INFORMAT, DESCRIPTION OF THE SCC 6700

Butler W. Lampson

University of Californis, Berkeley

Document No. W-41

~Issued March 6, 1968
éontract SsD-185
Office of Secretary of Defense
Advanced Research Projects Agency
' Washington, D. C. 20355

w-h1

INFORMAL DESCRIPTION OF THE SCC 6700

The Scientific Control Corporation 6700 is a large-scale general
purpose cbmputer specifically designed for time-sharing. It is
the product of a joint effort of Project Genie and SCC personnel.
:One of these machines, together with accompanying drums, disks
and memory, has been ordered by the project. It is hoped that .
the system will be operational by the first quarter of 19é9.)

This document is an informal reference manual for the machine.
It describes the overall system organiéatibn, the CPU, the
memory system and the input/output at a level of detail which
is intended to be the maximum of what a systems programmer
might want to know and what is currently decided. It is not
to be tsken as certain truth.

Overall désign, Main memory

‘The 6700 is s memory-centered system. It consists of a
lérge number of more or less independent devices which communicate
with each other primarlly through memory. There are a few other
channels of communication: the ACT bus, the PRO bus and wakeup
lines.)) -
. The main memory of the system is 128K (expandable to 512K)
of core organized into 8 modules of 16K each. The cycle time
of the memory is 1000 ns; the read access time is 400 ns. The
.memory is 52 bits wide; there is room for 2 of the machine's
2h-bit words and 4 parity bits.
Each module of the meﬁory is connected to a fast memory
which consists of six address registers and six double word
data registers, one for each address register. All communication
between the outside world and the core tékes place through -
the fast memory. ')
A Each fast memory has four ports, i.e., four independent
mechanisms for presenting addresses to the memory and transmitting

-2 -

25-bit words and control information. A device references the
memory by presenting an address and six control bits, which are
used in the following way: '
One bit is & memory access priority bit. If it is
on, the request has high priority for access to the fast
memory. This means that if another fast memory request

is presented to the module in the same cycle (100 ns)

which does not have the memory access priority bit set,

"the request which does have the bit setlwill win. The

other request can be made again in the next 100 ns cycle.

If two requests have the same memory access priority,

the one is chosen which comes in at the port having the

highest priority. The priorities of the ports are fixed.

Two bits specify the core access priority as Low,

Warning, Medium or High. If the request requires a core

access, these bits determine how it feres in competition

Qith other requests requiring core accesses. W is

s~uivalent to L except that it causes any pending W

‘requests to be converted to H: it is used by the drum

transfer unit.

' Three bits describe the nature of the request. They
are called Fetch, Store and Hold. Five combinations of
these bits are normally used: -

F S H

0 0 1 Pre-store. Obtains a register in fast memory
for the address and sets its hold bit. The
register will not be released, unless its hold
bit is cleared by another request with the sahe
address, until 10 us has elapsed. No core

, reference is initiated by this request.

O 1 O Store. Takes 24 bits from the data bus and puts
them into a fast memory register. The data will
be stored into core as soon as fhe core access
priority gets it a core access. The hold bit

on the register is cleared.

-3-

O 1 1 Store and hold. Seme as store except tﬁat the
" hold bit is set. '

-1 0 1 Pre-fetch. Obtains a register in fast memory for
the address and sets its hold bit. The memory will
make a core access if necessary to make the data
portion of the register agree with the contents
of core. '

1 0 O Fetch. If data is ready in the fast memory, it

' is transferred to the bus. The hold bit is cleared.

.- Each module of the ﬁemory listens to requests aﬁ its four
ports in every 100 ns cycle. It accepts at most one request; the
others are rejected within the same cyciel If a request is
accepted, data and addresses are transferred in the following
cycle. Thus, an accepted request takes 200 ns, a rejected one
100 ns. This is not a complete description of memory bus timing.

The fast‘memory attempts to keep its contents in agreemenf
with core, doing fetches or stores from core as necessary. If
the\m;nory is left alone for six cycles, it will be able to make

. allréne core references it needs. ihere will then be 48 double
words in fast memory. They will stay there ﬁntil displaced by
later requests. A program operating in a tight loop on a small
,volume‘of data may be able to approximate this situation quite
~ closely. |) ‘
The following devices are attached to the main memory:
The CPU '
The drum and disk transfer units
The drum and disk controller (AMC or auxiliary memory
controller) . '
The process control unit (PCU)
The character input/output controllér (cHIOC) \
Any other I/O devices which may be attached to the system.
There is an ACTivate bus which connects the CPU to the two '
_controllers, the PCU and eny other I/0 equipnent which may be
attached. There is also a PROtect bus which connects the CPU,
the PCU, the controllers and any other device which needs to set
the protect signal. e ' : h

The CPU

We will discuss th;a capabilities of the CPU under the
following headings:

‘eddressing and mapping

instruction set
, inputfoutput
Because of the highly interdependent nature of the system it will
be necessary-to use certain terms which are not defined until
' later in the discussion.

Addressing

Each process has available to it a 2119 word virtual memory
which is divided into 32 units of 16K words each called chunks.
A full address is therefore 19 bits, divided into a 5-bit chunk
~ number and a 14-bit word address within the chunk. A 19-bit
- field can be interpreted as a full address in the following

contexts:

1) As part of an indirect address word.
:’2) As part of the X register during indirect addressing
or in executing LFB or SFB.

3) ‘As part of e word in a pop transfer vector.
o L) As the operand of BRR or XCI or BSR. }
Since case (1) is by far the most important we will consider it
" in detail and then point out the ways in which the other cases
 differ. | | .
An indirect address word hes the following format:

0O 1 2 3 4 5 23

W={I | X |XP|TR|jFA full address

The I bit specifies another level of indirection. Tﬁe X bit
specifies indexing. The TR bit specifies that a trap should
_occur. The FA bit specifies that this level of indirection
provid,es\ a full address. The XP bit specifies that the X
register is used as a pointer, i.e., that it provides the chunk

number. _

-5-

Indirection proceeds in the following'manner. If W has
been fetched as an indirect word from address Q:
Trap if TR = 1 (see below)

Set WA =Wy, oy A£X =0, W oa+Xyg o0 £ X=1
Set CN =@ o if FA =0 '
W, ifFA=1landXP=0
5-9 =
X _g- if FA=land XP =1

The effectlve address at this level is (CN,WA), by which we mean
the 2h-bit qnant1ty*

If T = 1, we use this word as the address 6f another indirect
- word. Otherwise, we return it as the effective address. |

The effect of all this is that if FA = 0 indirection
prooeed< exactly as in the 940, except for the dlfferent]
arrangement of the bits and the presence of the trap bit. The
address produced is in the same chunk as the indirect word.
If FA =~1, the address produced is in a different chunk, either
the one specified by the indirect word or the one specified
by X, depending on the setting of XP.

