
Scientific Control Corporation

SCC 6700 TIME SHARING COMPUTER

REFERENCE MANUAL

SCIENTIFIC CONTROL CORPORATION
14008 Distribution Way
Dallas" Texas 75234

Telephone: Alc 214 CH 1-2111

© SCC 1967

TABLE OF CONTENTS

. FOREWORD

SYSTEMS DESCRIPTION
Machine Organization
Word Structure
Map Usage
Map Transition
Memory Relabeling
Programmed Operators
Systems Programmed Operator (SYSPOP)

INSTRUCTIONS
Loads and Stores
Field Loads and Stores
Fixed Point Arithmetic
Floating Point Arithmetic
Logical
Skip Tests
Branching
Input-Output and Control (Privileged)
Miscellaneous

PRIORITY INTERRUPTS·

SYSTEM TRAPS

INPUT/OUTPUT OPERATION
Time Sharing Input/Output Controller

APPENDIX A
6700 Instruction List

APPENDIX B
sec 6700 Time-Sharing Software

Page No •

3
10
13
14
15
21
22

25
27
31
34
36
37
40
43
44

54

56

57

61

65

FOREWORD

Computers brought a new era to every industry. Time sharing of
single computing systems by many different users is a revolution
in the art of data handling. The recent but now old yardstick of
buying the minimum computer one can afford to suit a need has been
outmoded by making the most powerful computers available to every­
one. Scientific Control Corporation is a leader in this movement to
provide any user the ease and power of the latest developments in
software and hardware in the SCC 6700 Time Sharing Computer.

The computer products of Scientific Control Corporation are known
for their fully parallel operation, modular desig'n, large and
flexible command repertoire~ memory protect and direct access,
and parallel processing. Data acquisition systems with a variety of
input and output equipment have been designed around SCC computers.
The SCC 6700 incorporates the past Scientific Control Corporation
hardware and software techniques with the latest developments in'·'
equipment and programming.

Scientific Control Corporation is indebted to the University of
California, Berkeley, for information on the Berkeley-Time Sharing
System funded by Contract SD-185 of the Advanced Research Projects
Agency, (ARPA), Office of the Secretary of Defense, Washington,
D. C. The SCC 6700 employs improved versions of the Berkeley
programs and advanced hardware structural characteristics suggested
by experience with the Berkeley System and by advancements in equip­
ment design by Scientific Control Corporation.

The SCC 6700 contains the hardware and software design techniques
to provide file security and real-time access to a user's data through
a powerful but economical system. The SCC 6700 is organized in a
highly parallel fashion and may consist of single or multiple CPU's.
The central processing unit has an operand fetch subsystem and an
instruction fetch subsystem which are independent of each other and
provide instruction overlap. Memory usage conflicts are held to a
minimum through a unique system of communication buses, inter­
leaving of memory modules and a technique of changing memory
ac.cess priorities.

Variable field manipulating instructions, floating point instructions,
and a paging structure which permit memory to be allocated by the

system in 2,048 word or 256 word blocks have been implemented
to reduce system overhead. The 6700 also provides hardware
detection of any access to or modification of a page of memory.
Mutual protection of users from one another and protection of, the
system . monitor is facilitated through complete and versatile hard­
ware protection of memory and 1-0 access.

- 2 -

SYSTEMS DESCRIPTION

MACHINE ORGANIZATION

The logical organization of the SCC 6700 computer is shown in Figure 1.

The processor portion is made up of an index register (X) of 24 bits,
an accumulator (A) of 24 bits, an auxiliary accumulator (B) of 24 bits,
an instruction register (I) of 24 bits, and a location counter (LC) of
14 bits. Although the physical organization is actually different from
this simplified picture, it is accurate as far as programming considera­
tions are concerned.

In addition to these registers there are two individual flip-flops of
importance to the programmer, the overflow (OV) and the carry
(CARRY).

The location counter contains the address of the instruction being
executed.. During execution of each instruction, it is incremented by
one (normal instruction progression) J by two (certain skip instructions),
or set to an altogether new value (branching instructions).

The index register is used for address modification, for loop control,
or for a general auxiliary register.

The A register is the principal arithmetic register. It contains one of
the operands in integer arithmetic operations" the most significant part
ofa floating point operand, and may be used as a general register which
can be shifted and manipulated with versatility.

The B register is an auxiliary arithmetic register. It is used for the
least significant part of double length fixed point operands or floating
point operands. It can also be shifted and minipulated.

Effective Address Computation

In the SCC 6700" indexing and indirect addressing may be extended to
any level, and is computed for all instructions in a uniform way as
follows:

1 e I is the instruction word (24 bits).

- 3 -

HEL,1(~F'J.·

ADDI~E~JS

A

I x

FIGURE 1

LOGICAL ORGANIZATION

. - 4 -

A

PARALLEL I/O
CUNNI:CTOP ..

B

5. Q is now the effective address.

The address field of the
instruction word is placed
in the effective address
register

(if the index bit is set, add
the index register to Q).

Go to Step 2.
(If the indirect bit is set,
replace the index bit,
indirect bit and address
field of the instruction
word with the correspond­
ing bit of the specified
memory word).

In instructions which interpret the address bits, the effective address
is the actual source of the bits.

Memory Overlap

In order to provide the capability in the 6700 for minimum memory
usage conflicts and thus, maximum operation speed, the system is
designed around a foundation of high bandwidth communication buses
and memory modules. Each memory module contains four address
registers and four data registers and may, therefore, be processing
requests from several different sources simultaneously. Each
memory module consists of 8. 192 twenty-five bit computer words.
Each memory module is completely independent and may be operating
simultaneously with any other memory module. The communication
buses provide paths between the memory modules and the various
devices served by the memories.

In a single CPU configuration, each memory module is connected to
memory buses through a memory switching subsystem. Two of these
buses communicate with the CPU. One communicates with the general
Ilo controller, and the fourth with the drum. In a multiple CPU
system, two additional buses are added for use by the second CPU.
If several buses simultaneously request memory service from the

- 5 -

same module, the requests will be honored in priority order. The
drum controller has the provision for variable priority of the reg­
ister in each module associated with the drum. If memory service
is not required immediately, then the drum controller will request
service with low priority. If the drum controller must have service,
it switches the priority level to high and takes the next memory
cycle. This technique of changing priority alleviates many memory
usage conflicts by allowing the drum to steal cycles when they are
not required.

Addressing of memory modules has been interleaved to place con­
secutive addresses in different modules. Memory modules are
interlea ved in groups of eight. Therefore, each of any eight con­
secutive addresses refers to a different memory module. This is
accomplished by formatting the eighteen-bit actual address as
follows:

I A_S_2...L1 ___ W_A __ 1...;;3;..--&_S_F_--...;;.3 1 18 bit actual address

WA - Word address within a memory module. The word address is
a thirteen-bit field providing addresses in the range 0-177778•

SF - Scan Field. The scan field causes the system to address eight
different memory modules at the same word address before
the word address is incremented. The scan field, then,
selects a memory module within a memory array.

AS - Array, Select. This two-bit field selects one of four arrays,
each array being eight memory modules o Thus, after
scanning all words of memory from eight modules, the
machine steps to the next array of eight and scans the new
array.

By placing consecutive addresses in different modules, the possibility
for conflict between processor, disc, and drum is reduced and the
bandwidth of the memory is proportionately increased.

Processor Overlap

In order to achieve maximum computation speed, the central pro­
cessing unit is separated, as shown in Figure 2, into three
operating entities:

- 6 -

HEEORY
yu\p

FIGURE 2

l1EHORY
CONTROL

A

1

- LOOK
AHEAD

GENERATOR

EXECUTION
UNIT

PRH';CIPAL PHYSICAL COarONENTS

OF CPU

- 7 -

ME110RY
ADDRESS
BUSSES

~ !}\

1-

:;}

lfEMORY
DATA
BUSSES
(2 READ,
1 WRITE)

Look-ahead Generator - consists of two sUbsystems:

Instruction Look -ahead - This subsystem communicates
through a separate bus to all memory modules and will access
instructions while previous instructions are being processed
or while their indirect addresses or operand are being pro­
cessed by the Operand Fetch Subsystem. The Instruction­
Fetch Subsystem is inhibited when the current instruction may
change the location counter or when the Operand Fetch Sub­
system cannot receive the instruction due to other waiting
instructions.

Operand Look-ahead - This subsystem provides for operand
and indirect address fetches. It proceeds while previous
instructions are being processed by the arithmetic processor.
Instructions which require multi-level indirect addressing
stay in the Operand Look-ahead subsystem until the final
operand is obtained and placed in the holding register for
entry into the execution unit. It then receives the next
waiting instruction from the instruction look-ahead subsystem
and proceeds to obtain the operand and/or effective address.

Since some instructions (such as the branch instructions) do
not require services of the processor" they are carried to
completion by the operand subsystem. It is possible" there­
fore, for complete instruction overlap to occur.

