
-

Scientific Control Corporation

I

SPL Assembler Manual
650

SOC 13-866

SCIENTIFIC CONTROL CORPORATION

650 SPL REFERENCE MANUAL

A650-866-1

TABLE OF CONTENTS

SECTION

I.

II.

Ill.

INTRODUCTION •

GENERAL DESCRIPTION •

A.
B.

C.

D.

Program •
Symbolic Instruction Format •

1.

2.

3.

4.

5.

Symbolic Addresses.

a.
b.
c.
d.

Symbolic Labels •
Program Point Addresses •
Absolute Addresses
Special Addresses • • •

Location Field

Operation Field •

a. Indirect Address

•

•

•

Variable Field (Address, Tag Field) •

Comments Field

Literals

Data Items

1.
2.
3.
4.

Octal Integers •
Double Precision Decimal Integers .'.
Double Precision Floating Point Numbers •
Alphanumeric Data •

PSEUDO-OPE~\TIONS •

A.
B.
c.
D.
E.
F.
G.
H.
I.

BCI •
BSS •
CALL
DEC •
EQU •
END •
EVEN
JMP •
NANE

PAGE

1

3

3
3

5

5
5
6
6

6

6

7

7

8

8

9

9
9
9
10

11

11
12
12
12
13
13
14
ll~

14

.SECTION

IV.

v.

J.
K.
L.

ORG ••• • • • • • • • • • • • • • • ·
PAR • • • • ~ • • • • • • • • • • • • • • • • • • •
Operation Definitions • • • • • • • • • • • • • • •

MACHINE INSTRUCTIONS • · · • • • • • • • • • • · • • ·
A. Symbol Table . · · • • • • • · • • • · • · · • B. Data Transfer Instructions · • · • · · • •
C. Arithmetic Instructions • · · • • · • • · • D. Control and Test Instructions • · • • · • · · · · · E. Shift Instructions. · · · · · · · F. Register Change Instructions • • • • · • · G. Literal Instructions · · • • · · • · • • · • · · • H. Micro-Operate Instructions · · · • • · • • • · · •
1. Programmed-Operate Instruction Code • · · · · • J. 650 Extended Operation Codes · · · • • · • • •

1. Arithmetic • · · • • • • · · .. · · • • · • • · 2. Shifts • • • · · · · • · · • · • · • •

K. Input/Output Instructions · • • · · · • • · • · • ·
ASSEMBLER OPERATION • · · · • • • • · • • • • · · · · ·
A. Program Listing • · · · • · B. Error Indications • · · • .. · · • · · · • • · · c. Assembly Information · · · · • • • · · • · · · D. Source Tape Updating Procedure • • · · · • · ·

APPENDICES

A MNEl-10Nl C OPERATION CODES ·
B sec 650 }!ACHINE INSTRUCTIONS ·
c sec 650 STANDA..~D CHARACTER CODES ·

PAGE

14
15
16

17

19
20
20
22
24
28
29
30
31
34

34
36

37

39

40
40
41
42

44

45

46

II.

GENERAL DESCRIPTION

Programs written in 8PL assembly language are processed into objeet programs

by the SPL assembler. The SPL assembler accepts assembly language programs

from either the paper tape reader or the typewriter. A listing of the assem­

bled pro~rams may be obtained on the typewriter. The assembled programs are

punched onto paper tape in one of two forms: Relocatable binary format or

Absolute binary format.

A. PROGRAM

An SPL assembly language program consists of a series of one or more lines,

the last of which must be an END directive.

A line contains a symbolic assembler delcaration, a machine instruction,

or a symbolic instruction.

A program may contain fixed or relative instructions and addresses. Fixed

instructions and addresses refer to a fixed memory location when the pro­

gram is loaded. Relative instructions and addresses are relative to the

program and are relocated by the Loader when the program is loaded. The

type fixed or relative is defined by an ORG declaration.

B. SYMBOLIC INSTRUCTION FORMAT

A symbolic instruction line consists of a location field, an operation

field, a variable field (address, tag field), and a comments field. A

line is one logical unit and the fields within a line are defined as

being in fixed character positions or columns.

3.

For paper tape and typewriter, a line consists of a string of up to 80

character positions t.rminated by a carriage return. The fields within

a line maybe defined as starting at a fixed character position or may be

defined by a tab character to the position.

The format of a line is as shown on the coding form, on the following

page.

4.

SCIENTIFIC CONTROL SYSTEMS, INC.
14008 DISTRIBUTION WAY

DALLAS, TEXAS 75234
80 COLUMN CODING AND DATA FORM

PROGRAM

ROUTI NE

STATE­

MENT

NO.

LOCATION

C
o
N FORTRAN ST ATEMENT
T.

OPERATION ADDRESS. TAG

NAME

UNI T DATE

EXT. PAGE

FORTRAN IDENTI FICATION

COMMENTS SPL

123456789 10111213 41S16171819~021~22324125~62728129I3o.a132333435363713839140414243~445146474849I505152~35455~657585960~1626364656667~8~970717273~47!576777817880

i
I I ! i I I I

I I I I
I

I

! I
I I
i i

I
I

I I J i ~

i ! I i I
._-- I !

'--'-+-j

i I I i , ' I I
! I
I

I
i

! j I
I I i " I t-r -! --lil--t--t--+---+---t--t--t-+-+-+-+--+--1-+--+-+-+--4-t-+-+-I-+-t-+-+--+-I--+--+-+-+-I--+-+-+~r-+---+-+--+--1I-+--+--+-t-+-+-+--t--

-+~i~~1~~~~~1-~~1-~~+t~~I~'-~t~f1~---~

12\34 !5 15 7 81f/l0 ,112,3l,415161171819!2021222324i2526!27!2829303132133343536~73839404142i43i444546474849M5152535455~65 58 59160 61~2 63 646516667 '68 69 7C 71 7217 74 7!5 76177178 78 80

1

1. Symbolic Addresses

A symbolic address is a collection of characters which serves as a

name for a location used by the program. The assembly process will

assign a unique location to each symbol appearing in the program. We

shall distinguish four types of addresses which may appear in a pro­

gram: (1) Symbolic, (2) Program point, (3) Absolute, and (4) Special.

a. Symbolic Labels

A symbolic label consists of one to six non-blank, alphanumeric

characters. The first character must be an alphabetic character

(the currency symbol, 1$1, is considered to be alphabetic).

Each symbol used must receive a memory location as its assignment.

This may be accomplished in one of two manners - it may appear in

the location field or it may be defined by the EQU pseudo-oper­

ation described later. In either case, a symbol must be defined

preCisely once.

b. Program Point Addresses

Program point addresses provide the assembler with short-term

memory for symbols as opposed to the long~term memory provided

by symbolic labels. When written in the location field, the pro­

gram point takes the form of a decimal point followed by a single

letter, in the address field, by + or .. followed by a single letter.