An instruction word has the format:

012 3%k 9 10 _ 23
W= I|] Xl P |OP ADDR

If P = 0, the OP field specifies one of 64 instructions to be
executed. Every instruction without exception generates

en effective sddress in the same way:
1) Iet CN = 15 9 (chunk number of the location counter)

"2) Iet WA = ADDR if X = O, ADDR+X10-_23

3) Go indirect through the address (CN,WA) if I =1.
Otherwise, teke (CN,WA) as the effectlve address.

irX=1

-6 -

Note that this is equivalent to treating the instruction word
with bits 2-9 cleared as sn indirect word.

Once the effective address Q has been generated, execution
of the instruction depends on the P and OP fields. This subject
is discussed in the next seétion. '

Addressing from one chunk to another is controlled by a
32 X 32 matrix called the inter-chunk protection (ICP) matrix.
An entry in this matrix contains two bits and determines the
legality of an inter-chunk reference as follows:

. 6 no access is allowed
A 1 read access only

2 read and indirect access

3 any kind of access
A reference made to obtain a word used in indirectioh is an
indirect reference. A reference made to obtain an instruction
is an execute reference. One made to fetch an operand is a
read reference, and one made to store é~data word is a write
refErénce. The entry of the ICP matrii to be used in checking
the*]é;ality of a reference is i.termined by the chunk containing
the word which provide the address (source chunk) and the chunk
. containing the word addressed (target chunk). Thus, in the
sequence
' ' { M IDA* N

chunk ML ,

N JA% 01, 02 this is an indirect address
directive. The operands
are chunk number and word

‘ _ ’ address respectively.
chunk 00 O IA P, P2
chunk P P DATA 24 _ :
_execution of the instruction at M loads 24 into A ﬁrovided

ML has indirect access to 01, or ICP[M1,01] > 2 '

01 has read access to Pl, or ICP[01,P1] > 1
Note that the value of ICP[ML,P1] is not in question.

- A chunk is paged. The nominal page size of the chunk mey
vary from 128 words to 2048 words. Each virtusl page may have

one of three values:

-7-

empty - no real memory corresponds to this virtual memory

8 real page reference

an indirect page table reference
If the value is a real page reference, it has two parts: a drum
address which'specifies the page and three protection bits:

W, X, P. ’ ‘
" aliows writing into the page if it is on.
. X &allows instruction words to be fetched from the page
if it is on.

P allows privileged instructions to be fetched if i% is on.
the that the protection bits are assogiated with the entry for
the page in the map and not with the physical page itself.

Converting a full address (CN,WA) into a physical address
requires the following steps: .

Obtain the CNth entry from the chunk table for the process.

This tells where the page table for chunk CN is and what
its nominal page size is. Call the NPS P. '

~ Obtain the (WA/P)th word from the page table. If its value
is a real page, this gives us & drum address for the page.

Look up D in a hash table called DHT. If it is there, the

associsted information tells where the page is in core
| and what state it is in. ' .
This process is described in complete detail below.

If the value of a virtual page is an indirect page table
reference, it also has two parts: an actual page size < the NPS
end an address which tells where to find a small page table
containing real page pointers. If the NPS is 1024 and the APS
is 256, the small table contains four entries for four 256 word
real pages which meke up the 102h.word nominal page. Each of '
these entries is O or a real page reference. .

A precise understanding of how the map works can be obtained
from the bit-by-bit description which follows; The above general
description should suffice for most purposes.

-8 -

Each process has a 32-word chunk table; one word of this
table either contains 0, indicating that no memory is assigned
to the chunk, or points to the ?age.table for the chunk. The
. format of a page teble pointer is

o 1 3Lk 5 12 13 23

0 NPS A PIL PTA

NPS'=»nomina1 page size for this chunk. This number
determines the division of the word address into
page number and word in page. - The nominal page
size is 32 # ZNPS, and NPS ranges between 1
(64 words, not implemented) and 6 (2048 words).
NPS = 7 is reserved. ‘

A = absolute address bit. PTA is interpreted as an

_ absolute address if this bit is set, as an address
in the context block if it is clear.

length of page table (in words) -1.

address of page table, modified by A.

PrL
PTA

A page table starts with four words which contain one row
of the ICP matrix, packed eight entries per word, two bits
per entry in the bottom 16 bits. The interpretation of an entry
is: '
00 - no access

01l - read only describing access from this
JO - read and indirect chunk to another one

11 - free sccess

The remainder of fﬁe page table, PTL words of it, contains
entries of threé types: empty, real page reference, or indirect
?age teble reference. The pointer from the chunk table is to
the word following the four ICP words.

-9 -

An empty entry is 0. A real page reference has the form

01 3 4 6 7 ' | 23

o PPB SPN DRUM ADDRESS

PPB = page protection bits
bit 1 = P: privileged instruction authorization

bit 2 = X: instruction fetch authorization -
bit 3 = W: write authorization

. Reading is always allowed
SFN = sub-page number. See the discussion of real address
formation below. '

An indirect page table reference has the form

01 3 LS5 12 13 23

11 APS A unused PTA -

APS = actual éage size
A,-PIA have the meanings ascribed above
- This entry points to a small page table with page size specified
by APS. This table has only empty or real vage entries. Tt
contain NPS/APS words. We require APS < NPS. .
There is & hash table called DHT which keeps track of
the drum pages which are in core. The key is the drum address.
. A linear collision doctrine is used. An entry in this table

occupies two words and has the form:

0 234k 67 . 230 12 13 14

23

PST NN DRUM ADDRESS unused | D CPA

- 10 -
PST = page status
0 - on drum
1 - read scheduled
2 - read in progress
- 3 - read error
4 - in core
5 « write scheduled
6 - write in progress
T - write error
" Note that a page is in core and readsble if and only if the
first bit of PST is on.
N.= no write. A write into this page will not be allowed
' 4if this bit is set. The primary purpose is to prevent
- & swapper decision to write the page from being subverted.

