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Introduction 

1.1 Introduction 

This Primer describes STREAMS, a major building block of support for 
networking services in UNIX. The Primer provides a high-level, techni­
cal overview of STREAMS; it is intended for managers and developers 
who have prior knowledge of the UNIX System and of networking or 
other data communication facilities. For a more detailed description of 
STREAMS, see the STREAMS Programmer's Guide. 

The UNIX System was originally designed as a general-purpose, mul­
tiuser, interactive operating system for minicomputers. Initially 
developed in the 1970's, the system's communications environment 
included slow to medium speed, asynchronous terminal devices. The ori­
ginal design, the communications environment, and hardware state of the 
art influenced the character input/output (I/O) mechanism, but the charac­
ter I/O area did not require the same emphasis on modularity and perfor­
mance as other areas of the system. 

Support for a broader range of devices, speeds, modes, and protocols has 
since been incorporated into the system, but the original character I/O 
mechanism, which processes one character at a time, made such develop­
ment difficult. 

The current generation of networking protocols is exemplified by Open 
Systems Interconnection (OSI), Systems Network Architecture (SNA), 
Transmission Control Protocol/lnternet Protocol (TCPIIP), X.25, and 
Xerox Network Systems (XNS). These protocols provide diverse func­
tionality, layered organization, and various feature options. When 
developing these protocol suites, developers faced additional problems, 
because there were no relevant standard interfaces in the UNIX System. 

Attempts to compensate for the above problems have led to diverse, ad­
hoc implementations; for example, protocol drivers are often intertwined 
with the hardware configuration in which they were developed. As a 
result, functionally equivalent protocol software often cannot interface 
with alternate implementations of adjacent protocol layers. Portability, 
adaptability, and reuse of software have been hindered. 

STREAMS is a general, flexible facility and a set of tools for development 
of UNIX System communication services. With STREAMS, developers 
can provide services ranging from complete networking protocol suites to 
individual device drivers. 

STREAMS defines standard interfaces for character I/O within the UNIX 
System kernel, and between the kernel and the rest of the UNIX System. 
The associated mechanism is simple and open-ended. It consists of a set 
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of system calls, kernel resources, and kernel utility routines. The stan­
dard interface and open-ended mechanism enable modular, portable 
development and easy integration of higher-performance network ser­
vices and their components. STREAMS does not impose any specific net­
work architecture. Instead, it provides a powerful framework with a con­
sistent user interface that is compatible with the existing character I/O 
interface still available in UNIX. 

The modularity and design of STREAMS reflect the "layers and options" 
characteristics of contemporary networking architectures. The basic 
components in a STREAMS implementation are referred to as modules. 
Modules reside in the kernel and offer a set of processing functions and 
associated service interfaces. Modules can be dynamically selected from 
the user level and then interconnected to provide any rational processing 
sequence. Kernel programming, assembly, and link editing are not 
required to create the interconnection. Modules can also be dynamically 
"plugged into" existing connections from user level. STREAMS' modu­
larity makes the following features possible: 

• User-level programs that are independent of underlying protocols 
and physical communication media 

• Network architectures and higher-level protocols that are indepen­
dent of underlying protocols, drivers, and physical communication 
media 

• Higher-level services that can be created by selecting and connect­
ing lower-level services and protocols 

• Enhanced portability of protocol modules, resulting from 
STREAMS' well-defined structure and interface standards 

In addition to modularity, STREAMS provides developers with integral 
functions, a library of utility routines, and facilities that expedite software 
design and implementation. The principal facilities are as follows: 

• Buffer management -To maintain STREAMS' own independent 
buffer pool 

• Flow control-To conserve STREAMS' memory and processing 
resources 

• Scheduling -To incorporate STREAMS' own scheduling mechan­
ism 

• Multiplexing-For processing interleaved data streams, such as 
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occur 

in SNA, X.25, and windows 

• Asynchronous operation of STREAMS and user processes-Allows 
STREAMS-related operations to be performed efficiently from user 
level 

• Error and trace loggers-For debugging and administrative func­
tions 

1.2 How This Document Is Organized 

The remainder of this manual is organized as follows: 

• Chapter 2 provides an overview of the applications and benefits of 
STREAMS and the STREAMS mechanism. 

• Chapter 3 describes how to set up a Stream from user . level and 
how this initialization affects the kernel. This and following 
chapters are aimed at developers. 

• Chapter 4 contains a detailed example and discusses it from user 
level. 

• Chapter 5 describes kernel operations associated with the Chapter 
4 example, as well as basic STREAMS kernel facilities. 

• Chapter 6 includes kernel and user facilities not otherwise 
described. 

• Chapter 7 compares certain design features of character I/O device 
drivers with STREAMS modules and drivers. 

1.3 Other Documents 

The STREAMS Programmer's Guide contains more detailed STREAMS 
information for programmers. This guide discusses how programmers can 
develop networking applications with STREAMS user-level facilities and 
how system programmers can use STREAMS kernel-level facilities to 
build modules and drivers. 
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The STREAMS reference materials are divided among several locations. 
STREAMS system calls are specified in Section S of the Programmer's 
Reference Manual. STREAMS utilities are specified in Section ADM of 
the System Administration Guide. Appendix C of the STREAMS 
Programmer's Reference contains the reference for STREAMS kernel util­
ities. STREAMS-specific ioetl calls are specified in streamio(STR). The 
modules and drivers available are also described in Section STR. This 
section is in Appendix F of the STREAMS Programmer's Reference. 

1.4 Terms You Should Know 

To understand this guide, you need to be familiar with the following 
terms. 

DOWNSTREAM 

The direction from Stream head to driver. 

DRIVER 

The end of the Stream closest to a device. The principal functions of the 
driver are to handle any associated device and to transform data and 
information between the device and Stream. It can also be a pseudo­
driver, not directly associated with a device, which performs functions 
internal to a Stream, such as a multiplexer or log driver. 

MESSAGE 

One or more linked blocks of data or information, with associated 
STREAMS control structures containing a message type. Messages are 
the only means of transferring data and communicating within a Stream. 

MESSAGE QUEUE 

A linked list of messages connected to a QUEUE. 

MESSAGE TYPE 

A defined set of values identifying the contents of a message. 
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MODULE 

Software that performs functions on messages as they flow between 
Stream head and driver. A module is the STREAMS counterpart to the 
commands in a Shell pipeline, except that a module contains a pair of 
functions which allow independent bidirectional (downstream and 
upstream) data flow and processing. 

MULTIPLEXER 

A mechanism for connecting multiple Streams to a multiplexing driver. 
The mechanism supports the processing of interleaved data Streams and 
the processing of internetworking protocols. The multiplexing driver 
routes messages among the connected Streams. The other end of a 
Stream connected to a multiplexing driver is typically connected to a dev­
ice driver. 

PUSHABLE MODULE 

A module between the Stream head and driver. A driver is a non­
pushable module and a Stream head includes a non-pushable module. 

QUEUE 

The set of structures that forms a module. A module is composed of two 
QUEUEs, a read (upstream) QUEUE and a write (downstream) QUEUE. 

READ QUEUE 

The message queue in a module or driver containing messages moving 
upstream. It is associated with input data coming from a driver. 

STREAM 

The kernel aggregate created· by connecting STREAMS components, 
resulting from an application of the STREAMS mechanism. The primary 
components are a Stream head, a driver and zero or more push able 
modules between the Stream head and driver. A Stream forms a full­
duplex processing and data-transfer path in the kernel, between a user 
process and a driver. A Stream is analogous to a Shell pipeline, except 
that data flow and processing are bidirectional. 
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STREAM HEAD 

The end of the Stream closest to the user process. The Stream head pro­
vides the interface between the Stream and the user process. The princi­
pal functions of the Stream head are processing STREAMS-related system 
calls and bidirectional transfer of data and information between a user 
process and messages in STREAMS' kernel space. 

STREAMS 

A kernel mechanism that supports development of network services and 
data communication drivers. It defines interface standards for character 
input/output within the kernel, and between the kernel and user level. 
The STREAMS mechanism comprises integral functions, utility routines, 
kernel facilities and a set of structures. 

UPSTREAM 

The direction from driver to Stream head. 

WRITE QUEUE 

The message queue in a module or driver containing messages moving 
downstream. It is associated with output from a user process. 
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Overview 

2.1 A Basic View of a Stream 

"STREAMS" is a collection of system calls, kernel resources, and kernel 
utility routines that can create, use, and dismantle a "Stream". A Stream 
is a full-duplex processing and data transfer path between a driver in ker­
nel space and a process in user space (see Figure 2-1). 