The operand address "+L" refers to the next cell to be defined as

".L"; the operand address "-L" refers to the cell most recently de­

fined as n.L". Program point addresses may be defined only by ap-

5.

pearing in the location field and may be re-defined in this

manner indefinitely.

c. AbsoluteAddresses

An absolute address (machine address) consists of one to five

decimal digits or 1-5 octal digits preceded by a "ttf character.

If 'desired, leading zeros need not be written. The assembler

will use the given number rather than treat the address as sym­

bolic. Absolute addresses may not appear in the location field.

d. Special Address

The symbol ,*' acting as an address indicates the address of the

instruction being assembled. The symbol '**1 forces a zero

address, but indicates that the address may be changed by the pro­

gram. Special address may not appear in the location field.

2. Location Field

The location field occupies column 1-6; column 7 is always blank.

The location fi~ld may contain any allowable symbolic address as a

label, or may be left blank.

As asterisk character ,*' in column one of the location field def.ines

the line as being a commen~ line. A comment line is not processed

by 8PL except for listing purposes. Comment lines may appear any­

where within a program.

3. Operation Field

Operation codes are written using the standard mnemonic abbrevia­

tions. They should be written starting in column 8 of the operation

6.

field. If desired, a 1 or 2 digit octal operation code may be

written. The operatiQn field will also be used for pseudo-in­

structions which will be described later.

a. Indirect Address

The specification that the operand address of an instruction

is an indirect address is signified by the presence of an

asterisk character '*' immediately following the operation

code.

4. Variable Field (address, Tag Field)

The variable field begins in column 16 and is terminated by

the first blank character after column 16.

The variable field consists of a symbolic address or a symbolic

address followed by a ,+, or t_t followed by a decimal or octal

integral increment. Octal increments are written with an utI!

followed by an octal digit string. The variable field may be lef~

blank if not required by the instruction. Following the vari­

able field, a comma followed by an X or D may occur if other than

the relative or relative indirect mode of addressing is required.

The D indicates the direct mode while the X indicates the indexed

mode.

The index mode designated (X) does not cause a modification to the

current line instruction and is introduced only to make the sym­

bolic code line more readable.

7.

5. Comments Field

The comments field follows the variable field and may extend

to column 80 of a line.

The comments field may contain programmer remarks and is not

processed by SPL except for listing purposes.

c. LITERALS

A literal is a symbol referenced as a constant to be defined by SPL.

A literal may appear only in the variable field of a line and only

for the four mnemonic literal instructions, ANL, XOL, LOL, and ADL.

It cannot be indexed, and may not appear in an expression.

A literal is a one to two digit optionally signed decimal or octal

integer or any single character preceded by the ,=, character.

For the literal instructions, LDL and ADL, the 6-bit literal address

Y is considered to be a signed integer, with -140=-32 ~ Y ~ 31='37.

(The apostrophe prefixed number indicates an octal number as written

for SPL.) Negative values have the 6-bit two's complement of the in­

teger value placed in the address portion of the literal instruction.

For the literal instructions AN~ and XOL, the 6-bit literal address Y

is considered to be a non-negative integer, with 00 ~ Y ~ 63=177.

If the literal address is represented with an ,=, followed by a single

character, then 8PL places the equivalent 6-bit binary configuration

for that character as the literal instruction address.

8.

9.

Examples:

LDL 1
ADL -5
ANL '77
ANL =A
XOL '40

D. DATA ITEMS

Three types of data items are processed by SPL: Oeta1, Decimal, and

alphanumeric. They are specified by pseudo-operations PAR, DEC and

BCI (see 111 PSEUDO OPERATIONS).

1. Octal Integers

An octal data items consists of one word containing from one to

four octal digits. The octal data item is converted to binary.

If the item is preceded by a minus sign, the two's complement of

the binary number is generated.

2. Double Precision Decimal Integers

Double precision decimal integers are represented internally as

two word two's complement data items. The most significant part

of the number is contained in the first word and the least signi-

ficant part is contained in the next successive word. The first

word must be at an even machine location. A double precision, I,

must be in the range -33554432=-224 ~ I ~ 224_1=33554431.

SIGN VALUE
Even Location Word 1: ~o 1 __________ 1_1~1 most significant

11 least significant ------.....

3. Double Precision Floating Point Numbers

A floating point number is a decimal number which is expressed

as either of the following:

A signed or unsigned decimal number containing a decimal point

optionally followed by an exponent part consisting of the letter E

followed by a signed or unsigned decimal integer.

A signed or unsigned decimal integer optionallI containing a decimal

point, followed by an exponent part consisting of the letter E

followed by a signed or unsigned decimal integer.

The number following the letter E is the power of ten to which the

number is to be raised when it is converted.

Examples: 1.57
1.57E6
l57E-6

Double precision floating point numbers are represented internally

as three word two's complement data items. The data item consists

of a 2-word 23 bit mantissa plus sign,where most significant part

is carried in an even machine location, followed by a 1-word twelve

bit signed binary exponent. The magnitude of a double precision

floating point number, F, must be in the range 2-2048 ~ F ~ 22048.

The mantissa of the number must be less than 224_1=33554431.

