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Basic Operations 

1.1 Introduction to this Guide 

This document provides information to developers on the use of the 
STREAMS mechanism at user and kernel levels. 

STREAMS was first incorporated in the UNIX System to augment the 
existing character input/output (I/O) mechanism and to support develop­
ment of communication services. The STREAMS Programmer's Guide 
includes detailed information, with various examples, on the development 
methods and design philosophy of all aspects of STREAMS. 

This guide is organized into two parts. The first part (Chapters 1 through 
4) describes the development of user level applications. The second part 
describes the STREAMS kernel facilities for development of modules and 
drivers. Although chapter numbers are consecutive, the two parts are 
independent. Working knowledge of the STREAMS Primer is assumed. 

The STREAMS reference materials are divided among several locations. 
Appendix C contains the reference for STREAMS kernel utilities. 
STREAMS system calls are specified in Section S of the Programmer's 
Reference Manual. STREAMS utilities are specified in Section ADM of 
the System Administration Guide. STREAMS-specific ioctl calls are 
specified in streamio(STR). The modules and drivers available are also 
described in Section STR. This section is in Appendix F. 

1.2 Notational Conventions 

The following notational conventions are used throughout this manual: 

• Examples in the text are indented. 

• Commands, options to commands, and the names of directories, 
structures and files appear in bold. 

• Names of variables to which values must be assigned (such as 
filename) appear in italic. 

• A command name followed by a letter or acronym in parentheses 
refers to the group of manual pages where that command is docu­
mented. For example, the notation streamio(STR) refers to the 
page in section STR which documents the streamio command. 
The manual page sections appear in several different reference 
manuals. 
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1.3 STREAMS Overview 

This section reviews the STREAMS mechanism. STREAMS is a general, 
flexible facility and a set of tools for development of UNIX System com­
munication services. It supports the implementation of services ranging 
from complete networking protocol suites to individual device drivers. 
STREAMS defines standard interfaces for character input/output (I/O) 
within the kernel, and between the kernel and the rest of the UNIX Sys­
tem. The associated mechanism is simple and open-ended. It consists of 
a set of system calls, kernel resources, and kernel routines. 

The standard interface and mechanism enable modular, portable develop­
ment and easy integration of higher performance network services and 
their components. STREAMS provides a framework; it does not impose 
any specific network architecture. The STREAMS user interface is 
upwardly compatible with the character I/O user interface, and both user 
interfaces are available in current and subsequent releases of UNIX. 

A Stream is a full-duplex processing and data transfer path between a 
STREAMS driver in kernel space and a process in user space (see Figure 
1-1). In the kernel, a Stream is constructed by linking a Stream head, a 
driver and zero or more modules between the Stream head and driver. 
The Stream head is the end of the Stream closest to the user process. 
Throughout this guide, the word "STREAMS" refers to the mechanism 
and the word "Stream" refers to the path between a user and a driver. 

A STREAMS driver may be a device driver that provides the services of 
an external I/O device, or a software driver, commonly referred to as a 
pseudo-device driver, that performs functions internal to a Stream. The 
Stream head provides the interface between the Stream and user 
processes. Its principal function is to process STREAMS-related user sys­
tem calls. 

Data is passed between a driver and the Stream head in messages. Mes­
sages that are passed from the Stream head toward the driver are said to 
travel downstream. Similarly, messages passed in the other direction 
travel upstream. The Stream head transfers data between the data space 
of a user process and STREAMS kernel data space. Data to be sent to a 
driver from a user process are packaged into STREAMS messages and 
passed downstream. When a message containing data arrives at the 
Stream head from downstream, the message is processed by the Stream 
head, which copies the data into user buffers. 
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Figure 1-1 Basic Stream 

Within a Stream, messages are distinguished by a type indicator. Certain 
message types sent upstream can cause the Stream head to perfonn 
specific actions, such as sending a signal to a user process. Other mes­
sage types are intended to carry infonnation within a Stream and are not 
directly seen by a user process. 

One or more kernel-resident modules can be inserted into a Stream 
between the Stream head and driver to perfonn intermediate processing 
of data as it passes between the Stream head and driver. STREAMS 
modules are dynamically interconnected in a Stream by a user process. 
No kernel programming, assembly, or link editing is required to create the 
interconnection. 

1.4 Development Facilities 

General and STREAMS-specific system calls provide the user-level fadIi­
ties required to implement application programs. This system call inter­
face is upwardly compatible with the character I/O facilities. The open 
system call recognizes a STREAMS file and creates a Stream to the 
specified driver. A user process can receive and send data on STREAMS 
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files using read and write in the same manner as with character files. 
The ioctl system call enables users to perform functions specific to a par­
ticular device, and a set of generic STREAMS ioctl commands [see 
streamio(STR)] support a variety of functions for accessing and control­
ling Streams. A close dismantles a Stream. 

In addition to the generic ioctl commands, there are STREAMS-specific 
system calls to support unique STREAMS facilities. The poll system call 
enables a user to poll multiple Streams for various events. The putmsg 
and getmsg system calls enable users to send and receive STREAMS mes­
sages, and are suitable for interacting with STREAMS modules and 
drivers through a service interface. 

STREAMS provides kernel facilities and utilities to support development 
of modules and drivers. The Stream head handles most system calls so 
that the related processing does not have to be incorporated in a module 
and driver. The configuration mechanism allows modules and drivers to 
be incorporated into the system. 

Examples are used throughout this document to highlight the most impor­
tant and common capabilities of STREAMS. The descriptions are not 
meant to be exhaustive. For simplicity, the examples reference fictional 
drivers and modules. 

1.S A Simple Stream 

A STREAMS driver is similar to a character I/O driver in that it has one or 
more nodes associated with it in the file system, and it is accessed using 
the open system call. Typically, each file system node corresponds to a 
separate minor device for that driver. Opening different minor devices of 
a driver causes separate Streams to be connected between a user process 
and the driver. The file descriptor returned by the open call is used for 
further access to the Stream. If the same minor device is opened more 
than once, only one Stream is created; the first open call creates the 
Stream, and subsequent open calls return a file descriptor which refer­
ences that Stream. Each process that opens the same minor device shares 
the same Stream to the device driver. 

Once a device is opened, a user process can send data to the device using 
the write system call and receive data from the device using the read sys­
tem call. Access to STREAMS drivers using read and write is compatible 
with the character I/O mechanism. 

The close system call closes a device and dismantles the associated 
Stream. 
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The following example shows how a simple Stream is used. In the exam­
ple, the user program interacts with a generic communications device that 
provides point-to-point data transfer between two computers. Data writ­
ten to the device is transmitted over the communications line, and data 
arriving on the line can be retrieved by reading it from the device. 

#include <fcntl.h> 

main ( ) 
{ 

char buf[1024]; 
int fd, count; 

if «fd = open("/dev/comm01", O_RDWR)) < 0) ( 
perror("open failed"); 
exit (1); 

while «count = read(fd, buf, 1024)) > 0) 
if (write(fd, buf, count) != count) ( 

perror("write failed"); 
break; 

} 
exit (0); 

In the example, /dev/commOl identifies a minor device of the communica­
tions device driver. When this file is opened, the system recognizes the 
device as a STREAMS device and connects a Stream to the driver. Figure 
1-2 shows the state of the Stream following the call to open. 

User 
Process 

_____________ t _________ l!:s~r_ Space 

Kernel Space 

Figure 1-2 Stream to Communications Driver 
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This example illustrates a user reading data from the communications 
device and then writing the input back out to the same device. In short, 
this program echoes all input back over the communications line. The 
example assumes that a user is sending data from the other side of the 
communications line. The program reads up to 1024 bytes at a time and 
then writes the number of bytes just read. 

The read call returns the available data, which can contain fewer than 
1024 bytes. If no data is currently available at the Stream head, the read 
call blocks until data arrives. 

Similarly, the write call attempts to send count bytes to /dev/commOl. 
However, STREAMS implements a flow control mechanism that prevents 
a user from flooding a device driver with data, thereby exhausting system 
resources. If the Stream exerts flow control on the user, the write call 
blocks until the flow control has been relaxed. The call does not return 
until it has sent count bytes to the device. exit [see exit(S)] is called to 
terminate the user process. This system call also closes all open files, 
thereby dismantling the Stream in this example. 

1.6 Inserting Modules 

One advantage of STREAMS over the existing character I/O mechanism is 
the ability to insert various modules into a Stream to process and manipu­
late data that passes between a user process and the driver. The following 
example extends the previous communications device echoing example 
by inserting a module in the Stream to change the case of certain alpha­
betic characters. The case converter module is passed an input string and 
an output string by the user. Incoming data from the driver is inspected 
for instances of characters in the module's input string, and the alphabetic 
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case of all matching characters is changed. Similar actions are taken for 
outgoing data using the output string. The necessary declarations for this 
program are shown below: 

#include <string.h> 
#include <fcntl.h> 
#include <stropts.h> 

/* 
* These defines would typically be· 
* found in a header file for the module 
*/ 

#define OUTPUT STRING 1 
#define INPUT_STRING 2 

main ( } 
{ 

char buf[1024]; 
int fd, count; 
struct strioctl strioctl; 

The first step is to establish a Stream to the communications driver and 
insert the case converter module. The following sequence of system calls 
accomplishes this: 

if «fd = open("/dev/commOl", O_RDWR}) < O} { 
perror ("open failed"); 
exit(l}; 

if (ioctl(fd, I PUSH, "case converter") < O} { 
perror("ioctl I PUSH failed"); 
exit(2); -

The CPUSH ioetl call directs the Stream head to insert the case converter 
module between the driver and the Stream head, creating the Stream 
shown in Figure 1-3. As with any driver, this module resides in the kernel 
and must have been configured into the system before it was booted. 
CPUSH is one of several generic STREAMS ioetl commands that enable a 
user to access and control individual Streams [see streamio(STR)]. 
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User 
Process 

____ ~s~~ Space 

Kernel Space 

Figure 1-3 Case Converter Module 

This example illustrates an important difference between STREAMS 
drivers and modules. Drivers are accessed through a node or nodes in the 
file system and can be opened just like any other device. Modules, on the 
other hand, do not occupy a file system node. Instead, they are identified 
through a separate naming convention and are inserted into a Stream 
using CPUSH. The name of a module is defined by the module developer 
and is typically included on the manual page describing the module. 
(Manual pages describing STREAMS drivers and modules are in the man 
page section STR, found in Appendix F of this manual.) 

Modules are pushed onto a Stream and removed from a Stream in Last­
In-First-Out (LIFO) order. Therefore, if a second module was pushed onto 
this Stream, it would be inserted between the Stream head and the case 
converter module. 
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1.7 Module and Driver Control 

The next step in this example is to pass the input string and output string 
to the case converter module. This can be accomplished by issuing ioctl 
calls to the case converter module as follows: 

/* set input conversion string */ 
strioctl.ic cmd = INPUT STRING; /* command type */ 
strioctl.ic-timout = 0;- /* default timeout (15 sec) */ 
strioctl. ic - dp = "ABCDEFGHIJ" j 
strioctl.ic=len = strlen(strioctl.ic_dp); 

if (ioctl(fd, I STR, &strioctl) < 0) 
perror("ioctl I STR failed"); 
exit (3); -

/* set output conversion string */ 
strioctl.ic cmd = OUTPUT STRINGj/* command type */ 
strioctl.iC-dp = "abcdefghij"; 
strioctl.ic=len = strlen(strioctl.ic_dp); 

if (ioctl(fd, I STR, &strioctl) < 0) 
perror("ioctl I STR failed"); 
exit(4); -

ioctl requests are issued to STREAMS drivers and modules indirectly, 
using the CSTR ioctl call [see streamio(STR)]. The argument to CSTR 
must be a pointer to a strioctl structure, which specifies the request to be 
made to a module or driver. This structure is defined in <stropts.h> and 
has the following format: 

struct strioctl 
int ic - cmdi /* ioctl request */ 
int ic_timout; /* ACK/NAK timeout */ 
int ic - len; /* length of data argument */ 
char *ic _dpi /* ptr to data argument */ 

where ic cmd identifies the command intended for a module or driver, 
ic _timout specifies the number of seconds an CSTR request should wait 
for an acknowledgment before timing out, ie_len is the number of bytes 
of data to accompany the request, arid ic _ dp points to that data. 

CSTR is intercepted by the Stream head, which packages it into a mes­
sage using information contained in the strioctl structure and sends the 
message downstream. The request is processed by the module or driver 
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closest to the Stream head that understands the command specified by 
ic _ cmd. The ioctl call blocks up to ic _timout seconds while waiting for 
the target module or driver to respond with either a positive or negative 
acknowledgment message. If an acknowledgment is not received in 
ic _timout seconds, the ioctl call fails. 

CSTR is actually a nested request; the Stream head intercepts CSTR and 
then sends the driver or module request (as specified in the strioctI struc­
ture) downstream. Any module that does not understand the command in 
ic _ cmd passes the message further downstream. Eventually, the request 
reaches the target module or driver, where it is processed and ack­
nowledged. If no module or driver understands the command, a negative 
acknowledgment is generated, and the ioctl call fails. 

Two separate commands are sent to the case converter module in this 
example. The first contains the conversion string for input data, and the 
second contains the conversion string for output data. The ic _ cmd field is 
set to indicate whether the command is setting the input or output conver­
sion string. For each command, the value of ic timout is set to zero; this 
specifies the system default timeout value of 15 seconds. A data argu­
ment which contains the conversion string also accompanies each com­
mand. The ic _ dp field points to the beginning of each string, and ie_len is 
set to the length of the string. 

Note 

Only one CSTR request can be active on a STREAM at one time. 
Further requests block until the active CSTR request is ack­
nowledged and the system call completes. 

The strioctl structure is also used to retrieve the results, if any, of an 
CSTR request. If data is returned by the target module or driver, ic dp 
must point to a buffer large enough to hold that data, and ic len is set on 
return to indicate the amount of data returned. -
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The remainder of this example is identical to the previous example: 

while «count = read(fd, buf, 1024)) > 0) 
if (write(fd, buf, count) != count) { 

perror ("write failed"); 
break; 

exit (0); 

The case converter module converts the specified input characters to 
lower case and the corresponding output characters to upper case. Notice 
that the case conversion processing is achieved with no change to the 
communications driver. 

As with the previous example, the exit system call dismantles the Stream 
before terminating the process. The case converter module is removed 
from the Stream automatically when it is closed. Alternatively, modules 
can be removed from a Stream using the CPOP ioctl call described in 
streamio(STR). This call removes the topmost module on the Stream and 
enables a user process to alter the configuration of a Stream dynamically 
by pushing and popping modules as needed. 

This chapter discussed a few of the important ioctl requests supported by 
STREAMS. Several other requests are available to support operations 
such as flushing the data on a Stream or determining if a given module 
exists on the Stream. These requests are described fully in 
streamio(STR). 

1.8 Terms You Should Know 

To understand this guide, you need to be familiar with the following 
terms. 

BACK-ENABLE 

To enable (by STREAMS) a preceding blocked QUEUE when STREAMS 
determines that a succeeding QUEUE has reached its low-water mark. 

BLOCKED 

A QUEUE that cannot be enabled due to flow control. 
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CLONE DEVICE 

A STREAMS device that returns an unused minor device when initially 
opened, rather than requiring the minor device to be specified in the 
open(S) call. 

CLOSE PROCEDURE 

The module routine that is called when a module is popped from a 
Stream; also, the driver routine that is called when a driver is closed. 

CONTROL STREAM 

In a multiplexer, the upper Stream on which a previous CLINK ioetl [to 
the associated file, see streamio(STR)] caused a lower Stream to be con­
nected to the multiplexer driver at the end of the upper Stream. 

DOWNSTREAM 

The direction from the Stream head towards the driver. 

DEVICE DRIVER 

The end of the Stream closest to an external interface. The principal 
functions of a device driver are handling an associated physical device 
and transforming data and information between the external interface and 
Stream. 

DRIVER 

A module that forms the Stream end. It can be a device driver or a 
pseudo-device driver. In STREAMS, a driver is physically identical to a 
module (that is, composed of two QUEUES), but has additional attributes 
in a Stream and in the UNIX system. 

ENABLE 

Schedule a QUEUE. 

FLow CONTROL 

The STREAMS mechanism that regulates the flow of messages within a 
Stream and the flow from user space into a Stream. 
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LOWER STREAM 

A Stream connected below a multiplexer pseudo-device driver, by means 
of an CLINK ioctl. The far end of a lower Stream terminates at a device 
driver or another multiplexer driver. 

MESSAGE 

One or more linked message blocks. A message is referenced by its first 
message block, and its type is defined by the message type of that block. 

MESSAGE BLOCK 

Carries data or information, as identified by its message type, in a Stream. 
A message block is a triplet consisting of a data buffer and associated 
control structures, an mblk _ t structure, and a dblk _ t structure. 

MESSAGE QUEUE 

A linked list of zero or more messages connected to a QUEUE. 

MESSAGE TYPE 

A defined set of values identifying the contents of a message block and 
message. 

MODULE 

A pair of QUEUEs. In general, module implies a pushable module. 

MULTIPLEXER 

A STREAMS mechanism that allows messages to be routed among multi­
pIe Streams in the kernel. A multiplexer includes at least one multiplex­
ing pseudo-device driver connected to one or more upper Streams and one 
or more lower Streams. 