Execution Unit

This unit contains the registers visible to the programmer. It is a
highly parallel arithmetic unit which operates completely autono­
mously with respect to the rest of the computer. It does not begin
operation until the instruction has been completely prepared and the
necessary operands are available.

The times quoted in the description of instructions are those required
by the execution unit after all operands are available and are given in
minor cycles (100 nanoseconds).

Memory Map

This unit contains the memory relabeling registers for both the

- 8 -

monitor and the user. It is used to transform apparent address into
actual memory addres ses. In the see 6700 it is not directly in the
path to memorYJ but rather is used by the Look-ahead Generator to
map address in advance of their actual use in memory accessing.
This also improves memory performance by removing the mapping
from the memory access paths.

- 9 -

WORD STRUCTURE

Each word in the computer is composed of 24 bits numbered from 0
to 23, from left to right. Information within the computer is stored
in one of four formats: Instruction format, Fixed Point format,

. Floating Point format, or Field Descriptor format.

Instruction Format

Words which contain machine instructions are in the following
format:

o 1 2 3 8 10 23

OP CODE ADDRESS
14

The interpretation of these bits is summarized below:

Bit

o

1

2

Meaning

SYSPOP BIT - This bit causes bits 2-8 to be
interpreted as a system subroutine call.

INDEX BIT - If this bit is a one, the low order 14
bits of the index register are added to bits 10-23
of the instruction to form the effective address.
If the bit is a zero, indexing is not used.

PROGRAMMED OPERATOR BIT. - This bit causes
the operation c ode to be interpreted as a subroutine
call (if bit 0 is zero).

3-8 OPERATION CODE - These bits specify the machine
operation to be performed.

9 INDIRECT ADDRESS BIT - This bit specifies in­
direction in preparing the effective address.

- 10 -

Bit Meaning

10-23 ADDRESS - These bits specify the location of the
operand as modified by indexing and indirect
addressing considerations mentioned above:

Fixed Point Format

Single precision numeric data is represented internally in the
computer as two's complement 24 bit numbers. Bit 0 of the
word is the sign bit, and bits 1-23 are magnitude bits. If bit
o is a one, the number is negative and is in two's complement
form. For multiplication and division, the word is considered
a fraction. That is, the assumed point is immediately to the
right of the sign bit.

Floating Point Format

Floating point numbers in the see 6700 require two machine
words with the following format:

0 23 0 14 15 23

~ fraction : 39 bits
Exponent J

9 bits
"'v"'" '-"'"
Q Q+1

The fraction part of a floating point number is a 39 bit two's
complement fraction. Bit 0 of word 1 is the sign of the fraction.
The exponent is a 9 bit two's complement integer. The binary
point is assumed to be to the right of the sign bit, i. e. ,
between bits 0 and 1. A floating point number is said to be
normalized if the sign and most significant bit differ. The
floating point arithmetic operations assume normalized
operands, and with normalized operands will always produce
normalized results except, of course, for unnormalized
floating add and subtract. When the result fraction is zero,
the exponent is set to zero so that zeros remain "clean".

Field Descriptor Format

The instructions which handle characters and variable length
data refer to a word called a Field Descriptor. The format of

- 11 -

the Field Desdriptor is discussed fully in the section on Field
Handling Instructions.

-12 -

MAP USAGE

In order to guarantee uninterrupted operation of the computer and
to prevent users and the system from doing accidental damage to
each other ~ a number of special features have been built into the
computer. Foremost among these is full memory access control
for both the system and the user. Access keys are separately
specifiable for each page of memory in both the user and monitor
maps to control whether words in the page may be

1. Read
2. Written
3. Executed as Instructions
4. Pri vile ged Instructions

Any attempt to reference memory for a purpose not allowed will
cause the monitor map to be invoked and a trap to occur to atlow
the monitor to regain control.

This approach has been adopted since there is no need for most of
the system to have unconstrained access to the machine .. especially
the input-output instructions which are said to be "privileged":

Activate
Parallel Output
Parallel Input

ACT
POT
PIN

-13-

MAP TRANSITION

There are two types of conditions which can cause transitions
between maps. The first., under the control of the program I is
programmed transitions and can be performed as follows:

Monitor-to-user map transitions - The transfer from monitor to
user map is made by executing any indirect jump instruction through
a word in which bit zero of the indirect addres s contains a one in bit
zero.

User-to-Monitor map transition - The user can cause an intentional
transfer from user to monitor map by the execution of a SYSPOP.
A detailed discussion on SYSPOPS is given in the paragraph labeled
Systems Programmed Operators.

These are not the only ways in which a map transition can occur.
There are two other causes for map transitions. Firstl the occur­
rence of an interrupt or trap when in the user map will cause the
system to change to the monitor map. Secondl following the execu­
tion of a single instruction interrupt routine I a transition to the
user's map will occur if the machine was in the user's map at the
time the interrupt occurred. In order that the system subroutines
will be able to serve both the user and the system itself., indication
of the mode before entry is preserved in the subroutine link. A
one in bit zero implies a transfer from the user's mode and bit
zero equals zero implies that the subroutine entry was from the
system. Bit zero is used for this purpose in order to make data
access independent of mode and to restore the proper mode upon
return.

While in the monitor map, the user map can be invoked by indirect
addressing through a word with bit zero set to one. Monitor programs
can thus conveniently access information in the user's area. Speci­
ficallYI if bit zero of the word fetched during an indirect address
fetch is detected J all further references to memory made during this
instruction will be relabeled using the user's memory map_

1"

- 14 -

MEMORY RELABELING

The see 6700 provides a memory relabeling technique which permits
dynamic hardware relocation of programs. Memory relabeling pre­
vents a user from interfering with or being interfered with by other
users. The 6700 memory system consists of up to 262, 144 twenty­
four bit words partitioned into one hundred twenty-eight 2, 048 word
pages. One of the monitor pages is further subdivided into 256 word
page segments. The address field of the instruction word consists
of the rightmost 14 bits providing the capability of directly addressing
16,384 words. To the user, memory appears to be 16, 384 words of
contiguous storage. The 'monitor, however, may locate memory for
the user in non-contiguous 2,048 word pages in the actual memory.
This is accomplished through the use of the mapping registers. The
monitor also has 2, 048 word pages with one page further divided
into 256 word page segments.

The use r' s memory map consists of an actual page registe r for each
of the user pages. The three most significant bits of the address
field of the instruction are used to address a relocation register.
The contents of the actual page registers specify which page of actual
memory each user page is to occupy. Since, to the user, memory
appears as eight consecutive ,2,048 word pages" eight relabeling
registers are incorporated for user programs. Each relabeling
register is twelve bits in length. The user's relabeling registers
are laid out in four composite registers designated RLO-RL3 as
follows:

24 Bits

RLO UMO UMl

RLl UM2 UM3

RL2 UM4 UM5

RL3 UM6 UM7

User's Memory Map

- 15 -

The 14-bit address field of the instruction word is divided into two
subfields. The three high -order bits designate a user page number.
The 11 low -order address bits specify a word address within the page"
hence the page size of 2" 048 words. The relabeling hardware views
the user's page number" i" as the address of a relabeling register"
UMi. The seven low-order bits of UMi specify the actual page address
in memory. That is" the seven low-order bits of UMi are appended to
the 'll-bit word address to form an 18 -bit actual memory address.
Each relabeling register contains the following information:

12

AC MD AK
113

PN
7

scale

PN Seven bits denoting the actual page in memory

AK Three bits of access key as follows:

1 2 3
0 0 0 No access
0 0 1 Read" Write
0 1 0 Execute
0 1 1 Execute privileged
1 1 0 Read" Execute
1 1 1 Read" Execute privileged
1 0 0 Read" Write" Execute
1 0 1 Read" Write" Execute privileged

MD One bit" set automatically if any store occurs in
this page

AC One bit, set automatically when any word is accessed
(including a store) in this page

Relabeling memory using these techniques allows for dynamic program
relocation with complete memory protection and the ability to assign
non-contiguous blocks of memory to a user. There is no degradation
in performance as a consequence of memory mapping. The imple­
mentation of the relabeling registers is shown in Figure 3.

- 16 -

_ -'-- --." _ 14 BIT ADDRESS -----·-t·~':~-

P~ge
~r-- "--~\

'1'
i I ! ,l. J, J • I
. , 1

1 I :
i j !
i \ ;

..L--l
\~

I
~/!

SELECT

I
I--~ MSO]

~ MS6

, , , V V f ,
-q._---- 18 ACTUAL ADDRESS

FIGURE 3

~ 17 -

While in the user mode, relabeling is always performed on each
address using the user's memory map. While in the monitor mode,
it is possible to invoke relabeling using the user's map for individual
instructions. In accessing memory to obtain the effective address of
an instruction, any word encountered with bit zero set causes user
relabeling to apply immediately and for the duration of that instruc­
tion. For example., this would occur if a one in bit zero is detected
during a chain of indirect addressing. As soon as bit zero was
detected as a one" relabeling using the user's memory map would
apply immediately and continue to be applied on all further levels of
indirect addressing. Thus" all subsequent memory references would
come from user relabeled memory.