Even Location Word 1: 1 11
~~~--------.--~~ lYord 2: 11 

Mantissa (most significant) 
" (least significant) 

Word 3: 11 Exponent 

Sign of exponent 

4. Alphanumeric Data 

An alphanumeric data item is composed of from one to two characters. 

These characters are converted to six-bit character codes and stored 

as one word data items. (The character codes are listed in Appendix B. 

10. 



III 

PSEUDO-OPERATIONS 

Pseudo-operations are operation codes which direct the assembler to perform 

operations on the program. Pseudo-operations do not normally cause actual 

machine instructions to be output, but cause memory allocations, constant 

definitions, symbolic definitions, or external program linkages. 

Pseudo-operations are written similar to normal operations, with any ex­

ception to be noted under the description of the particular pseudo-opera­

tion. The location field of any pseudo-operation may contain a symbolic 

name which (with the exception of EQU) will be assigned the next address 

in sequence, prior to any effects the pseudo-operation might have on sub-

sequent address assignments. 

A. BCI 

The BCI pseudo-operation specifies words of data expressed as 6-bit 

BCD characters packed two per word. 

The variable field contains a word count followed by a comma followed 

by a string of characters. The word count specifies the number of 2 

character words present in the character string. Blanks are counted 

as significant characters in the string. 

Examples: 

A 

B 

BCI 

BCI 

2, DATA 

6, DATA WORDS 

11. 



B. BSS 

The BSS ps~udo-operation declares a data area which is reserved by the 

program. 

The variable field contains a symbolic address which defines the number 

of words to be reserved. The value of the symbolic address must have 

an absolute value. 

Examples: 

C. CALL 

A BSS 5 
C EQU '75 

B BSS 200 
BSS C 

The CALL pseudo-operation creates a link to an external subprogram 

CALL generates a two word link to an object time transfer routine and 

indicates, to the Loader, the name of the required subprogram. 

Programs using CALL must not be absolute and may not use direct addresses 

'75 - '77. 

D. DEC 

The DEC pseudo-operation specifies words of data expressed as double 

precision decimal or floating point numbers. The first word of the data 

will be set to an even location in the machine. 

The variable field contains one or more double precision, decimal in-

tegers or floating point numbers separated by commas. Negative numbers 

12. 



will be converted to two's complement. As many items as desired may 

be specified in the variable field. The format of decimal numbers is 

described in Section 11, D., 2. 

Examples: 

E. EQU 

A DEC 
B DEC 
C DEC 

1,6 
25, 1, 7E-8, 2E5, 3. 
-27 

The EQU pseudo-operation specifies the equivalence of symbols within a 
program. 

The location field contains a label which is set as having the value or 

address specified in the variable field. 

The variable field contains a symbolic address. Any symbolic labels 

must be defined prior to appearing within the EQU pseudo-operation. 

That is, any symbolic labels appearing in the variable field must have 

appeared in the location field of a previous instruction. 

Examples: 

F. END 
.~.:; 

A EQU X 
B EQU Y + f 100 
C EQU B-20 

The END pseudo-operation signifies the end of the program and must be 

present. The variable field defines the execution address of the pro-

gram. This field may be left blank if a subprogram is being assembled. 

Example: 
START LDA X 

END START Designates the end of the 
program, and an execution 
address at START. 

13. 



G. EVEN 

The EVEN pseudo-operation causes the location of the next 8PL instruction 

to be set even. This may result in one memory location being skipped 

at most. 

H. JMP 

The JMP pseudo-operation permits programmers to write jump instructions 

witho~t deciding whether the desired location is forward or backward. 

A JMF or JMB will be generated. 

I. NAME 

The NAME pseudo-operation specifies and defines the names of locations 

in the program which may be referenced by external programs. 

The variable field contains a list of all labels contained within 

the program which may be referenced by external programs. 

Example: 

J. ORG 

A 

B 

NAME 
PAR 

DEC 

A, B 

'" 
2 

The labeled locations, A and B, may be referenced 
by external programs. 

The ORG pseudo-operation defines the origin or loading address of a se-

quence of instructions or data. This may be either a relative or ab-

solute value, but relocatable programs may not use absolute 'ORG' de-

clarations except for areas 00000-00077 and 07701-07777. 

14. 



The variable field defines the starting address of following instructions 

or data and may contain any symbolic address type, except that symbolic 

labels must have been previously defined. 

The first line of every program should be an 'ORG' pseudo-operation, to 

indicate the type of program being assembled.'ORG n' indicates an ab-

solute program starting at location n, where n is a decimal or octal 

address. 'ORG *' indicates a relocatable program of less than 4096 

words in length, while 'ORG *+D' indicates a partially relocatable pro-

gram starting at location n in a bay. If the initial ORG line is 

omitted, 'ORG *+0' is assumed. 

Examples: 

K. PAR 

A 
B 

ORG 
LDA 
ORG 

ORG 

* 
B 
*+20 

B+l 

Indicates a relocatable program 
A is assigned address relative 0 
Defines origin as relative forward 
20 

Defines origin as relative 2 

The PAR pseudo-operations specifies words of data expressed as symbolic 

addresses, or decimal or octal integers. 

The variable field contains one or more symbolic address. The resulting 

word will contain the l2-bit address assigned to the corresponding sym-

bolic address. 

Examples: 

PAR A, B+2, C, 2, '40 
PAR '27, *+5 

(Note: In the second example, the second word 
would be assigned an address equal to 
its address plus 5, not the starting 
address of PAR plus 5.) 

15. 



L. OPERATION DEFINITIONS 

In order to expand the allowable symbolic operation code set, symbolic 

operation codes not defined by the assembler may be defined by writing 

the symbolic operation to be defined in the op-code field with a vari-

able field started by an fI=" signed and followed by any symbolic address 

(normally an octal number). If a symbolic label is used t it must be 

absolute and have been previously defined. In any case, the resulting 

l2-bit value will be used as the basic operation code t to which the 

symbolic address is added when the new symbol is used as an operation. 

Example: 

ABC='2200 

DEF=A+7 