OPEN PROCEDURE 

The routine in each STREAMS driver and module called by STREAMS on 
each open(S) system call made on the Stream. A module's open pro­
cedure is also called when the module is pushed. 
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POP 

A STREAMS ioctI [see streamio(STR)] that causes the push able module 
immediately below the Stream head to be removed (popped) from a 
Stream [modules can also be popped as the result of a cIose(S)]. 

PSEUDO-DEVICE DRIVER 

A software driver, not directly associated with a physical device, that per­
fonns functions internal to a Stream such as a multiplexer or log driver. 

PUSH 

A STREAMS ioetI [see streamio(STR)] that causes a pushable module to 
be inserted (pushed) in a Stream immediately below the Stream head. 

PUSHABLE MODULE 

A module interposed (pushed) between the Stream head and driver. Push­
able modules perfonn intennediate transfonnations on messages flowing 
between the Stream head and driver. A driver is a non-pushable module 
and a Stream head includes a non-pushable module. 

PUT PROCEDURE 

The routine in a QUEUE which receives messages from the preceding 
QUEUE. It is the single entry point into a QUEUE from a preceding 
QUEUE. The procedure may perfonn processing on the message and will 
then generally either queue the message for subsequent processing by this 
QUEUE's service procedure, or will pass the message to the put procedure 
of the following QUEUE. 

QUEUE 

A STREAMS defined set of C-Ianguage structures. A module is composed 
of a read (upstream) QUEUE and a write (downstream) QUEUE. A 
QUEUE typically contains a put and service procedure, a message queue, 
and private data. The read QUEUE (cf. read queue) in a module also con­
tains the open procedure and close procedure for the module. 

The primary structure is the queue t structure, occasionally used as a 
synonym for a QUEUE. -
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READ QUEUE 

The message queue in a module or driver containing messages moving 
upstream. Associated with a read(S) system call and input from a driver. 

SCHEDULE 

Place a QUEUE on the internal list of QUEUEs which will subsequently 
have their service procedure called by the STREAMS scheduler. 

SERVICE INTERFACE 

A set of primitives that define a service at the boundary between a service 
user and a service provider and the rules (typically represented by a state 
machine) for allowable sequences of the primitives across the boundary. 
At a Stream/user boundary, the primitives are typically contained in the 
control part of a message; within a Stream, in M_PROTO or M_PCPROTO 
message blocks. 

SERVICE PROCEDURE 

The routine in a QUEUE which receives messages queued for it by the put 
procedure of the QUEUE. The procedure is called by the STREAMS 
scheduler. It may perform processing on the message and will generally 
pass the message to the put procedure of the following QUEUE. 

SERVICE PROVIDER 

In a service interface, the entity (typically a module or driver) that 
responds to request primitives from the service user with response and 
event primitives. 

SERVICE USER 

In a service interface, the entity that generates request primitives for the 
service provider and consumes response and event primitives. 

STREAM 

The kernel aggregate created by connecting STREAMS components, 
resulting from an application of the STREAMS mechanism. The primary 
components are the Stream head, the driver, and zero or more pushable 
modules between the Stream head and driver. 
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STREAM END 

The end of the Stream furthest from the user process, containing a driver. 

STREAM HEAD 

The end of the Stream closest to the user process. It provides the inter­
face between the Stream and the user process. 

STREAMS 

A kernel mechanism that supports development of network services and 
data communication drivers. It defines interface standards for character 
input/output within the kernel, and between the kernel and user level. 
The STREAMS mechanism comprises integral functions, utility routines, 
kernel facilities, and a set of structures. 

UPPER STREAM 

A Stream terminating above a multiplexer pseudo-device driver. The far 
end of an upper Stream originates at the Stream head or another multi­
plexer driver. 

UPSTREAM 

The direction from driver towards Stream head. 

WATERMARKS 

Limit values used in flow control. Each QUEUE has a high-water mark 
and a low-water mark. The high-water mark value indicates the upper 
limit related to the number of characters contained on the message queue 
of a QUEUE. When the enqueued characters in a QUEUE reach its high­
water mark, STREAMS causes another QUEUE that attempts to send a 
message to this QUEUE to become blocked. When the characters in this 
QUEUE are reduced to the low-water mark value, the other QUEUE will 
be unblocked by STREAMS. 

WRITE QUEUE 

The message queue in a module or driver containing messages moving 
downstream; associated with a write(S) system call and output from a 
user process. 
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2.1 Advanced Input/Output Facilities 

This chapter describes a facility that enables a user process to poll multi­
pIe Streams simultaneously for various events. It also discusses a signal­
ing feature that supports asynchronous I/O processing and a new mechan­
ism, called clone open, for finding available minor devices. 

2.2 Input/Output Polling 

The poll [see poll(S)] system call provides users with a mechanism for 
monitoring input and output on a set of file descriptors that reference open 
Streams. It identifies those Streams over which a user can send or receive 
data. For each Stream of interest, users can specify one or more events 
about which they should be notified. These events include the following: 

POLLIN Input data is available on the Stream associated with 
the given file descriptor. 

POLLPRI A priority message is available on the Stream associ­
ated with the given file descriptor. Priority messages 
are described in the section of Chapter 4 entitled 
"Accessing the Datagram Provider." 

POLLOUT The Stream associated with the given file is writable. 
That is, the Stream has relieved the flow control that 
would prevent a user from sending data over that 
Stream. 

The poll system call examines each file descriptor for the requested 
events, and on return, poll indicates which events have occurred for each 
file descriptor. If no event has occurred on any polled file descriptor, poll 
blocks until a requested event or timeout occurs. The specific arguments 
to poll are the following: 

• an array of file descriptors and events to be polled 

• the number of file descriptors to be polled 

• the number of milliseconds poll should wait for an event if no 
events are pending (-1 specifies wait forever) 

The following example shows the use of poll. Two separate minor dev­
ices of the communications driver presented in Chapter 1 are opened, 
thereby establishing two separate Streams to the driver. Each Stream is 
polled for incoming data. If data arrives on either Stream, it is read and 
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then written back to the other Stream. This program extends the previous 
echoing example by sending echoed data over a separate communications 
line (minor device). The steps needed to establish each Stream are as fol­
lows: 

#include <fcntl.h> 
#include <poll.h> 

#define NPOLL 2 /* number of file descriptors to poll */ 

main() 
{ 

struct pollfd pollfds [NPOLL] i 
char buf[1024]i 
int count, ii 

if ((pollfds[O].fd = open("/dev/corrmOl", 0 ROWRIO NDELAY)) < 0) { 
perror("open failed for /dev/corrmOl") i- -

exit (1) i 

if ((pollfds [1] .fd = open ("/dev/corrm02", 0 ROWRIO NDELAY)) < 0) { 
perror("open failed for /dev/corrm02") ;-
exit (2) i 

The variable pollfds is declared as an array of pollfd structures. This 
structure is defined in <poll.h> and has the following format: 

struct pollfd { 
int fdi 
short events i 
short reventsi 

/* file descriptor */ 
/* requested events */ 
/* returned events */ 

For each entry in the array,jd specifies the file descriptor to be polled, and 
events is a bitmask that contains the bitwise inclusive OR of events to be 
polled on that file descriptor. On return, the revents bitmask indicates 
which of the requested events has occurred. 

The example opens two separate minor devices of the communications 
driver and initializes the pollfds entry for each. The remainder of the 
example uses poll to process incoming data as follows: 
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/* set events to poll for incoming data */ 
pollfds [0] .events = POLLIN; 
pollfds[l] .events = POLLIN; 

while (1) { 
/* poll and use -1 timeout (infinite) */ 
if (poll(pollfds, NPOLL, -1) < 0) { 

perror (''poll failed"); 
exit(3); 

for (i = 0; i < NPOLL; i++) { 
switch (pollfds[i].revents) 

default: 
perror ("error event") ; 
exit(4); 

case 0: 
break; 

case POLLIN: 

/* default error case */ 

/* no events */ 

/* echo incoming data on "other" Stream */ 
while «count = read(pollfds[i] .fd, buf, 1024)) > 0) 

/* 
* the write loses data if flow control 
* prevents the transmit at this time. 
*/ 

if (write«i==O? pollfds[l] .fd: pollfds[O].fd), 
buf, count) != count) 

fprintf(stderr,"writer lost data\n"); 
break; 

The user specifies the polled events by setting the events field of the 
pollfd structure to POLLIN. This requested event directs poll to notify the 
user of any incoming data on each Stream. The bulk of the example is an 
infinite loop, where each iteration polls both Streams for incoming data. 

The second argument to poll specifies the number of entries in the pollfds 
array (two in this example). The third argument is a timeout value indi­
cating the number of milliseconds poll should wait for an event if none 
has occurred. On a system where millisecond accuracy is not available, 
timeout is rounded up to the nearest legal value available on that system. 
Here, the value. of timeout is -1, specifying that poll should block 
indefinitely until a requested event occurs or until the call is interrupted. 
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If poll succeeds, the program looks at each entry in pollfds. If revents is 
set to 0, no event has occurred on that file descriptor. If revents is set to 
POLLIN, incoming data is available. In this case, all available data is 
read from the polled minor device and written to the other minor device. 

If revents is set to a value other than 0 or POLLIN, an error event must 
have occurred on that Stream, because the only requested event was POL­
LIN. The following error events are defined for poll. The user cannot 
poll for these events, but they are reported in revents whenever they 
occur. As such, they are only valid in the revents bitmask: 

POLLERR A fatal error has occurred in some module or driver 
on the Stream associated with the specified file 
descriptor. Further system calls will fail. 

POLLHUP A hangup condition exists on the Stream associated 
with the specified file descriptor. 

POLLNV AL The specified file descriptor is not associated with an 
open Stream. 

The example attempts to process incoming data as quickly as possible. 
However, when writing data to a Stream, the write call may block if the 
Stream is exerting flow control. To prevent the process from blocking, 
the minor devices of the communications driver were opened with the 
O_NDELAY flag set. If flow control is exerted and O_NDELAY is set, 
write will not be able to send all the data. This can occur if the commun­
ications driver is unable to keep up with the user's rate of data transmis­
sion. If the Stream becomes full, the number of bytes write sends will be 
less than the requested count. For simplicity, the example ignores the 
data if the Stream becomes full, and a warning is printed to stderr. 

This program continues until an error occurs on a Stream or until the pro­
cess is interrupted. 

2.3 Asynchronous Input/Output 

The poll system call described above enables a user to monitor multiple 
Streams in a synchronous fashion. The poll call normally blocks until an 
event occurs on any of the polled file descriptors. However, in some 
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applications it is desirable to process incoming data asynchronously. For 
example, an application may wish to do some local processing and be 
interrupted when a pending event occurs. Some time-critical applications 
cannot afford to block and must have immediate indication of success or 
failure. 

A new facility is available for use with STREAMS that enables a user pro­
cess to request a signal when a given event occurs on a Stream. When 
used with poll, this facility enables applications to asynchronously moni­
tor a set of file descriptors for events. 

The CSETSIG ioctl call [see streamio(STR)] is used to request that a 
SIGPOLL signal be sent to a user process when a specific event occurs. 
Listed below are the events for which an application can be signaled: 

S_OUTPUT 

Data has arrived at the Stream head, and no data 
existed at the Stream head when it arrived. 

A priority STREAMS message has arrived at the 
Stream head. 

The Stream is no longer full and can accept output. 
That is, the Stream has relieved the flow control 
which would otherwise prevent a user from sending 
data over that Stream. 

A special STREAMS signal message that contains a 
SIGPOLL signal has reached the front of the Stream 
head input queue. This message can be sent by 
modules or drivers to generate immediate 
notification of data or events to follow. 

The polling example can be written to process input from each communi­
cations driver minor device by issuing CSETSIG to request a signal for 
the S_INPUT event on each Stream. The signal catching routine can then 
call poll to determine on which Stream the event occurred. The default 
action for SIGPOLL is to terminate the process. Therefore, the user pro­
cess must catch the signal using signal [see signal(S)]. SIGPOLL is sent 
only to processes that request the signal using CSETSIG. 

2.4 Clone Open 

In the earlier examples, each user process connected a Stream to a driver 
by opening a particular minor device of that driver. However, a user pro­
cess often wants to connect a new Stream to a driver regardless of which 
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minor device is used to access the driver. 

In the past, this typically forced the user process to poll the various minor 
device nodes of the driver for an available minor device. To alleviate this 
task, a facility called clone open is supported for STREAMS drivers. If a 
STREAMS driver is implemented as a clone able device, a single node in 
the file system can be opened to access any unused minor device. This 
special node guarantees that the user is allocated a separate Stream to the 
driver on every open call. Each Stream is associated with an unused 
minor device, and so the total number of Streams that can be connected to 
a clone able driver is limited by the number of minor devices configured 
for that driver. 

The clone device can be useful in a networking environment where a pro­
tocol pseudo-device driver requires each user to open a separate Stream. 
Typically, the users do not care which minor device they use to establish 
a Stream to the driver. Instead, the clone device can find an available 
minor device for each user and establish a unique Stream to the driver. 
Chapter 3 describes this type of transport protocol driver. 

Note 

A user program has no control over whether a given driver supports 
the clone open. The decision to implement a STREAMS driver as a 
c10neable device is made by the designers of the device driver. 
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3.1 Multiplexer Configurations 

In the earlier chapters, Streams were described as linear connections of 
modules, where each invocation of a module is connected to at most one 
upstream module and one downstream module. While this configuration 
is suitable for many applications, others require the ability to multiplex 
Streams in a variety of configurations. Typical examples are terminal 
window facilities and internetworking protocols (which might route data 
over several subnetworks). 

An example of a multiplexer is one that multiplexes data from several 
upper Streams over a single lower Stream, as shown in Figure 3-1. An 
upper Stream is one that is upstream from a multiplexer, and a lower 
Stream is one that is downstream from a multiplexer. A terminal win­
dowing facility might be implemented in this fashion, where each upper 
Stream is associated with a separate window. 

I 
MUX 

Figure 3-1 Many-to-One Multiplexer 

A second type of multiplexer might route data from a single upper Stream 
to one of several lower Streams, as shown in Figure 3-2. An internet­
working protocol could take this form, where each lower Stream links the 
protocol to a different physical network. 
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MUX 

Figure 3-2 One-to-Many Multiplexer 

A third type of multiplexer might route data from one of many upper 
Streams to one of many lower Streams, as shown in Figure 3-3. 

MUX 

Figure 3-3 Many-to-Many Multiplexer 

A STREAMS mechanism is available that supports the multiplexing of 
Streams through special pseudo-device drivers. Using a linking facility, 
users can dynamically build, maintain, and dismantle each of the above 
multiplexed Stream configurations. In fact, these configurations can be 
further combined to form complex, multilevel, multiplexed Stream 
configurations. 

The remainder of this chapter describes multiplexed Stream 
configurations in the context of the example shown in Figure 3-4. In this 
example, an internetworking protocol pseudo-device driver (IP) is used to 
route data from a single upper Stream to one of two lower Streams. This 
driver supports two STREAMS connections beneath it to two distinct sub­
networks. One sub-network supports the IEEE 802.3 standard for the 
CSMA/CD medium access method. The second sub-network supports the 
IEEE 802.4 standard for the token-passing bus medium access method. 
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The example also presents a transport protocol pseudo-device driver (TP) 
that multiplexes multiple virtual circuits (upper Streams) over a single 
Stream to the IP pseudo-device driver. 

3.2 Building a Multiplexer 

Figure 3-4 shows the multiplexing configuration to be created. This 
configuration enables users to access the services of the transport proto­
col. To free users from concern with the underlying protocol structure, a 
user-level daemon process builds and maintains the multiplexing 
configuration. Users can then access the transport protocol directly by 
opening the TP driver device node. 

Stream 
Head 

___ l!s_e!:. ~p~ce 

Kernel Space 

Figure 3-4 Protocol Multiplexer 
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The following example shows how this daemon process sets up the proto­
col multiplexer. The necessary declarations and initialization for the dae­
mon program are as follows: 

#include <fcntl.h> 
#include <stropts.h> 

main () 
{ 

int fd S02 4, 
fd-S02-3, 
fd-ip,-
fd::::tp; 

/* 
* daemon-ize this process 
*/ 

switch (fork ( ) ) 
case 0: 

break; 
case -1: 

perror ("fork failed"); 
exit (2); 

default: 
exit (0); 

} 
setpgrp() ; 

This multilevel, multiplexed Stream configuration is built from the bot­
tom up. Therefore, the example begins by constructing the IP multi­
plexer. This multiplexing pseudo-device driver is treated like any other 
software driver. It owns a node in the UNIX file system and is opened just 
like any other STREAMS device driver. 

The first step is to open the multiplexing driver and the 802.4 driver, 
creating separate Streams above each driver as shown in Figure 3-5. The 
Stream to the 802.4 driver can now be connected below the mUltiplexing 
IP driver using the CLINK ioctl call. 
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~ 
/ " User Space mm -mmlmllr--I-~~e;space 

Driver 

Figure 3-5 Before Link 

The sequence of instructions to this point is: 

if ((fd 802 4 = open ("/dev/802 4", 0 RDWR)) < 0) { 
perror("open of /dev/802_4-failed"); 
exit (1); 

if ((fd ip = open ("/dev/ip", 0 RDWR)) < 0) 
perror("open of /dev/ip failed"); 
exit(2); 

/* now link 802.4 to underside of IP */ 

if (ioctl(fd ip, I LINK, fd 802 4) < 0) 
perror("i LINK-ioctl failed"); 
exit (3); -

CLINK takes two file descriptors as arguments. The first file descriptor, 
Jd _ip, must reference the Stream connected to the multiplexing driver, 
and the second file descriptor, Jd_802_4, must reference the Stream to be 
connected below the multiplexer. Figure 3-6 shows the state of these 
Streams following the CLINK call. The complete Stream to the 802.4 
driver has been connected below the IP driver, including the Stream head. 
The Stream head of the 802.4 driver will be used by the IP driver to 
manage the multiplexer. 
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___ -:- ______ l!~e~ ~p~ce 

Kernel Space 

Figure 3-6 IP Multiplexer After First Link 

CLINK returns an integer value, called a mux ID, which is used by the 
multiplexing driver to identify the Stream just connected below it. This 
mux ID is ignored in the example, but it can be useful for dismantling a 
multiplexer or routing data through the multiplexer. Its significance is 
discussed later. 

