
The sea Streams

Programmer's Guide

The Santa Cruz Operation, Inc.

Information in this document is subject to change without notice and does not
represent a commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft
Corporation. The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or copied only in
accordance with the terms of the agreement It is against the law to copy this software
on magnetic tape, disk, or any other medium for any purpose other than the
purchaser's personal use.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS
SET FORTH IN SUBDIVISION (b) (3) (ii) FOR RESTRICTED RIGHTS IN
COMPUTER SOFTWARE AND SUBDIVISION (b) (2) FOR LIMITED RIGHTS
IN TECHNICAL DATA,BOTH AS SET FORTH IN FAR 52.227-7013.

Portions © 1987 AT&T.
All rights reserved.
Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Microsoft
Corporation
All rights reserved.
Portions © 1983,1984,1985,1986,1987,1988 The Santa Cruz Operation, Inc.
All rights reserved.

Document Number: XG-11-1-88-1.0A

Processed Date: Mon Nov 28 11 :44:23 PST 1988

XENIX is a registered trademark of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

Contents

1 Basic Operations

1.1 Introduction to this Guide 1-1
1.2 Notational Conventions 1-1
1.3 STREAMS Overview 1-2
1.4 Development Facilities 1-3
1.5 A Simple Stream 1-4
1.6 Inserting Modules 1-6
1. 7 Module and Driver Control 1-9
1.8 Terms You Should Know 1-11

2 Advanced Operations

2.1 Advanced Input/Output Facilities 2-1
2.2 Input/Output Polling 2-1
2.3 Asynchronous Input/Output 2-4
2.4 Clone Open 2-5

3 Multiplexed Streams

3.1 Multiplexer Configurations 3-1
3.2 Building a Multiplexer 3-3
3.3 Dismantling a Multiplexer 3-10
3.4 Routing Data Through a Multiplexer 3-11

4 Message Handling

4.1 Service Interface Messages 4-1
4.2 Service Interfaces 4-1
4.3 The Message Interface 4-3
4.4 Datagram Service Interface Example 4-5
4.5 Accessing the Datagram Provider 4-7
4.6 Closing the Service 4-10
4.7 Sending a Datagram 4-10
4.8 Receiving a Datagram 4-11

5 Streams Mechanism

5.1 Overview 5-1
5.2 Stream Construction 5-2
5.3 Opening a Stream 5-3
5.4 Adding and Removing Modules 5-4
5.5 Closing 5-5

-i-

6 Modules

6.1 Module Declarations 6-1
6.2 Module Procedures 6-3
6.3 Module and Driver Environment 6-4

7 Messages

7.1 Message Fonnat 7-1
7.2 Message Generation and Reception 7 -3
7.3 Filter Module Declarations 7-4
7.4 bappend Subroutine 7-4
7.5 Message Allocation 7-5
7.6 Put Procedure 7-6

8 Message Queues and Service Procedures

8.1 The queue_t Structure 8-1
8.2 Service Procedures 8-2
8.3 Message Queues and Message Priority 8-3
8.4 Flow Control 8-4
8.5 Example 8-5
8.6 Procedures 8-6

9 Drivers

9.1 Overview of Drivers 9-1
9.2 Driver Flow Control 9-2
9.3 Driver Programming Example 9-3

10 Complete Driver

10.1 Cloning 10-1
10.2 Loop-Around Driver 10-1
10.3 Write Put Procedure 10-5
10.4 Stream Head Messages 10-7
10.5 Service Procedures 10-8
10.6 Close 10-10

11 Multiplexing

11.1 Multiplexing Configurations 11-1
11.2 Connecting Lower Streams 11-2
11.3 Disconnecting Lower Streams 11-4
11.4 Multiplexer Construction Example 11-4
11.5 Multiplexing Driver Example 11-7

-ii-

12 Service Interface

12.1 Definition 12-1
12.2 Message Usage 12-1
12.3 Example 12-2

13 Advanced Topics

13.1 Recovering From No Buffers 13-1
13.2 Advanced Flow Control 13-4
13.3 Signals 13-S
13.4 Control of Stream Head Processing 13-6

A Kernel Structures

A.1 Kernel Structures A-I
A.2 streamtab A-I
A.3 QUEUE Structures A-2
A.4 Message Structures A-3
A.S iocblk A-4
A.6 Iinkblk A-4

B Message Types

B.1 Message Types B-1
B.2 Ordinary Messages B-1
B.3 Priority Messages B-S

C Utilities

C.1 Utilities C-1
C.2 Utility Descriptions C-2
C.3 Buffer Allocation Priority C-1S
C.4 Utility Routine Summary C-16

D Design Guidelines

D.1 Appendix D: Design Guidelines D-l
D.2 General Rules D-1
D.3 System Calls D-2
D.4 Data Structures D-2
D.S Header Files D-3
D.6 Accessible Symbols and Functions D-3
D.7 Rules for Put and Service Procedures D-S
D.S Error and Trace Logging D-7

- iii-

E Configuring

E.I Appendix E: Configuring E-I
E.2 Configuring STREAMS Modules and Drivers E-I
E.3 Tunable Parameters E-3
EA System Error Messages E-5

F STRManpages

F.I AppendixF: (STR)Manpages F-I

- iv-

Chapter 1

Basic Operations

1.1 Introduction to this Guide 1-1

1.2 Notational Conventions 1-1

1.3 STREAMS Overview 1-2

1.4 Development Facilities 1-3

1.5 A Simple Stream 1-4

1.6 Inserting Modules 1-6

1.7 Module and Driver Control 1-9

1.8 Terms You Should Know 1-11

Basic Operations

1.1 Introduction to this Guide

This document provides information to developers on the use of the
STREAMS mechanism at user and kernel levels.

STREAMS was first incorporated in the UNIX System to augment the
existing character input/output (I/O) mechanism and to support develop­
ment of communication services. The STREAMS Programmer's Guide
includes detailed information, with various examples, on the development
methods and design philosophy of all aspects of STREAMS.

This guide is organized into two parts. The first part (Chapters 1 through
4) describes the development of user level applications. The second part
describes the STREAMS kernel facilities for development of modules and
drivers. Although chapter numbers are consecutive, the two parts are
independent. Working knowledge of the STREAMS Primer is assumed.

The STREAMS reference materials are divided among several locations.
Appendix C contains the reference for STREAMS kernel utilities.
STREAMS system calls are specified in Section S of the Programmer's
Reference Manual. STREAMS utilities are specified in Section ADM of
the System Administration Guide. STREAMS-specific ioctl calls are
specified in streamio(STR). The modules and drivers available are also
described in Section STR. This section is in Appendix F.

1.2 Notational Conventions

The following notational conventions are used throughout this manual:

• Examples in the text are indented.

• Commands, options to commands, and the names of directories,
structures and files appear in bold.

• Names of variables to which values must be assigned (such as
filename) appear in italic.

• A command name followed by a letter or acronym in parentheses
refers to the group of manual pages where that command is docu­
mented. For example, the notation streamio(STR) refers to the
page in section STR which documents the streamio command.
The manual page sections appear in several different reference
manuals.

1-1

Streams Programmer's Guide

1.3 STREAMS Overview

This section reviews the STREAMS mechanism. STREAMS is a general,
flexible facility and a set of tools for development of UNIX System com­
munication services. It supports the implementation of services ranging
from complete networking protocol suites to individual device drivers.
STREAMS defines standard interfaces for character input/output (I/O)
within the kernel, and between the kernel and the rest of the UNIX Sys­
tem. The associated mechanism is simple and open-ended. It consists of
a set of system calls, kernel resources, and kernel routines.

The standard interface and mechanism enable modular, portable develop­
ment and easy integration of higher performance network services and
their components. STREAMS provides a framework; it does not impose
any specific network architecture. The STREAMS user interface is
upwardly compatible with the character I/O user interface, and both user
interfaces are available in current and subsequent releases of UNIX.

A Stream is a full-duplex processing and data transfer path between a
STREAMS driver in kernel space and a process in user space (see Figure
1-1). In the kernel, a Stream is constructed by linking a Stream head, a
driver and zero or more modules between the Stream head and driver.
The Stream head is the end of the Stream closest to the user process.
Throughout this guide, the word "STREAMS" refers to the mechanism
and the word "Stream" refers to the path between a user and a driver.

A STREAMS driver may be a device driver that provides the services of
an external I/O device, or a software driver, commonly referred to as a
pseudo-device driver, that performs functions internal to a Stream. The
Stream head provides the interface between the Stream and user
processes. Its principal function is to process STREAMS-related user sys­
tem calls.

Data is passed between a driver and the Stream head in messages. Mes­
sages that are passed from the Stream head toward the driver are said to
travel downstream. Similarly, messages passed in the other direction
travel upstream. The Stream head transfers data between the data space
of a user process and STREAMS kernel data space. Data to be sent to a
driver from a user process are packaged into STREAMS messages and
passed downstream. When a message containing data arrives at the
Stream head from downstream, the message is processed by the Stream
head, which copies the data into user buffers.

1-2

Stream
Head

Module

Driver

User
Process

External
Interface

Basic Operations

_Kll~e!lSpa£~ - -
erne S"pace

!downstream

(optional)

I upstream

Figure 1-1 Basic Stream

Within a Stream, messages are distinguished by a type indicator. Certain
message types sent upstream can cause the Stream head to perfonn
specific actions, such as sending a signal to a user process. Other mes­
sage types are intended to carry infonnation within a Stream and are not
directly seen by a user process.

One or more kernel-resident modules can be inserted into a Stream
between the Stream head and driver to perfonn intermediate processing
of data as it passes between the Stream head and driver. STREAMS
modules are dynamically interconnected in a Stream by a user process.
No kernel programming, assembly, or link editing is required to create the
interconnection.

1.4 Development Facilities

General and STREAMS-specific system calls provide the user-level fadIi­
ties required to implement application programs. This system call inter­
face is upwardly compatible with the character I/O facilities. The open
system call recognizes a STREAMS file and creates a Stream to the
specified driver. A user process can receive and send data on STREAMS

1-3

Streams Programmer's Guide

files using read and write in the same manner as with character files.
The ioctl system call enables users to perform functions specific to a par­
ticular device, and a set of generic STREAMS ioctl commands [see
streamio(STR)] support a variety of functions for accessing and control­
ling Streams. A close dismantles a Stream.

In addition to the generic ioctl commands, there are STREAMS-specific
system calls to support unique STREAMS facilities. The poll system call
enables a user to poll multiple Streams for various events. The putmsg
and getmsg system calls enable users to send and receive STREAMS mes­
sages, and are suitable for interacting with STREAMS modules and
drivers through a service interface.

STREAMS provides kernel facilities and utilities to support development
of modules and drivers. The Stream head handles most system calls so
that the related processing does not have to be incorporated in a module
and driver. The configuration mechanism allows modules and drivers to
be incorporated into the system.

Examples are used throughout this document to highlight the most impor­
tant and common capabilities of STREAMS. The descriptions are not
meant to be exhaustive. For simplicity, the examples reference fictional
drivers and modules.

1.S A Simple Stream

A STREAMS driver is similar to a character I/O driver in that it has one or
more nodes associated with it in the file system, and it is accessed using
the open system call. Typically, each file system node corresponds to a
separate minor device for that driver. Opening different minor devices of
a driver causes separate Streams to be connected between a user process
and the driver. The file descriptor returned by the open call is used for
further access to the Stream. If the same minor device is opened more
than once, only one Stream is created; the first open call creates the
Stream, and subsequent open calls return a file descriptor which refer­
ences that Stream. Each process that opens the same minor device shares
the same Stream to the device driver.

Once a device is opened, a user process can send data to the device using
the write system call and receive data from the device using the read sys­
tem call. Access to STREAMS drivers using read and write is compatible
with the character I/O mechanism.

The close system call closes a device and dismantles the associated
Stream.

1-4

Basic Operations

The following example shows how a simple Stream is used. In the exam­
ple, the user program interacts with a generic communications device that
provides point-to-point data transfer between two computers. Data writ­
ten to the device is transmitted over the communications line, and data
arriving on the line can be retrieved by reading it from the device.

#include <fcntl.h>

main ()
{

char buf[1024];
int fd, count;

if «fd = open("/dev/comm01", O_RDWR)) < 0) (
perror("open failed");
exit (1);

while «count = read(fd, buf, 1024)) > 0)
if (write(fd, buf, count) != count) (

perror("write failed");
break;

}
exit (0);

In the example, /dev/commOl identifies a minor device of the communica­
tions device driver. When this file is opened, the system recognizes the
device as a STREAMS device and connects a Stream to the driver. Figure
1-2 shows the state of the Stream following the call to open.

User
Process

_____________ t _________ l!:s~r_ Space

Kernel Space

Figure 1-2 Stream to Communications Driver

1-5

Streams Programmer's Guide

This example illustrates a user reading data from the communications
device and then writing the input back out to the same device. In short,
this program echoes all input back over the communications line. The
example assumes that a user is sending data from the other side of the
communications line. The program reads up to 1024 bytes at a time and
then writes the number of bytes just read.

The read call returns the available data, which can contain fewer than
1024 bytes. If no data is currently available at the Stream head, the read
call blocks until data arrives.

Similarly, the write call attempts to send count bytes to /dev/commOl.
However, STREAMS implements a flow control mechanism that prevents
a user from flooding a device driver with data, thereby exhausting system
resources. If the Stream exerts flow control on the user, the write call
blocks until the flow control has been relaxed. The call does not return
until it has sent count bytes to the device. exit [see exit(S)] is called to
terminate the user process. This system call also closes all open files,
thereby dismantling the Stream in this example.

1.6 Inserting Modules

One advantage of STREAMS over the existing character I/O mechanism is
the ability to insert various modules into a Stream to process and manipu­
late data that passes between a user process and the driver. The following
example extends the previous communications device echoing example
by inserting a module in the Stream to change the case of certain alpha­
betic characters. The case converter module is passed an input string and
an output string by the user. Incoming data from the driver is inspected
for instances of characters in the module's input string, and the alphabetic

1-6

Basie Operations

case of all matching characters is changed. Similar actions are taken for
outgoing data using the output string. The necessary declarations for this
program are shown below:

#include <string.h>
#include <fcntl.h>
#include <stropts.h>

/*
* These defines would typically be·
* found in a header file for the module
*/

#define OUTPUT STRING 1
#define INPUT_STRING 2

main (}
{

char buf[1024];
int fd, count;
struct strioctl strioctl;

The first step is to establish a Stream to the communications driver and
insert the case converter module. The following sequence of system calls
accomplishes this:

if «fd = open("/dev/commOl", O_RDWR}) < O} {
perror ("open failed");
exit(l};

if (ioctl(fd, I PUSH, "case converter") < O} {
perror("ioctl I PUSH failed");
exit(2); -

The CPUSH ioetl call directs the Stream head to insert the case converter
module between the driver and the Stream head, creating the Stream
shown in Figure 1-3. As with any driver, this module resides in the kernel
and must have been configured into the system before it was booted.
CPUSH is one of several generic STREAMS ioetl commands that enable a
user to access and control individual Streams [see streamio(STR)].

1-7

Streams Programmer's Guide

User
Process

____ ~s~~ Space

Kernel Space

Figure 1-3 Case Converter Module

This example illustrates an important difference between STREAMS
drivers and modules. Drivers are accessed through a node or nodes in the
file system and can be opened just like any other device. Modules, on the
other hand, do not occupy a file system node. Instead, they are identified
through a separate naming convention and are inserted into a Stream
using CPUSH. The name of a module is defined by the module developer
and is typically included on the manual page describing the module.
(Manual pages describing STREAMS drivers and modules are in the man
page section STR, found in Appendix F of this manual.)

Modules are pushed onto a Stream and removed from a Stream in Last­
In-First-Out (LIFO) order. Therefore, if a second module was pushed onto
this Stream, it would be inserted between the Stream head and the case
converter module.

1-8

Basic Operations

1.7 Module and Driver Control

The next step in this example is to pass the input string and output string
to the case converter module. This can be accomplished by issuing ioctl
calls to the case converter module as follows:

/* set input conversion string */
strioctl.ic cmd = INPUT STRING; /* command type */
strioctl.ic-timout = 0;- /* default timeout (15 sec) */
strioctl. ic - dp = "ABCDEFGHIJ" j
strioctl.ic=len = strlen(strioctl.ic_dp);

if (ioctl(fd, I STR, &strioctl) < 0)
perror("ioctl I STR failed");
exit (3); -

/* set output conversion string */
strioctl.ic cmd = OUTPUT STRINGj/* command type */
strioctl.iC-dp = "abcdefghij";
strioctl.ic=len = strlen(strioctl.ic_dp);

if (ioctl(fd, I STR, &strioctl) < 0)
perror("ioctl I STR failed");
exit(4); -

ioctl requests are issued to STREAMS drivers and modules indirectly,
using the CSTR ioctl call [see streamio(STR)]. The argument to CSTR
must be a pointer to a strioctl structure, which specifies the request to be
made to a module or driver. This structure is defined in <stropts.h> and
has the following format:

struct strioctl
int ic - cmdi /* ioctl request */
int ic_timout; /* ACK/NAK timeout */
int ic - len; /* length of data argument */
char *ic _dpi /* ptr to data argument */

where ic cmd identifies the command intended for a module or driver,
ic _timout specifies the number of seconds an CSTR request should wait
for an acknowledgment before timing out, ie_len is the number of bytes
of data to accompany the request, arid ic _ dp points to that data.

CSTR is intercepted by the Stream head, which packages it into a mes­
sage using information contained in the strioctl structure and sends the
message downstream. The request is processed by the module or driver

1-9

Streams Programmer's Guide

closest to the Stream head that understands the command specified by
ic _ cmd. The ioctl call blocks up to ic _timout seconds while waiting for
the target module or driver to respond with either a positive or negative
acknowledgment message. If an acknowledgment is not received in
ic _timout seconds, the ioctl call fails.

CSTR is actually a nested request; the Stream head intercepts CSTR and
then sends the driver or module request (as specified in the strioctI struc­
ture) downstream. Any module that does not understand the command in
ic _ cmd passes the message further downstream. Eventually, the request
reaches the target module or driver, where it is processed and ack­
nowledged. If no module or driver understands the command, a negative
acknowledgment is generated, and the ioctl call fails.

Two separate commands are sent to the case converter module in this
example. The first contains the conversion string for input data, and the
second contains the conversion string for output data. The ic _ cmd field is
set to indicate whether the command is setting the input or output conver­
sion string. For each command, the value of ic timout is set to zero; this
specifies the system default timeout value of 15 seconds. A data argu­
ment which contains the conversion string also accompanies each com­
mand. The ic _ dp field points to the beginning of each string, and ie_len is
set to the length of the string.

Note

Only one CSTR request can be active on a STREAM at one time.
Further requests block until the active CSTR request is ack­
nowledged and the system call completes.

The strioctl structure is also used to retrieve the results, if any, of an
CSTR request. If data is returned by the target module or driver, ic dp
must point to a buffer large enough to hold that data, and ic len is set on
return to indicate the amount of data returned. -

1-10

Basic Operations

The remainder of this example is identical to the previous example:

while «count = read(fd, buf, 1024)) > 0)
if (write(fd, buf, count) != count) {

perror ("write failed");
break;

exit (0);

The case converter module converts the specified input characters to
lower case and the corresponding output characters to upper case. Notice
that the case conversion processing is achieved with no change to the
communications driver.

As with the previous example, the exit system call dismantles the Stream
before terminating the process. The case converter module is removed
from the Stream automatically when it is closed. Alternatively, modules
can be removed from a Stream using the CPOP ioctl call described in
streamio(STR). This call removes the topmost module on the Stream and
enables a user process to alter the configuration of a Stream dynamically
by pushing and popping modules as needed.

This chapter discussed a few of the important ioctl requests supported by
STREAMS. Several other requests are available to support operations
such as flushing the data on a Stream or determining if a given module
exists on the Stream. These requests are described fully in
streamio(STR).

1.8 Terms You Should Know

To understand this guide, you need to be familiar with the following
terms.

BACK-ENABLE

To enable (by STREAMS) a preceding blocked QUEUE when STREAMS
determines that a succeeding QUEUE has reached its low-water mark.

BLOCKED

A QUEUE that cannot be enabled due to flow control.

1-11

Streams Programmer's Guide

CLONE DEVICE

A STREAMS device that returns an unused minor device when initially
opened, rather than requiring the minor device to be specified in the
open(S) call.

CLOSE PROCEDURE

The module routine that is called when a module is popped from a
Stream; also, the driver routine that is called when a driver is closed.

CONTROL STREAM

In a multiplexer, the upper Stream on which a previous CLINK ioetl [to
the associated file, see streamio(STR)] caused a lower Stream to be con­
nected to the multiplexer driver at the end of the upper Stream.

DOWNSTREAM

The direction from the Stream head towards the driver.

DEVICE DRIVER

The end of the Stream closest to an external interface. The principal
functions of a device driver are handling an associated physical device
and transforming data and information between the external interface and
Stream.

DRIVER

A module that forms the Stream end. It can be a device driver or a
pseudo-device driver. In STREAMS, a driver is physically identical to a
module (that is, composed of two QUEUES), but has additional attributes
in a Stream and in the UNIX system.

ENABLE

Schedule a QUEUE.

FLow CONTROL

The STREAMS mechanism that regulates the flow of messages within a
Stream and the flow from user space into a Stream.

1-12

Basic Operations

LOWER STREAM

A Stream connected below a multiplexer pseudo-device driver, by means
of an CLINK ioctl. The far end of a lower Stream terminates at a device
driver or another multiplexer driver.

MESSAGE

One or more linked message blocks. A message is referenced by its first
message block, and its type is defined by the message type of that block.

MESSAGE BLOCK

Carries data or information, as identified by its message type, in a Stream.
A message block is a triplet consisting of a data buffer and associated
control structures, an mblk _ t structure, and a dblk _ t structure.

MESSAGE QUEUE

A linked list of zero or more messages connected to a QUEUE.

MESSAGE TYPE

A defined set of values identifying the contents of a message block and
message.

MODULE

A pair of QUEUEs. In general, module implies a pushable module.

MULTIPLEXER

A STREAMS mechanism that allows messages to be routed among multi­
pIe Streams in the kernel. A multiplexer includes at least one multiplex­
ing pseudo-device driver connected to one or more upper Streams and one
or more lower Streams.

OPEN PROCEDURE

The routine in each STREAMS driver and module called by STREAMS on
each open(S) system call made on the Stream. A module's open pro­
cedure is also called when the module is pushed.

1-13

Streams Programmer's Guide

POP

A STREAMS ioctI [see streamio(STR)] that causes the push able module
immediately below the Stream head to be removed (popped) from a
Stream [modules can also be popped as the result of a cIose(S)].

PSEUDO-DEVICE DRIVER

A software driver, not directly associated with a physical device, that per­
fonns functions internal to a Stream such as a multiplexer or log driver.

PUSH

A STREAMS ioetI [see streamio(STR)] that causes a pushable module to
be inserted (pushed) in a Stream immediately below the Stream head.

PUSHABLE MODULE

A module interposed (pushed) between the Stream head and driver. Push­
able modules perfonn intennediate transfonnations on messages flowing
between the Stream head and driver. A driver is a non-pushable module
and a Stream head includes a non-pushable module.

PUT PROCEDURE

The routine in a QUEUE which receives messages from the preceding
QUEUE. It is the single entry point into a QUEUE from a preceding
QUEUE. The procedure may perfonn processing on the message and will
then generally either queue the message for subsequent processing by this
QUEUE's service procedure, or will pass the message to the put procedure
of the following QUEUE.

QUEUE

A STREAMS defined set of C-Ianguage structures. A module is composed
of a read (upstream) QUEUE and a write (downstream) QUEUE. A
QUEUE typically contains a put and service procedure, a message queue,
and private data. The read QUEUE (cf. read queue) in a module also con­
tains the open procedure and close procedure for the module.

The primary structure is the queue t structure, occasionally used as a
synonym for a QUEUE. -

1-14

Basic Operations

READ QUEUE

The message queue in a module or driver containing messages moving
upstream. Associated with a read(S) system call and input from a driver.

SCHEDULE

Place a QUEUE on the internal list of QUEUEs which will subsequently
have their service procedure called by the STREAMS scheduler.

SERVICE INTERFACE

A set of primitives that define a service at the boundary between a service
user and a service provider and the rules (typically represented by a state
machine) for allowable sequences of the primitives across the boundary.
At a Stream/user boundary, the primitives are typically contained in the
control part of a message; within a Stream, in M_PROTO or M_PCPROTO
message blocks.

SERVICE PROCEDURE

The routine in a QUEUE which receives messages queued for it by the put
procedure of the QUEUE. The procedure is called by the STREAMS
scheduler. It may perform processing on the message and will generally
pass the message to the put procedure of the following QUEUE.

SERVICE PROVIDER

In a service interface, the entity (typically a module or driver) that
responds to request primitives from the service user with response and
event primitives.

SERVICE USER

In a service interface, the entity that generates request primitives for the
service provider and consumes response and event primitives.

STREAM

The kernel aggregate created by connecting STREAMS components,
resulting from an application of the STREAMS mechanism. The primary
components are the Stream head, the driver, and zero or more pushable
modules between the Stream head and driver.

1-15

Streams Programmer's Guide

STREAM END

The end of the Stream furthest from the user process, containing a driver.

STREAM HEAD

The end of the Stream closest to the user process. It provides the inter­
face between the Stream and the user process.

STREAMS

A kernel mechanism that supports development of network services and
data communication drivers. It defines interface standards for character
input/output within the kernel, and between the kernel and user level.
The STREAMS mechanism comprises integral functions, utility routines,
kernel facilities, and a set of structures.

UPPER STREAM

A Stream terminating above a multiplexer pseudo-device driver. The far
end of an upper Stream originates at the Stream head or another multi­
plexer driver.

UPSTREAM

The direction from driver towards Stream head.

WATERMARKS

Limit values used in flow control. Each QUEUE has a high-water mark
and a low-water mark. The high-water mark value indicates the upper
limit related to the number of characters contained on the message queue
of a QUEUE. When the enqueued characters in a QUEUE reach its high­
water mark, STREAMS causes another QUEUE that attempts to send a
message to this QUEUE to become blocked. When the characters in this
QUEUE are reduced to the low-water mark value, the other QUEUE will
be unblocked by STREAMS.

WRITE QUEUE

The message queue in a module or driver containing messages moving
downstream; associated with a write(S) system call and output from a
user process.

1-16

Chapter 2

Advanced Operations

2.1 Advanced Input/Output Facilities 2-1

2.2 Input/Output Polling 2-1

2.3 Asynchronous Input/Output 2-4

2.4 Clone Open 2-5

Advanced Operations

2.1 Advanced Input/Output Facilities

This chapter describes a facility that enables a user process to poll multi­
pIe Streams simultaneously for various events. It also discusses a signal­
ing feature that supports asynchronous I/O processing and a new mechan­
ism, called clone open, for finding available minor devices.

2.2 Input/Output Polling

The poll [see poll(S)] system call provides users with a mechanism for
monitoring input and output on a set of file descriptors that reference open
Streams. It identifies those Streams over which a user can send or receive
data. For each Stream of interest, users can specify one or more events
about which they should be notified. These events include the following:

POLLIN Input data is available on the Stream associated with
the given file descriptor.

POLLPRI A priority message is available on the Stream associ­
ated with the given file descriptor. Priority messages
are described in the section of Chapter 4 entitled
"Accessing the Datagram Provider."

POLLOUT The Stream associated with the given file is writable.
That is, the Stream has relieved the flow control that
would prevent a user from sending data over that
Stream.

The poll system call examines each file descriptor for the requested
events, and on return, poll indicates which events have occurred for each
file descriptor. If no event has occurred on any polled file descriptor, poll
blocks until a requested event or timeout occurs. The specific arguments
to poll are the following:

• an array of file descriptors and events to be polled

• the number of file descriptors to be polled

• the number of milliseconds poll should wait for an event if no
events are pending (-1 specifies wait forever)

The following example shows the use of poll. Two separate minor dev­
ices of the communications driver presented in Chapter 1 are opened,
thereby establishing two separate Streams to the driver. Each Stream is
polled for incoming data. If data arrives on either Stream, it is read and

2-1

Streams Programmer's Guide

then written back to the other Stream. This program extends the previous
echoing example by sending echoed data over a separate communications
line (minor device). The steps needed to establish each Stream are as fol­
lows:

#include <fcntl.h>
#include <poll.h>

#define NPOLL 2 /* number of file descriptors to poll */

main()
{

struct pollfd pollfds [NPOLL] i
char buf[1024]i
int count, ii

if ((pollfds[O].fd = open("/dev/corrmOl", 0 ROWRIO NDELAY)) < 0) {
perror("open failed for /dev/corrmOl") i- -

exit (1) i

if ((pollfds [1] .fd = open ("/dev/corrm02", 0 ROWRIO NDELAY)) < 0) {
perror("open failed for /dev/corrm02") ;-
exit (2) i

The variable pollfds is declared as an array of pollfd structures. This
structure is defined in <poll.h> and has the following format:

struct pollfd {
int fdi
short events i
short reventsi

/* file descriptor */
/* requested events */
/* returned events */

For each entry in the array,jd specifies the file descriptor to be polled, and
events is a bitmask that contains the bitwise inclusive OR of events to be
polled on that file descriptor. On return, the revents bitmask indicates
which of the requested events has occurred.

The example opens two separate minor devices of the communications
driver and initializes the pollfds entry for each. The remainder of the
example uses poll to process incoming data as follows:

2-2

Advanced Operations

/* set events to poll for incoming data */
pollfds [0] .events = POLLIN;
pollfds[l] .events = POLLIN;

while (1) {
/* poll and use -1 timeout (infinite) */
if (poll(pollfds, NPOLL, -1) < 0) {

perror (''poll failed");
exit(3);

for (i = 0; i < NPOLL; i++) {
switch (pollfds[i].revents)

default:
perror ("error event") ;
exit(4);

case 0:
break;

case POLLIN:

/* default error case */

/* no events */

/* echo incoming data on "other" Stream */
while «count = read(pollfds[i] .fd, buf, 1024)) > 0)

/*
* the write loses data if flow control
* prevents the transmit at this time.
*/

if (write«i==O? pollfds[l] .fd: pollfds[O].fd),
buf, count) != count)

fprintf(stderr,"writer lost data\n");
break;

The user specifies the polled events by setting the events field of the
pollfd structure to POLLIN. This requested event directs poll to notify the
user of any incoming data on each Stream. The bulk of the example is an
infinite loop, where each iteration polls both Streams for incoming data.

The second argument to poll specifies the number of entries in the pollfds
array (two in this example). The third argument is a timeout value indi­
cating the number of milliseconds poll should wait for an event if none
has occurred. On a system where millisecond accuracy is not available,
timeout is rounded up to the nearest legal value available on that system.
Here, the value. of timeout is -1, specifying that poll should block
indefinitely until a requested event occurs or until the call is interrupted.

2-3

Streams Programmer's Guide

If poll succeeds, the program looks at each entry in pollfds. If revents is
set to 0, no event has occurred on that file descriptor. If revents is set to
POLLIN, incoming data is available. In this case, all available data is
read from the polled minor device and written to the other minor device.

If revents is set to a value other than 0 or POLLIN, an error event must
have occurred on that Stream, because the only requested event was POL­
LIN. The following error events are defined for poll. The user cannot
poll for these events, but they are reported in revents whenever they
occur. As such, they are only valid in the revents bitmask:

POLLERR A fatal error has occurred in some module or driver
on the Stream associated with the specified file
descriptor. Further system calls will fail.

POLLHUP A hangup condition exists on the Stream associated
with the specified file descriptor.

POLLNV AL The specified file descriptor is not associated with an
open Stream.

The example attempts to process incoming data as quickly as possible.
However, when writing data to a Stream, the write call may block if the
Stream is exerting flow control. To prevent the process from blocking,
the minor devices of the communications driver were opened with the
O_NDELAY flag set. If flow control is exerted and O_NDELAY is set,
write will not be able to send all the data. This can occur if the commun­
ications driver is unable to keep up with the user's rate of data transmis­
sion. If the Stream becomes full, the number of bytes write sends will be
less than the requested count. For simplicity, the example ignores the
data if the Stream becomes full, and a warning is printed to stderr.

This program continues until an error occurs on a Stream or until the pro­
cess is interrupted.

2.3 Asynchronous Input/Output

The poll system call described above enables a user to monitor multiple
Streams in a synchronous fashion. The poll call normally blocks until an
event occurs on any of the polled file descriptors. However, in some

2-4

Advanced Operations

applications it is desirable to process incoming data asynchronously. For
example, an application may wish to do some local processing and be
interrupted when a pending event occurs. Some time-critical applications
cannot afford to block and must have immediate indication of success or
failure.

A new facility is available for use with STREAMS that enables a user pro­
cess to request a signal when a given event occurs on a Stream. When
used with poll, this facility enables applications to asynchronously moni­
tor a set of file descriptors for events.

The CSETSIG ioctl call [see streamio(STR)] is used to request that a
SIGPOLL signal be sent to a user process when a specific event occurs.
Listed below are the events for which an application can be signaled:

S_OUTPUT

Data has arrived at the Stream head, and no data
existed at the Stream head when it arrived.

A priority STREAMS message has arrived at the
Stream head.

The Stream is no longer full and can accept output.
That is, the Stream has relieved the flow control
which would otherwise prevent a user from sending
data over that Stream.

A special STREAMS signal message that contains a
SIGPOLL signal has reached the front of the Stream
head input queue. This message can be sent by
modules or drivers to generate immediate
notification of data or events to follow.

The polling example can be written to process input from each communi­
cations driver minor device by issuing CSETSIG to request a signal for
the S_INPUT event on each Stream. The signal catching routine can then
call poll to determine on which Stream the event occurred. The default
action for SIGPOLL is to terminate the process. Therefore, the user pro­
cess must catch the signal using signal [see signal(S)]. SIGPOLL is sent
only to processes that request the signal using CSETSIG.

2.4 Clone Open

In the earlier examples, each user process connected a Stream to a driver
by opening a particular minor device of that driver. However, a user pro­
cess often wants to connect a new Stream to a driver regardless of which

2-5

Streams Programmer's Guide

minor device is used to access the driver.

In the past, this typically forced the user process to poll the various minor
device nodes of the driver for an available minor device. To alleviate this
task, a facility called clone open is supported for STREAMS drivers. If a
STREAMS driver is implemented as a clone able device, a single node in
the file system can be opened to access any unused minor device. This
special node guarantees that the user is allocated a separate Stream to the
driver on every open call. Each Stream is associated with an unused
minor device, and so the total number of Streams that can be connected to
a clone able driver is limited by the number of minor devices configured
for that driver.

The clone device can be useful in a networking environment where a pro­
tocol pseudo-device driver requires each user to open a separate Stream.
Typically, the users do not care which minor device they use to establish
a Stream to the driver. Instead, the clone device can find an available
minor device for each user and establish a unique Stream to the driver.
Chapter 3 describes this type of transport protocol driver.

Note

A user program has no control over whether a given driver supports
the clone open. The decision to implement a STREAMS driver as a
c10neable device is made by the designers of the device driver.

2-6

Chapter 3

Multiplexed Streams

3.1 Multiplexer Configurations 3-1

3.2 Building a Multiplexer 3-3

3.3 Dismantling a Multiplexer 3-10

3.4 Routing Data Through a Multiplexer 3-11

Multiplexed Streams

3.1 Multiplexer Configurations

In the earlier chapters, Streams were described as linear connections of
modules, where each invocation of a module is connected to at most one
upstream module and one downstream module. While this configuration
is suitable for many applications, others require the ability to multiplex
Streams in a variety of configurations. Typical examples are terminal
window facilities and internetworking protocols (which might route data
over several subnetworks).

An example of a multiplexer is one that multiplexes data from several
upper Streams over a single lower Stream, as shown in Figure 3-1. An
upper Stream is one that is upstream from a multiplexer, and a lower
Stream is one that is downstream from a multiplexer. A terminal win­
dowing facility might be implemented in this fashion, where each upper
Stream is associated with a separate window.