The monitor's memory map consists of six page relabeling registers
and eight page segment relabeling registers. When the machine is
operating in the monitor mode, the monitor's memory map is used
in lieu of the user's memory map. Only the uppermost six page
numbers are relabeled and the page one is constructed of page seg­
ments. Hence, addresses with page number 0 are taken as actual
machine addresses while all other addresses are relabeled. Page
1 is further mapped using the eight page segment registers. It
should be noted that the paging structure is invisible to the user.
The fact that the monitor assigns non-contiguous blocks of memory
to sequential page numbers is of no consequence to the user or the
machine since memory appears as 16" 384 words located at sequential
addresses.

The monitor's relabeling registers are laid out as follows:

RL4 MM2 MM3

Page relabeling for
RL5 MM4 MM5 Monitor Pages 2" 3" 4" 5"

6" and 7.

RL6 MM6 MM7

-·18 -

RL7

RL8

RL9

RL10

MSO

MS2

MS4

MS6

MSl

MS3

MS5

MS7

Page segment (256 words)
relabeling for Monitor
Page 1.

Monitors's Memory Map

Actual mapping of monitor Page 1 is shown in Figure 4. Note
particularly that the three high order actual address bits are zero.
Actual addresses corresponding to monitor address in Page 1 must,
therefore J fall within the first 64;K of memory.

- 19 -

14 BIT ADDHESS
Page Scgrnent

~ .L
.'

o o 1

SELECT

r----'- I -, ! I MS2
~-----..: I

MS3 I
MS4 I

--..-{ MS5 I
MS6 I
MS7 I

o 0 0

~ l ! · v ,
18 ACTUAL ADDRESS

SEGMENT MAPPING OF lVI0NITOR PAGE 1

\ FIGURE 4

,
!
l
I
f

I

I

.... -... -------t 1-'"

I
I
l
:
i
t

I
!
I

I
I I

I I

1
L __ -~ .. ______________ ~:_!.-------------~------..l

- 20 -

PROGRAMMED OPERATORS

One of the facilities provided in the 6700 for subroutine entry is the
programmed operator. Through the use of this facility, a subroutine
may be called by the execution of a single instruction of the same
format as built-in machine hardware instructions. The user pro­
grammed operator instruction is specified by a zero in bit zero of
the instruction word and a one bit in bit two of the instruction word.
Upon detection of the user programmed operator tag, the operation
code is not decoded in the normal manner. Instead it is used as a
relative address of an execute instruction. User programmed
operators cause the machine to execute locations 100-1778 in the
user's memory. Thus an instruction which was tagged as a user
programmed operator with an operation code of 1648 would be
interpreted as an execute of the instruction in core position 1648 .
A subroutine linkage instruction is located in location 1648 . This
provides entry into a subroutine with space in the address field of
the instruction to pass a parameter. Return to the calling program
is accomplished with an indirect branch instruction. It should be
noted that all memory references throughout the execution of the
programmed operator use the.user's memory map. Hence, all
subroutine linkages would be stored in the user's data block and the
subroutines which are being called must be stored within the user's
memory allocation.

- 21 -

SYSTEMS PROGRAMMED OPERATOR (SYSPOP)

A SYSPOP is similar to the user's programmed operator. It is
distinguished by a 1 in the sign bit and either a 0 or a 1 in bit 2.
There can be" therefore" up to 128 SYSPOP's. Before the instruction
to be executed is accessed" the monitor map is invoked. Thus" instead
of executing an instruction taken from the user's memory" the instruc­
tion comes from the monitor memory from absolute locations 1000-
11778 . All subsequent instructions are in the monitor mode. The
storage of the return linkages is in the monitor memory and provision
does not have to be made in the user's memory for their storage. The
routine is also stored in the monitor memory" . thus a user has the
capability of calling a subroutine outside of his memory through the
use of a SYSPOP. Thus" subroutines which are commonly used by
many users can be called with a single instruction and storage does
not have to be allocated for the linkage nor the subroutine. During
the storage of the return linkage and the effective address" the zero
bits are set to one if the subroutine was entered from the user mode.
Therefore" any references into the calling program to acquire an
argument will detect that the calling program was in the user mode and
the user's memory map will apply during such argument fetches.

- 22 -

INSTRUCTIONS

This section describes the instruction repertoire of the SCC 6700
computer. Instruction description includes mnemonic" computer
operation code" instruction name" number of machine cy'cles
required to execute the instruction and machine function performed
by the execution. Examples are given" when needed" to clarify the
description. In discussing instruction functions" the following
general conventions apply:

1. The letter "Q" refers to the effective address" i. e." Q
refers to the actual address used in the execution of the
instruction after all indexing and indirect addressing has
been accomplished. In sqme instructions" Q is not the
addres's of an operand but is itself the operand. When
used in this manner" Q is said to be an immediate
operand.

2. All numbers" locations" etc." are in octal unless other­
wise noted.

3. Subscription is used to denote bit positions within a
register. For example" A9- 23 refers to bits 9 thru 23
of the A register.

4. A register name enclosed in parentheses denotes use of
that register to address a memory location. For example"
(Q) refers to the contents of memory at the effective
address.

5. Timing given is in minor cycles (100 ns) for exe.cution
after operands are obtained from memory (or effective
address in case of stores).

6. The carry and overflow flip-flops are affected only by
instructions which put a result in A" or which affect
these indicators explicitly.

7. All instructions are indexable and indirectly addressable.

- 23 -

The symbols and abbreviations used in instruction definitions are
as follows:

Symbol

A

B

x

Q

LC

MAP

OV

CARRY

+

/

*
n

u

<
>
=

Definitions

Main arithmetic register or accumulator

Auxiliary accumulator

Index Register

Effective operand address of instruction

The location counter. Contains the address of the
next instruction to be executed.

Current Map Bit (User or Monitor)

Overflow indicator

Carry flip-flop

Replacement designator. The value on the left is
placed into the value on the right.

Add

Subtract (or negate)

Divide

Multiply

Logical AND

Logical OR

Complement

Less than

Greater than

Equal

Not equal

- 24 -

LOADS AND STORES

LDA LOAD A 2

(Q)--A

The contents of memory at the effective address replaces the contents
of the A register.

STA STORE A 2

A----(Q)

The contents of the A register replaces the contents "of memory at
the effective address. The contents of the A register remains un­
changed.

XMA EXCHANG'E MEMORY AND A

A·--..- (Q)

The contents of the A register are exchanged with the contents of
memory at the effective address.

LDB LOAD B

(Q)---B

3

2

The contents of memory at the effective address replaces the con­
tents of the B register.

STB STORE B 2

B --- (Q)

The contents of the B register replaces the contents of the effective
address. The contents of the B register remains unchangedo

LDX" LOAD INDEX 2,

(Q) ------ ,X

The contents of memory at the effective address replaces the contents
of the index register.

- 25 -

STX STORE INDEX 2

x (Q)

The contents of the index register replaces the contents of memory
at the effect ive address. The contents of the index register remains
unchanged.

XMX EXCHANGE X AND MEMORY

x -- -- (Q)

The contents of the X register are exchanged with the contents of
memory at the effective addresse

STM STORE MASKED

{B n (Q)} u

3

3

A one bit in any position of the B register causes the corresponding
bit in the A register to be stored in the corresponding bit of memory
at the effective address. Bit positions in memory corresponding to
zero bits in the B register remain unchanged. The contents of both
the A and B registers remain unchanged by this instruction.

LDD LOAD DOUBLE 5

(Q)--A; (Q + l)--......B

The contents of memory at the effective address are placed into the
A register. The contents of the memory at the effective address
plus one are placed into the B register.

STD STORE DOUBLE 5

A --....(Q); B --....(Q + 1)

The contents of the A register are stored into memory at the effec­
tive address. The contents of the B register are stored into memory
at the effective address plus one.

- 26 -

FIELD LOADS AND STORES

The following six instructions are used to load and store parts of
words in memory. They allow convenient handling of fields from
zero to twenty-four bits in length arbitrarily positioned in either a
single word in memory or two adjacent words. These instructions
all make use of a common "field descriptor" or pointer word to
control the field to be loaded or stored.

The field instructions expect the word at the effective addres s to be
a word of the following format:

o 4 5 9 10 23
LNG

5
OFF 51 ADR

A word in this format is called a "field descriptor" or "FDI! and
defines a contiguous field in memory from zero to twenty-four bits
in length. The meaning of the parts of an FD are as follows:

LNG - A five bit integer which defines the length of the field.
LNG must be equal to or less than 24 in the standard
case. Specification of a length greater than this will
cause an interrupt whenever the FD is referenced.
An LNG value of 31 (37 octal) is used as a special
case to be described later.