The following sequence of system calls is used to continue building the 
intemetworking multiplexer (IP): 

if «fd 802 3 = open ("/dev/802 3", 0 RDWR)) < 0) { 
perror("open of /dev/802 3-failecin); 
exit (4); -

if (ioctl(fd ip, I LINK, fd 802 3) < 0) 
perror (,ii LINK - ioctl faIled"); 
exit (5); -

All links below the IP driver have now been established, giving the 
configuration in Figure 3-7. 
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Multiplexed Streams 
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Kernel Space 

Figure 3-7 IP Multiplexer 

The Stream above the multiplexing driver used to establish the lower con­
nections is the controlling Stream. It has special significance when dis­
mantling the multiplexing configuration, as shown later in this chapter. 
The Stream referenced by fd _ip is the controlling Stream for the IP multi­
plexer. 

Note 

The order in which the Streams in the multiplexing configuration 
are opened is unimportant. However, if it is necessary to have inter­
mediate modules in the Stream between the IP driver and media 
drivers, these modules must be added to the Streams associated with 
the media drivers (using CPUSH) before the media drivers are 
attached below the multiplexer. 

The number of Streams that can be linked to a multiplexer is restricted by 
the design of the particular multiplexer. The manual page describing 
each driver should describe such restrictions. However, only one CLINK 
operation is allowed for each lower Stream; a single Stream cannot be 
linked below two multiplexers simultaneously. 
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Continuing with the example, the IP driver is now linked below the tran­
sport protocol (TP) multiplexing driver. As seen earlier in Figure 3-4, 
only one link is supported below the transport driver. This link is formed 
by the following sequence of system calls: 

if ((fd tp = open ("/dev/tp", 0 RDWR)) < 0) 
perror("open of /dev/tp failed"); 
exit(6); 

if (ioctl(fd tp, I LINK, fd ip) < 0) 
perror("i LINICioctl failed"); 
exit (7); -

The multilevel multiplexing configuration shown in Figure 3-8 has now 
been created. 
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Because the controlling Stream of the IP multiplexer has been linked 
below the TP multiplexer, the controlling Stream for the new multilevel 
multiplexer configuration is the Stream above the TP multiplexer. 

At this point the file descriptors associated with the lower drivers can be 
closed without affecting the operation of the multiplexer. Closing these 
file descriptors may be necessary when building large multiplexers so that 
many devices can be linked together without exceeding the UNIX System 
limit on the number of simultaneously open files per process. If these file 
descriptors are not closed, all subsequent read, write, ioctl, poll, getmsg, 
and putmsg system calls issued to them will fail. This is because CLINK 
associates the Stream head of each linked Stream with the multiplexer, 
and so the user cannot access that Stream directly for the duration of the 
link. 

The following sequence of system calls completes the multiplexing dae-
mon example: ' 

close(fd a02 4); 
close(fd-a02-3); 
close (f{)p)-; 

/* Hold multiplexer open forever */ 
pause (); 

Figure 3-4 shows the complete picture of the multilevel protocol multi­
plexer. The transport driver is designed to support several simultaneous 
virtual circuits, where these virtual circuits map one-to-one to Streams 
opened to the transport driver. These Streams are multiplexed over the 
single Stream connected to the IP multiplexer. The mechanism for estab­
lishing multiple Streams above the transport multiplexer is actually a by­
product of the way in which Streams are created between a user process 
and a driver. Separate Streams are connected to a STREAMS driver by 
opening different minor devices of that driver. Of course, the driver must 
be designed with the intelligence to route data from the single lower 
Stream to the appropriate upper Stream. 

Notice in Figure 3-4 that the daemon process maintains the multiplexed 
Stream configuration through an open Stream (the controlling Stream) to 
the transport driver. Meanwhile, other users can access the services of 
the transport protocol by opening new Streams to the transport driver; 
they are freed from the need for any unnecessary knowledge of the under­
lying protocol configurations and sub-networks which support the tran­
sport service. 
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Multilevel, multiplexing configurations, such as the one presented in the 
above example, should be assembled from the bottom up. This is because 
STREAMS does not allow ioctl requests (including CLINK) to be passed 
through higher multiplexing drivers to reach the desired multiplexer; they 
must be sent directly to the intended driver. For example, once the IP 
driver is linked under the TP driver, ioctl requests cannot be sent to the IP 
driver through the TP driver. 

3.3 Dismantling a Multiplexer 

Those Streams which are connected to a multiplexing driver from above 
(with open) can be dismantled by closing each Stream with close. In the 
protocol mUltiplexer, these Streams correspond to the virtual circuit 
Streams above the TP multiplexer. The mechanism for dismantling 
Streams that have been linked below a multiplexing driver is less obvious 
and is described below in detail. 

The CUNLINK ioctl call is used to disconnect each multiplexer link 
below a multiplexing driver individually. This command takes the fol­
lowing fonn: 

where fd is a file descriptor associated with a Stream connected to the 
multiplexing driver from above, and mux _id is the identifier that was 
returned by CLINK when a driver was linked below the multiplexer. 
Each lower driver can be disconnected individually in this way, or a spe­
cial mux id value of -1 can be used to disconnect all drivers from the 
multiplexer simultaneously. 

In the multiplexing daemon program presented earlier, the multiplexer is 
never explicitly dismantled. This is because all links associated with a 
multiplexing driver are automatically dismantled when the controlling 
Stream associated with that multiplexer is closed. Because the control­
ling Stream is open to a driver, only the final call of close for that Stream 
closes it. In this case, the daemon is the only process that has opened the 
controlling Stream, and so the multiplexing configuration is dismantled 
when the daemon exits. 

If the automatic dismantling mechanism is to work in the multilevel, mul­
tiplexed Stream configuration, the controlling Stream for each multi­
plexer at each level must be linked under the next higher level multi­
plexer. In the example, the controlling Stream for the IP driver was 
linked under the TP driver. This resulted in a single controlling Stream 
for the full multilevel configuration. In this case the multiplexing pro­
gram relied on closing the controlling Stream to dismantle the 
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multiplexed Stream configuration instead of using explicit C UNLINK 
calls. Thus, the mux ID values returned by CLINK could be ignored. 

An important side effect of automatic dismantling on close is that it is not 
possible for a process to build a multiplexing configuration and then exit. 
This is because exit [see exit(S)] closes all files associated with the pro­
cess, including the controlling Stream. To keep the configuration intact, 
the process must exist for the life of that multiplexer. This is the motiva­
tion for implementing the example as a daemon process. 

3.4 Routing Data Through a Multiplexer 

As demonstrated, STREAMS has provided a mechanism for building mul­
tiplexed Stream configurations. However, the criteria on which a multi­
plexer routes data are driver-dependent. For example, the protocol multi­
plexer shown in the last example might use address information found in 
a protocol header to determine the sub-network over which a given packet 
should be routed. It is the multiplexing driver's responsibility to define its 
routing criteria. 

One routing option available to the multiplexer is to use the mux ID value 
to determine the Stream to which data should be routed. (Remember that 
each multiplexer link is associated with a mux ID.) CLINK passes the 
mux ID value to the driver and returns this value to the user. The driver 
can therefore specify that the mux ID value must accompany data routed 
through it. For example, if a multiplexer routed data from a single upper 
Stream to one of several lower Streams (as did the IP driver), the multi­
plexer could require the user to insert the mux ID of the desired lower 
Stream into the first four bytes of each message passed to it. The driver 
could then match the mux ID in each message with the mux ID of each 
lower Stream and route the data accordingly. 
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4.1 Service Interface Messages 

A STREAMS message format has been defined to simplify the design of 
service interfaces. Also, two new system calls, getmsg and putmsg, are 
available for sending these messages downstream and receiving messages 
that are available at the Stream head. This chapter describes these system 
calls in the context of a service interface example after presenting a brief 
overview of STREAMS service interfaces. 

4.2 Service Interfaces 

A principal advantage of the STREAMS mechanism is its modularity. 
From the user level, kernel-resident modules can be dynamically inter­
connected to implement any reasonable processing sequence. This modu­
larity reflects the layering characteristics of contemporary network arc hi -
tectures. 

One benefit of modularity is the ability to interchange modules of like 
function. For example, two distinct transport protocols, implemented as 
STREAMS modules, can provide a common set of services. An applica­
tion or higher layer protocol that requires those services can use either 
module. This ability to substitute modules enables user programs and 
higher-level protocols to be independent of the underlying protocols and 
physical communication media. 

Each STREAMS module provides a set of processing functions, or ser­
vices, and an interface to those services. The service interface of a 
module defines the interaction between that module and any neighboring 
modules, and therefore it is a necessary component for providing module 
substitution. By creating a well-defined service interface, applications 
and STREAMS modules can interact with any module that supports that 
interface. Figure 4-1 demonstrates this. 
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Application 
A 

Application 
A 

___________________________________ y~er Space 

Kernel Space 
Service Interface .................................................................................. 

TCP 
Transport 

Protocol 

Lower Layer 
Protocol 
Suite A 

ISO 
Transport 

Protocol 

Lower Layer 
Protocol 
Suite B 

Figure 4-1 Protocol Substitution 

For example, by defining a service interface between applications and a 
transport protocol, it is possible to substitute a different protocol below 
that service interface which is completely transparent to the application. 
In this example, the same application can run over the Transmission Con­
trol Protocol (TCP) and the ISO transport protocol. Of course, the service 
interface must define a set of services common to both protocols. 
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The three components of any service interface are the service user, the 
service provider, and the service interface itself, as seen in Figure 4-2. 

Request 
Primitives 

t Service Interface .......................................................... 

t 
Response and 
Event Primitives 

Figure 4-2 Service Interface 

Typically, a user makes a request of a service provider using some well­
defined service primitive. Responses and event indications are also 
passed from the provider to the user using service primitives. The service 
interface is defined as the set of primitives that define a service and the 
allowable state transitions that result as these primitives are passed 
between the user and provider. 

4.3 The Message Interface 

A message format has been defined to simplify the design of service inter­
faces using STREAMS. Each service interface primitive is a distinct 
STREAMS message containing two parts: a control part and a data part. 
The control part contains information that identifies the primitive and 
includes all necessary parameters. The data part contains user data asso­
ciated with that primitive. 

An example of a service interface primitive is a transport protocol con­
nect request. This primitive requests that the transport protocol service 
provider establish a connection with another transport user. The parame­
ters associated with this primitive can include a destination protocol 
address and specific protocol options to be associated with that connec­
tion. Some transport protocols also allow a user to send data with the 
connect request. A STREAMS message is used to define this primitive. 
The control part identifies the primitive as a connect request and includes 
the protocol address and options. The data part contains the associated 
user data. 
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STREAMS enables modules to create these messages and pass them to 
neighbor modules. However, the read and write system calls are not 
sufficient to enable a user process to generate and receive such messages. 
First, read and write are byte-stream oriented, with no concept of mes­
sage boundaries. To support service interfaces, the message boundary of 
each service primitive must be preserved so that the beginning and end of 
each primitive can be located. Also, read and write offer only one buffer 
to the user for transmitting and receiving STREAMS messages. If control 
information and data are placed in a single buffer, the user must parse the 
contents of the buffer to separate the data from the control information. 

Two STREAMS system calls are available that enable user processes to 
create STREAMS messages and send them to neighboring kernel modules 
and drivers or receive the contents of such messages from kernel modules 
and drivers. These system calls preserve message boundaries and provide 
separate buffers for the control and data parts of a message. 

The putmsg system call enables a user to create STREAMS messages and 
send them downstream. The user supplies the contents of the control and 
data parts of the message in two separate buffers. Likewise, the getmsg 
system call retrieves such messages from a Stream and places the con­
tents into two user buffers. 

The syntax of putmsg is as follows: 

int putmsg (fd, ctlptr, dataptr, flags) 
int fd; 
struct strbuf *ctlptr; 
struct strbuf *dataptr; 
int flags; 

fd identifies the Stream to which the message will be passed, ctlptr and 
dataptr identify the control and data parts of the message, and flags can 
be used to specify that a priority message should be sent. 

The strbuf structure is used to describe the control and data parts of a 
message and has the following format: 

struct strbuf { 

int maxlen; /* maximum buffer length */ 
int len; /* length of data */ 
char *buf; /* pointer to buffer */ 

buf points to a buffer containing the data, and len specifies the number of 
bytes of data in the buffer. maxlen specifies the maximum number of 
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bytes the given buffer can hold and is meaningful only when retrieving 
information into the buffer using getmsg. 

The getmsg system call retrieves messages available at the Stream head 
and has the following syntax: 

int getrnsg (fd, ctlptr, dataptr, flags) 
int fdi 

struct strbuf *ctlptri 
struct strbuf *dataptri 
int *flagsi 

The arguments to getmsg are the same as those for putmsg. 

The remainder of this chapter presents an example that demonstrates how 
putmsg and getmsg can be used to interact with the service interface of a 
simple datagram protocol provider. A potential provider of such a service 
might be the IEEE 802.2 Logical Link Control Protocol Type 1. The 
example implements a user-level library that frees the user from 
knowledge of the underlying STREAMS system calls. The Transport 
Layer Interface of the Network Services Library in the UNIX System pro­
vides a similar function for transport layer services. The example here 
illustrates how a service interface might be defined; it is not an example 
of a complete IEEE 802.2 service interface. 

4.4 Datagram Service Interface Example 

The example datagram service interface library presented below includes 
four functions that enable a user to do the following: 

• establish a Stream to the service provider and bind a protocol 
address to the Stream 

• send a datagram to a remote user 

• receive a datagram from a remote user 

• close the Stream connected to the provider 

First, the structure and constant definitions required by the library are 
shown. These typically reside in a header file associated with the service 
interface. 
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/* 
* Primitives initiated by the service user. 
*/ 

#define BIND_REQ 
#define UNITD~_REQ 

/* 

1 
2 

/* bind request */ 
/* unitdata request */ 

* Primitives initiated by the service provider. 
*/ 

#define OK ACK 
#define ERROR_ACK 
#define UNITD~ IND 

/* 

3 
4 
5 

/* bind acknowledgment */ 
/* error acknowledgment */ 
/* unitdata indication */ 

* The following structure definitions define the format of the 
* control part of the service interface message of the above 
* primitives. 
*/ 

struct bind req { 
long PRIM_type; 
long BIND_addr; 

}; 

struct unitdata_req 
long PRIM type; 
long DEST=addr; 

}; 

struct ok_ack { 
long PRIM_type; 

}; 

struct error ack { 
long PRIM type; 
long UNIX=error; 

}; 

struct unitdata ind 
long PRIM_tYPe; 
long SRC_addr; 

}; 

/* bind request */ 
/* always BIND REQ */ 
/* addr to bind */ 

/* unitdata request */ 
/ * always UNITD~ REQ * / 
/* destination adctr */ 

/* positive acknowledgment */ 
/* always OK_ACK */ 

/* error acknowledgment */ 
/* always ERROR ACK */ 
/* UNIX error cOde */ 

/* unitdata indication */ 
/* always UNITD~ IND */ 
/* source addr */-

/* union of all primitives */ 
union primitives { 

}; 

long 
struct bind req 
struct unitctata req 
struct ok ack -
struct error ack 
struct unitctata_ind 

type; 
bind req; 
unitctata req; 
ok_ack; -
error ack; 
unitctata _ ind; 

/* header files needed by library */ 
#include <stropts.h> 
#include <stdio.h> 
#include <errno.h> 
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Five primitives have been defined. The first two represent requests from 
the service user to the service provider. These are: 

BIND_REQ 

UNITDATA_REQ 

This request asks the provider to bind a specified 
protocol address. It requires an acknowledgment 
from the provider to verify that the contents of the 
request were syntactically correct. 

This request asks the provider to send a datagram 
to the specified destination address. It does not 
require an acknowledgment from the provider. 

The three other primitives represent acknowledgments of requests, or 
indications of incoming events, and are passed from the service provider 
to the service user. These are: 

This primitive informs the user that a previous 
bind request was received successfully by the ser­
vice provider. 

This primitive informs the user that a non-fatal 
error was found in the previous bind request. It 
indicates that no action was taken with the primi­
tive that caused the error. 

This primitive indicates that a datagram destined 
for the user has arrived. 

The structures defined above describe the contents of the control part of 
each service interface message which is passed between the service user 
and service provider. The first field of each control part defines the type 
of primitive being passed. 