I
MUX

Figure 3-1 Many-to-One Multiplexer

A second type of multiplexer might route data from a single upper Stream
to one of several lower Streams, as shown in Figure 3-2. An internet­
working protocol could take this form, where each lower Stream links the
protocol to a different physical network.

3-1

Streams Programmer's Guide

MUX

Figure 3-2 One-to-Many Multiplexer

A third type of multiplexer might route data from one of many upper
Streams to one of many lower Streams, as shown in Figure 3-3.

MUX

Figure 3-3 Many-to-Many Multiplexer

A STREAMS mechanism is available that supports the multiplexing of
Streams through special pseudo-device drivers. Using a linking facility,
users can dynamically build, maintain, and dismantle each of the above
multiplexed Stream configurations. In fact, these configurations can be
further combined to form complex, multilevel, multiplexed Stream
configurations.

The remainder of this chapter describes multiplexed Stream
configurations in the context of the example shown in Figure 3-4. In this
example, an internetworking protocol pseudo-device driver (IP) is used to
route data from a single upper Stream to one of two lower Streams. This
driver supports two STREAMS connections beneath it to two distinct sub­
networks. One sub-network supports the IEEE 802.3 standard for the
CSMA/CD medium access method. The second sub-network supports the
IEEE 802.4 standard for the token-passing bus medium access method.

3-2

Multiplexed Streams

The example also presents a transport protocol pseudo-device driver (TP)
that multiplexes multiple virtual circuits (upper Streams) over a single
Stream to the IP pseudo-device driver.

3.2 Building a Multiplexer

Figure 3-4 shows the multiplexing configuration to be created. This
configuration enables users to access the services of the transport proto­
col. To free users from concern with the underlying protocol structure, a
user-level daemon process builds and maintains the multiplexing
configuration. Users can then access the transport protocol directly by
opening the TP driver device node.

Stream
Head

___ l!s_e!:. ~p~ce

Kernel Space

Figure 3-4 Protocol Multiplexer

3-3

Streams Programmer's Guide

The following example shows how this daemon process sets up the proto­
col multiplexer. The necessary declarations and initialization for the dae­
mon program are as follows:

#include <fcntl.h>
#include <stropts.h>

main ()
{

int fd S02 4,
fd-S02-3,
fd-ip,-
fd::::tp;

/*
* daemon-ize this process
*/

switch (fork ())
case 0:

break;
case -1:

perror ("fork failed");
exit (2);

default:
exit (0);

}
setpgrp() ;

This multilevel, multiplexed Stream configuration is built from the bot­
tom up. Therefore, the example begins by constructing the IP multi­
plexer. This multiplexing pseudo-device driver is treated like any other
software driver. It owns a node in the UNIX file system and is opened just
like any other STREAMS device driver.

The first step is to open the multiplexing driver and the 802.4 driver,
creating separate Streams above each driver as shown in Figure 3-5. The
Stream to the 802.4 driver can now be connected below the mUltiplexing
IP driver using the CLINK ioctl call.

3-4

Multiplexed Streams

~
/ " User Space mm -mmlmllr--I-~~e;space

Driver

Figure 3-5 Before Link

The sequence of instructions to this point is:

if ((fd 802 4 = open ("/dev/802 4", 0 RDWR)) < 0) {
perror("open of /dev/802_4-failed");
exit (1);

if ((fd ip = open ("/dev/ip", 0 RDWR)) < 0)
perror("open of /dev/ip failed");
exit(2);

/* now link 802.4 to underside of IP */

if (ioctl(fd ip, I LINK, fd 802 4) < 0)
perror("i LINK-ioctl failed");
exit (3); -

CLINK takes two file descriptors as arguments. The first file descriptor,
Jd _ip, must reference the Stream connected to the multiplexing driver,
and the second file descriptor, Jd_802_4, must reference the Stream to be
connected below the multiplexer. Figure 3-6 shows the state of these
Streams following the CLINK call. The complete Stream to the 802.4
driver has been connected below the IP driver, including the Stream head.
The Stream head of the 802.4 driver will be used by the IP driver to
manage the multiplexer.

3-5

Streams Programmer's Guide

___ -:- ______ l!~e~ ~p~ce

Kernel Space

Figure 3-6 IP Multiplexer After First Link

CLINK returns an integer value, called a mux ID, which is used by the
multiplexing driver to identify the Stream just connected below it. This
mux ID is ignored in the example, but it can be useful for dismantling a
multiplexer or routing data through the multiplexer. Its significance is
discussed later.

The following sequence of system calls is used to continue building the
intemetworking multiplexer (IP):

if «fd 802 3 = open ("/dev/802 3", 0 RDWR)) < 0) {
perror("open of /dev/802 3-failecin);
exit (4); -

if (ioctl(fd ip, I LINK, fd 802 3) < 0)
perror (,ii LINK - ioctl faIled");
exit (5); -

All links below the IP driver have now been established, giving the
configuration in Figure 3-7.

3-6

Controlling-->""
Stream

Multiplexed Streams

__________ l!s_e~ ~p~ce

Kernel Space

Figure 3-7 IP Multiplexer

The Stream above the multiplexing driver used to establish the lower con­
nections is the controlling Stream. It has special significance when dis­
mantling the multiplexing configuration, as shown later in this chapter.
The Stream referenced by fd _ip is the controlling Stream for the IP multi­
plexer.

Note

The order in which the Streams in the multiplexing configuration
are opened is unimportant. However, if it is necessary to have inter­
mediate modules in the Stream between the IP driver and media
drivers, these modules must be added to the Streams associated with
the media drivers (using CPUSH) before the media drivers are
attached below the multiplexer.

The number of Streams that can be linked to a multiplexer is restricted by
the design of the particular multiplexer. The manual page describing
each driver should describe such restrictions. However, only one CLINK
operation is allowed for each lower Stream; a single Stream cannot be
linked below two multiplexers simultaneously.

3-7

Streams Programmer's Guide

Continuing with the example, the IP driver is now linked below the tran­
sport protocol (TP) multiplexing driver. As seen earlier in Figure 3-4,
only one link is supported below the transport driver. This link is formed
by the following sequence of system calls:

if ((fd tp = open ("/dev/tp", 0 RDWR)) < 0)
perror("open of /dev/tp failed");
exit(6);

if (ioctl(fd tp, I LINK, fd ip) < 0)
perror("i LINICioctl failed");
exit (7); -

The multilevel multiplexing configuration shown in Figure 3-8 has now
been created.

3-8

Controlling-->

__________ l!s:~ ~p~ce
Kernel Space

Stream r------L--'---------,

Figure 3-8 TP Multiplexer

Multiplexed Streams

Because the controlling Stream of the IP multiplexer has been linked
below the TP multiplexer, the controlling Stream for the new multilevel
multiplexer configuration is the Stream above the TP multiplexer.

At this point the file descriptors associated with the lower drivers can be
closed without affecting the operation of the multiplexer. Closing these
file descriptors may be necessary when building large multiplexers so that
many devices can be linked together without exceeding the UNIX System
limit on the number of simultaneously open files per process. If these file
descriptors are not closed, all subsequent read, write, ioctl, poll, getmsg,
and putmsg system calls issued to them will fail. This is because CLINK
associates the Stream head of each linked Stream with the multiplexer,
and so the user cannot access that Stream directly for the duration of the
link.

The following sequence of system calls completes the multiplexing dae-
mon example: '

close(fd a02 4);
close(fd-a02-3);
close (f{)p)-;

/* Hold multiplexer open forever */
pause ();

Figure 3-4 shows the complete picture of the multilevel protocol multi­
plexer. The transport driver is designed to support several simultaneous
virtual circuits, where these virtual circuits map one-to-one to Streams
opened to the transport driver. These Streams are multiplexed over the
single Stream connected to the IP multiplexer. The mechanism for estab­
lishing multiple Streams above the transport multiplexer is actually a by­
product of the way in which Streams are created between a user process
and a driver. Separate Streams are connected to a STREAMS driver by
opening different minor devices of that driver. Of course, the driver must
be designed with the intelligence to route data from the single lower
Stream to the appropriate upper Stream.

Notice in Figure 3-4 that the daemon process maintains the multiplexed
Stream configuration through an open Stream (the controlling Stream) to
the transport driver. Meanwhile, other users can access the services of
the transport protocol by opening new Streams to the transport driver;
they are freed from the need for any unnecessary knowledge of the under­
lying protocol configurations and sub-networks which support the tran­
sport service.

3-9

Streams Programmer's Guide

Multilevel, multiplexing configurations, such as the one presented in the
above example, should be assembled from the bottom up. This is because
STREAMS does not allow ioctl requests (including CLINK) to be passed
through higher multiplexing drivers to reach the desired multiplexer; they
must be sent directly to the intended driver. For example, once the IP
driver is linked under the TP driver, ioctl requests cannot be sent to the IP
driver through the TP driver.

3.3 Dismantling a Multiplexer

Those Streams which are connected to a multiplexing driver from above
(with open) can be dismantled by closing each Stream with close. In the
protocol mUltiplexer, these Streams correspond to the virtual circuit
Streams above the TP multiplexer. The mechanism for dismantling
Streams that have been linked below a multiplexing driver is less obvious
and is described below in detail.

The CUNLINK ioctl call is used to disconnect each multiplexer link
below a multiplexing driver individually. This command takes the fol­
lowing fonn:

where fd is a file descriptor associated with a Stream connected to the
multiplexing driver from above, and mux _id is the identifier that was
returned by CLINK when a driver was linked below the multiplexer.
Each lower driver can be disconnected individually in this way, or a spe­
cial mux id value of -1 can be used to disconnect all drivers from the
multiplexer simultaneously.

In the multiplexing daemon program presented earlier, the multiplexer is
never explicitly dismantled. This is because all links associated with a
multiplexing driver are automatically dismantled when the controlling
Stream associated with that multiplexer is closed. Because the control­
ling Stream is open to a driver, only the final call of close for that Stream
closes it. In this case, the daemon is the only process that has opened the
controlling Stream, and so the multiplexing configuration is dismantled
when the daemon exits.

If the automatic dismantling mechanism is to work in the multilevel, mul­
tiplexed Stream configuration, the controlling Stream for each multi­
plexer at each level must be linked under the next higher level multi­
plexer. In the example, the controlling Stream for the IP driver was
linked under the TP driver. This resulted in a single controlling Stream
for the full multilevel configuration. In this case the multiplexing pro­
gram relied on closing the controlling Stream to dismantle the

3-10

Multiplexed Streams

multiplexed Stream configuration instead of using explicit C UNLINK
calls. Thus, the mux ID values returned by CLINK could be ignored.

An important side effect of automatic dismantling on close is that it is not
possible for a process to build a multiplexing configuration and then exit.
This is because exit [see exit(S)] closes all files associated with the pro­
cess, including the controlling Stream. To keep the configuration intact,
the process must exist for the life of that multiplexer. This is the motiva­
tion for implementing the example as a daemon process.

3.4 Routing Data Through a Multiplexer

As demonstrated, STREAMS has provided a mechanism for building mul­
tiplexed Stream configurations. However, the criteria on which a multi­
plexer routes data are driver-dependent. For example, the protocol multi­
plexer shown in the last example might use address information found in
a protocol header to determine the sub-network over which a given packet
should be routed. It is the multiplexing driver's responsibility to define its
routing criteria.

One routing option available to the multiplexer is to use the mux ID value
to determine the Stream to which data should be routed. (Remember that
each multiplexer link is associated with a mux ID.) CLINK passes the
mux ID value to the driver and returns this value to the user. The driver
can therefore specify that the mux ID value must accompany data routed
through it. For example, if a multiplexer routed data from a single upper
Stream to one of several lower Streams (as did the IP driver), the multi­
plexer could require the user to insert the mux ID of the desired lower
Stream into the first four bytes of each message passed to it. The driver
could then match the mux ID in each message with the mux ID of each
lower Stream and route the data accordingly.

3-11

Chapter 4

Message Handling

4.1 Service Interface Messages 4-1

4.2 Service Interfaces 4-1

4.3 The Message Interface 4-3

4.4 Datagram Service Interface Example 4-5

4.5 Accessing the Datagram Provider 4-7

4.6 Closing the Service 4-10

4.7 Sending a Datagram 4-11

4.8 Receiving a Datagram 4-12

Message Handling

4.1 Service Interface Messages

A STREAMS message format has been defined to simplify the design of
service interfaces. Also, two new system calls, getmsg and putmsg, are
available for sending these messages downstream and receiving messages
that are available at the Stream head. This chapter describes these system
calls in the context of a service interface example after presenting a brief
overview of STREAMS service interfaces.

4.2 Service Interfaces

A principal advantage of the STREAMS mechanism is its modularity.
From the user level, kernel-resident modules can be dynamically inter­
connected to implement any reasonable processing sequence. This modu­
larity reflects the layering characteristics of contemporary network arc hi -
tectures.

One benefit of modularity is the ability to interchange modules of like
function. For example, two distinct transport protocols, implemented as
STREAMS modules, can provide a common set of services. An applica­
tion or higher layer protocol that requires those services can use either
module. This ability to substitute modules enables user programs and
higher-level protocols to be independent of the underlying protocols and
physical communication media.

Each STREAMS module provides a set of processing functions, or ser­
vices, and an interface to those services. The service interface of a
module defines the interaction between that module and any neighboring
modules, and therefore it is a necessary component for providing module
substitution. By creating a well-defined service interface, applications
and STREAMS modules can interact with any module that supports that
interface. Figure 4-1 demonstrates this.

4-1

Streams Programmer's Guide

Application
A

Application
A

___________________________________ y~er Space

Kernel Space
Service Interface ..

TCP
Transport

Protocol

Lower Layer
Protocol
Suite A

ISO
Transport

Protocol

Lower Layer
Protocol
Suite B

Figure 4-1 Protocol Substitution

For example, by defining a service interface between applications and a
transport protocol, it is possible to substitute a different protocol below
that service interface which is completely transparent to the application.
In this example, the same application can run over the Transmission Con­
trol Protocol (TCP) and the ISO transport protocol. Of course, the service
interface must define a set of services common to both protocols.

4-2

Message Handling

The three components of any service interface are the service user, the
service provider, and the service interface itself, as seen in Figure 4-2.

Request
Primitives

t Service Interface ..

t
Response and
Event Primitives

Figure 4-2 Service Interface

Typically, a user makes a request of a service provider using some well­
defined service primitive. Responses and event indications are also
passed from the provider to the user using service primitives. The service
interface is defined as the set of primitives that define a service and the
allowable state transitions that result as these primitives are passed
between the user and provider.

4.3 The Message Interface

A message format has been defined to simplify the design of service inter­
faces using STREAMS. Each service interface primitive is a distinct
STREAMS message containing two parts: a control part and a data part.
The control part contains information that identifies the primitive and
includes all necessary parameters. The data part contains user data asso­
ciated with that primitive.

An example of a service interface primitive is a transport protocol con­
nect request. This primitive requests that the transport protocol service
provider establish a connection with another transport user. The parame­
ters associated with this primitive can include a destination protocol
address and specific protocol options to be associated with that connec­
tion. Some transport protocols also allow a user to send data with the
connect request. A STREAMS message is used to define this primitive.
The control part identifies the primitive as a connect request and includes
the protocol address and options. The data part contains the associated
user data.

4-3

Streams Programmer's Guide

STREAMS enables modules to create these messages and pass them to
neighbor modules. However, the read and write system calls are not
sufficient to enable a user process to generate and receive such messages.
First, read and write are byte-stream oriented, with no concept of mes­
sage boundaries. To support service interfaces, the message boundary of
each service primitive must be preserved so that the beginning and end of
each primitive can be located. Also, read and write offer only one buffer
to the user for transmitting and receiving STREAMS messages. If control
information and data are placed in a single buffer, the user must parse the
contents of the buffer to separate the data from the control information.

Two STREAMS system calls are available that enable user processes to
create STREAMS messages and send them to neighboring kernel modules
and drivers or receive the contents of such messages from kernel modules
and drivers. These system calls preserve message boundaries and provide
separate buffers for the control and data parts of a message.

The putmsg system call enables a user to create STREAMS messages and
send them downstream. The user supplies the contents of the control and
data parts of the message in two separate buffers. Likewise, the getmsg
system call retrieves such messages from a Stream and places the con­
tents into two user buffers.

The syntax of putmsg is as follows:

int putmsg (fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int flags;

fd identifies the Stream to which the message will be passed, ctlptr and
dataptr identify the control and data parts of the message, and flags can
be used to specify that a priority message should be sent.

The strbuf structure is used to describe the control and data parts of a
message and has the following format:

struct strbuf {

int maxlen; /* maximum buffer length */
int len; /* length of data */
char *buf; /* pointer to buffer */

buf points to a buffer containing the data, and len specifies the number of
bytes of data in the buffer. maxlen specifies the maximum number of

4-4

Message Handling

bytes the given buffer can hold and is meaningful only when retrieving
information into the buffer using getmsg.

The getmsg system call retrieves messages available at the Stream head
and has the following syntax:

int getrnsg (fd, ctlptr, dataptr, flags)
int fdi

struct strbuf *ctlptri
struct strbuf *dataptri
int *flagsi

The arguments to getmsg are the same as those for putmsg.

The remainder of this chapter presents an example that demonstrates how
putmsg and getmsg can be used to interact with the service interface of a
simple datagram protocol provider. A potential provider of such a service
might be the IEEE 802.2 Logical Link Control Protocol Type 1. The
example implements a user-level library that frees the user from
knowledge of the underlying STREAMS system calls. The Transport
Layer Interface of the Network Services Library in the UNIX System pro­
vides a similar function for transport layer services. The example here
illustrates how a service interface might be defined; it is not an example
of a complete IEEE 802.2 service interface.

4.4 Datagram Service Interface Example

The example datagram service interface library presented below includes
four functions that enable a user to do the following:

• establish a Stream to the service provider and bind a protocol
address to the Stream

• send a datagram to a remote user

• receive a datagram from a remote user

• close the Stream connected to the provider

First, the structure and constant definitions required by the library are
shown. These typically reside in a header file associated with the service
interface.

4-5

Streams Programmer's Guide

/*
* Primitives initiated by the service user.
*/

#define BIND_REQ
#define UNITD~_REQ

/*

1
2

/* bind request */
/* unitdata request */

* Primitives initiated by the service provider.
*/

#define OK ACK
#define ERROR_ACK
#define UNITD~ IND

/*

3
4
5

/* bind acknowledgment */
/* error acknowledgment */
/* unitdata indication */

* The following structure definitions define the format of the
* control part of the service interface message of the above
* primitives.
*/

struct bind req {
long PRIM_type;
long BIND_addr;

};

struct unitdata_req
long PRIM type;
long DEST=addr;

};

struct ok_ack {
long PRIM_type;

};

struct error ack {
long PRIM type;
long UNIX=error;

};

struct unitdata ind
long PRIM_tYPe;
long SRC_addr;

};

/* bind request */
/* always BIND REQ */
/* addr to bind */

/* unitdata request */
/ * always UNITD~ REQ * /
/* destination adctr */

/* positive acknowledgment */
/* always OK_ACK */

/* error acknowledgment */
/* always ERROR ACK */
/* UNIX error cOde */

/* unitdata indication */
/* always UNITD~ IND */
/* source addr */-

/* union of all primitives */
union primitives {

};

long
struct bind req
struct unitctata req
struct ok ack -
struct error ack
struct unitctata_ind

type;
bind req;
unitctata req;
ok_ack; -
error ack;
unitctata _ ind;

/* header files needed by library */
#include <stropts.h>
#include <stdio.h>
#include <errno.h>

4-6

Message Handling

Five primitives have been defined. The first two represent requests from
the service user to the service provider. These are:

BIND_REQ

UNITDATA_REQ

This request asks the provider to bind a specified
protocol address. It requires an acknowledgment
from the provider to verify that the contents of the
request were syntactically correct.

This request asks the provider to send a datagram
to the specified destination address. It does not
require an acknowledgment from the provider.

The three other primitives represent acknowledgments of requests, or
indications of incoming events, and are passed from the service provider
to the service user. These are:

This primitive informs the user that a previous
bind request was received successfully by the ser­
vice provider.

This primitive informs the user that a non-fatal
error was found in the previous bind request. It
indicates that no action was taken with the primi­
tive that caused the error.

This primitive indicates that a datagram destined
for the user has arrived.

The structures defined above describe the contents of the control part of
each service interface message which is passed between the service user
and service provider. The first field of each control part defines the type
of primitive being passed.

4.5 Accessing the Datagram Provider

The first routine presented below, inter _open, opens the protocol driver
device file specified by path and binds the protocol address contained in
addr so that it can receive datagrams. On success, the routine returns the
file descriptor associated with the open Stream; on failure, it returns -1
and sets ermo to indicate the appropriate UNIX System error value.

4-7

Streams Programmer's Guide

inter open (path, of lags , addr)
char *path;
{

int fd;
struct bind req bind req;
struct strbuf ctlbuf;
union primitives rcvbuf;
struct error ack *error ack;
int flags; - -

if ((fd = open (path, oflags)) < 0)
return(-l);

/* send bind request msg down stream */

bind req.PRIM type = BIND REQ;
bind-req.BIND-addr = addr;
ctlbuf.len = sizeof(struct bind req);
ctlbuf.buf = (char *)&bind_req;-

if (putmsg(fd, &ctlbuf, NULL, 0) < 0)
close (fd);
return (-1) ;

After opening the protocol driver, inter _open packages a bind request
message to send downstream. putmsg is called to send the request to the
service provider. The bind request message contains a control part that
holds a bind _req structure, but it has no data part. ctlbuf is a structure of
type strbuf, and it is initialized with the primitive type and address.
Notice that the maxlen field of ctlbuf is not set before calling putmsg
because putmsg ignores this field. The dataptr argument to putmsg is set
to NULL to indicate that the message contains no data part. Also, the
flags argument is 0, which specifies that the message is not a priority mes­
sage.

After inter_open sends the bind request, it must wait for an acknowledg­
ment from the service provider, as follows:

4-8

/* wait for ack of request */

ctlbuf.maxlen = sizeof(union primitives);
ctlbuf.len = 0;
ctlbuf.buf = (char *)&rcvbuf;
flags = RS_HIPRI;

if (getmsg(fd, &ctlbuf, NULL, &flags) < 0) (
close(fd);
return (-1);

/* did we get enough to determine type */
if (ctlbuf.len < sizeof(long)) (

close (fd) ;
errno = EPROTO;
return(-l);

/* switch on type (first long in rcvbuf) */
switch (rcvbuf.type) (

default:
errno = EPROTO;
close(fd);
return (-1) ;

case OK ACK:
return(fd);

case ERROR ACK:
if (ctrbuf.len < sizeof(struct error_ack))

errno = EPROTO;
close(fd);
return (-1) ;

error ack = (struct error ack *)&rcvbuf;
errno-= error ack->UNIX error;
close (fd) ; - -
return (-1);

Message Handling

getmsg is called to retrieve the acknowledgment of the bind request. The
acknowledgment message consists of a control part that contains either an
ok _ ack or error _ ack structure, and no data part.

The acknowledgment primitives are defined as priority messages. Two
classes of messages can arrive at the Stream head: priority and normal.
Normal messages are queued in a first-in-first-out manner at the Stream
head, while priority messages are placed at the front of the Stream head
queue. The STREAMS mechanism allows only one priority message per
Stream at the Stream head at one time; any further priority messages are
discarded until the first message is processed. Priority messages are par­
ticularly suitable for acknowledging service requests when the ack­
nowledgment should be placed ahead of any other messages at the Stream
head.

4-9

Streams Programmer's Guide

Note

These messages are not intended to support the expedited data capa­
bilities of many communication protocols, as evidenced by the
one-at-a-time restriction just described.

Before calling getmsg, this routine must initialize the strbuf structure for
the control part. but should point to a buffer large enough to hold the
expected control part, and maxlen must be set to indicate the maximum
number of bytes this buffer can hold.

Because neither acknowledgment primitive contains a data part, the
dataptr argument to getmsg is set to NULL. The flags argument points to
an integer containing the value RS_HIPRI. This flag indicates that
getmsg should wait for a STREAMS priority message before returning,
and it is set because the acknowledgment primitives are priority mes­
sages. Even if a normal message is available, getmsg blocks until a prior­
ity message arrives.

On return from getmsg, the len field is checked to ensure that the control
part of the retrieved message is an appropriate size. The example then
checks the primitive type and takes appropriate actions. An OK_ACK
indicates a successful bind operation, and inter open returns the file
descriptor of the open Stream. An ERROR_ACK indicates a bind failure,
and ermo is set to identify the problem with the request.

4.6 Closing the Service

The next routine in the datagram service library is inter _close, which
closes the Stream to the service provider.

inter close (fd)
{ -

close(fd);

4-10

Message Handling

The routine simply closes the given file descriptor. This causes the proto­
col driver to free any resources associated with that Stream. For example,
the driver can unbind the protocol address that was bound to that Stream,
thereby freeing that address for use by some other service user.

4.7 Sending a Datagram

The third routine, inter _snd, passes a datagram to the service provider for
transmission to the user at the address specified in addr. The data to be
transmitted is contained in the buffer pointed to by buf, it contains len
bytes. On successful completion, this routine returns the number of bytes
of data passed to the service provider; on failure, it returns -1 and sets
errno to an appropriate UNIX System error value.

inter snd(fd, buf, len, addr)
char *buf;
long addr;
{

struct strbuf ctlbuf;
struct strbuf databuf;
struct unitdata_req unitdata_req;

unitdata req.PRIM type = UNITDATA REQ;
unitdata-req.DEST-addr = addr; -
ctlbuf • len = sizeof (struct unitdata req);
ctlbuf.buf = (char *) &unitdata req;-
databuf • len = len; -
databuf.buf = buf;

if (putmsg(fd, &ctlbuf, &databuf, 0) < 0)
return(-l);

return (len) ;

In this example, the datagram request primitive is packaged with both a
control part and a data part. The control part contains a unitdata _req
structure that identi fies the primitive type and the destination address of
the datagram. The data to be transmitted is placed in the data part of the
request message.

Unlike the bind request, the datagram request primitive requires no ack­
nowledgment from the service provider. In the example, this choice was
made to minimize the overhead during data transfer. Since datagram ser­
vices are inherently unreliable, this is a valid design choice. If the
putmsg call succeeds, this routine assumes all is well and returns the
number of bytes passed to the service provider.

4-11

Streams Programmer's Guide

4.8 Receiving a Datagram

The final routine in this example, inter _rev, retrieves the next available
datagram. buJ points to a buffer where the data should be stored, len indi­
cates the size of that buffer, and addr points to a long integer where the
source address of the datagram will be placed. On successful completion,
inter _rev returns the number of bytes in the retrieved datagram; on
failure, it returns -1 and sets the appropriate UNIX System error value.

inter_rcv(fd, buf, len, addr)
char *buf;
long *addr;
(

struct strbuf ctlbuf;
struct strbuf databuf;
struct unitdata_ind unitdata_ind;
int retval;
int flags;

ctlbuf.maxlen = sizeof(struct unitdata ind);
ctlbuf.len = 0; -
ctlbuf.buf = (char *)&unitdata ind;
databuf .maxlen = len; -
databuf.len = 0;
databuf.buf = buf;
flags = 0;

if ((retval = getmsg(fd, &ctlbuf, &databuf, &flags)) < 0)
return(-l);

if (unitdata ind.PRIM type != UNITDATA_IND)
errno = EPROTO; -
return(-l);

if (ret val) (
errno = EIO;
return(-l);

*addr = unitdata ind.SRC addr;
return(databuf.len); -

getmsg is called to retrieve the datagram indication primitive, where that
primitive contains both a control and data part. The control part consists
of a unitdata_ind structure that identifies the primitive type and the
source address of the datagram sender. The data part contains the data
itself.

In etlbuJ, buJ must point to a buffer where the control information will be
stored, and maxlen must be set to indicate the maximum size of that
buffer. Similar initialization is done for databuf

4-12

Message Handling

The flags argument to getmsg is set to zero, indicating that the next mes­
sage should be retrieved from the Stream head, regardless of its priority.
Datagrams arrive in normal priority messages. If no message currently
exists at the Stream head, getmsg blocks until a message arrives.

The user's control and data buffers should be large enough to hold any
incoming datagram. If both buffers are large enough, getmsg processes
the datagram indication and returns 0, indicating that a full message was
retrieved successfully. However, if either buffer is not large enough,
getmsg retrieves only the part of the message that fits into each user
buffer. The remainder of the message is saved for subsequent retrieval,
and a positive, non-zero value is returned to the user. A return value of
MORECTL indicates that more control information is waiting for
retrieval. A return value of MOREDATA indicates that more data is wait­
ing for retrieval. A return value of MORECTLIMOREDATA indicates that
data from both parts of the message remain. In the example, if the user
buffers are not large enough (that is, if getmsg returns a positive, non-zero
value), the function sets erma to EIO and fails.

The type of the primitive returned by getmsg is checked to make sure it is
a datagram indication. The source address is then set and the number of
bytes of data in the datagram is returned.

The above example presents a simplified service interface. The state
transition rules for such an interface were omitted for the sake of brevity.
The intent was to show typical uses of the putmsg and getmsg system
calls. See putmsg(S) and getmsg(S) for further details.

4-13

Chapter 5

Streams Mechanism

5.1 Overview 5-1

5.2 Stream Construction 5-2

5.3 Opening a Stream 5-3

5.4 Adding and Removing Modules 5-4

5.5 Closing 5-5

Streams Mechanism

5.1 Overview

A Stream implements a connection within the kernel between a driver in
kernel space and a process in user space. It provides a general character
input/output (I/O) interface for user processes which is upwardly compati­
ble with the interface of the pre-existing character I/O facilities. A
Stream is analogous to a shell pipeline except that data flow and process­
ing are bidirectional to support concurrent input and output.

The components that form a Stream are the Stream head, driver, and
optional modules (see Figure 1-1). A Stream is initially constructed when
a user process open system call references a STREAMS file. The call
causes a kernel resident driver to be connected with a Stream head to
form a Stream. Subsequent ioctl calls select kernel resident modules and
cause them to be inserted in the Stream. A module represents intermedi­
ate processing on messages flowing between the Stream head and driver.
For example, a module can function as a communication protocol, line
discipline, or data filter. STREAMS allows a user to connect a module
with any other module. The user determines the module connection
sequences that result in useful configurations.

A process can send and receive characters on a Stream using write and
read, as on character files. When user data enters the Stream head or
external data enters the driver, the data is placed into messages for
transmission on the Stream. All data passed on a Stream is carried in
messages, each having a defined message type identifying the message
contents. futernal control and status information is transmitted among
modules or between the Stream and user process as messages of certain
types interleaved on the Stream. Modules and drivers can send certain
message types to the Stream head to cause the generation of signals or
errors to be received by the user process.

A module is comprised of two identical sets of data structures called
QUEUEs. One QUEUE is for upstream processing and the other is for
downstream processing. The processing performed by the two QUEUEs is
generally independent so that a Stream operates in a full-duplex manner.
The interface between modules is uniform and simple. Messages flow
from module to module. A message from one module is passed to the sin­
gle entry point of its neighboring module.

The last close system call dismantles the Stream and closes the file,
semantically identical to character I/O drivers.

STREAMS supports implementation of user-level applications with exten­
sions to the above general system calls and STREAMS specific system
calls: pntmsg, getmsg, poll, and a set of STREAMS generic ioctl

5-1

Streams Programmer's Guide

functions.

5.2 Stream Construction

STREAMS constructs a Stream as a linked list of kernel-resident data
structures. In a STREAMS file, the inode points to the Stream header
structure. The header is used by STREAMS kernel routines to perform
operations on this Stream generally related to system calls. Figure 5-1
depicts the downstream (write) portion of a Stream (see Chapter 3 of the
Primer) connected to the header. There is one header per Stream. From
the header onward, a Stream is constructed of QUEUEs. The upstream
(read) portion of the Stream (not shown in Figure 5-1) parallels the down­
stream portion in the opposite direction and terminates at the Stream
header structure.

Figure 5-1 Downstream Stream Construction

At the same relative location in each QUEUE is the address of the entry
point, a procedure to be executed on any message received by that
QUEUE. The procedure for QUEUE H, at one end of the Stream, is the
STREAMS-provided Stream head routine. QUEUE H is the downstream
half of the Stream head. The procedure for QUEUE D, at the other end, is
the driver routine. QUEUE D is the downstream half of the Stream end.
PI and P2 are push able modules, each containing their own unique pro­
cedures. That is, all STREAMS components are of similar organization.

This similarity results in the uniform manner of navigating in either direc­
tion on a Stream: messages move from one end to the other, from QUEUE
to the next linked QUEUE, executing the procedure specified in the
QUEUE.

Figure 5-2 shows the data structures forming each QUEUE: queue t,
qinit, module_info, and module_stat. queue_t contains various
modifiable values for this QUEUE, generally used by STREAMS. qinit
contains a pointer to the processing procedures, module Jnfo contains
limit values and module stat is used for statistics. Both QUEUEs in a
module generally contain -a different set of these structures. The contents
of these structures are described in later chapters.

5-2

'" upstream

read

downstream

q - qinfo qinit
write

Streams Mechanism

queue t

read
,-----'-----, q q info

write --=- - - ->

I upstream downstream

Figure 5-2 QUEUE Data Structures

Figure 5-1 shows QUEUE linkage in one direction while Figure 5-2 shows
two neighboring modules with links (solid vertical arrows) in both direc­
tions. When a module is pushed onto a Stream, STREAMS creates two
QUEUEs and links each QUEUE in the module to its neighboring QUEUE
in the upstream and downstream direction. The linkage allows each
QUEUE to locate its next neighbor. The next relation is implemented
between queue ts in adjacent modules by the q next pointer. Within a
module, each queue t locates its mate (see dotted arrows in Figure 5-2)
by use of STREAMS-macros, since there is no pointer between the two
queue ts. The existence of the Stream head and driver is known to the
QUEuE procedures only as destinations towards which messages are sent.

5.3 Opening a Stream

When a file is opened [see open(S)], a STREAMS file is recognized by a
non-null value in the d_str field of the associated cdevsw entry. d_str
points to a streamtab structure:

struct strearntab
struct qinit
struct qinit
struct qinit
struct qinit

} ;

st_rdinit; / defines read QUEUE */
st wrinit; / defines write QUEUE */
st-muxrinit; / for multiplexing drivers only */
st~init; / for multiplexing drivers only */

5-3

Streams Programmer's Guide

streamtab defines a module or driver and points to the read and write
qinit structures for the driver.

If this open call is the initial file open, a Stream is created. First, the sin­
gle header structure and the Stream head queue t structure pair are allo­
cated. Their contents are initialized with predetermined values, including
the Stream head processing routines, as noted above (see QUEUE H).

Then a queue_t structure pair is allocated for the driver. The queue_t
contents are zero unless specifically initialized (see Chapter 8). A single,
common qinit structure pair is shared among all the Streams opened from
the same cdevsw entry, as is the associated mOduleJnfo and
module_stat structures (see Figure 5-2).

Next, the q_next values are set so that the Stream head write queue_t
points to the driver write queue _ t, and the driver read queue _ t points to
the Stream head read queue t. The q next values at the ends of the
Stream are set to NULL. Finaily, the drIver open procedure (located via
qinit) is called.

If this open is not the initial open of this Stream, the only actions per­
fonned are to call the driver open and the open procedures of all pushable
modules on the Stream.

S.4 Adding and Removing Modules

As part of constructing a Stream, a module can be added with an ioctl
CPUSH system call (push) [see streamio(STR)]. The push inserts a
module beneath the Stream head. Due to the similarity of STREAMS
components, the push operation is similar to the driver open.

First, the address of the qinit structure for the module is obtained via an
fmodsw entry. fmodsw is an array which is analogous to cdevsw. Each
fmodsw entry corresponds to a unique module and contains the name of
the module (used by CPUSH and certain other STREAMS ioctls) and a
pointer to the module's streamtab.