Stream 
Head 

Module 

Driver 

External 
Interface 

User Space 
-Kernel space -

ldownstream 

(optional) 

t upstream 

Figure 2-1 Basic Stream 

A Stream has three parts: a Stream head, zero or more modules, and a 
driver (also referred to as the Stream end). The Stream head provides the 
interface between the Stream and user processes. Its principal function is 
to process STREAMS-related user system calls. A module processes data 
that travel between the Stream head and driver. A STREAMS driver can 
be a device driver, providing the services of an external I/O device, or it 
can be an internal software driver, commonly called a pseudo-device 
driver. 

Using a combination of system calls, kernel routines, and kernel utilities, 
STREAMS passes data between a driver and the Stream head in the form 
of messages. Messages that are passed from the Stream head toward the 
driver are said to travel downstream, and messages passed in the other 
direction travel upstream. 
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Data sent to a driver from a user process are packaged into STREAMS 
messages and passed downstream. STREAMS can insert one or more 
modules into a Stream between the Stream head and driver to perform 
intermediate processing of data passing between the Stream head and 
driver. 

2.2 System Calls 

Applications programmers can use the STREAMS facilities by means of a 
set of system calls. This system call interface is upwardly compatible 
with the existing character I/O facilities. The open [see open(S)] system 
call recognizes a STREAMS file and creates a Stream to the specified 
driver. A user process can send and receive data using read [see read(S)] 
and write [see write(S)] in the same manner as character files and dev­
ices. The ioctI [see ioctI(S)] system call enables application programs to 
perform functions specific to a particular device. In addition, a set of gen­
eric STREAMS ioetl commands [see streamio(STR)] support a variety of 
functions for accessing and controlling Streams. A close [see close(S)] 
system call dismantles a Stream. 

The open, close, read, write, and ioetI system calls support the basic set 
of operations on Streams. In addition, new system calls support advanced 
STREAMS facilities. The poll [see poU(S)] system call enables an appli­
cation program to poll multiple Streams for various events. When used 
with the STREAMS CSETSIG ioetI command, poll allows an application 
to process I/O in an asynchronous manner. The putmsg [see putmsg(S)] 
and getmsg [see getmsg(S)] system calls enable application programs to 
interact with STREAMS modules and drivers through a service interface. 

These calls are discussed in this document and in the STREAMS 
Programmer's Guide. 

2.3 Benefits of STREAMS 

STREAMS offers two major benefits for applications programmers: easy 
creation of modules that offer standard data communications services and 
the ability to manipulate those modules on a Stream. 

2.4 Creating Service Interfaces 

One benefit of STREAMS is that it simplifies the creation of modules that 
present a service interface to any neighboring application program, 
module, or device driver. A service interface is defined at the boundary 
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of two neighbors. In STREAMS, a service interface is a specified set of 
messages and the rules for allowable sequences of these messages across 
the boundary. A module that implements a service interface receives a 
message from a neighbor and responds with an appropriate action (for 
example, sending back a request to retransmit) based on the specific mes­
sage received and the preceding sequence of messages. 

STREAMS provides features that make it easy to design various applica­
tion processes and modules that comply with common service interfaces. 
If these modules are written to comply with industry-standard service 
interfaces, they are called protocol modules. 

In general, any two modules can be connected anywhere in a Stream. 
However, rational sequences are generally constructed by connecting 
modules with compatible protocol service interfaces. For example, a 
module that implements an X.25 protocol layer, as shown in Figure 2-2, 
presents a protocol service interface at its input and output sides. In this 
case, other modules should be connected to the input and output side only 
if they have the compatible X.25 service interface. 

2.5 Manipulating Modules 

STREAMS provides the capabilities to manipulate modules from user 
level, interchange modules with common service interfaces and to present 
a service interface to a Stream user process. As stated in Chapter 1, the 
benefits these capabilities yield when implementing networking services 
and protocols include 

• User-level programs that can be independent of underlying proto­
cols and physical communication media 

• Network architectures and higher-level protocols that can be 
independent of underlying protocols, drivers, and physical com­
munication media 

• Higher-level services that can be created by selecting and connect­
ing lower-level services and protocols 

The following examples illustrate how STREAMS can benefit developers 
who are creating service interfaces and manipulating modules. 
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Note 

All protocol modules used below were selected for illustrative pur­
poses. Their use does not imply that SCQ offers such modules as 
products. 

2.5.1 Protocol Portability 

Figure 2-2 shows how the same X.25 protocol module can be used with 
different drivers on different machines by implementing compatible ser­
vice interfaces. The X.25 protocol module interfaces are the 
Connection-Oriented Network Service (CONS) and the Link Access Pro­
tocol - Balanced (LAPB) driver. 

MACHINE A MACHINE B 
CONS 

INTERFACE - - - - - - -l------------r----
i 

X.25 
Protocol Layer 

Module 

------ ------

LAPB 
Driver 

Machine A 
I 

SAME 
MODULE 

LAPB 
INTERFACE 

DIFFERENT 
DRIVER 

X.25 
Protocol Layer 

Module 

------ ------

( 
LAPB 
Driver 

Machine B 

Figure 2-2 Protocol Module Portability 

2.5.2 Protocol Substitution 

I 

Alternative protocol modules (and device drivers) can be interchanged on 
the same machine if they are implemented for an equivalent service 
interface(s). 
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2.5.3 Protocol Migration 

Figure 2-3 illustrates how STREAMS can migrate functions between ker­
nel software and front-end finnware. A common downstream service 
interface allows the transport protocol module to be independent of the 
number or type of modules below. The same transport module connects 
without modification to either an X.25 module or an X.25 driver that has 
the same service interface. 

By shifting functions between software and finnware, developers can 
produce cost effective, functionally equivalent systems over a wide range 
of configurations. They can rapidly incorporate technological advances. 
The same transport protocol module can be used on a lower-capacity 
machine, where economics may preclude the use of front-end hardware, 
and also on a larger scale system where a front-end is economically 
justified. 

Class 1 
Transport 
Protocol 

SAME 
MODULES 

t CONS 
--------- ---------Li~fface--

X.25 
Packet Layer 

Protocol 

LAPB 
Driver 

KERNEL 
HARDWARE 

Class 1 
Transport 
Protocol 

------- -------

X.25 \ 

I Packet Layer 
-1 Driver r 

Figure 2-3 Protocol Migration 

2.5.4 Module Reusability 

Figure 2-4 shows the same canonical module (for example, one that pro­
vides delete and kill processing on character strings) reused in two 
different Streams. This module is typically implemented as a filter, with 
no downstream service interface. In both cases, a TrY interface is 
presented to the Stream's user process, since the module is nearest the 
Stream head. 
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User 
Process 

Canonical 
Module 

SAME 
INTERFACE 

SAME 
MODULE 

User 
Process 

Canonical 
Module 

Raw 
TTY 

Driver 

Figure 2-4 Module Reusability 

2.6 An Advanced View of a Stream 

The STREAMS mechanism constructs a Stream by serially connecting 
kernel-resident STREAMS components, each constructed from a specific 
set of structures. As described earlier, and shown in Figure 2-5, the pri­
mary STREAMS components are the Stream head, optional module(s), and 
Stream end. 

2-6 



___ !1 ~e:. SY,:c: ___ _ 
Kernel Space 

Module 

B 

Module 

A 

§
. . . . . . 

M'~:d~~e . . . . . . .. . .................. u~~~~~ 

2.7 Stream Head 

Module 

External 

Interface 

Stream 

End 

Figure 2-5 Stream in More Detail 

Overview 

The Stream head provides the interface between the Stream and an appli­
cation program. The Stream head processes STREAMS-related system 
calls from the application and performs the bidirectional transfer of data 
and information between the application (in user space) and messages (in 
STREAMS' kernel space). 

Messages are the only means of transferring data and communicating 
within a Stream. A STREAMS message contains data, status/control 
information, or a combination of the two. Each message includes a 
specified message type indicator that identifies the contents. 
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2.8 Modules 

A module perfonns intennediate transfonnations on messages passing 
between Stream head and driver. There can be zero or more modules in a 
Stream. (There are zero when the driver perfonns all the required charac­
ter and device processing.) 