ABC has an operation code of 12200 

DEF has an operation code consisting 
of the current address of A plus seven. 

16. 



IV 

MACHINE INSTRUCTIONS 

This section describes the instruction repertoire of the SCC 650 computer. 

The word format of a machine instruction is as follows: 

Basic Instruction Format 

r 
1 2 3 4 5 6 7 8 9 10 11 

OP I I I R I y I 
where 

OP is the basic 4-bit operation code 

I is the indirect address bit 

R is the mode bit 

Y is the 6-bit instruction operand address 

The descriptions of each of the instructions is headed by the information 

in the following format: 

MNM Name 

Code I R Y 

MNM 

Name 

Timing 

Code 

I 

R 

Timing 

is the 8PL mnemonic assigned to the instruction 

is the instruction name. 

is the number of machine cycles used by the in­
struction. Each level of indirect addressing adds 
one cycle to the instruction. 

is the octal operation code of the instruction; and 
in some cases the complete 4-digit octal code in­
struction word will be given. 

is present if the instruction can optionally contain 
an indirect address bit. Otherwise, the numeric 
value of I is placed in this position. 

is present if the instruttion can optionally contain 
a mode bit. 

17. 



MNM Name 

y 

Timing 

is present if the instruction contains an operand 
address. Otherwise, the octal value of Y is placed 
in this position. 

Table IV, A. contains a list of symbols and their definitions used 

in the instruction description. The instructions are categorized 

into sections according to function. 

Operand is defined as being the contents of the effective operand 

address. 

18. 



A. TABLE 

SYMBOL 

A 

x 

y 

M 

p 

+ 

/ 

x 

, , 

<: 

= 

NOTATION 

DEFINlnON 

The main arithmetic register, or Accumulator 

The index register and left hand Accululator extension 

Operand address of instruction 

Effective operand address of instruction 

The location counter. Contains the address of the 
instruction to be executed. 

Contents of. Signifies the contents of the symbol 
enclosed 'within the parentheses. 

Replacement designator. The value on the left is 
placed into the value on the right. 

Add 

subtract 

Divide 

Multiply 

Logical AND 

Logical OR 

Exclusive OR 

Absolute value 

Onets complement 

Less than 

Greater than 

Equal 

Equivalent by definition 

19. 



B. DATA TRANSFER . INSTRUCTIONS 

LDA -

STA 

LDX 

STX -

Load A 

60!! ! 

(M)~A 

Timing: 2 

The operand is pleced in A. The contents of memory at M 

remains unchanged. (See also literal instruction LDL.) 

Store A Timing: 2 

34 I R Y ----
(A)-+ M 

The contents of A are placed into memory at M. 

The contents of A remains unchanged. 

Load Index Timi'ng: 2 

10 1 R Y .-.---

The operand is placed into the index register. The contents 

of 1-1 remains unchanged. 

Store Index Timing: 2 

14 I R Y ----
(X) ...... M 

The contents of the index register is placed into M. The 

contents of the index register remains unchanged. 

c. ARITHMETIC INSTRUCTIONS 

Arithmetic operations are performed in two's comple~ent arithmetic. 

Overflow and carry conditions cause the setting of machine flip-flops 

which may be tested or used for double precision arithmetic. The flip-

flops and conditions are as follows: 

20. 



21. 

Overflow flip-flop. Any arithmetic operation which causes the sign of 

the result to be wrong (i.e., a carry i~to the sign position) causes 

this flip-flop to be set. For example, addition of two positive num-

bers resulting in a neg~tive number causes the overflow flip-flop to 

be set. 

Carry flip-flop - Any addition or subtraction which causes a carry 

from bit position 0 (i.e., a 13 bit r~sult) causes the carry flip-flop 

to be set. 

ADD Add Timing: 2 

44 I R Y ----
(A) + (M)--+A 

The operand is added to the contents of A and the sum is 

placed in A. The contents of M remains unchanged. 

This instruction may cause the overflow, and carry flip-flops 

to be set. 

SUB Subtract Timing: 2 

64 I R Y ----
(A) - (M)---.A 

The operand is subtracted from the contents of A and the differ-

ence is placed in A. The operand at M remains unchanged. 

This instruction may cause the overflow, and carry flip-flops to 

be set. 

MIN Memory Increment Timing: 3 

40 1 R Y ----



If(M) = 0, (P) + 2,-+P ,otherwise(P) + I~P. 

One is $dded to the operand and placed into memory at M. If 

the result is zero the next in$truction is skipped. Otherwise, 

the next instruction is taken. in sequence. 

This instruction will never affect the contents of the carry or 

overflow flip-flops. 

~ Logical AND 

74 I R Y 
-... - --
(A) 0 (M)--A 

Timing: 2 

Forms the logical AND of the operand and the contents of A and 

places the result in A. The contents of memory at M remains 

unchanged. 

XOR Exclusive OR Timing: 2 

~.!~.! 

(A) 0 (M). (A) 0 (M) = (A) -& (M)--A 

Forms the exclusive OR of the operand and the contents of A and 

places the result in A. The contents of M remains unchanged. 

D. CONTROL AND TEST INSTRUCTIONS 

HLT Halt Timing: I 

0000 -
Halt 

The computer halts awaiting manual intervention from the console. 

P contains the address of the next instruction folloWing the HLT 

instruction. . '. 
The address, index, and indirect fields of this instruction are 

not used. 

22. 



NOP No Operation Timing: 1 

0002 

No operation is performed. 

JMF Jump Forward Timing: 1 

20!! ! 

M-+P 

The next instruction is taken at the effective operand address, 

where if 1=0 and: 

R=O, then M=Y; 
R=l, Index State =0, then M=(P)+Y; 
R=l, Index State =1, then M=(X)+Y; 

while if 1=1 and: 

R=O, then M={Y); 
R=l, Index State=O, then M=( (P )+Y) ; 
R=l, Index State=l, then M=( (X)+Y). 

JMB Jump Backward Timing: 1 

24 I R Y ----

Same as for Jump Forward above with -Y replacing Y. 

JSL Jump and Store Location Counter 

50 I R Y: ----
(P)+l-+M, Status-+M+l, 
M+2--+P 

Timing: 3 

The location counter address plus one, (P)+l, is placed in the 

effective operand address, M, and the Status Register is placed 

in M+l. 

The next instruction is taken from location M+2. 

23. 

M, 



24. 

~ Return Jump Timing: 3 

70!! ! 

(M+l)--t- Status, 
I 

(M)-+P 

The contents of M+l are placed into the Status Register. The 

next instruction is taken from location M, w~ere the effective 

address M is as described in Jump Backward above. 

E. SHIFT INSTRUCTIONS 

All shift instructions are 1 bit shift and use bits 4-11 of the in-

struction word to indicate the type of shift. 

SPL automatically sets the shift type bits in the instruction according 

to the mnemonic. 

SAR Short Arithmetic S~ift Right Timing: 1 

0014 

(A) right 1 p1ace-+A 