Next, STREAMS allocates queue t structures and initializes their con­
tents as in the driver open, above.- As with the driver, the read and write
qinit structures are shared among all the modules opened from this
fmodswentry (see Figure 5-2).

5-4

Streams Mechanism

Then, q_ next values are set and modified so that the module is interposed
between the Stream head and the driver or module previously connected
to the head. Finally, the module open procedure (located via qinit) is
called. Unlike open, no other module or driver open procedure is called.

Each push of a module is independent, even in the same Stream. If the
same module is pushed more than once onto a Stream, this causes multi­
pIe occurrences of that module in the Stream. The total number of push­
able modules that can be contained on anyone Stream is limited by the
kernel parameter NSTRPUSH (see Appendix E).

An ioctl CPop system call (pop) removes the module immediately below
the Stream head. (See streamio(STR) for more infonnation on CPOP.)
The pop calls the module close procedure. On return from the module
close, any messages left on the module's message queues are freed (deal­
located). Then, STREAMS connects the Stream head to the component
previously below the popped module and deallocates the module's two
queue _ t structures. CPOP enables a user process to dynamically alter the
configuration of a Stream by pushing and popping modules as required.
For example, a module can be removed or a new one inserted below a
module. In the latter case, the original module is popped and pushed back
after the new module has been pushed.

An CPOP cannot be used on a driver.

5.5 Closing

The last close system call to a STREAMS file dismantles the Stream. Dis­
mantling consists of popping any modules on the Stream, closing the
driver and closing the file. Before a module is popped by close, it can
delay to allow any messages on the write message queue of the module to
be drained by module processing. If O_NDELAY [see open(S)] is clear,
close waits up to 15 seconds for each module to drain. If O_NDELAY is
set, the pop is perfonned immediately. close also waits for the driver's
write queue to drain. For example, messages can remain queued if flow
control is inhibiting execution of the write QUEUE (see Chapter 6 in the
Primer). When all modules are popped and any wait for the driver to drain
is completed, the driver close routine is called. On return from the driver
close, any messages left on the driver's message queues are freed, and the
queue_t and header structures are deallocated. Finally, the file is closed.

5-5

Streams Programmer's Guide

Note

STREAMS frees only the messages contained on a message queue.
Any messages used internally by the driver or module must be freed
by the driver or module close procedure.

5-6

Chapter 6

Modules

6.1 Module Declarations 6-1

6.2 Module Procedures 6-3

6.3 Module and Driver Environment 6-4

Modules

6.1 Module Declarations

A module and driver must include declarations of the following form:

#include "sys/types.h"
#include "sys/stream.h"
#include "sys/param.h"

/* required in all modules and drivers */
/ * required in all modules and drivers * /

static struct module info nninfo = { 0, ''mod'', 0, INFPSZ, 0, 0 };
static struct module-info wminfo = { 0, ''mod'', 0, INFPSZ, 0, 0 };
static int modopen ()~ modrput (), modwput (), modclose () ;

static struct qinit rinit = {

modrput, NULL, modopen, modclose, NULL, &nninfo, NULL
};
static struct qinit winit = {
modwput, NULL, NULL, NULL, NULL, &wminfo, NULL
} ;
struct streamtab modinfo = { &rinit, &winit, NULL, NULL };

The contents of these declarations are constructed for the null module
example in this section. This module performs no processing; its only
purpose is to show linkage of a module into the system. The descriptions
in this section are general to all STREAMS modules and drivers unless
they specifically reference the example.

The de~larations shown are the following: the header set; the read and
write QUEUE (rminJo and wminJo) module info structures (see Figure 5-
2); the module open, read-put, write-put and close procedures; the read
and write (rinit and winit) qinit structures; and the streamtab structure.

The minimum header set for modules and drivers is types.h and
stream.h. param.h contains definitions for NULL and other values for
STREAMS modules and drivers as shown in the section "Accessible Sym­
bols and Functions" in Appendix D.

Note

Configuring a STREAMS module or driver (see Appendix E) does
not require any procedures to be externally accessible, only stream­
tab. The streamtab structure name must be the prefix used in
configuring, appended with "info."

As described in the previous chapter, streamtab contains qinit values for
the read and write QUEUEs, pointing to a module Jnfo and an optional

6-1

Streams Programmer's Guide

module stat structure. The two required structures (shown in Figure 5-2)
are these:

struct qinit
int (*qi_putp) (); /* put procedure */
int (*qi_srvp) (); /* service procedure */
int (*qi_qopen) (); /* called on each open or a push */
int (*qi_qclose) (); /* called on last close or a pop */
int (*qi_qadmin) (); /* reserved for future use */
struct module_info *qi_minfo; /* information structure */
struct module_stat *qi_mstat; /* statistics structure - optional */

);

struct module_info (
ushort mi_idnum; /* module ID number */
char *mi_idname; /* module name */
short mi_minpsz; /* min packet size accepted, for developer use */
short mi_maxpsz; /* max packet size accepted, for developer use */
short mi_hiwat; /* hi-water mark, for flow control */
ushort mi_Iowat; /* lo-water mark, for flow control */

);

qinit contains the QUEUE procedures. All modules and drivers with the
same streamtab (that is, the same fmodsw or cdevsw entry) point to the
same upstream and downstream qinit structure(s). The structure is meant
to be software read-only, as any changes to it affect all occurrences of that
module in all Streams. Pointers to the open and close procedures must be
contained in the read qinit. These fields are ignored in the write side.
The example has no service procedure on the read or write side.

module info contains identification and limit values. All modules and
drivers with the same streamtab point to the same upstream and down­
stream module info structure(s). As with qinit, this structure is intended
to be software read-only. However, the four limit values are copied to
queue_t (see Chapter 8) where they are modifiable. In the example, the
flow control high- and low-water marks (see Chapter 9) are zero, since
there are no service procedures, and messages are not queued in the
module.

Three names are associated with a module: the character string in
fmodsw, obtained from the name of the /etclconjlmoduies directory used
to configure the module (see Appendix E); the prefix for streamtab, used
in configuring the module; and the module name field in the module info
structure. This field is a hook for future expansion and is not currently
used. However, it is recommended that it be the same as the module
name. The module name value used in the CPUSH or other STREAMS
ioctl commands is contained in fmodsw. Each module ID and module
name should be unique in the system. The module ID is currently used
only in logging and tracing (see Chapter 6 in the Primer). For the

6-2

Modules

example in this chapter, the module ID is zero.

Minimum and maximum packet size are intended to limit the total
number of characters contained in all of the M_DATA blocks (if any) in
each message passed to this QUEUE. These limits are advisory except for
the Stream head. For certain system calls that write to a Stream, the
Stream head observes the packet sizes set in the write QUEUE of the
module immediately below it. Otherwise, the use of packet size is
developer-dependent. In the example, INFPSZ indicates unlimited size on
the read (input) side.

module stat is optional, intended for future use. Currently, there is no
STREAMS support for statistical information gathering. The structure is
described in Appendix A.

6.2 Module Procedures

The null module procedures are as follows:

static int modopen(q, dev, flag, sflag)
queue t *q; /* pointer to read queue */
dev t- dev; /* major/minor device number -- zero for modules */
int- flag; /* file open flags -- zero for modules */
int sflag; /* stream open flags */

/* return success */
return 0;

static int modwput(q, mp)/* write put procedure */
queue t *q; /* pointer to the write queue * /
mblk_t *mp; /* message pointer */

putnext(q, mp); /* pass message through */

static int modrput(q, mp)/* read put procedure */
queue t *q; /* pointer to the read queue * /
mblk_t *mp; /* message pointer */

putnext(q, mp); /* pass message through */

static int modclose(q, flag)
queue t *q; /* pointer to the read queue */
int - flag; /* file open flags - zero for modules */

The form and arguments of these four procedures are the same in all
modules and all drivers. Modules and drivers can be used in mUltiple

6-3

Streams Programmer's Guide

Streams and their procedures must be re-entrant.

modopen illustrates the open call arguments and return value. The argu­
ments are the read queue pointer (q), the major/minor device number (dev
in drivers only), the file open flags (flag is defined in syslfile.h), and the
Stream open flag (sflag). For a module, the values of flag and dev are
always zero. The Stream open flag can take on the following values:

MODOPEN normal module open

o normal driver open (see Chapter 9)

CLONEOPEN clone driver open (see Chapter 10)

The return value from open is >= 0 for success and OPENFAll... for error.
The open procedure is called on the first CPUSH and on all subsequent
open calls to the same Stream. During a push, a return value of OPEN­
FAll... causes the CPUSH to fail and the module to be removed from the
Stream. If OPENFAll... is returned by a module during an open call, the
open fails, but the Stream remains intact. For example, it can be returned
by a module/driver that is to be opened only by a super-user:

if (!suser(» return OPENFAIL;

In the example, modo pen simply returns successfully. modrput and
modwput illustrate the common interface to put procedures. The argu­
ments are the read or write queue_t pointer, as appropriate, and the mes­
sage pointer. The put procedure in the appropriate side of the QUEUE is
called when a message is passed from upstream or downstream. The put
procedure has no return value. In the example, no message processing is
performed. All messages are forwarded using the putnext macro (see
Appendix C). putnext calls the put procedure of the next QUEUE in the
proper direction.

The close procedure is only called on an CPOP or on the last close call of
the Stream (see the last two sections of Chapter 5). The arguments are
the read queue _ t pointer and the file open flags as in modopen. For a
module, the value of flag is always zero. There is no return value. In the
example, modclose does nothing.

6.3 Module and Driver Environment

As discussed in Chapter 7 of the Primer, user context is not generally
available to STREAMS module procedures and drivers. The exception is
during execution of the open and close routines. Driver and module open

6-4

Modules

and close routines have user context and can access the u area structure
(defined in user.h; see "Accessible Symbols and Functiong;' in Appendix
D). These routines are allowed to sleep but must always return to the
caller. That is, if they sleep, it must be at priority <= PZERO, or with
PCATCH set in the sleep priority. A process that is sent a signal via kill
while sleeping at priority > PZERO never returns from the sleep call.
Instead, the system call is aborted.

Warning

STREAMS driver and module put procedures and service procedures
have no user context. They cannot access the u _area structure of a
process and must not sleep.

6-5

Chapter 7

Messages

7.1 Message Fonnat 7-1

7.2 Message Generation and Reception

7.3 Filter Module Declarations 7-4

7.4 bappend Subroutine 7-4

7.5 Message Allocation 7-5

7.6 Put Procedure 7-6

7-3

Messages

7.1 Message Format

Messages are the means of communication within a Stream. A message
contains data or information identified by one of 18 message types (see
Appendix B). Messages can be generated by a driver, a module, or the
Stream head. The contents of certain message types can be transferred
between a process and a Stream by use of system calls. STREAMS main­
tains its own pools for allocation of message storage.

All messages are composed of one or more message blocks. A message
block is a linked triplet consisting of two structures and a variable-length
buffer block. The structures are msgb (mblk _ t), the message block, and
datab (dblk_t), the data block:

struct msgb {

struct

struct

struct

unsigned

unsigned

struct

};

msgb

msgb

msgb

char

char

datab

b_next; / next message on queue * /

byrev; / previous message on queue */

b_cont;/ next message block of message*/

b_rptr;/ first unread byte inbuffer*/

b_wptr;/ first unwritten byte in buffer*/

b_datap;/ data block */

typedef struct msgb mblk_t;

struct datab {

struct datab

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

};

db_freep; / used internally */

*db_base; /' first byte of buffer * /

'db_lim; /' last byte+l of buffer */

db_ref; /* count of messages pointing to this block */

db_type; /* message type */

db_class; /* used internally */

typedef struct datab dblk_t;

mblk _tis used to link messages on a message queue, link the blocks in a
message, and manage the reading and writing of the associated buffer.
b _rptr and b _ wptr are used to locate the data currently contained in the
buffer. As shown in Figure 7-1, mblk_t points to the data block of the tri­
plet. The data block contains the message type, buffer limits, and control
variables. STREAMS allocates message buffer blocks of varying sizes
(see below). db _base and db _lim are the fixed beginning and end (+ 1) of
the buffer.

A message consists of one or more linked message blocks. Multiple mes­
sage blocks in a message can be caused by buffer size limitations or by
processing that expands the message. When a message is composed of
multiple message blocks, the type associated with the first message block
determines the message type, regardless of the types of the attached mes­
sage blocks.

7-1

Streams Programmer's Guide

Message Message

I 1 2
I b_next b_next queue I - - - - - - - - - - - - ->

<- - - --t

header I mblk_t b_prev b_prev

data

block

(type)

mblk_t

b_datap

mblk_t mblk_t

I I

~ '" ~ ~

Figure 7-1 Message Fonn and Linkage

A message can occur singly, as when it is processed by a put procedure,
or it can be linked on the message queue in a QUEUE, generally waiting
to be processed by the service procedure. Message 1, as shown in Figure
7 -1, links to message 2. In the first message on a queue, b yrev points
back to the header in the QUEUE. The last b _next points to the tail.

Note that a data block in message 1 is shared between message 1 and
another message. Multiple message blocks can point to the same data
block to conserve storage and to avoid copying overhead. For example,
the same data block, with associated buffer, can be referenced in two mes­
sages from separate modules that implement separate protocol levels.
(Figure 7-1 illustrates the concept, but data blocks are not typically
shared by messages on the same queue.) If required by errors or timeouts,
the buffer can be retransmitted from either protocol level without replicat­
ing the data. Data block sharing is accomplished by means of a utility
routine (see dupmsg in Appendix C). STREAMS maintains a count of the
message blocks sharing a data block in the db _ref field.

7-2

Messages

STREAMS provides utility routines and macros (specified in Appendix C)
to assist in managing messages and message queues, and to assist in other
areas of module and driver development. A utility should always be used
when operating on a message queue or accessing the message storage
pool.

7.2 Message Generation and Reception

As discussed in the "Message Types" section in Chapter 4 of the Primer,
most message types can be generated by modules and drivers. A few are
reserved for the Stream head. The most commonly used types are
M_DATA, M_PROTO, and M_PCPROTO. These, and certain other mes­
sage types, can also be passed between a process and the topmost module
in a Stream, with the same message boundary alignment maintained on
both sides of the kernel. This allows a user process to function to some
degree as a module above the Stream and to maintain a service interface
(see Chapter 12). M_PROTO and M_PCPROTO messages are intended to
carry service interface information among modules, drivers, and user
processes. Some message types can only be used within a Stream and
cannot be sent or received from user level.

As discussed previously, modules and drivers do not interact directly with
any system calls except open and close. The Stream head handles all
message translation and passing. Message transfer between process and
Stream head can occur in different forms. For example, M_DATA,
M_PROTO, or M_PCPROTO messages can be transferred in their direct
form by getmsg and putmsg system calls (see Chapter 12). Alterna­
tively, a write causes one or more M_DATA messages to be created from
the data buffer supplied in the call. M_DATA messages received from
downstream at the Stream head are consumed by read and copied into the
user buffer. As another example, M_SIG causes the Stream head to send a
signal to a process (see Chapter 13).

Any module or driver can send any message type in either direction on a
Stream. However, based on their intended use in STREAMS and their
treatment by the Stream head, certain message types can be categorized
as upstream, downstream or bidirectional. For example, M_DATA,
M_PROTO, or M_PCPROTO messages can be sent in both directions.
Other message types are intended to be sent upstream to be processed
only by the Stream head. Downstream messages are silently discarded if
received by the Stream head.

7-3

Streams Programmer's Guide

7.3 Filter Module Declarations

The module shown below, crmod, is an asymmetric filter. On the write
side, newline is converted to carriage return followed by newline. On the
read side, no conversion is done. The declarations are essentially the
same as the null module of the preceding chapter:

/* Simple filter - converts newline -> carriage return, newline */

itinclude "sys/types.h"
itinclude "sys/param.h"
itinclude "sys/stream.h"

static struct module_info minfo = { 0, "cnnod", 0, INFPSZ, 0, 0 };

static int modopen(), modrput(), modwput(), modclose();
static struct qinit rinit = {

modrput, NULL, modopen, modclose, NULL, &minfo, NULL
} ;

static struct qinit winit = {
modwput, NULL, NULL, NULL, NULL, &minfo, NULL

} ;

struct streamtab cnndinfo = { &rinit, &winit, NULL, NULL);

In contrast to the null module example, a single module Jnfo structure is
shared by the read and write sides. A con fig file to configure crmod is
shown in Appendix E.

modopen, modrput, and modclose are the same as in the null module of
the preceding chapter.

7.4 bappend Subroutine

The module makes use of a subroutine, bappend, which appends a charac­
ter to a message block:

/*
* Append a character to a message block.
* If (*bpp) is null, it will allocate a new block
* Returns 0 when the message block is full, 1 otherwise
*/

#define MODBLKSZ 128

static bappend(bpp, ch)
mblk t **bpp;
int Ch;

7-4

/* size of message blocks */

if (bp = *bpp) {
if (bp->b wptr >= bp->b datap->db lim)

return 0; - -
} else if ((*bpp = bp = allocb(MJDBLKSZ, BPRI_MED)) = NULL)

return 1;
*bp->b wptr++ = ch;
return-1;

Messages

The arguments received by the bappend subroutine are a pointer to a mes­
sage block pointer and a character. If a message block is supplied
(* bpp ! = NULL), bappend checks if there is room for more data in
the block. If not, it fails. If there is no message block, a block of at least
MODBLKSZ is allocated through allocb, described in "Message Alloca­
tion" later in this chapter.

If the allocb fails, bappend returns success, silently discarding the charac­
ter. This mayor may not be acceptable. For TTY-type devices, it is gen­
erally accepted. If the original message block is not full or the allocb is
successful, bappend stores the character in the block.

7.5 Message Allocation

The allocb utility (see Appendix C) is used to allocate message storage
from the STREAMS pool. Its declaration is:

mblk_t *allocb(buffersize, priority).

allocb returns a message block containing a buffer of at least the size
requested, provided there is a buffer available at the message pool priority
specified. It returns NULL on failure. Three levels of message pool prior­
ity can be specified (see Appendix C). Priority generally does not affect
allocb until the pool approaches depletion. If the pool is depleted, allocb
fails low priority requests while granting higher priority requests. This
allows module and driver developers to use STREAMS memory resources
to their best advantage and for the common good of the system. Message
pool priority does not affect subsequent handling of the message by
STREAMS. BPRCHI is intended for special situations. This transmission
of urgent messages relates to time-sensitive events, conditions that could
result in loss of state, loss of data, or inability to recover. For example,
BPRCMED might be used when requesting an M_DATA buffer for holding

7-5

Streams Programmer's Guide

input, and BPRCLO might be used for an output buffer (assuming the out­
put data can wait in user space). The Stream head uses BPRCLO to allo­
cate messages to contain output from a process (e.g., by write or
putmsg). Note that allocb always returns a message of type M_DATA.
The type can then be changed if required. b _rptr and b _ wptr are set to
db _base (see mblk_t and dblk_t).

aUocb can return a buffer larger than the size requested. In bappend, if
the message block contents are to be limited to MODBLKSZ, a check
must be inserted.

If allocb indicates buffers are not available, the bufcaU utility can be used
to defer processing in the module or the driver until a buffer becomes
available. (bufcall is described in Chapter 13.)

7.6 Put Procedure

The modwput function processes all the message blocks in any down­
stream data (type M_DATA) messages.

/* Write side put procedure */
static modwput(q, mp)
queue t *q;
mblk t *mp;
{ -

switch (mp->b datap->db type)
default: - -

putnext(q, mp); /* Don't do these, pass them along */
break;

case M DATI\.: {

7-6

register mblk t *bp;
struct mbl~t-*nmp = NULL, *nbp = NULL;

for (bp = mp; bp != NULL; bp = bp->b conti
while (bp->b rptr < bp->b wptr) {­

if (*bp->b rptr = '\n')
if (!bappend(&nbp, '\r'))

goto newblk;
if (!bappend(&nbp, *bp->b rptr))

goto newblk; -

bp->b_rptr++;
continue;

Messages

newblk:
if (nmp = NULL)

nmp = nbp;
else linkb(nmp, nbp); /* link message block to tail of nmp */
nbp = NULL;

if (nmp = NULL)
nmp = nbp;

else linkb(nmp, nbp);
freemsg(mp); /* deallocate message */
if (nmp)

putnext (q, nmp);
break;

Data messages are scanned and filtered. modwput copies the original
message into a new block (or blocks), modifying as it copies. nbp points
to the current new message block. nmp points to the new message being
formed as multiple M_DATA message blocks. The outer forO loop goes
through each message block of the original message. The inner whileO
loop goes through each byte. bappend is used to add characters to the
current or new block. If bappend fails, the current new block is full. If
nmp is NULL, nmp is pointed at the new block. If nmp is non-NULL, the
new block is linked to the end of nmp by use of the Iinkb utility.

At the end of the loops, the final new block is linked to nmp. The original
message (all message blocks) is returned to the pool by freemsg. If a new
message exists, it is sent downstream.

7-7

Chapter 8

Message Queues and

Service Procedures

8.1 The queue_t Structure 8-1

8.2 Service Procedures 8-2

8.3 Message Queues and Message Priority 8-3

8.4 Flow Control 8-4

8.5 Example 8-5

8.6 Procedures 8-6

Message Queues and Service Procedures

8.1 The queue _ t Structure

Service procedures, message queues and priority, and basic flow control
are all intertwined in STREAMS. A QUEUE generally does not use its
message queue if there is no service procedure in the QUEUE. The func­
tion of a service procedure is to process messages on its queue. Message
priority and flow control are associated with message queues.

The operation of a QUEUE revolves around the queue _ t structure:

struct queue {
struct qinit
struct rrsgb

struct rrsgb
struct queue
struct queue
cad:ir_t
ushort
ushort
short
short
ushort
ushort

};

*CLqinfo;
*CLfirst;
*CLlast;
*CLne.'<I:;
*CLlink;
qJJtr;
CL=t;
CLflag;
CLmirpsz;
CL rtru<pSz;
CLhiwat;
CLla-at;

/* procedures an:! limits for queue * /
/* head of rressage queue for this Q:EIE */
/* tail of rressage queue for this Q:EIE * /
/* next Q:EIE in Strearn*1
/* link to next Q:EIE on SlFEM3 sd1eduling queue *1
/* to private data structure *1
/* ..eighted =t of ci1ara.cters on rressage queue */
/* Q:EIE state * /
/* min p3.cket size accepted by this Q:EIE */
/* llB..'{ p3.cket size accepted by this Q:EIE * /
/* rressage queue high-..ater rrark, for fleM oontrol * /
/* rressage queue lc:w-water nark, for fleM oontrol * /

As described previously, two of these structures form a module. When a
queue_t pair is allocated, their contents are zero unless specifically ini­
tialized. The following fields are initialized by STREAMS:

• q _ qinfo - from streamtab

Copying values from module_info allows them to be changed in the
queue_t without modifying the template (e.g., streamtab and
module Jnfo) values.

q_count is used in flow control calculations and is the weighted sum of
the sizes of the buffer blocks currently on the message queue. The actual
number of bytes in the buffer is not used. This is done to encourage the
use of the smallest buffer that can hold the data intended for it.

8-1

Streams Programmer's Guide

8.2 Service Procedures

Put procedures are generally required in pushable modules. Service pro­
cedures are optional. The general processing flow when both procedures
are present is as follows: A message is received by the put procedure in a
QUEUE, where some processing can be performed on the message. The
put procedure transfers the message to the service procedure by use of the
putq utility. putq places the message on the tail (see q_Iast in queue_t)
of the message queue. Then putq generally schedules the QUEUE for
execution by the STREAMS scheduler following all other QUEUEs
currently scheduled. (The scheduling is done by using q_link in
queue_t.) After some indeterminate delay (intended to be short), the
scheduler calls the service procedure. The service procedure gets the first
message (qyrst) from the message queue with the getq utility. The ser­
vice procedure processes the message and passes it to the put procedure
of the next QUEUE with putnext. The service procedure gets the next
message and processes it. This FIFO processing continues until the queue
is empty or flow control blocks further processing. The service procedure
returns to caller.

Warning

A service routine must never sleep and it has no user context. It
must always return to its caller.

If no processing is required in the put procedure, the procedure does not
have to be explicitly declared. Rather, putq can be placed in the qinit
structure declaration for the appropriate QUEUE side, to queue the mes­
sage for the service procedure, as in this example:

static struct qinit winit = { putq, modwsrv, ,. };

More typically, put procedures process priority messages (see below) to
avoid queueing them.

The key attribute of a service procedure in the STREAMS architecture is
delayed processing. When a service procedure is used in a module, the
module developer is implying that there are other, more time-sensitive
activities to be performed elsewhere in this Stream, iIi other Streams, or
in the system in general. The presence of a service procedure is manda­
tory if the flow control mechanism is to be utilized by the QUEUE.

The delay for STREAMS to call a service procedure varies with imple­
mentation and system activity. However, once the service procedure is

8-2

Message Queues and Service Procedures

scheduled, it is guaranteed to be called before user-level activity is
resumed.

See also the section entitled "Put and Service Procedures" in Chapter 5
of the Primer.

8.3 Message Queues and Message Priority

Figure 8-1 depicts a message queue linked by b _next and b yrev pointers.
As discussed in the Primer, message queues grow when the STREAMS
scheduler is delayed from calling a service procedure due to system
activity, or when the procedure is blocked by flow control. When it is
called by the scheduler, the service procedure processes enqueued mes­
sages in FIFO order. However, certain conditions require that the associ­
ated message (e.g., an M_ERROR) reach its Stream destination as rapidly
as possible. STREAMS does this by assigning all message types to one of
the two levels of message queueing priority-priority and ordinary. As
shown in Figure 8-1, when a message is queued, the putq utility places
priority messages at the head of the message queue in a FIFO order of
queueing.

QUEUE Message queue

:::'::'!::--·"1 I I I I I I I I I I I 1
: EO Priority '" : EO Ordinary '" :
: Messages I Messages :

Head Tail

Figure 8-1 Message Queue Priority

Priority messages are not subject to flow control. When they are queued
by putq, the associated QUEUE is always scheduled. (This is done in the
same manner as any QUEUE, following all other QUEUEs currently
scheduled.) When the service procedure is called by the scheduler, the
procedure uses getq to retrieve the first message on queue, which will be
a priority message, if present. Service procedures must be implemented
to act on priority messages immediately (see next section). The above
mechanisms-priority message queueing, absence of flow control and
immediate processing by a procedure-result in rapid transport of priority
messages between the originating and destination components in the
Stream.

8-3

Streams Programmer's Guide

The priority level for each message type is shown in Appendix B. Mes­
sage queue management utilities are provided for use in service pro­
cedures (see Appendix C).

8.4 Flow Control

The elements of flow control are discussed in Chapter 6 of the Primer.
Flow control is only used in a service procedure. Module and driver cod­
ing should observe the following guidelines for message priority. Priority
messages, detennined by the type of the first block in the message,

(bp->b_datap->db_type > QPCTL)

are not subject to flow control. They should be processed immediately
and forwarded as appropriate.

For ordinary messages, flow control must be tested before any processing
is performed. The can put utility determines if the forward path from the
QUEUE is blocked by flow control. The manner in which STREAMS
detennines flow control status for modules and drivers is described under
"Driver Flow Control" in Chapter 9.

This is the general processing for flow control: Retrieve the message at
the head of the queue with getq. Detennine if the type is priority and not
to be processed here. If both are true, pass the message to the put pro­
cedure of the following QUEUE with putnext. If the type is ordinary, use
can put to detennine if messages can be sent onward. If canput indicates
messages should not be forwarded, put the message back on the queue
with putbq and return from the procedure. In all other cases, process the
message.

The canonical representation of this processing within a service pro­
cedure is as follows:

8-4

while (getq != NULL)
if (priority message II canput)

process message
putnext

else
putbq
return

Message Queues and Service Procedures

Note

A service procedure must process all messages on its queue unless
flow control prevents this.

When an ordinary message is enqueued by putq, putq causes the service
procedure to be scheduled only if the queue was previously empty. If
there are messages on the queue, putq assumes the service procedure is
blocked by flow control, and the procedure is automatically rescheduled
by STREAMS when the block is removed. If the service procedure cannot
complete processing as a result of conditions other than flow control (e.g.,
no buffers), it must ensure that it returns later or it must discard all mes­
sages on queue. (Later returns are handled by use of bufcall; see Chapter
13.) If this is not done, STREAMS will never schedule the service pro­
cedure to be run unless the QUEUE's put procedure queues a priority mes­
sage with putq.

putbq replaces messages at the beginning of the appropriate section of
the message queue in accordance with their message type priority (see
Figure 8-1). This might not be the same position at which the message
was retrieved by the preceding getq. A subsequent getq might return a
different message.

8.5 Example

The filter module example of Chapter 7 is modified to have a service pro­
cedure, as shown below. The declarations from the example in Chapter 7
are unchanged except for the following lines (changes are shown in
bold):

#include "sysistropts.h"

static struct module info minfo = {
0, "ps_crmod", O,-INFPSZ, 512,128

};

static int modopen (), mocil:put (), modwput (), modwsrv(), modclose () ;

static struct qinit winit = {
modwput, modwsrv, NULL, NULL, NULL, &minfo, NULL

} ;

8-5

Streams Programmer's Guide

stropts.h is generally intended for user level. However, it includes
definitions of flush message options common to user level, modules and
drivers. module info now includes the flow control high- and low-water
marks (512 and-128) for the write QUEUE. (Even though the same
module info is used on the read QUEUE side, the read side has no service
procedure, and so flow control is not used.) qinit now contains the ser­
vice procedure pointer. modopen, modclose, and modrput (read side put
procedure) are unchanged from Chapters 6 and 7. The bappend subrou­
tine is also unchanged from Chapter 7.

8.6 Procedures

The write side put procedures and the beginning of the service procedure
are shown next:

static int modwput(q, mp)
queue t *q;
register mblk t *mp;
{ -

if (mp->b datap->db type > QPCTL && mp->b datap->db type != MJLUSH)
put neXt (q, mp);- --
else
putq(q, mp); /* Put it on the queue */

static int modwsrv(q) queue_t *q; {
mblk_t *mp;

while ((mp = getq(q) != NULL) {
switch (mp->b_datap->db_type)

default:
/* always put next priority messages */
if (mp->b_datap->db_type > QPCTL II canput (q->c.Lnext))

putnext (q, mp);
continue;

else (
putbq(q, mp);
return;

case M FLUSH:
if- (*mp->b rptr & FLUSHW)

flushq(q, FLUSHD~);
putnext (q, mp);
continue;

ps _ crmod perfonns a similar function to crmod of the previous chapter,
but it uses a service routine.

8-6

Message Queues and Service Procedures

modwput, the write put procedure, switches on the message type. Priority
messages that are not type M_FLUSH are putnext to avoid scheduling.
The others are queued for the service procedure. An M_FLUSH message
is a request to remove all messages on one or both QUEUEs. It can be
processed in the put or service procedure.

modwsrv is the write service procedure. It takes a single argument, a
pointer to the write queue _ t. modwsrv processes only one priority mes­
sage, M_FLUSH. All other priority messages are passed through. Actu­
ally, no other priority messages should reach modwsrv. The check is
included to show the canonical form when priority messages are queued
by the put procedure.

For an M_FLUSH message, modwsrv checks the first data byte. If
FLUSHW (defined in stropts.h) is set in the byte, the write queue is
flushed by use of flushq. flushq takes two arguments, the queue pointer
and a flag. The flag indicates what should be flushed, data messages
(FLUSHDATA) or everything (FLUSHALL). In this case, data includes
M_DATA, M_PROTO, and M_PCPROTO messages. The choice of what
types of messages to flush is module-specific. As a general rule, FLUSH­
DATA should be used.

Ordinary messages are returned to the queue if

canput(q->q_next)

returns false, indicating the downstream path is blocked.

In the remaining part of modwsrv, M_DATA messages are processed in a
manner similar to the previous example:

case M DATA: {
mblk t *nbp = NULL;
mblk:=t *next;

if (!canput (q-XLnext»
putbq(q, mp);
return;

8-7

Streams Programmer's Guide

/* Filter data, appending to queue * /
for (; mp != NULL; mp = next) {

while (mp->b_rptr < mp->b_wptr) {

if (*mp->b rptr = , \n')
if (!bappend(&nbp, , \r'))

goto push;
if (!bappend(&nbp, *mp->b_rptr))

goto push;
rnp->b rptr++;
continue;

push:
putnext(q, nbp);
nbp = NULL;
if (!canput(q->q next)) {

if (mp->b rptr >= mp->b wptr)
next ~ mp->b cant; -
freeb(mp); -
mp=next;

if (mp)
putbq(q, mp);

return;

next = mp->b cant;
freeb(mp); -

if (nbp)
putnext(q, nbp);

There are differences in M_DATA processing between this and the previ­
ous example, and they relate to the manner in which the new messages
are forwarded and to flow control. For the purpose of demonstrating
alternative means of processing messages, this version creates individual
new messages rather than a single message containing multiple message
blocks. When a new message block is full, it is immediately forwarded
with put next rather than being linked into a single, large message (as was
done in the previous example). This alternative may not be desirable
because message boundaries will be altered and because of the additional
overhead of handling and scheduling multiple messages.

When the filter processing is performed (following push), flow control is
checked (with canput) after, rather than before, each new message is for­
warded. This is done because there is no provision to hold the new mes­
sage until the QUEUE becomes unblocked. If the downstream path is
blocked, the remaining part of the original message is returned to the
queue. Otherwise, processing continues.

8-8

Message Queues and Service Procedures

Another difference between the two examples is that each message block
of the original message is returned to the pool with freeb when its pro­
cessing is completed.

8-9

Chapter 9

Drivers

9.1 Overview of Drivers 9-1

9.2 Driver Flow Control 9-2

9.3 Driver Programming Example 9-3
9.3.1 Driver Declarations 9-4
9.3.2 Driver Open 9-5
9.3.3 Driver Processing Procedures 9-7
9.3.4 Driver Flush Handling 9-8
9.3.5 Driver Interrupt 9-8
9.3.6 Driver and Module Ioctls 9-9
9.3.7 Driver Close 9-12

Drivers

9.1 Overview of Drivers

This chapter describes the organization of a STREAMS driver and
discusses some of the processing typically required in drivers. Certain
elements of driver flow control are discussed, and procedures for handling
user ioctls for modules and drivers are described.

As discussed under "Stream Construction" in Chapter 5, driver and
module organization are very similar. The call interfaces to all the driver
procedures are identical to those of module interfaces, and driver pro­
cedures must be re-entrant. As described under "Environment" in
Chapter 6, the driver put and service procedures have no user environ­
ment and cannot sleep. With the exception of open and close, a driver
interfaces with a user process only by messages, and indirectly, through
flow control.

There are two significant differences between modules and drivers. First,
a device driver must also be accessible from an interrupt as well as from
the Stream, and second, a driver can have multiple Streams connected to
it. Multiple connections occur when more than one minor device uses the
same driver and in the case of multiplexers (see Chapter 11). However,
these particular differences are not recognized by the STREAMS mechan­
ism; they are handled by developer-provided code included in the driver
procedures.

Figure 9-1 shows multiple Streams (corresponding to minor devices) con­
nected to a common driver. This depiction of two Streams connected to a
single driver (also used in the Primer) is somewhat misleading. These are
really two distinct Streams opened from the same cdevsw (Le., same
major device). Consequently, they have the same streamtab and the
same driver procedures. Modules opened from the same fmodsw might
be depicted similarly if they had any reason to be cognizant, as do drivers,
of common resources or alternate occurrences.

Multiple occurrences (minor devices) of the same driver are handled dur­
ing the initial open for each device. Typically, the queue_t address is
stored in a driver-private structure indexed by the minor device number.
The structure is typically pointed at by qytr (see Chapter 8). When the
messages are received by the QUEUE, the calls to the driver put and ser­
vice procedures pass the address of the queue _ t, allowing the procedures
to determine the associated device.

In addition to these differences, a driver is always at the end of a Stream.
As a result, drivers must include standard processing for certain message
types that a module might simply be able to pass to the next component.