OFF -. A five bit integer which defines the offset of the field
from the left side of the word addressed. The value
of OFF must lie between 0 and 23 inclusive or an
interrupt will occur. Bit 0 is the left (high order)
bit of the word and bit 23 is the right (low order) bit
of the word. An OFF value of 31 (37 octal) is used
as a special case to be described later.

ADR - A fourteen bit integer which is the memory address
of the word containing the left most bit of the defined
field.

Although these instructions will most frequently be us.ed to handle
eight bit (or six bit) characters packed three (or four) to a word,

- 27 -

these instructions are explicitly intended to handle arbitrary fields
which may overlap word boundaries in any way.

In order to avoid repetition in the following instruction descriptions,
the acquisition and set-up of the field description will be given here
and is common to all six field handling instructions.

1. (Q)10_23-ADRJ (Q)5_9-0FF, (Q)O_4-LNG

2. If OFF = 37 8, (X)5-9--0FF

3. If LNG = 378J (X)O_4-LNG

4. If OFF >23, Interrupt

5. If LNG >24, Interrupt

6. OFF--I, OFF + LNG -1---J, 23 - LNG + I---K

That is, the contents of the effective address are separated into
their component pieces. If either the offset or length is 31 (37 8),
the value is taken from the corresponding part of the index register.
The offset and length are then checked to be sure they are within
limits 0

Finally, the left and right bit numbers of the field in memory and
the left bit number of the field in the A register are computed.

LDF LOAD FIELD 10

The field described is right aligned in the A register. The remainder
of the A register is cleared.

STF STORE FIELD 10

AK-23 --- (ADR)I_J

The field described by the FD at the effective address is replaced by
the right most LNG bits in the A register. A is not affected by this
instruction.

- 28 .-

LDFX LOAD FIELD INDEXED 12

ADR + X10-23 --- ADR

O---A , (ADR)I-J - A K - 23

This instruction is similar to LDF except that the contents of the
address field of the index register are added to the FD address
before the field is loaded.

STFX STORE FIELD INDEXED 12

ADR + X 10-23 ---- ADR

A K-23 --- (ADR) I-J

This instruction is similar to STF except that the contents of the
address field of the index register are added to the FD address
before the field is stored.

LDFI WAD FIELD AND INCREMENT 14

If OFF = (Q+1)5_9 and ADR = (Q+l)10-23, no action otherwise:

(Q)5-9 + LNG - (Q)5-9 ~if:: 23)

else (Q)5 -9 + LNG - 24----(Q) 5-9 ' (Q) 10-23 + l----(Q) 10-23

LC + 2 ---- LC

o ----A, (ADR) I-J --- AK - 23

The contents of the effective address and contents of the next location
are both considered to be FD's. The second of these words is a limit.
If the left bit of the field to be loaded is at the limit, no action occurs.
Otherwise, the FD at the effective address is adjusted by the length
of the field defined, the field is loaded into A and a skip occurs to
signify that the field was loaded ..

- 29 -

STFI STORE FIELD AND INCREMENT 14

If OFF = (Q+1)5:-9 and ADR = (Q+1) 1 0-23, no action otherwise:

(Q)5-9 + LNG ---- (Q)5-9 (if := 23)

else (Q)5-9 + LNG-24--(Q)5_9, (Q)10-23 + 1 --(Q)10-23

LC + 2 --- LC

AK - 23 --(ADR) I-J

The contents of the effective address and the contents of the next
location are both considered to be FD's. The second of these words
is a limit. If the left bit of the field to be loaded is at the limit" no
action occurs. Otherwise" the FD at the effective address is adjusted
by the length of the field defined, the right most LNG bits in A are
stored in the designated field, and a skip occurs to signify that the
field was stored.

- 30 -

FIXED POINT ARITHMETIC

ADD ADD 3

A + (Q)--.-A

The contents of the effective address are added to the contents of the
A register. The sum replaces the contents of the accumulator. A
carry from bit position 0 of the 24-bit adder is or'ed with the carry
flip-flop. If both operands are of the same sign but the sign of the
result is different" the overflow flip-flop is set.

SUB SUBTRACT 3

A - (Q)---A

The two's complement of the contents of memory at the effective
address is added to the contents of the A register. The sum replaces
the contents of the accumulator. A carry from the adder is or'ed
with the carry flip-flop. If the original operands have opposite signs"
their difference may exceed the capacity of the accumulator. In this
case" the overflow is set and the result in the accumulator is incorrect.

MPY MULTIPLY 20

A '!< (Q) ---AB

The contents of the A register are multiplied by the contents of the
effective address to form a 47 bit product in A and B. The sign and
most significant part of the product are in the A register. The least
significant part is in the B register. Bit 23 of B will be zero.

If both numbers have the value 400000008, overflow occurs and the
computer sets the overflow indicator. This multiply considers both
operands to be binary fractions, and produces a 47 bit fraction result.
If two integer are to be multiplied" the correct integer result can be
obtained by shifting A and B right one bit. B will now contain the
~ significant part of an integer result.

- 31 -

DIV DIVIDE 20

AB I (Q) -A, Remainder---B

The contents of the accumulator and the B register are treated as a
double-precision dividend (47 -bit fraction) and the contents of the
effective address as a 24-bit fractional divisor. Th~ quotient appears
in the A register and the remainder in the B register. The sign of the
remainder in the B register is the same as the sign of the original
divident.

Division takes place normally if:

-1 c:::: AB
(Q)

c:: 1

If the quotient exceeds these boundaries, overflow occurs and the
overflow indicator is turned on. If overflow occurs, the contents of
A and B are unchanged. This division is a fractional division. To
di videa 48 -bit integer, the DIV instruction should be preceded by
shift A and B left one bit. A 24 -bit integer can be converted to a
48 -bit lnteger by extending its sign by 24-bit positions.

ADM ADD TO MEMORY 4

A + (Q) --- (Q)

The contents of memory at the effective address is added to the con­
tents of the accumulator. The sum is placed into memory at the
effective address. The contents of the accumulator remains unchanged:
The overflow and lor carry flip-flops are unaffected.

MIN MEMORY INCREMENT 3

(Q) + 1 --(Q)

One is added to the contents of the effective address; the sum replaces
the contents of the effective address.. The carry and overflow flip­
flops are unaffected.

- 32 -

MDS MEMORY DECREMENT, SKIP IF NEGATIVE 4

(Q) - 1 ----(Q)

If (Q) <: 0, LC + 2 -... LC

Else LC + 1 --- LC

One is subtracted from the contents of memory at the effective
address, the difference replaces the contents of memory at the
effective address. If the contents of memory at the effective
address is negative after the subtraction, the computer skips the
next instruction. If the contents of memory is positive or zero, the
computer executes the next sequential instruction. The carry and
overflow are unaffected.

ADX ADD TO INDEX 3

X + (Q) ---x

The contents of the effective address are added to the contents of the
index register. The sum is then placed in the index register. The
carry and overflow are unaffected by this instruction.

- 33 -

FLOATING POINT ARITHMETIC

FAD FLOA TING ADD 18

The floating point number at the effective address is added to the
floating point number in A and B. The result will, be normalized
regardless of whether the operands were normalized. If exponent over­
flow occurs, the floating point trap will be taken. If exponent underflow
occurs, A and B will be set to 0 and no interrupt will occur .. Floating
point addition and subtraction operations are performed on 48 bit fractions
formed by separating out the exponent and replacing it with nine low-or~er
zeroes. The appropriate fraction is shifted to align exponents and the
addition or subtraction performed. The result is then normalized and
the exponent corrected. The high order bit of the fraction discarded is
saved in the CARRY flip-flop for use in rounding. The exponent is
truncated to 9 bits and replaced in the exponent field. If exponent over­
flow has occurred, the floating point trap will be taken. The exponent .
will be in error by 10008 ,

FSB FLOATING SUBTRACT 18

The floating point number at the effective address is subtracted from
the floating point number in A and B. The result and exception condi­
tions are as given under floating aid.

FMP FLOATING MULTIPLY 27

The floating point number at the effective address is multiplied by the
floating point number in A, B. The result on overflow and underflow
is as described under floating add. The most significant bit of the
discarded portion of the product is saved in the carry flip -flop. The
operands are expected to be normalized; therefore, at most one bit of
post normalization will occur.

FDV FLOATING DIVIDE 40

The floating point number at the effective address is divided into the
floating pOint number in A, B. If the divisor is zero or unnormalized"

- 34 -

the floating point trap will be taken with A and B unchanged. The
ov~rflow flip-flop will be set. Otherwise, overflow and underflow
are handled as under floating add.

UFA UNNORMALIZED FLOATING ADD 14

ABF + (Q, Q + 1)F ---ABF (without normalization)

This instruction is performed exactly as floating add except that the
normalization step is omitted. Exponent underflow cannot occur.