4.5 Accessing the Datagram Provider 

The first routine presented below, inter _open, opens the protocol driver 
device file specified by path and binds the protocol address contained in 
addr so that it can receive datagrams. On success, the routine returns the 
file descriptor associated with the open Stream; on failure, it returns -1 
and sets ermo to indicate the appropriate UNIX System error value. 
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inter open (path, of lags , addr) 
char *path; 
{ 

int fd; 
struct bind req bind req; 
struct strbuf ctlbuf; 
union primitives rcvbuf; 
struct error ack *error ack; 
int flags; - -

if ((fd = open (path, oflags)) < 0) 
return(-l); 

/* send bind request msg down stream */ 

bind req.PRIM type = BIND REQ; 
bind-req.BIND-addr = addr; 
ctlbuf.len = sizeof(struct bind req); 
ctlbuf.buf = (char *)&bind_req;-

if (putmsg(fd, &ctlbuf, NULL, 0) < 0) 
close (fd); 
return (-1) ; 

After opening the protocol driver, inter _open packages a bind request 
message to send downstream. putmsg is called to send the request to the 
service provider. The bind request message contains a control part that 
holds a bind _req structure, but it has no data part. ctlbuf is a structure of 
type strbuf, and it is initialized with the primitive type and address. 
Notice that the maxlen field of ctlbuf is not set before calling putmsg 
because putmsg ignores this field. The dataptr argument to putmsg is set 
to NULL to indicate that the message contains no data part. Also, the 
flags argument is 0, which specifies that the message is not a priority mes­
sage. 

After inter_open sends the bind request, it must wait for an acknowledg­
ment from the service provider, as follows: 
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/* wait for ack of request */ 

ctlbuf.maxlen = sizeof(union primitives); 
ctlbuf.len = 0; 
ctlbuf.buf = (char *)&rcvbuf; 
flags = RS_HIPRI; 

if (getmsg(fd, &ctlbuf, NULL, &flags) < 0) ( 
close(fd); 
return (-1); 

/* did we get enough to determine type */ 
if (ctlbuf.len < sizeof(long)) ( 

close (fd) ; 
errno = EPROTO; 
return(-l); 

/* switch on type (first long in rcvbuf) */ 
switch (rcvbuf.type) ( 

default: 
errno = EPROTO; 
close(fd); 
return (-1) ; 

case OK ACK: 
return(fd); 

case ERROR ACK: 
if (ctrbuf.len < sizeof(struct error_ack)) 

errno = EPROTO; 
close(fd); 
return (-1) ; 

error ack = (struct error ack *)&rcvbuf; 
errno-= error ack->UNIX error; 
close (fd) ; - -
return (-1); 

Message Handling 

getmsg is called to retrieve the acknowledgment of the bind request. The 
acknowledgment message consists of a control part that contains either an 
ok _ ack or error _ ack structure, and no data part. 

The acknowledgment primitives are defined as priority messages. Two 
classes of messages can arrive at the Stream head: priority and normal. 
Normal messages are queued in a first-in-first-out manner at the Stream 
head, while priority messages are placed at the front of the Stream head 
queue. The STREAMS mechanism allows only one priority message per 
Stream at the Stream head at one time; any further priority messages are 
discarded until the first message is processed. Priority messages are par­
ticularly suitable for acknowledging service requests when the ack­
nowledgment should be placed ahead of any other messages at the Stream 
head. 
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Note 

These messages are not intended to support the expedited data capa­
bilities of many communication protocols, as evidenced by the 
one-at-a-time restriction just described. 

Before calling getmsg, this routine must initialize the strbuf structure for 
the control part. but should point to a buffer large enough to hold the 
expected control part, and maxlen must be set to indicate the maximum 
number of bytes this buffer can hold. 

Because neither acknowledgment primitive contains a data part, the 
dataptr argument to getmsg is set to NULL. The flags argument points to 
an integer containing the value RS_HIPRI. This flag indicates that 
getmsg should wait for a STREAMS priority message before returning, 
and it is set because the acknowledgment primitives are priority mes­
sages. Even if a normal message is available, getmsg blocks until a prior­
ity message arrives. 

On return from getmsg, the len field is checked to ensure that the control 
part of the retrieved message is an appropriate size. The example then 
checks the primitive type and takes appropriate actions. An OK_ACK 
indicates a successful bind operation, and inter open returns the file 
descriptor of the open Stream. An ERROR_ACK indicates a bind failure, 
and ermo is set to identify the problem with the request. 

4.6 Closing the Service 

The next routine in the datagram service library is inter _close, which 
closes the Stream to the service provider. 

inter close (fd) 
{ -

close(fd); 
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The routine simply closes the given file descriptor. This causes the proto­
col driver to free any resources associated with that Stream. For example, 
the driver can unbind the protocol address that was bound to that Stream, 
thereby freeing that address for use by some other service user. 

4.7 Sending a Datagram 

The third routine, inter _snd, passes a datagram to the service provider for 
transmission to the user at the address specified in addr. The data to be 
transmitted is contained in the buffer pointed to by buf, it contains len 
bytes. On successful completion, this routine returns the number of bytes 
of data passed to the service provider; on failure, it returns -1 and sets 
errno to an appropriate UNIX System error value. 

inter snd(fd, buf, len, addr) 
char *buf; 
long addr; 
{ 

struct strbuf ctlbuf; 
struct strbuf databuf; 
struct unitdata_req unitdata_req; 

unitdata req.PRIM type = UNITDATA REQ; 
unitdata-req.DEST-addr = addr; -
ctlbuf • len = sizeof (struct unitdata req); 
ctlbuf.buf = (char *) &unitdata req;-
databuf • len = len; -
databuf.buf = buf; 

if (putmsg(fd, &ctlbuf, &databuf, 0) < 0) 
return(-l); 

return (len) ; 

In this example, the datagram request primitive is packaged with both a 
control part and a data part. The control part contains a unitdata _req 
structure that identi fies the primitive type and the destination address of 
the datagram. The data to be transmitted is placed in the data part of the 
request message. 

Unlike the bind request, the datagram request primitive requires no ack­
nowledgment from the service provider. In the example, this choice was 
made to minimize the overhead during data transfer. Since datagram ser­
vices are inherently unreliable, this is a valid design choice. If the 
putmsg call succeeds, this routine assumes all is well and returns the 
number of bytes passed to the service provider. 
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4.8 Receiving a Datagram 

The final routine in this example, inter _rev, retrieves the next available 
datagram. buJ points to a buffer where the data should be stored, len indi­
cates the size of that buffer, and addr points to a long integer where the 
source address of the datagram will be placed. On successful completion, 
inter _rev returns the number of bytes in the retrieved datagram; on 
failure, it returns -1 and sets the appropriate UNIX System error value. 

inter_rcv(fd, buf, len, addr) 
char *buf; 
long *addr; 
( 

struct strbuf ctlbuf; 
struct strbuf databuf; 
struct unitdata_ind unitdata_ind; 
int retval; 
int flags; 

ctlbuf.maxlen = sizeof(struct unitdata ind); 
ctlbuf.len = 0; -
ctlbuf.buf = (char *)&unitdata ind; 
databuf .maxlen = len; -
databuf.len = 0; 
databuf.buf = buf; 
flags = 0; 

if ((retval = getmsg(fd, &ctlbuf, &databuf, &flags)) < 0) 
return(-l); 

if (unitdata ind.PRIM type != UNITDATA_IND) 
errno = EPROTO; -
return(-l); 

if (ret val) ( 
errno = EIO; 
return(-l); 

*addr = unitdata ind.SRC addr; 
return(databuf.len); -

getmsg is called to retrieve the datagram indication primitive, where that 
primitive contains both a control and data part. The control part consists 
of a unitdata_ind structure that identifies the primitive type and the 
source address of the datagram sender. The data part contains the data 
itself. 

In etlbuJ, buJ must point to a buffer where the control information will be 
stored, and maxlen must be set to indicate the maximum size of that 
buffer. Similar initialization is done for databuf 
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The flags argument to getmsg is set to zero, indicating that the next mes­
sage should be retrieved from the Stream head, regardless of its priority. 
Datagrams arrive in normal priority messages. If no message currently 
exists at the Stream head, getmsg blocks until a message arrives. 

The user's control and data buffers should be large enough to hold any 
incoming datagram. If both buffers are large enough, getmsg processes 
the datagram indication and returns 0, indicating that a full message was 
retrieved successfully. However, if either buffer is not large enough, 
getmsg retrieves only the part of the message that fits into each user 
buffer. The remainder of the message is saved for subsequent retrieval, 
and a positive, non-zero value is returned to the user. A return value of 
MORECTL indicates that more control information is waiting for 
retrieval. A return value of MOREDATA indicates that more data is wait­
ing for retrieval. A return value of MORECTLIMOREDATA indicates that 
data from both parts of the message remain. In the example, if the user 
buffers are not large enough (that is, if getmsg returns a positive, non-zero 
value), the function sets erma to EIO and fails. 

The type of the primitive returned by getmsg is checked to make sure it is 
a datagram indication. The source address is then set and the number of 
bytes of data in the datagram is returned. 

The above example presents a simplified service interface. The state 
transition rules for such an interface were omitted for the sake of brevity. 
The intent was to show typical uses of the putmsg and getmsg system 
calls. See putmsg(S) and getmsg(S) for further details. 
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5.1 Overview 

A Stream implements a connection within the kernel between a driver in 
kernel space and a process in user space. It provides a general character 
input/output (I/O) interface for user processes which is upwardly compati­
ble with the interface of the pre-existing character I/O facilities. A 
Stream is analogous to a shell pipeline except that data flow and process­
ing are bidirectional to support concurrent input and output. 

The components that form a Stream are the Stream head, driver, and 
optional modules (see Figure 1-1). A Stream is initially constructed when 
a user process open system call references a STREAMS file. The call 
causes a kernel resident driver to be connected with a Stream head to 
form a Stream. Subsequent ioctl calls select kernel resident modules and 
cause them to be inserted in the Stream. A module represents intermedi­
ate processing on messages flowing between the Stream head and driver. 
For example, a module can function as a communication protocol, line 
discipline, or data filter. STREAMS allows a user to connect a module 
with any other module. The user determines the module connection 
sequences that result in useful configurations. 

A process can send and receive characters on a Stream using write and 
read, as on character files. When user data enters the Stream head or 
external data enters the driver, the data is placed into messages for 
transmission on the Stream. All data passed on a Stream is carried in 
messages, each having a defined message type identifying the message 
contents. futernal control and status information is transmitted among 
modules or between the Stream and user process as messages of certain 
types interleaved on the Stream. Modules and drivers can send certain 
message types to the Stream head to cause the generation of signals or 
errors to be received by the user process. 

A module is comprised of two identical sets of data structures called 
QUEUEs. One QUEUE is for upstream processing and the other is for 
downstream processing. The processing performed by the two QUEUEs is 
generally independent so that a Stream operates in a full-duplex manner. 
The interface between modules is uniform and simple. Messages flow 
from module to module. A message from one module is passed to the sin­
gle entry point of its neighboring module. 

The last close system call dismantles the Stream and closes the file, 
semantically identical to character I/O drivers. 

STREAMS supports implementation of user-level applications with exten­
sions to the above general system calls and STREAMS specific system 
calls: pntmsg, getmsg, poll, and a set of STREAMS generic ioctl 
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functions. 

5.2 Stream Construction 

STREAMS constructs a Stream as a linked list of kernel-resident data 
structures. In a STREAMS file, the inode points to the Stream header 
structure. The header is used by STREAMS kernel routines to perform 
operations on this Stream generally related to system calls. Figure 5-1 
depicts the downstream (write) portion of a Stream (see Chapter 3 of the 
Primer) connected to the header. There is one header per Stream. From 
the header onward, a Stream is constructed of QUEUEs. The upstream 
(read) portion of the Stream (not shown in Figure 5-1) parallels the down­
stream portion in the opposite direction and terminates at the Stream 
header structure. 

Figure 5-1 Downstream Stream Construction 

At the same relative location in each QUEUE is the address of the entry 
point, a procedure to be executed on any message received by that 
QUEUE. The procedure for QUEUE H, at one end of the Stream, is the 
STREAMS-provided Stream head routine. QUEUE H is the downstream 
half of the Stream head. The procedure for QUEUE D, at the other end, is 
the driver routine. QUEUE D is the downstream half of the Stream end. 
PI and P2 are push able modules, each containing their own unique pro­
cedures. That is, all STREAMS components are of similar organization. 

This similarity results in the uniform manner of navigating in either direc­
tion on a Stream: messages move from one end to the other, from QUEUE 
to the next linked QUEUE, executing the procedure specified in the 
QUEUE. 

Figure 5-2 shows the data structures forming each QUEUE: queue t, 
qinit, module_info, and module_stat. queue_t contains various 
modifiable values for this QUEUE, generally used by STREAMS. qinit 
contains a pointer to the processing procedures, module Jnfo contains 
limit values and module stat is used for statistics. Both QUEUEs in a 
module generally contain -a different set of these structures. The contents 
of these structures are described in later chapters. 
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Figure 5-2 QUEUE Data Structures 

Figure 5-1 shows QUEUE linkage in one direction while Figure 5-2 shows 
two neighboring modules with links (solid vertical arrows) in both direc­
tions. When a module is pushed onto a Stream, STREAMS creates two 
QUEUEs and links each QUEUE in the module to its neighboring QUEUE 
in the upstream and downstream direction. The linkage allows each 
QUEUE to locate its next neighbor. The next relation is implemented 
between queue ts in adjacent modules by the q next pointer. Within a 
module, each queue t locates its mate (see dotted arrows in Figure 5-2) 
by use of STREAMS-macros, since there is no pointer between the two 
queue ts. The existence of the Stream head and driver is known to the 
QUEuE procedures only as destinations towards which messages are sent. 

5.3 Opening a Stream 

When a file is opened [see open(S)], a STREAMS file is recognized by a 
non-null value in the d_str field of the associated cdevsw entry. d_str 
points to a streamtab structure: 

struct strearntab 
struct qinit 
struct qinit 
struct qinit 
struct qinit 

} ; 

*st_rdinit; /* defines read QUEUE */ 
*st wrinit; /* defines write QUEUE */ 
*st-muxrinit; /* for multiplexing drivers only */ 
*st~init; /* for multiplexing drivers only */ 
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streamtab defines a module or driver and points to the read and write 
qinit structures for the driver. 

If this open call is the initial file open, a Stream is created. First, the sin­
gle header structure and the Stream head queue t structure pair are allo­
cated. Their contents are initialized with predetermined values, including 
the Stream head processing routines, as noted above (see QUEUE H). 

Then a queue_t structure pair is allocated for the driver. The queue_t 
contents are zero unless specifically initialized (see Chapter 8). A single, 
common qinit structure pair is shared among all the Streams opened from 
the same cdevsw entry, as is the associated mOduleJnfo and 
module_stat structures (see Figure 5-2). 

Next, the q_next values are set so that the Stream head write queue_t 
points to the driver write queue _ t, and the driver read queue _ t points to 
the Stream head read queue t. The q next values at the ends of the 
Stream are set to NULL. Finaily, the drIver open procedure (located via 
qinit) is called. 

If this open is not the initial open of this Stream, the only actions per­
fonned are to call the driver open and the open procedures of all pushable 
modules on the Stream. 

S.4 Adding and Removing Modules 

As part of constructing a Stream, a module can be added with an ioctl 
CPUSH system call (push) [see streamio(STR)]. The push inserts a 
module beneath the Stream head. Due to the similarity of STREAMS 
components, the push operation is similar to the driver open. 

First, the address of the qinit structure for the module is obtained via an 
fmodsw entry. fmodsw is an array which is analogous to cdevsw. Each 
fmodsw entry corresponds to a unique module and contains the name of 
the module (used by CPUSH and certain other STREAMS ioctls) and a 
pointer to the module's streamtab. 

Next, STREAMS allocates queue t structures and initializes their con­
tents as in the driver open, above.- As with the driver, the read and write 
qinit structures are shared among all the modules opened from this 
fmodswentry (see Figure 5-2). 
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Then, q_ next values are set and modified so that the module is interposed 
between the Stream head and the driver or module previously connected 
to the head. Finally, the module open procedure (located via qinit) is 
called. Unlike open, no other module or driver open procedure is called. 

Each push of a module is independent, even in the same Stream. If the 
same module is pushed more than once onto a Stream, this causes multi­
pIe occurrences of that module in the Stream. The total number of push­
able modules that can be contained on anyone Stream is limited by the 
kernel parameter NSTRPUSH (see Appendix E). 

An ioctl CPop system call (pop) removes the module immediately below 
the Stream head. (See streamio(STR) for more infonnation on CPOP.) 
The pop calls the module close procedure. On return from the module 
close, any messages left on the module's message queues are freed (deal­
located). Then, STREAMS connects the Stream head to the component 
previously below the popped module and deallocates the module's two 
queue _ t structures. CPOP enables a user process to dynamically alter the 
configuration of a Stream by pushing and popping modules as required. 
For example, a module can be removed or a new one inserted below a 
module. In the latter case, the original module is popped and pushed back 
after the new module has been pushed. 

An CPOP cannot be used on a driver. 