9-1

Streams Programmer's Guide

Module(s) Module(s)

Port
1

Figure 9-1 Device Driver Streams

9.2 Driver Flow Control

The same utilities (described in Chapter 8) and mechanisms used for
module flow control are used by drivers. However, they are typically
used in a different manner in drivers, because a driver generally does not
have a service procedure. The developer sets flow control values
(mi hiwat and mi lowat) in the write side module info structure, which
STREAMS copies-into q hiwat and q lowat in the queue t structure of
the QUEUE. A device drIver typically -has no write service-procedure but
does maintain a write message queue. When a message is passed to the
driver write side put procedure, the procedure determines if device output
is in progress. In the event output is busy, the put procedure cannot
immediately send the message and calls the putq utility (see Appendix C)
to queue the message. (Note that the driver can elect to queue the mes­
sage in all cases.) putq recognizes the absence of a service procedure
and does not schedule the QUEUE.

When the message is queued, putq increments the value of q_count
(approximately the enqueued character count, see the beginning of
Chapter 8) by the size of the message and compares the result against the
driver's write high-water limit (q hiwat) value. If the count exceeds
q_ hiwat, putq sets the internal FULL indicator for the driver write QUEUE

9-2

Drivers

(see the section titled "Flow Control" in Chapter 6 of the Primer). This
causes messages from upstream to be halted (canput returns FALSE) until
the write queue count reaches q lowat. The driver messages waiting to
be output are dequeued by the driver output interrupt routine with getq,
which decrements the count. If the resulting count is below q_Iowat, getq
back-enables any upstream QUEUE that is blocked. The above STREAMS
processing also applies to modules on both write and read sides of the
Stream.

Device drivers typically discard input when unable to send it to a user
process. However, STREAMS allows flow control to be used on the driver
read side, possibly to handle temporary upstream blocks. This is
described in Chapter 13 in the section titled "Advanced Flow Control."

To some extent, a driver or module can control when its upstream
transmission will become blocked. Control is available through the
M_SETOPTS message (see Chapter 13 and Appendix B) to modify the
Stream head read side flow control limits.

9.3 Driver Programming Example

The example below shows how a simple interrupt-per-character line
printer driver could be written. The driver is unidirectional and has no
read side processing. It demonstrates some differences between module
and driver programming, including the following:

Open handling

Flush handling

Ioctl handling

A driver is passed a minor device number or is
asked to select one (see Chapter 10).

A driver must loop M_FLUSH messages back
upstream.

A driver must nak (not acknowledge) ioctl mes­
sages it does not understand. This is discussed
under' 'Driver and Module Ioctls," later in this
chapter.

Write side flow control is also illustrated as described above.

9-3

Streams Programmer's Guide

9.3.1 Driver Declarations

The driver declarations are as follows:

/* Simple line printer driver. */

#include "sys/types.h"
#include "sys/param.h"
#include "sys/sysmacros.h"
#ifdef u3b2
#include "sys/psw.h"
#include "sys/pcb.h"
#endif
#include "sys/strearn.h"
#include "sys/stropts .h"
#include "sys/dir.h"
#include "sys/signal.h"
#include "sys/user.h"
#include "sys/errno.h"

/* required for user.h */
/* required for user.h */

/* required for user.h */
/* required for user.h */

static struct module info minfo =
0, "lp", 0, INFPSZ, 150, 50

} ;

static int lpopen (), Ipclose (), Ipwput () ;

static struct qinit rinit = {
NULL, NULL, lpopen, Ipclose, NULL, &minfo, NULL

} ;
static struct qinit winit = {

Ipwput, NULL, NULL, NULL, NULL, &minfo, NULL
} ;
struct strearntab Ipinfo = { &rinit, &winit, NULL, NULL };

#define SET OPTIONS
/* -

(('1'«8) 11)/* really must be in a .h file */

* This is a private data structure, one per minor device number.
*/

struct lp {
short flags; /* flags -- see below */
rnblk_t *rnsg; /* current message being output */
queue_t *qptr; /* back pointer to write queue */

} ;
/* Flags bits */
#define BUSY 1 * device is running and interrupt is pending * /

extern struct Ip lp lp[]; /* per device Ip structure array */
extern int lp_cnt; - /* number of valid minor devices */

As noted for modules in Chapter 6, configuring a STREAMS driver does
not require the driver procedures to be externally accessible; only
streamtab must be. All STREAMS driver procedures are typically
declared static.

9-4

Drivers

streamtab must be defined as "prefixinfo", where prefix is the value of
the prefix specified in the con fig file for this driver. The values in name
and ID fields in the module info should be unique in the system. The
name field is a hook for future expansion and is not currently used. The
ID is currently used only in logging and tracing (see Chapter 6 in the Pri­
mer). For the example in this chapter, the ID is zero.

There is no read side put or service procedure. The flow control limits for
use on the write side are 50 and 150 characters. The private lp structure is
indexed by the minor device number and contains these elements:

flags A set of flags. Only one bit is used: BUSY indicates that
output is active and a device interrupt is pending.

msg A pointer to the current message being output.

qptr A back pointer to the write queue. This is needed to find the
write queue during interrupt processing.

9.3.2 Driver Open

The driver open, /popen, has the same interface as the module open:

static int lpopen(q, dev, flag, sflag)
queue t *q /* read queue */
{ -

struct lp *lp;

/* Check if non-driver open */
if (sflag)

return OPENFAIL;

/* Dev is major/minor * /
dev = minor(dev);
if (dev >= lp cnt)

return OPENFAIL;

/* Check if open already. ~tr is assigned below */
if (q-~tr) {

u.u_error = EBUSY; /* only 1 user of the printer at a time */
return OPENFAIL;

9-5

Streams Programmer's Guide

lp = &lp lp[dev];
lp->qptr-= WR(q);
q->~tr = (char *) lp;
WR(q)->q-ptr = (char *) lp;
return dev;

The Stream flag, sjlag, must have the value 0, indicating a normal driver
open. dey holds both the major and minor device numbers for this port.
After checking sjlag, the open flag, lpopen extracts the minor device from
dey, using the minor() macro defined in sysmacros.h. The minor device
number selects a printer and must be less than lp _ent.

Note

The use of major devices, minor devices, and the minor() macro
may be machine-dependent.

The next check, if (q->q_ptr) ... , determines if this printer is
already open. In this case, EBUSY is returned to avoid merging print-outs
from multiple users. qytr is a driver/module private data pointer. It can
be used by the driver for any purpose and is initialized to zero by
STREAMS. In this example, the driver sets the value of qytr in both the
read and write queue _ t structures so that it points to a private data struc­
ture for the minor device, lp _lp[dev).

WR is one of three QUEUE pointer macros. As discussed in the section
titled "Stream Construction" in Chapter 5, there are no physical pointers
between QUEUEs, and these macros (see Appendix C) generate the
pointer. WR(q) generates the write pointer from the read pointer, RD(q)
generates the read pointer from the write pointer, and OTHER(q) gen­
erates the mate pointer from either.

9-6

9.3.3 Driver Processing Procedures

This example has only a write put procedure:

static int lpwput(q, mp)
queue t *q; /* write queue * /
register mblk t *mp; /* message pointer * /
{ -

register struct lp *lp;
int s;

lp = (struct lp *) q->qytr;

switch (mp->b datap->db type)
default: - -

freemsg (mp) ;
break;

case M FLUSH:
/*-Canonical flush handling */
if (*mp->b rptr & FLUSHW) {

flushq(q, FLUSHDATA);
s = sp15 ();
/* also flush lp->msg since it is logically

* at the head of the write queue */
if (lp->msg) {

freemsg(lp->msg);
Ip->msg = NULL;

}
splx(s) ;

if (*mp->b rptr & FLUSHR) {
flushq(RD(q), FLUSHDATA);
*mp->b rptr &= -FLUSHW;
qreply(q, mp);

else
freemsg (mp) ;

break;

case M _ IOCTL:

case M _DATI\.:
putq(q, mp);
s = sp15 ();
if (! (lp->flags & BUSY))

lpout (lp);
splx(s);

Drivers

9-7

Streams Programmer's Guide

9.3.4 Driver Flush Handling

The write put procedure, lpwput, illustrates driver M_FLUSH handling;
note that all drivers are expected to incorporate this flush handling. If
FLUSHW is set, the write message queue is flushed, and also (for this
example) the leading message (lp->msg). spl5 is used to protect the
critical code, assuming the device interrupts at level 5. If FLUSHR is set,
the read queue is flushed, the FLUSHW bit is cleared, and the message is
sent upstream using qreply. If FLUSHR is not set, the message is dis­
carded.

The Stream head always performs the following actions on flush requests
received on the read side from downstream. If FLUSHR is set, messages
waiting to be sent to user space are flushed. If FLUSHW is set, the Stream
head clears the FLUSHR bit and sends the M_FLUSH message down­
stream. In this manner, a single M_FLUSH message sent from the driver
can reach all QUEUEs in a Stream. A module must send two M_FLUSH
messages to have the same effect.

lpwput enqueues M_DATA and M_IOCTL messages (see the section enti­
tled "Driver and Module loctls" later in this chapter). Also, if the device
is not busy, lpwput starts output by calling lpout. Messages types that are
not recognized are discarded.

9.3.5 Driver Interrupt

lpintr is the driver interrupt routine:

/* Device interrupt routine. */

lpintr (dev)
int dev; /* minor device number of lp */
{

9-8

register struct lp *lp;

lp = &lp lp[devJ;
if (! (lp~>flags& BUSY)) {

printf (nlp: unexpected interrupt\n");
return;

lp->flags &= -BUSY;
lpout (lp);

/* Start output to device - used by put procedure and driver */

lpout (lp)
register struct lp *lp;
{

register mblk_t *bp;
queue_t *q;

q = lp->qptr;
loop:

if ((bp = lp->msg) = NULL) {
if ((bp = getq (q» = NULL)

return;
if (bp->b datap->db type = M IOCTL)

lpdoioctl (lp, bp); -
goto loop;

}

lp->msg = bPi

if (bp->b rptr >= bp->b wptr)
bp = Ip->msg->b conti
lp->msg->b_cont-= NULL;
freeb (lp->msg) ;
lp->msg = bPi
goto loop;

lpoutchar(lp, *bp->b rptr++);
lp->flags 1= BUSY; -

Drivers

[pout simply takes a character from the queue and sends it to the printer.
The processing is logically similar to the service procedure in Chapter 8.
For convenience, the message currently being output is stored in
lp->msg.

Two mythical routines need to be supplied:

lpoutchar send a character to the printer and interrupt when com­
plete

lpsetopt set the printer interface options

9.3.6 Driver and Module loctls

Drivers and modules interface with ioctl(S) system calls through mes­
sages. Almost all STREAMS generic ioctls [see streamio(STR)] go no
further than the Stream head. The capability to send an ioctl downstream,
similar to the ioctl of character device drivers, is provided by the CSTR

9-9

Streams Programmer's Guide

ioctl. The Stream head processes an CSTR by constructing an M_IOCTL
message (see Appendix B) from data provided in the call and sends that
message downstream.

The user process which issued the CSTR is blocked until a module or
driver responds with either an M_IOCACK (ack) or M_IOCNAK (nak)
message, or until the request "times out" after a user-specified interval.
The STREAMS module or driver which generates an ack can also return
information to the process. If the Stream head does not receive one of
these messages in the specified time, the ioctl call fails.

A module that receives an unrecognized M_IOCTL message should pass it
on unchanged. A driver that receives an unrecognized M_IOCTL should
nak it.

[pout traps M_IOCTL messages and calls lpdoioctl to process them:

lpdoioctl (lp, mp)
struct lp *lp;
mblk t *mp;
{ -

struct iocblk *iocp;
queue_t *q;

q = lp->qptr;

1* 1st block contains iocblk structure *1
iocp = (struct iocblk *)mp->b_rptr;

switch (iocp->ioc_cmd) {
case SET OPTIONS:

1* Count should be exactly one short's worth *1
if (iocp->ioc count != sizeof(short))

goto iocnak;
1* Actual data is in 2nd message block *1
Ipsetopt (lp, * (short *)mp->b_cont->b_rptr);

/* ACK the ioctl *1
mp->b datap->db type = M IOCACK;
iocp->ioc count -= 0; -
qreply(q,-mp) ;
break;

default:
iocnak:

9-10

/* NAK the ioctl *1
mp->b_datap->db_type = M_IOCNAK;
qreply(q, mp);

Drivers

lpdoioctl illustrates M_IOCTL processing, and the first part also applies to
modules. An M_IOCTL message contains a struct iocblk in its first block.
The first block is followed by zero or more M_DATA blocks. The optional
M_DATA blocks typically contain any user-supplied data.

The form of an iocblk is as follows:

struct iocblk {

int ioc cmd; -
ushort ioc uid; -
ushort ioc_gid;

uint ioc id; -
uint ioc count; -
int ioc error; -
int ioc rval; -

I;

/* ioctl command type */

/* effective uid of user */

/* effective gid of user */
/* ioctl id */

/* count of bytes in data field */

/* error code */

/* return value *1

ioc _ cmd contains the command supplied by the user. In this example,
only one command is recognized, SET_OPTIONS. ioc count contains the
number of user-supplied data bytes. For this example. it must equal the
size of a short (two bytes). The user data is sent directly to the printer
interface using Ipsetopt. Next, the M_IOCTL message is changed to type
M_IOCACK, and the ioc count field is set to zero to indicate that no data
is to be returned to the user. Finally, the message is sent upstream using
qreply. If ioc_count was left non-zero, the Stream head would copy that
many bytes from the 2nd - Nth message blocks into the user buffer.

If the M_IOCTL message is not understood or in error for any reason, the
driver must set the type to M_IOCNAK and send the message upstream.
No data can be sent to a user in this case. The Stream head will cause the
ioctl call to fail with the error number EINV AL. The driver has the option
of setting ioc _error to an alternate error number if desired.

Note

ioc _error can be set to a non-zero value by both M_IOCACK and
M_IOCNAK. This causes that value to be returned as an error
number to the process which sent the CSTR ioctl.

9-11

Streams Programmer's Guide

9.3.7 Driver Close

The driver close clears any message being output. Any messages left on
the message queue are automatically removed by STREAMS.

static int lpclose(q)
queue t *q; /* read queue */
{ -

struct lp * lp;
int s;

lp = (struct lp *) q->qytr;
/* Free message, queue is automatically flushed by STREAMS */
s = splS ();
if (lp->msg) {

freemsg(lp->msg);
lp->msg = NULL;

splx (s);

9-12

Chapter 10

Complete Driver

10.1 Cloning 10-1

10.2 Loop-Around Driver 10-1

10.3 Write Put Procedure 10-5

lOA Stream Head Messages 10-7

10.5 Service Procedures 10-8

10.6 Close 10-10

Complete Driver

10.1 Cloning

The clone mechanism has been developed as a convenience. It allows a
user to open a driver without specifying the minor device. When a
Stream is opened, a flag indicating a clone open is tested by the driver
open routine. If the flag is set, the driver returns an unused minor device
number. The clone driver [see c1one(STR)] is a system-dependent
STREAMS· pseudo-driver.

Knowledge of clone driver implementation is not required to use it. It is
described here for completeness and to assist developers who must imple­
ment their own clone driver. A cloneable device has a device number in
which the major number corresponds to the clone driver and the minor
number corresponds to the target driver. When an open(S) system call is
made to the associated (STREAMS) file, open causes a new Stream to be
opened to the clone driver, and the open procedure in clone is called with
dev set to clone/target. The clone open procedure uses minor (dev)
to locate the cdevsw entry of the target driver. Then clone modifies the
contents of the newly created Stream queue_ts to those of the target
driver and calls the target driver open procedure with the Stream flag set
to CLONEOPEN. The target driver open responds to the CLONEOPEN by
returning an unused minor device number. When the clone open receives
the returned minor device number of the target driver, it allocates a new
inode (which has no name in the file system) and associates the minor
device number with the inode.

10.2 Loop-Around Driver

The loop-around driver is a pseudo-driver that loops data from one open
Stream to another open Stream. The user processes view the associated
files as a full duplex pipe; the Streams are not physically linked. The
driver is a simple multiplexer which passes messages from one Stream's
write QUEUE to the other Stream's read QUEUE. (See Chapter 11 for more
information on multiplexers.)

To create a pipe, a process opens two Streams, obtains the minor device
number associated with one of the returned file descriptors, and sends the
device number in an CSTR ioctl to the other Stream. For each open, the
driver open places the passed queue_t pointer in a driver interconnection
table, indexed by the device number. When the driver later receives the
CSTR as an M_IOCTL message, it uses the device number to locate the
other Stream's interconnection table entry and stores the appropriate
queue _ t pointers in both of the Streams' interconnection table entries.

Subsequently, when messages other than M_IOCTL or M_FLUSH are

10-1

Streams Programmer's Guide

received by the driver on either Stream's write side, the messages are
switched to the read QUEUE following the driver on the other Stream's
read side. The resulting logical connection is shown in Figure 10-1.
Flow control between the two Streams must be handled by special code
since STREAMS will not automatically propagate flow control infonna­
tion between two Streams that are not physically interconnected .

••••• 0 :· .. ~T .. :
I : : I

Figure 10-1 Loop-Around Streams

10-2

Complete Driver

The declarations for the driver are:

/*
* Loop-around driver
*/

#include "sys/types.h"
#include "sys/param.h"
#include "sys/sysrnacros.h"
#ifdef u3b2
#include "sys/psw.h"
#include "sys/pcb.h"
#endif
#include "sys/stream.h"
#include "sys/stropts.h"
#include "sys/dir.h"
#include "sys/signal.h"
#include "sys/user.h"
#include "sys/errno.h"

static struct module info minfo =

0, "loop", 0, INFPSZ, 512, 128
} ;

static int loopopen(), loopclose(), loopwput(), loopwsrv(), looprsrv();

static struct qinit rinit = {
NULL, looprsrv, loopopen, loopclose, NULL, &minfo, NULL

} ;

static struct qinit winit = {
loopwput, loopwsrv, NULL, NULL, NULL, &minfo, NULL

} ;

struct streamtab loopinfo = { &rinit, &winit, NULL, NULL };

struct loop {
queue_t *qptr; /* back pointer to write queue */
queue_t *oqptr; /* pointer to connected read queue */

} ;

(('1'«8) 11)

extern struct loop loop loop [1 ;
extern int loop _ cnt; -

/* should be in a .h file */

A con fig file to configure the loop driver is shown in Appendix E. The
loop structure contains the interconnection infonnation for a pair of
Streams. loop _loop is indexed by the minor device number. When a
Stream is opened to the driver, the address of the corresponding

10-3

Streams Programmer's Guide

loop _loop element is placed in qytr (private data structure pointer) of
the read and write side queue _ ts. Since STREAMS clears qytr when the
queue _tis allocated, a NULL value of qytr indicates an initial open.
loop _loop is used to verify that this Stream is connected to another open
Stream.

The open procedure includes canonical clone processing which enables a
single file system node to yield a new minor device/inode each time the
driver is opened:

static int loopopen(q, dev, flag, sflag)
queue t *q;
{ -

struct loop *loop;

/*
* If CLONEOPEN, pick a minor device number to use.
* Otherwise, check the minor device range.
*/

if (sflag = CLONEOPEN) {
for (dev = 0; dev < loop cnt; dev++)

if (loop loop[dev].qptr = NULL)

break;

else
dev = minor(dev);

if (dev >= loop cnt)
return OPENFAIL; /* default = ENXIO */

/* Setup data structures * /

if (q->qJptr) /* already open */
return dev;

loop = &loop loop[dev];
WR(q) ->qJptr-= (char *) loop;
q->qJptr = (char *) loop;
loop->qptr = WR (q) ;

/*
* The return value is the minor device.
* For CLONEOPEN case, this will be used for
* newly allocated inode
*/

return dev;

In loopopen, sflag can be CLONEOPEN, indicating that the driver should
pick a minor device (Le., the user does not care which minor device is
used). In this case, the driver scans its private loop _loop data structure to
find an unused minor device number. If sflag has not been set to
CLONEOPEN, the passed-in minor device is used.

10-4

Complete Driver

The return value is the minor device number. In the CLONEOPEN case,
this value is used by the clone driver for the newly allocated inode and is then
passed to the user.

10.3 Write Put Procedure

Since the messages are switched to the read QUEUE following the other
Stream's read side, the driver needs a put procedure only on its write side:

static int loopwput(q, mp)
queue t *q;
mblk t *mp;
{ -

register struct loop *loop;

loop = (struct loop *) q-~ptr;

switch (mp->b datap->db type)
case M Icx:::TL:-{ -

struct iocblk *iocp;
int error;

iocp = (struct iocblk *)mp->b rptr;
switch (iocp->ioc cmd) { -
case LOOP SET: { -

int to; /* other minor device */
/*

* Sanity check. ioc count contains the amount of
* user supplied data-which must equal the size of an into
*/

if (iocp->ioc_count != sizeof(int)) {
error = EINVAL;
goto iocnak;

/* fetch other dev from 2nd message block */

to = *(int *)mp->b_cont->b_rptr;

/*
* More sanity checks. The minor must be in range, open already.
* Also, this device and the other one must be disconnected.
*/

if (to >= loop_cnt II to < 0 II ! loop_loop [to] .qptr) {
error = ENXIO;
goto iocnak;

if (loop->oqptr II loop_loop [to] .oqptr)
error = EBUSY;
goto iocnak;

10-5

Streams Programmer's Guide

/*
* Cross-connect streams via the loop structures
*/

loop->oqptr = RD(loop loop[to].qptr);
loop_loop[to].oqptr =-RD (q);

/*
* Return successful ioctl. Set ioc count
* to zero, since there is return no-data.
*/

rrp->b datap->db type = M ICCACK;
iocp->ioc count-= 0; -
qreply (q, -rrp) ;
break;

default:
error = EINVAL;

iocnak:
/*
* Bad ioctl. Setting ioc error causes the
* ioctl call to return that particular errno.
* By default, ioctl will return EINVAL on failure
*/

mp->b datap->db type = M ICCNAK;
iocp->ioc error-= error;- /* set returned errno */
qreply (q, - rrp) ;

break;

loopwput shows another use of an CISTR ioctl call (see the section titled
"Driver and Module Ioctls" in Chapter 9). The driver supports a
LOOP_SET value of ioc cmd in the iocblk of the M_IOCTL message.
LOOP_SET instructs the driver to connect the current open Stream to the
Stream indicated in the message. The second block of the M_IOCTL mes­
sage holds an integer that specifies the minor device number of the
Stream to connect to.

The driver performs several checks: Does the second block have the
proper amount of data? Is the "to" device in range? Is the "to" device
open? Is the current Stream disconnected? Is the "to" Stream discon­
nected?

If everything checks out, the read queue _ t pointers for the two Streams
are stored in the respective oqptr fields. This cross-connects the two
Streams indirectly, via loop_loop.

10-6

Complete Driver

Canonical flush handling is incorporated in the put procedure:

case M FLUSH:
if- (*mp->b rptr & FLUSHW)

flushq(q, 0);
if (*mp->b rptr & FLUSHR)

flushq(RD(q), 0);
*mp->b rptr &= -FLUSHW;

qreply(q, mp);
} else

freernsg(mp) ;
break;

default:
/*
* If this stream isn't connected, send an M_ERROR upstream.
*/

if (loop->oqptr == NULL) {
putctll (RD (q) -XLnext, M_ERROR, ENXIO);
freernsg (mp) ;
break;

putq(q, mp);

Finally, loopwput enqueues all other messages (e.g., M_DATA or
M_PROTO) for processing by its service procedure. A check is made to
see if the Stream is connected. If not, an M_ERROR is sent upstream to
the Stream head (see the section "Stream Head Messages" later in this
chapter.)

putctll and putctl are utilities that allocate a non-data type message (Le.,
not M_DATA, M_PROTO, or M_PCPROTO). Place one byte in the mes­
sage (for putctll) and call the put procedure of the specified QUEUE (see
Appendix C).

10.4 Stream Head Messages

Certain message types can be sent upstream by drivers and modules to the
Stream head where they are translated into actions detectable by the user
process or processes (see Appendix B). The messages may also modify
the state of the Stream head:

Causes the Stream head to lock up. Message
transmission between Stream and user processes
is tenninated. All subsequent system calls
except close and poll will fail. Also causes the
Stream head to send an M_FLUSH downstream,

10-7

Streams Programmer's Guide

clearing all message queues.

M_HANGUP Tenninates input from a user process to the
Stream. All subsequent system calls that send
messages downstream will fail. Once the
Stream head read message queue is empty, EOF
is returned on reads. Can also result in SIGHUP
signal to the process group.

M_SIGIM_PCSIG Causes a specified signal to be sent to a process
(see Chapter 13).

10.5 Service Procedures

Service procedures are required on both the write and read sides for pur­
poses of flow control:

static int la:pwsrv (q)
register queue t *q;
{ -

rrblk t *rip;
regiSter struct lcop *lcop;

lcop = (struct lcop *) q->qytr;

while ((rrp = getq(q)) != NULL) {

10-8

1*
* Check if v.e can put the rressage up the other stream read queue
*1

if (rrp->b _ datap->db _ typ:! <= IJ?CI'L && ! canput (lcop->o:JPtr-XL next))
putl:::q(q, rrp); 1* read side is blocked *1
break;

1* send rressage *1

putnext(lcop->o:JPtr, rrp); 1* 1b queue follow:i.n;r other stream read queue *1

static int looprsrv(q)
queue_t *q;

/* Enter only when "back-enabled" by flow control */

struct loop *loop;

loop = (struct loop *) q->qytr;
if (loop->oqptr == NULL)

return;

/* manually enable write service procedure */

qenable(WR(loop->oqptr));

Complete Driver

The write service procedure, loopwsrv, takes on the canonical fonn (see
Chapter 8) with a difference. The QUEUE being written to is not down­
stream, but upstream (found via oqptr) on the other Stream.

In this case, there is no read side put procedure, and so the read service
procedure, iooprsrv, is not scheduled by an associated put procedure, as
was done previously. looprsrv is scheduled only by being back-enabled
when its upstream becomes unstuck from flow control blockage. The pur­
pose of the procedure is to re-enable the writer (loopwsrv) by using oqptr
to find the related queue_t. loopwsrv cannot be directly back-enabled by
STREAMS because there is no direct queue _ t linkage between the two
Streams. Note that no message ever gets queued to the read service pro­
cedure. Messages are kept on the write side so that flow control can pro­
pagate up to the Stream head. There is a defensive check to see if the
cross-connect has broken. qenable schedules the write side of the other
Stream.

10-9

Streams Programmer's Guide

10.6 Close

loopc/ose breaks the connection between the Streams.

static int loopclose(q)
queue t *q;
{ -

register struct loop *loop;

loop = (struct loop *) q->qytr;
loop->qptr = NULL;

/*
* If we are connected to another stream, break the
* linkage, and send a hangup message.
* The hangup message causes the stream head to fail writes,
* allow the queued data to be read corrpletely, and then
* return EOF on subsequent reads.
*/

if (loop->oqptr) {
((struct loop *)loop->oqptr->qytr)->qptr = NULL;
((struct loop *)loop->oqptr->qytr)->oqptr = NULL;
putctl (loop->oqptr-XLnext, M_HANGUP);
loop->oqptr = NULL;

loopc/ose sends an M_HANGUP message up the connected Stream to the
Stream head. (See the earlier section "Stream Head Messages" for more
infonnation on M_HANGUP.)

Note

This driver can be implemented much more cleanly by actually
linking the q_ next pointers of the queue _ t pairs of the two Streams.

10-10

Chapter 11

Multiplexing

11.1 Multiplexing Configurations 11-1

11.2 Connecting Lower Streams 11-2

11.3 Disconnecting Lower Streams 11-4

11.4 Multiplexer Construction Example 11-4

11.5 Multiplexing Driver Example 11-7
11.5.1 Upper Write Put Procedure 11-11
11.5.2 Lower QUEUE Write Service Procedure 11-14
11.5.3 Lower Read Put Procedure 11-16

Multiplexing

11.1 Multiplexing Configurations

This chapter describes how STREAMS multiplexing configurations are
created and discusses multiplexing drivers. A STREAMS multiplexer is a
pseudo-driver with multiple Streams connected to it. The primary func­
tion of the driver is to switch messages among the connected Streams.
Multiplexer configurations are created from user level by system calls.
Chapter 6 of the Primer and Chapter 3 of this manual contain the required
introduction to STREAMS mUltiplexing.

STREAMS-related system calls are used to set up the "plumbing," or
Stream interconnections, for multiplexing pseudo-drivers. The subset of
these calls that allows a user to connect (and disconnect) Streams below a
pseudo-driver is referred to as the multiplexing facility. This type of con­
nection will be referred to as a I-to-M, or lower, multiplexer
configuration (see Figure 6-3 in the Primer). This configuration must
always contain a multiplexing pseudo-driver, which is recognized by
STREAMS as having special characteristics.

Multiple Streams can be connected above a driver by use of open calls.
This was done for the loop-around driver of the previous chapter and for
the driver-handling, multiple minor devices in Chapter 9. There is no
difference between the connections to these drivers; only the functions
perfonned by the driver are different. In the multiplexing case, the driver
routes data between mUltiple Streams. In the device driver case, the
driver routes data between user processes and associated physical ports.
Multiplexing with Streams connected above will be referred to as an N­
to-I, or upper, multiplexer (see Figure 6-4 in the Primer). STREAMS does
not provide any facilities beyond open and close to connect or disconnect
upper Streams for multiplexing purposes.

From the driver's perspective, upper and lower configurations differ only
in the way they are initially connected to the driver. The implementation
requirements are the same: route the data and handle flow control. All
multiplexer drivers require special developer-provided software to per­
fonn the multiplexing data routing and to handle flow control. STREAMS
does not directly support flow control among multiple Streams.

M-to-N multiplexing configurations are implemented by using both of the
above mechanisms in a driver. Complex multiplexing trees can be
created by cascading multiplexing Streams below one another.

As discussed in Chapter 9, the multiple Streams that represent minor dev­
ices are actually distinct Streams in which the driver keeps track of each
Stream attached to it. The Streams are not really connected to their com­
mon driver. The same is true for STREAMS multiplexers of any

11-1

Streams Programmer's Guide

configuration. The multiplexed Streams are distinct, and the driver must
be implemented to do most of the work. As stated above, the only
difference between configurations is the manner of connecting and
disconnecting. Only lower connections have use of the multiplexing
facility.

11.2 Connecting Lower Streams

A lower multiplexer is connected as follows: the initial open to a multi­
plexing driver creates a Stream, as in any other driver. As usual, open
uses the first two streamtab structure entries to create the driver QUEUEs
(see the section titled "Opening a Stream" in Chapter 5). At this point,
the only distinguishing characteristics of this Stream are non-NULL
entries in the streamtab st _ muxrinit and st _ muxwinit (mux) fields:

struct streamtab {

struct qinit
struct qinit

struct qinit

struct qinit
};

st_rdinit; 1 defines read QUEUE */

st_wrinit; 1 defines write QUEUE *1
st_muxrinit; 1 for mUltiplexing drivers only *1
st_muxwinit; 1 for multiplexing drivers only *1

These fields are ignored by the open (see the rightmost Stream in Figure
11-1). Any other Stream subsequently opened to this driver will have the
same streamtab and thereby the same mux fields.

Next, another file is opened to create a (soon to be) lower Stream. The
driver for the lower Stream is typically a device driver (see the leftmost
Stream in Figure 11-1). This Stream has no distinguishing characteristics.
It can include any driver compatible with the multiplexer. Any modules
required on the lower Stream must be pushed onto it now.

Next, this lower Stream is connected below the multiplexing driver with
an CLINK ioctl call [see streamio(STR)]. As shown in Figure 5-1, all
Stream components are constructed in a similar manner. The Stream
head points to the stream-he ad-routines as its procedures (known via its
queue _ t). An CLINK to the upper Stream, referencing the lower Stream,
causes STREAMS to modify the contents of the Stream head in the lower
Stream. The pointers to the stream-he ad-routines and other values in the
Stream head are replaced with those contained in the mux fields of the
multiplexing driver's streamtab. Changing the stream-head-routines on
the lower Stream means that all subsequent messages sent upstream by
the lower Stream's driver are ultimately passed to the put procedure
designated in st _ muxrinit, the multiplexing driver. The CLINK also
establishes this upper Stream as the control Stream for this lower Stream.
STREAMS remembers the relationship between these two Streams until

11-2

Multiplexing

the upper Stream is closed or the lower Stream is unlinked.

Finally, the Stream head sends to the multiplexing driver an M_IOCTL
message with ioc cmd set to CLINK (see discussions of the iocblk struc­
ture in Chapter 9aud Appendix A). The M_DATA part of the M_IOCTL
contains a linkblk structure:

struct linkblk {

} ;

queue_t *l_qtop; /* lowest level write queue of upper stream */
queue_t *l_qbot; /* highest level write queue of lower stream */
int l_index;/* system-unique index for lower stream. */

The multiplexing driver stores information from the linkblk in private
storage and returns an M_IOCACK message (ack). I index is returned to
the process requesting the CLINK. This value can be used later by the
process to disconnect this Stream, as described below. linkblk contents
are further discussed below.

An CLINK is required for each lower Stream connected to the driver.
Additional upper Streams can be connected to the multiplexing driver by
open calls. Any message type can be sent from a lower Stream to user
process(es) along any of the upper Streams. The upper Stream(s) pro­
vides the only interface between the user process(es) and the multiplexer.

Note that no direct data structure linkage is established for the linked
Streams. The q_ next pointers of the lower Stream still appear to connect
with a Stream head. Messages flowing upstream from a lower driver (a
device driver or another multiplexer) enter the multiplexing driver (that
is, Stream head) put procedure with I qbot as the queue t value. The
multiplexing driver has to route the messages to the approPriate upper or
lower Stream. Similarly, a message coming downstream from user space
on the control (or any other) upper Stream has to be processed and routed,
if required, by the driver.

Also note that the lower Stream (see the headers and file descriptors in
Figure 11-2) is no longer accessible from user space. This causes all sys­
tem calls to the lower Stream to return EINV AL, with the exception of
close. This is why all modules have to be in place before the lower
Stream is linked to the multiplexing driver. As a general rule, the lower
Stream file should be closed after it is linked (see following section).
This does not disturb the multiplexing configuration.

Finally, note that the absence of direct linkage between the upper and
lower Streams means that STREAMS flow control must be handled by
special code in the multiplexing driver. The flow control mechanism can­
not see across the driver.

11-3

Streams Programmer's Guide

In general, multiplexing drivers should be implemented so that new
Streams can be dynamically connected to the driver and existing Streams
disconnected from the driver without interfering with its ongoing opera­
tion. The number of Streams that can be connected to a multiplexer is
developer-dependent. NMUXLINK is the system limit to the number of
Streams that can be linked in the system. (See Appendix E for more
information on NMUXLINK.)

11.3 Disconnecting Lower Streams

Dismantling a lower multiplexer is accomplished by disconnecting
(unlinking) the lower Streams. Unlinking can be initiated in three ways:
an CUNLINK ioctl referencing a specific Stream, an CUNLINK indicating
all lower Streams, or the last close of the control Stream (this causes the
associated file to be closed). As in the link, an unlink sends a Iinkblk
structure to the driver in an M_IOCTL message. The CUNLINK call,
which unlinks a single Stream, uses the I index value returned in the
CLINK to specify the lower Stream to be unlinked. The latter two calls
must designate a file corresponding to a control Stream which causes all
the lower Streams that were previously linked by this control Stream to
be unlinked. However, the driver sees a series of individual unlinks.

If the file descriptor for a lower Stream was previously closed, a subse­
quent unlink automatically closes the Stream. Otherwise, the lower
Stream must be closed by close following the unlink. STREAMS automat­
ically dismantles all cascaded multiplexers (below other multiplexing
Streams) if their controlling Stream is closed. An CUNLINK leaves
lower, cascaded multiplexing Streams intact unless the Stream file
descriptor was previously closed.

