SYCL System Call 0740 0000011101000000 7.66 

TSL Test and Set Lock 0040 0000000001000000 3.06 

TWC Terminate When Complete * X0111 XXOXXXXXXXX 

WTP Write Parallel OlEO 0000000111100000 

XAX Exchange Accumu lator & Index 0618 000001100001'-000 1.10 

XBX Exchange B and X 0670 0000011001110000 1.10 

XMT Transmit * X0010XXOXXXXXXXX 

XOL Exclusive OR the Accumulator, 62XX 01100010XXXXXXXX 1.10 

Literal 

XOLB Exclusive OR the B Register, 6AXX 01101010XXXXXXXX 1.10 

Literal 

XOR Exclusive OR with Accumulator BXXX 1011XXXXXXXXXXXX 1.84 

* I/O Commands 

All specifications subject to change. 

59 



Scientific Control Corporation 

P,O, Box 34529 Dallas, Texas 75234 214-242-6561 TWX 910-860-5509 

EASTERN REGION 1222 Route 46, Su ite 217 400 Brookes Lane, Su ite 125 288 Clayton Street, Suite 204 

Parsippany, New Jersey 07054 Hazelwood, Missouri 63042 Denver, Colorado 80206 

4321 Hartwick Road , Suite 104 201-335-3001 314-848-3500 303-322-0516 

College Park, Maryland 20740 

301 -779-3330 WESTERN REGION 
2024 Riverdale Street 3110 Southwest Freeway, Su ite 12 

West Spr ingfield , Mass. 01089 Houston, Texas 77006 

7100 Baltimore Ave" Suite 105 413-781 -0063 713-526-5721 780 Welch Road, Suite 208 

College Park , Maryland 20740 Palo Alto, California 94304 

301 -779-2510 CENTRAL REGION 415-328-8980 

6990 Lake Ellenor Dr " Su ite 112 612 Exchange Bank Building 2510 Dempster Street, Su ite 102 9550 Flair Drive, Suite 306 

Orlando, Florida 32809 Dallas, Tex as 75235 Des Plaines, Illinois 60016 EI Monte, California 91731 

305-855-5833 214-358-1331 312-297-2470 213-443-0143 

( 
SCC 52-11-26-81 