The contents of A is shifted right one binary place. Bit All is 

lost. Bit 0 of A is not shifted but is copied into the vacated 

bit position, bit 1, on its right. 

SRR Short Rotate Right Timing: 1 

(A) rotate right 1 p1ace ....... A 

The contents of A is rotated right one binary place. Bit All 

enters Ao. 

SLR Short Logical Shift Right Timing: 1-

0114 

(A) right 1 place -+ A 



The contents of A is shifted right one binary place Bit All is 

lost. Vacated bit position Ao is filled with a zero. 

SCR Short Circulate Right Timing: 1 

0110 

(CO,A) right 1 place--. A 

The coupled Co- and A-registers, with CO preceding bit Ao ' is 

rotated right one binary place. Bit CO enters Ao and bit All 

enters CO. 

LAR Long Arithmetic Shift Right Timing: 1 

0214 

(A,X) right 1 place--+ A,X 

The contents of A and X are shifted right one binary place. B-it 

All enters Xo. Bit Xll is lost. Bit 0 of A is not shifted but 

is copied into the vacated bit po~ition bit 1 on its right. 

~ Long Rotate Right Timing: 1 

0210 

(A,X) right cycle 1 place~ A,X 

The contents of A and X are rotated right one binary place. Bit 

All enters Xo. Bit Xll enters Ao. , 
LLR Long Logical Shift Right Timing: 1 

(A,X) right 1 place -+ A,X 

The contents of A and X are shifted right one binary place. Bit 

Xll is lost. Bit All enters Xo. Vacated bit position Ao is filled 

with a zero. 

LCR Long Circulate Right Timing: 1 

0310 

(CO,A,X,) rightl p1ace.-+ A,X 

25. 



The coupled eo-, A- and X-registers, with CO preceding bit Ao 

and All preceding Xo ' is rotated right one binary place. Bit CO 

enters Ao' bit All' enters Xo and bit Xll enters co. 

SAL Short Arithmetic Shift Left Timing: 1 

0016 

(A) left 1 place---. A 

The contents of A is shifted left one binary place. Bit Ao is 

lost. Vacated bit position All is filled with a zero. 

If the sign of A, Ao' changes, the overflow flip-flop is set. 

SRL Short Rotate Left Timing: 1 

0012 

(A) left cycle 1 place ~A 

The contents of A is rotated left one binary place. 

enters All. 

SLL Short I. .. ogical Shift Left 

0116 

(A) left 1 place -+ A 

Timing: 1 

Bit A 
o 

The contents of A is shifted left one bina~y place. Bit Ao is 

lost. Vacated bit position All is filled with a zero. 

seL Short Circulate Left Timing: 1 

0112 

(A,CO) left 1 place ~A 

The coupled A- and CO-registers, with CO following bit All' is 

rotated left one binary place. Bit CO enters-All and hit Ao 

enters co. 

26. 



LAL Long Arithmetic Shift Left 

0216 

(A,X) left 1 p1ace-+ A,X 

Timing: 1 

The contents of A and X are shifted left one binary place. Bit 

Xo enters All- Bit Ao is lost. Vacated bit position Xll is filled 

with a zero. 

If the sign of A, Ao , changes, the overflow flip-flop is set. 

LRL Long Rotate Left Timing: 1 

0212 

(A,X) left cycle 1 place ...... A,X 

The contents of A and X are rotated left one binary place_ Bit 

Xo enters All- Bit Ao enters Xll • 

LLL Long Logical Shift Left Timing: 1 

0316 

(A,X) left 1 place--+ A,X 

The contents of A and X are shifted left one binary place. Bit 

Ao is lost. Bit Xo enters All. Vacated bit position Xll is 

filled with a zero. 

LeL Long Circulate Left 

0312 

(A,X,CO) left 1 place--"'"A~X 

Timing: 1 

The coupled A-, X- and CO-registers, with CO following bit Xll 

and All preceding Xo' is rotated left one binary place. Bit CO 

enters Xll' bit Xo enters All and Bit Ao enters CO. 

27. 



F. REGISTER CHANGE INSTRUCTIONS 

Register change instructions use the operand address portion of the 

instructions to specify operations. Indexing and indirect addressing 

are not permitted. SPL automatically sets the operand address bits 

from the mnemonic operation code. 

CLA Clear A 

0003 

0--... A 

Timing: 1 

The contents of A are set to zero 

CLX Clear X 

0007 

O-.x 

Timing: 1 

The contents of X are set to zero 

CAX Copy A to X 

0240 

(A)--+X 

Timing: 1 

The contents of A are placed into the index register. A is 

unchanged. 

CXA Copy X to A 

0140 

(X)-+A 

Timing: 1 

The contents of the index register are placed into A. X is 

unchanged. 

XAX Exchange X and A Timing: 1 

0040 

(X)-+A, (A)--.X 

The original contents of X are placed into A. 

The original contents of A are placed into x. 

28. 



XHA Exchange Half A Timing:: 1 

0020 

(AO-S)"'" A6-1l, (A6-ll)-+AO-S 

The original contents of AO-S are placed into A6-ll. 

The original contents of A6-ll are placed into AO-S. 

G. LITERAL INSTRUCTIONS 

The literal instruction uses the literal value Y, with or without its 

sign- or most significant-bit extended, as its operand. 

ANL Logical AND Literal 

30 ! 

(AO_S)-4 AO-S' 
(A6-ll) <=) y.-.,.A6-ll 

Timing: 1 

Forms the logical AND of the address Y and the contents of A6- ll 

and places the result in A6_ll • AO-S remains unchanged. 

XOL EXCLUSIVE OR Literal 

31 ! 

(AO-S)--+AO_S 

Timing: 1 

(A6-ll)0 Y ® (A6- ll ) GJ Y = (A6-l1)-e-Y-+A6_l1 

Forms the EXCLUSIVE OR of the 'address Y and the contents of A6_ll 

and places the result in A6- 1l• AO_S remains unchanged. 

LDL Load A Literal 

32 Y 

Yo == Sign-bit of Y~ AO-S 

Y == YO-5~A6-ll 

Timing: 1 

The most significant bit of the 6-bit address Y (considered as 

the sign-bit) is placed into AO_S and Y is placed into A6- 11 , i.e., 

Y with sign extended is placed in A. 

29. 



~ Add Literal 

33 ! 

(Let Yo == Sign-bit of Y --+ YO-S, 
(A)+y· ...... A 

Timing: 1 

The 6-bit address Y, with its most significant bit taken as 

the sign-bit, extended, as Y', is added to the contents of 

A and the sum is placed in A. 

This instruction may cause the overflow, and carry flip-flops 

to be set. 

H. MICRO-OPERATE INSTRUCTIONS 

The "SCC 650" provides the ability in a one word ,"micro-instruction" to 

perform an operation involving the A and/or X registers, and then, 

optionally, test the result. SFL facilitates the usage of micro-in-

structions by assembling the proper codes from the information supplied 

in the following format. 

OP F,T 

where: 

OP is the mnemonic SRA or SRX if the A or X is to be the 

"selected register." It is convenient to denote the selected 

register by SR, and the unselected register by USR. 

F is a one digit code which specifies the des~red function, as 

follows: 

30. 



F=O - test the SR only. 

1 - increment the SR by one. 

2 - an add is performed with SR and USR; the 
result is left in the SR. 

3 - the SR is exclusively OR'd with USR re­
placing the SR. 

4 - one's complement of SR replaces SR. 

5 - two's complement of SR replaces SR. 

6 - one's complement of SR exclusively OR'd with 
USR replaces SR. 

7 - SR subtracted from USR replaces SR. 