"D = dirty. Set if the page in core may differ from the

drum version.)

CPA = core page address. The top 10 bits of a 19 bit real

‘core address.

A reference to the map in core proceeds as follows: starting
with & 2u—bit full address word A, use A|j -9 to select a chunk
teble entry. If it is O, generate trap Ml. Otherwise, let
"PS =NPS and P = AlO—(lB-PS)' If P> LPT, generate trap M2‘.
Otherwise, examine the Pth entry in the page. teble addressed by
PTA+4. If the entry is empty, generate trap M3. If it is an
indirect page table reference, let Q = A(18-NPS +1)-(18-APS) and
PS = APS, and examine the Qth entry in small page table addressed
by the indirect reference.

When a real page reference is feund, look up‘the drum
address in DHT. If it is not found, generate trap Mi. If the
first bit of PST in the entry found is O, generate_‘trap 5.
Otherwise, compute the real address as |

9 6
CPAX*27 +SPN*2 +A(18-PS +1)-23

.Note that the + signs may be taken as merge rather the.n add
because of the way in which these quantities are obtained.

A reference to the map must specify whether the address is
. to be used for writing. If so, D is turned on in the DHT entry

found unless N is set, in which case trap ¥ is generated.

- 11 -

Since it is not acceptable to subject every memory reference
to this time-consuming process, the machine is equipped with
eight associative registers to hold information about the most
recently used core pages. One of these registers has the form:

o 2 3 F 78 R LY 27 28 30 31

' PS CN PN CPA PFB D
PS = ﬁage size. Same code as for NPS above. -
CN = chunk number.
PN = page number.

CPA = core page addréss/6h. Bit 27 is set to O permanently.
PPB = page protection bits

. D= dirty bit from DHT

When an address is presented to the map unit, an association is

done on the CN and PN fields of each register. The bits of the

address used in this association are determined by the PS field.

If the 1ssociation is successful, the real address is computed

as CPA*64 merged with the bits of the address not used for the
essociation. The PPB field is also returned so that the processor

| can check the protection.

With the address must come a bit which spécifies whether a
loed or store is being done. If the latter, D must be set when
the association succeeds. Otherwise, that register is cleared
and the map wnit proceeds as though association had failed.

This is to ensure that the D bit in DHT is set whenever a store

is done. The final state of D is returned.

' - If the association fails, the core map is referenced using
the algorithm described above. If it is successful, an associative
register is chosen and its former contents erased, and its

fields are set from the results of the reference to the core map:

PS « PS computed during map reference

b

BN < A4 (18-PS)

-

- 12 -

CPA « CPA in the DHT entry % 8 + SPN
_PPB « PPFB in the page table entry
D « D in the DHT entry

In parallel with the association for core address is one
for ICP bits. There is another set of registers of the form:

o L 5 6 7 9 11 13 i 5] 17 19 21

sC TC EO} EX E2 E3 B4 B E6 | B7
SC = source chunk number

TC = top two bits of target chunk number

Ei = ICP [SC,TCx8+i]

"I.e., if association on SC and TC succeeds, the 1ast three bits
of the target chunk number are used to select the proper Ei.
- If association fails, a referencé to the core map must
be made. The page table for chunk SC is found as before, and
PTA+TC is fetched.
~ The overall function of the mep ia described by the
fbllowiqg table:

Input ~ Output
Source chunk SC ICP bits (2)
Target chunk TC PEB (3)
‘Target word address WA Real core address (19)
 Ioad/store indication D bit (1)

There 1is aﬁ ACT instruction for the map-loader called
CVRA Convert Virtual to Real address
It accepts one argument, namely a 19 bit virtual address,
and returns either: i
-a) A noskip if the page containing this address is not
in the map, or ‘
- b) a skip and
1) The drum address of the page
'2) The real address of its DHT entry, or O if it is not

-13 -

in DHT
3) The real address corresponding'to the virtual
address if the page is in core, or O otherwise.
In other words, this instruction makes available most of the
results of the mapping operation, so that the processor does
not have to'duplicate the computation made by the map loader.

Under no circumstances does it cause a trap.

-1 -
Instructions

We will describe the 6700 instruction set in terms of its
differences from that of the 940. Notation: I = 24-bit program
counter, Q = 2h-bit effective address, (Z) means contents of
memory location addressed by Z. Needless to say, all addressing
is mapped. Assume L « L+l in every instruction description unless
otherwise stated. Any add to L or Q is a 1lL-bit add; the chunk
nuiber is wnaffected.

General
1. The format of an instruction word is different. See

above.
2. The effective address is computed in exactly the same

way for every instruction. .
_3'. Indirect addressing is handled quite differently. See
- above.
Symbols | _
L = 24 bit location (program) counter
"A 33X = A,B,X registers
Q = 24 bit effective address
OV = overflow bit .
CO = carry bit from 2hth bit of adder. Also used by
floating point instructions.
CI = Ce;rry into bit O of adder.
PRO = protect signal

-15'../

Loads and Stores
New instructions:

XMX Exchange memory and X
| X- (Q)) (Q) -X
S™M Store masked
(VA8 v 243 > (Q)
‘I.e., store the bits of A selected by 1 bits in B.
IDD Ioad double
_ (@ - A; (eu) - B
STD Store double
A-(@Q);B-(an)
STZ Stbre zero
0 - (Q)

- 16 -

Field Instructions

~ There are six new iﬁstructions used to load and store parts
of ﬁﬁrds in memory. They allow cbnvénient handling of fields
from zero to twenty-four bits in length arbitrarily positioned
in either & single word in memory or two adjacent words. These
instructions all make use of & common "field descriptor" or
pointer word to control the field to be loaded or stored.