11.4 Multiplexer Construction Example

This section describes an example of multiplexer construction and usage.
A multiplexing configuration similar to the Internet of Figure 6-3 in the
Primer is discussed. Figure 11-1 shows the Streams before their connec­
tion to create the multiplexing configuration of Figure 11-2. Multiple
upper and lower Streams interface to the multiplexer driver. The user
processes of Figure 11-2 are not shown in Figure 11-1.

11-4

Multiplexing

r---,
: Setup and Supervisory Process :

~ I ~l~ 4:c~ ~I-I ~e-+.-~ I-I-~l: lc: ~-I-I-~~ t.::· -1- -1- ~~:~~'-I;
· · · .

Figure 11-1 Internet Multiplexer Before Connecting

The Ethernet, LAPB, and IEEE 802.2 device drivers tenninate links to
other nodes. IP (Internet Protocol) is a multiplexer driver. IP switches
datagrams among the various nodes or sends them upstream to one or
more users in the system. The Net modules typically provide a conver­
gence function which matches the IP and device driver interface.

Figure 11-1 depicts only a portion of the full, larger Stream. As shown in
the dotted rectangle above the IP multiplexer, there is generally an upper
TCP multiplexer, additional modules, and possibly additional multi­
plexers in the Stream. Multiplexers can also be cascaded below the IP
driver if the device drivers are replaced by multiplexer drivers.

11-5

Streams Programmer's Guide

~ ----SetUp-and SupervisorY- -----~ User
I Ptocess I Processes
~-- ------ ------ ----------~-----4-----------

......... 't
: fds . .
·······6·~·f······

......... i.i.i
~ Upper 1
: Multiplexer or :

L. ... ~~~~!~l

Figure 11-2 Internet Multiplexer After Connecting

Streams A, B, and C are opened by the process, and modules are pushed
as needed. Two upper Streams are opened to the IP multiplexer. The
rightmost Stream represents multiple Streams, each connected to a pro­
cess using the network. The Stream second from the right provides a
direct path to the multiplexer for supervisory functions. It is the control
Stream, leading to a process which sets up and supervises this
configuration. It is always directly connected to the IP driver. Although
not shown, modules can be pushed on the control Stream.

After the Streams are opened, the supervisory process typically transfers
routing information to the IP drivers (and any other multiplexers above
the IP), and initializes the links. As each link becomes operational, its
Stream is connected below the IP driver. If a more complex multiplexing
configuration is required, the IP multiplexer Stream with all its connected
links can be connected below another multiplexer driver.

As shown in Figure 11-2, the file descriptors for the lower device driver
Streams are left dangling. The primary purpose in creating these Streams
is to provide parts for the multiplexer. These Streams have no further
function unless they are used for control or required for error recovery (by

11-6

Multiplexing

reconnecting them through an CUNLINK ioetl). As stated above, these
lower Streams can be closed to free the file descriptor without any effect
on the multiplexer. A setup process installing a configuration containing
a large number of drivers should do this to avoid running out of file
descriptors.

11.5 Multiplexing Driver Example

This section contains an example of a multiplexing driver that imple­
ments an N-to-l configuration, similar to that of Figure 6-4 in the Primer.
This configuration might be used for terminal windows, where each
transmission to or from the terminal identifies the window. This resem­
bles a typical device driver, with two differences: the device handling
functions are performed by a separate driver, connected as a lower
Stream, and the device information (that is, relevant user process) is con­
tained in the input data rather than in an interrupt call.

Each upper Stream is connected by an open, identical to the driver of
Chapter 9. A single lower Stream is opened, and then it is linked by use
of the multiplexing facility. This lower Stream might connect to the TIY
driver. The implementation of this example is a foundation for an M-to-N
multiplexer.

As in the loop-around driver, flow control requires the use of standard and
special code, since physical connectivity among the Streams is broken at
the driver. Different approaches are used for flow control on the lower
Stream for messages coming upstream from the device driver, and on the
upper Streams for messages coming downstream from the user processes.

11-7

Streams Programmer's Guide

The multiplexer declarations are:

#include "sys/types.h"
#include "sys/param.h"
#include "sys/sysmacros.h"
#include "sys/stream.h"
#include "sys/stropts.h"
#include "sys/errno.h"

static int muxopen (), muxclose (), muxuwput (), muxlwsrv (), rnuxl:r:put () ;

static struct module info info = {
0, ''rnux'' , 0, INFPSz, 512, 128

} ;
static struct qinit urinit = { 1* upper read *1

NULL, NULL, muxopen, muxclose, NULL, &info, NULL
} ;
static struct qinit uwinit = { 1* upper write *1

muxuwput, NULL, NULL, NULL, NULL, &info, NULL
};

static struct qinit lrinit = { 1* lower read *1
muxl:r:put, NULL, NULL, NULL, NULL, &info, NULL

};

static struct qinit lwinit = { 1* lower write *1
NULL, muxlwsrv, NULL, NULL, NULL, &info, NULL

} ;

struct streamtab muxinfo = { &urinit, &uwinit, &lrinit, &lwinit };

struct mux {
queue_t *qptr; 1* back pointer to read queue *1

} ;

extern struct mux mux _ mux [] ;
extern int mux_cnt;

queue _ t *muxbot; 1 * linked lower queue *1
int muxerr; 1* set if error of hangup on lower stream *1

The four streamtab entries correspond to the upper read, upper write,
lower read, and lower write qinit structures. The multiplexing qinit
structures replace those in each lower Stream head after the CLINK has
completed successfully. (In this case there is only one lower Stream
head.) In a multiplexing configuration, the processing performed by the
multiplexing driver can be partitioned between the upper and lower
QUEUEs. There must be an upper Stream write put procedure and a lower
Stream read put procedure. In general, only upper write side and lower
read side procedures are used. Application specific flow control require­
ments might modify this. If the QUEUE procedures of the opposite
upper!lower QUEUE are not needed, the QUEUE can be skipped over and
the message put to the following QUEUE.

11-8

Multiplexing

The upper read side procedures are not used in the example. The lower
Stream read QUEUE put procedure transfers the message directly to the
read QUEUE upstream from the multiplexer. There is no lower write put
procedure because the upper write put procedure directly feeds the lower
write service procedure, as described below.

The driver uses a private data structure, mux. mux _ mux[dev] points back
to the opened upper read QUEUE. This is used to route messages coming
upstream from the driver to the appropriate upper QUEUE. It is also used
to find a free minor device for a CLONEOPEN driver open case.

The upper QUEUE open contains the canonical driver open code:

static int muxopen(q, dev, flag, sflag)
queue t *q;
{ -

struct mux *mux;

if (sflag = CLONEOPEN)
for (dev = 0; dev < mux cnt; dev++)

if (rnux mux[devJ.qptr = 0)
break;

else
dev = rninor(dev);

if (dev >= mux_cnt)
return OPENFAIL;

rnux = &rnux _ rnux [devJ ;
mux->qptr = q;
q->qytr = (char *) rnux;
WR(q)->qytr = (char *) mux;
return dev;

muxopen checks for a clone or ordinary open call. It loads qytr to point
at the mux _ mux[] structure.

The core multiplexer processing is as follows: downstream data written
to an upper Stream is queued on the corresponding upper write message
queue. This allows flow control to propagate towards the Stream head for
each upper Stream. However, there is no service procedure on the upper
write side. All M_DATA messages from all the upper message queues are
ultimately dequeued by the service procedure on the lower (linked) write
side. The upper write Streams are serviced in a round-robin fashion by
the lower write service procedure. A lower write service procedure,
rather than a write put procedure, is used in order to handle flow control
coming up from the driver below.

11-9

Streams Programmer's Guide

On the lower read side, data coming up the lower Stream is passed to the
lower read put procedure. The procedure routes the data to an upper
Stream based on the first byte of the message. This byte holds the minor
device number of an upper Stream. The put procedure handles flow con­
trol by testing the upper Stream at the first upper read QUEUE beyond the
driver. That is, the put procedure treats the Stream component above the
driver as the next QUEUE.

Figure 11-3 Example Multiplexer Configuration

This is shown in Figure 11-3. "Multiplexer Routines" are all the above
procedures. VI and V2 are queue_t pairs, each including a write
queue_t pointed at by an '_qtop in a linkblk (see beginning of this
chapter). L is the queue_t pair which contains the write queue_t pointed
at by '_qbot. Nl and N2 are the modules (or Stream head or another mul­
tiplexing driver) seen by L when read side messages are sent upstream.

11-10

Multiplexing

11.5.1 Upper Write Put Procedure

The upper QUEUE write put procedure, muxuwput, traps ioctls, in particu-.
lar CLINK and CUNLINK:

static int muxuwput (q, mp)
queue t *q;
rnblk_t *mp;

int s;
struct mux *mux;

mux = (struct mux *) q->CI...Ptr;
switch (mp->b datap->db type)
case M_IOCTL:-(-

struct iocblk * iocp;
struct linkblk *linkp;

/*
* Ioctl. Only channel 0 can do ioctls. Two
* calls are recognized: LINK, and UNLINK
*/

if (mux ! = mux mux)
goto iocnak;

iocp = (struct iocblk *) mp->b_rptr;
switch (iocp->ioc_cmd) {
case I LINK:

/*
* Link. The data contains a linkblk structure
* Remember the bottom queue in muxbot.
*/ "t.

if (muxbot ! = NULL)
goto iocnak;

linkp = (struct linkblk *) mp->b_cont->b_rptr;
muxbot = linkp->l_qbot;
muxerr = 0;
mp->b datap->db type = M IOCACK;
iocp->loc count-= 0; -
qreply(q,-mp) ;
break;

11-11

Streams Programmer's Guide

case I UNLINK:
/*-

* Unlink. The data contains a linkblk structure.
* Should not fail an unlink. Null out muxbot.
*/

linkp = (struct linkblk *) rrp->b cont->b rptr;
muxbot = NULL; --
rrp->b datap->db type = M IOCACK;
iocp->ioc count-= 0; -
qreply(q, -rrp);
break;

default:
iocnak:

/ * fail ioctl * /

mp->b datap->db type = M ICCNAK;
qreply(q, rrp); - -

break;

First, there is a check to ensure that the Stream associated with minor
device 0 will be the single, controlling Stream. loctls are accepted only
on this Stream. As described previously, a controlling Stream is the one
that issues the CLINK. Having a single control Stream is a recommended
practice. CLINK and C UNLINK include a Iinkblk structure, described
previously, containing:

I_qtop The upper write QUEUE froln which the ioetl is coming.
It should always equal q.

1_ qbot The new lower write QUEUE. It is the former Stream
head write QUEUE. It is of most interest since that is
where the multiplexer gets and puts its data.

I index A unique (system-wide) identifier for the link. It can be
used for routing or during selective unlinks, as described
above. Since the example only supports a single link,
I_index is not used.

For CLINK, 1_ qbot is saved in muxbot and an ack is generated. From this
point on, until an C UNLINK occurs, data from upper queues are routed
through muxbot. Note that when an CLINK is received, the lower Stream
has already been connected. This allows the driver to send messages
downstream to peIform any initialization functions. Returning an

11-12

Multiplexing

M_IOCNAK message (nak) in response to an CLINK causes the lower
Stream to be disconnected.

The C UNLINK handling code nulls out muxbot and generates an ack. A
nak should not be returned to an CVNLINK. The Stream head makes sure
that the lower Stream is connected to a multiplexer before sending an
CVNLINK M_IOCTL.

muxuwput handles M_FLUSH messages as a normal driver would:

case M FLUSH:
if- (*mp->b rptr & FLUSHW)

flushq(q, FLUSHD~);
if (*mp->b rptr & FLUSHR) {

flushq(RD(q), FLUSHD~);
*mp->b rptr &= -FLUSHW;
qreply(q, mp);

} else
freemsg(mp) ;

break;
case M D~:

/*-
* Data. If we have no bottom queue --> fail
* Otherwise, queue the data, and invoke the lower
* service procedure.
*/

if (muxerr I I muxbot = NULL)
goto bad;

putq(q, mp); /* place message on upper write message queue */
qenable(muxbot); /* lower service write procedure */
break;

default:
bad:

/*
* Send an error message upstream.
*/

mp->b datap->db type = M ERROR;
mp->b-rptr = mp=>b wptr ~ mp->b datap->db base;
*mp->b wptr++ = ErNvAL; - -
qreply(q, mp);

M_DATA messages are not placed on the lower write message queue.
They are queued on the upper write message queue. putq recognizes the
absence of the upper service procedure and does not schedule the QUEUE.
Then the lower service procedure, mux/wsrv, is scheduled with qenable
(see Appendix C) to start output. This is similar to starting output on a

11-13

Streams Programmer's Guide

device driver. Note that muxuwput cannot access muxlwsrv by the con­
ventional STREAMS calls, putq or putnext (to a muxlwput). (muxlwsrv is
the lower QUEUE write service procedure, contained in muxbot.) Both
calls require that a message be passed, but the messages remain on the
upper Stream.

II.S.2 Lower QUEUE Write Service Procedure

The lower (linked) queue write service procedure, muxlwsrv, is scheduled
directly from the upper service procedures. It is also scheduled from the
lower Stream, by being back-enabled when the lower Stream becomes
unblocked from downstream flow control.

static int muxlwsrv(q)
register queue t *q;
{ -

register mblk t *mp, *bp;
register queue_t *nq;

/*
* While lower stream is not blocked, find an upper queue to
* service (get next q) and send one message fram it downstream.
*/ --

while (canput(q-~next))
nq = get next q();
if (nq";;;; NUI.J:")

break;
mp = getq (nq) ;
/*

* Prepend the outgoing message with a single byte header
* that indicates the minor device number it came from.
*/

if «bp = aHocb (1, BPRI MED)) = NULL) {
printf (''mux: aHocb failed (size 1) \nn);
freemsg(mp) ;
continue;

*bp->b_wptr++ = (struct mux *)nq->~tr - mux_mux;
bp->b cont = mp;
putneXt (q, bp) i

muxlwsrv takes data from the upper queues and puts it out through mux­
bot. The algorithm used is simple round robin. While we can put to
muxbot->q next, we select an upper QUEUE (via get next q) and
move a message from it to muxbot. Each message is prefixed by a one­
byte header that indicates which upper Stream it came from.

11-14

Multiplexing

Finding messages on upper write queues is handled by get_next _q:

/*
* Round-robin scheduling.
* Return next upper queue that needs servlclng.
* Returns NULL when.no more work needs to be done.
*/

static queue_t *
get next q()
{- -

static int next;
int i, start;
register queue_t *q;

start = next;
for (i = next; i < mux cnt; i++)

if (q = mux_mux[i]:qptr) {
q = WR(q);
if (q->q first)

next -= i+l;
return q;

for (i = 0; i < start; i++)
if (q = mux_mux[i] .qptr)

q = WR(q) ;
if (q->q first)

next -:: i+l;
return q;

return NULL;

get_next_q searches the upper queues in a round-robin fashion looking for
the first one containing a message. It returns the queue _ t pointer or
NULL if there is no work to do.

11-15

Streams Programmer's Guide

11.5.3 Lower Read Put Procedure

The lower (linked) queue read put procedure is:

static int muxlrput (q, mp)
queue t *q;
mblk t *mp;
{ -

queue t *uq;
mblk t *b cant;
int dev; -

switch(mp->b datap->db type)
case M_FLUSH:

/*
* Flush queues. NOTE: sense of tests is reversed
* since we are acting like a "stream head"
*/

if (*mp->b rptr & FLUSHR)
flushq (q, 0);

if (*mp->b rptr & FLUSHW)
*mp->b-rptr &= -FLUSHR;
qreply(q, mp);

else
freemsg (mp) ;

break;

case M_ERROR:
case M_HANGUP:

muxerr = 1;
freemsg (mp) ;
break;

case M DATA:
/* -

11-16

* Route message. First byte indicates
* device to send to. No flow control.

* Extract and delete device number. If the leading block is
* now empty and more blocks follow, strip the leading block.
* The stream head interprets a leading zero-length block
* as an EOF regardless of what follows.
*/

dev = *mp->b rptr++;
if (mp->b rptr == mp->b wptr && (b_cont = mp->b_cont)) {

freeb(Inp); -
mp = b_cont;

/* Sanity check. Device must be in range */

if (dev < 0 I I dev >= mux cnt)
freemsg(mp); -
break;

/*
* If upper stream is open and not backed up,
* send the message there, otherwise discard it.
*/

uq = mux mux[dev] .qptr;
if (uq !~ NULL && canput(uq->~next))

putnext(uq, mp);
else

freemsg (mp) ;
break;

default:
freemsg(mp);

Multiplexing

muxlrput receives messages from the linked Stream. In this case, it is act­
ing as a Stream head. It handles M_FLUSH messages. Note that the code
is reversed from that of a driver, handling M_FLUSH messages from
upstream.

muxlrput also handles M_ERROR and M_HANGUP messages. If one is
received, it locks up the upper Streams.

M_DATA messages are routed by looking at the first data byte of the mes­
sage. This byte contains the minor device of the upper Stream. If remov­
ing this byte causes the leading block to be empty and more blocks fol­
low, the block is discarded. This is done because the Stream head inter­
prets a leading zero-length block as an EOF [see read(S)]. Several sanity
checks are made: Does the message have at least one byte? Is the device
in range? Is the upper Stream open? Is the upper Stream not full?

This mux does not do end-to-end flow control. It is merely a router (like
the Department of Defense's IP protocol). If everything checks out, the
message is put to the proper upper QUEUE. Otherwise, the message is
silently discarded.

11-17

Streams Programmer's Guide

The upper Stream close routine simply clears the mux entry so that this
queue will no longer be found by get_next _queue:

/*
* Upper queue close
*/

static int muxclose(q)
queue t *q;
{ -

((struct mux *)q->~tr)->qptr = NULL;

11-18

Chapter 12

Service Interface

12.1 Definition 12-1

12.2 Message Usage 12-1

12.3 Example 12-2
12.3.1 Declarations 12-2
12.3.2 Service Interface Procedure 12-5

Service Interface

12.1 Definition

STREAMS provides the means to implement a service interface between
any two components in a Stream and between a user process and the top­
most module in the Stream. A service interface is defined at the boundary
between a service user and a service provider (see Figure 4-2). A service
interface is a set of primitives and the rules for the allowable sequences
of primitives across the boundary. These rules are typically represented
by a state machine. In STREAMS, the service user and provider are
implemented in a module, driver, or user process. The primitives are car­
ried bidirectionally between a service user and provider in M_PROTO and
M_PCPROTO (generically, PROTO) messages. M_PCPROTO is the prior­
ity version of M_PROTO.

12.2 Message Usage

As described in Appendix B, PROTO messages can be multiblock, with
the second through last blocks of type M_DATA. The first block in a
PROTO message contains the control part of the primitive in a form
agreed upon by the user and provider, and the block is not intended to
carry protocol headers. (Although its use is not recommended, upstream
PROTO messages can have multiple PROTO blocks at the start of the mes­
sage. getmsg compacts the blocks into a single control part when sending
to a user process.) The M_DATA block or blocks contain any data part
associated with the primitive. The data part may be processed in a
module that receives it, or it may be sent to the next Stream component,
along with any data generated by the module. The contents of PROTO
messages and their allowable sequences are determined by the service
interface specification.

PROTO messages can be sent bidirectionally (up and downstream) on a
Stream and bidirectionally between a Stream and a user process. putmsg
and getmsg system calls are analogous to write and read respectively,
except that the former allow both data and control parts to be (separately)
passed, and they observe message boundary alignment across the user­
Stream boundary. putmsg and getmsg separately copy the control part
(M_PROTO or M_PCPROTO block) and data part (M_DATA blocks)
between the Stream and user process.

An M_PCPROTO message is normally used to acknowledge M_PROTO
messages and not to carry protocol expedited data. M_PCPROTO ensures
that the acknowledgment reaches the service user before any other mes­
sage. If the service user is a user process, the Stream head stores only a
single M_PCPROTO message, and it discards subsequent M_PCPROTO
messages until the first one is read with getmsg.

12-1

Streams Programmer's Guide

The following rules pertain to service interfaces:

• Modules and drivers that support a service interface must act upon
all PROTO messages and not pass them through.

• Modules can be inserted between a service user and a service pro­
vider to manipulate the data part as it passes between them. How­
ever, these modules cannot alter the contents of the control part
(PROTO block, first message block) nor alter the boundaries of the
control or data parts. That is, the message blocks comprising the
data part can be changed, but the message cannot be split into
separate messages or combined with other messages.

In addition, modules and drivers must observe the rule that priority mes­
sages are not subject to flow control and forward them accordingly (see
the beginning of modwsrv in the "Procedures" section of Chapter 8).
Priority messages also bypass flow control at the user-Stream boundary
[see putmsg(S)].

12.3 Example

The example below is part of a module which illustrates the concept of a
service interface. The module implements a simple datagram interface
and mirrors the example in Chapter 4.

12.3.1 Declarations

The service interface primitives are defined in the declarations:

#include "sys/types.h"
#include "sys/param.h"
#include "sys/strearn.h"
#include "sys/errno.h"

/*
* Primitives initiated by the service user:
*/

#define BIND REQ 1 /* bind request */
#define UNITD~ REQ 2 /* unitdata request */
/* -
* Primitives initiated by the service provider:
*/

#define OK ACK 3 /* bind acknowledgment */
#define ERROR ACK 4 /*error acknowledgment */
#define UNI'IDATA_IND 5 /* unitdata indication */

12-2

/*
* The following structures define the format of the
* stream message block of the above primitives.
*/

struct bind req { /* bind request */
long PRiM type; /* always BIND REQ * /
long BIND=addr; /* addr to bind */

} ;
struct unitdata req

long PRIM tYPe;
long DEST=addr;

};
struct ok ack {

long PRIM_type;
} ;
struct error ack {

long PRIM type;
long UNIX=error;

};
struct unitdata ind

long PRIM tYPe;
long SRC_addr;

} ;
union primitives {

long type;

};

struct bind req
struct unitctata req
struct ok ack -
struct error ack
struct unitctata_ind

/* unitdata request */
/* always UNITDATA REQ * /
/* dest addr - */

/* ok acknowledgment */
/* always OK_ACK */

/* error acknowledgment */
/* always ERROR ACK */
/* UNIX error cOde *1

/* unitdata indication */
/* always UNITDATA IND */
/* source addr - * /

/* union of all primitives */

bind req;
unitctata req;
ok ack; -
error ack;
unitctata _ ind;

struct dgproto {
short state;
long addr;

/* structure per minor device */
/* current provider state */
/* net address */

} ;
/* Provider states */

#define IDLE 0
#define BOUND 1

Service Interface

In general, the M_PROTO or M_PCPROTO block is described by a data
structure containing the service interface information. In this example,
union primitives is that structure.

12-3

Streams Programmer's Guide

Two commands are recognized by the module:

Give this Stream a protocol address; that is, give
it a name on the network. After a BIND_REQ is
completed, datagrams from other senders will
find their way through the network to this particu-
1ar Stream.

UNITDATA_REQ Send a datagram to the specified address.

Three messages are generated:

A positive acknowledgment (ack) ofBIND_REQ.

A negative acknowledgment ofBIND_REQ.

UNITDATA_IND A datagram from the network has been received.
(This code is not shown.)

The ack of a BIND _REQ informs the user that the request was syntacti­
cally correct (or incorrect if ERROR_ACK). The receipt of a BIND_REQ
is acknowledged with an M_PCPROTO to ensure that the acknowledg­
ment reaches the user before any other message. For example, a
UNITDATA_IND might come through before the bind completed, and the
user would get confused.

The driver uses a per-minor device data structure, dgproto, which con­
. tains the following:

state current state of the Stream (endpoint); IDLE or BOUND

addr network address that was bound to this Stream

It is assumed (though not shown) that the module open procedure sets the
write queue q-ytr to point at one of these structures.

12-4

Service Interface

12.3.2 Service Interface Procedure

The write put procedure is:

static int protowput(q, mp)
queue t *q;
mblk. t *mp;
{ -

union primitives *proto;
struct dgproto *dgproto;
int err;

dgproto = (struct dgproto *) q->qytr;

switch (mp->b datap->db type)
default: - -

/* don't understand it */
mp->b datap->db type = M ERROR;
mp->b-rptr = mp=>b wptr ~ mp->b datap->db base;
*mp->b_wptr++ = EPROTO; - -
qreply (q, rnp);
break;

case M FLUSH:
/ * -standard flush handling goes here ••• * /
break;

case M PROTO:
/*-Protocol message -> user request */

proto = (union primitives *) mp->b_rptr;

switch (proto->type) (
default:

mp->b datap->db type = M ERROR;
mp->b-rptr = rnp=>b wptr -:; mp->b datap->db base;
*mp->b wptr++ = EPROTO; - -
qreply(q, mp);
return;

case BIND REQ:
if (dgproto->state != IDLE)

err = EINVAL;
goto error_ack;

}
if (mp->b_wptr - mp->b_rptr != sizeof(struct bind_req)) {

err = EINVAL;
goto error_ack;

if (err = chkaddr(proto->bind req.BIND addr))
goto error _ ack; - -

12-5

Strea~s Programmer's Guide

dgproto->state = BOUND;
dgproto->addr = proto->bind req.BIND addr;
mp->b datap->db type = M PcPROTO; -
proto=>type = OK ACK; -
mp->b wptr = mp->b rptr + sizeaf (struct ok ack);
qreply(q, mp); - -
break;

error ack:
rrP->b_datap->db_type = M_PCPROTO;
proto->type = ERROR ACK;
proto->error ack.UNIX error = err;
mp->b_wptr =-mp->b_rptr + sizeaf(struct error_ack);
qreply(q, mp); .
break;

case UNITDATA REQ:
if (dgproto->state != BOUND)

goto bad;
if (mp->b wptr - mp->b rptr ! = sizeof (struct unitdata req))

goto bad; - -
if (err = chkaddr(proto->unitdata req.DEST addr))

goto bad; --
if (mp->b cont) {

putq(q, mp->b_cont);

1* start device or mux output .•• *1

break;
bad:

freemsg (mp) ;
break;

The write put procedure switches on the message type. The only types
accepted are M_FLUSH and M_PROTO. For M_FLUSH messages, the
driver perfonns the canonical flush handling (not shown). For M_PROTO
messages, the driver assumes the message block contains a union primi­
tive and switches on the type field. Two types are understood:
BIND_REQ and UNITDATA_REQ.

For BIND_REQ, the current state is checked; it must be IDLE. Next, the
message size is checked. If it is the correct size, the passed-in address is
verified for legality by calling chkaddr. If everything checks, the incom­
ing message is converted into an OK_ACK and sent upstream. If there
was any error, the incoming message is converted into an ERROR_ACK
and sent upstream.

For VNITDATA_REQ, the state is also checked; it must be BOUND. As
above, the message size and destination address are checked. If there is

12-6

Service Interface

any error, the message is simply discarded. (This action may seem rash,
but it is in accordance with the interface specification, which is not
shown. Another speci fication might call for the generation of a
UNITDATA_ERROR indication.) If all is well, the data part of the mes­
sage (if it exists) is put on the queue, and the lower half of the driver is
started.

If the write put procedure receives a message type that it does not under­
stand (either a bad b_datap->db_type or bad proto->type), the message is
converted into an M_ERROR message and sent upstream.

Another piece of code not shown is the generation of UNITDATA_IND
messages. This normally occurs in the device interrupt if this is a
hardware driver (like STARLAN) or in the lower read put procedure if
this is a multiplexer. The algorithm is simple: the data part of the mes­
sage is prepended by an M_PROTO message block which contains a
unitdata ind structure; it is then sent upstream. (Pre pending means that
the M_PROTO message block is attached in front of the data part of the
message.)

12-7

Chapter 13

Advanced Topics

13.1 Recovering From No Buffers 13-1

13.2 Advanced Flow Control 13-4

13.3 Signals 13-5

13.4 Control of Stream Head Processing 13-6
13.4.1 Read Options 13-6
13.4.2 Write Offset 13-7

Advanced Topics

13.1 Recovering From No Buffers

Use the bufcaU utility (see Appendix C) to recover from an aUocb
failure. The call syntax is as follows:

bufcall(size, pri, func, arg)i
int size, pri, (*func) () i
long argi

bufcaU calls (*Junc)(arg) when a buffer of size bytes at pri priority is
available. When Junc is called, it has no user context and must return
without sleeping. Also, because of interrupt processing, there is no
guarantee that a buffer will actually be available when Junc is called
(someone else may steal it). bufcall returns 1 on success, indicating that
the request has been successfully recorded, or 0 on failure. On a failure
return, the requested function will never be called.

Warning

Care must be taken to avoid deadlock when holding resources while
waiting for bufcall to call (*Junc)(arg). bufcaU should be used
sparingly.

13-1

Streams Programmer's Guide

Two examples are provided. Example one is a device receive interrupt
handler:

#include "sys/types.h"
#include "sys/param.h"
#include "sys/stream.h"

dev rintr (dev)
{ -

/*

/* process incoming message .•. */

/* allocate new buffer for device */
dev_re_load(dev);

* Reload device with a new receive buffer
*/

dev re load (dev)
{ - -

rnblk_t *bp;

if ((bp = allocb (DEVBLKSZ, BPRI MED)) = NULL) {
printf ("dev: allocb failure - (size %d) \n", DEVBLKSZ);
/*
* Allocation failed. Use bufcall to
* schedule a call to ourself.
*/

(void) bufcall (DEVBLKSZ, BPRI_MED, d.ev_re_load, d.ev);
return;

/* pass buffer to device .•• * /

dev _rintr is called when the device has posted a receive interrupt. The
code retrieves the data from the device (not shown). dev rintr must then
give the device another buffer to fill by a call to dev re load, which calls
allocb with the appropriate priority and buffer Size (DEVBLKSZ,
definition not shown). If allocb fails, dev re load uses bufcall to call
itself when STREAMS determines that a buffer of the appropriate size and
priority is available.

13-2

Advanced Topics

Note

Since bufeall can fail, there is still a chance that the device can
hang. A better strategy, in the event bufeaU fails, is to discard the
current input message and resubmit that buffer to the device. Losing
input data is generally better than hanging.

The second example is a write service procedure, mod _ wsrv, which needs
to prepend each output message with a header (similar to the multiplexer
example of Chapter 11). mod _ wsrv illustrates a case for potential
deadlock:

static int mod_wsrv(q)
queue t *q;
{ -

int qenable () ;
mblk_t *rrp, *bp;

while (rrp = getq(q))

/* check for priority messages and canput ... */

/*
* Allocate a header to prepend to the message. If
* the allocb fails, use bufcall to reschedule ourself.
*/

if ((bp = allocb (HDRSZ, BPRI MEn)) = NULL) {
if (!bufcall (HDRSZ, BPRIlvlED, qenable, q)) {

}
/*

/* -
* The bufcall request has failed. Discard
* the message and keep running to avoid hanging.
*/

freemsg (rrp) ;
continue;

* Put the message back and exit, we will be re-enabled later
*/

putbq (q, rrp);
return;

/* process message */

However, if alloeb fails, mod wsrv wants to recover without loss of data
ands calls bufeaU. In this case, the routine passed to bufeaU is qenable
(see below and Appendix C). When a buffer is available (of size HDRSZ,
definition not shown), the service procedure is automatically re-enabled.

13-3

Streams Programmer's Guide

Before exiting, the current message is put back on the queue. This exam­
pIe deals with bufcall failure by discarding the current message and con­
tinuing in the service procedure loop.

13.2 Advanced Flow Control

Streams provides mechanisms to alter the normal queue scheduling pro­
cess. putq does not schedule a QUEUE if noenable(q) was previously
called for this QUEUE. noenable instructs putq to queue the message
when called by this QUEUE, but not to schedule the service procedure.
noenable does not prevent the QUEUE from being scheduled by a flow
control back-enable. The inverse of noenable is enableok(q).

An example of this is driver upstream flow control. Although device
drivers typically discard input when unable to send it to a user process,
STREAMS allows driver read side flow control, possibly for handling tem­
porary upstream blocks. This is done through a driver read service pro­
cedure which is disabled during the driver open with noenable. If the
driver input interrupt routine determines that messages can be sent
upstream (from canput), it sends the message with putnext. Otherwise, it
calls putq to queue the message. The message waits on the message
queue until the upstream QUEUE becomes unblocked. (The queue length
can be checked when new messages are enqueued by the interrupt rou­
tine.) When the blockage abates, STREAMS back -enables the driver read
service procedure. The service procedure sends the messages upstream
using getq and canput, as in Chapter 8. This is similar to /ooprsrv in
Chapter 10, where the service procedure is present only for flow control.

qenable, another flow control utility, allows a module or "driver to
schedule one of its QUEUEs or another module's QUEUEs. In addition to
the usage shown in Chapters 10 and 11, qenable can be used when a
module or driver wants to delay message processing for some reason. An
example of this is a buffer module that gathers messages in its message
queue and forwards them as a single, larger message. This module uses
noenable to inhibit its service procedure, and it queues messages with its
put procedure until a certain byte count or "in queue" time has been
reached. When either of these conditions is met, the put procedure calls
qenable to cause its service procedure to run.

Another example is a communication line discipline module that imple­
ments end-to-end flow control (that is, to a remote system). Outbound
data is held on the write side message queue until the read side receives a
transmit window from the remote end of the network. Then, the read side
schedules the write side service procedure to run.

13-4

Advanced Topics

13.3 Signals

STREAMS allows modules and drivers to signal one or· more user
processes through an M_SIG or M_PCSIG message sent upstream (see
Appendix B). M_PCSIG is a priority version of M_SIG. For both mes­
sages, the first byte of the message specifies the signal for the Stream
head to generate. If the signal is not SIGPOLL [see signal(S) and
sigset(S)], then the signal is sent to the process group associated with the
Stream (see below). If the signal is SIGPOLL, the signal is sent only to
processes which have registered for the signal by using the CSETSIG ioctl
[also see streamio(STR)] call.

A process group is associated with a Stream during the open of the driver
or module. If u.u _ttyp is NULL prior to the driver or module open call, the
Stream head checks u.u ttyp after the driver or module open call returns.
If u.u _ttyp is non-zero, It is assumed to point to a short that holds the pro­
cess group ID for signaling. The process group and indirect TTY
(/dev/tty) inode are recorded in the Stream head.

If the driver or module wants to have a process group associated with the
Stream, it should include code of the following form in its open pro­
cedure:

pp = u.u-procp;
pdp = •••

/* pointer to process structure * /
/* private data pointer * /

if (pp->p-pid == pp->p~rp
&& u. u ttyp == NULL
&& pdp=>pgrp == 0) {

/* process group leader */
/* with no controlling TTY */
/* and this stream is unassigned */

/* assign controlling TTY */

u.u_ttyp = &pdp->pgrp;
pdp->pgrp = pp->p ygrp;

A private data structure containing a short pgrp element is required.

M_SIG can be used by modules or drivers that wish to insert an explicit
inband signal into a message stream. For example, an M_SIG message
can be sent to the user process immediately before a particular service
interface message to gain the immediate attention of the user process.
When the M_SIG reaches the head of the Stream head read message
queue, a signal is generated and the M_SIG message is removed. This
leaves the service interface message as the next message to be processed
by the user. Use of M_SIG is typically defined as part of the service inter­
face of the driver or module.

13-5

Streams Programmer's Guide

13.4 Control of Stream Head Processing

The M_SETOPTS message allows a driver or module to exercise control
over certain Stream head processing (see Appendix B). An M_SETOPTS
can be sent upstream at any time. The Stream head responds to the mes­
sage by altering the processing associated with certain system calls. The
options to be modified are specified by the contents of the stroptions
structure contained in the message. (See Appendix B for more informa­
tion on the stroptions structure.)

Six Stream head characteristics can be modified. As described in Appen­
dix B, four correspond to fields contained in queue_t (minimax packet
sizes and high-/low-water marks). The other two are discussed here.

13.4.1 Read Options

The value for read options (so _readopt) corresponds to the three modes a
user can set via the CSRDOPT ioctl call (see streamio):

byte-stream (RNORM)
The read(S) call completes when the byte count is
satisfied, the Stream head read queue becomes empty,
or a zero-length message is encountered. In the last
case, the zero-length message is put back on the queue.
A subsequent read will return 0 bytes.

message non-discard (RMSGN)
The read call completes when the byte count is
satisfied or at a message boundary, whichever comes
first. Any data remaining in the message is put back on
the Stream head read queue.

message discard (RMSGD)
The read call completes when the byte count is
satisfied or at a message boundary. Any data remain­
ing in the message is discarded.