UFS UNNORMALIZED FLOATING SUBTRACT 14

ABF - (Q, Q + 1)F ---ABF (without normalization)

This instruction is performed exactly as floating subtract except
that the normalization step is omitted. Exponent underflow cannot
occur.

- 35 -

LOGICAL

AND LOGICAL AND 3

A n (Q) -..A

This instruction performs a logical AND of the contents of memory
at the effective address and the contents of the accumulator and places
the result in the accumulator.

ORA LOGICAL OR 3

A U (Q) ~A

This instruction performs the logical OR of the contents of memory
at the effective address and the contents of the accumulator and places
the result in the accumulator.

EOR EXCLUSIVE OR 3

(A n (Q») U (A n (Q») ---A

This instruction performs the exclusive OR of the contents of memory .
at the effective address and the' contents of the accumulator and places
the result in the accumulator.

- 36 -

SKL SKIP IF A IS LESS THAN OR EQUAL TO MEMORY

IF A~ (Q), LC + 2 --....LC

The A register is compared to memory at the effective address. If
A is algebraically less than or equal to the contents of the effective
address, the next instruction is skipped. Otherwise, the next sequential
ins truction is taken.

SKB SKIP IF LOGICAL AND OF B AND MEMORY IS ZERO

IF B n (Q) = 0, LC + 2 ~ LC

If a logical AND performed on the contents of memory at the effective
address and the B register produces a zero result, the computer skips
the ne:x"i instruction. If a logical AND produces a one bit in any position,
the computer takes the next sequential instruction. The contents of B
and memory are not affected /Py this instruction.

SKA

'- EXAMPLES:

Q
00000001
77777777
40000000
40000001

EXPLANATION
Skip if B is even
Skip if B = 0
Skip if B positive
Skip if B positive and even

SKIP IF LOGICAL AND OF A AND MEMORY IS ZERO

IF A n (Q) = 0, LC + 2 ~LC

If a logical AND performed on the contents of memory at the effective
address and the A register produces a zero result, the computer skips
the next instruction. Otherwise, the computer takes the next sequential
instruction.

SKC SKIP ON FLAG AND CLEAR

IF (Q)::O, ,LC + 2~LC

- 1---- (Q)

If the word at the effective address is positive a skip occurs. Otherwise
the next sequential instruction is taken. In either case, the word at the
effective address is set to -1 (777777778)'

- 38 -

4

4

SKN SKIP IF MEMORY NEGATIVE 4

IF (Q) <: 0, LC + 2 -....LC

If the word at tlie effective address is negative, the next instruction
is skipped. Otherwise, the next sequential instruction is taken.

SKP SKIP IF MEMORY POSITIVE 4

IF (Q) :: 0, LC + 2~LC

If the word at the effective address is positive, the next instruction is
skipped. Otherwise, the next sequential instruction is taken.

- 39 -

BRANCHING

BRU BRANCH UNCONDITIONAL

Q ---- LC

This instruction causes an unconditional transfer to the location
specified by the effective address.

BSL BRANCH AND SAVE LINK

LC + 1 .. «Q)) 10-23

MAP ... ((Q)) 0

OV ... ((Q)) 3

CARRY ... ((Q)) 4

Q+1 .. LC

0 .. CARRY

0 -- OV

This instruction provides the entry mechanism for reentrant sub­
routines. The location of the next instruction is stored into bits
10-23 of the link word specified by the address of the memory word
at the effective address. Bit 0 of the link word is set to zero if
the machine is operating in the monitor mode and is set to one if the
machine is in the user mode. Bits 3 and 4 of the link word are set
to the contents of the overflow indicator and the carry flip-flop
respectively. The overflow indicator and the carry flip-flop are
then cleared and the computer branches to the effective address
plus one.

Thus J the instruction BSL Y at location P first looks in Y to find a
link address Z. The P + 1 is then stored in Z which is outside the
body of the subroutine. Control is then transferred to Y + 1.
Return to the calling program is accomplished with indirect branch

. through Z.

- 40 -

Example:

a ,BSL b

a+l

Note that the address saved is the address of the next instruction to
be executed. This is a general policy which applies whether the BSL
is executed

1. Directly
2. Indire ctly
3. By an interrupt
4. By a programmed operator

W:hen the BSL is executed via a programmed operator" one additional
step occurs. This is the computation and saving of the effective
address of the programmed operator in the location following the link
word. This will expedite finding operands in the programmed operator
routine.

BIX BRANCH AND INCREMENT INDEX 4

X + 1---X; IF Xc::: 0" Q---LC

This instruction adds one to the contents of the index register. If the
index register is negative" branch to the effective address. If the
index register is positive" the computer takes the next sequential
instruction.

- 41 -

BRI BRANCH AND RESET INTERRUPT

(Q)lO-23 --LC

(Q)3 --oV

(Q)4 ----CARRy

Clear Current Priority Interrupt

The address portion of memory at the effective address is placed
into the location counter. The overflow indicator and the carry
flip-flop bits are replaced by the contents of bits 3 and 4" respec­
tively" of the location specified by the effective address. This
instruction also terminates the current priority interrupt. This
instruction may be used to return from a subroutine when it is
desired to restore the overflow and carry.

BDX BRANCH AND DECREMENT INDEX

X-I --- X" IF X ::: 0" Q --- LC

This instruction subtracts one from the index register. If the
result is positive, branch to the effective address. If X is
negative, ,proceed to the next sequential instruction.

- 42 -

3

4

INPUT-OUTPUT AND CONTROL (PRIVILEGED)

ACT ACTIVATE (P) 10

The 14 bits of effective address are used for setting various internal
computer conditions and for controlling the peripheral devices. The
basic function is selected by bits 10 and 11 as follows:

10 11
0 0 Unassigned
0 1 Unassigned
1 0 Set internal condition
1 1 Set external condition

Interpretation of bits 12-23 will be discussed under the sections on
"Setting Internal Conditions" and "Setting External Conditions. "

POT PARALLEL OUTPUT (P) 3

(Q) --.-Parallel Output Lines

The contents of the effective address is brought to the storage reg­
ister and held, awaiting transfer to an external device. This instruc­
tion allows up to 24 bits to be transmitted in parallel to an external
device e

PIN PARALLEL INPUT (P) 2

(Parallel Input Lines)---Q

Twenty-four parallel bits are input into the contents of the memory
location specified by the effective address ..

- 43 -

MISCELLANEOUS

EAX EFFECTIVE ADDRESS INTO INDEX

Q--X 10-23

The effective address is placed in the address field of the index
register. Bits 0-9 of the index register are unaffected.

XEC EXECUTE

(Q) -..-Instruction Register

2

1+

The instruction at the effective address is executed. This instruc­
tion does not alter the location counter unless the instruction it
executes changes the location counter. If a skip instruction is
executed, the skip occurs relative to the XEC instruction.

XCI EXECUTE INDIRECT

((Q)) -.-Instruction Register
(Q)+l--'-(Q)

5+

The instruction which is addressed by the contents of the effective
address is executed and the contents of the effective address are
incremented by one. If a skip instruction is executed, the skip
occurs relative to the XCI instruction. If the instruction executed
is an unconditional branch or a conditional branch for which the
branch conditions are satisfied, the location counter is incremented
by three and the branch is suppressed.

The purpose of this instruction is to simplify tracing routines and
debugging routines which can execute a sequence of instructions
without fear of losing control. If the monitor map is in effect, a 1
in the sign bit of the word at the effective address causes the instruc­
tion to be fetched using the user map"

SHF SIDFT 7

All shifts in the computer are performed by one instruction. The
type of shift is determined by the address field of the instruction.
The address field has the following format:

- 44 -

Where

10 11 12 13 14 15 16 17
I I D S R I V I ,C

D Specifies the shift direction
o - Left
1 - Right

S Specifies the type logical or arithmetic

23

o - Logical. The overflow indicator is unaffected by
this instruction.

1 -'Arithmetic. On right shifts the sign bit is not
shifted but is copied into vacated bit
positions. Bits shifted out of the right
bit of each active register are lost.
Overflow is set if the sign bit of the A
register changes during the shift.

R Specifies the active registers
o - A and B are taken as a single 48 bit register
1 - A only is specified
2 - B only is spe cified
3 - A and B are both shifted but are treated as two

independent 24 bit registers.

V Specifies the action to be taken on vacated bit positions
o - Shift in O's
1 - Shift in l' s
2 - Shift in bits shifted out from other end of register

(cycle). (Sign bit on arithmetic right).
3 - Shift in complement of bits shifted out from other

end of register. (Complement of sign
bit on arithmetic right).

C Shift Count. The shift count is a seven bit two's
complement count, -63 < C < 63. If C is negative"
the direction of the shift indicated by the D field is
reversed. If indexing is specified, the sign of C is
extended to form a 24 bit two.' s complement number
which is added to the contents of the index register to
yield a 24 bit shift count

- 45 -

Shift instructions may be indirectly addressed. If indirect addressing
is specified, the last word in the chain contains the shift specification
fields.