T is a one letter mnemonic (P,N, or Z) which is present if the result 

of the function F is to be tested, as follows: 

T=G - skip the next instruction if the SR is greater than 
zero. 

N - skip the next instruction if the SR is negative. 

Z - skip the next instruction if the SR is zero. 

I. PROGRAMMED-OPERATE INSTRUCTION CODE 

SCF Set CO OFF Timing: 1 

0022 

Resets the carry-out bit to be 0 in the CO Register 

SCN Set CO ON Timing: 1 

0122 

Sets the carry-out bit to 1 in the CO Register. 

SIF Set Interrupt Control OFF Timing: 1 

0222 

Resets the Interrupt Control Register bit to be 0. 

31. 



32. 

SIN Set Interrupt Control ON - Timings 1 

Sets the Interrupt Control Register bit to 1. 

2!I Overflow Test Timing: 1 

If Overflow Register ON, reset it to OFF, and (P~l~P; 

otherwise (P)+2~P. 

SBK Set Bank Flag Timing: 1 

~ 

Sets inhibit IB-Register Flag ON. 

RBK Restore Bank flag Timing: 1 -
0126 

Resets the Inhibit IB-Register flag to OFF. 

CLI Clear Interrupt Timing: 1 

Resets the interrupt. 

£Q! CO Carry-Out Test Timing: 1 

0032 

If (CO)~, (P)+l-,-'-'p; otherwise, if (CO)=l, (P)+2-'-';)P. 

XSS Index Status Set Timing: 1 

~ 

Sets the Index Status Register to 1. 

XSR Index Status Reset Timing: 1 

Qll! 

Resets the Index Status Register to ~. 



LIA Load IB Register Timing: 1 

0036 

(A9_ll)--+IB 

Stores (A9- ll ) into the IB Register 
I 

AAX Logical AND A with X Timing: 1 

0242 

(X) (!) (A)--.. A 

The logical product of (X) 0 (A) is placed in A. 

AOX Logical OR A with X Timing: 1 

0042 

(X) <±> (A) ~ A 

The logical sum of (X) (t) (A) is placed in A. 

MPT Memory Protect Test Timing: 1 

0044 

If Memory Protect ON, reset it to OFF, and (P)+l--+P; 

otherwise, if OFF, (P)+2~P. 

lOT Input/Output Error Test Timing: 1 

0046 

IF I/O Error Register ON, reset it to OFF, and (P)+l--+P; 

otherwise, if OFF, (P)+2--+P. 

LAS Load from Switch Register 

0050 

(Switch).-....A. 

Timing: 1 

The content of the Switch Register is placed in A. 

33. 



~ Add Carry 

0054 

(A) + (CO)~A 

Timing: 1 

The CO Register bit is added to the contents of A and the sum 

is placed in A. The contents of CO remains unchanged. 

SST Store Status Register Timing: 1 

QQ§J2 

(Status)-.A 

The contents of the Status Register are placed in A. The con­

tents of the Status Register remain unchanged. 

LST Load Status Register 

0260 

(A)--+ Status 

Timing: 1 

The contents of A are placed into the Status Register. The 

contents of A remain unchanged. 

J. 650 EXTENDED OPERATION CODES 

1. Arithmetic 

The extended arithmetic operations use the A- and X-registers as 

a double-length working register with A being most significant 

and X least significant. 

The effective memory locations referenced (M), is obtained by 

using the 12 bit address following the operation with the bank 

specified by bit #4 of the instruction (14=9 for program bank, 

14=1 for indirect bank). The program counter will be advanced 

by two to bypass this second word. 

34. 



~ Load Double-Length 

0076, 0276 

(M)--.A, (M+l)--+X 

Timing: 3 

The double-length operand at H, M+l is placed in the A- and X-

registers, respectively. The contents of memory at M and M+l 

remain unchanged. 

STD Store Double-length 

0176, 0376 

(A).-..M, (Xr-...M+l 

Timing: 3 

The double-length A- and X-registers are placed into memory at M 

and M+l, respectively. The contents of A and X remain unchanged. 

MPY Multiply 

0074, 0274 

(A) x (M)--+A, X 

Timing: 9: 

The contents of A is mUltiplied by the operand and the resultant 

23 bit product is placed in the A and X registers. A contains 

the most significant bits, X contains the least 'significant bits, 

and bit 0 of A is the sign of the result. 

If both numbers have the value 40008, the overflow flip-flop is 

set and the product is set to zero. 

DVD Divide 

0174, 0374 

(A,X) I (M)--+A, Remainder..-.X 

Timing: 9 

The contents of A and X are treated as a 23 bit dividend and are 

divided by the operand. The quotient i.s placed in A and the re­

mainder is placed in X. The contents of M remains ullchanged. 

35. 



Overflow occurs add the overflow flip-flop is set if the 

following relationship is not satisfied: 

(A,X) ~ 1 
_1 6 (M) 

2. Shifts 

The extended shift operations make use of a six bit, two's com-

plement shift counter. 

~ Normalize Timing: 1+ count 

0072 

The instruction following this command is repeated until the 

sign of A and bit #1 of A are different, or until the shift 

counter is zero. After each repetition, the shift count is de-

cremented by one. This instruction is normally followed by a 

long arithmetic shift left (LAL). 

~ Store Shift Register 

0066 

(AO-S) --+ AO _ S ' 

(Shift)~ A6-l1 

Timing: 1 

The contents of the shift Register is copied int~ A6-1l- AO_S 

remains unchanged. 

L8H Load Shift Register 

Q?22. 

(AO_S)-+ AO_5' 

(A6_1l)~Shift 

Timing: 1 

The contents of A6-l1 is copied intQ the Shift Register. (A) 

remains unchanged. 

36. 



37. 

RPT Repeat Timing: I 

The instruction following this command is repeated until the 

shift count is zero. After each repetition, the shift count 

is decreased by one. 

K. INPUT/OUTPUT INSTRUCTIONS 

Input-Output Instruction Format 

o 1 2 3 4 5 6 7 8 9 10 11 12 
, 0 0 0 I j OP Y 

Where OP is the operation code and Y is the device selection 

code. 

~ Transmit to A or Skip Timing: 1 

!! 
If device (y) ready, (Device Y)--?A, (P) + I~P; otherwise, if 

if not ready, (P) + 2~P. The contents of the I/O Device Y 

buffer is tranferred into A and the next instruction is executed. 

The device buffer is cleared and is ready for reloading by the ex-

ternal device. If the device is not ready, the next instruction 

is skipped and A is not loaded. 

TFA Transmit from A or Skip Timing: 1 

1 Y 

If device (Y) ready, (A)~Device Y, (p) + l--+p; otherwise, if 

not ready, (P) + 2~P. If the device is ready the operand, (A), 

is transferred to the I/O device Y and the next instruction is 

executed. If the device is not ready, the next instruction in 

sequence is skipped. 



DST Input Device Status 

2 Y 

Timing: 1 

If device (Y) {sready, (Device (Y) status)~A, P+l--.P; other-

wise, if not ready, (P)+2~P. The status of the selected de­

vice is transmitted to (A) if the device is ready and the next 

instruction is executed. If the device is not ready, the next 

instruction in sequence is skipped. 

SDF Skip No Device Flag Timing: 1 

1! 
If Device Flag=l, (P)+l--+P; Otherwise, if Device Flag=O, 

(P)+2~P. This instruction tests the selected Device Flag. If 

ON, the next instruction is executed. Otherwise, if OFF, the 

next instruction in sequence is skipped. 