Byte-stream mode is similar to pipe data transfer. Message non-discard
mode is similar to a TTY in canonical mode.

13-6

Advanced Topics

13.4.2 Write Offset

The value for write offset (so wroff) is a hook to allow more efficient data
handling. It works as follows: In every data message generated by a
write(S) system call and in the first M_DATA block of the data portion of
every message generated by a putmsg(S) call, the Stream head leaves
so _ wroffbytes of space at the beginning of the message block. Expressed
as a C language construct:

bp->b_rptr = bp->b_datap->db_base +write offset.

The write offset value must be smaller than the maximum STREAMS mes­
sage size, STRMSGSZ (see the section titled "Tunable Parameters" in
Appendix E). In certain cases the write offset might not be included in
the block (for example, if a buffer large enough to hold the offset+data is
not currently available). To be general, modules and drivers should not
assume that the offset exists in a message; they should always check the
message.

The intended use of write offset is to leave room for a module or a driver
to place a protocol header before user data in the message; otherwise, the
module or driver must allocate and prepend a separate message. This
feature is not general and its use is discouraged. A more general tech­
nique is to put protocol header information in a separate message block
and link the user data to it.

13-7

Appendix A

Kernel Structures

A.I Kernel Structures A-I

A.2 streamtab A-I

A.3 QUEUE Structures A-2

A.4 Message Structures A-3

A.5 iocblk A-4

A.6 linkblk A-4

Kernel Structures

A.I Kernel Structures

This appendix summarizes previously described kernel structures com­
monly encountered in STREAMS module and driver development.

STREAMS kernel structures are contained in <sys/stream.h> and
<sys/strstat.h> .

Note

These and other STREAMS structures contained in this guide will
remain fixed in subsequent releases of the UNIX System, subject to
the following: the offset of all defined elements in each structure
will not change. However, the size of the structure may be
increased to add new elements.

A.2 streamtab

As discussed in Chapter 5, this structure defines a module or driver:

struct streamtab

};

struct qinit *st rdinit;
struct qinit *st_wrinit;
struct qinit *st_muxrinit;
struct qinit *st_muxwinit;

/* defines read QUEUE */
/* defines write QUEUE */
/* for multiplexing drivers only */
/* for multiplexing drivers only */

A-I

Streams Programmer 's Guide

A.3 QUEUE Structures

Two sets of QUEUE structures form a module. The structures, discussed
in Chapters 5 and 8, are queue_t, qinit, moduleJnfo and, optionally,
module stat:

struct queue {

struct qinit

struct msgb

struct msgb

'L-qinfo; / procedures and limits for queue */

'L-first; / head of message queue for this QUEUE * /

'L-last; / tail of message queue for this QUEUE */

};

struct queue *'L-next; /* next QUEUE in Stream*/

struct queue *'L-link; /* link to next QUEUE onSTREAMS scheduling queue * /

caddr_t 'L-Ptr; /* to private data structure */

ushort

ushort

short

short

ushort

ushort

'L-count;

q_flag;

q_minpsz;

'L-maxpsz;

'L-hiwat;

q lowat;

/ * weighted count of characters on message queue * /

/ * QUEUE state * /

/* min packet size accepted by this QUEUE * /
/ * max packet size accepted by this QUEUE * /

/ * message queue high water mark, for flow control * /
/ * message queue low water mark, for flow control * /

typedef struct queue queue_t;

When a queue _ t pair is allocated, their contents are zero unless
specifically initialized. The following fields are initialized:

• q_qinfo - from streamtab.sC[rd/wr]init (or sCmux[rw]init)

• q_ptr - optionally, by the driver/module open routine

struct qinit {

};

A-2

int (*qi_putp) () ;
int (*qi_srvp) () ;
int (*qi_qopen) ();
int (*qi_qclose) () ;

int (*qi_qadmin) () ;

/ * put procedure * /
/* service procedure */

/ * called on each open or a push * /
/* called on last close or a pop * /
/* reserved for future use */

struct module_info *qi_minfo; /* information structure */
struct module_stat *qi_mstat; /* statistics structure -optional */

Kernel Structures

struct module_info [

);

ushort
char
short
short
short
ushort

mi_idnum;
*mi_idname;
mi_minpsz;
mi_maxpsz;
mi_hiwat;
mi_lowat;

/ * module ID number * /

/* module name */
/* min packet size accepted, for developer use */
/* max packet size accepted, for developer use */
/* hi-water mark, for flow control */
/* lo-water mark, for flow control */

struct module_stat
long ms _pcnt;
long ms scnt; -
long ms - ocnt;

long ms ccnt; -
long ms acnt; -
char *ms _xptr;
short ms xsize; -
);

/* count of calls to put proc */
/* count of calls to service proc * /
/* count of calls to open proc */

/* count of calls to close proc * /
/* count of calls to admin proc */
/* pointer to private statistics * /
/* length of private statistics buffer */

Note that if these counts are calculated by modules or drivers, the counts
will be cumulative over all occurrences of modules with the same
fmodsw entry and drivers with the same cdevsw entry.

A.4 Message Structures

As described in Chapter 7, a message is composed of a linked list of tri­
pIes, consisting of two structures and a data buffer:

struct msgb

struct msgb
struct msgb
struct msgb

*b_next;
*b_prev;

*b_cont;

/* next message on queue * /
/* previous message on queue * /
/* next message block of message */

unsigned char
unsigned char
struct datab

*b_rptr;
*b_wptr;
*b_datap;

/* first unread data byte in buffer */
/* first unwritten data byte in buffer * /
/* data block */

);

typedef struct msgb mblk_t;

struct datab [
struct datab *db_freep;
unsigned char *db_base;
unsigned char *db_lim;
unsigned char db_ref;
unsigned char db_type;

/* used internally */
/* first byte of buffer */
/* last byte+l of buffer */
/* count of messages pointing to this block * /
/* message type */

unsigned char db_class; /* used internally */
);

typedef struct datab dblk_t;

A-3

Streams Programmer's Guide

A.S iocblk

As described in Chapter 9 and Appendix B, this is contained in an
M_IOCTL message block:

struct iocblk {
int ioc cmd; -
ushort ioc _uid;
ushort ioc_gid;
uint ioc id; -
uint ioc count; -
int ioc error; -
int ioc rval; -

};

A.6 Iinkblk

/* ioctl command type */
/* effective uid of user */
/* effective gid of user */

/* ioctl id * /
/* count of bytes in data field * /
/* error code * /
/* return value */

As described in Chapter 11, this is used in lower multiplexer drivers:

struct linkblk {

queue_t *l_qtop;
queue_t *l_qbot;
int I_index;

};

A-4

/* lowest level write queue of upper stream */
/* highest level write queue of lower stream */

/* system-unique index for lower stream. * /

Appendix B

Message Types

B.1 Message Types B-1

B.2 Ordinary Messages B-1

B.3 Priority Messages B-8

Message Types

B.1 Message Types

Eighteen STREAMS message types are defined. The message types differ
in their intended purposes, their treatment at the Stream head, and in their
message queueing priority (see Chapter 8).

STREAMS does not prevent a module or driver from generating any mes­
sage type and sending it in any direction on the Stream. However, esta­
blished processing and direction rules should be observed. Stream head
processing according to message type is fixed, although certain parame­
ters can be altered.

The message types are described below, classi fied according to their mes­
sage queueing priority. Ordinary messages are described first, with prior­
ity messages following. In certain cases, two message types may perform
similar functions, differing in priority. Message construction is described
in Chapter 7. The use of the word module generally implies "module or
driver."

B.2 Ordinary Messages

These message types are subject to flow control. They are referred to as
non-priority messages when received at user level.

M DATA

M PROTO

Intended to contain ordinary data. Messages allo­
cated by the allocb routine (see Appendix B) are
type M_DATA by default. M_DATA messages are
generally sent bidirectionally on a Stream, and their
contents can be passed between a process and the
Stream head. In the getmsg and putmsg system
calls, the contents of M_DATA message blocks are
referred to as the data part. Messages composed of
multiple message blocks typically have M_DATA as
the message type for all message blocks following
the first.

Intended to contain internal control information and
associated data. The message format is one
M_PROTO message block followed by zero or more
M_DATA message blocks as shown below. The
semantics of the M_DATA and M_PROTO message
block are determined by the STREAMS module that
receives the message.

The M_PROTO message block typically contains

B-1

Streams Programmer's Guide

B-2

implementation-dependent control information.
M_PROTO messages are generally sent bidirection­
ally on a Stream, and their contents can be passed
between a process and the Stream head. The con­
tents of the first message block of an M_PROTO mes­
sage are generally referred to as the control part, and
the contents of any following M_DATA message
blocks are referred to as the data part. In the getmsg
and putmsg system calls, the control and data parts
are passed separately. These calls refer to M_PROTO
messages as non-priority messages.

Although this usage is not recommended, the format
of M_PROTO and M_PCPROTO (generically
PROTO) messages sent upstream to the Stream head
allows multiple PROTO blocks at the beginning of
the message. getmsg compacts the blocks into a sin­
gle control part when passing them to the user pro­
cess.

Figure B-1 M_PROTO and M_PCPROTO Message Structure

Generated by the Stream head in response to an
CSTR and certain other ioctl system calls [see
streamio(STR)]. When one of these ioctls is
received from a user process, the Stream head uses
values from the process (supplied in the call) to
create an M_IOCTL message containing them, and
sends the message downstream. M_IOCTL messages
are intended to perform the general ioctl functions
of character device drivers.

Message Types

The user values are supplied in a structure of the fol­
lowing fonn, provided as an argument to the ioetl
call [see CSTR in streamio(STR)]:

struct strioctl

int ic cmd; /* downstream request */
-

int ic _timout; /* ACK/NAK timeout */
int ic len; /* - length of data arg */
char *ic _dp; /* ptr to data arg */

};

where ie emd is the request (or command) defined
by a downstream module or driver, ie _timout is the
time the Stream head will wait for acknowledgment
to the M_IOCTL message before timing out, and
ic dp is a pointer to an optional data argument. On
input, ie_len contains the length of the data argu­
ment passed in; on return from the call, it contains
the length of the data, if any, being returned to the
user.

The fonn of an M_IOCTL message consists of one
M_IOCTL message block linked to zero or more
M_DATA message blocks. STREAMS constructs an
M_IOCTL message block by placing an ioeblk struc­
ture in its data buffer:

struct iocblk

};

int ioc_cmd; /* ioctl command type */
ushort ioc_uid; /* effective user ID number */
ushort ioc_gid; /* effective group ID number */

uint ioc_id; /* ioctl identifier */
uint ioc_count; /* byte count for ioctl data */
int ioc_error; /* error code */
int ioc_rval; /* return value */

The ioeblk structure is defined in <sys/stream.h>.
ioe _ emd corresponds to ie _ emd. ioe _ uid and
ioe _gid are the effective user and group IDs for the
user sending the ioetl and can be tested to detennine
if the user issuing the ioetl call is authorized to do
so. ioe _count is the number of data bytes, if any,
contained in the message; it corresponds to ie_len.

ioe _id is an identifier generated internally; it is used
to match each M_IOCTL message sent downstream

B-3

Streams Programmer's Guide

B-4

with a response which must be sent upstream to the
Stream head. The response is contained in an
M_IOCACK (positive acknowledgment) or an
M_IOCNAK (negative acknowledgment) message.
Both of these message types have the same fonnat
as an M_IOCTL message and contain an iocblk
structure in the first block with optional data blocks
following. If one of these messages reaches the
Stream head with an identifier which does not match
that of the currently outstanding M_IOCTL message,
the response message is discarded. A common
means of ensuring that the correct identifier is
returned is for the replying module to convert the
M_IOCTL message type into the appropriate
response type and set ioc _count to 0 if no data is
returned. Then the qreply utility (see Appendix C)
is used to send the response to the Stream head.

ioc error holds any return error condition set by a
downstream module. If this value is non-zero, it is
returned to the user in ermo. Note that both an
M_IOCNAK and an M_IOCACK can return an error.
ioc rval holds any M_IOCACK return value set by a
responding module.

If a user supplies data to be sent downstream, the
Stream head copies the data (pointed to by ic _ dp in
the strioctl structure) into M_DATA message blocks.
It then links the blocks to the initial M_IOCTL mes­
sage block. ioc _count is copied from ie_len. If
there is no data, ioc _count is zero.

If a module wants to send data to a user process as
part of its response, it must construct an M_IOCACK
message that contains the data. The first message
block of this message contains the iocblk data struc­
ture, with any data stored in one or more M_DATA
message blocks linked to the first message block.
The module must set ioc count to the number of
data bytes sent. On completion of the call, this
number is passed to the user in ic len. Data associ­
ated with an M_IOCNAK message is not returned to
the user process and is discarded by the Stream
head.

M_CTL

Message Types

The first module or driver that understands the
request contained in the M_IOCTL acts on it and
generally returns an M_IOCACK message. Inter­
mediate modules that do not recognize a particular
request must pass it on. If a driver does not recog­
nize the request, or if the receiving module cannot
acknowledge it, an M_IOCNAK message must be
returned.

The Stream head waits for the response message and
returns any information contained in an M_IOCACK
to the user. The Stream head will "time out" if no
response is received in ie_timeout interval.

Generated by modules that wish to send information
to a particular module or type of module. M_ CTL
messages are typically used for intermodule com­
munication, as when adjacent STREAMS protocol
modules negotiate the terms of their interface. An
M_CTL message cannot be generated by a user-level
process and is always discarded if passed to the
Stream head.

Sent to a driver to request that BREAK be transmit­
ted on whatever media the driver is controlling.

The message format is not defined by STREAMS and
its use is developer-dependent. This message may
be considered a special case of an M_CTL message.
An M_BREAK message cannot be generated by a
user-level process and is always discarded if passed
to the Stream head.

Sent to a media driver to request a real-time delay
on output. The data buffer associated with this mes­
sage type is expected to contain an integer to indi­
cate the number of machine ticks of delay desired.
M_DELAY messages are typically used to prevent
transmitted data from exceeding the buffering capa­
city of slower terminals.

B-5

Streams Programmer's Guide

B-6

M_PASSFP

The message format is not defined by STREAMS,
and its use is developer-dependent. Not all media
drivers may understand this message. This message
can be considered a special case of an M_ CTL mes­
sage. An M_DELAY message cannot be generated
by a user-level process and is always discarded if
passed to the Stream head.

This is used by STREAMS to pass a file pointer from
the Stream head at one end of a Stream pipe to the
Stream head at the other end of the same Stream
pipe. (A Stream pipe is a Stream that is terminated
at both ends by a Stream head; one end of the
Stream can always find the other by following the
q_next pointers in the Stream. The means by which
such a structure is created are not described in this
document.)

The message is generated as a result of an
CSENDFD ioetl [see streamio(STR)] issued by a
process to the sending Stream head. STREAMS
places the M_PASSFP message directly on the desti­
nation Stream head's read queue to be retrieved by
an CRECVFD ioctl [see streamio(STR)]. The mes­
sage is placed without passing it through the Stream
(that is, it is not seen by any modules or drivers in
the Stream). This message type should never be
present on any queue except the read queue of a
Stream head. Consequently, modules and drivers do
not need to recognize this message type, and it can
be ignored by module and driver developers.

M_SETOPTS Alters some characteristics of the Stream head. It is
generated by any downstream module and is inter­
preted by the Stream head. The data buffer of the
message has the following structure:

struct stroptions

I;

short so_flags; /* options to set */
short so_readopt; /* read option */
ushort so_wroff; /* write offset */

short so_minpsz; /* minimum read packet size */

short so_maxpsz; /* maximum read packet size */
ushort so_hiwat; /* read queue high-water mark */

ushort so_lowat; /*read queue low-water mark*/

Message Types

where so Jiags specifies which options are to be
altered, and can be any combination of the follow­
ing:

• SO_ALL - Update all options according to
the values specified in the remaining fields of
the stroptions structure.

• SO_READOPT - Set the read mode [see
read(S)] to RNORM (byte stream), RMSGD
(message discard), or RMSGN (message non­
discard), as specified by the value of
so _readopt.

• SO_WROFF - Direct the Stream head to
insert an offset specified by so _ wroff into the
first message block of all M_DATA messages
created as a result of a write system call.
The same offset is inserted into the first
M_DATA message block, if any, of all mes­
sages created by a putmsg system call. The
default offset is zero.

The offset must be less than the maximum
message buffer size (system-dependent).
Under certain circumstances, a write offset
may not be inserted. A module or driver
must test that b rptr in the mblk t structure
is greater than db base in the dblk t struc­
ture to determine whether an offset has been
inserted in the first message block.

• SO_MINPSZ - Change the minimum packet
size value associated with the Stream head
read queue to so minpsz (see q minpsz in the
queue _ t structure, in Appendix A). This
value is advisory for the module immediately
below the Stream head. It is intended to limit
the size of M_DATA messages that the
module should put to the Stream head. There
is no intended minimum size for other mes­
sage types. The default value in the Stream
head is o.

• SO_MAXPSZ - Change the maximum
packet size value associated with the Stream

B-7

Streams Programmer's Guide

head read queue to so _ maxpsz (see q_ maxpsz
in the queue t structure, in Appendix A).
This value IS advisory for the module
immediately below the Stream head. It is
intended to limit the size of M_DATA mes­
sages that the module should put to the
Stream head. There is no intended maximum
size for other message types. The default
value in the Stream head is INFPSZ, the max­
imum STREAMS allows.

• SO_HIWAT - Change the flow control high­
water mark on the Stream head read queue to
the value specified in so _ hiwat.

• SO_LOWAT - Change the flow control low­
water mark (see q_ minpsz in the queue _ t
structure, Appendix A) on the Stream head
read queue to the value specified in so _Iowat.

Sent upstream by modules or drivers to post a signal
to a process. When the message reaches the Stream
head, the first data byte of the message is
transformed into a signal (as defined in
<sys/signal.h» to the process(es) according to the
following:

If the signal is not SIGPOLL and the Stream contain­
ing the sending module or driver is a controlling
TTY, the signal is sent to the associated process
group. A Stream becomes the controlling TTY for
its process group if, on open, a module or driver sets
u.u _ttyp to point to a (short) "process group value."

If the signal is SIGPOLL, it is sent only to those
processes which have explicitly registered to
receive the signal [see CSETSIG in streamio(STR)].

B.3 Priority Messages

Priority messages are not subject to flow control.

B-8

M_PCPROTO This message type has the same format and charac­
teristics as the M_PROTO message type, except for
priority and the following additional attributes:

Message Types

When an M_PCPROTO message is placed on a
queue, its service procedure is always enabled. The
Stream head allows only one M_PCPROTO message
to be placed in its read queue at a time. If an
M_PCPROTO message is already in the queue when
another arrives, the second message is silently dis­
carded and its message blocks freed.

This message type is intended to allow data and
control information to be sent outside the normal
flow control constraints.

The getmsg(S) and putmsg(S) system calls refer to
M_PCPROTO messages as priority messages.

M_ERROR This message type is sent upstream by modules or
drivers to report some downstream error condition.
When the message reaches the Stream head, the
Stream is marked so that all subsequent system calls
issued to the Stream, excluding close and poll, will
fail with errno set to the first data byte of the mes­
sage. POLLERR is set if the Stream is being polled
[see poll(S)]. All processes sleeping on a system
call to the Stream are awakened. An M_FLUSH
message with an FLUSHRW argument is sent down­
stream.

M_HANGUP This message type is sent upstream by a driver to
report that it can no longer send data upstream. For
example, this might be due to an error or to the
dropping of a remote line connection. When the
message reaches the Stream head, the Stream is
marked so that all subsequent write and putmsg
system calls issued to the Stream will fail and return
an ENXIO error. Those ioctls that cause messages to
be sent downstream are also failed. POLLHUP is
set if the Stream is being polled [see poll(S)].

However, subsequent read or getmsg calls to the
Stream will not generate an error. These calls will
return any messages (according to their function)
that were on, or in transit to, the Stream head read
queue before the M_HANGUP message was
received. When all such messages have been read,
read will return 0, and getmsg will set each of its
two length fields to O.

B-9

Streams Programmer's Guide

This message also causes a SIGHUP signal to be sent
to the process group if the device is a controlling
TTY (see M_SIG).

M_IOCACK This message type signals the positive acknowledg­
ment of a previous M_IOCTL message. The mes­
sage may contain information sent by the receiving
module or driver. The Stream head returns the
information to the user if there is a corresponding
outstanding M_IOCTL request. The format and use
of this message type is described further under
M_IOCTL.

M_IOCNAK This message type signals the negative acknowledg­
ment (failure) of a previous M_IOCTL message.
When the Stream head receives an M_IOCNAK, the
outstanding ioetl request, if any, will fail. The for­
mat and usage of this message type is described
further under M_IOCTL.

M_FLUSH This message type requests all modules and drivers
that receive it to flush their message queues (discard
all messages in those queues) as indicated in the
message. An M_FLUSH can originate at the Stream
head or in any module or driver. The first byte of
the message contains flags that specify one of the
following actions:

B-IO

• FLUSHR: Flush the read queue of the
module.

• FLUSHW: Flush the write queue of the
module.

• FLUSHRW: Flush both the read and the write
queue of the module.

Each module passes this message to its neighbor
after flushing its appropriate queue(s) until the mes­
sage reaches one of the ends of the Stream.

Drivers are expected to include the following pro­
cessing for M_FLUSH messages: When an
M_FLUSH message is sent downstream through the
write queues in a Stream, the driver at the Stream
end discards it if the message action indicates that

Message Types

the read queues in the Stream are not to be flushed
(only FLUSHW set). If the message indicates that
the read queues are to be flushed, the driver sets the
M_FLUSH message flag to FLUSHR and then sends
the message up the Stream's read queues. When a
flush message is sent up a Stream's read side, the
Stream head checks to see if the write side of the
Stream is to be flushed .. If only FLUSHR is set, the
Stream head discards the message. However, if the
write side of the Stream is to be flushed, the Stream
head sets the M_FLUSH flag to FLUSHW and sends
the message down the Stream's write side. All
modules that enqueue messages must identify and
process this message type.

This message type has the same fonnat and charac­
teristics as the M_SIG message type except for prior­
ity.

M START and M STOP
- These messages request devices to start or stop their

output. They are intended to produce momentary
pauses in a device's output, not to tum devices on or
off.

The message fonnat is not defined by STREAMS and
its use is developer-dependent. These messages can
be considered special cases of an M_ CTL message.
These messages cannot be generated by a user-level
process, and each is always discarded if passed to
the Stream head.

B-11

Appendix C

Utilities

C.I Utilities C-I

C.2 Utility Descriptions C-2

C.3 Buffer Allocation Priority C-15

C.4 Utility Routine Summary C-16

Utilities

C.I Utilities

This appendix specifies the set of utilities that STREAMS provides to
assist development of modules and drivers. There are over 30 utility rou­
tines and macros.

The general purpose of the utilities is to perfonn functions that are com­
monly used in modules and drivers. However, some utilities also provide
the required interrupt environment. A utility must always be used when
operating on a message queue and when accessing the buffer pool.

The utilities are contained in either the system source file io/stream.c or,
if they are macros, in <sys/stream.h>.

Note

The utilities contained in this appendix represent an interface that
will be maintained in subsequent versions of the UNIX System.
Functions contained in the STREAMS kernel code (other than these
utilities) may change between versions. (Also see the section titled
"Accessible Symbols and Functions" in Appendix D; these func­
tions will not change between versions.)

All structure definitions are contained in Appendix A unless otherwise
indicated. All routine references are found in this appendix unless other­
wise indicated. The following definitions are used:

Blocked

Enable

Free

A queue that cannot be enabled due to flow control
(see the section titled "Flow Control" in Chapter
6 of the Primer).

To schedule a queue.

De-allocate a STREAMS storage.

Message block (bp)
A triplet consisting of an mblk t structure, a
dblk t structure, and a data buffer. It is referenced
by its mblk_t structure (see Chapter 7).

Message (mp) One or more linked message blocks. A message is
referenced by its first message block.

C-l

Streams Programmer's Guide

Message queue Zero or more linked messages associated with a
queue (queue_t structure).

Queue (q) A queue _ t structure. This is generally the same as
QUEUE in the rest of this document (e.g., see the
definitions for enable and schedule). When it
appears with "message" in certain utility descrip­
tion lines, it means "message queue".

Schedule Place a queue on the internal linked list of queues
which will subsequently have their service pro­
cedure called by the STREAMS scheduler.

The word module generally means "module and/or driver". The phrase
"next/following module" generally refers to a module, driver, or Stream
head. Message queueing priority (see Chapter 8 and Appendix B) can be
ordinary or Priority (to avoid "priority priority"),

C.2 Utility Descriptions

The utilities are described below. A summary table is included at the end
of this appendix.

adjmsg - trim bytes in a message

int adjmsg(mp, len)
mblk_t *mp;
intlen;

adjmsg trims bytes from either the head or tail of the message specified
by mp. If len is greater than zero, it removes len bytes from the beginning
of mp. If len is less than zero, it removes (-)len bytes from the end of mp.
If len is zero, adjmsg does nothing. adjmsg only trims bytes across mes­
sage blocks of the same type. It will fail if mp points to a message con­
taining fewer than len bytes of similar type at the message position indi­
cated. adjmsg returns 1 on success and 0 on failure.

C-2

allocb - allocate a message block

mblk _ t *allocb(size, pri)
int size, pri;

Utilities

allocb returns a pointer to a message block of type M_DATA, in which the
data buffer contains at least size bytes. pri indicates the priority of the
allocation request and can have the values BPRCLO, BPRCMED, or
BPRCHI (see the section titled "Buffer Allocation Priority" in this
appendix). If a block can not be allocated as requested, allocb returns a
NULL pointer.

baekq - get pointer to the queue behind a given queue

queue _ t *baekq(q)
queue_t *q;

backq returns a pointer to the queue behind a given queue. That is, it
returns a pointer to the queue whose q_next (see queue_t structure)
pointer is q. If no such queue exists (as when q is at a Stream end), backq
returns NULL.

bufeaU - recover from failure of allocb

int bufcall(size, pri, func, arg)
int (*func)O;
int size, pri;
long arg;

bufeall is provided to assist in the event of a block allocation failure. If
allocb returns NULL, indicating a message block is not currently avail­
able, bufcall may be invoked.
bufeaU arranges for (*func)(arg) to be called when a buffer of size bytes
at pri priority (see the section titled "Buffer Allocation Priority") is
available. Whenfunc is called, it has no user context. It cannot reference
the u _area and must return without sleeping. bufcall does not guarantee
that the desired buffer will be available whenfunc is called since interrupt
processing may acquire it.

C-3

Streams Programmer's Guide

bufeaU returns 1 on success, indicating that the request has been success­
fully recorded, or 0 on failure. On a failure return, Junc will never be
called. A failure indicates a (temporary) inability to allocate required
internal data structures.

can put - test for room in a queue

int canput(q)
queue_t *q;

can put determines if there is room left in a message queue. If q does not
have a service procedure, eanput will search further in the same direction
in the Stream until it finds a queue containing a service procedure (this is
the first queue on which the passed message can actually be enqueued). If
such a queue cannot be found, the search terminates on the queue at the
end of the Stream. eanput tests the queue found by the search. If the
message queue in this queue is not full (see the section titled "Flow Con­
trol" in Chapter 6 of the Primer), eanput returns 1. This return indicates
that a message can be put to queue q. If the message queue is full, canput
returns O. In this case, the caller is generally referred to as blocked.

eopyb - copy a message block

mblk_t *eopyb(bp)
mblk_t *bp;

eopyb copies the contents of the message block pointed to by bp into a
newly allocated message block of at least the same size. copyb allocates
a new block by calling aUoeb with pri set to BPRCMED (see the section
titled "Buffer Allocation Priority"). All data between the b _rptr and
b _ wptr pointers of a message block are copied to the new block, and these
pointers in the new block are given the same offset values they had in the
original message block. On successful completion. eopyb returns a
pointer to the new message block containing the copied data. Otherwise,
it returns a NULL pointer.

C-4

copymsg - copy a message

mblk_t *copymsg(mp)
mblk_t *mp;

Utilities

copymsg uses copyb to copy the message blocks contained in the mes­
sage pointed to by mp to newly allocated message blocks, and links the
new message blocks to fonn the new message. On successful completion,
copymsg returns a pointer to the new message. Otherwise, it returns a
NULL pointer.

datamsg - test whether message is a data message

#define datamsg(mp) ..•

The datamsg macro returns TRUE if mp (declared as rnblk t *mp)
points to a data type message, that is, M_DATA, M_PROTO, or
M_PCPROTO (see Appendix B). If mp points to any other message type,
datamsg returns FALSE.

dupb - duplicate a message block descriptor

mblk _ t *dupb(bp)
mblk_t *bp;

dupb duplicates the message block descriptor (mblk_t structure) pointed
to by bp. dupb copies it into a newly allocated message block descriptor.
A message block is fonned with the new message block descriptor point­
ing to the same data block as the original descriptor. The reference count
in the data block descriptor (dblk t structure) is incremented. dupb does
not copy the data buffer, only the message block descriptor.
On successful completion, dupb returns a pointer to the new message
block. If dupb cannot allocate a new message block descriptor, it returns
NULL.

This routine allows message blocks that exist on different queues to refer­
ence the same data block. In general, if the contents of a message block
with a reference count greater than 1 are to be modified, copyb should be
used to create a new message block, and only the new message block
should be modified. This ensures that other references to the original
message block are not invalidated by unwanted changes.

C-5

Streams Programmer's Guide

dupmsg - duplicate a message

mblk _ t *dupmsg(mp)
mblk_t *mp;

dupmsg calls dupb to duplicate the message pointed to by mp. This is
done by copying all individual message block descriptors and then link­
ing the new message blocks to form the new message. dupmsg does not
copy data buffers, only message block descriptors. On successful comple­
tion, dupmsg returns a pointer to the new message. Otherwise, it returns
NULL.

enableok - re-allow a queue to be scheduled for service

#define enableok(q) ...

The enableok macro cancels the effect of an earlier noenable on the
same queue q (declared as queue t *q). It allows a queue to be
scheduled for service when that queue-had previously been excluded from
queue service by a call to noenable.

ftushq - flush a queue

int ftushq(q, ftag)
queue_t *q; ."
int ftag;

ftushq removes messages from the message queue in queue q and frees
them, using freemsg. If flag is set to FLUSHDATA, then ftushq discards
all M_DATA, M_PROTO, and M_PCPROTO messages (see datamsg), but
leaves all other messages on the queue. If flag is set to FLUSHALL, all
messages are removed from the message queue and freed. FLUSHALL
and FLUSHDATA are defined in <sys/stream.h>.
If a queue behind q is blocked, ftushq may enable the blocked queue, as
described in putq.

C-6

freeb - free a message block

int freeb(bp)
mblk_t *bp;

Utilities

freeb will free (deallocate) the message block descriptor pointed to by
bp, and will free the corresponding data block if the reference count (see
dupb) in the data block descriptor (dblk _ t structure) is equal to 1. If the
reference count is greater than 1, freeb will not free the data block, but
will decrement the reference count.

freemsg - free all message blocks in a message

int freemsg(mp)
mblk_t *mp;

freemsg uses freeb to free all message blocks and their corresponding
data blocks for the message pointed to by mp.

getq - get a message from a queue

mhlk_t *getq(q)
queue_t *q;

getq gets the next available message from the queue pointed to by q.
getq returns a pointer to the message and removes that message from the
queue. If no message is queued, getq returns NULL.
getq and certain other utility routines affect flow control in the Stream as
follows: If getq returns NULL, the queue is internally marked so that the
next time a message is placed on it, it will be scheduled for service
(enabled, see qenable). Also, if the data in the enqueued messages in the
queue drops below the low-water mark, q_lowat, and a queue behind the
current queue had previously attempted to place a message in the queue
and failed (that is, was blocked, see canput), then the queue behind the
current queue is scheduled for service (see the section titled "Flow Con­
trol" in Chapter 6 of the Primer).

C-7

Streams Programmer's Guide

insq - put a message at a specific place in a queue

int insq(q, emp, nmp)
queue_t *q;
mblk _ t *emp, *nmp;

insq places the message pointed to by nmp in the message queue con­
tained in the queue pointed to by q. It is placed immediately before the
already enqueued message pointed to by emp. If emp is NULL, the mes­
sage is placed at the end of the queue. If emp is non-NULL, it must point
to a message that exists on the queue q, or a system panic could result.
Note that the message is placed where indicated, without consideration of
message queueing priority. The queue will be scheduled in accordance
with the rules described in putq for ordinary priority messages.

linkb - concatenate two messages into one

int linkb(mpl, mp2)
mblk_t *mpl;
mblk_t *mp2;

linkb puts the message pointed to by mp2 at the tail of the message
pointed to by mpl.

msgdsize - get the number of data bytes in a message

int msgdsize(mp)
mblk_t *mp;

msgdsize returns the number of bytes of data in the message pointed to by
mp. Only bytes included in data blocks of type M_DATA are included in
the total.

noenable - prevent a queue from being scheduled

#define noenable(q) ••••

The noenable macro prevents the queue q (declared as queue_t *q)
from being scheduled for service by putq or putbq when these routines

C-8

Utilities

enqueue an ordinary priority message, or by insq when it enqueues any
message. noenable does not prevent the scheduling of queues when a
priority message is enqueued, unless it is enqueued by insq.

OTHERQ - get pointer to the mate queue

#define OTHERQ(q) •.•

The OTHERQ macro returns a pointer to the mate queue of q (declared as
queue _ t *q). If q is the read queue for the module, it returns a pointer
to the module's write queue. If q is the write queue for the module, it
returns a pointer to the read queue.

pullupmsg - concatenate bytes in a message

int *puUupmsg(mp, len)
mblk_t *mp;
int len;

pullupmsg concatenates and aligns the first len data bytes of the passed
message into a single, contiguous message block. Proper alignment is
hardware-dependent. To perform its function, pullupmsg allocates a new
message block by calling aIlocb with pri set to BPRCMED (see the sec­
tion titled "Buffer Allocation Priority"). pullupmsg only concatenates
across message blocks of similar type. It will fail if mp points to a mes­
sage of less than len bytes of similar type. A len value of -1 requests a
pull-up of all the like-type blocks in the beginning of the message pointed
to by mp.
At completion of concatenation, pullupmsg replaces mp with a pointer to
the new message block, so that mp still points to the same message block
at the end of the operation. However, the contents of the message block
may have been altered. On success, pullupmsg returns 1. On failure, it
returns O.