- 46 -

OPR OPERATE

The operate instruction is used to perform many functions. Since
no memory reference is made" the effective address is used to
specify the operations performed.

This instruction contains the following instructions as determined
by bits 10-12 of the effective address:

10 11 12

0 0 0 SWP Swap Registers
0 0 1 LRO Logical Register Operate
0 1 0 ARO Arithmetic Register Operate
0 1 1 RIN Re gister Increment
1 0 0 BTO Bit Test and Operate
1 1 1 PFM Perform

Bits 13-23 of the address are treated for each subinstruction as
discussed in the following section.

SWP SW AP REGISTER

This instruction permits the general exchange of the A" B, and X
registers. In addition" any or all may be cleared or set to -1
(777777778)·

5

The values to be placed in the A" B, and X registers are independently
specifiable. The three bit fields which control the final contents of
the registers are:

Bits

15 - 17
18 - 20
21 - 23

A Register
B Register
X Register

The interpretation of each three bit field is as follows:

Bit 1

Bit 2 - 3

o - Transfe r true
1 - Transfer complement

00 - Source register is zero
01 - Source register is A
10 - Source register is B
11 - Source register is X

- 47 -

When this instruction is executed, any register which is to remain
unchanged should specify a transfer to itself.

LRO LOGICAL REGISTER OPERATE 4

This instruction allows the formation of any of the sixteen possible
bit wise logical functions of two re gisters and place the result in
any register. In this instruction two source registers, Sl and S2,
and a destination register" D" are specifiable independently by the
three 2 bit fields:

Bits

14 - 15 S2
16-17 Sl
18 - 19 D

In each field the register designated by the bits is the same as in
SWP:

o 0 Zero
01 A
lOB
1 1 X

Bits 20-23" called B1, B2, B3, and B4 respectively control the
formation of the res ult as follow s:

If the zero (empty) register is specified as a destination regis ter" the
result is discarded and no action occurs.

ARO ARITHMETIC REGISTER OPERATE 4

This allows for forming the sum or difference of any two registers
placing the result in any register and performing a versatile skip
test on the result.

The source (Sl and S2) and destination (D) registers are specified
by the same fields in the same way as under LRO.

- 48 -

Bit 13 controls addition or subtraction:

Bit 13 = 0 Add (Sl + S2 D)
1 Subtract (Sl - S2 D)

Bits 20-23 control the testing of the result in the following way:

Bit 20
Skip if result is c::::-1

21
=-1

22 23
=0 ::;::t 0

Some of the conditions which may be tested by appropriate bit
settings are:

20 21 22 23
No test or skip 0 0 0 0
Skip on zero 0 0 1 0
Skip on positive 0 0 1 1
Skip on less than or equal to zero 1 1 1 0
Skip on mixed ones and zeros 1 0 0 1

Since the result can be discarded (D = 00>., the sum or difference of
registers~ or a single register (Sl or S2 = OOL may be testing with­
out altering them.

RIN REGISTER INCREMENT 4

This instruction is similar to the previous instruction ARO except
that instead of using the S2 field to select a register the contents of the
S2 field are used as an immediate operand. In this way a register may
be incremented ~ or decremented by a ~ 1 ~ 2 ~ or 3 ~ and tested by a
single instruction. Other than the change above~ all fields are inter­
preted as in ARO.

BTO BIT TEST AND OPERATE 2

This instruction allows the selection and testing of the CARRY and
OVERFLOW flip-flops and setting them to desired values ..

The bits used to select the flip-flops is Bit 19 as follows:

Bit 19 = 0
= .1

Overflow
Carry

- 49 -

FIX CONVERT TO FIXED POINT 8

The normalized floating point number in the accumulator and extended
accumulator is converted to a 48 bit integer in A and B. If the expo­
nent of the floating point number is less than or equal to 0, the
accumulator and extended accumulator are cleared. If the exponent is
greater than 47, the overflow indicator is turned on and exit is made
with the accumulator and extended accumulator unchanged. The most
significant fraction bit is stored in the carry flip-flops.

FRND

Example:

Before Execution
After Execution

FLOATING ROUND

A
24500000
00000000

B
00000005
00000024

CARRY
o
1

(A, B)F + (CO) - --(A, B)F Adjust Exponent

8

The contents of the carry flip-flop is added to the low order bit of the
fractional part of the floating point number in A, B. If the addition of
the carry caused the fraction to overflow, the fraction is shifted right
one place and one is added to the exponent. The resulting normalized
floating point number is placed in A, B and the carry flip-flops is
turned off.

FNEG FLOA TING NEGA TE 8

The negative of the floating point number in A, B replaces the contents
of A, B. Since it may be necessary to shift the fraction by one bit,
either overflow or underflow can occur and will be treated asunder
floating add.

- 51 ..

ANRM A NORM FD 14

A 10-23 ~:~ 24 + A 5 - 9 --,,-A

This instruction converts a field descriptor (Words + Offset) into a
bit count in A. It can be used to convert a string length pointer into
the length of the string in bits. The length of the string in characters
may then be obtained by shifting A right 3 bits (Divide by 8).

BNRM B NORM FD 14

A/24---A 10 -23, Remainder~A5-9

This instruction converts a bit count in A into a FD with zero length
field in A. (i. e.. 0 := A 5-9 c:::: 23)

NRM NORMALIZE FD 4

1. If AO = I, A + 013377778 --.-A

If AO::: 0148 I A - 013377778 ----A

2. If 0:::. AO -9 ::: 23, 0 ---- OV

Otherwise 1--0V

This instruction is used to restore a FD in A to normalized form
after two FD's with zero LNG fields are added or subtracted. One
normalization step is taken. If the result is normalized the overflow
indicator is turned off. If the result is not normalized, the overflow
indicator is turned on.

LLO LOCATE LEADING ONE 2

The bit position of the first (left most) one bit in the A and B reg­
isters is placed in the X register. The sign bit of the A register is
bit 0 and the least significant bit of the B register is bit 47. If there
are no one bits in A or B, X is set to -1.

- 52 -

LLZ LOCATE LEADING ZERO 2

The bit position of the first (left most) zero bit in the A and B
registers is placed in the X register. If no bits are zero, X is set
to -1.

LLT LOCATE LEADING TRANSITION 2

The bit position of the first zero bit followed by a one, or the first
one bit followed by a zero I is placed in the X register. If all bits
of both A and B are either 0 or 1, X is set to -1. Since bit 23 of B
is always assumed to be followed by an identical bit, the largest
number which can be set into X is 46.

CNT COUNT BITS

The number of bits in A and B which are 1 is placed in the X
register. The result is X will therefore lie between 0 and 48
inclusive.

- 53 -

4

PRlORITY INTERRUPTS

The see 6700 has 16 priority interrupt channels as standard equip­
ment" which may be selectively armed or disarmed and selectively
enabled and disabled when disarmed interrupt conditions are ignored.
When disabled" however" interrupt conditions are recorded for
future response. Additional priority interrupt channels may be added
in blocks of 16 channels as optional equipment. Each interrupt
channel is numbered. The number assigned to a channel is determined
by the location from which the computer obtains an instruction to be
executed when interrupted by the given channel.

There are three flip-flops associated with each interrupt channel. Two
of these flip-flops indicate the status of the corresponding channel and
have the following meaning:

RFF PFF

o o

1 o

1 1

o 1

STATUS

Interrupt inactive

Interrupt requested but not
being processed (Waiting)

Interrupt requested and being
processed (Active)

(Not Used)

The third flip-flop is set if the active interrupt is to remain active
until a BRI instruction has been executed and reset if the interrupt
is to be cleared after a single instruction. A BSL instruction in the
interrupt cell will set this flip-flop for a multi -instruction interrupt.

If the instruction at the interrupt location is any instruction othe r
than a BSL" the interrupt is cleared immediately after executing the
instruction. If the instruction in the interrupt location does not
alter the program counter" the effect of an interrupt is that the
instruction is effectively inserted into the program at the point of
interrupt ..

When an interrupt causes the computer to execute the location
specified by the channel number" the location counter is not altered.

- 54 -

A ,BSL instruction may then be used to save the address of the
interrupted program while branching to the interrupt routine.

The currently active interrupt is cleared and the interrupt channel
flip-flops are reset by a BID instruction.

When an interrupt for a given channel is being processed" a higher
priority channel may interrupt the processing subroutine. If this
situation occurs" the interrupted channel remains in the active status.
After the higher priority interrupt has been processed" return is
made to the subroutine processing the original interrupt. If an
interrupt on a given channel is being processed" any new interrupt
requests to that channel will not be honored" i. e." no interrupt will
occur.

The lower number channels have higher priority" hence" given two
channels" M and N" M ::;:, N implies channel N has priority over M.