5.5 Closing 

The last close system call to a STREAMS file dismantles the Stream. Dis­
mantling consists of popping any modules on the Stream, closing the 
driver and closing the file. Before a module is popped by close, it can 
delay to allow any messages on the write message queue of the module to 
be drained by module processing. If O_NDELAY [see open(S)] is clear, 
close waits up to 15 seconds for each module to drain. If O_NDELAY is 
set, the pop is perfonned immediately. close also waits for the driver's 
write queue to drain. For example, messages can remain queued if flow 
control is inhibiting execution of the write QUEUE (see Chapter 6 in the 
Primer). When all modules are popped and any wait for the driver to drain 
is completed, the driver close routine is called. On return from the driver 
close, any messages left on the driver's message queues are freed, and the 
queue_t and header structures are deallocated. Finally, the file is closed. 
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Note 

STREAMS frees only the messages contained on a message queue. 
Any messages used internally by the driver or module must be freed 
by the driver or module close procedure. 
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Modules 

6.1 Module Declarations 

A module and driver must include declarations of the following form: 

#include "sys/types.h" 
#include "sys/stream.h" 
#include "sys/param.h" 

/* required in all modules and drivers */ 
/ * required in all modules and drivers * / 

static struct module info nninfo = { 0, ''mod'', 0, INFPSZ, 0, 0 }; 
static struct module-info wminfo = { 0, ''mod'', 0, INFPSZ, 0, 0 }; 
static int modopen ()~ modrput ( ), modwput ( ), modclose ( ) ; 

static struct qinit rinit = { 

modrput, NULL, modopen, modclose, NULL, &nninfo, NULL 
}; 
static struct qinit winit = { 
modwput, NULL, NULL, NULL, NULL, &wminfo, NULL 
} ; 
struct streamtab modinfo = { &rinit, &winit, NULL, NULL }; 

The contents of these declarations are constructed for the null module 
example in this section. This module performs no processing; its only 
purpose is to show linkage of a module into the system. The descriptions 
in this section are general to all STREAMS modules and drivers unless 
they specifically reference the example. 

The de~larations shown are the following: the header set; the read and 
write QUEUE (rminJo and wminJo) module info structures (see Figure 5-
2); the module open, read-put, write-put and close procedures; the read 
and write (rinit and winit) qinit structures; and the streamtab structure. 

The minimum header set for modules and drivers is types.h and 
stream.h. param.h contains definitions for NULL and other values for 
STREAMS modules and drivers as shown in the section "Accessible Sym­
bols and Functions" in Appendix D. 

Note 

Configuring a STREAMS module or driver (see Appendix E) does 
not require any procedures to be externally accessible, only stream­
tab. The streamtab structure name must be the prefix used in 
configuring, appended with "info." 

As described in the previous chapter, streamtab contains qinit values for 
the read and write QUEUEs, pointing to a module Jnfo and an optional 
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module stat structure. The two required structures (shown in Figure 5-2) 
are these: 

struct qinit 
int (*qi_putp) (); /* put procedure */ 
int (*qi_srvp) ( ); /* service procedure */ 
int (*qi_qopen) ( ); /* called on each open or a push */ 
int (*qi_qclose) ( ); /* called on last close or a pop */ 
int (*qi_qadmin) ( ); /* reserved for future use */ 
struct module_info *qi_minfo; /* information structure */ 
struct module_stat *qi_mstat; /* statistics structure - optional */ 

); 

struct module_info ( 
ushort mi_idnum; /* module ID number */ 
char *mi_idname; /* module name */ 
short mi_minpsz; /* min packet size accepted, for developer use */ 
short mi_maxpsz; /* max packet size accepted, for developer use */ 
short mi_hiwat; /* hi-water mark, for flow control */ 
ushort mi_Iowat; /* lo-water mark, for flow control */ 

); 

qinit contains the QUEUE procedures. All modules and drivers with the 
same streamtab (that is, the same fmodsw or cdevsw entry) point to the 
same upstream and downstream qinit structure(s). The structure is meant 
to be software read-only, as any changes to it affect all occurrences of that 
module in all Streams. Pointers to the open and close procedures must be 
contained in the read qinit. These fields are ignored in the write side. 
The example has no service procedure on the read or write side. 

module info contains identification and limit values. All modules and 
drivers with the same streamtab point to the same upstream and down­
stream module info structure(s). As with qinit, this structure is intended 
to be software read-only. However, the four limit values are copied to 
queue_t (see Chapter 8) where they are modifiable. In the example, the 
flow control high- and low-water marks (see Chapter 9) are zero, since 
there are no service procedures, and messages are not queued in the 
module. 

Three names are associated with a module: the character string in 
fmodsw, obtained from the name of the /etclconjlmoduies directory used 
to configure the module (see Appendix E); the prefix for streamtab, used 
in configuring the module; and the module name field in the module info 
structure. This field is a hook for future expansion and is not currently 
used. However, it is recommended that it be the same as the module 
name. The module name value used in the CPUSH or other STREAMS 
ioctl commands is contained in fmodsw. Each module ID and module 
name should be unique in the system. The module ID is currently used 
only in logging and tracing (see Chapter 6 in the Primer). For the 
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example in this chapter, the module ID is zero. 

Minimum and maximum packet size are intended to limit the total 
number of characters contained in all of the M_DATA blocks (if any) in 
each message passed to this QUEUE. These limits are advisory except for 
the Stream head. For certain system calls that write to a Stream, the 
Stream head observes the packet sizes set in the write QUEUE of the 
module immediately below it. Otherwise, the use of packet size is 
developer-dependent. In the example, INFPSZ indicates unlimited size on 
the read (input) side. 

module stat is optional, intended for future use. Currently, there is no 
STREAMS support for statistical information gathering. The structure is 
described in Appendix A. 

6.2 Module Procedures 

The null module procedures are as follows: 

static int modopen(q, dev, flag, sflag) 
queue t *q; /* pointer to read queue */ 
dev t- dev; /* major/minor device number -- zero for modules */ 
int- flag; /* file open flags -- zero for modules */ 
int sflag; /* stream open flags */ 

/* return success */ 
return 0; 

static int modwput(q, mp)/* write put procedure */ 
queue t *q; /* pointer to the write queue * / 
mblk_t *mp; /* message pointer */ 

putnext(q, mp); /* pass message through */ 

static int modrput(q, mp)/* read put procedure */ 
queue t *q; /* pointer to the read queue * / 
mblk_t *mp; /* message pointer */ 

putnext(q, mp); /* pass message through */ 

static int modclose(q, flag) 
queue t *q; /* pointer to the read queue */ 
int - flag; /* file open flags - zero for modules */ 

The form and arguments of these four procedures are the same in all 
modules and all drivers. Modules and drivers can be used in mUltiple 
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Streams and their procedures must be re-entrant. 

modopen illustrates the open call arguments and return value. The argu­
ments are the read queue pointer (q), the major/minor device number (dev 
in drivers only), the file open flags (flag is defined in syslfile.h), and the 
Stream open flag (sflag). For a module, the values of flag and dev are 
always zero. The Stream open flag can take on the following values: 

MODOPEN normal module open 

o normal driver open (see Chapter 9) 

CLONEOPEN clone driver open (see Chapter 10) 

The return value from open is >= 0 for success and OPENFAll... for error. 
The open procedure is called on the first CPUSH and on all subsequent 
open calls to the same Stream. During a push, a return value of OPEN­
FAll... causes the CPUSH to fail and the module to be removed from the 
Stream. If OPENFAll... is returned by a module during an open call, the 
open fails, but the Stream remains intact. For example, it can be returned 
by a module/driver that is to be opened only by a super-user: 

if (!suser(» return OPENFAIL; 

In the example, modo pen simply returns successfully. modrput and 
modwput illustrate the common interface to put procedures. The argu­
ments are the read or write queue_t pointer, as appropriate, and the mes­
sage pointer. The put procedure in the appropriate side of the QUEUE is 
called when a message is passed from upstream or downstream. The put 
procedure has no return value. In the example, no message processing is 
performed. All messages are forwarded using the putnext macro (see 
Appendix C). putnext calls the put procedure of the next QUEUE in the 
proper direction. 

The close procedure is only called on an CPOP or on the last close call of 
the Stream (see the last two sections of Chapter 5). The arguments are 
the read queue _ t pointer and the file open flags as in modopen. For a 
module, the value of flag is always zero. There is no return value. In the 
example, modclose does nothing. 

6.3 Module and Driver Environment 

As discussed in Chapter 7 of the Primer, user context is not generally 
available to STREAMS module procedures and drivers. The exception is 
during execution of the open and close routines. Driver and module open 
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and close routines have user context and can access the u area structure 
(defined in user.h; see "Accessible Symbols and Functiong;' in Appendix 
D). These routines are allowed to sleep but must always return to the 
caller. That is, if they sleep, it must be at priority <= PZERO, or with 
PCATCH set in the sleep priority. A process that is sent a signal via kill 
while sleeping at priority > PZERO never returns from the sleep call. 
Instead, the system call is aborted. 

Warning 

STREAMS driver and module put procedures and service procedures 
have no user context. They cannot access the u _area structure of a 
process and must not sleep. 
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7.1 Message Format 

Messages are the means of communication within a Stream. A message 
contains data or information identified by one of 18 message types (see 
Appendix B). Messages can be generated by a driver, a module, or the 
Stream head. The contents of certain message types can be transferred 
between a process and a Stream by use of system calls. STREAMS main­
tains its own pools for allocation of message storage. 

All messages are composed of one or more message blocks. A message 
block is a linked triplet consisting of two structures and a variable-length 
buffer block. The structures are msgb (mblk _ t), the message block, and 
datab (dblk_t), the data block: 

struct msgb { 

struct 

struct 

struct 

unsigned 

unsigned 

struct 

}; 

msgb 

msgb 

msgb 

char 

char 

datab 

*b_next; /* next message on queue * / 

*byrev; /* previous message on queue */ 

*b_cont;/* next message block of message*/ 

*b_rptr;/* first unread byte inbuffer*/ 

*b_wptr;/* first unwritten byte in buffer*/ 

*b_datap;/* data block */ 

typedef struct msgb mblk_t; 

struct datab { 

struct datab 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

}; 

*db_freep; /* used internally */ 

*db_base; /' first byte of buffer * / 

'db_lim; /' last byte+l of buffer */ 

db_ref; /* count of messages pointing to this block */ 

db_type; /* message type */ 

db_class; /* used internally */ 

typedef struct datab dblk_t; 

mblk _tis used to link messages on a message queue, link the blocks in a 
message, and manage the reading and writing of the associated buffer. 
b _rptr and b _ wptr are used to locate the data currently contained in the 
buffer. As shown in Figure 7-1, mblk_t points to the data block of the tri­
plet. The data block contains the message type, buffer limits, and control 
variables. STREAMS allocates message buffer blocks of varying sizes 
(see below). db _base and db _lim are the fixed beginning and end (+ 1) of 
the buffer. 

A message consists of one or more linked message blocks. Multiple mes­
sage blocks in a message can be caused by buffer size limitations or by 
processing that expands the message. When a message is composed of 
multiple message blocks, the type associated with the first message block 
determines the message type, regardless of the types of the attached mes­
sage blocks. 
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Message Message 
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Figure 7-1 Message Fonn and Linkage 

A message can occur singly, as when it is processed by a put procedure, 
or it can be linked on the message queue in a QUEUE, generally waiting 
to be processed by the service procedure. Message 1, as shown in Figure 
7 -1, links to message 2. In the first message on a queue, b yrev points 
back to the header in the QUEUE. The last b _next points to the tail. 

Note that a data block in message 1 is shared between message 1 and 
another message. Multiple message blocks can point to the same data 
block to conserve storage and to avoid copying overhead. For example, 
the same data block, with associated buffer, can be referenced in two mes­
sages from separate modules that implement separate protocol levels. 
(Figure 7-1 illustrates the concept, but data blocks are not typically 
shared by messages on the same queue.) If required by errors or timeouts, 
the buffer can be retransmitted from either protocol level without replicat­
ing the data. Data block sharing is accomplished by means of a utility 
routine (see dupmsg in Appendix C). STREAMS maintains a count of the 
message blocks sharing a data block in the db _ref field. 
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STREAMS provides utility routines and macros (specified in Appendix C) 
to assist in managing messages and message queues, and to assist in other 
areas of module and driver development. A utility should always be used 
when operating on a message queue or accessing the message storage 
pool. 

7.2 Message Generation and Reception 

As discussed in the "Message Types" section in Chapter 4 of the Primer, 
most message types can be generated by modules and drivers. A few are 
reserved for the Stream head. The most commonly used types are 
M_DATA, M_PROTO, and M_PCPROTO. These, and certain other mes­
sage types, can also be passed between a process and the topmost module 
in a Stream, with the same message boundary alignment maintained on 
both sides of the kernel. This allows a user process to function to some 
degree as a module above the Stream and to maintain a service interface 
(see Chapter 12). M_PROTO and M_PCPROTO messages are intended to 
carry service interface information among modules, drivers, and user 
processes. Some message types can only be used within a Stream and 
cannot be sent or received from user level. 

As discussed previously, modules and drivers do not interact directly with 
any system calls except open and close. The Stream head handles all 
message translation and passing. Message transfer between process and 
Stream head can occur in different forms. For example, M_DATA, 
M_PROTO, or M_PCPROTO messages can be transferred in their direct 
form by getmsg and putmsg system calls (see Chapter 12). Alterna­
tively, a write causes one or more M_DATA messages to be created from 
the data buffer supplied in the call. M_DATA messages received from 
downstream at the Stream head are consumed by read and copied into the 
user buffer. As another example, M_SIG causes the Stream head to send a 
signal to a process (see Chapter 13). 

Any module or driver can send any message type in either direction on a 
Stream. However, based on their intended use in STREAMS and their 
treatment by the Stream head, certain message types can be categorized 
as upstream, downstream or bidirectional. For example, M_DATA, 
M_PROTO, or M_PCPROTO messages can be sent in both directions. 
Other message types are intended to be sent upstream to be processed 
only by the Stream head. Downstream messages are silently discarded if 
received by the Stream head. 
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7.3 Filter Module Declarations 

The module shown below, crmod, is an asymmetric filter. On the write 
side, newline is converted to carriage return followed by newline. On the 
read side, no conversion is done. The declarations are essentially the 
same as the null module of the preceding chapter: 

/* Simple filter - converts newline -> carriage return, newline */ 

itinclude "sys/types.h" 
itinclude "sys/param.h" 
itinclude "sys/stream.h" 

static struct module_info minfo = { 0, "cnnod", 0, INFPSZ, 0, 0 }; 

static int modopen(), modrput(), modwput(), modclose(); 
static struct qinit rinit = { 

modrput, NULL, modopen, modclose, NULL, &minfo, NULL 
} ; 

static struct qinit winit = { 
modwput, NULL, NULL, NULL, NULL, &minfo, NULL 

} ; 

struct streamtab cnndinfo = { &rinit, &winit, NULL, NULL ); 

In contrast to the null module example, a single module Jnfo structure is 
shared by the read and write sides. A con fig file to configure crmod is 
shown in Appendix E. 

modopen, modrput, and modclose are the same as in the null module of 
the preceding chapter. 

7.4 bappend Subroutine 

The module makes use of a subroutine, bappend, which appends a charac­
ter to a message block: 

/* 
* Append a character to a message block. 
* If (*bpp) is null, it will allocate a new block 
* Returns 0 when the message block is full, 1 otherwise 
*/ 

#define MODBLKSZ 128 

static bappend(bpp, ch) 
mblk t **bpp; 
int Ch; 
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if (bp = *bpp) { 
if (bp->b wptr >= bp->b datap->db lim) 

return 0; - -
} else if ((*bpp = bp = allocb(MJDBLKSZ, BPRI_MED)) = NULL) 

return 1; 
*bp->b wptr++ = ch; 
return-1; 

Messages 

The arguments received by the bappend subroutine are a pointer to a mes­
sage block pointer and a character. If a message block is supplied 
( * bpp ! = NULL), bappend checks if there is room for more data in 
the block. If not, it fails. If there is no message block, a block of at least 
MODBLKSZ is allocated through allocb, described in "Message Alloca­
tion" later in this chapter. 

If the allocb fails, bappend returns success, silently discarding the charac­
ter. This mayor may not be acceptable. For TTY-type devices, it is gen­
erally accepted. If the original message block is not full or the allocb is 
successful, bappend stores the character in the block. 

7.5 Message Allocation 

The allocb utility (see Appendix C) is used to allocate message storage 
from the STREAMS pool. Its declaration is: 

mblk_t *allocb(buffersize, priority). 

allocb returns a message block containing a buffer of at least the size 
requested, provided there is a buffer available at the message pool priority 
specified. It returns NULL on failure. Three levels of message pool prior­
ity can be specified (see Appendix C). Priority generally does not affect 
allocb until the pool approaches depletion. If the pool is depleted, allocb 
fails low priority requests while granting higher priority requests. This 
allows module and driver developers to use STREAMS memory resources 
to their best advantage and for the common good of the system. Message 
pool priority does not affect subsequent handling of the message by 
STREAMS. BPRCHI is intended for special situations. This transmission 
of urgent messages relates to time-sensitive events, conditions that could 
result in loss of state, loss of data, or inability to recover. For example, 
BPRCMED might be used when requesting an M_DATA buffer for holding 
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input, and BPRCLO might be used for an output buffer (assuming the out­
put data can wait in user space). The Stream head uses BPRCLO to allo­
cate messages to contain output from a process (e.g., by write or 
putmsg). Note that allocb always returns a message of type M_DATA. 
The type can then be changed if required. b _rptr and b _ wptr are set to 
db _base (see mblk_t and dblk_t). 

aUocb can return a buffer larger than the size requested. In bappend, if 
the message block contents are to be limited to MODBLKSZ, a check 
must be inserted. 