EXU Execute Command in A 

4 Y 

Timing: 1 

The external device (Y) executes the command in (A) 

TMR Terminate Timing: 1 

1! 

The selected device (y) 1s inactivated. 

SNL Select with no leader 

6 Y 

Timing: 1 

The selected device (y) is activated with no leader 

SWL Select with leader 

7 Y 

Timing: 1 

The selected device (y) is activated with leader being generated 

or read. 

38. 



v 
ASSEMBLER OPERATION 

When the assembler is loaded and ready to begin assembly, the following 

message is typed on the console typewriter: 

ASSEMBLE 

The operator may then type in any of the following characters to specify 

the operation: 

A The object program is to be output in Absolute binary format 

R The object program is to be output in Relocatable binary 
format 

P The program is to be input from paper tape. 

T The program is to be input from the typewriter 

E Punch an end-of-job record on the paper tape. 

TAB Punch length of blank tape 

39. 

The assembly processing begins when the operator types in a carriage return. 

If options are not specifically designated. the Rand P options are assumed. 

Options may be designated during an assembly by settings of breakpoint 

switches. These settings are: 

Breakpoint·l ON Do not list the assembled program. (errors 
are always listed). 

Breakpoint 2 ON No object program is to be output. 

When the options have been specified and the carriage return has been typed 

I 

in, the assembler accepts the program from the specified input device and 

processes the first assembly pass until and END declaration is processed. 



The assembler signals it is ready for the second pass by typing the 

following message on the typewriter: 

PASS 2 

When the operator has loaded the paper tape into the reader, processing 

of the second pass may be started by the operator flipping the RUN switch. 

During the second pass the program is listed if specified and the object 

program, if specified, is output. Assembly of the program is comp~ete 

when the END declaration is processed. 

The assembler then halts. If the RUN switch is flipped, the assembler 

initiates itself and signals it is ready for a new assembly by returning 

to the 'ASSEMBLE' typeout point. 

A. PROGRAM LISTING 

A listing of the assembled program is typed on the typewriter in the 

following format: 

FORMAT 
LLLLLLSIIIISSVVV. 

where 
L = Octal location assigned to the instruction 

S = Space character 

I = Generated instruction 

v = Symbolic statement that was processed to obtain the 
octal information 

B. ERROR INDICATIONS 

Error indications are always listed and consist of an '*' followed 

by a single character to indicate the error type. 

40. 



Pass 11 error indications are followed by a typeout of the form 

SSLLLLLL+NN, where SS is two spaces, L-L is the last non program 

point label encountered and NN is the number (octal) of statements 

since that label. 

Pass 112 error indications occur just prior to the listing of the 

statement in which the error occurred. If listing is not being 

performed, the Pass 11 format will be followed. 

A list of error indicating characters follows. 

A Indirect address specified incorrectly 

B Statement not at beginning of program 

C Not allowed in Bootstrap Load Format 

D Improper literal 

E Multiply defined symbol 

F Illegal mnemonic 

G Variable field not vacant 

H Assembler Dictionary full 

I Undefined Symbol 

J Variable Field Error 

K Index specified incorrectly 

C. ASSEMBLY INFORMATION 

Assembly information is always listed on the typewriter and upon 

completion of assembly. 

n ERRORS 

RANGE a 

UNDEFINED ••• list 

Where n is the number of errors contained 
in the program 

Where a is the highest assembled octal 
location in the program 

Where list is a list of all undefined 
symbo Is in the program or i.8 the word 
NONE 

41. 



EXTERNAL ••• list 

UNREFERENCED ••• list 

Example: 

00004 ERRORS 
RANGE 01743 
UNDEFINED ••• NONE 
EXTERNAL ••••• 

SIN 
SQRT 
COS 
LOG 

UNREFERENCED •••• 
A30 
K125 
ALPHX 

Where list is a list of all external 
symbols in the program or is the word 
NONE 

Where list is a list of all symbols defined 
butunreferenced within the; program, or is 
the word NONE 

D. SOURCE TAPE UPDATING PROCEDURE 

On the first pass, if the typewriter keyboard input is specified, then 

the keyboard data may be UPDATE control commands as well as SPL in-

structions. An UPDATE control command has the following general form, 

beginning in column 1 with no spaces. 

/SL1=n, L2=n2 (§J%J 

where Ll and L2 represents labels in the source tape, or the "*" 

symbol (see below), nl and n2 are optional integer increments, and X 

may be the characters "AIf, "D", "L", or a @ 

If X = flA", it means that the source tape is to be read, punched 

without change into the new source tape, and assembled until nl lines 

following the line with label Llhava been processed. Then the reading 

stops and SPL instructions may now be inserted via the typewriter key-

42. 



board, followed by a new UPDATE command. The second field (,L2+C2) 

is omitted if X = "A". 

If X = "D", or "Lt! the source tape is read as before (but if X= "Lu, 

it is not punched or assembled) until the line denoted by Ll=nl is 

encountered. At this point all lines from Ll=nl to L~2' i.nclusive, 

are listed but not punched or assembled. Then instructions and/or 

UPDATE commands may be input via the typewriter. 

If X = f1CARRIAGE RETURN", the remaining portion of the source tape 

will be read, punched and assembled without change. 

Asterisks notation 

One may type "*" in lieu of Ll or L2 with the following meaning: 

For example: 

/0*+1, *+5 C/R 

would effectively delete the first five lines of a source tape, if the 

tape was positioned at the beginning. That is, *+1 refers to the first 

line that will next be read by the reader, *+2 the next, etc. There­

fore, *+0 or * without an addend have no meaning and, indeed, is illegal. 

Keyboard Mistakes 

If a mistake is made at the keyboard while typing either an SPL in­

struction or an UPDATE command, it may be rectified by typing back­

space followed by carriage return, to delete the line with no effect. 

43. 



BCI 

BSS 

CALL 

DEC 

END 

EQU 

EVEN 

JMP 

NAME 

ORG 

PAR 

APPENDIX A 

MNEMONIC OPERATION CODES 

SCC 650 PSEUDO.OPERATIONS 

PAGE 

Alphanumeric Character Data • • •• 11 

Reserve Data Storage • • 

Call • . . . . . . . • • · . • • 

Double Precision Decimal or 
Floating Point Data • • • • • • 

• • 12 

. . 12 

12 

Program End •••••••••••• 13 

Symbol Equivalence ••••••• 13 

Make next location Even. · . . . . . 14 

Jump • • • • • • • • • • • • 14 