Each module is constructed from a pair of QUEUE structures (see Au/Ad 
and Bu/Bd in Figure 2-5). A pair is required to implement the bidirec­
tional and symmetrical attributes of a Stream. One QUEUE perfonns 
functions on messages passing upstream through the module (Au and Bu 
in Figure 2-5). The other QUEUE (Ad and Bd) performs another set of 
functions on downstream messages. (A QUEUE, which is part of a 
module, is different from a message queue, which is described later.) 

The two QUEUEs in a module generally have distinct functions, that is, 
unrelated processing procedures and data. The QUEUEs operate indepen­
dently, and so Au does not know if a message passes through Ad unless 
Ad is programmed to infonn Au. Messages and data can be shared only if 
the developer specifically programs the module functions to perform the 
sharing. 

Each QUEUE can directly access the adjacent QUEUE in the direction of 
message flow (for example, Au to Bu or Stream head to Bd). In addition, 
within a module, a QUEUE can readily locate its mate and access its mes­
sages (for example, for echoing) and data. 

Each QUEUE in a module can contain or point to messages, processing 
procedures, or data: 

• Messages-These are dynamically attached to the QUEUE on a 
linked list as they pass through the module. (This linked list is a 
"message queue"; see Au and Bd in Figure 2-5.) 

• Processing procedures-A put procedure to process messages must 
be incorporated into each QUEUE. An optional service procedure 
to share the message processing with the put procedure can also be 
incorporated. According to their function, the procedures can send 
messages upstream and/or downstream, and they can also modify 
the private data in their module. 

• Data-Developers can provide private data (for example, state 
information and translation tables) if the QUEUE requires it to per­
form message processing. 
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In general, each of the two QUEUEs in a module has a distinct set of all of 
these elements. Additional module elements are described later. 
Although depicted as distinct from modules, the Stream head and Stream 
end also contain a pair of QUEUEs. 

2.9 Stream End 

A Stream end is a module in which the module's processing procedures 
are the driver routines. The procedures in the Stream end are different 
from those in other modules, because they are accessible from an external 
device and because the STREAMS mechanism allows multiple Streams to 
be connected to the same driver. 

The driver can be a device driver, providing an interface between kernel 
space and an external communications device, or it can be an internal 
pseudo-device driver. A pseudo-device driver is not directly related to 
any external device, and it performs functions internal to the kernel. The 
multiplexing driver discussed in Chapter 6 is a pseudo-device driver. 

Device drivers must transform all data and status/control information 
between STREAMS message formats and their external representation. 
Differences between STREAMS and character device drivers are dis­
cussed in Chapter 7. 
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3.1 Building a Stream 

A Stream is created on the first open system call to a character special 
file corresponding to a STREAMS driver. A STREAMS device is dis­
tinguished from other character devices by a field contained in the associ­
ated cdevsw device table entry. 

A Stream is usually built in two steps. Step one creates a minimal Stream 
consisting of just the Stream head and device driver. Step one has three 
parts: 

1. The head and driver structures are allocated and initialized 

2. The modules in the head and end are linked to each other to form a 
Stream 

3. The driver open routine is called 

Step two adds modules to produce an expanded Stream (see Figure 3-1). 

Minimal 
STREAM 

STREAM 
HE~D 

QUEQEpair 
raw TTY 

device driver 

Expanded 
STREAM 

Figure 3-1 Setting Up a Stream 

If the driver performs all of the required character and device processing, 
no modules need be added to a Stream. Examples of STREAMS drivers 
include a raw tty driver (one that passes along input characters without 
change) and a driver with multiple Streams open to it (corresponding to 
multiple minor devices opened to a character device driver). 
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When the driver receives characters from the device, it places them into 
messages. The messages are then transferred to the next Stream com­
ponent, the Stream head, which extracts the contents of the message and 
copies them to user space. Similar processing occurs for downstream 
character output; the Stream head copies data from user space into mes­
sages and sends them to the driver. 

3.2 Expanded Streams 

As the second step in building a Stream, modules can be added to the 
Stream. In the right-hand Stream in Figure 3-1, the CANONPROC module 
was added to provide additional processing of the characters sent between 
head and driver. 

Modules are added and removed from a Stream in last-in-first-out (LIFO) 
order. They are inserted and deleted at the Stream head by means of the 
ioetl system call. In the Stream on the left of Figure 2-4, the X.25 module 
was the first added to the Stream, followed by the Class 1 Transport and 
Canonical modules. To replace the Class 1 module with a Class 0 
module, the Canonical module is removed first, followed by the Class 1 
module. Then a Class 0 module is added and the Canonical module put 
back. 

Because adding and removing modules resembles stack operations, the 
add is called a push, and the remove, a pop. Push and pop are two of the 
ioetl functions included in the STREAMS subset of ioetl system calls. 
These commands perfonn various manipulations and operations on 
Streams. The modules manipulated in this manner are called pushable 
modules, in contrast to the modules contained in the Stream head and end. 
This stack tenninology applies only to the setup, modification, and break­
down of a Stream. Subsequent use of the word "module" refers to the 
push able modules between Stream head and end. 

The Stream head processes the ioctl and executes the push, which is 
analogous to opening the Stream driver. Modules are referenced by a 
unique symbolic name, contained in the STREAMS fmodsw module table 
(similar to the edevsw table associated with a device file). The module 
table and module name are internal to STREAMS and are accessible from 
user space only through STREAMS ioctl system calls. The fmodsw table 
points to the module template in the kernel. When a module is pushed, 
the template is located, the module structures for both QUEUES are allo­
cated, and the tempi ave values are copied into the structures. 

Each module contains pointers to an open routine and a close routine. 
The open is called when the module is pushed, and the close is called 
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when the module is popped. Module open and close procedures are simi­
lar to a driver open and close. These procedures are in addition to the 
module elements described in the section "A Basic View of a Stream" in 
Chapter 2. 

As with other files, a STREAMS file is closed when the last process open 
to it closes the file by a close system call. This system call causes the 
Stream to be dismantled (any modules are popped and the driver close is 
executed). 

3.3 Pushable Modules 

Modules are pushed onto a Stream to provide special functions and/or 
additional protocol layers. In Figure 3-1, the Stream on the left is opened 
in a minimal configuration with a raw tty driver and no other module 
added. The driver receives one character at a time from the device, 
places the character in a message, and sends the message upstream. The 
Stream heaf receives the message, extracts the single character, and 
copies it into the reading process buffer to send to the user process in 
response to a read system call. When the user process wants to send 
characters back to the driver, it issues a write system call, and the charac­
ters are sent to the Stream head. The head copies the characters into one 
or more multicharacter messages and sends them downstream. An appli­
cation program requiring no further kernel character processing can use 
this minimal Stream. 

A user requiring a more terminal-like interface needs to insert a module 
to perform functions such as echoing, character-erase, and line-kill. 
Assuming that the CANONPROC module in Figure 3-1 fulfills this need, 
the application program first opens a raw tty Stream. Then the 
CANONPROC module is pushed above the driver to create a Stream of the 
form shown on the right of the figure. The driver is not aware that a 
module has been placed above it and therefore continues to send single­
character messages upstream. The module receives single-character mes­
sages from the driver, processes the characters, and accumulates them 
into line strings. Each line is placed into a message and sent to the 
Stream head. The head now finds more than one character in the mes­
sages it receives from downstream. 
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Stream head implementation accommodates this change in format 
automatically and transfers the multicharacter data into user space. The 
Stream head also keeps track of messages partially transferred into user 
space, as occurs when the current user read buffer can only hold part of 
the current message. Downstream operation is not affected: multiple 
character messages are sent by the head and received by the driver. 

Note that the Stream head provides the interface between the Stream and 
the user process. Modules and drivers do not have to implement user 
interface functions other than open and close. 
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4.1 STREAMS System Calls 

After a Stream has been opened, STREAMS-related system calls allow a 
user process to insert and delete (push and pop) modules. That process 
can then control the operation of the Stream head, modules, and drivers, 
and can send and receive messages containing data and control infonna­
tion. This chapter presents an example of some of the basic functions 
available to STREAMS-based applications via the system calls. Addi­
tional functions are described at the end of this chapter and in Chapter 6. 