If allocb indicates buffers are not available, the bufcaU utility can be used 
to defer processing in the module or the driver until a buffer becomes 
available. (bufcall is described in Chapter 13.) 

7.6 Put Procedure 

The modwput function processes all the message blocks in any down­
stream data (type M_DATA) messages. 

/* Write side put procedure */ 
static modwput(q, mp) 
queue t *q; 
mblk t *mp; 
{ -

switch (mp->b datap->db type) 
default: - -

putnext(q, mp); /* Don't do these, pass them along */ 
break; 

case M DATI\.: { 
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register mblk t *bp; 
struct mbl~t-*nmp = NULL, *nbp = NULL; 

for (bp = mp; bp != NULL; bp = bp->b conti 
while (bp->b rptr < bp->b wptr) {­

if (*bp->b rptr = '\n') 
if (!bappend(&nbp, '\r')) 

goto newblk; 
if (!bappend(&nbp, *bp->b rptr)) 

goto newblk; -

bp->b_rptr++; 
continue; 
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newblk: 
if (nmp = NULL) 

nmp = nbp; 
else linkb(nmp, nbp); /* link message block to tail of nmp */ 
nbp = NULL; 

if (nmp = NULL) 
nmp = nbp; 

else linkb(nmp, nbp); 
freemsg(mp); /* deallocate message */ 
if (nmp) 

putnext (q, nmp); 
break; 

Data messages are scanned and filtered. modwput copies the original 
message into a new block (or blocks), modifying as it copies. nbp points 
to the current new message block. nmp points to the new message being 
formed as multiple M_DATA message blocks. The outer forO loop goes 
through each message block of the original message. The inner whileO 
loop goes through each byte. bappend is used to add characters to the 
current or new block. If bappend fails, the current new block is full. If 
nmp is NULL, nmp is pointed at the new block. If nmp is non-NULL, the 
new block is linked to the end of nmp by use of the Iinkb utility. 

At the end of the loops, the final new block is linked to nmp. The original 
message (all message blocks) is returned to the pool by freemsg. If a new 
message exists, it is sent downstream. 
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8.1 The queue _ t Structure 

Service procedures, message queues and priority, and basic flow control 
are all intertwined in STREAMS. A QUEUE generally does not use its 
message queue if there is no service procedure in the QUEUE. The func­
tion of a service procedure is to process messages on its queue. Message 
priority and flow control are associated with message queues. 

The operation of a QUEUE revolves around the queue _ t structure: 

struct queue { 
struct qinit 
struct rrsgb 

struct rrsgb 
struct queue 
struct queue 
cad:ir_t 
ushort 
ushort 
short 
short 
ushort 
ushort 

}; 

*CLqinfo; 
*CLfirst; 
*CLlast; 
*CLne.'<I:; 
*CLlink; 
qJJtr; 
CL=t; 
CLflag; 
CLmirpsz; 
CL rtru<pSz; 
CLhiwat; 
CLla-at; 

/* procedures an:! limits for queue * / 
/* head of rressage queue for this Q:EIE */ 
/* tail of rressage queue for this Q:EIE * / 
/* next Q:EIE in Strearn*1 
/* link to next Q:EIE on SlFEM3 sd1eduling queue *1 
/* to private data structure *1 
/* ..eighted =t of ci1ara.cters on rressage queue */ 
/* Q:EIE state * / 
/* min p3.cket size accepted by this Q:EIE */ 
/* llB..'{ p3.cket size accepted by this Q:EIE * / 
/* rressage queue high-..ater rrark, for fleM oontrol * / 
/* rressage queue lc:w-water nark, for fleM oontrol * / 

As described previously, two of these structures form a module. When a 
queue_t pair is allocated, their contents are zero unless specifically ini­
tialized. The following fields are initialized by STREAMS: 

• q _ qinfo - from streamtab 

Copying values from module_info allows them to be changed in the 
queue_t without modifying the template (e.g., streamtab and 
module Jnfo) values. 

q_count is used in flow control calculations and is the weighted sum of 
the sizes of the buffer blocks currently on the message queue. The actual 
number of bytes in the buffer is not used. This is done to encourage the 
use of the smallest buffer that can hold the data intended for it. 
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8.2 Service Procedures 

Put procedures are generally required in pushable modules. Service pro­
cedures are optional. The general processing flow when both procedures 
are present is as follows: A message is received by the put procedure in a 
QUEUE, where some processing can be performed on the message. The 
put procedure transfers the message to the service procedure by use of the 
putq utility. putq places the message on the tail (see q_Iast in queue_t) 
of the message queue. Then putq generally schedules the QUEUE for 
execution by the STREAMS scheduler following all other QUEUEs 
currently scheduled. (The scheduling is done by using q_link in 
queue_t.) After some indeterminate delay (intended to be short), the 
scheduler calls the service procedure. The service procedure gets the first 
message (qyrst) from the message queue with the getq utility. The ser­
vice procedure processes the message and passes it to the put procedure 
of the next QUEUE with putnext. The service procedure gets the next 
message and processes it. This FIFO processing continues until the queue 
is empty or flow control blocks further processing. The service procedure 
returns to caller. 

Warning 

A service routine must never sleep and it has no user context. It 
must always return to its caller. 

If no processing is required in the put procedure, the procedure does not 
have to be explicitly declared. Rather, putq can be placed in the qinit 
structure declaration for the appropriate QUEUE side, to queue the mes­
sage for the service procedure, as in this example: 

static struct qinit winit = { putq, modwsrv, .... ,. }; 

More typically, put procedures process priority messages (see below) to 
avoid queueing them. 

The key attribute of a service procedure in the STREAMS architecture is 
delayed processing. When a service procedure is used in a module, the 
module developer is implying that there are other, more time-sensitive 
activities to be performed elsewhere in this Stream, iIi other Streams, or 
in the system in general. The presence of a service procedure is manda­
tory if the flow control mechanism is to be utilized by the QUEUE. 

The delay for STREAMS to call a service procedure varies with imple­
mentation and system activity. However, once the service procedure is 
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scheduled, it is guaranteed to be called before user-level activity is 
resumed. 

See also the section entitled "Put and Service Procedures" in Chapter 5 
of the Primer. 

8.3 Message Queues and Message Priority 

Figure 8-1 depicts a message queue linked by b _next and b yrev pointers. 
As discussed in the Primer, message queues grow when the STREAMS 
scheduler is delayed from calling a service procedure due to system 
activity, or when the procedure is blocked by flow control. When it is 
called by the scheduler, the service procedure processes enqueued mes­
sages in FIFO order. However, certain conditions require that the associ­
ated message (e.g., an M_ERROR) reach its Stream destination as rapidly 
as possible. STREAMS does this by assigning all message types to one of 
the two levels of message queueing priority-priority and ordinary. As 
shown in Figure 8-1, when a message is queued, the putq utility places 
priority messages at the head of the message queue in a FIFO order of 
queueing. 

QUEUE Message queue 

:::'::'!::--·"1 I I I I I I I I I I I 1 
: EO Priority '" : EO Ordinary '" : 
: Messages I Messages : 

Head Tail 

Figure 8-1 Message Queue Priority 

Priority messages are not subject to flow control. When they are queued 
by putq, the associated QUEUE is always scheduled. (This is done in the 
same manner as any QUEUE, following all other QUEUEs currently 
scheduled.) When the service procedure is called by the scheduler, the 
procedure uses getq to retrieve the first message on queue, which will be 
a priority message, if present. Service procedures must be implemented 
to act on priority messages immediately (see next section). The above 
mechanisms-priority message queueing, absence of flow control and 
immediate processing by a procedure-result in rapid transport of priority 
messages between the originating and destination components in the 
Stream. 
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The priority level for each message type is shown in Appendix B. Mes­
sage queue management utilities are provided for use in service pro­
cedures (see Appendix C). 

8.4 Flow Control 

The elements of flow control are discussed in Chapter 6 of the Primer. 
Flow control is only used in a service procedure. Module and driver cod­
ing should observe the following guidelines for message priority. Priority 
messages, detennined by the type of the first block in the message, 

(bp->b_datap->db_type > QPCTL) 

are not subject to flow control. They should be processed immediately 
and forwarded as appropriate. 

For ordinary messages, flow control must be tested before any processing 
is performed. The can put utility determines if the forward path from the 
QUEUE is blocked by flow control. The manner in which STREAMS 
detennines flow control status for modules and drivers is described under 
"Driver Flow Control" in Chapter 9. 

This is the general processing for flow control: Retrieve the message at 
the head of the queue with getq. Detennine if the type is priority and not 
to be processed here. If both are true, pass the message to the put pro­
cedure of the following QUEUE with putnext. If the type is ordinary, use 
can put to detennine if messages can be sent onward. If canput indicates 
messages should not be forwarded, put the message back on the queue 
with putbq and return from the procedure. In all other cases, process the 
message. 

The canonical representation of this processing within a service pro­
cedure is as follows: 
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while (getq != NULL) 
if (priority message II canput) 

process message 
putnext 

else 
putbq 
return 
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Note 

A service procedure must process all messages on its queue unless 
flow control prevents this. 

When an ordinary message is enqueued by putq, putq causes the service 
procedure to be scheduled only if the queue was previously empty. If 
there are messages on the queue, putq assumes the service procedure is 
blocked by flow control, and the procedure is automatically rescheduled 
by STREAMS when the block is removed. If the service procedure cannot 
complete processing as a result of conditions other than flow control (e.g., 
no buffers), it must ensure that it returns later or it must discard all mes­
sages on queue. (Later returns are handled by use of bufcall; see Chapter 
13.) If this is not done, STREAMS will never schedule the service pro­
cedure to be run unless the QUEUE's put procedure queues a priority mes­
sage with putq. 

putbq replaces messages at the beginning of the appropriate section of 
the message queue in accordance with their message type priority (see 
Figure 8-1). This might not be the same position at which the message 
was retrieved by the preceding getq. A subsequent getq might return a 
different message. 

8.5 Example 

The filter module example of Chapter 7 is modified to have a service pro­
cedure, as shown below. The declarations from the example in Chapter 7 
are unchanged except for the following lines (changes are shown in 
bold): 

#include "sysistropts.h" 

static struct module info minfo = { 
0, "ps_crmod", O,-INFPSZ, 512,128 

}; 

static int modopen ( ), mocil:put ( ), modwput ( ), modwsrv(), modclose ( ) ; 

static struct qinit winit = { 
modwput, modwsrv, NULL, NULL, NULL, &minfo, NULL 

} ; 

8-5 



Streams Programmer's Guide 

stropts.h is generally intended for user level. However, it includes 
definitions of flush message options common to user level, modules and 
drivers. module info now includes the flow control high- and low-water 
marks (512 and-128) for the write QUEUE. (Even though the same 
module info is used on the read QUEUE side, the read side has no service 
procedure, and so flow control is not used.) qinit now contains the ser­
vice procedure pointer. modopen, modclose, and modrput (read side put 
procedure) are unchanged from Chapters 6 and 7. The bappend subrou­
tine is also unchanged from Chapter 7. 

8.6 Procedures 

The write side put procedures and the beginning of the service procedure 
are shown next: 

static int modwput(q, mp) 
queue t *q; 
register mblk t *mp; 
{ -

if (mp->b datap->db type > QPCTL && mp->b datap->db type != MJLUSH) 
put neXt (q, mp);- --
else 
putq(q, mp); /* Put it on the queue */ 

static int modwsrv(q) queue_t *q; { 
mblk_t *mp; 

while ((mp = getq(q) != NULL) { 
switch (mp->b_datap->db_type) 

default: 
/* always put next priority messages */ 
if (mp->b_datap->db_type > QPCTL II canput (q->c.Lnext)) 

putnext (q, mp); 
continue; 

else ( 
putbq(q, mp); 
return; 

case M FLUSH: 
if- (*mp->b rptr & FLUSHW) 

flushq(q, FLUSHD~); 
putnext (q, mp); 
continue; 

ps _ crmod perfonns a similar function to crmod of the previous chapter, 
but it uses a service routine. 
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modwput, the write put procedure, switches on the message type. Priority 
messages that are not type M_FLUSH are putnext to avoid scheduling. 
The others are queued for the service procedure. An M_FLUSH message 
is a request to remove all messages on one or both QUEUEs. It can be 
processed in the put or service procedure. 

modwsrv is the write service procedure. It takes a single argument, a 
pointer to the write queue _ t. modwsrv processes only one priority mes­
sage, M_FLUSH. All other priority messages are passed through. Actu­
ally, no other priority messages should reach modwsrv. The check is 
included to show the canonical form when priority messages are queued 
by the put procedure. 

For an M_FLUSH message, modwsrv checks the first data byte. If 
FLUSHW (defined in stropts.h) is set in the byte, the write queue is 
flushed by use of flushq. flushq takes two arguments, the queue pointer 
and a flag. The flag indicates what should be flushed, data messages 
(FLUSHDATA) or everything (FLUSHALL). In this case, data includes 
M_DATA, M_PROTO, and M_PCPROTO messages. The choice of what 
types of messages to flush is module-specific. As a general rule, FLUSH­
DATA should be used. 

Ordinary messages are returned to the queue if 

canput(q->q_next) 

returns false, indicating the downstream path is blocked. 

In the remaining part of modwsrv, M_DATA messages are processed in a 
manner similar to the previous example: 

case M DATA: { 
mblk t *nbp = NULL; 
mblk:=t *next; 

if (!canput (q-XLnext» 
putbq(q, mp); 
return; 
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/* Filter data, appending to queue * / 
for (; mp != NULL; mp = next) { 

while (mp->b_rptr < mp->b_wptr) { 

if (*mp->b rptr = , \n' ) 
if (!bappend(&nbp, , \r')) 

goto push; 
if (!bappend(&nbp, *mp->b_rptr)) 

goto push; 
rnp->b rptr++; 
continue; 

push: 
putnext(q, nbp); 
nbp = NULL; 
if (!canput(q->q next)) { 

if (mp->b rptr >= mp->b wptr) 
next ~ mp->b cant; -
freeb(mp); -
mp=next; 

if (mp) 
putbq(q, mp); 

return; 

next = mp->b cant; 
freeb(mp); -

if (nbp) 
putnext(q, nbp); 

There are differences in M_DATA processing between this and the previ­
ous example, and they relate to the manner in which the new messages 
are forwarded and to flow control. For the purpose of demonstrating 
alternative means of processing messages, this version creates individual 
new messages rather than a single message containing multiple message 
blocks. When a new message block is full, it is immediately forwarded 
with put next rather than being linked into a single, large message (as was 
done in the previous example). This alternative may not be desirable 
because message boundaries will be altered and because of the additional 
overhead of handling and scheduling multiple messages. 

When the filter processing is performed (following push), flow control is 
checked (with canput) after, rather than before, each new message is for­
warded. This is done because there is no provision to hold the new mes­
sage until the QUEUE becomes unblocked. If the downstream path is 
blocked, the remaining part of the original message is returned to the 
queue. Otherwise, processing continues. 
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Another difference between the two examples is that each message block 
of the original message is returned to the pool with freeb when its pro­
cessing is completed. 
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9.1 Overview of Drivers 

This chapter describes the organization of a STREAMS driver and 
discusses some of the processing typically required in drivers. Certain 
elements of driver flow control are discussed, and procedures for handling 
user ioctls for modules and drivers are described. 

As discussed under "Stream Construction" in Chapter 5, driver and 
module organization are very similar. The call interfaces to all the driver 
procedures are identical to those of module interfaces, and driver pro­
cedures must be re-entrant. As described under "Environment" in 
Chapter 6, the driver put and service procedures have no user environ­
ment and cannot sleep. With the exception of open and close, a driver 
interfaces with a user process only by messages, and indirectly, through 
flow control. 

There are two significant differences between modules and drivers. First, 
a device driver must also be accessible from an interrupt as well as from 
the Stream, and second, a driver can have multiple Streams connected to 
it. Multiple connections occur when more than one minor device uses the 
same driver and in the case of multiplexers (see Chapter 11). However, 
these particular differences are not recognized by the STREAMS mechan­
ism; they are handled by developer-provided code included in the driver 
procedures. 

Figure 9-1 shows multiple Streams (corresponding to minor devices) con­
nected to a common driver. This depiction of two Streams connected to a 
single driver (also used in the Primer) is somewhat misleading. These are 
really two distinct Streams opened from the same cdevsw (Le., same 
major device). Consequently, they have the same streamtab and the 
same driver procedures. Modules opened from the same fmodsw might 
be depicted similarly if they had any reason to be cognizant, as do drivers, 
of common resources or alternate occurrences. 

Multiple occurrences (minor devices) of the same driver are handled dur­
ing the initial open for each device. Typically, the queue_t address is 
stored in a driver-private structure indexed by the minor device number. 
The structure is typically pointed at by qytr (see Chapter 8). When the 
messages are received by the QUEUE, the calls to the driver put and ser­
vice procedures pass the address of the queue _ t, allowing the procedures 
to determine the associated device. 

In addition to these differences, a driver is always at the end of a Stream. 
As a result, drivers must include standard processing for certain message 
types that a module might simply be able to pass to the next component. 
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Module(s) Module(s) 

Port 
1 

Figure 9-1 Device Driver Streams 

9.2 Driver Flow Control 

The same utilities (described in Chapter 8) and mechanisms used for 
module flow control are used by drivers. However, they are typically 
used in a different manner in drivers, because a driver generally does not 
have a service procedure. The developer sets flow control values 
(mi hiwat and mi lowat) in the write side module info structure, which 
STREAMS copies-into q hiwat and q lowat in the queue t structure of 
the QUEUE. A device drIver typically -has no write service-procedure but 
does maintain a write message queue. When a message is passed to the 
driver write side put procedure, the procedure determines if device output 
is in progress. In the event output is busy, the put procedure cannot 
immediately send the message and calls the putq utility (see Appendix C) 
to queue the message. (Note that the driver can elect to queue the mes­
sage in all cases.) putq recognizes the absence of a service procedure 
and does not schedule the QUEUE. 