Interrupts may be placed in the Waiting Status by an appropriate ACT
command. This feature may be used for both hardware and software
checking" as well as simplifying certain I/O routines.

- 55 -

SYSTEM TRAPS

Illegal user actions are detected in the 6700 by the system trap
mechanism. The system trap is similar to the interrupt in that a
trap causes the instruction in a fixed location in memory to be
executed. In fact, a trap may be viewed as an interrupt with a
specifiable priority.

The trap conditions and the locations executed at their occurrence
are as follow s :

Location

40 -
41 -
42 -
43 -
44 -
45 -
46 -
47 -
50 -
51 -
52 -

Condition

Privilege Error
Undefined Op-Code
Write Error
Read Error
Execute Error
Floating Point Overflow
Inte rval Time Trap
Non-existent Memory
Return to User Map
Parity Error
FD Error

At the occurrence of a trap the BSL saves the location of the offending
instruction, including the case of an attempted jump to an out of
bounds location.

- 56 -

INPUT/OUT:PUT OPEHATION

TIME SHARING INPUT/OUTPUT CONTROLLER

Each time sharing input/output controller connects 16 remote devices
to the 6700 via the parallel input/ output system. One I/O controller
is included as standard equipment. Additional controllers may be
added when a large number of remote devices is required.

The teletype interface permits the transfer of II-unit, 10-character­
per-second teletype information between the SCC 6700 computer and
32 Model 35 Teletype printer keyboards. Each of the 32 lines is full
duplex and all of the lines can be active simultaneously. The inter­
face operates through the parallel I/O connector of the computer and
uses two of its interrupt locations.

Each of the 32 teletypes has a transmit and a receive character
buffer which perform all necessary serial-to-parallel and parallel­
to-serial operations and provide the necessary control timing.
Flags associated with each transmit and receive buffer indicate when
a character has been transmitted or received. The flags are con­
tinously scanned by a scanning unit within the interface. Upon
encountering a transmit (receive) flag, the scanner is stopped and an
interrupt unique to the transmit (receive) operation is issued. At
this time the scanner register contains the address of the raised
flag. The scanner is subsequently restarted when the computer reads
the character into (out of) the corresponding buffer.

A program option is provided to allow for the suppres sion of a parti­
cular transmit flag, thus prohibiting an interrupt at the completion
of the transmit operation.

Ins tructions

The following is a list of instructions which pertain to the
teletype interface:

SELECT TELETYPE INTERFACE - STI

This instruction selects the teletype interface; i. e. J the execu­
tion of this instruction causes the interface to be electrically
connected to the I/O connector. The interface will remain
selected until another ACT instruction is received.

- 57 -

OUTPUT CHARACTER AND SET INTERRUPT CONTROL - POT

This instruction transfers a word from the specified memory
location to the teletype interface. The transferred word con­
tains a TTY address, an interrupt specification and, in
appropriate cases, a character to be transmitted. The format
of this word is as follows:

BITS

0-7

8

9

10

11-14

15-23

The character to be transmitted

= 1 if the character (Bits 0-7) is not to be
transferred to the transmit buffer

= 0 if the character is to be transferred

= 1 if an interrupt is to occur at the completion
of the transmis sion

= 0 if the interrupt is not to occur

= 1 if the input and output interrupts are to
be enabled (see the Operation Section for
details).

= 0 otherwise

Not interpreted

TTY address (256 may be addressed).

It should be noted that if Bit 8 of the transmitted word is one"
this instruction can be executed at any time without affecting
the specified transmit buffer.

READ TELETYPE ADDRESS AND DATA - PIN

This instruction transfers a word from the teletype interface
into the memory location specified. When this instruction is
executed in response to a teletype input or output interrupt,
the word transferred into memory will contain the address of

- 58 -

the teletype causing the interrupt and" in the case of an input
interrupt" it will also contain the inputted character. The
format of this word is as follows:

BITS

0-7

19-23

Operation

The inputted character when responding to an
input interrupt and zero when responding to
an output interrupt

zero

The address of the teletype causing the interrupt

As a result of pressing the start button on the CPU" the
teletype interface is initially in a state such that it will not
send interrupt requests to the CPU. The normal operating
state is effected by outputting a word with Bit 10 equal to one.
This word may also contain further information such as a
character to be transmitted. When in the normal operating
state" the interface will issue a receive interrupt request
each time the scanner encounters a receive flag (indicating
a character is in the receive buffer) and will issue a transmit
interrupt request each time a transmit flag" together with its
interrupt control flag" is encountered (indicating that the
transmit buffer is clear and that the interrupt specification
requested an interrupt at the completion of transmission).

When responding to a receive interrupt" it is necessary only to
supplement the normal interrupt servicing routine with an
ACT-PIN combination to effect the input operation.

When responding to a transmit interrupt" it is first necessary
to input the teletype address with an ACT-PIN combination and
then to output the interrupt specification and the character to
be transmitted with an ACT-POT combination.

When transmitting a character at an arbitrary time (not in
response to an interrupt)" the ACT-POT combination should
be preceded by a skip instruction to assure that the transmit

- 59 -

buffer is not busy. If only the interrupt specification is to be
set (Bit 8 of the output word is one), then the ACT-POT
combination can be executed at any time since the interrupt
specification is independent of the transmit buffer.

Interrupt Procedure

The scanner is halted every time that a receive flag or a
transmit flag" together with its interrupt control flag" is
encountered and will remain halted until the flag is cleared by
the execution of an RDP instruction in the case of a receive
flag" or by a WTP instruction in the case of a transmit flag.
During the time that the scanner is stopped" an interrupt
request corresponding to the type of flag encountered (transmit
or receive) will be sent to the CPU.

As a result of this scanning procedure and of the priority
interrupt system of the CPU" the following facts hold:

1. The receive interrupt routine will not be interrupted
by either a TTY transmit or receive interrupt.

2. The transmit interrupt routine will not be interrupted by
a transmit interrupt and can be interrupted by a receive
interrupt only after the transmit flag causing the interrupt
has been cleared.

- 60 -

APPENDIX A
6700 INSTRUCTION LIST

Loads /Stores

LDA
STA
XMA
LDB
STB
LDX
STX
XMX
STM
LDD
STD

Load A Register
Store A Register
Exchange Memory and A
Load B Register
Store B Register
Load Index Register
Store Index Register
Exchange Memory and X
Store under Mask
Load Double
Store Double

Field Loads/Stores

Load Field
Store Field
Load Field Indexed
Store Field Indexed

LDF
STF
LDFX -
STFX -
LDFI
STFI

Load Field and Increment
Store Field and Increment

Logical Operations

AND Logical AND to A
ORA Logical OR to A
EOR Logical Exclusive OR to A

Branching

BRU Branch Unconditional
BSL Branch and Save Location
BIX Branch-Increment X
BDX Branch-Decrement X
BRI Branch and Re store Interrupts

- 61 -

Fixed Arithmetic

ADD
SUB
MPY
DIV
ADM
MIN
MDS
ADX

Add to A
Subtract from A
Multiply
Divide
Add A to Memory
Memory Increment
Memory Decrement and Skip
Add to Index Register

Floating Point Arithmetic

FAD
UFA
FSB
UFS
FMP
FDV

Skip Tests

SKE
SKU
SKG
SKL
SKEM -
SKUM -
SKN
SKP
SKA
SKB
SKC

Floating Add
Unnormalized Floating Add
Floating Subtract
Unnormalized Floating Subtract
Floating Multiply
Floating Divide

Skip on A Equal to Memory
Skip Unequal
Skip on A Greater
Skip on A Less or Equal
Skip on Masked Equality
Skip on Masked Unequal
Skip if Memory Negative
Skip if Memory Positive
Skip on A and Memory Zero
Skip on B and Memory Zero
Skip and Clear Flag

Miscellaneous

EAX
SHF
XEC
XCI
OPR
ANORM-

Effective Address to X
. Shift
Execute
Execute Indirect
Operate Microinstruction
FD into Bit Length

- 62 -

Miscellaneous continued

BNORM - Bit Length Into FD
NORM - Normalize FD
FIX - Float to Fix Conversion
FLT - Fix to Float Conversion
FNG - Floating Negate
FRD - Floating Round
SWP - General Register Swap
AOP - Arithmetic Ops on Registers
LOP - Logical Ops on Registers
RIN - Register Increments and'Test

and many others

I/O (Privileged)

ACT - Activate
POT - Parallel Output
PIN - Parallel Input

- 63 -

6700 INSTRUCTION MAP

o 1 2 3 4 5 6 7
r------lr----~----__.,.___---____:_----__:_-----·~-----------·--··- ---"".--'-,

o TRP POT ACT PIN XMA

1

2

1------;-----1-------l~---_l_-----l-------'----------.-- ------.-.... --.-. L-=-I STB

~--~---~---~--- ~---~-~----
OPR LDF LDFI LDFX SHF i STF

I

LDA LDB LDX LDD STX STD

STFI

3

4

5

6

7

i------~;.>-----'.-------;_. -----1-1--------~-:,--------. '.--'. ---.---<-~--,-.-"., .-< >

EAX AND I ORA ~I FAD 1 FMP FSB FD ,-

t---S-K-E---l---S-K-U--I~--S-KG-_l' SKL IADD --i--:p~-'

~----l-------:'-----~----"-----'--'-----'-----'"---''' .-------------.-... - -- -- -..-. '" --.