The full set of STREAMS-related system calls follows: 

open 

close 

read 

write 

ioctl 

getmsg 

putmsg 

poll 

Open a Stream (described in Chapter 3) 

Close a Stream (described in Chapter 3) 

Read data from a Stream 

Write data to a Stream 

Control a Stream 

Receive the message at Stream head 

Send a message downstream 

Notify the application program when selected 
events occur on a Stream 

The following two-part example describes a Stream that controls the data 
communication characteristics of a connection between an asynchronous 
tenninal and a tty port. It illustrates basic user level STREAMS features 
and then shows how messages can be used. Chapter 5 discusses the ker­
nel level Stream operations corresponding to the user-level operations 
described in this chapter. See the STREAMS Programmer's Guide for 
more detailed examples of STREAMS applications, modules, and drivers. 

4.2 An Asynchronous Protocol Stream Example 

In this example our computer runs the UNIX System and supports 
different kinds of asynchronous tenninals, each logging in on its own port. 
The port hardware is limited in function; for example, it detects and 
reports line and modem status, but does not check parity. 

Communications software support for these tenninals is provided by 
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means of a STREAMS-implemented asynchronous protocol. The protocol 
includes a variety of options that are set when a terminal operator dials in 
to log on. The options are determined by a getty-type STREAMS user 
process, getstrm, which analyzes data sent to it through a series of dialogs 
(prompts and responses) between the process and terminal operator. 

The process sets the terminal options for the duration of the connection by 
pushing modules onto the Stream or by sending control messages to cause 
changes in modules, or in the device driver, already on the Stream. The 
options supported include the following: 

• ASCII or EBCDIC character codes 

• Parity (odd, even, or none) for ASCII code 

• Echo or not echo input characters 

• Canonical input and output processing or transparent (raw) charac­
ter handling 

These options are set with the following modules: 

CHARPROC Provides input character processing functions, 
including dynamically settable character echo and 
parity checking. (This is done via control messages 
passed to the module.) The module's default set­
tings are to echo characters and not check character 
parity. 

CANONPROC Performs canonical processing on ASCII characters 
upstream and downstream. Note that this performs 
some processing in. a different manner from the 
standard UNIX System character I/O tty subsystem. 

ASCEBC Translates EBCDIC code to ASCII upstream and 
ASCII to EBCDIC downstream. 

4.3 Initializing the Stream 

At system initialization a user process, getstrm, is created for each tty 
port. getstrm opens a Stream to its port and pushes the CHARPROC 
module onto the Stream, by use of an ioctl CPUSH command. Then the 
process issues a getmsg system call to the Stream and sleeps until a mes­
sage reaches the Stream head. The Stream is now in its idle state. 
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The initial idle Stream, shown in Figure 4-1, contains only one pushable 
module, CHARPROC. The device driver is a limited-function, raw tty 
driver connected to a limited-function communication port. The driver 
and port transparently transmit and receive one unbuffered character at a 
time. 

I ge1bm I 

----- --------------
STREAM 
HE~D 

Figure 4-1 Idle Stream Configuration for Example 

Upon receipt of initial input from a tty port, getstrm establishes a connec­
tion with the terminal, analyzes the option requests, verifies them, and 
issues STREAMS system calls to set the options. After setting up the 
options, getstrm creates a user application process. Later, when the user 
terminates that application, getstrm restores the Stream to its idle state by 
use of system calls. 

The next step is to analyze in more detail how the Stream sets up the 
communications options. Before doing so, let's examine how messages 
are handled in STREAMS. 

4.4 Message Types 

All STREAMS messages are assigned message types to indicate their 
intended use by modules and drivers and to determine their handling by 
the Stream head. A driver or module can assign most types to a message 
it generates, and a module can modify a message's type during process­
ing. The Stream head converts certain system calls to specified message 
types and sends them downstream, and it responds to other calls by 
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copying the contents of certain message types that were sent upstream. 
Messages exist only in the kernel, and so a user process can only send and 
receive buffers. The process is not explicitly aware of the message type, 
but it may be aware of message boundaries, depending on the system call 
used (see the distinction between getmsg and read in the next section). 

Most message types are internal to STREAMS and can only be passed 
from one STREAMS module to another. A few message types, including 
M_DATA, M_PROTO, and M_PCPROTO, can also be passed between a 
Stream and a user process. M_DATA messages carry data within a Stream 
and between a Stream and a user process. M_PROTO and M_PCPROTO 
messages carry both data and control information. However, the distinc­
tion between control information and data is generally determined by the 
developer when implementing a particular Stream. Control information 
includes service interface information, which is carried between two 
Stream entities that present service interfaces, and condition or status 
infonnation, which can be sent between any two Stream entities regard­
less of their interface. An M_PCPROTO message has the same general 
use as an M_PROTO, but the former moves faster through a Stream (see 
"Message Queue Priority" in Chapter 6). 

4.5 Sending and Receiving Messages 

putmsg is a STREAMS-related system call that sends messages; it is simi­
lar to write. putmsg provides a data buffer which is converted into an 
M_DATA message, and it can also provide a separate control buffer to be 
placed into an M_PROTO or M_PCPROTO block. write provides byte­
stream data to be converted into M_DATA messages. 

getmsg is a STREAMS-related system call that accepts messages; It IS 
similar to read. One difference between the two calls is that read accepts 
only data (messages sent upstream to the Stream head as message type 
M_DATA), such as the characters entered from the terminal. getmsg can 
simultaneously accept both data and control information (messages sent 
upstream as types M_PROTO or M_PCPROTO). getmsg also differs from 
read in that it preserves message boundaries so that the same boundaries 
exist above and below the Stream head (that is, between a user process 
and a Stream). read generally ignores message boundaries, processing 
data as a byte stream. 

Certain STREAMS ioctl commands, such as CSTR, also cause messages 
to be sent or received on the Stream. CSTR provides the general ioctl 
capability of the character I/O subsystem. A user process above the 
Stream head can issue putmsg, getmsg, the CSTR ioctl command, and 
certain other STREAMS-related system calls. Other STREAMS ioctls 
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perfonn functions that include changing the state of the Stream head, 
pushing and popping modules, or returning special infonnation. ioctl 
commands are described in more detail in the STREAMS Programmer's 
Guide. 

In addition to message types that explicitly transfer data to a process, 
. some messages sent upstream result in infonnation transfer. When these 
messages reach the Stream head, they are transfonned into various fonns 
and sent to the user process. These fonns include signals, error codes, and 
call return values. 

4.6 Using Messages in the Example 

Returning to the asynchronous protocol example, the Stream was in its 
idle configuration (see Figure 4-1). getstrm had issued a getmsg and was 
sleeping until the arrival of a message from the Stream head. Such a mes­
sage results when the driver detects activity on the associated tty port. 

An incoming call arrives at port one and causes a ring-detect signal in the 
modem. The driver receives the ring signal, answers the call, and sends 
upstream an M_PROTO message containing infonnation indicating an 
incoming call. getstrm is notified of all incoming calls, although it can 
choose to refuse the call because of system limits. In this idle state, 
getstrm also accepts M_PROTO messages, such as those indicating error 
conditions (for example, detection of line or modem problems on the idle 
line). 

The M_PROTO message containing notification of the incoming call flows 
upstream from the driver into CHARPROC. CHARPROC inspects the 
message type, detennines that message processing is not required, and 
passes the unmodified message upstream to the Stream head. The Stream 
head copies the message into the getmsg buffers associated with getstrm 
(one buffer for control infonnation, the other for data). The Stream head 
then wakes up the process. getstrm sends its acceptance of the incoming 
call with a putmsg system call, which results in a downstream M_PROTO 
message to the driver. 

Then getstrm sends a prompt to the operator with a write and issues a 
getmsg to receive the response. A read could have been used to receive 
the response, but the getmsg call allows concurrent monitoring for con­
trol (M_PROTO and M_PCPROTO) infonnation. getstrm now sleeps until 
the response characters, or infonnation regarding possible error condi­
tions detected by modules or driver, are sent upstream. 
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The first response, sent upstream in a M_DATA block, indicates that the 
code set is' ASCII and that canonical processing is requested. getstrm 
implements these options by pushing CANONPROC onto the Stream 
above CHARPROC to perform canonical processing on the input ASCII 
characters. 

The response to the next prompt requests even parity checking. getstrm 
sends an ioctl CSTR command to CHARPROC, requesting the module to 
perform even parity checking on upstream characters. When the dialog 
indicates protocol option setting is complete, getstrm creates an applica­
tion process. At the end of the connection, getstrm pops CANONPROC 
and then sends an CSTR to CHARPROC, requesting the module to restore 
the no-parity idle state (CHARPROC remains on the Stream). 