C-9

Streams Programmer's Guide

putbq - return a message to the beginning of a queue

int putbq(q, bp)
queue_t *q;
mblk_t *bp

putbq puts the message pointed to by bp at the beginning of the queue
pointed to by q, in a position in accordance with the message's type.
Priority messages are placed at the head of the queue, and ordinary mes­
sages are placed after all priority messages, but before all other ordinary
messages. The queue will be scheduled in accordance with the same
rules described in putq. This utility is typically used to replace a mes­
sage on a queue from which it was just removed.

putctl - put a control message

int putctl(q, type)
queue_t *q;
int type;

putctl creates a control (not data, see datamsg above) message of type
type, and calls the put procedure in the queue pointed to by q, with a
pointer to the created message as an argument. putctl allocates new
blocks by calling allocb with pri set to BPRCHI (see the section titled
"Buffer Allocation Priority"). On successful completion, putctl returns
1. It returns 0 if it cannot allocate a message block, or if type M_DATA,
M_PROTO, or M_PCPROTO was specified.

putctll - put a control message with a one-byte parameter

int putctll(q, type, p)
queue_t *q;
int type;
int p;

putctll creates a control (not data, see datamsg) message of type type
with a one-byte parameter p, and calls the put procedure in the queue
pointed to by q, with a pointer to the created message as an argument.
putctll allocates new blocks by callingallocb with pri set to BPRCHI
(see the section titled "Buffer Allocation Priority"). On successful com­
pletion, putctll returns 1. It returns 0 if it cannot allocate a message

C-10

Utilities

block, or if type M_DATA, M_PROTO, or M_PCPROTO was specified.

putnext - put a message to the next queue

#define putnext(q, mp) 000

The putnext macro calls the put procedure of the next queue in a Stream,
and passes it a message pointer as an argument. The parameters must be
declared as queue t *q and mblk t *rnp. q is the calling queue (not
the next queue) and-mp is the message to be passed. putnext is the typi­
cal means of passing messages to the next queue in a Stream.

putq - put a message on a queue

int putq(q, bp)
queue_t *q;
mblk_t *bp;

putq puts the message pointed to by bp on the message queue contained
in the queue pointed to by q and enables that queue. putq queues mes­
sages appropriately by type (that is, message queueing priority; see
Chapter 8).
putq always enables the queue when a priority message is queued. putq
enables the queue when an ordinary message is queued if the following
condition is set, and if enabling is not inhibited by noenable: The condi­
tion is set if the module has just been pushed [see CPUSH in
streamio(STR)], or if no message was queued on the last getq call, and
no message has been queued since.
putq is intended to be used from the put procedure in the same queue in
which the message will be queued. A module should not call putq
directly to pass messages to a neighboring module. putq can be used as
the qiyutpO put procedure value in either or both of a module's qinit
structures. This effectively bypasses any put procedure processing and
uses only the module's service procedure(s).

C-ll

Streams Programmer's Guide

qenable - enable a queue

int qenable(q)
queue_t *q;

qenable places the queue pointed to by q on the linked list of queues that
are ready to be called by the STREAMS scheduler (see the definition for
"Schedule" at the beginning of this appendix, and the section entitled
"Put and Service Procedures" in Chapter 5 of the Primer).

qreply - send a message on a stream in the reverse direction

int qreply(q, bp)
queue_t *q;
mblk_t *bp;

qreply sends the message pointed to by bp up (or down) the Stream in the
reverse direction from the queue pointed to by q. This is done by locating
the partner of q (see OTHERQ) and then calling the put procedure of that
queue's neighbor (as in putnext). qreply is typically used to send back a
response (M_IOCACK or M_IOCNAK message) to an M_IOCTL message
(see Appendix B).

qsize - find the number of messages on a queue

int qsize(q)
queue_t *q;

qsize returns the number of messages present in queue q. If there are no
messages on the queue, qsize returns O.

RD - get pointer to the read queue

#define RD(q) ...

The RD macro accepts a write queue pointer, q (declared as queue_t
* q), as an argument and returns a pointer to the read queue for the same
module.

C-12

rmvb - remove a message block from a message

mblk_t *rmvb(mp, bp)
mblk_t *mp;
mblk_t *bp;

Utilities

rmvb removes the message block pointed to by bp from the message
pointed to by mp and then restores the linkage of the message blocks
remaining in the message. rmvb does not free the removed message
block. rmvb returns a pointer to the head of the resulting message. If bp
is not contained in mp, rmvb returns a -1. If there are no message blocks
in the resulting message, rmvb returns a NULL pointer.

rmvq - remove a message from a queue

int rmvq(q, mp)
queue_t *q;
mblk_t *mp;

rmvq removes the message pointed to by mp from the message queue in
the queue pointed to by q and then restores the linkage of the messages
remaining on the queue. If mp does not point to a message that is present
on the queue q, a system panic could result.

splstr - set processor level

int splstrO

splstr increases the system processor level to block interrupts at a level
appropriate for STREAMS modules when those modules are executing
critical portions of their code. splstr returns the processor level at the
time of its invocation. Module developers are expected to use the stan­
dard kernel function splx(s), where s is the integer value returned by
splstr, to restore the processor level to its previous value after the critical
portions of code are passed.

C-13

Streams Programmer's Guide

strlog - submit messages for logging

int strlog(mid, sid, level, flags, fmt, argl, •..)
short mid, sid;
char level;
ushort flags;
char *fmt;
unsigned argl;

strlog submits messages containing specified infonnation to the log
driver. Required definitions are contained in <sys/strlog.h> and
<sys/log.h>. mid is the STREAMS module ID number for the module or
driver submitting the log message. sid is an internal sub-ID number usu­
ally used to identify a particular minor device of a driver. level is a trac­
ing level that allows selective screening of messages from the tracer.
flags are any combination of SL_ERROR (the message is for the error
logger), SL_TRACE (the message is for the tracer), SL_FATAL (advisory
notification of a fatal error), and SL_NOTIFY (request that a copy of the
message be mailed to the system administrator). fmt is a printf(S) style
fonnat string, except that %s, %e, %E, %g, and %0 conversion
specifications are not handled. Up to NLOGARGS numeric or character
arguments can be provided. [See Chapter 6 of the Primer and log(STR).]

testb - check for an available buffer

int testb(size, pri)
int size, pri;

testb checks for the availability of a message buffer of size size at priority
pri (see the section titled "Buffer Allocation Priority") without actually
retrieving the buffer. testb returns 1 if the buffer is available and 0 if no
buffer is available. A successful return value from testb does not guaran­
tee that a subsequent allocb call will succeed (for example, in the case of
an interrupt routine taking buffers).

C-14

unlinkb - remove a message block from the head of a message

mblk t *unlinkb(mp)
mblk=t *mp;

Utilities

unlinkb removes the first message block pointed to by mp and returns a
pointer to the head of the resulting message. unlinkb returns a NULL
pointer if there are no more message blocks in the message.

WR - get pointer to the write queue

#define WR(q) .•.

The WR macro accepts a read queue pointer, q (declared as queue_t
*q), as an argument and returns a pointer to the write queue for the same
module.

C.3 Buft'er Allocation Priority

STREAMS buffers are normally allocated with allocb, described above.
An associated set of allocation priorities has been established. These
priorities are also used in other utility routines:

BPRCLO Low priority. At this priority, allocb may fail even
though the requested buffer size is available. This
priority is used by the Stream head write routine to hold
data associated with user calls.

BPRCMED Medium priority. This priority is typically used for nor­
mal data and control block allocation. As above, allocb
may fail at this priority even though a buffer of the
requested size is available. However, for a given block
size, an BPRCLO allocb call will fail before a
BPRCMED allocb call.

BPRCHI High priority. This priority is typically used only for
critical control message allocations. Calls to allocb
will succeed if a buffer of the appropriate size is avail­
able. Developers should exercise restraint in use of
BPRCHI allocation requests.

C-15

Streams Programmer's Guide

The values BPRCLO, BPRCMED, arid BPRCHI are defined in
<sys/stream.h> .

STREAMS does not guarantee successful buffer allocation -any set of
resources can be exhausted under the right conditions. The bufeaU func­
tion will help modules recover from buffer allocation failures, but it does
not guarantee that the resources will be available. Developers should be
aware of this when implementing modules.

C.4 Utility Routine Summary

ROUTINE DESCRIPTION
adjmsg trim bytes in a message
alloeb allocate a message block
baekq get pointer to the queue behind a given queue
bufeall recover from failure of alloeb
eanput test for room in a queue
eopyb copy a message block
eopymsg copy a message
datamsg test whether message is a data message
dupb duplicate a message block descriptor
dupmsg duplicate a message
enableok re-allow a queue to be scheduled for service
ftushq flush a queue
freeb free a message block
freemsg free all message blocks in a message
getq get a message from a queue
insq put a message at a specific place in a queue
Iinkb concatenate two messages into one
msgdsize get the number of data bytes in a message
noenable prevent a queue from being scheduled
OTHERQ get pointer to the mate queue
puUupmsg concatenate bytes in a message
putbq return a message to the beginning of a queue
putetl put a control message
putctll put a control message with a one-byte parameter
putnext put a message to the next queue
putq put a message on a queue
qenable enable a queue
qreply send a message on a stream in the reverse direction
qsize find the number of messages on a queue
RD get pointer to the read queue
rmvb remove a message block from a message
rmvq remove a message from a queue
splstr set processor level

C-16

striog
testb
unIinkb
WR

submit messages for logging
check for an available buffer

Utilities

remove a message block from the head of a message
get pointer to the write queue

C-17

AppendixD

Design Guidelines

D.l Appendix D: Design Guidelines

D.2 General Rules D-l

D.3 System Calls D-2

D.4 Data Structures D-3

D.5 Header Files D-3

D.6 Accessible Symbols and Functions

D-l

D-4

D.7 Rules for Put and Service Procedures D-5

D.S Error and Trace Logging D-7

Design Guidelines

D.I Appendix D: Design Guidelines

This appendix summarizes STREAMS module and driver design guide­
lines and rules presented in previous chapters. Additional rules that
developers must observe are included. Where appropriate, the section of
this document containing detailed information is named. The end of the
appendix contains a brief description of error and trace logging facilities.

Unless otherwise noted, "module" implies "modules and drivers."

D.2 General Rules

The following are general rules that developers should follow when writ­
ing modules.

1. Modules cannot access information in the u _area of a process.
Modules are not associated with any process, and therefore have
no concept of process or user context.

The capacity to pass u _area information upstream using messages
has been provided where required. This can be done in M_IOCTL
handling (see Chapter 9 and Appendix B). A module can send
error codes upstream in an M_IOCACK or M_IOCNAK message,
where they will be placed in u _error by the Stream head. Return
values can be sent upstream in a M_IOCACK message and will be
placed in u _ rvall. Information can also be passed to the u _area
via an M_ERROR message (see Chapter 10 and Appendix B). The
Stream head recognizes this message type and informs the next
system call that an error has occurred downstream by setting
u error. Note that in both instances, the downstream module can­
not access the u _area, but it informs the Stream head to do so.

2. In general, modules should not require the data in an M_DATA
message to follow a particular format, such as a specific alignment.
This makes it easier to arbitrarily push modules on top of each
other in a sensible fashion. Not following this rule may limit
module reusability (the ability to use the module in multiple appli­
cations).

3. Every module must process an M_FLUSH message according to the
value of the argument passed in the message (see Chapters 8 and 9,
and Appendix B).

4. A module should not change the contents of a data block whose
reference count is greater than 1 (see dupmsg in Appendix C)

D-l

Streams Programmer's Guide

because other modules which have references to the block may not
want the data changed. To avoid problems, it is recommended that
the module copy the data to a new block and then change the new
one.

5. Modules should manipulate message queues and manage buffers
only with the utility routines provided for those purposes (see
Appendix C).

6. Filter modules pushed between a service user and a service pro­
vider (see Chapter 12) cannot alter the contents of the M_PROTO
or M_PCPROTO block in messages. The contents of the data
blocks can be manipulated, but the message boundaries must be
preserved.

D.3 System Calls

These rules pertain to module and drivers as noted.

1. open and close routines may sleep, but the sleep must return to the
routine in the event of a signal. That is, if they sleep, they must be
at priority <= PZERO or with PCATCH set in the sleep priority.

2. The open routine must return >= zero on success or OPENFAIL if it
fails. This ensures that a failure will be reported to the user pro­
cess. errno may be set on failure. However, if the open routine
returns OPENF AIL and errno is not set, STREAMS will automati­
cally set errno to ENXIO.

3. If a module or driver recognizes and acts on an M_IOCTL message,
it must reply by sending a M_IOCACK message upstream. A
unique ID is associated with each M_IOCTL, and the M_IOCACK
or M_IOCNAK message must contain the ID of the M_IOCTL it is
acknowledging.

4. A module (not a driver) must pass on any M_IOCTL message it
does not recognize (see Appendix B). If an unrecognized
M_IOCTL reaches a driver, the driver must reply by sending a
M_IOCNAK message upstream.

D-2

Design Guidelines

D.4 Data Structures

Only the contents of qytr, q_ minpsz, q_ maxpsz, q_ hiwat, and q_Iowat in
a queue _ t structure can be altered. The latter four quantities are set when
the module or driver is opened, but they can be modified subsequently.

As described in Appendix E, every module and driver is configured with
the address of a streamtab structure (see Chapter 5). For a driver, a
pointer to its streamtab is included in cdevsw. For a module, a pointer to
its streamtab is included in fmodsw.

D.S Header Files

The following header files are generally required in modules and drivers:

types.h

stream.h

stropts.h

contains type definitions used in the S1REAMS
header files

contains required structure and constant definitions

primarily for users, but contains definitions of the
arguments to the M_FLUSH message type also
required by modules

One or more of the header files described below may also be included
(also see the following section). No standard UNIX System header files
should be included except as described in the following section. This is
to prevent attempts to access data that cannot or should not be accessed.

errno.h defines various system error conditions and is needed
if errors are to be returned upstream to the user

sysmacros.h contains miscellaneous system macro definitions

param.h

signal.h

file.h

defines various system parameters, particularly the
value of the PCATCH sleep flag

defines the system signal values and should be used if
signals are to be processed or sent upstream

defines the file open flags and is needed if O_NDELAY
is interpreted

D-3

Streams Programmer's Guide

D.6 Accessible Symbols and Functions

The following lists the only symbols and functions to which modules or
drivers can refer (in addition to those defined by STREAMS), if hardware
and UNIX System release independence is to be maintained. Use of sym­
bols not listed here is unsupported.

• user.h (from open/close procedures only)
struct proc *u_procp
short *u_ttyp
char u_error
ushort u_uid
ushort u~id
ushort u_ruid
ushort u_rgid

process structure pointer
TTY group ID pointer
system call error number
effective user ID
effective group ID
real user ID
real group ID

• proc.h (from open/close procedures only)
short p _pid process ID
short p _pgrp process group ID

• functions accessible from open/close procedures only
fig = sleep(chan, pri) sleep until wakeup
delay(ticks) delay for a specified time

• universally accessible functions

D-4

bcopy(from, to, nbytes)
bzero(buffer, nbytes)
t = max(a, b)
t = min(a, b)
mem=malloc(mp, size)
mfree(mp, size, i)
mapinit(mp, mapsize)
addr = vtop(vaddr, NULL)

printf(format, ...)
cmn_err(level, ...)
s = spInO
id = timeout(func, arg, ticks)
untimeout(id)
wakeup(chan)

copy data quickly
zero data quickly
return max of args
return min of args
allocate memory space
deallocate memory space
initialize map structure
translate from virtual to physical
address
print message
print message and optional panic
set priority level
schedule event
cancel event
wake up sleeper

Design Guidelines

• sysmacros.h
t = major(dev) return major device
t = minor(dev) return minor device

• systm.h
time_t lbolt clock ticks since boot in HZ
time_t time seconds since epoch

• param.h
PZERO zero sleep priority
PCATCH catch signal sleep flag
HZ clock ticks per second
NULL 0

• types.h
dev_t combined major/minor device
time_t time counter

All data elements are software read-only except:
u_error - may be set on a failure return of open
u_ttyp - may be set in open to create a controlling TTY

D.7 Rules for Put and Service Procedures

To ensure proper data flow between modules, the following rules should
be observed in put and service procedures. The following rules pertain to
put procedures.

1. A put procedure must not sleep.

2. Each QUEUE must define a put procedure in its qinit structure for
passing messages between modules.

3. A put procedure must use the putq utility to enqueue a message on
its own message queue. This is necessary to ensure that the vari­
ous fields of the queue _ t structure are maintained consistently.

4. When passing messages to a neighbor module, a module cannot
call putq directly, but must call its neighbor's put procedure (see
putnext in Appendix C). Note that this rule is distinct from the
one above it. The previous rule states that a module must call
putq to place messages on its own message queue, whereas this
rule states that a module must not call putq directly to place mes­
sages on a neighbor's queue.

D-5

Streams Programmer's Guide

However, the 'L qinfo structure that points to a module's put pro­
cedure may point to putq (that is, putq is used as the put procedure
for that module). When a module calls a neighbor's put procedure
that is defined in this manner, it will be calling putq indirectly. If
any module uses putq as its put procedure in this manner, the
module must define a service procedure. Otherwise, no messages
will ever be sent to the next module. Also, because putq does not
process M_FLUSH messages, any module that uses putq as its put
procedure must define a service procedure to process M_FLUSH
messages.

5. The put procedure of a QUEUE with no service procedure must call
the put procedure of the next QUEUE directly if a message is to be
passed to that QUEUE. If flow control is desired, a service pro­
cedure must be provided.

Service procedures must observe the following rules:

1. A service procedure must not sleep.

2. The service procedure must use getq to remove a message from its
message queue so that the flow control mechanism is maintained.

3. The service procedure should process all messages on its message
queue. The only exception is if the Stream ahead is blocked (that
is, if canput fails; see Appendix C). Adherence to this rule is the
only guarantee that STREAMS will enable (schedule for execution)
the service procedure when necessary, and that the flow control
mechanism will not fail.

If a service procedure exits for any other reason (for example,
buffer allocation failure), it must take explicit steps to ensure that
it will be re-enabled.

4. The service procedure must follow the steps below for each mes­
sage that it processes. STREAMS flow control relies on strict
adherence to these steps.

Step 1:

D-6

Remove the next message from the message queue
using getq. It is possible that the service procedure
could be called when no messages exist on the queue,
and so the service procedure should never assume that
there is a message on its message queue. If there is no
message, return.

Step 2:

Step 3:

Step 4:

Design Guidelines

If all the following conditions are met:

• can put fails and

• the message type is not a priority type (see
Appendix B) and

• the message is to be put on the next QUEUE.

then, continue at Step 3. Otherwise, continue at Step 4.

The message must be replaced on the head of the mes­
sage queue from which it was removed using putbq
(see Appendix C). Following this, the service pro­
cedure is exited. The service procedure should not be
re-enabled at this point. It will be automatically back­
enabled by flow control.

If all the conditions of Step 2 are not met, the message
should not be returned to the queue. It should be pro­
cessed as necessary. Then, return to Step 1.

D.S Error and Trace Logging

STREAMS error and trace loggers are provided for debugging and for
administering modules and driver. Chapter 6 of the STREAMS Primer
contains a description of this facility which consists of log(STR),
strace(ADM), strclean(ADM), strerr(ADM), and the strlog function
described in Appendix C.

D-7

AppendixE

Configuring

E.l Appendix E: Configuring E-l

E.2 Configuring STREAMS Modules and Drivers E-l
E.2.1 Configuration Mechanism E-2

E.3 Tunable Parameters E-3

E.4 System Error Messages E-5

Configuring

E.I Appendix E: Configuring

This appendix contains infonuation about configuring STREAMS modules
and drivers into the UNIX System on your computer. This appendix also
includes a list of STREAMS system tunable parameters and system error
messages.

E.2 Configuring STREAMS Modules and Drivers

Each character device that is configured into a UNIX System results in an
entry which is placed in the kernel cdevsw table. Entries for STREAMS
drivers are also placed in this table. However, because system calls to
STREAMS drivers must be processed by the STREAMS routines, the
configuration mechanism distinguishes between STREAMS drivers and
character device drivers in their associated cdevsw entries.

The distinction is contained in the d str field which was added to the
cdevsw structure for this purpose. d str provides the appropriate single
entry point for all system calls on STREAMS files, as shown below:

extern struct cdevsw

struct streamtab *d_str;
cdevsw[];

The configuration mechanism fonus the d _ str entry name by appending
the string "info" to the STREAMS driver prefix. The "info" entry is a
pointer to a streamtab structure (see Appendix A) that contains pointers
to the qinit structures for the read and write QUEUEs of the driver. The
driver must contain the external definition:

struct streamtab p~fixinfo = {

If the d_str entry contains a non-NULL pointer, the operating system
recognizes the device as a STREAMS driver and calls the appropriate
STREAMS routine. If the entry is NULL, a character I/O device cdevsw
interface is used. Note that only streamtab must be externally defined in
STREAMS drivers and modules. streamtab is used to identify the
appropriate open, close, put, service, and administration routines. These
driver/module routines should generally be declared static.

The configuration mechanism supports various combinations of block,
character, STREAMS devices, and STREAMS modules (see below). For
example, it is possible to identify a device as a block and STREAMS

E-l

Streams Programmer's Guide

device, and entries will be inserted in the appropriate system switch
tables. A device cannot be both a character and STREAMS device.

When a STREAMS module is configured, an fmodsw table entry is gen­
erated by the configuration mechanism. fmodsw contains the following:

#define FMNAMESZ 8

extern struct fmodsw
char f_name[FMNAMESZ+l];
struct streamtab *f_str;

fmodsw[];

f_name is the name of the module used in STREAMS-related ioctl calls.
f_str is similar to the d_str entry in the cdevsw table. It is a pointer to a
streamtab structure which contains pointers to the qinit structures for the
read and write QUEUEs of this STREAMS module (as in STREAMS
drivers). The module must contain the external definition:

struct streamtab preft~info = { ...

E.2.1 Configuration Mechanism

STREAMS modules and drivers are configured into the system by use of
the configure(ADM) and config(ADM) commands. Use configure in ins­
tallation scripts for target machines which do not have the development
system. If the development system is installed, you can choose to use
config, which requires that you edit the master file lusrlsyslconflmaster
directly.

To configure a STREAMS driver with configure, use the following:

configure -s -c -m major -a drvinit drvintr drvpoll drvinfo

where major is the major device number, drvinit is the initialization rou­
tine for the driver, drvintr is the interrupt routine for the driver, drvpoll is
the poll routine, and drvinfo is the data structure for the driver. Note that
drvinit, drvintr, and drvpoll are optional. The traditional cdevsw routines
are not used for STREAMS drivers.

To configure a STREAMS module with configure, use the following:

configure -s -a drvinfo

E-2

Configuring

where drvinfo is the streamtab structure for the module.

This generates entries in the file lusrlsyslconf/master. Here is an example
of entries for STREAMS modules and drivers in this file:

* name vsiz msk typ hndlr na bmaj emaj # spl vee1 vee2 vee3 vee4

* 1 2 3 5 6 7 8 9 10 11 12 13 14

stream modules
timod 0 1000 000 tim 0 0 0 0 0
tirdwr 0 1000 000 trw 0 0 0 0 0 0

stream drivers
CLONE 0 1000 004 eln 0 0 50 0 0
LOG 0 1000 004 log 0 0 51 0 0

The "msk" value 01000 is an indicator that the entry is a STREAMS
driver or module. If the "typ" mask contains 04, then the entry is a
STREAMS driver, not a module. The characters under "hndlr" are the
prefix used for the symbol name of the streamtab structure as well as the
driver routine names. The characters under "name" are used for the
I_name field in the struct Imodsw entry for the driver. This is the same as
the string that is used for the ioctl arg for CPUSH and I_POP commands.

E.3 Thnable Parameters

Certain system parameters referenced by STREAMS are configurable
when building a new operating system (see the Installation and Mainte­
nance manual for further details). This can be done by selecting the
correct configuration options. "queues" refers to queue_t structures.
These parameters are:

NQUEUE

NSTREAM

NBLK4096

Total number of queues that may be allocated at
one time by the system. Queues are allocated in
pairs. Each STREAMS driver, Stream head, and
pushable module requires a pair of queues. A
minimal Stream contains 4 queues (two for the
Stream head, two for the driver).

Total number of Streams that may be open at
one time in a system.

Total number of 4096-byte data blocks available
for STREAMS operations. The pool of data
blocks is a system-wide resource, and so enough
blocks must be configured to satisfy all Streams.

E-3

Streams Programmer's Guide

NBLK2048

NBLK1024

NBLK512

NBLK256

NBLK128

NBLK64

NBLK32

NBLK16

NBLK4

NMUXLINK

NSTREVENT

MAXSEPGCNT

E-4

Total number of 2048-byte data blocks available
for STREAMS operations.

Total number of 1024-byte data blocks available
for STREAMS operations.

Total number of 512-byte data blocks available
for STREAMS operations.

Total number of 256-byte data blocks available
for STREAMS operations.

Total number of 128-byte data blocks available
for STREAMS operations.

Total number of 64-byte data blocks available
for STREAMS operations.

Total number of 32-byte data blocks available
for STREAMS operations.

Total number of 16-byte data blocks available
for STREAMS operations.

Total number of 4-byte data blocks available for
STREAMS operations.

Total number of Streams in the system that can
be linked as lower Streams to multiplexer
drivers [by an CLINK ioctl, see
streamio(STR)].

Initial number of internal event cells available
in the system to support bufeall (see Appendix
C) and poll [see poll(S)] calls.

The number of additional pages of memory that
can be dynamically allocated for event cells. If
this value is 0, only the allocation defined by
NSTREVENT is available for use. If the value is
not 0 and if the kernel runs out of event cells, it
will under some circumstances attempt to allo­
cate an extra page of memory from which new
event cells can be created. MAXSEPGCNT
places a limit on the number of pages that can
be allocated for this purpose. Once a page has

NSTRPUSH

STRMSGSZ

STRCTLSZ

STRLOFRAC

STRMEDFRAC

Configuring

been allocated for event cells, however, it can­
not be recovered later for use elsewhere.

Maximum number of modules that can be
pushed onto a single Stream.

Maximum bytes of infonnation that a single
system call can pass to a Stream to be placed
into the data part of a message (in M_DATA
blocks). Any write exceeding this size will be
broken into multiple messages. A putmsg with
a data part exceeding this size will fail.

Maximum bytes of infonnation that a single
system call can pass to a Stream to be placed
into the control part of a message (in an
M_PROTO or M_PCPROTO block). A putmsg
with a control part exceeding this size will fail.

The percentage of data blocks of a given class at
which low priority block allocation requests are
automatically failed. For example, if
STRLOFRAC is 80 and there are forty-eight
256-byte blocks, a low priority allocation
request will fail when more than thirty-eight
256-byte blocks are already allocated. This
value is used to prevent deadlock situations in
which a low priority activity might starve out
more important functions. For example, if
STRLOFRAC is 80 and there are 100 blocks of
256 bytes, then when more than 80 of such
blocks. are allocated, any low priority allocation
request will fail. This value must be in the
range 0 <= STRLOFRAC <= STRMEDFRAC.

The percentage of data blocks of a given class at
which medium priority block allocation requests
are automatic all y failed.

E.4 System Error Messages

Messages are reported to the console as a result of various error condi­
tions detected by STREAMS. These messages and the action to be taken
on their occurrence are described below. In certain cases, a tunable
parameter (see previous section) may have to be changed.

E-5

Streams Programmer's Guide

E-6

stropen: out of streams
A Stream head data structure could not be allocated during
the open of a STREAMS device. If this occurs repeatedly,
increase NSTREAM.

stropen: out of queues
A pair of queues could not be allocated for the Stream head
during the open of a driver. If this occurs repeatedly,
increase NQUEUE.

KERNEL: allocq: out of queues
A pair of queues could not be allocated for a pushable
module (CPUSH ioctl) or driver (open). If this occurs
repeatedly, increase NQUEUE.

strinit: can not allocate stream data blocks
During system initialization, the system was unable to allo­
cate enough memory for the STREAMS data blocks. The
system must be rebuilt with fewer data blocks specified.

KERNEL: strinit: odd value configured for v.v _nqueue
KERNEL: strinit: was qcnt, set to nqcnt

During system initialization, the total number of queues
allocated, qcnt, was not a multiple of 2. The system resets
this to an appropriate value, nqcnt.

WARNING: bufcall: could not allocate stream event
A call to bufcall has failed because all Stream event cells
have been allocated. If this occurs repeatedly, increase
NSTREVENT.

KERNEL: ·sealloc: not enough memory for page allocation
An attempt to dynamically allocate a page of Stream event
cells failed. If this occurs repeatedly, decrease MAX­
SEPGCNT.

KERNEL: munlink: could not perform ioctl, closing anyway
A linked multiplexer could not be unlinked when the con­
trolling Stream for that link was closed. The linked Stream
will be unlinked and the controlling Stream will be closed
anyway.

AppendixF

STR Manpages

F.l Appendix F: (STR) Manpages F-l

STR Manpages

F.1 Appendix F: (STR) Manpages

This appendix contains the (STR) manpages.

F-l

Contents

(STR) Manpages

clone
log
streamio
timod
tirdwr

open any minor device on a STREAMS driver
interface to STREAMS error logging and event tracing
STREAMS ioctl commands
Transport Interface cooperating STREAMS module
Transport Interface read/write interface STREAMS module

CLONE (STR) CLONE (STR)

Name

clone - open any minor device on a STREAMS driver

Description

clone is a STREAMS software driver that finds and opens an unused
minor device on another STREAMS driver. The minor device passed
to clone during the open is interpreted as the major device number of
another STREAMS driver for which an unused minor device is to be
obtained. Each such open results in a separate stream to a previously
unused minor device.

The clone driver consists solely of an open function. This open func­
tion performs all of the necessary work so that subsequent system calls
[including close(S)] require no further involvement of clone.

clone will generate an ENXIO error, without opening the device, if the
minor device number provided does not correspond to a valid major
device, or if the driver indicated is not a STREAMS driver.

Warnings

Multiple opens of the same minor device cannot be done through the
clone interface. Executing stat(S) on the file system node for a cloned
device yields a different result from executing Jstat(S) using a file
descriptor obtained from opening the node.

See Also

log(STR).
STREAMS Programmer's Guide.

December 6, 1988 Page 1

LOG (STR) LOG (STR)

Name

log - interface to STREAMS error logging and event tracing

Description

log is a STREAMS software device driver that provides an interface
for the STREAMS error logging and event tracing processes
[strerr(ADM), strace(ADM)]. log presents two separate interfaces: a
function call interface in the kernel through which STREAMS drivers
and modules submit log messages; and a subset of ioctl(S) system
calls and STREAMS messages for interaction with a user level error
logger, a trace logger, or processes that need to submit their own log
messages.

lCernel Interface

log messages are generated within the kernel by calls to the function
strlog:

strlog(mid, sid, level, flags, fmt, argl, ...)
short mid, sid;
char level;
ushort flags;
char *fmt;
unsigned arg 1;

Required definitions are contained in <sys/strlog.h> and <sys/log.h>.
mid is the STREAMS module id number for the module or driver sub­
mitting the log message. sid is an internal sub-id number usually used
to identify a particular minor device of a driver. level is a tracing
level that allows for selective screening out of low priority messages
from the tracer. flags are any combination of SL_ERROR (the message
is for the error logger), SL_TRACE (the message is for the tracer),
SL_FATAL (advisory notification of a fatal error), and SL_NOTIFY
(request that a copy of the message be mailed to the system adminis­
trator). fmt is a printj(S) style format string, except that %s, %e, %E,
%g, and %0 conversion specifications are not handled. Up to NLO­
GARGS (currently 3) numeric or character arguments can be provided.

User Interface

log is opened via the clone interface, /dev/log. Each open of /dev/log
obtains a separate stream to log. In order to receive log messages, a
process must first notify log whether it is an error logger or trace
logger via a STREAMS CSTR ioctl call (see below). For the error
logger, the CSTR ioctl has an ic_cmd field of CERRLOG with no
accompanying data. For the trace logger, the ioctl has an ic_cmd field

December 6, 1988 Page 1

LOG (STR) LOG (STR)

of CTRCLOG, and must be accompanied by a data buffer containing
an array of one or more struct trace_ids elements. Each trace_ids
structure specifies an mid, sid, and level from which message will be
accepted. strlog will accept messages whose mid and sid exactly
match those in the trace_ids structure, and whose level is less than or
equal to the level given in the trace_ids structure. A value of -1 in any
of the fields of the trace_ids structure indicates that any value is
accepted for that field.

At most one trace logger and one error logger can be active at a time.
Once the logger process has identified itself via the ioctl call, log will
begin sending up messages subject to the restrictions noted above.
These messages are obtained via the getmsg(S) system call. The con­
trol part of this message contains a log_ctl structure, which specifies
the mid, sid, level, fiags, time in ticks since boot that the message was
submitted, the corresponding time in seconds since Jan. 1, 1970, and a
sequence number. The time in seconds since 1970 is provided so that
the date and time of the message can be easily computed, and the time
in ticks since boot is provided so that the relative timing of log mes­
sages can be determined.

Different sequence numbers are maintained for the error and trace log­
ging streams, and are provided so that gaps in the sequence of mes­
sages can be determined (during times of high message traffic, some
messages may not be delivered by the logger to avoid hogging system
resources). The data part of the message contains the unexpanded text
of the format string (null terminated), followed by NLOGARGS words
for the arguments to the format string, aligned on the first word boun­
dary following the format string.

A process may also send a message of the same structure to log, even
if it is not an error or trace logger. The only fields of the log_ctl struc­
ture in the control part of the message that are accepted are the level
and flags fields; all other fields are filled in by log before being for­
warded to the appropriate logger. The data portion must contain a null
terminated format string, and any arguments (up to NLOGARGS) must
be packed one word each, on the next word boundary following the
end of the format string.

Attempting to issue an CTRCLOG or CERRLOG when a logging pro­
cess of the given type already exists will result in the error ENXIO
being returned. Similarly, ENXIO is returned for CTRCLOG ioctls
without any trace_ids structures, or for any unrecognized CSTR ioctl
calls. Incorrectly formatted log messages sent to the driver by a user
process are silently ignored (no error results).

December 6, 1988 Page 2

LOG (STR) LOG (STR)

Examples

Example of CERRLOG notification.

struct strioctl ioc;

ioc.ic_cmd = CERRLOG;
ioc.ic_timout = 0;
ioc.ic_len = 0;

/* default timeout (15 secs.) */

ioc.ic_dp = NULL;

ioctl(log, CSTR, &ioc);

Example ofCTRCLOG notification.

struct trace_ids tid[2];

tid[O].ti_mid = 2;
tid[O].ti_sid = 0;
tid[O] .ti_Ievel = 1;

tid[1].ti_mid = 1002;
tid [1] .ti_sid = -1;
tid[l].ti_Ievel = -1;

ioc.ic_cmd = CTRCLOG;
ioc.ic_timout = 0;

/* any sub-id will be allowed */
/* any level will be allowed * /

ioc.ic_len = 2 * sizeof(struct trace_ids);
ioc.ic_dp = (char *)tid;

ioctl(log, CSTR, &ioc);

Example of submitting a log message (no arguments).

struct strbuf ctl, dat;
struct log_ctl Ie;
char *message = "Don't forget to pick up some milk on the way home";

ctl.len = ctl.maxlen = sizeof(Ie);
ctl.buf = (char *)&Ie;

dat.len = dat.maxlen = strlen(message);
dat.buf = message;

Ie.level = 0;
Ie.flags = SL_ERRORISL_NOTIFY;

putmsg(log, &ctl, &dat, 0);

December 6, 1988 Page 3

LOG (STR) LOG (STR)

Files

/dev/log, <sys/log.h>, <sys/strlog.h>

See Also

clone(STR).
strace(ADM), strerr(ADM), intro(S), getmsg(S), putmsg(S) in the
XENIX Reference.
STREAMS Programmer's Guide.

December 6, 1988 Page 4

STREAMIO (STR) STREAMIO (STR)

Name

streamio - STREAMS ioctl commands

Syntax

#include <stropts.h>
int ioctl fildes, command, arg)
int fildes, command;

Description

STREAMS [see intro(S)] ioctl commands are a subset of ioctl(S) sys­
tem calls which perform a variety of control functions on streams.
The arguments command and arg are passed to the file designated by
fildes and are interpreted by the stream head. Certain combinations of
these arguments may be passed to a module or driver in the stream.

fildes is an open file descriptor that refers to a stream. command
determines the control function to be performed as described below.
arg represents additional information that is needed by this command.
The type of arg depends upon the command, but it is generally an
integer or a pointer to a command-specific data structure.

Since these STREAMS commands are a subset of ioctl, they are sub­
ject to the errors described there. In addition to, those errors, the call
will fail with ermo set to EINV AL, without processing a control func­
tion, if the stream referenced by fildes is linked below a multiplexer,
or if command is not a valid value for a stream.

Also, as described in ioctl, STREAMS modules and drivers can detect
errors. In this case, the module or driver sends an error message to the
stream head containing an error value. This causes subsequent system
calls to fail with errno set to this value.

Command Functions

The following ioctl commands, with error values indicated, are appli­
cable to all STREAMS files:

CPUSH Pushes the module whose name is pointed to by arg
onto the top of the current stream, just below the
stream head. It then calls the open routine of the
newly-pushed module. On failure, errno is set to one
of the following values:

[EINVAL] Invalid module name.