When the message is queued, putq increments the value of q_count 
(approximately the enqueued character count, see the beginning of 
Chapter 8) by the size of the message and compares the result against the 
driver's write high-water limit (q hiwat) value. If the count exceeds 
q_ hiwat, putq sets the internal FULL indicator for the driver write QUEUE 
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(see the section titled "Flow Control" in Chapter 6 of the Primer). This 
causes messages from upstream to be halted (canput returns FALSE) until 
the write queue count reaches q lowat. The driver messages waiting to 
be output are dequeued by the driver output interrupt routine with getq, 
which decrements the count. If the resulting count is below q_Iowat, getq 
back-enables any upstream QUEUE that is blocked. The above STREAMS 
processing also applies to modules on both write and read sides of the 
Stream. 

Device drivers typically discard input when unable to send it to a user 
process. However, STREAMS allows flow control to be used on the driver 
read side, possibly to handle temporary upstream blocks. This is 
described in Chapter 13 in the section titled "Advanced Flow Control." 

To some extent, a driver or module can control when its upstream 
transmission will become blocked. Control is available through the 
M_SETOPTS message (see Chapter 13 and Appendix B) to modify the 
Stream head read side flow control limits. 

9.3 Driver Programming Example 

The example below shows how a simple interrupt-per-character line 
printer driver could be written. The driver is unidirectional and has no 
read side processing. It demonstrates some differences between module 
and driver programming, including the following: 

Open handling 

Flush handling 

Ioctl handling 

A driver is passed a minor device number or is 
asked to select one (see Chapter 10). 

A driver must loop M_FLUSH messages back 
upstream. 

A driver must nak (not acknowledge) ioctl mes­
sages it does not understand. This is discussed 
under' 'Driver and Module Ioctls," later in this 
chapter. 

Write side flow control is also illustrated as described above. 
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9.3.1 Driver Declarations 

The driver declarations are as follows: 

/* Simple line printer driver. */ 

#include "sys/types.h" 
#include "sys/param.h" 
#include "sys/sysmacros.h" 
#ifdef u3b2 
#include "sys/psw.h" 
#include "sys/pcb.h" 
#endif 
#include "sys/strearn.h" 
#include "sys/stropts .h" 
#include "sys/dir.h" 
#include "sys/signal.h" 
#include "sys/user.h" 
#include "sys/errno.h" 

/* required for user.h */ 
/* required for user.h */ 

/* required for user.h */ 
/* required for user.h */ 

static struct module info minfo = 
0, "lp", 0, INFPSZ, 150, 50 

} ; 

static int lpopen ( ), Ipclose ( ), Ipwput ( ) ; 

static struct qinit rinit = { 
NULL, NULL, lpopen, Ipclose, NULL, &minfo, NULL 

} ; 
static struct qinit winit = { 

Ipwput, NULL, NULL, NULL, NULL, &minfo, NULL 
} ; 
struct strearntab Ipinfo = { &rinit, &winit, NULL, NULL }; 

#define SET OPTIONS 
/* -

(('1'«8) 11)/* really must be in a .h file */ 

* This is a private data structure, one per minor device number. 
*/ 

struct lp { 
short flags; /* flags -- see below */ 
rnblk_t *rnsg; /* current message being output */ 
queue_t *qptr; /* back pointer to write queue */ 

} ; 
/* Flags bits */ 
#define BUSY 1 * device is running and interrupt is pending * / 

extern struct Ip lp lp[]; /* per device Ip structure array */ 
extern int lp_cnt; - /* number of valid minor devices */ 

As noted for modules in Chapter 6, configuring a STREAMS driver does 
not require the driver procedures to be externally accessible; only 
streamtab must be. All STREAMS driver procedures are typically 
declared static. 
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streamtab must be defined as "prefixinfo", where prefix is the value of 
the prefix specified in the con fig file for this driver. The values in name 
and ID fields in the module info should be unique in the system. The 
name field is a hook for future expansion and is not currently used. The 
ID is currently used only in logging and tracing (see Chapter 6 in the Pri­
mer). For the example in this chapter, the ID is zero. 

There is no read side put or service procedure. The flow control limits for 
use on the write side are 50 and 150 characters. The private lp structure is 
indexed by the minor device number and contains these elements: 

flags A set of flags. Only one bit is used: BUSY indicates that 
output is active and a device interrupt is pending. 

msg A pointer to the current message being output. 

qptr A back pointer to the write queue. This is needed to find the 
write queue during interrupt processing. 

9.3.2 Driver Open 

The driver open, /popen, has the same interface as the module open: 

static int lpopen(q, dev, flag, sflag) 
queue t *q /* read queue */ 
{ -

struct lp *lp; 

/* Check if non-driver open */ 
if (sflag) 

return OPENFAIL; 

/* Dev is major/minor * / 
dev = minor(dev); 
if (dev >= lp cnt) 

return OPENFAIL; 

/* Check if open already. ~tr is assigned below */ 
if (q-~tr) { 

u.u_error = EBUSY; /* only 1 user of the printer at a time */ 
return OPENFAIL; 
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lp = &lp lp[dev]; 
lp->qptr-= WR(q); 
q->~tr = (char *) lp; 
WR(q)->q-ptr = (char *) lp; 
return dev; 

The Stream flag, sjlag, must have the value 0, indicating a normal driver 
open. dey holds both the major and minor device numbers for this port. 
After checking sjlag, the open flag, lpopen extracts the minor device from 
dey, using the minor() macro defined in sysmacros.h. The minor device 
number selects a printer and must be less than lp _ent. 

Note 

The use of major devices, minor devices, and the minor() macro 
may be machine-dependent. 

The next check, if (q->q_ptr) ... , determines if this printer is 
already open. In this case, EBUSY is returned to avoid merging print-outs 
from multiple users. qytr is a driver/module private data pointer. It can 
be used by the driver for any purpose and is initialized to zero by 
STREAMS. In this example, the driver sets the value of qytr in both the 
read and write queue _ t structures so that it points to a private data struc­
ture for the minor device, lp _lp[dev). 

WR is one of three QUEUE pointer macros. As discussed in the section 
titled "Stream Construction" in Chapter 5, there are no physical pointers 
between QUEUEs, and these macros (see Appendix C) generate the 
pointer. WR(q) generates the write pointer from the read pointer, RD(q) 
generates the read pointer from the write pointer, and OTHER(q) gen­
erates the mate pointer from either. 
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9.3.3 Driver Processing Procedures 

This example has only a write put procedure: 

static int lpwput(q, mp) 
queue t *q; /* write queue * / 
register mblk t *mp; /* message pointer * / 
{ -

register struct lp *lp; 
int s; 

lp = (struct lp *) q->qytr; 

switch (mp->b datap->db type) 
default: - -

freemsg (mp) ; 
break; 

case M FLUSH: 
/*-Canonical flush handling */ 
if (*mp->b rptr & FLUSHW) { 

flushq(q, FLUSHDATA); 
s = sp15 (); 
/* also flush lp->msg since it is logically 

* at the head of the write queue */ 
if (lp->msg) { 

freemsg(lp->msg); 
Ip->msg = NULL; 

} 
splx(s) ; 

if (*mp->b rptr & FLUSHR) { 
flushq(RD(q), FLUSHDATA); 
*mp->b rptr &= -FLUSHW; 
qreply(q, mp); 

else 
freemsg (mp) ; 

break; 

case M _ IOCTL: 

case M _DATI\.: 
putq(q, mp); 
s = sp15 (); 
if (! (lp->flags & BUSY)) 

lpout (lp); 
splx(s); 

Drivers 
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9.3.4 Driver Flush Handling 

The write put procedure, lpwput, illustrates driver M_FLUSH handling; 
note that all drivers are expected to incorporate this flush handling. If 
FLUSHW is set, the write message queue is flushed, and also (for this 
example) the leading message (lp->msg). spl5 is used to protect the 
critical code, assuming the device interrupts at level 5. If FLUSHR is set, 
the read queue is flushed, the FLUSHW bit is cleared, and the message is 
sent upstream using qreply. If FLUSHR is not set, the message is dis­
carded. 

The Stream head always performs the following actions on flush requests 
received on the read side from downstream. If FLUSHR is set, messages 
waiting to be sent to user space are flushed. If FLUSHW is set, the Stream 
head clears the FLUSHR bit and sends the M_FLUSH message down­
stream. In this manner, a single M_FLUSH message sent from the driver 
can reach all QUEUEs in a Stream. A module must send two M_FLUSH 
messages to have the same effect. 

lpwput enqueues M_DATA and M_IOCTL messages (see the section enti­
tled "Driver and Module loctls" later in this chapter). Also, if the device 
is not busy, lpwput starts output by calling lpout. Messages types that are 
not recognized are discarded. 

9.3.5 Driver Interrupt 

lpintr is the driver interrupt routine: 

/* Device interrupt routine. */ 

lpintr (dev) 
int dev; /* minor device number of lp */ 
{ 
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register struct lp *lp; 

lp = &lp lp[devJ; 
if (! (lp~>flags& BUSY)) { 

printf (nlp: unexpected interrupt\n"); 
return; 

lp->flags &= -BUSY; 
lpout (lp); 



/* Start output to device - used by put procedure and driver */ 

lpout (lp) 
register struct lp *lp; 
{ 

register mblk_t *bp; 
queue_t *q; 

q = lp->qptr; 
loop: 

if ((bp = lp->msg) = NULL) { 
if ((bp = getq (q» = NULL) 

return; 
if (bp->b datap->db type = M IOCTL) 

lpdoioctl (lp, bp); -
goto loop; 

} 

lp->msg = bPi 

if (bp->b rptr >= bp->b wptr) 
bp = Ip->msg->b conti 
lp->msg->b_cont-= NULL; 
freeb (lp->msg) ; 
lp->msg = bPi 
goto loop; 

lpoutchar(lp, *bp->b rptr++); 
lp->flags 1= BUSY; -

Drivers 

[pout simply takes a character from the queue and sends it to the printer. 
The processing is logically similar to the service procedure in Chapter 8. 
For convenience, the message currently being output is stored in 
lp->msg. 

Two mythical routines need to be supplied: 

lpoutchar send a character to the printer and interrupt when com­
plete 

lpsetopt set the printer interface options 

9.3.6 Driver and Module loctls 

Drivers and modules interface with ioctl(S) system calls through mes­
sages. Almost all STREAMS generic ioctls [see streamio(STR)] go no 
further than the Stream head. The capability to send an ioctl downstream, 
similar to the ioctl of character device drivers, is provided by the CSTR 
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ioctl. The Stream head processes an CSTR by constructing an M_IOCTL 
message (see Appendix B) from data provided in the call and sends that 
message downstream. 

The user process which issued the CSTR is blocked until a module or 
driver responds with either an M_IOCACK (ack) or M_IOCNAK (nak) 
message, or until the request "times out" after a user-specified interval. 
The STREAMS module or driver which generates an ack can also return 
information to the process. If the Stream head does not receive one of 
these messages in the specified time, the ioctl call fails. 

A module that receives an unrecognized M_IOCTL message should pass it 
on unchanged. A driver that receives an unrecognized M_IOCTL should 
nak it. 

[pout traps M_IOCTL messages and calls lpdoioctl to process them: 

lpdoioctl (lp, mp) 
struct lp *lp; 
mblk t *mp; 
{ -

struct iocblk *iocp; 
queue_t *q; 

q = lp->qptr; 

1* 1st block contains iocblk structure *1 
iocp = (struct iocblk *)mp->b_rptr; 

switch (iocp->ioc_cmd) { 
case SET OPTIONS: 

1* Count should be exactly one short's worth *1 
if (iocp->ioc count != sizeof(short)) 

goto iocnak; 
1* Actual data is in 2nd message block *1 
Ipsetopt (lp, * (short *)mp->b_cont->b_rptr); 

/* ACK the ioctl *1 
mp->b datap->db type = M IOCACK; 
iocp->ioc count -= 0; -
qreply(q,-mp) ; 
break; 

default: 
iocnak: 
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lpdoioctl illustrates M_IOCTL processing, and the first part also applies to 
modules. An M_IOCTL message contains a struct iocblk in its first block. 
The first block is followed by zero or more M_DATA blocks. The optional 
M_DATA blocks typically contain any user-supplied data. 

The form of an iocblk is as follows: 

struct iocblk { 

int ioc cmd; -
ushort ioc uid; -
ushort ioc_gid; 

uint ioc id; -
uint ioc count; -
int ioc error; -
int ioc rval; -

I; 

/* ioctl command type */ 

/* effective uid of user */ 

/* effective gid of user */ 
/* ioctl id */ 

/* count of bytes in data field */ 

/* error code */ 

/* return value *1 

ioc _ cmd contains the command supplied by the user. In this example, 
only one command is recognized, SET_OPTIONS. ioc count contains the 
number of user-supplied data bytes. For this example. it must equal the 
size of a short (two bytes). The user data is sent directly to the printer 
interface using Ipsetopt. Next, the M_IOCTL message is changed to type 
M_IOCACK, and the ioc count field is set to zero to indicate that no data 
is to be returned to the user. Finally, the message is sent upstream using 
qreply. If ioc_count was left non-zero, the Stream head would copy that 
many bytes from the 2nd - Nth message blocks into the user buffer. 

If the M_IOCTL message is not understood or in error for any reason, the 
driver must set the type to M_IOCNAK and send the message upstream. 
No data can be sent to a user in this case. The Stream head will cause the 
ioctl call to fail with the error number EINV AL. The driver has the option 
of setting ioc _error to an alternate error number if desired. 

Note 

ioc _error can be set to a non-zero value by both M_IOCACK and 
M_IOCNAK. This causes that value to be returned as an error 
number to the process which sent the CSTR ioctl. 
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9.3.7 Driver Close 

The driver close clears any message being output. Any messages left on 
the message queue are automatically removed by STREAMS. 

static int lpclose(q) 
queue t *q; /* read queue */ 
{ -

struct lp * lp; 
int s; 

lp = (struct lp *) q->qytr; 
/* Free message, queue is automatically flushed by STREAMS */ 
s = splS (); 
if (lp->msg) { 

freemsg(lp->msg); 
lp->msg = NULL; 

splx (s); 

9-12 



Chapter 10 

Complete Driver 

10.1 Cloning 10-1 

10.2 Loop-Around Driver 10-1 

10.3 Write Put Procedure 10-5 

lOA Stream Head Messages 10-7 

10.5 Service Procedures 10-8 

10.6 Close 10-10 



Complete Driver 

10.1 Cloning 

The clone mechanism has been developed as a convenience. It allows a 
user to open a driver without specifying the minor device. When a 
Stream is opened, a flag indicating a clone open is tested by the driver 
open routine. If the flag is set, the driver returns an unused minor device 
number. The clone driver [see c1one(STR)] is a system-dependent 
STREAMS· pseudo-driver. 

Knowledge of clone driver implementation is not required to use it. It is 
described here for completeness and to assist developers who must imple­
ment their own clone driver. A cloneable device has a device number in 
which the major number corresponds to the clone driver and the minor 
number corresponds to the target driver. When an open(S) system call is 
made to the associated (STREAMS) file, open causes a new Stream to be 
opened to the clone driver, and the open procedure in clone is called with 
dev set to clone/target. The clone open procedure uses minor (dev) 
to locate the cdevsw entry of the target driver. Then clone modifies the 
contents of the newly created Stream queue_ts to those of the target 
driver and calls the target driver open procedure with the Stream flag set 
to CLONEOPEN. The target driver open responds to the CLONEOPEN by 
returning an unused minor device number. When the clone open receives 
the returned minor device number of the target driver, it allocates a new 
inode (which has no name in the file system) and associates the minor 
device number with the inode. 

10.2 Loop-Around Driver 

The loop-around driver is a pseudo-driver that loops data from one open 
Stream to another open Stream. The user processes view the associated 
files as a full duplex pipe; the Streams are not physically linked. The 
driver is a simple multiplexer which passes messages from one Stream's 
write QUEUE to the other Stream's read QUEUE. (See Chapter 11 for more 
information on multiplexers.) 

To create a pipe, a process opens two Streams, obtains the minor device 
number associated with one of the returned file descriptors, and sends the 
device number in an CSTR ioctl to the other Stream. For each open, the 
driver open places the passed queue_t pointer in a driver interconnection 
table, indexed by the device number. When the driver later receives the 
CSTR as an M_IOCTL message, it uses the device number to locate the 
other Stream's interconnection table entry and stores the appropriate 
queue _ t pointers in both of the Streams' interconnection table entries. 

Subsequently, when messages other than M_IOCTL or M_FLUSH are 
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received by the driver on either Stream's write side, the messages are 
switched to the read QUEUE following the driver on the other Stream's 
read side. The resulting logical connection is shown in Figure 10-1. 
Flow control between the two Streams must be handled by special code 
since STREAMS will not automatically propagate flow control infonna­
tion between two Streams that are not physically interconnected . 