As a result of the above dialogs, the terminal at port one operates in the 
following configuration: 

• ASCII, even parity 

• Echo 

• Canonical processing 

In similar fashion, an operator at a different type of terminal on port two 
requests a different set of options, resulting in the following configuration: 

• EBCDIC 

• No Echo 

• Canonical processing 

The resulting Streams for the two ports are shown in Figure 4-2. For port 
one, on the left, the modules in the Stream are CANONPROC and CHAR­
PROC. 

For port two, on the right, the resulting modules are CANONPROC, 
ASCEBC and CHARPROC. ASCEBC has been pushed on this Stream to 
translate between the ASCII interface at the downstream side of 
CANONPROC and the EBCDIC interface of the upstream output side of 
CHARPROC. In addition, getstrm has sent an CSTR to the CHARPROC 
module in this Stream requesting it to disable echo. The resulting 
modification to CHARPROC's functions is indicated by the word 
"modified" in the right Stream of Figure 4-2. 
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Figure 4-2 Asynchronous Tenninal Streams 

Since CHARPROC is now perfonning no function for port two, it might 
have been popped from the Stream to be reinserted by getstrm at the end 
of connection. However, the low overhead of STREAMS does not require 
its removal. The module remains on the Stream, passing messages 
unmodified between ASCEBC and the driver. At the end of the connec­
tion, getstrm restores this Stream to its idle configuration of Figure 4-1 by 
popping the added modules and then sending an CSTR to CHARPROC to 
restore the echo default. 

Note that the tty driver shown in Figure 4-2 handles minor devices. Each 
minor device has a distinct Stream connected from user space to the 
driver. This ability to handle multiple devices is a standard STREAMS 
feature, similar to the minor device mechanism in character I/O device 
drivers. 
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4.7 Other User Functions 

The previous example illustrates basic STREAMS concepts. Alternative, 
more efficient STREAMS calls or mechanisms could have been used in 
place of those described earlier. Some of the alternatives are described in 
Chapter 6, and others are addressed in the STREAMS Programmer's Guide. 

For example, the initialization process that created a getstrm for each tty 
port could have been implemented as a "supergetty" by use of the 
STREAMS-related poll system call. As described in Chapter 6, poll 
allows a single process to efficiently monitor and control multiple 
Streams. The supergetty process handles all of the Stream and terminal 
protocol initialization and creates application processes only for esta­
blished connections. 

The M_PROTO notification sent to getstrm could have been sent by the 
driver as an M_SIG message that causes a specified signal to be sent to the 
process. As discussed previously under "Message Types," error and 
status information can also be sent upstream from a driver or module to 
user processes by means of different message types. These messages are 
transformed by the Stream head into a signal or error code. 

Finally, an ioetl CSTR command could have been used in place of a 
putmsg M_PROTO message to send information to a driver. The sending 
process must receive an explicit response from an CSTR by a specified 
time period or an error is returned. A response message must be sent 
upstream by the destination module or driver to be translated into the user 
response by the Stream head. 
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5.1 Introduction 

This chapter introduces the use of the STREAMS mechanism in the kernel 
and describes some of the tools provided by STREAMS to assist in the 
development of modules and drivers. In addition to the basic message­
passing mechanism and QUEUE Stream linkage described previously, the 
STREAMS mechanism consists of various facilities, namely, buffer 
management, the STREAMS scheduler, processing and message priority, 
flow control, and multiplexing. Over 30 STREAMS utility routines and 
macros are available to manipulate and use these facilities. 

The key elements of a STREAMS kernel implementation are the process­
ing routines in the module and drivers, and preparation of required data 
structures. The structures are described in the STREAMS Programmer's 
Guide. The following sections provide further infonnation on messages 
and on the processing routines that operate on them. The example 
described in Chapter 4 is continued, associating the user-level operations 
described there with kernel operations. 

5.2 Messages 

As shown in Figure 5-1, a STREAMS message consists of one or more 
linked message blocks. That is, the first message block of a message can 
be attached to other message blocks that are part of the same message. 
Multiple blocks in a message can occur as the result of processing that 
adds header or trailer data to the data contained in the message, or when 
message-buffer size limitations cause the data to span multiple blocks. 
When a message is composed of multiple message blocks, the message 
type of the first block detennines the type of the entire message, regard­
less of the types of the attached message blocks. 
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Message 
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Figure 5-1 A Message 

STREAMS allocates a message as a single block containing a buffer of a 
certain size (see the next section). If the data for a message exceed the 
size of the buffer containing the data, the procedure can allocate a new 
block containing a larger buffer, copy the current data to it, insert the new 
data, and de-allocate the old block. Alternately, the procedure can allo­
cate an additional 
(smaller) block, place the new data in the new message block, and link it 
before or after the initial message block. Both alternatives yield one new 
message. 

Messages can exist standalone, as shown in Figure 5-1, when the message 
is being processed by a procedure, or a message can await processing on a 
linked list of messages, called a message queue, in a QUEUE. In Figure 
5-2, Message 1 is linked to Message 2. 
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Figure 5-2 Messages on a Message Queue 

When a message is on a queue, the first block of the message contains 
links to preceding and succeeding messages on the same message queue, 
and it can contain a link to the second block of the message (if present). 
The message queue head and tail are contained in the QUEUE. 

STREAMS utility routines enable developers to manipulate messages and 
message queues. 

5.3 Message Allocation 

STREAMS maintains its own storage pool for messages. A procedure can 
request the allocation of a message of a speci fied size at one of three 
message-pool priorities. The allocb utility returns a message containing a 
single block with a buffer of at least the size requested, provided there is a 
buffer available at the priority requested. When requesting priority for 
messages, developers must weigh their process's need for resources 
against the needs of other processes on the same machine. 
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Message pool priority generally has no effect on allocation until the pool 
falls below internal STREAMS thresholds. When this occurs, allocb may 
refuse a lower priority request for a message of size x while granting a 
higher priority request for the same size message. For example, storage 
for an urgent control message, such as M_HANGUP or M_PCPROTO, 
could be requested at high priority. An M_DATA buffer for holding input 
might be requested at medium priority, and an output buffer at lowest 
priority (assuming the output data can wait in user space). 

5.4 Put and Service Procedures 

The procedures in the QUEUE are the software routines that process mes­
sages as they transit the QUEUE. The processing is generally performed 
according to the message type and can result in a modified message, new 
message(s), or no message. The resulting message is generally sent in the 
same direction in which it was received by the QUEUE, but it can be sent 
in either direction. A QUEUE always contains a put procedure and can 
also contain an associated service procedure. 

5.4.1 Put Procedures 

A put procedure is the QUEUE routine which receives messages from the 
preceding QUEUE in the Stream. Messages are passed between QUEUEs 
when a procedure in one QUEUE calls the put procedure contained in the 
following QUEUE. A call to the put procedure in the appropriate direc­
tion is generally the only way to pass messages between modules. 
(Unless otherwise indicated in this discussion, "modules" infers 
"module, driver, and Stream head"). QUEUEs in pushable modules con­
tain a put procedure. In general, there is a separate put procedure for the 
read and write QUEUEs in a module, because most Streams have "full 
duplex" operation. 

A put procedure is associated with immediate processing on a message. 
(Deferred processing is discussed later in this chapter.) Each module 
accesses the adjacent put procedure as a subroutine. For example, sup­
pose that modA, modB, and mode are three consecutive modules in a 
Stream, with mode connected to the Stream head. If modA receives a 
message to be sent upstream, modA processes that message and calls 
modB's put procedure, which processes it and calls mode's put procedure, 
which processes it and calls the Stream head's put procedure. Thus, the 
message is passed along the Stream in one continuous processing 
sequence. This sequence has the benefit of completing the entire process­
ing in a short time with low overhead (subroutine calls). 
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In addition, there are situations where the put procedure cannot immedi­
ately process the message but must hold it until processing is allowed. 
The most typical examples of this are a driver that must wait until the 
current output completes before sending the next message, and the Stream 
head, when it must wait until a process initiates a read on the Stream. 

5.4.2 Service Procedures 

STREAMS allows a service procedure as well as a put procedure to be 
contained in each QUEUE. A service procedure is not required in a 
QUEUE and is associated with deferred processing. If a QUEUE has both 
a put and service procedure, message processing is generally divided 
between the procedures. The put procedure is always called first from the 
preceding QUEUE. After the put procedure completes its part of the mes­
sage processing, it arranges for the service procedure to be called, by 
passing the message to the putq routine. putq does two things: it places 
the message on the message queue of the QUEUE (see Figure 5-2), and it 
links the QUEUE to the end of the STREAMS scheduling queue. When 
putq returns to the put procedure, the procedure typically exits. Some 
time later, the service procedure is called by the STREAMS scheduler. 