The field instructions expect the word at the effective

eddress to be a word of the following format: '

0 " 5 910 23

LNG OFF ADR
5 5 1k

‘This word is called a "field descriptor" or "FD" and defines
_ & contiguous field in memory from zero to twenty-four bits in
length. _ - N ,
ING - A five Sit integer which defines the length of the
field. ING must be equal to or less than 24 in the
_stendard case. Specification of a length greater
than this will cause a trap Gi whenever the FD is
referenced. An ING value of 31 (37 octal) is a
special case to be described later.
" OFF - A five bit integer which defines the offset of the
- field from the left side of the word addressed. The
value of OFF must lie between O and 23 inclusive or
~ trap Gt will occur. Bit O is the left (high order)
~ bit of the word and bit 23 is the right (low order)
~ bit of-the word. An OFF value of 3L (37 octal) is
~ a special case to be described later. .
ADR - A fourteen bit integer which is the memory address
) of the word containing the left most bit of the
defined field. The field is assumed to lie in the
same chunk as the FD, except in the LDFB and STFB
instructions. ’ | |

-17 -

Although these Instructions will most frequently be used to
handle eight bit (or six bit) characters packed three (or four)
to é word, they are explicitly intended to handle arbitrary
fields which may overlap word boundaries in any way. ;

In order to avoid repetition in the following instruction
descriptions, the setup common to all six field handling
instructions will be described here.

1. () p3 — AR, (Q)5_9 - OFF, (@), - ING
2. If OFF = 37g, ()()5__9 -aow} :
suppress this for LDFI and STFI
3. If ING = 375, (X),, - ING -
4. If OFF > 23, generate trap Gl
5. If ING > 24, generate trap G4
6. OFF - I, OFF + ING -1 -» J, 23 - ING+1 - K

That is, the contents ~of the effective address are separated
into their component pieces. If either the offset or length
s 31 (37), the value is taken from the corresponding part of
the index register. The offset and length are then checked to
be sure they are within limits. |
Finally, the left and right bit numbers of the field in

memory end the left bit number of the field in the A register
are computed. In the following descriptions (ADR)I__J means
(ADR, ADRH)I_J if J> 23. '

IDF Load Field
0 -4, (ADR)LJ,-aAK_23

The field described is right aligned in the A register. The
remainder of the A register is cleared. '

STF Store Field
Agpy = (ADR); o

The ield described by the FD at the effective address is replaced
by the right most ING bits in the A régister. A is pnot affected
by this instruction.

- 18 -

LDFB Ioad Field Based

AIR + X10_23 - ADR

if Xu = 1 use Xs 9 a8 chunk number for data
0 A, (ADR)y ; —Ag o

This instruction is the same as IDF exéept that the contents of
the address field of the index register are added to the FD
address before the field is loaded, and the chunk number for
the field may be taken from X.

STFB Store Field Based
ADR + X10-23 ->» ADR

if Xu 1 use Xs -9 as chunk number for data

A 23 (ADR)

This instruction is the same as STF except that the contents of
the address field of the index register are added to the D
eddress before the field is stored, and the chunk number for the
field may be taken from X.

IDFI Ioad Field and Increment

If [(Q41);4 pq - ADR] * 24 + (Q+1), o - OFF < ING no
ection,
Otherwise (Q)_g * ING, = () g (if < 23)

+1 - (Q)

10-23

else .(Q)5_ + LNG- - 24 > (Q) 9’ Q) 10-23

IC +2 »1IC
'.0 -4, (ADR)I I -)AK 23

,The contents of the effective address ‘and contents of the next
1ocation are both considered to be FD's. The second of these

« words 1s -1 llmit. If there’ is insufflcient space for the field
before the limit, no action occurs. Otherwise, the FD at the

-19 -

effective address is adjusted by the length of the field defined,
the field is loaded into A and & Ekip occurs to signify ﬁhat the
field was loaded. This special test for LNG or OFF fields equal -
to-378 is suppressed.

STFI Store Field and Increment

e [Q+)
~actjon
Otherwise, (Q); o + ING, - (Q)5_o (if < 23)

10-23 - ADR] * 24 + (Q+1)5_9 - OFF < ING, no

‘.else (Q)5_9 + LNG2-2h —?(st_g, (Q)10-23+l —»(Q)10_23

IC +2 -1IC
By o3 = (ADR)y_;

The contents of the effective address and the contents of the
next location are both considered to be FD's. The second of
these words is e limit. If there is insufficieﬁt room for

the fiéld, no action occurs. Otherwise, the FD at the effective
address is adjusted by the length »f the field defined, the
right most ING bits in A are stored in the designated field,

and & skip occurs to signify that the field was stored.

IFD Increment Field Descriptor

Ir [Q+1)
action) '
Otherwise, (Q)5‘9 + ING, - (Q)S_9 (if < 23)

10-23 " ADR] * 24 + (Q,+l)5-9 - OFF < ING, no

else _(@5_'9 + mezfzh - @)5_g (Q)10_23+1 = ()10.03
IC +2 - (ADR), - '

This instruction works exactly like LDFI except that it does
not do the load.

- 20 -
Arithmetic

‘1. ADD and SUB do not affect Xo. Instead there is a
carry bit CO which is set or reset by the carry from bit 24
of the adder on ADD or SUB. Both instructions taske CI as a
carry into bit O and reset it. CI is set only by the CCB
instruction in the perform group and by BTO. When CCB ‘
is executed, CO is copied into CI. Multiple-precision arithmetic
is done by adding (or subtracting) the least significant words
and_then doing CCB before adding the most significant words.
This causes the carry from the sum of the least significant
words to be added into the sum of the most significant ones.
Unless CCB is executed, CI will normally remain O and will not
disturb the operation of the machine.)

2. MUL leaves the sign and most significant part in B,
the least significant part in A. T.e.

IDA = 2
MUL = 3

leaves G in A.

3. DIV takes the 48-bit AB register as an integer dividend,
- (Q) as an integer divisor. The integer quotient appears in A,
‘the remainder in B. On overflow ([(Q)l 5.[Al) OV is set and
AB are unchanged.