November 29,1988 Page 1

STREAMIO (STR)

CPOP

CLOOK

CFLUSH

CSETSIG

[EFAULT]

[ENXIO]

[ENXIO]

STREAMIO (STR)

arg points outside the allocated
address space.

Open routine of new module failed.

Hangup received onfildes.

Removes the module just below the stream head of
the stream pointed to by fildes. arg should be 0 in an
CPOP request. On failure, errno is set to one of the
following values:

[EINVAL]

[ENXIO]

No module present in the stream.

Hangup received onfildes.

Retrieves the name of the module just below the
stream head of the stream pointed to by fildes, and
places it in a null terminated character string pointed
at by argo The buffer pointed to byarg should be at
least FMNAMESZ+ 1 bytes long. An [#include
<sys/conf.h>] declaration is required. On failure,
errno is set to one of the following values:

[EFAULT]

[EINVAL]

arg points outside the allocated
address space.

No module present in stream.

This request flushes all input and/or output queues,
depending on the value of argo Legal arg values are:

FLUSHR

FLUSHW

FLUSHRW

Flush read queues.

Flush write queues.

Flush read and write queues.

On failure, errno is set to one of the following values:

[ENOSR]

[EINVAL]

[ENXIO]

Unable to allocate buffers for flush
message due to insufficient STREAMS
memory resources.

Invalid arg value.

Hangup received onfildes.

Informs the stream head that the user wishes the ker­
nel to issue the SIGPOLL signal [see signal(S) and
sigset(S)] when a particular event has occurred on the
stream associated with fildes. CSETSIG supports an

November 29, 1988 Page 2

STREAMIO (STR) STREAMIO (STR)

asynchronous processing capability in STREAMS.
The value of arg is a bitmask that specifies the events
for which the user should be signaled. It is the
bitwise-OR of any combination of the following con­
stants:

A non-priority message has arrived on
a stream head read queue, and no
other messages existed on that queue
before this message was placed there.
This is set even if the message is of
zero length.

A priority message is present on the
stream head read queue. This is set
even if the message is of zero length.

The write queue just below the stream
head is no longer full. This notifies
the user that there is room on the
queue for sending (or writing) data
downstream.

A STREAMS signal message that con­
tains the SIGPOLL signal has reached
the front of the stream head read
queue.

A user process may choose to be signaled only of
priority messages by setting the arg bitmask to the
value S_HIPRI.

Processes that wish to receive SIGPOLL signals must
explicitly register to receive them using CSETSIG. If
several processes register to receive this signal for the
same event on the same Stream, each process will be
signaled when the event occurs.

If the value of arg is zero, the calling process will be
unregistered and will not receive further SIGPOLL sig­
nals. On failure, errno is set to one of the following
values:

[EINVAL]

[EAGAIN]

arg value is invalid or arg is zero and
process is not registered to receive the
SIGPOLL signal.

Allocation of a data structure to store
the signal request failed.

November 29,1988 Page 3

STREAA4IO(STR) STREAA4IO(STR)

CGETSIG Returns the events for which the calling process is
currently registered to be sent a SIGPOLL signal. The
events are returned as a bitmask pointed to by arg,
where the events are those specified in the description
of CSETSIG above. On failure, errno is set to one of
the following values:

CFIND

CPEEK

[EINVAL]

[EFAULT]

Process not registered to receive the
SIGPOLL signal.

arg points outside the allocated
address space.

Compares the names of all modules currently present
in the stream to the name pointed to by arg, and
returns 1 if the named module is present in the stream.
It returns 0 if the named module is not present. On
failure, errno is set to one of the following values:

[EFAULT]

[EINVAL]

arg points outside the allocated
address space.

arg does not contain a valid module
name.

Allows a user to retrieve the information in the first
message on the stream head read queue without taking
the message off the queue. arg points to a strpeek
structure which contains the following members:

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;

The maxlen field in the ctlbuJ and databuJ strbuJ struc­
tures [see getmsg(S)] must be set to the number of
bytes of control information and/or data information,
respectively, to retrieve. If the user sets flags to
RS_HIPRI, CPEEK will only look for a priority mes­
sage on the stream head read queue.

CPEEK returns 1 if a message was retrieved, and
returns 0 if no message was found on the stream head
read queue, or if the RS_HIPRI flag was set in flags
and a priority message was not present on the stream
head read queue. It does not wait for a message to
arrive. On return, ctlbuJ specifies information in the
control buffer, databuJ specifies information in the
data buffer, and flags contains the value 0 or
RS_HIPRI. On failure, errno is set to one of the fol­
lowing values:

November 29, 1988 Page 4

STREAA1IO(STR) STREAA1IO(STR)

CSRDOPT

CGRDOPT

CNREAD

[EFAULT] arg points, or the buffer area specified
in etlbuf or databuf is, outside the
allocated address space.

[EBADMSG] Queued message to be read is not
valid for CPEEK

Sets the read mode using the value of the argument
argo Legal arg values are:

RNORM Byte-stream mode, the default.

RMSGD Message-discard mode.

RMSGN Message-nondiscard mode.

Read modes are described in read(S). On failure,
errno is set to the following value:

[EINVAL] arg is not one of the above legal
values.

Returns the current read mode setting in an int pointed
to by the argument arg. Read modes are described in
read(S). On failure, errno is set to the following
value:

[EFAULT] arg points outside the allocated
address space.

Counts the number of data bytes in data blocks in the
first message on the stream head read queue, and
places this value in the location pointed to by arg.
The return value for the command is the number of
messages on the stream head read queue. For exam­
ple, if zero is returned in arg, but the ioetl return value
is greater than zero, this indicates that a zero-length
message is next on the queue. On failure, errno is set
to the following value:

[EFAULT] arg points outside the allocated
address space.

CFDINSERT Creates a message from user specified buffer(s), adds
information about another stream and sends the mes­
sage downstream. The message contains a control
part and an optional data part. The data and control
parts to be sent are distinguished by placement in
separate buffers, as described below.

November 29, 1988 Page 5

STREAMIO (STR) STREAMIO (STR)

arg points to a strfdinsert structure which contains the
following members:

struct strbuf
struct strbuf
long.

ctlbuf;
databuf;
flags;
fildes;
offset;

int
int

The len field in the ctlbuf strbuJ structure [see
putmsg(S)] must be set to the size of a pointer plus the
number of bytes of control information to be sent with
the message. fildes in the strfdinsert structure
specifies the file descriptor of the other stream. offset,
whkch must be word-aligned, specifies the number of
bytes beyond the beginning of the control buffer where
CFDINSERT will store a pointer. This pointer will be
the address of the read queue structure of the driver
for the stream corresponding to fildes in the strfdinsert
structure. The len field in the databuJ strbuJ structure
must be set to the number of bytes of data information
to be sent with the message or zero if no data part is to
be sent.

flags specifies the type of message to be created. A
non-priority message is created if flags is set to 0, and
a priority message is created if flags is set to
RS_HIPRI. For non-priority messages, CFDINSERT
will block if the stream write queue is full due to
internal flow control conditions. For priority mes­
sages, CFDINSERT does not block on this condition.
For non-priority messages, CFDINSERT does not
block when the write queue is full and ° _NDELAY is
set. Instead, it fails and sets errno to EAGAIN.

CFDINSERT also blocks, unless prevented by lack of
internal resources, waiting for the availability of mes­
sage blocks in the stream, regardless of priority or
whether O_NDELAY has been specified. No partial
message is sent. On failure, errno is set to one of the
following values:

[EAGAIN]

[ENOSR]

A non-priority message was specified,
the O_NDELAY flag is set, and the
stream write queue is full due to inter­
nal flow control conditions.

Buffers could not be allocated for the
message that was to be created due to
insufficient STREAMS memory
resources.

November 29, 1988 Page 6

STREAMIO (STR)

CSTR

[EFAULT]

[EINVAL]

[ENXIO]

[ERANGE]

STREAMIO (STR)

arg points, or the buffer area specified
in ctlbuJ or databuJ is, outside the
allocated address space.

One of the following: fildes in the
stifdinsert structure is not a valid,
open stream file descriptor, the size of
a pointer plus offset is greater than the
len field for the buffer specified
through ctlptr; offset does not specify
a properly aligned location in the data
buffer; an undefined value is stored in
flags.

Hangup received on fildes of the ioctl
call or fildes in the stifdinsert struc­
ture.

The len field for the buffer specified
through databuJ does not fall within
the range specified by the maximum
and minimum packet sizes of the top­
most stream module, or the len field
for the buffer specified through data­
buf is larger than the maximum
configured size of the data part of a
message, or the len field for the buffer
specified through ctlbuJ is larger than
the maximum configured size of the
control part of a message.

CFDINSERT can also fail if an error message was
received by the stream head of the stream correspond­
ing to fildes in the stifdinsert structure. In this case,
errno will be set to the value in the message.

Constructs an internal STREAMS ioctl message from
the data pointed to by arg and sends that message
downstream.

This mechanism is provided to send user ioctl requests
to downstream modules and drivers. It allows infor­
mation to be sent with the ioctl and will return to the
user any information sent upstream by the downstream
recipient. CSTR blocks until the system responds
with either a positive or negative acknowledgment
message or until the request "times out" after some
period of time. If the request times out, it fails with
errno set to ETIME.

November 29, 1988 Page 7

STREAMIO (STR) ST'REAMIO (STR)

At most, one CSTR can be active on a stream. Further
CSTR calls will block until the active CSTR com­
pletes at the stream head. The default timeout inter­
val for these requests is 15 seconds. The O_NDELAY
[see open(S)] flag has no effect on this call.

To send requests downstream, arg must point to a
strioetl structure which contains the following
members:

int
int
int
char

ic_cmd;
ic_timout;
ic_Ien;
*ic_dp;

/* downstream command * /
/* ACK/NAK timeout */
/* length of data arg * /
/* ptr to data arg * /

ie emd is the internal ioctl command intended for a
downstream module or driver; and ie timout is the
number of seconds (-1 = infinite, 0 = use default, >0 =
as specified) an CSTR request will wait for ack­
nowledgment before timing out. ie len is the number
of bytes in the data argument and ic dp is a pointer to
the data argument. The ie len field-has two uses: on
input, it contains the length of the data argument
passed in, and on return from the command, it con­
tains the number of bytes being returned to the user
(the buffer pointed to by ie_dp should be large enough
to contain the maximum amount of data that any
module or the driver in the stream can return).

The stream head will convert the information pointed
to by the strioetl structure to an internal ioctl com­
mand message and send it downstream. On failure,
errno is set to one of the following values:

[ENOSR]

[EFAULT]

[EINVAL]

[ENXIO]

Unable to allocate buffers for the ioetl
message due to insufficient STREAMS
memory resources.

arg points, or the buffer area specified
by ie _ dp and ie_len (separately for
data sent and data returned) is, outside
the allocated address space.

ie_len is less than 0 or ie_len is larger
than the maximum configured size of
the data part of a message or ie _timout
is less than -1.

Hangup received onfildes.

November 29, 1988 Page 8

STREAMIO (STR)

CSENDFD

CRECVFD

[ETIME]

STREAMIO (STR)

A downstream ioetl timed out before
acknowledgment was received.

An CSTR can also fail while waiting for an ack­
nowledgment if a message indicating an error or a
hangup is received at the stream head. In addition, an
error code can be returned in the positive or negative
acknowledgment message, in the event the ioctl com­
mand sent downstream fails. For these cases, CSTR
will fail with errno set to the value in the message.

Requests the stream associated with fildes to send a
message, containing a file pointer, to the stream head
at the other end of a stream pipe. The file pointer
corresponds to arg, which must be an integer file
descriptor.

CSENDFD converts arg into the corresponding system
file pointer. It allocates a message block and inserts
the file pointer in the block. The user id and group id
associated with the sending process are also inserted.
This message is placed directly on the read queue [see
intro(S)] of the stream head at the other end of the
stream pipe to which it is connected. On failure,
ermo is set to one of the following values:

[EAGAIN]

[EAGAIN]

[EBADF]

[EINVAL]

[ENXIO]

The sending stream is unable to allo­
cate a message block to contain the
file pointer.

The read queue of the receiving
stream head is full and cannot accept
the message sent by CSENDFD.

arg is not a valid, open file descriptor.

fildes is not connected to a stream
pipe.

Hangup received onfildes.

Retrieves the file descriptor associated with the mes­
sage sent by an CSENDFD ioetl over a stream pipe.
arg is a pointer to a data buffer large enough to hold
an strrecvfd data structure containing the following
members:

int fd;
unsigned short uid;
unsigned short gid;
char fill[8];

November 29, 1988 Page 9

STREAMIO (STR) STREAMIO (STR)

fd is an integer file descriptor. uid and gid are the user
id and group id, respectively, of the sending stream.

If O_NDELAY is not set [see open(S)] , CRECVFD will
block until a message is present at the stream head. If
O_NDELAY is set, CRECVFD will fail with errno set
to EAGAIN if no message is present at the stream
head.

If the message at the stream head is a message sent by
an CSENDFD, a new user file descriptor is allocated
for the file pointer contained in the message. The new
file descriptor is placed in the fd field of the strrecvfd
structure. The structure is copied into the user data
buffer pointed to by arg. On failure, errno is set to one
of the following values:

[EAGAIN] A message was not present at the
stream head read queue, and the
O_NDELAY flag is set.

[EBADMSG] The message at the stream head read
queue was not a message containing a
passed file descriptor.

[EFAULT] arg points outside the allocated
address space.

[EMFll..E] NOFll..ES file descriptors are currently
open.

[ENXIO] Hangup received onfildes.

The following two commands are used for connecting and disconnect­
ing multiplexed STREAMS configurations.

CLINK Connects two streams, where fildes is the file descrip­
tor of the stream connected to the multiplexing driver,
and arg is the file descriptor of the stream connected
to another driver. The stream designated by arg gets
connected below the multiplexing driver. CLINK
requires the multiplexing driver to send an ack­
nowledgment message to the stream head regarding
the linking operation. This call returns a multiplexer
ID number (an identifier used to disconnect the multi­
plexer, see CUNLINK) on success, and a -Ion failure.
On failure, errno is set to one of the following values:

[ENXIO] Hangup received onfildes.

November 29, 1988 Page 10

STREAMIO (STR)

CUNLINK

[ETIME]

[EAGAIN]

[ENOSR]

[EBADF]

[EINVAL]

[EINVAL]

[EINVAL]

STREAMIO (STR)

Time out before acknowledgment
message was received at stream head.

Temporarily unable to allocate storage
to perform the CLINK.

Unable to allocate storage to perform
the CLINK due to insufficient
STREAMS memory resources.

arg is not a valid, open file descriptor.

fildes stream does not support multi­
plexing.

arg is not a stream, or is already
linked under a multiplexer.

The specified link operation would
cause a "cycle" in the resulting
configuration; that is, if a given
stream head is linked into a multi­
pie xing configuration in more than
one place.

An CLINK can also fail while waiting for the multi­
plexing driver to acknowledge the link request, if a
message indicating an error or a hangup is received at
the stream head of fildes. In addition, an error code
can be returned in the positive or negative ack­
nowledgment message. For these cases, CLINK will
fail with errno set to the value in the message.

Disconnects the two streams specified by fildes and
argo fildes is the file descriptor of the stream con­
nected to the multiplexing driver. fildes must
correspond to the stream on which the ioetl CLINK
command was issued to link the stream below the
multiplexing driver. arg is the multiplexer ID number
that was returned by the CLINK. If arg is -1, then all
Streams which were linked to fildes are disconnected.
As in CLINK, this command requires the multiplexing
driver to acknowledge the unlink. On failure, errno is
set to one of the following values:

[ENXIO]

[ETIME]

Hangup received onfildes.

Time out before acknowledgment
message was received at stream head.

November 29, 1988 Page 11

STREAlvlIO (STR)

See Also

[ENOSR]

[EINVAL]

Unable to allocate storage to perfonn
the C UNLINK due to insufficient
STREAMS memory resources.

arg is an invalid multiplexer ID
number or fildes is not the stream on
which the CLINK that returned arg
was perfonned.

An CUNLINK can also fail while waiting for the mul­
tiplexing driver to acknowledge the link request, if a
message indicating an error or a hangup is received at
the stream head of fildes. In addition, an error code
can be returned in the positive or negative ack­
nowledgment message. For these cases, CUNLINK
will fail with errno set to the value in the message.

close(S), fcntl(S), intro(S), ioctl(S), open(S), read(S), getmsg(S),
poll(S), putmsg(S), signal(S), sigset(S), write(S) in the XENIX Refer­
ence.
STREAMS Programmer's Guide.
STREAMS Primer.

Diagnostics

Unless specified otherwise above, the return value from ioctl is 0 upon
success and -1 upon failure with errno set as indicated.

November 29, 1988 Page 12

TIMOD (STR) TIMOD (STR)

Name

timod - Transport Interface cooperating STREAMS module

Description

timod is a STREAMS module for use with the Transport Layer Inter­
face (TLI) functions of the Network Services library. The timod
module converts a set of ioctl(S) calls into STREAMS messages that
may be consumed by a transport protocol provider which supports the
Transport Layer Interface. This allows a user to initiate certain TLI
functions as atomic operations.

The timod module must only be pushed (see STREAMS Primer) onto a
stream terminated by a transport protocol provider which supports the
TLI.

All STREAMS messages, with the exception of the message types gen­
erated from the ioctl commands described below, will be transparently
passed to the neighboring STREAMS module or driver. The messages
generated from the following ioctl commands are recognized and pro­
cessed by the timod module. The format of the ioctl call is:

#include <sys/stropts.h>

struct strioctl strioctl;

strioctl.ic_cmd = cmd;
strioctl.ic_timeout = INFTIM;
strioctl.ic_len = size;
strioctl.ic_dp = (char *)buf

ioctl(fildes, CSTR, &strioctl);

where, on issuance, size is the size of the appropriate TLI message to
be sent to the transport provider and on return, size is the size of the
appropriate TLI message from the transport provider in response to the
issued TLI message. buf is a pointer to a buffer large enough to hold
the contents of the appropriate TLI messages. The TLI message types
are defined in <sys/tihdr.h>. The possible values for the cmd field
are:

TCBIND Bind an address to the underlying transport protocol
provider. The message issued to the TCBIND ioctl
is equivalent to the TLI message type T_BIND_REQ
and the message returned by the successful comple­
tion of the ioctl is equivalent to the TLI message
type T_BIND_ACK.

December 6, 1988 Page 1

TIMOD (STR) TIMOD (STR)

TCUNBIND Unbind an address from the underlying transport
protocol provider. The message issued to the
TCUNBIND ioet! is equivalent to the TLI message
type T_UNBIND_REQ and the message returned by
the successful completion of the ioel! is equivalent
to the TLI message type T_OK_ACK.

TCGETINFO Get the TLI protocol specific information from the
transport protocol provider. The message issued to
the TCGETINFO ioet! is equivalent to the TLI mes­
sage type T _INFO _REQ and the message returned
by the successful completion of the ioetl is
equivalent to the TLI message type T_INFO_ACK.

TCOPTMGMT Get, set, or negotiate protocol specific options with
the transport protocol provider. The message issued
to the TCOPTMGMT ioet! is equivalent to the TLI
message type T_OPTMGMT_REQ, and the message
returned by the successful completion of the ioel! is
equivalent to the TLI message type
T_OPTMGMT_ACK.

Files

<sys/timod.h>
<sys/tiuser .h>
<sys/tihdr.h>
<sys/errno.h>

See Also

tirdwr(STR).
STREAMS Primer.
STREAMS Programmer's Guide.
Network Programmer's Guide.

Diagnostics

If the ioell system call returns with a value greater than 0, the lower 8
bits of the return value will be one of the TLI error codes as defined in
<sys/tiuser.h>. If the TLI error is of type TSYSERR, then the next 8
bits of the return value will contain an error as defined in
<sys/errno.h> [see inlro(S)].

December 6,1988 Page 2

TIRDWR (STR) TIRDWR (STR)

Name

tirdwr - Transport Interface read/write interface S1REAMS module

Description

tirdwr is a S1REAMS module that provides an alternate interface to a
transport provider which supports the Transport Layer Interface (TLI)
functions of the Network Services library (see Section NSL). This
alternate interface allows a user to communicate with the transport
protocol provider using the read(S) and write(S) system calls. The
putmsg(S) and getmsg(S) system calls may also be used. However,
putmsg and getmsg can only transfer data messages between user and
stream.

The tirdwr module must only be pushed [see CPUSH in
streamio(STR)] onto a stream tenninated by a transport protocol pro­
vider which supports the TLI. After the tirdwr module has been
pushed onto a stream, none of the Transport Layer Interface functions
can be used. Subsequent calls to TLI functions will cause an error on
the stream. Once the error is detected, subsequent system calls on the
stream will return an error with errno set to EPROTO.

The following are the actions taken by the tirdwr module when pushed
on the stream, popped [see CPOP in streamio(STR)] off the stream, or
when data passes through it.

push-

write -

When the module is pushed onto a stream, it will check
any existing data destined for the user to ensure that only
regular data messages are present. It will ignore any mes­
sages on the stream that relate to process management,
such as messages that generate signals to the user
processes associated with the stream. If any other mes­
sages are present, the CPUSH will return an error with
errno set to EPROTO.

The module will take the following actions on data that
originated from a write system call:

All messages with the exception of messages that con­
tain control portions (see the putmsg and getmsg sys­
tem calls) will be transparently passed onto the
module's downstream neighbor.

Any zero length data messages will be freed by the
module and they will not be passed onto the module's
downstream neighbor.

Any messages with control portions will generate an
error, and any further system calls associated" with the
stream will fail with errno set to EPROTO.

November 29, 1988 Page 1

TIRDWR (STR) TIRDWR (STR)

read - The module will take the following actions on data that
originated from the transport protocol provider:

All messages with the exception of those that contain
control portions (see the putmsg and getmsg system
calls) will be transparently passed onto the module's
upstream neighbor.

The action taken on messages with control portions
will be as follows:

Messages that represent expedited data will
generate an error. All further system calls asso­
ciated with the stream will fail with errno set to
EPROTO.

Any data messages with control portions will
have the control portions removed from the
message prior to passing the message to the
upstream neighbor.

Messages that represent an orderly release indi­
cation from the transport provider will generate
a zero length data message, indicating the end
of file, which will be sent to the reader of the
stream. The orderly release message itself will
be freed by the module.

Messages that represent an abortive disconnect
indication from the transport provider will cause
all further write and putmsg system calls to fail
with errno set to ENXIO. All further read and
getmsg system calls will return zero length data
(indicating end of file) once all previous data
has been read.

With the exception of the above rules, all other
messages with control portions will generate an
error and all further system calls associated with
the stream will fail with errno set to EPROTO.

Any zero length data messages will be freed by the
module and they will not be passed onto the module's
upstream neighbor.

pop - When the module is popped off the stream or the stream is
closed, the module will take the following action:

If an orderly release indication has been previously
received, then an orderly release request will be sent
to the remote side of the transport connection.

November 29, 1988 Page 2

TIRDWR (STR) TIRDWR (STR)

See Also

streamio(STR), timod(STR).
intro(S), getmsg(S), putmsg(S), read(S), write(S) in the XENIX Refer­
ence.
intro(NSL) in Appendix D of the Network Programmer's Guide.
STREAMS Primer.
STREAMS Programmer's Guide.

November 29, 1988 Page 3

Index

A

adjmsg utility C-2
Allocate a message block C-3
Allocating message storage 7-5
Allocation priorities, buffer C-15
allocb call

failure 13-1
allocb failure, recovery C-3
allocb utility 7-5, C-3
Appending characters to message 7-4
Asynchronous I/O monitoring 2-4
Automatic dismantling 3-10
Available buffers, test for C-14

B

backq utiity C-3
bappend subroutine 7-4
BPRCHIC-15
BPRCLOC-15
BPRCMED C-15
bufcall8-5
bufcall utility 7-6, 13-1, C-3
Buffer

allocation priority C-15
Buffers

none, recovering from 13-1
Buffers, available, test for C-14

c

canput utility 8-4, C-4
Cascading 11-1
Case converter module 1-6
cdevsw entry

d_str field 5-3
clone call 10-1
Clone driver implementation 10-1
clone open 2-5
Clone open

flag 10-1
Clone processing 10-4
Cloning 10-1

close calI1-4, 5-5
Close driver, example 10-10
Concatenate bytes C-9
Concatenating messages C-8
Configurations

multiplexing 11-1
Configuring Streams E-l
Connecting lower Streams 11-2
Control message, putting I-byte C-10
Control message, putting C-I0
Controlling Stream 3-7
copyb utility C-4
copymsg utility C-5

D

Data block sharing 7-2
Data structures

guidelines D-2
Datagram service interface example 4-5
datamsg utility C-5
dblk_t 7-1
dblk_t structure A-3
Deadlock, with bufcall 13-1
Deferred processing 7-6
Delayed processing 8-2
Design guidelines D-l
Device

cloneable 10-1
Disconnecting lower Streams 11-4
Dismantling multiplexers 3-10
Driver

clone, implementation 10-1
close, example 10-10
close routine, example 9-12
comparison to module 9-1
configuring E-l
data structures D-2
declarations 6-1
declarations, example of 9-4
deferred processing 7-6
design guidelines D-1
environment 6-4
flow control 9-2
flush handling, example 9-8
general rules D-1
header files D-3
interrupt, example 9-8
ioctls, example 9-9
loop-around 10-1

I-I

Index

Driver (continued)
minor devices 9-1
multiple occurrences 9-1
multiplexing, example 11-7
open routine, example 9-5
overview 9-1
procedures, example 6-3
processing procedures, example 9-7
programming 9-3
put and service procedures D-5
service procedures 10-8
signaling user process 13-5
simple example 9-3
Stream head control in 13-6
symbols and functions D-3
system calls D-2

Drivers
minimum header set 6-1
multiplexing 11-1

d_str field 5-3
dupb utility C-5
Duplicate message block descriptor C-5
Duplicating messages C-6
dupmsg routine 7-2
dupmsg utility C-6

E

enableok 13-4
enableok utility C-6
Enabling a queue C-12
Entry point, QUEUE 5-2
Error and trace logging D-7
Error messages

system E-5
/etc/conf/modules directory 6-2
exit call 1-6

F

File descriptors
closing 3-9

Filter module declarations 7-4
Flow control 8-4

advanced 13-4
drivers 9-2

Flush a queue C-6
Flush handling, example 9-8
flushq utility C-6

1-2

fmodsw entry 5-4
freeb utility C-7
Freeing a message block C-7
Freeing message blocks C-7
freemsg utility C-7
Functions, accessible D-3

G

getmsg call
defined 4-3
example 4-5
PROTO messages and 12-1
syntax 4-4

getq utility C-7
Guidelines for module design D-l

H

Header
defined 5-2

Header files
guidelines D-3

I

CLINK call 3-4
INFPSZ (packet size) 6-3
inode 5-2
Inserting modules 1-6
insq utility C-8
Interrupt for driver, example 9-8
iocblk structure 9-11, A-4
ioctl

other requests 1-11
ioctl call

driver interface to 9-9
CPUSH 1-7
simple example 1-9

io/stream.c C-l
CPOP calli-II, 5-5
CPUSH

simple example 1-7
CPUSH call 5-4
CSETSIG ioctl call 2-5
CSRDOPT ioctl call 13-6
CSTRcall

CSTR call (continued)
retrieving results 1-10
simple example 1-9

CSTR ioctl 9-9
C UNLINK call 3-10

K

Kernel structures A-I

L

linkb utility C-8
linkblk structure A-4
Logging

submit messages for C-14
Logging and tracing 6-2
Logging D-7
Loop-around driver 10-1
Lower multiplexer

connecting 11-2
defined 11-1
disconnecting 11-4

Lower read put procedure 11-16
Lower Streams

connecting 11-2
disconnecting 11-4

M

Mate queue, pointer to C-9
mblk_t 7-1
mblk_t structure A-3
M_DATA blocks

packet size 6-3
M_ERROR message 10-7
Message

allocation 7-5
concatenating bytes in C-9
concatenating C-8
control, putting I-byte, C-I0
copying C-S
duplicating C-6
fonnat 7-1
generation 7-3
getting from queue C-7
non-priority B-1

Message (continued)
ordinary 8-3, B-1
placing on queue C-8
priority 8-3, B-8
put on queue C-ll
put to next queue C-l1
reception 7-3
removing from queue C-13

Index

removing message block from C-13
removing message block from head C-1S
return to queue beginning C-1O
reverse direction C-12
size of, getting C-8
structures A-3
test for data type C-S
type, for multiple blocks 7-1

Message block
allocate C-3
appending characters 7-4
copy C-4
duplicate descriptor C-S
freeing C-7
remove from message head C-IS
removing from message C-13

Message blocks
data block sharing 7-2
fonnat 7-1
freeing C-7
multiple 7-1

Message interface 4-3
Message pool priority 7-5
Message queue

message priority 8-3
Message types

defined B-1
Message usage 12-1
Messages

Stream head 10-7
submit for logging C-14

M_HANGUP message 10-7
Minor device

cloning 10-1
Minor devices 1-4, 9-1

clone open 2-5
modclose procedure 6-4

example 6-3
modopen procedure 6-4

example 6-3
modrput procedure

example 6-3
Module

close procedure 6-4
comparison to driver 9-1
configuring E-l

1-3

Index

Module (continued)
control 1-9
data structures 0-2
declarations 6-1
deferred processing 7-6
design guidelines 0-1
environment 6-4
filter module example 7-4
general rules 0-1
header files 0-3
ioctls 9-9
minimum header set 6-1
names 1-8
null module example 6-1
open procedure 6-4
order of insertion 1-8
procedures, example 6-3
put and service procedures 0-5
signaling user process 13-5
Stream head control in 13-6
symbols and functions 0-3
system calls 0-2

Module 10 6-2
module_info

defined 5-2
module_info structure

discussion 6-2
listing of 6-2, A-3

Modules
adding 5-4
inserting 1-6
limits on 5-5
removing 5-4

module_stat 6-3
module-stat

defined 5-2
module_stat structure A-3
modwput function

example 7-6
modwput procedure

example 6-3
Monitoring asynchronous I/O 2-4
M_PCPROTO message 12-1
M_PCSIG message 10-7, 13-5
M_SETOPTS message 13-6
msgdsize utility C-8
M_SIG message 10-7,13-5
Multiplexer

automatic dismantling 3-10
building 3-3
cascading 11-1
closing file descriptors 3-9
configurations 3-1
construction, example 11-4

1-4

Multiplexer (continued)
controlling Stream 3-7
dismantling 3-10
lower

connecting 11-2
defined 11-1
disconnecting 11-4

mux 10 3-6
restrictions 3-7
routing data through 3-11
upper, defined 11-1

Multiplexing
configurations 11-1
drivers 11-1

Multiplexing driver, example 11-7
Mux 10 3-6

routing and 3-11

N

NMUXLINK 11-4
No buffers condition 8-5
No buffers, recovery 13-1
noenable 13-4
noenable utility C-8
Non-priority message B-1
NSTRPUSH parameter 5-5

o

O_NDELAY 5-5
O_NOELAY flag 2-4
open call

file descriptor 1-4
introduction 1-4
minor devies 1-4

Ordinary messages 8-3
OTHERQ utility C-9

p

Packet size 6-3
param.h 6-1
Pipe creation 10-1
Pointer to queue behind queue C-3
Pointer to write queue C-1S
poll call

poll call (continued)
asynchronous monitoring 2-4
definition 2-1
error events 2-4
example 2-2

POLLERR error event 2-4
pollfd structure 2-2
POLLHUP error event 2-4
POLLIN event

defined 2-1
POLLNV AL error event 2-4
POLLOUT event

defined 2-1
POLLPRI event

defined 2-1
Priority messages 8-3, B-8
Processor level, setting C-13
PROTO messages 12-1
Protocol substitution 4-2
Pseudo device drivers 3-2
Pseudo-device drivers

clone open 2-6
Pseudo-driver 10-1

multiplexer 11-1
pullupmsg utility C-9
Put procedure 7-6
Put procedures, rules D-5
putbq utility C-1O
putcd utility 10-7, C-1O
putcdl utility 10-7, C-I0
putmsg call

defined 4-3
example 4-5
syntax 4-4

putnext utility C-ll
putq utility

service procedures and 8-2, C-ll

Q

q_count, flow control and 8-1
qenable utility 13-4, C-12
qinit

address of 5-4
defined 5-2

qinit structure
discussion 6-2
listing of 6-2, A-2

qreply utility C-12
qsize utility C-12
QUEUE

data structures 5-2

Index

QUEUE (continued)
defined 5-1

Queue
enabling C-12

QUEUE
entry point 5-2

Queue
find number of messages on C-12
flush C-6
getting message from C-7

QUEUE
linkage 5-3

Queue
pointer to mate queue C-9
pointer to queue behind C-3
prevent scheduling of C-8
read, pointer to C-12
re-enabling C-6
removing message from C-13
return message to beginning of C-l 0
test for room in C-4
write, pointer to C-15

queue scheduling
altering 13-4

queue_t
defined 5-2

queue_t structure 8-1, A-2

R

RD utility C-12
read call 1-4
Read queue, pointer to C-12
Recovering from no buffers 13-1
Re-enabling a queue C-6
Reverse direction messages C-12
nnvb utility C-13
nnvq utility C-13
Routing data through multiplexers 3-11

s

STREAMS
statistics 6-3

Service interface
defined 12-1
example 12-2

declarations 12-2
write put procedure 12-5

1-5

Index

Service interface (continued)
rules 12-2

Service interface example 4-5
Service interfaces 4-1
Service procedure

discussion 8-2
example 8-5
flow control 8-4
lower QUEUE write, example 11-14

service procedure
purpose of 8-1

Service procedure
rules D-5

Service procedures
driver 10-8

Set processor level C-13
S_HIPRI event

defined 2-5
Signals

to user processes 13-5
SIGPOLL signal

with CSETSIG 2-5
S_INPUT event

defined 2-5
S_MSGevent

defined 2-5
S_OUTPUT event

defined 2-5
splstr utility C-13
strbuf structure 4-4
Stream

closing 5-5
construction 5-2
controlling Stream 3-7
header, and inode 5-2
limit on modules 5-5
opening 5-3
reverse direction message C-12

Stream head
read options, setting 13-6
write offset, setting 13-7

Stream head messages 10-7
Stream head processing

controlling 13-6
stream.h 6-1
streamio 1-7
STREAMS

basic operations 1-4
configuring E-l
driver 1-4
error messages, system E-5
mechanism, overview 5-1
message interface 4-3
multiplexing 3-2

1-6

STREAMS (continued)
simple example 1-5
utilities C-l

Streams
linking, system limits to 11-4
logging D-7
monitoring 2-1
poll call 2-1
structures A-I

streamtab structure 5-3,6-1, A-I
strioctl structure 1-9
strlog utility C-14
Structures

definitions A-I
Substitution, protocol 4-2
Symbols, accessible D-3
sys/stream.h A-I, C-l, C-16
sys/strstat.h A-I
System calls

rules for modules, drivers D-2
System error messages E-5

T

Terminal windows 11-7
testb utility C-14
Trace logging D-7
Tracing and logging 6-2
Trim message bytes C-2
Tunable parameters E-3
types.h 6-1

u

u_area structure 6-4
unlinkb utility C-15
Unlinking lower Streams 11-4
Upper multiplexer, defined 11-1
Upper write put procedure, example 11-11
User processes

signalling 13-5
Utilities, STREAMS C-I

w

Windows, terminal 11-7
WR utility C-15
write call 1-4
Write queue pointer C-15

Index

1-7

	0001
	0002
	001
	002
	003
	004
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	05-00
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	07-00
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-00
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	10-00
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	11-00
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	12-00
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	13-00
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	A-00
	A-01
	A-02
	A-03
	A-04
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	D-00
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	E-00
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	F-00
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	F-19
	F-20
	F-21
	F-22
	F-23
	F-24
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07