The STREAMS scheduler is separate and distinct from the UNIX System 
process scheduler. It is concerned only with QUEUEs linked on the 
STREAMS scheduling queue. The scheduler calls the service procedure 
of the scheduled QUEUE in a FIFO (first-in-first-out) manner, one at a 
time. 

The use of both put and service procedures in a QUEUE enables 
STREAMS to provide the rapid response and the queuing required in mul­
tiuser systems. The put procedure allows rapid response to certain data 
and events, such as software echoing of input characters. Put procedures 
effectively have higher priority than any scheduled service procedures. 
When called from the preceding STREAMS component, a put procedure 
executes before the scheduled service procedures of any QUEUE are exe­
cuted. 

The service procedure implies message queuing. Queuing results in 
deferred processing of the service procedure, following all other QUEUEs 
currently on the scheduling queue. For example, terminal output and 
input erase and kill processing are typically performed in a service pro­
cedure because this type of processing does not have to be as timely as 
echoing. Use of a service procedure also allows processing time to be 
more evenly spread among multiple Streams. As with the put procedure, 
there is generally a separate service procedure for each QUEUE in a 
module. The flow control mechanism (see Chapter 6) uses the service 
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procedures. 

5.5 Kernel Processing 

This section continues the example of Chapter 4. It describes STREAMS 
kernel operations and associates them, where relevant, with Chapter 4 
user-level system calls in the example. After initializing operations and 
pushing a module, the Stream for port one has the following 
configuration: 

write 

Figure 5-3 Operational Stream for Example 

As shown in Figure 5-3, the upstream QUEUE is also referred to as the 
read QUEUE, reflecting the message flow in response to a read system 
call. Correspondingly, downstream is referred to as the write QUEUE. 
Read side processing is discussed first. 

5.6 Read Side Processing 

ill our example, read side processing consists of driver processing, CHAR­
PROC processing, and CANONPROC processing. 
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5.6.1 Driver Processing 

In the example the user process is blocked on the getmsg system call 
while waiting for a message to reach the Stream head, and the device 
driver independently waits for input of a character from· the port 
hardware, or for a message from upstream. Upon receipt of an input char­
acter interrupt from the port, the driver places the associated character in 
a previously allocated M_DATA message. Then the driver sends the mes­
sage to the CHARPROC module by calling CHARPROC's upstream put 
procedure. On return from CHARPROC, the driver calls the allocb utility 
routine to get another message for the next character. 

5.6.2 CHARPROC 

CHARPROC has both put and service procedures on its read side. In the 
example the other QUEUEs in the modules also have put and service pro­
cedures. 

write read 

......................................... · . · . 
CANONPRO' (service) : 

Module l 1 l · . . · . . 
l (pin) l · . · . ......... ......................... ....... . 

......... ......................... ....... . · . · . 
CHARPROG. (p~t) (serxice) ~ 

Module ~ 

l (se~ice) (pitt) 
· . ......... ......................... ....... . 

Figure 5-4 Module Put and Service Procedures 

When the driver calls CHARPROC's read QUEUE put procedure, the pro­
cedure checks private data flags in the QUEUE. In this case, the flags 
indicate that echoing is to be performed. (Recall that echoing is optional 
and that we are working with port hardware which cannot automatically 
echo.) CHARPROC causes the echo to be transmitted back to the termi­
nal, by first making a copy of the message with a STREAMS utility. Then 
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CHARPROC uses another utility to obtain the address of its own write 
QUEUE. Finally, the CHARPROC read put procedure calls its write put 
procedure and passes it the message copy. The write procedure sends the 
message to the driver to effect the echo and then returns to the read pro­
cedure. 

This part of read side processing is implemented with put procedures, so 
the entire processing sequence occurs as an extension of the driver input 
character interrupt. The CHARPROC read and write put procedures 
appear to the driver as subroutines (nested in the case of the write pro­
cedure). This manner of processing is intended to produce the character 
echo in a minimal time frame. 

After returning from echo processing, the CHARPROC read put procedure 
checks another of its private data flags and determines that parity check­
ing should be performed on the input character. Parity should most rea­
sonably be checked as part of echo processing. However, for this exam­
ple, parity is checked only when the characters are sent upstream. This 
relaxes the timing constraints for the checking; that is, it can be deferred 
along with the canonical processing. CHARPROC uses putq to schedule 
the (original) message for parity check processing by its read service pro­
cedure. When the CHARPROC read service procedure is complete, it for­
wards the message to the read put procedure of CANONPROC. Note that 
if parity checking were not required, the CHARPROC put procedure 
would call the CANONPROC put procedure directly. 

5.6.3 CANONPROC 

CANONPROC performs canonical processing. As implemented, all read 
QUEUE processing is performed in its service procedure so that 
CANONPROC's put procedure simply calls putq to schedule the message 
for its read service procedure and then exits. The service procedure 
extracts the character from the message buffer and places it in the "line 
buffer," which is contained in another M_DATA message the service pro­
cedure is constructing. Then the message which contained the single 
character is returned to the buffer pooL If the character received was not 
an end-of-line, CANONPROC exits. Otherwise, a complete line has been 
assembled, and CANONPROC sends the message upstream to the Stream 
head, which unblocks the user process from the getmsg call and passes it 
the contents of the message. 
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5.7 Write Side Processing 

The write side of this Stream carries two kinds of messages from the user 
process: ioctl messages for CHARPROC, and M_DATA messages to be 
output to the terminal. 

ioctl messages are sent downstream as a result of an CSTR ioctl system 
call. When CHARPROC receives an ioctl message type, it processes the 
message contents to modify internal QUEUE flags and then uses a utility 
to send an acknowledgment message upstream (read side) to the Stream 
head. The Stream head acts on the acknowledgment message by unblock­
ing the user from the ioctl. 

For terminal output, it is assumed that· M_DATA messages sent by write 
system calls contain multiple characters. In general, STREAMS returns to 
the user process immediately after processing the write call so that the 
process can send additional messages. Flow control eventually blocks the 
sending process. (Flow control is described in Chapter 6.) The messages 
can queue on the write side of the driver because of character transmis­
sion timing. When a message is received by the driver's write put pro­
cedure, the procedure uses putq to place the message on its write side ser­
vice message queue if the driver is currently transmitting a previous mes­
sage buffer. However, there is generally no write QUEUE service pro­
cedure in a device driver. Driver output interrupt processing takes the 
place of scheduling and performs the service procedure functions, remov­
ing messages from the queue. 

5.S Analysis 

For reasons of efficiency, a module implementation should generally 
avoid placing one character per message and using separate routines to 
echo and parity check each character, as was done in this example. 
Nevertheless, even this design yields potential benefits. Consider a case 
where alternate, more intelligent port hardware was substituted. If the 
hardware processed multiple input characters and performed the echo and 
parity-checking functions of CHARPROC, then the new driver could be 
implemented to present the same interface as CHARPROC. Other 
modules such as CANONPROC could continue to be used without 
modification. 
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6.1 Introduction 

The previous chapters described the basic concepts of constructing a 
Stream and utilizing the STREAMS mechanism. Additional STREAMS 
features are provided to assist in development and to handle characteristic 
problems of protocol implementation, such as flow control. 

There are also kernel and user-level facilities that support the implemen­
tation of advanced functions, such as multiplexers, and allow asynchro­
nous operation of a user process and STREAMS input and output. 

6.2 Message Queue Priority 

As mentioned in the previous chapter, the STREAMS scheduler operates 
strictly FIFO so that each QUEUE's service procedure receives control in 
the order it was scheduled. When a service procedure receives control, it 
can encounter multiple messages on its message queue. This buildup can 
occur if there is a long interval between the time a message is queued by 
a put procedure and the time that the STREAMS scheduler calls the asso­
ciated service procedure. In this interval, there can be multiple calls to 
the put procedure causing multiple messages. The service procedure 
always processes all messages on its message queue unless prevented by 
flow control (see next section). Each message must pass through all the 
modules connecting its origin and destination in the Stream. 