Program Name • • • . . . 14 

Program Origin • • • • • • • • • 14 

Parameter String • • • • • • • • •• 15 

44. 



APPENDIX B 

SCC 650 MACHINE INSTRUCTIONS 

Data Transfer 

LDA 60 
STA 34 
LDX 10 
STX 14 

Arithmetic 

ADD 44 
SUB 64 
MIN 40 

Logical 

AND 74 
XOR 54 

Load A . · · · · • · · · • · • • · • 
Store A • · · • • · · • · · · · • • · • · Load Index • • • • • • · · · • • • · · · Store Index • · · • • · • • · • · 

Add • • • • • • • • · . . · . . . . . 
Subtract · . . . . . . . · . . . . . . . 
Memory Increment •• • • · . . . . . 

Logical AND • • 
Exclusive OR 

· . . . . . . . . . . . . · . . . . . . . . . . . 
Control and Test 

HLT 'fJfJfJ Halt. · . . . · . . . 
NOP 0002 No Operation • • • • • • · . 
JMF 20 Jump Forward • • • • 
JMB 24 Jump Backward • • • • • • • 
JSL 50 Jump and Store Location • • • 
JRT· 70 Re turn Jump • • • • • • • • • • • • • 

Shift 

SAR 0014 Short Arithmetic Shift Right • · · · • · SRR 0010 Short Rotate Right · · · · · · SLR 0114 Short Logical Shift Right • · • · · SCR 0110 Short Circulate Right • · · · · · · · LAR 0214 Long Arithmetic Shift Right • 
LRR 0210 Long Rotate Right • • • · · • • · · LLR 0314 Long Logical Shift Right • · · · · LCR 0310 Long,Circulate Right · · · · • · · · · • SAL 0016 Short Arithmetic Shift Left • 
SRL 0012 Short Rotate Left • · · · · · · SLL 0116 Short Logical Shift Left 
seL 0112 Short Circulate Left · • · · • · LAL 0216 Long Arithmetic Shift Left • · · · · • · LRL 0212 Long Rotate Left . • · • · · · · · • tLL 0316 Long Logical Shift Left • · · • · · · · · LCL 0312 Long Circulate Left. · · · · · · 

Page 

20 
20 
20 
20 

21 
21 
21 

22 
22 

22 
23 
23 
23 
23 
24 

24 
24 
24 
25 
25 
25 
25 
25 
26 
26 
26 
26 
27 
27 
27 
27 

45. 



46. 

Register Change Page 

CLA "93 Clear A. • • • • • · • • • • It • • · • 28 
CLX ~997 Clear X • • . • • • • · • • · • · • • • • • 28 
CAX 9249 Copy A to X • • • • • • • • • · · • • 28 
CXA (}140 Copy X to A • • · • • It · • • • · • • • • 28 
XAX ~tJ4~ Exchange A and X • • • • • • • • • • • · • 28 
XHA tJtJ2tJ Exchange half -4 • · • · • · • • • • • • · 29 

Literal 

ANL 3~ Logical AND Literal. · · · · • • · · · • · 29 
XOL 31 EXCLUSIVE OR Literal · · • • · It · · · · · 29 
LDL 32 Load A Literal · • • • · · · • · • · · • · 29 
ADL 33 Add Literal • It • • · • · · • • · · • · • 30 

Micro-Operate 

SRA F,T Select Register A (fl 6 F 6 7; T=P, N, Z) • · 30 
SRX F,T Select Register X «I ~. F-=~ 7; T=P ,N,Z) • · 30 

Programmed-Operate 

XHA 0020 Exchange Halves of A • • • · · • .. · • 29 
SCF 0022 Set Carry-Out (CO) Register OFF. 31 
SCN 0122 Set Carry-Out (CO) Register ON • • · • • • 31 
SIF 0222 Set Interrupt Control OFF. · · • · · · · · 31 
SIN 0322 Set Interrupt Control ON · · · · • · · · · 32 
OFT· 0024 Overflow Test · · • · · • · • · • • · • • 32 
SBK 0026 Set Bank Flag .' • • · · • · It · · · • 32 
RBK '~29 Restore Banks · · · · · · · · · · · · · · 32 
COT 0,32 Carry-Out (co) Register Test · • • · · · • 32 
XSS ,,34 Index State Set ON · · • · • • • · 32 
XSR 0234 Index State Set OFF · · · · · • • · · · • 32 
LIA 0036 Load Indirect Extension (IB) ·Register. • · 33 
AAX 0242 A and X Registers Logical Product.-. · · · 33 
AOX 0042 A OR X Registers Logical Sum · · · · · · · 33 
MPT (JfJ44 Memory Protect Test. • • • · · · · • 33 
lOT 0046 Input/Output Error Test • • · • · · • · · 33 
LAS 0050 Load Switch Register · • · · • • · · · · · 33 
ADC· 0054 Add with Carry • • · · • · • • · · · · · · 34 
SST 0060 Store Status Register. · · · • • · · · • · 34 
LST· 0260 Load Status Register · · · · • · · 34 
CLI _226 Clear Interrupt. • • • • • • • • • • • • • 32 
Extended Operations 

SSH 0066 Store Shift'Register · · · · • · · · · · • 36 
LSH 0266 Load Shift Register · · · • · '. • · · 36 
SSH 0266 Load Shift Register · · · · · · · · 36 
RPT 0070 Repeat . . . . · · · · · · · · · · · · · · 37 
NOR 0072 Normalize AX Registers · • · · · · 36 



47. 

Page 

MPY ~'74 Multiply • • • · • • • • • • • · • • 35 
DVD ~174 Divide • . • • • • • • • • • • • • · 35 
LDD 0076 Load Double Length AX Registers · • 35 
STD 0176 Store Double Length AX Registers • • • • 35 

Input/Output 

TTA 04~D Transmit from A or Skip · • · • • · 37 
TFA 044D Transmit to A or Skip • · • · · · · 37 
snF 054D Skip No Device Flag. · • • · • · · · • · 38 
SNL 070D Select with no leader. · • · · • · · 38 
SWL 074D Select with leader · · • · · · · · 38 
TMR 064D Terminate • · • • · · · · · · · • · 38 
DST 050D Input Device Status Test · · · · · • · • 38 
EXU 060D Execute Command in A • • • · • · · • 38 



APPENDIX C SCC 650 STANDARD CHARACTER CODES 

Character 6-Blt Code ASCII Character 6-Blt Code ASCII 

~ ~~ 26Q 4~ 255 

1 (11 261 J 41 312 

2 (J2 262 K 42 313 

3 (J3 263 L 43 314 

4 (J4 264 M 44 315 

5 (J5 265 N 45 316 

6 (J6 266 0 46 317 

7 (17 267 P 47 320 

8 1(1 27(J Q 5G 321 

9 11 271 R 51 322 

SPACE 12 24(J CHAR.RET. 52 215 

= 13 275 $ 53 244 

. 14 247 * 54 252 . . 
- 15 272 ] 55 335 -

> 16 276 i 56 273 

"-.II 17 246 (&) b. 57 245 (%) 

+ 2(1 253 b 6(1 277 (? ) 

A 21 301 / 61 257 

B 22 3G2 S 62 323 

C 23 3(13 T 63 324 

D 24 3G4 U. 64 325 

E 25 3(15 V 65' 326 

F 26 3G6 W 66 327 

G 27 3(17 X 67 33G 

H 3(1 31(J y 7~ 331 

I 31 311 z 71 332 

BACKSPACE 32 2(13 (EO,11) TAB 72 211 

33 241 J 73 254 

) 34 251 ( 74 25(J 

[ 35 333 rm 75 243 (/F ) 

< 36 274 \ 76 334 

:t: 37 241 (!) +it 77 3G0 «(~) 

NOTE: Normal input conversion will delete all other ASCII codes. Normal 
output conversion to teletype will output a '52 (Carriage Return) as a 
Line Feed, Carriage Return (212,215). 



SCC maintains complete support activities for its users. Installation and maintenance services are 
available through SCC offices strategically located throughout the United States. For pre-procure­
ment demonstration of hardware and programs in Dallas. contact local sales office or the Marketing 
Department in Dallas. 

Arlington. Massachusetts 
30 Park Avenue 
617 - 648-2922 
(Boston] 

Skokie. Illinois 
125 Old Orchard Arcade 
312 - 675-6700 
(Chicago) 

Houston. Texas 
7800 Westglen Drive 
713 - 782-9851 

Seattle. Washington 
1806 South Bush Place 
206 - 324-7911 

Midland Park. New Jersey 
36 Central Avenue 
201 - 652-6750 
(New York] 

Crofton. Maryland 
Village Green 
301 - 647-6431 
(Baltimore] 

Orlando. Florida 

2319 E. South Street 
305 - 841-3556 

Pasadena. California 
180 East California Blvd. 
213 - 681-2651 
(Los Angeles] 

Other SCCproducts include: telemetry systems and airborne signal conditioning equipment such as 
amplifiers. demodulators and converters. 

Scientific Control Corporation 
14008 Distribution Way • Dallas. Texas 75234 • 214 - 241-2111 

r 

t 

Printed in U .S.A. 