New instructions:
MDE Memory decrement
Q) -1-49 Overflow and carry unaffected
ADX X+ Q)X Overflow and carry unaffected

-21 -

Floating Point Arithmetic

'A11 these instructions ere new. They take two-word floating
point numbers as arguments. The format of a floating point
number is

o ‘ 38 39 b7
| ' FRACTION EXP

FRACTION is a two's complement fraction with the blnary point
between bits O and 1.
EXP is a two's complement exponent in the range (h008, 3778)
A1l floatlng point instructions except UFAD and UFSB expect
normalized operands and produce normalized results. FAD and FSB
will correctly post-normalize a result produced from unnormalized
operands. FMP and FDV will not work properly on unnormalized
operands. ’

- 1t an exponent overflow occurs in any floating point
operation, trap Gl is generated. wtne result left ih AB is
correct except that the sign bit of the exponent is wrong; the
~ correct sign bit is the complement of Bl5' .

If an exponent underflow occurs in any floating point
operation, trap G2 is generated. The result is correct with
the exception stated.

All floating point operations in this gection set the
carry bit CO. None sets the overflow bit.
V All arithmetic is unrounded. The most significant fraction
bit not included in the result is saved in CARRY. An instruction
is provided to do rounding

In addition to the instructions listed here, FLT, FIX,
FRND, and FNA in the perform group operate on floating point

numbers.

FAD Floating add
AB; + (Q,Q+1); - AB

.‘The result is always normalized. Exponent overflow or
underflow ma& occur. Arithmetic is done in a 48-bit adder, and.
L8 vits are kept until the result is packed, at which point the
first bit discarded is saved in CO for use in rounding.

FSB Floating subtract
| ABF - (Q,csm.)F ~ AB,
See FAD
UFAD . Unnormalized floating add

F
Exactly as FAD except:that normalization is omitted.

AﬁF + (Q,Q+1)F - AB (unnormalized)

Exponent underflow cannot occur.
UFSB Unnormalized floating subtract

AB, - (Q,Q+1)F - AB

P (unnormalized)

" See FSB and UFAD
P Floating multiply
*
1B, * (2,040)p - A3, |
See FAD. Only one bit of post-normalization will be done.
FDV Floating divide

ABF_ / (Q,cm)F - AB,,

If the divisor is O or unnormalized, trap G3 will be taken
with A and B unchanged. See FAD.

-23 -

Skips

3 1. SKD is abolished. ,
2. SKE, SKG, SKA, and SKN have their inverse operations.

New instructions:

SKNE Skip on A unequal to memory
IfA#(Q), L2 5L
SKNG Skip on A not greater than memory
IfA< (Q), 142 > L
SKNA Skip on A and memory not zero
I AA(Q) £0, L2 oL
SKP Skip if memory positive

Ir (@20, L2 5L

-2 -

Brenches

1. BRM is abolished.

2. BRI is ebolished.

3. BRX tests the sign bit of X, not bit 9.
4. BRR is completely redefined.

" New instructions:

- BDX Branch and decrement index.

X-1-X; ifX>0, Q-1L
BSR Branch and save registers

Treat (Q)A 3777777B &s an indirect word and let Z be the
resulting effective address. ’

(1+1) L (Q)AT4BE) v 2B6 - (Z) Save’p—counter as full address
: ' end register save bits

If () = 1, - 241, 2 Qo (2)

Ir @), =1, »2+41, 24~ (2)

Ir (@), =1, »z+, Z B - (2)

Ir (ca)3 =1, 5241, Z X - (2)
Q+l - L

This is the subroutine call instruction. It addresses the
‘link sddress word of the subroutine, which has the form

01 2 3 L4 5 23
LAW | 5Q|SA|SB|SX|FA ADDRESS

FA = full address bit. This and the address determine where
to store the return link, which consists of the location

-counter +1 and IAWO_h.

'§Q = save effective sddress. If this bit is set, the effective
eddress of the BSR is saved following the return link.
It exists primarily for compatibility with traps and pops.
SA,SB,SX cause A,B and X to be saved in successive locations
' following the return link if set. '

-5 -

All the 5 bits are saved in the return link so that BRR will
know what to restore. ' - .
Thus 2000 BSR 3000 assume this is A in chunk 5

3000 DATA 300010008
will cause locations 1000-1002 in chunk 5 to be sét up as follows:
1000 32242001
1001 contents of A
1002 contents of B
Control will go to 3001

BRR " Branch and restore registers -
Let Z = (Q)
It ZO =1, Q+tl - Q

!

If 2z, =1, @+l »Q, (Q) -4
If Z, = 1, Q41 »Q, (Q) - B
If 7, =1, Q4 -»Q, (Q) »X

2
3
Treat Z A37777777B as an indirect word and transfer to the
. resuiiing effective address.
’ This instruction is désigned to be used for exiting from
a routine called by BSR. It restores the registers saved by that
instruction and transfers control to the following location.
To continue the earlier example '
BRR 1000
loads A and B from 1001 and 1002 respectively‘and transfers to
2001.

Shifts

-2 -

o The shift instructions on the 930 are sbolished in favor
of one new instruction which provides almost all the power
of the old ones and a number of new features. Its differences

are:
a)
b)

c)
d)

Diffgrent srrangement of bits in the address field.
Effective address is computed the same as for all
other instructions. ‘ '
Shift is by -64 to +63 bits, not max of U48.

NOD is abolished. But see LLT in the perform group.

The bits of the effective address field are interpreted
in the following way: -

30 11 12 13 1 15 16 17 23
P D s R v c
Where .
D Specifies the shift direction

0 - Left
1 - Right
Specifies the type logical or arithmetic
0 - Logical. The overflow indicator is unaffected

by this instruction.

1 - Arithmetic. On right shifts the sign bit is not
shifted but is copied into vacated bit

positions. Bits shifted out of the
right bit of each active register are

‘lost. Overflow is set if the sign bit

of the A register changes during a

: left shift.
' Specifies the active registers .
. 0 - A end B are taken as a single 48 bit register
1l - A only is specified '
2 - B only is specified

3 - A and B are both shifted but are treated as two

independent 24 bit registers.