If service procedures were used in all QUEUES and there was no message 
priority, then the most recently scheduled message would be processed 
after all the other scheduled messages on all Streams had been processed. 
In certain cases, message types containing urgent information (such as a 
break or alarm conditions) must pass through the Stream quickly. To 
accommodate these cases, STREAMS provides two classes of message 
queuing priority, ordinary and high. STREAMS prevents high-priority 
messages from being blocked by flow control and causes a service pro­
cedure to process them ahead of all ordinary priority messages on the 
procedure's queue. Thus the high-priority message transits each module 
with minimal delay. 
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Figure 6-1 Streams Message Priority 

The pnonty mechanism operates as shown in Figure 6-1. Message 
queues are generally not present in a QUEUE unless that QUEUE contains 
a service procedure. When a message is passed to putq to schedule the 
message for service procedure processing, putq places the message on the 
message queue in priority order. High priority messages are placed ahead 
of all ordinary priority messages but behind any other high priority mes­
sages on the queue. STREAMS utilities deliver the messages to the pro­
cessing service procedure FIFO within each priority class. The service 
procedure is unaware of the message priority and simply receives the next 
message. 

Message priority is defined by the message type; once a message is 
created, its priority cannot be changed. Certain message types come in 
equivalent high/ordinary priority pairs (for example, M_PCPROTO and 
M_PROTO) so that a module or device driver can choose between the two 
priorities when sending information. 

6.3 Flow Control 

Even on a well-designed system, general system delays, malfunctions, 
and excessive message accumulation on one or more Streams can cause 
the message buffer pools to become depleted. Additionally, processing 
bursts can arise when a service procedure in one module has a long mes­
sage queue and processes all its messages in one pass. STREAMS pro­
vides two independent mechanisms to guard its message buffer pools from 
being depleted and to minimize long processing bursts at anyone module. 
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Note 

Flow control is only applied to nonnal priority messages (see previ­
ous section) and not to high priority messages. 

The first flow control mechanism is global and automatic. It is related to 
the message pool priority, discussed in the "Message Storage Pool" sec­
tion of Chapter 5. When the Stream head requests a message buffer in 
response to a putmsg or write system call, it uses the lowest level of 
priority. Since buffer availability is based on priority and buffer pool lev­
els, the Stream head will be among the first modules refused a buffer 
when the pool becomes depleted. In response, the Stream head will block 
user output until the STREAMS buffer pool recovers. As a result, output 
has a lower priority than input. 

The second flow control mechanism is local to each Stream and advisory 
(voluntary). It limits the number of characters that can be queued for pro­
cessing at any QUEUE in a Stream. This mechanism limits the buffers and 
related processing at anyone QUEUE and in anyone Stream, but does not 
consider buffer pool levels or buffer usage in other Streams. 

The advisory mechanism operates between the two nearest QUEUEs in a 
Stream containing service procedures (see Figure 6-2). Messages are 
generally held on a message queue only if a service procedure is present 
in the associated QUEUE. 

Messages accumulate at a QUEUE when its service procedure processing 
does not keep pace with the message arrival rate, or when the procedure 
is blocked from placing its messages on the following Stream component 
by the flow control mechanism. Pushable modules contain independent 
upstream and downstream limits, which are set when a developer 
specifies high-water and low-water control values for the QUEUE. The 
Stream head contains a preset upstream limit, which can be modified by a 
special message sent from downstream, and a driver can contain a down­
stream limit. 

Flow control operates as follows: 

1. Each time a STREAMS message-handling routine (for example, 
putq) adds or removes a message from a message queue in a 
QUEUE, the limits are checked. STREAMS calculates the total size 
of all message blocks on the message queue. 
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2. The total is compared to the QUEUE high-water and low-water 
values. If the total exceeds the high-water value, an internal full 
indicator is set for the QUEUE. The operation of the service pro­
cedure in this QUEUE is not affected if the indicator is set, and the 
service procedure continues to be scheduled. 

3. The next part of flow-control processing occurs in the nearest 
preceding QUEUE that contains a service procedure. In the 
diagram in Figure 6-2, if D is full and C has no service procedure, 
then B is the nearest preceding QUEUE. 

I I 

V 
Message 

V 
Message 

Queue Queue 

Figure 6-2 Flow Control 

4. The service procedure in B uses a STREAMS utility routine to see 
if a QUEUE ahead is marked full. If messages cannot be sent, the 
scheduler blocks the service procedure in B from further execu­
tion. B remains blocked until the low-water mark of the full 
QUEUE, D, is reached. 

5. While B is blocked, any non-priority messages that arrive at B will 
accumulate on its message queue (recall that priority messages are 
not blocked). In tum, B can reach a full state and the full condition 
will propagate back to the last module in the Stream. 

6. When the service procedure processing on D causes the message 
block total to fall below the low-water mark, the full indicator is 
turned off. Then STREAMS automatically schedules the nearest 
preceding blocked QUEUE (B in this case), getting things moving 
again. This automatic scheduling is known as back-enabling a 
QUEUE. 

Note that to use flow control, a developer need only call the utility that 
tests if a full condition exists ahead, plus perform some housekeeping if it 
does. Everything else is automatically handled by STREAMS. Additional 
flow control features are described in the STREAMS Programmer's Guide. 
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6.4 Multiplexing 

STREAMS multiplexing supports the development of internetworking pro­
tocols such as IP and ISO CLNS, as well as the processing of interleaved 
data streams such as those in SNA, X.25, and terminal window facilities. 

STREAMS multiplexers (also called pseudo-device drivers) are created in 
the kernel by interconnecting multiple Streams. Conceptually, there are 
two kinds of multiplexers that developers can build with STREAMS, 
namely, upper and lower multiplexers. Lower multiplexers have multiple 
lower Streams between device drivers and the multiplexer, and upper 
multiplexers have multiple upper Streams between user processes and the 
multiplexer. 

User 
Processes 

AAA ----------------------------------

~·····Up~~r·····~ 
Multiplexer o~ 

L. .. M.?~~!~ .... l 

Multiplexer 
Driver 

Figure 6-3 Internet Multiplexing Stream 

Figure 6-3 shows an example of a lower multiplexer. This configuration 
typically occurs where internetworking functions are included in the sys­
tem. This Stream contains two types of drivers: the Ethernet, LAPB, and 
IEEE 802.2, which are hardware device drivers that terminate links to 
other nodes, and the IP (Internet Protocol), which is a multiplexer. 
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The IP multiplexer switches messages among the various nodes (lower 
Streams) or sends them upstream to user processes in the system. In this 
example, the multiplexer expects to see an 802.2 interface downstream; 
for the Ethernet and LAPB drivers, the Net 1 and Net 2 modules provide 
service interfaces between the two non-802.2 drivers and the IP multi­
plexer. 

Figure 6-3 depicts the IP multiplexer as part of a larger Stream. The 
Stream, as shown in the dotted rectangle, generally has an upper TCP 
multiplexer and additional modules. Multiplexers can also be cascaded 
below the IP driver if the device drivers are replaced by multiplexer 
drivers. 
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Figure 6-4 shows an upper multiplexer. In this configuration, the driver 
routes messages between the lower Stream and one of the upper Streams. 
This Stream performs X.25 multiplexing to multiple independent SVC 
(Switched Virtual Circuit) and PVC (Permanent Virtual Circuit) user 
processes. Upper multiplexers are a specific application of standard 
STREAMS facilities which support multiple minor devices in a device 
driver. This figure also shows that more' complex configurations can be 
built by having one or more multiplexed LAPB drivers below and multiple 
modules above the X.25 Packet Layer Protocol multiplexer diver. 

Developers can choose either upper or lower multiplexing (or both) when 
designing their applications. For example, a window multiplexer could 
have a configuration similar to the X.25 configuration of Figure 6-4, with 
a window driver replacing Packet Layer, a tty driver replacing LAPB, and 
the child processes of the terminal process replacing the user processes. 
Although the X.25 and window multiplexing Streams have similar 
configurations, their multiplexer drivers differ significantly. The.IP multi­
plexer of Figure 6-2 has a different configuration than the X.25 multi­
plexer, and the driver would implement its own set of processing and 
routing requirements. 

In addition to upper and lower multiplexers, more complex configurations 
can be created by connecting Streams containing multiplexers to other 
multiplexer drivers. With such a diversity of needs for multiplexers, it is 
not possible to provide general purpose multiplexer drivers. Rather, 
STREAMS provides a general purpose multiplexing facility. The facility 
allows users to set up the inter-module/driver plumbing to create multi­
plexer configurations of generally unlimited interconnection. 