~S-K-E-M--_+__-S_K-U-M-_I:-__ S_K_N_T __ I. __ S_K_~P __ .I,-__ A_D_lV_il __ i _____ l\i_II~ __ , ___ ~_~s __ . _~D:;
I I I j

SKB SKC I UFA I XEC ;

i I I;
~~-~~!~~~-~~~~~~~!!~~~~~I -f~---~-~'-'- ---.~-------.- ..
I

LBRU i
I
l

SKA

BSL BIX BDX ERr

SUB DI-;.-

UFS XCI

APPENDIX B
SCC 6700

TIME-SHARING SOFTWARE

INTRODUCTION

The SCC 6700 Time-Sharing Software is designed to take full
advantage of the advanced hardware concepts presented by the
SCC 6700. The software system consists of three major parts:
the monitor, the executive and the subsystems. In general, the
time-sharing system provides the following facilities.

1. Mutual protection of the users and time system against
one another.

2. Facilities to allow users to communicate with one
another via the computer.

3. Approximately equal allocatIon of the computing facili­
ties to the current us ers.

4. Software packages necessary to permit one program to
control others - - with overall control by the user from
his terminal.

5, Software which permits communication between computer
and peripherals without regard to the latter's special
physical peculiarities.

6. A file management system for user's data sets and
programs.

7. Response to a variety of requests that arise naturally
in the course of a user's connection with the system.

- 65 -

SYSTEM MONITOR

The system monitor performs the functions of scheduling, input/
output, interrupt processing, memory allocation and swapping,
and the control of active programs. The monitor permits each
program to be run a fixed period of time or until an input/ output
request is made. Following the occurrence of either of these events,
the program is dismissed and a new program activated. If an
active program requires memory presently occupied by a dismissed
program, the user status register is checked to see if the page in
question has been altered. If the page has been altered, it is put
on the drum; if it has not been altered, swapping to the drum is
recognized as being unnecessary.

All user input! out requests are handled by the monitor. The user
is provided with a comprehensive file handling capability. The file
handling programs make it unnecessary for the user to have detailed
programming knowledge of the input! out device he is using. Special
file handling capabilities are provided for the teletype since this is
the most common user console. In particular, the file handler pro­
.vides full duplex teletype input/output, in which a character typed
on the keyboard is sent to the computer but is not printed. After
receiving an input character, the file handler may output the received
character to the teletype to be printed, thus creating an echo, or it
may transmit some other character(s) to be printed. The full duplex
capability permits the user to substitute a character or a string of
characters for some character which is typed. Most important, it
relieves the user from having to wait for a type -out to finish before
being able to type information.

SYSTEM EXECUTIVE

The System Executive provides the command language by which the
user controls the system from his teletype, the identification of
users and specification of the limits of their access to the system,
the control of the directory of symbolic file names and back-up
storage for these files and several other miscellaneous matters.
The executive provides user file security by denying unauthorized
file access by other users.

The user controls the system from his teletype with the Executive
Command language. The executive commands fall into seven broad
classes:

- 66 -

1. Commands governing entry to and exit from the system.

2. Commands controlling the allocation of memory.

3. Commands relating to the interaction of teletypes.

4. Commands to control the handling of the files.

5. Miscellaneous commands.

6. Commands to call subsystems.

7. "Systems" commands.

Considerable flexibility is offered in the area of interaction between
teletypes. Provision is made for linking several teletypes enabling
a user to transmit a mes sage to many teletypes. The user is given
the capability to converse with someone on another teletype via the'
CONSULT WITH command. The executive also provides commands
which enable a user to find out on which teletype a particular user is
currently entered or who is using a particular teletype.

SYMBOLIC MACRO-ASSEMBLER

The Symbolic Macro-Assembler will transform a symbolic file con­
sisting of a symbolic machine -language program into a binary file
which' can be loaded directly into core using the loader in the DDT
sybsystem. The assembler also provides DDT with the symbolic
tables necessary for symbolic level debugging. The assembler
includes a powerful mechanism for expanding user -defined macros
as well as ~ large variety of options which include the listing, skipping
and repeating of parts of the assembly.

TIME-SHARING DEBUGGING SYSTEM (DDT)

DDT is the loading and debugging subsystem for SCC 6700 programs.
Binary files prepared by the assembler can be loaded into core by
DDT and executed under its continuous supervision. Other facilities
include interrogating and changing memory locations, scanning memory
for the specified digit patterns, inserting patches and breakpoints and
performing traces.

- 67 -

I-IELP

This is a question-answering service intended to obviate the necessity
of referring to a manual to resolve any small difficulties which arise
while using the time-sharing system. Questions about the system
may be put, via the teletype, in fairly free format, conversational
English. HELP may be entered from any subsystem and is then set
up to recognize and answer questions about that subsystem.

CONVERSATIONAL ALGEBRAIC LANGUAGE (CAL)

The "Conversational Algebraic Language" allows numerical computa­
tions to be performed interactively. That is to say, mathematical
calculations can proceed under the continuous supervision of the user.
Facilities are available for compiling and running complete programs
delivered in a stylized semi-conversational form, as well as for
carrying forward computations in short steps with printouts of inter­
mediate results.

TIME SHARING EDITOR (Q. E. D.)

Q. E. D. is a rather powerful program for editing symbolic text which
runs under the 6700 time sharing system. Its input and output are
symbolic files which can also be handled by the executive COPY
command. It has extensive facilities for inserting, deleting and
changing lines of text, a line edit feature, a powerful symbolic
search feature, automatic tabs which may be set by the user, and
ten string buffers. Text can be .read from any file and written onto
any file. A replace command permits all occurrences of a specified
string of characters to be replaced with another string.

TIME SHARING STRING PROCESSING SYSTEM (SPS)

The String Processing System is a collection of subroutines which
perform operations on strings of characters. SPS provides string
comparison operations, string output commands, and string manipu­
lation via a hash table which facilitates table look -ups when the operand
is a string.

- 68 -

SNOBOL

SNOBOL is a language whereby strings of alphanumeric characters
can be manipulated. Specified strings can be input/ output, scanned
for the existence of possibly broken sequences of characters with
specified properties, compared to be "greater than" or "less than"
one another; substitutions, reversal and transplantation of groups
of characters can also be done. Strings of decimal digits may be
interpreted as numbers and some simple arithmetic may be done
with them.

LISP

LISP is a general-purpose List Processing System. It can, with
greater or lesser efficiency, perform user -defined operations on
any set of entities capable of being represented as lists either of
other lists or, ultimately, of a finite number of distinguishable
elements. Problems which are recursive by nature, i. e., in which
the definition of a computable entity involves the entity itself, are
particularly susceptible to attack using LISP.

FORTRAN

FORTRAN, actually two processors, the 6700 Fortran System
consists of a high efficiency compiler plus an interpretive
(conversational) version with outstanding diagnostic facilities.
Accepting exactly the same language, full ASA Fortran, the trans­
lators of the 6700 Fortran system greatly simplify the construction
of efficient, correct Fortran programs.

TMG

TMG, a syntax-directed translator for the do-it-yourself fan or
the user with an unusual problem, TMG provides easy programming
of both batch and incremental translators. The Symbolic output
of TMG may be used as input to any of the processors (including
of course, TMG).

- 69 -

SCC maintains complete support activities for its use rs . Installation and maintenance services are
available through SCC offices strategically located throughout the United States. For pre-procure­
ment demonstration of hardware and programs in Dallas, contact local sales office or the Marketing
Department in Dallas.

Arlington, Massachusetts
30 Park Avenue
617 - 648-2922
(Boston)

Skokie, Illinois
125 Old Orchard Arcade
312 - 675-6700
(Chicago)

Houston, Texas
7800 Westglen Drive
713 - 782-9851

Seattle, Washington
1806 South Bush Place
206 - 324-7911

Midland Park, New Jersey
36 Centra l Avenue
201 - 652-6750
(New York)

Crofton, Maryland
- Village Green

301 - 647-6431
(Baltimore)

Orlando, Florida

2319 E. South Street
305 - 841-3556

Pasadena, California
180 East California Blvd.
213 - 681-2651
(Los Angeles)

Other SCC products include: telemetry systems and airborne signal conditioning equipment such as
amplifiers, demodulators and converters.

Scientific Control Corporation
14008 Distribution Way • Dallas, Texas 75234 • 214 - 241-2111

Printed in U .S.A .