- 27 -

Specifies the action to be taken on vacated bit

positions

O - Shift in O's

1 -~ Shift in 1's

2 - Shift in bits shifted out from other end of
register (cycle). Extend the sign
bit on arithmetic right shift.

3 - Shift in complement of bits shifted out from
other end of register. Shift in the
complement of the sign bit on
arithmetic right shift.

Shift count. The shift count is a seven bit two's

complement number, -64 < C < 63. If C is negative,

the direction of the shift indicated by the D field
is reversed. ’

(post-index). If this bit is set, X}, 5o is added

to C. The resulting signed 7-bit shift count is

used to determine the direction and extent of the

shift exactly as C is when P = O.

-’28-'

Miscellaneous

1. EAX puts the 24 bit effective address + 2B6 (the FA bit)
into X. X, . will therefore alvays be O. - |

New instruction:

XCI Execute indirect ‘

Take ((Q)) as the instruction I to be executed. Before
executing it (Q)+1 - (Q).

If I causes a skip, I+2 - L. If it tries to cause &
branch, L+3 — L and the branch is suppressed. If it tries
to cause a trap, I#4 - L and the trap is suppressed.
Otherwise, L+l » L. Any kind of pop is regarded as a

branch.

- 29 -

Non-addressable Instructions

. 1. RCH is abolished. Somé OFR instruction can do é.nything
an RCH cen do provided it does not
2) use the E bit, or .
b) wuse the N bit and specify any other operation, or
¢} specify an or of two registers and some other operation.
2. The overflow test instructions are abolished, but see BTO.

New instructions:

OFR Operate
The effective address is computed according to the ordinary
rules. Then Q

10-12 are used to select a sub-instruction
as follows: A
Q10-12 ~ sub-instruction
- 0 SWP swap registers
1 IR0 logical register operate
2’ : ARO arithmetic register operate
3 RIN vegister increment
L BTO bit test and operate
5 unused '
6 unused
o § PFM perform (miscellaneous operations)

Swp Swap registers

10 12 13 1 315 17 18 2021 23

0) TA B ™ Effective
address

0 -A
A-A
B -A
X A
-1-4A
A -A
B »A
XA

~N OV WO

- 30 -

" TB, TX specify the final contents of B and X in the ssme way.
To leave a register unchanged, it is necessary to specify that
it should be transferred to itself.

IRO Iogical register operate
10 12 13 1k 15 16 17 18 19 20 23
1 S1 s2 D CTL Effective address

Sl = source register 1: 0 =0

l1=A
2=38
| 3=X
82 = source register 2, same code
. D = destination register, same code. O means diécard

result. In this case the instruction is a NOP.
CTL = Control. These four bits specify how bits from the
. 8ource registers determine corresponding bits in
the destination: N .

- 51 bit 52 vit D bit

v

CTLO

CTLl

1 1

1 0

) 1 CTL,

0) CTL
3

Thus, Sla S2 is specified by CTL = 1000, Slv S2 by CTL = 1110, etc.
ARO . Arithmetic register operate

10 12131k 15 16 17 18 19 20 23
2 Z | s1 s2 D SKIP '~ Effective address

If 2=0
. 2=1

- 31 -

SlfSZ—-)D
Sl - S2 -D

Skip causes the instruction to skip if any of the four conditions

which may be te
SKIP,

sted are satisfied.

0 skip iIf D< -1
SKIP, _ skip if D = -1
SKIP2 skip if D =0
SKTP, skip if D> 0

Sample skip conditions

No skip . 0000
Skip on O result 0010
Skip on positive result 0011
Skip on result < 0O 1110

Skip on mixed ones and 1001

 zeroes

This instruction can a.lgo be used, for example, to double X.

Overf] ws and carries are igno:cd.

RIN

Register increment

This instruction is identical to ARO except that S2 is
kinterpreted as a constant which may be 0, 1, 2 or' 3.

'i'hus ; to decrement X by 2 and skip if the result is
negative, use an OPR address

selects carry (CO)

©01111110111100
BTO Bit test and operate
10 12 13 17 18 19 20
3 o T (S CTL
i 7 = 0: |
s selects overflow (OV)

Effective eddress

-32 -

The bits of CTL select four operations:

: CTLO
- CTLl

3

2

skip if bit is O
skip if bit is 1
set bit to 1 if it is O

set bit to 0 if it is 1

means copy OV, CI, CO into A21_23

means copy A21_23 into OV, CI, CO

- 33 -

PFM Perform

10 12

The control field selects one of 20 operations to be
performed. Its precise format is not yet specified. The
operations are .

FLT Convert to floating point

ABI —’ABF>
The contents of the A and B registers are assumed to be &
48 bit integer which is converted to a normalized floating
point number. The resulting floating point number replaces

the contents of A and B. Overflow cannot occur. The most
- 8ignificant of any discarded bits is saved in the carry

f1ip-flop.
Example:
. | A B
Before Execution 00000345 76325410
After Execution 34576325 41000040
FIX ' ' Convert to fixed point

ABF -)ABI

" The normalized floating point number in A and B is converted to
‘a 48 bit integer in A and B. If the exponent of the floating
point number is less than or equal to O, A and B are cleared."
If the exponent ié'greater than 47, the overflow indicator is
turned on and exit is made with A and B unchanged. The most
significant fraction bit ié stored in the carry bit, CO.

- 3h -

Example:
: A B . €0
Before Execution 24500000 00000005 X
After Execution 00000000 00000024 1
FRND Floating round

Add 1000B * (CO Blh) to AB (integer arithmetic). If
overflow, shift fraction right and add 1 to exponent. If
exponent overflow, generate trap Gl. This operation is inteﬁded
for use after a floating point instruction which leaves the
first non-significant bit of the result in CO. Tt rounds
the magnitude to the nearest even number. Thus, if .5 is the
first non-significant bit, we have the following results of
rounding according to this algorithm:

ORIGINAL NUMBER " ROUNDED RESULT

Decimal Binary | Binary Decimal
2.5 ~ o010.1 010.0 2.0
3.5 011.1 100.0 k.0
-2.0 - 110.0 110.0 -2.0
-2.5 101.1 110.0 -2.0
-3.0 101.0 101.0 -3.0

-3.5 -~ 100.1 100.0 4.0

-5-
FNEG Floating negate

-A;B - AB

P F Normalize result one bit if necessary

Exponent overflow mgf occur if AB contain
40000000 00000377
In this case trap Gl oceurs.
- Exponent uﬁderflow may occur if AB contain
o 20000000 00000400

In this case trap G2 occurs.