The connections are created from user space through specific STREAMS 
ioctl system calls. In a lower multiplexer, multiple Streams are con­
nected below an application-speci fic, developer-implemented multiplex­
ing driver. The multiplexing facility only connects Streams to a driver. 
The ioctl call configures a multiplexer by connecting one Stream at a 
time below the opened multiplexer driver. As each Stream is connected 
to the driver, the connection setup procedure identifies the Stream to the 
driver. The driver generally stores this setup information in a private data 
structure for later use. 
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Subsequently, when messages flow into the driver on the various con­
nected Streams, the identity of the associated Stream is passed to the 
driver as part of the standard procedure call. The driver then has avail­
able the Stream identification, the previously stored setup infonnation for 
this Stream, and any internal routing infonnation contained in the mes­
sage. These data are used, according to the application implemented, to 
process the incoming message and route the output to the appropriate out­
going Stream. 

Additionally, new Streams can be dynamically connected to a operating 
multiplexer without interfering with ongoing traffic, and existing Streams 
can be disconnected with similar ease. 

6.5 Monitoring 

STREAMS allows user processes to monitor and control Streams so that 
system resources (such as CPU cycles and process slots) can be used 
effectively. Monitoring is especially useful to user-level multiplexers, in 
which a user process can create multiple Streams and switch messages 
among them. (This is similar to STREAMS kernel-level multiplexing, 
described previously.) 

User processes can efficiently monitor and control multiple Streams with 
two STREAMS system calls: poll and ioctl (used with the CSETSIG com­
mand). These calls allow a user process to detect events that occur at the 
Stream head on one or more Streams, including receipt of a data or proto­
col message on the read queue and cessation of flow control. 

Synchronous monitoring is provided by use of poll alone; in this case, the 
user process cannot continue processing until after the system call com­
pletes. When the calls are used together, they allow asynchronous, or 
concurrent, operation of the process and STREAMS input/output. This 
allows the user process to monitor the Stream while carrying on other 
activities. 

To monitor Streams with poll, a user process issues that system call and 
specifies the Streams to be monitored, the events to look for, and the 
amount of time to wait for an event. poll will block the process until the 
time expires or until an event occurs. If an event occurs, poll returns the 
type of event and the Stream on which the event occurred. 
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Instead of waiting for an event to occur, a user process may want to moni­
tor one or more Streams while processing other data. It can do so by issu­
ing the ioctl CSETSIG command, specifying one or more Streams and 
events (as with poll). Unlike poll, this ioctl does not force the user pro­
cess to wait for the event but returns immediately, and it issues a signal 
when an event occurs. The process must also request signal or sigset to 
catch the resulting SIGPOLL signal. 

If any selected event occurs on any of the selected Streams, STREAMS 
causes the SIGPOLL catching function to be executed in all associated 
requesting processes. However, the process(es) will not know which 
event occurred, nor on what Stream the event occurred. A process that 
issues the CSETSIG can get more detailed information by issuing a poll 
after it detects the event. 

6.6 Error and Trace Logging 

STREAMS includes error and trace loggers useful for debugging and 
administering modules and drivers. 

Any module or driver in any Stream can call the STREAMS logging func­
tion strlog. (See log(STR) in Appendix F of the Streams Programmer's 
Guide.) When called, strlog sends formatted text to the error logger 
strerr(ADM), the trace logger strace(ADM), or both. The call parame­
ters for strlog include the module/driver identification, a severity level, 
and the formatted text describing the condition causing the call. The call 
also identifies the process (strerr and/or strace) to receive the resulting 
output message. 

6-9 



Streams Primer 

Error 
Log File 

Error 
Messages 

I mOdule~ --

Trace 
Log File 

Trace 
Message 

Figure 6-5 Error and Trace Logging 
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strerr is intended to operate as a daemon process initiated at system 
startup. A call to strlog requesting logging of an error causes an 
M_PROTO message to be sent to strerr, which fonnats the contents and 
places them in a daily file. The utility strclean(ADM) is provided to 
periodically purge aged, unreferenced daily log files. 

A call to strlog requesting logging of trace infonnation causes a similar 
M_PROTO message to be sent to strace, which places it in a user­
designated file. strace is intended to be initiated by a user. The user can 
designate the modules/drivers and severity level of the messages to be 
accepted for logging by strace. 

By using putmsg, a user process can submit its own M_PROTO messages 
to the log driver for inclusion in the logger of its choice. The messages 
must be in the same fonnat required by the logging processes and are 
switched to the logger(s) requested in the message. 

The output to the log files is formatted, ASCII text. The files can be pro­
cessed by standard system commands such as grep or ed, or by 
developer-provided routines. 
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7.1 Introduction 

This chapter compares operational features of character I/O device drivers 
with those of STREAMS drivers and modules. It is intended for experi­
enced developers of UNIX system character device drivers. Details are 
provided in the STREAMS Programmer's Guide. 

7.2 Environment 

No user environment is generally available to STREAMS module pro­
cedures and drivers. The exception is the module and driver open and 
close routines, both of which have access to the u_area of the calling pro­
cess and can sleep. Otherwise, a STREAMS driver, module put procedure, 
and module service procedure have no user context and can neither sleep 
nor access any u_area. 

Multiple Streams can use a copy of the same module (that is, the same 
fmodsw), each containing the same processing procedures. This means 
that module code is re-entrant, and so care must be exercised when using 
global data in a module. Put and service procedures are always passed 
the address of the QUEUE. For example, in Figure 2-5 Au calls Bu's put 
procedure with Bu as a parameter. The processing procedure establishes 
its environment solely from the QUEUE contents, typically the private 
data (for example, state information). 

7.3 Drivers 

At the interface to hardware devices, character I/O drivers have interrupt 
entry points; at the system interface, those same drivers generally have 
direct entry points (routines) to process open, close, read, write, and 
ioct) system calls. 

STREAMS device drivers have similar interrupt entry points at the 
hardware device interface and have direct entry points only for open and 
close system calls. These entry points are accessed via STREAMS, and 
the call formats differ from those of character device drivers. The put 
procedure is a driver's third entry point, but it is a message (not system) 
interface. The Stream head translates write and ioct) calls into messages 
and sends them downstream to be processed by the driver's write QUEUE 
put procedure. read is seen directly only by the Stream head, which con­
tains the functions required to process system calls. A driver does not 
know about system interfaces other than open and close, but it can detect 
absence of a read indirectly if flow control propagates from the Stream 
head to the driver and affects the driver's ability to send messages 
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upstream. 

For input processing, when the driver is ready to send data or other infor­
mation to a user process, it does not wake up the process. It prepares a 
message and sends it to the read QUEUE of the appropriate (minor device) 
Stream. The driver's open routine generally stores the QUEUE address 
corresponding to this Stream. 

For output processing, the driver receives messages in place of a write 
call. If the message cannot be sent immediately to the hardware, it can be 
stored on the driver's write message queue. Subsequent output interrupts 
can remove messages from this queue. 

Drivers and modules can pass signals, error codes, and return values to 
processes via message types provided for that purpose. 

7.4 Modules 

As described above, modules have user context available only during the 
execution of their open and close routines. Otherwise, the QUEUEs form­
ing the module are not associated with the user process at the end of the 
Stream, nor with any other process. Because of this, QUEUE procedures 
must not sleep when they cannot proceed; instead, they must explicitly 
return control to the system. The system does not save state information 
for the QUEUE. The QUEUE must store this information internally if it is 
to proceed from the same point on a later entry. 

When a module or driver which requires private working storage is 
pushed, the open routine must obtain the storage from external sources. 
(Private storage may be needed for such things as state information.) 
STREAMS copies the module template from fmodsw for the CPUSH, and 
so only fixed data can be contained in the module template. STREAMS 
has no automatic mechanism to allocate working storage to a module 
when it is opened. The sources for the storage typically include the 
STREAMS buffer pool or a module-specific kernel array that is installed 
when the system is configured. When using an array as a module storage 
pool, it is necessary to determine the maximum number of copies of the 
module that can exist at anyone time. For drivers, this is typically deter­
mined from the physical devices connected, such as the number of ports 
on a multiplexer. However, certain types of modules may not be associ­
ated with a particular external physical limit. For example, the CANONI­
CAL module shown in Figure 2-4 could be used on different types of 
Streams. 
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