CFIC Convert field descriptor to bit count

A10-23 * 24 + A5-9 ->A

This instruction converts a field descriptor (Words + Offset)
into & bit count in A. It can be usz? to convert a string
length pointer into the length of tne string in bits. The
lengfh of the string in charscters may then be obtained by

" shifting A right 3 bits (divide by 8).

- 36 -

CCFD . Comvert bit count to field descriptor

A/2h -4

10-23° femainder -4A5~9

This instruction converts a bit count in A into a FD with zero
‘length field in A. (i.e. 0< A o< 23)

NRM Normalize field descriptor

(o}
I A g 2 305 A- O A
2.1 0 2 A
‘Otherwisel 1 - ov

1. If & =1, A+01337777’8->A'

< 23, 0 - OV

This instruction is used to restore a field descriptor in A to
normalized form after two descriptors with zero LNG fields are
added or subtracted. One normalization step is taken. If the
-result is normalized the overflow indicator is turned off. If
_the result is not normalized, the overflow indicator is turned on.

L10 Loqate leading one

The bit position of the first (left most) one bit in the A and B
‘registefs is placed in the X register. The sign bit of the A
register is bit O and the least significant bit of the B register
is bit 47. If there are no one bits in A or B, X is set to -1.

| L1Z locate leading zefd

The bit position of the first (left most) zero bit in the A
and B registers is.placed in the X register. If no bits are
zero, X is set to -1.

LT Iocate leading transition

The Uit position of the firsﬁ zero bit followed by a one, or the '
first one bit followed by a zero, is placed in the X register.

If all bits of both A and B are 0, X is set to -1. Since bit 23
of B is always assumed to be followed by a 0, all 1's set to 47.

- 37 -

CNT - " Count bits

The number of bits in A and B which are 1 is placed in the
X register. The result in X will therefore lie between O and
U8 inclusive. ‘

CCB- Copy carry bit

Copies CO into CI and resets OV. For the use of this
instruction see ADD and SUB. '

RCC Read calendar clock

The processor is equipped with a U8=bit calendar clock
which is incremented once every 100 _«s whenever power is on.
This‘instruction reads the current value of the clock into AB.
.The system will ensure that the clock reading when added to a
number available from the system, reflects the amount of time
which has elapsed since January 1, 1969 to the nearest second,
and that the difference of two readings of the clock will
ﬁéaécré‘the real time which eiépsed~between the two readings
with an acecuracy bf at least 200,asz provided no system crash
has intervened.

" RIT Read interval timer

The processor is also equipped with a 24-bit interval
timer which is incremented once every 10 #s. This timer is
part of the state of a process and increments only when the
‘process is running. When the timer becomes O trap S1 is
generafed. This instruction reads therburrent value of the
timer into A. The system may reset the timer at any time, so
that it cannot be used for measuring real time. There is a
privileged instruction to set the timer. '

FRO Protect

i=L 8,16, 32

This instruction causes the processor to obtain control
of the PRO bus. Once it does so it raises the FPRO signal and
holds it up until: : :

a) The program has made i successful memory fetches. All
fetches, whether for instructions, indirect words or
dsta are counted. ‘ '

‘b) or any floating point instruction or PFM or MUL or
DIV is executed. _ ;

c) or ACT is executed. See the description of ACT for a

fspecification of the action taken. ‘)

ﬁ) or & trap occurs.

-39-

Privileged Instructions

1.

2.

EOM, SKS, BRI, POT and PIN are abolished.

There is one privileged instruction, called ACT. 1Its
effective address is computed in the usual way. The
processor then attempts to gain control of the ACT bus.
When it does, it puts the 14 address bits on the bus
and raises the ACT line. It then hangs, looking at

the return lines on the ACT bus, which are:

ACON ACT considered. Raised when the "Earget
device accepts the ACT.
. AACK ACT acknowledged. Raised when the target
‘ . device is willing to let the CPU proceed.
ASKP Raised if the target device wants the
" CPU to skip. ‘ -

The processer holds up ACT and hangs until it sees ACON

.or until 10 us have elapsed. In the latter case it

lowers ACT and waits another .5 us. If ACON is still

not raised, the ACT instrycclon terminates with no skip.

This exit should be interpz:eted by the program as an

indication that the device has not accepted the signal.
Once ACON has been raised, the processor hangs

until it sees AACK. Tt then exits with L+2 - L or

1.43 - L depending on whether ASKP is low or high. This

allows the device to signal success or failure, or some

.other piece of information, to the processor. If the

processor has PRO raised when ACT is executed, the PRO
stays up until the third successful memory fetch after
the ACT is completed, regardless of how soon it would

normally have been terminated.

.-,-(»0-

Pops
If the P field of an instruction word is non-zero, the
instruction is interpreted as a programmed operator. There
are three kinds: 4
P=1 ' user pop

P=2 system pop
P= 3 process pop

They differ only in the location of the transfer vector and in
the treatment of protection. For user pops the transfer wvector
occupies 1005-177g in the chunk in which the pop is located.
For system pops it occupies 1008-1778 in chunk 31. For process
pops it resides in the context block in locations not yet
decided. _))

When a pop is executed, the machine performs a BSR¥ through
T+OP, where T is the origin of the transfer vector and OP is
the opcode field of the instruction. If the LAW of the BSR
specifies saving Q, the effective address of the pop is saved.
Ir P3> l, the ICP mechanism is turned off. 1I. e.,-a user or
prOCbnS pop may allow control to be transferred from any chunk

to any other.

Traps

The machine has a Large variety of traps, or forced transfers

-

of control. Each trap has a core location in chunk 31 assigned

to it. When the condition for a trap arises, a BSR¥* through
If the LAW of the BSR specifies
. saving of Q, the quantity actually saved depends on the trap.

this core location is performed.

Note that traps have nothing to do with interrupts or wakeup

signals, which are not handled by the CPU at all.

General traps

-Gl

G2

G3

Condition

" The traps are classified as follows:

Floating point overflow. The result

in AB is correct except that a O sign
bit must be supplied to the left of the

exponent.

Floating point underflow. The result

- in AB is correct except that a 1 sign

bis must be supplied to the ief', of

the exponent.

Floating point divide check: O or

unnormalized diviso
unchanged.

r'

AB are

Field descriptor check: OFF or ING
fields > 23. AB are unchanged.

Indirect address trap.

Memory traps

ML
M2
M3
Mk
%

Missing chunk (chunk table entry = 0)

Page number > LPT

Missing page (page table entry = 0)

Page not in DHT
Page in DHT, but PS

oh write.

To

=0, or N ¥ﬂl

Quantity saved as Q

0

Address of the indirect
word in which the trap bit

was set.

Virtual address
Virtual gddress
Virtual address

Virtual address

Virtual address

causing trouble.
causing trouble.
causing trouble.
causing troudble.

causing trouble.

- 42 o

System traps

S1 Interval timer passes through O 0
S2 Undefined opcode (]
S3 ° Parity error 4 Real address causing error
St Non-existent real mexﬁory Real address causing error

Protection traps

ICP violation »
Write into page with PPBw not set
" Execute from page with PPB_ Dot set

P38 e
o o oo

Privileged instruction from page with
PFB_ not set '
.

: \

Pfocesses and the Context Block

A process is defined by a page of virtual memory called its
context block, which holds the entire state of the process while
it is not running. When the process starts to run, its state
is copied from the context block into the registers of the CPU.
When the process stops running, the current contents of the CPU

registers are copied back into the context block. This cen in
general happen between the execution of any two CPU instructions.
The device which controls which process is to run is.called

the process control unit (PCU) or the scheduler. Associated with
each processor is a fixed core location NP and a line from the
PCU called SWITCH. The processor also has a register which

‘ contains the real address of the context block for the process
which is currently running. When SWITCH is raised, the processor

‘stores its state into the context block of the process it is
executing, picks up the contents of NP and treats it as the real
‘address of a new context block, loads its state from this new
block and continues to execute. Th's operation is called process
switching. It takes place only on coumand from the PCU. It

_is inhibited by PRO.

The context block has the following format:

Word(s) Bits Contents
0-31 0 chunk table
32 0 ov
1l CI
2 co
523 L
33 A
3 B
-2 X
36 " interval timer

Note that the contents of the context block defines the map,
anong other things. The remainder of the block holds page
tables and storage for the routines of the core monitor. The ‘

context block will always appear in a fixed place in the map

-of every process.

-4 -

‘The PCU is responsible for scheduling the execution of processes
on whatever processors happen to be availdble. It does this by
mainfaining tables in main memory which indicate what processes
are candidates to run and with what requirements'(priority, ‘
memory; deadlines, etc.). The formats of these tables and the
algorithms - to be used in scheduling have not been fully defined.

The PCU also accepts interrupt signals from the outside
world. Associated with each interrupt line is a fixed area
in core which contains information about the’process to be
activated when the line is raised. The PCU adds the process
to its tables in accordance with this information whenever it
sees the line raised. A _

As far as the PCU is concerned, a process can be in one
of three states: '

blocked

ready '

running
A blocked process is not a candidate to run. A pibcgss becomes
blockza when some processor tells the PCU to block it. Of cours;}
a process may block itself. Block, like all instructions to the
FCU from a processor, is a privileged instruction.

‘ When a process receives a wakeup signal, it becomes ready,
unless it is already ready or running. This means that it is '
ﬁ candidate to run. A wekeup signal may be an interrupt line
‘(see above) or an instruction from a processor. The signal
carries assorted information about the process:

the drum address of ité context block

possibly priorities and deadlines
which allow the PCU to make a processor run it and to decide
when it should run-in relation to other processés.

When the algorithms to be used by the PCU have been decided,
' this section of the manual will be greatly expanded.

-45 -

Summary of 6700 Instructions

Loads and stores:

IDA Iocad A

DB Iocad B

L Ioad X

ILDD Load double

STA Store A

STB Store B

STX Store X

STD Store double

ST Store masked

STZ Store zero

XMA Exchange memory and A
M Exchange memory and X

Field instructions

LDF . Load field

STF Store field

LDFB Load field based

o7 Store field based

Iz Load field and increment

STFI Store field and increment

IFD Increment field descriptor
Arithmetic

“ADD Add to A

SUB Subtract from A

MUL Multiply

DIV Divide

MIN Memory increment

MIE - Memory decrement

ADM .Add to memory -

ADX ‘ Add to X

- k46 -

Floating point

FAD Flosting add
FSB Floating subtract
UFAD Unnormalized floating add
UFSB Unnormalized floating subtract
FMP Floating multiply
FOV Floating divide
Skips
SKE ~Skip on A equal to memory
SKNE ~ Skip on A not equal to memory
SKG Skip on A greater than memory
SKNG Skip on A not greater than memory
SKN Skip on negative
SKP Skip on postive
SKA Skip on A and memory zero
SKNA Skip on A and memory not zero
SKB ' Skip on B and memory not zero
SKR ~ Decrement memory and skip if negative
Branches
BRU " Branch
BRV Branch and increment X
BIX Branch and decrement X
BSR Branch and save registers
BRR Branch and restore registers
Miscellaneous
SHFT Shift
EAX Effective address to X
BEXU . Execute

XCI Excute indirect

- Operate

RIN
BTO

FLT
FIX

FNEG
CFDC
CCFD

LIT
CNT
CCB
RCC
RIT
PRO

- Privileged
ACT

- b7 -

Swap registers -
Logical register operate

‘Arithmetic register operate

Register increment

Bit test and operate

Perform

Convert to floating point

Convert to fixed point

Floating round

Floating negate

Convert field descriptor to bit count

- Convert bit count to field descriptor -

Normalize field descriptor
Locate leading one
Locate leading zero

" Locate leading transition

Count bits

Copy carry bit
Read calendar clock
Read interval timer
Protect