••••• ....... 0 ........ . . . :· .. ~T .. : 
I : : I 

Figure 10-1 Loop-Around Streams 
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The declarations for the driver are: 

/* 
* Loop-around driver 
*/ 

#include "sys/types.h" 
#include "sys/param.h" 
#include "sys/sysrnacros.h" 
#ifdef u3b2 
#include "sys/psw.h" 
#include "sys/pcb.h" 
#endif 
#include "sys/stream.h" 
#include "sys/stropts.h" 
#include "sys/dir.h" 
#include "sys/signal.h" 
#include "sys/user.h" 
#include "sys/errno.h" 

static struct module info minfo = 

0, "loop", 0, INFPSZ, 512, 128 
} ; 

static int loopopen(), loopclose(), loopwput(), loopwsrv(), looprsrv(); 

static struct qinit rinit = { 
NULL, looprsrv, loopopen, loopclose, NULL, &minfo, NULL 

} ; 

static struct qinit winit = { 
loopwput, loopwsrv, NULL, NULL, NULL, &minfo, NULL 

} ; 

struct streamtab loopinfo = { &rinit, &winit, NULL, NULL }; 

struct loop { 
queue_t *qptr; /* back pointer to write queue */ 
queue_t *oqptr; /* pointer to connected read queue */ 

} ; 

(('1'«8) 11) 

extern struct loop loop loop [ 1 ; 
extern int loop _ cnt; -

/* should be in a .h file */ 

A con fig file to configure the loop driver is shown in Appendix E. The 
loop structure contains the interconnection infonnation for a pair of 
Streams. loop _loop is indexed by the minor device number. When a 
Stream is opened to the driver, the address of the corresponding 
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loop _loop element is placed in qytr (private data structure pointer) of 
the read and write side queue _ ts. Since STREAMS clears qytr when the 
queue _tis allocated, a NULL value of qytr indicates an initial open. 
loop _loop is used to verify that this Stream is connected to another open 
Stream. 

The open procedure includes canonical clone processing which enables a 
single file system node to yield a new minor device/inode each time the 
driver is opened: 

static int loopopen(q, dev, flag, sflag) 
queue t *q; 
{ -

struct loop *loop; 

/* 
* If CLONEOPEN, pick a minor device number to use. 
* Otherwise, check the minor device range. 
*/ 

if (sflag = CLONEOPEN) { 
for (dev = 0; dev < loop cnt; dev++) 

if (loop loop[dev].qptr = NULL) 

break; 

else 
dev = minor(dev); 

if (dev >= loop cnt) 
return OPENFAIL; /* default = ENXIO */ 

/* Setup data structures * / 

if (q->qJptr) /* already open */ 
return dev; 

loop = &loop loop[dev]; 
WR(q) ->qJptr-= (char *) loop; 
q->qJptr = (char *) loop; 
loop->qptr = WR (q) ; 

/* 
* The return value is the minor device. 
* For CLONEOPEN case, this will be used for 
* newly allocated inode 
*/ 

return dev; 

In loopopen, sflag can be CLONEOPEN, indicating that the driver should 
pick a minor device (Le., the user does not care which minor device is 
used). In this case, the driver scans its private loop _loop data structure to 
find an unused minor device number. If sflag has not been set to 
CLONEOPEN, the passed-in minor device is used. 
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The return value is the minor device number. In the CLONEOPEN case, 
this value is used by the clone driver for the newly allocated inode and is then 
passed to the user. 

10.3 Write Put Procedure 

Since the messages are switched to the read QUEUE following the other 
Stream's read side, the driver needs a put procedure only on its write side: 

static int loopwput(q, mp) 
queue t *q; 
mblk t *mp; 
{ -

register struct loop *loop; 

loop = (struct loop *) q-~ptr; 

switch (mp->b datap->db type) 
case M Icx:::TL:-{ -

struct iocblk *iocp; 
int error; 

iocp = (struct iocblk *)mp->b rptr; 
switch (iocp->ioc cmd) { -
case LOOP SET: { -

int to; /* other minor device */ 
/* 

* Sanity check. ioc count contains the amount of 
* user supplied data-which must equal the size of an into 
*/ 

if (iocp->ioc_count != sizeof(int)) { 
error = EINVAL; 
goto iocnak; 

/* fetch other dev from 2nd message block */ 

to = *(int *)mp->b_cont->b_rptr; 

/* 
* More sanity checks. The minor must be in range, open already. 
* Also, this device and the other one must be disconnected. 
*/ 

if (to >= loop_cnt II to < 0 II ! loop_loop [to] .qptr) { 
error = ENXIO; 
goto iocnak; 

if (loop->oqptr II loop_loop [to] .oqptr) 
error = EBUSY; 
goto iocnak; 
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/* 
* Cross-connect streams via the loop structures 
*/ 

loop->oqptr = RD(loop loop[to].qptr); 
loop_loop[to].oqptr =-RD (q); 

/* 
* Return successful ioctl. Set ioc count 
* to zero, since there is return no-data. 
*/ 

rrp->b datap->db type = M ICCACK; 
iocp->ioc count-= 0; -
qreply (q, -rrp) ; 
break; 

default: 
error = EINVAL; 

iocnak: 
/* 
* Bad ioctl. Setting ioc error causes the 
* ioctl call to return that particular errno. 
* By default, ioctl will return EINVAL on failure 
*/ 

mp->b datap->db type = M ICCNAK; 
iocp->ioc error-= error;- /* set returned errno */ 
qreply (q, - rrp) ; 

break; 

loopwput shows another use of an CISTR ioctl call (see the section titled 
"Driver and Module Ioctls" in Chapter 9). The driver supports a 
LOOP_SET value of ioc cmd in the iocblk of the M_IOCTL message. 
LOOP_SET instructs the driver to connect the current open Stream to the 
Stream indicated in the message. The second block of the M_IOCTL mes­
sage holds an integer that specifies the minor device number of the 
Stream to connect to. 

The driver performs several checks: Does the second block have the 
proper amount of data? Is the "to" device in range? Is the "to" device 
open? Is the current Stream disconnected? Is the "to" Stream discon­
nected? 

If everything checks out, the read queue _ t pointers for the two Streams 
are stored in the respective oqptr fields. This cross-connects the two 
Streams indirectly, via loop_loop. 
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Canonical flush handling is incorporated in the put procedure: 

case M FLUSH: 
if- (*mp->b rptr & FLUSHW) 

flushq(q, 0); 
if (*mp->b rptr & FLUSHR) 

flushq(RD(q), 0); 
*mp->b rptr &= -FLUSHW; 

qreply(q, mp); 
} else 

freernsg(mp) ; 
break; 

default: 
/* 
* If this stream isn't connected, send an M_ERROR upstream. 
*/ 

if (loop->oqptr == NULL) { 
putctll (RD (q) -XLnext, M_ERROR, ENXIO); 
freernsg (mp) ; 
break; 

putq(q, mp); 

Finally, loopwput enqueues all other messages (e.g., M_DATA or 
M_PROTO) for processing by its service procedure. A check is made to 
see if the Stream is connected. If not, an M_ERROR is sent upstream to 
the Stream head (see the section "Stream Head Messages" later in this 
chapter.) 

putctll and putctl are utilities that allocate a non-data type message (Le., 
not M_DATA, M_PROTO, or M_PCPROTO). Place one byte in the mes­
sage (for putctll) and call the put procedure of the specified QUEUE (see 
Appendix C). 

10.4 Stream Head Messages 

Certain message types can be sent upstream by drivers and modules to the 
Stream head where they are translated into actions detectable by the user 
process or processes (see Appendix B). The messages may also modify 
the state of the Stream head: 

Causes the Stream head to lock up. Message 
transmission between Stream and user processes 
is tenninated. All subsequent system calls 
except close and poll will fail. Also causes the 
Stream head to send an M_FLUSH downstream, 
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clearing all message queues. 

M_HANGUP Tenninates input from a user process to the 
Stream. All subsequent system calls that send 
messages downstream will fail. Once the 
Stream head read message queue is empty, EOF 
is returned on reads. Can also result in SIGHUP 
signal to the process group. 

M_SIGIM_PCSIG Causes a specified signal to be sent to a process 
(see Chapter 13). 

10.5 Service Procedures 

Service procedures are required on both the write and read sides for pur­
poses of flow control: 

static int la:pwsrv (q) 
register queue t *q; 
{ -

rrblk t *rip; 
regiSter struct lcop *lcop; 

lcop = (struct lcop *) q->qytr; 

while ((rrp = getq(q)) != NULL) { 

10-8 

1* 
* Check if v.e can put the rressage up the other stream read queue 
*1 

if (rrp->b _ datap->db _ typ:! <= IJ?CI'L && ! canput (lcop->o:JPtr-XL next) ) 
putl:::q(q, rrp); 1* read side is blocked *1 
break; 

1* send rressage *1 

putnext(lcop->o:JPtr, rrp); 1* 1b queue follow:i.n;r other stream read queue *1 



static int looprsrv(q) 
queue_t *q; 

/* Enter only when "back-enabled" by flow control */ 

struct loop *loop; 

loop = (struct loop *) q->qytr; 
if (loop->oqptr == NULL) 

return; 

/* manually enable write service procedure */ 

qenable(WR(loop->oqptr)); 

Complete Driver 

The write service procedure, loopwsrv, takes on the canonical fonn (see 
Chapter 8) with a difference. The QUEUE being written to is not down­
stream, but upstream (found via oqptr) on the other Stream. 

In this case, there is no read side put procedure, and so the read service 
procedure, iooprsrv, is not scheduled by an associated put procedure, as 
was done previously. looprsrv is scheduled only by being back-enabled 
when its upstream becomes unstuck from flow control blockage. The pur­
pose of the procedure is to re-enable the writer (loopwsrv) by using oqptr 
to find the related queue_t. loopwsrv cannot be directly back-enabled by 
STREAMS because there is no direct queue _ t linkage between the two 
Streams. Note that no message ever gets queued to the read service pro­
cedure. Messages are kept on the write side so that flow control can pro­
pagate up to the Stream head. There is a defensive check to see if the 
cross-connect has broken. qenable schedules the write side of the other 
Stream. 
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10.6 Close 

loopc/ose breaks the connection between the Streams. 

static int loopclose(q) 
queue t *q; 
{ -

register struct loop *loop; 

loop = (struct loop *) q->qytr; 
loop->qptr = NULL; 

/* 
* If we are connected to another stream, break the 
* linkage, and send a hangup message. 
* The hangup message causes the stream head to fail writes, 
* allow the queued data to be read corrpletely, and then 
* return EOF on subsequent reads. 
*/ 

if (loop->oqptr) { 
((struct loop *)loop->oqptr->qytr)->qptr = NULL; 
((struct loop *)loop->oqptr->qytr)->oqptr = NULL; 
putctl (loop->oqptr-XLnext, M_HANGUP); 
loop->oqptr = NULL; 

loopc/ose sends an M_HANGUP message up the connected Stream to the 
Stream head. (See the earlier section "Stream Head Messages" for more 
infonnation on M_HANGUP.) 

Note 

This driver can be implemented much more cleanly by actually 
linking the q_ next pointers of the queue _ t pairs of the two Streams. 
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11.1 Multiplexing Configurations 

This chapter describes how STREAMS multiplexing configurations are 
created and discusses multiplexing drivers. A STREAMS multiplexer is a 
pseudo-driver with multiple Streams connected to it. The primary func­
tion of the driver is to switch messages among the connected Streams. 
Multiplexer configurations are created from user level by system calls. 
Chapter 6 of the Primer and Chapter 3 of this manual contain the required 
introduction to STREAMS mUltiplexing. 

STREAMS-related system calls are used to set up the "plumbing," or 
Stream interconnections, for multiplexing pseudo-drivers. The subset of 
these calls that allows a user to connect (and disconnect) Streams below a 
pseudo-driver is referred to as the multiplexing facility. This type of con­
nection will be referred to as a I-to-M, or lower, multiplexer 
configuration (see Figure 6-3 in the Primer). This configuration must 
always contain a multiplexing pseudo-driver, which is recognized by 
STREAMS as having special characteristics. 

Multiple Streams can be connected above a driver by use of open calls. 
This was done for the loop-around driver of the previous chapter and for 
the driver-handling, multiple minor devices in Chapter 9. There is no 
difference between the connections to these drivers; only the functions 
perfonned by the driver are different. In the multiplexing case, the driver 
routes data between mUltiple Streams. In the device driver case, the 
driver routes data between user processes and associated physical ports. 
Multiplexing with Streams connected above will be referred to as an N­
to-I, or upper, multiplexer (see Figure 6-4 in the Primer). STREAMS does 
not provide any facilities beyond open and close to connect or disconnect 
upper Streams for multiplexing purposes. 

From the driver's perspective, upper and lower configurations differ only 
in the way they are initially connected to the driver. The implementation 
requirements are the same: route the data and handle flow control. All 
multiplexer drivers require special developer-provided software to per­
fonn the multiplexing data routing and to handle flow control. STREAMS 
does not directly support flow control among multiple Streams. 

M-to-N multiplexing configurations are implemented by using both of the 
above mechanisms in a driver. Complex multiplexing trees can be 
created by cascading multiplexing Streams below one another. 

As discussed in Chapter 9, the multiple Streams that represent minor dev­
ices are actually distinct Streams in which the driver keeps track of each 
Stream attached to it. The Streams are not really connected to their com­
mon driver. The same is true for STREAMS multiplexers of any 
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configuration. The multiplexed Streams are distinct, and the driver must 
be implemented to do most of the work. As stated above, the only 
difference between configurations is the manner of connecting and 
disconnecting. Only lower connections have use of the multiplexing 
facility. 

11.2 Connecting Lower Streams 

A lower multiplexer is connected as follows: the initial open to a multi­
plexing driver creates a Stream, as in any other driver. As usual, open 
uses the first two streamtab structure entries to create the driver QUEUEs 
(see the section titled "Opening a Stream" in Chapter 5). At this point, 
the only distinguishing characteristics of this Stream are non-NULL 
entries in the streamtab st _ muxrinit and st _ muxwinit (mux) fields: 

struct streamtab { 

struct qinit 
struct qinit 

struct qinit 

struct qinit 
}; 

*st_rdinit; 1* defines read QUEUE */ 

*st_wrinit; 1* defines write QUEUE *1 
*st_muxrinit; 1* for mUltiplexing drivers only *1 
*st_muxwinit; 1* for multiplexing drivers only *1 

These fields are ignored by the open (see the rightmost Stream in Figure 
11-1). Any other Stream subsequently opened to this driver will have the 
same streamtab and thereby the same mux fields. 

Next, another file is opened to create a (soon to be) lower Stream. The 
driver for the lower Stream is typically a device driver (see the leftmost 
Stream in Figure 11-1). This Stream has no distinguishing characteristics. 
It can include any driver compatible with the multiplexer. Any modules 
required on the lower Stream must be pushed onto it now. 

Next, this lower Stream is connected below the multiplexing driver with 
an CLINK ioctl call [see streamio(STR)]. As shown in Figure 5-1, all 
Stream components are constructed in a similar manner. The Stream 
head points to the stream-he ad-routines as its procedures (known via its 
queue _ t). An CLINK to the upper Stream, referencing the lower Stream, 
causes STREAMS to modify the contents of the Stream head in the lower 
Stream. The pointers to the stream-he ad-routines and other values in the 
Stream head are replaced with those contained in the mux fields of the 
multiplexing driver's streamtab. Changing the stream-head-routines on 
the lower Stream means that all subsequent messages sent upstream by 
the lower Stream's driver are ultimately passed to the put procedure 
designated in st _ muxrinit, the multiplexing driver. The CLINK also 
establishes this upper Stream as the control Stream for this lower Stream. 
STREAMS remembers the relationship between these two Streams until 
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the upper Stream is closed or the lower Stream is unlinked. 

Finally, the Stream head sends to the multiplexing driver an M_IOCTL 
message with ioc cmd set to CLINK (see discussions of the iocblk struc­
ture in Chapter 9aud Appendix A). The M_DATA part of the M_IOCTL 
contains a linkblk structure: 

struct linkblk { 

} ; 

queue_t *l_qtop; /* lowest level write queue of upper stream */ 
queue_t *l_qbot; /* highest level write queue of lower stream */ 
int l_index;/* system-unique index for lower stream. */ 

The multiplexing driver stores information from the linkblk in private 
storage and returns an M_IOCACK message (ack). I index is returned to 
the process requesting the CLINK. This value can be used later by the 
process to disconnect this Stream, as described below. linkblk contents 
are further discussed below. 

An CLINK is required for each lower Stream connected to the driver. 
Additional upper Streams can be connected to the multiplexing driver by 
open calls. Any message type can be sent from a lower Stream to user 
process(es) along any of the upper Streams. The upper Stream(s) pro­
vides the only interface between the user process(es) and the multiplexer. 

Note that no direct data structure linkage is established for the linked 
Streams. The q_ next pointers of the lower Stream still appear to connect 
with a Stream head. Messages flowing upstream from a lower driver (a 
device driver or another multiplexer) enter the multiplexing driver (that 
is, Stream head) put procedure with I qbot as the queue t value. The 
multiplexing driver has to route the messages to the approPriate upper or 
lower Stream. Similarly, a message coming downstream from user space 
on the control (or any other) upper Stream has to be processed and routed, 
if required, by the driver. 

Also note that the lower Stream (see the headers and file descriptors in 
Figure 11-2) is no longer accessible from user space. This causes all sys­
tem calls to the lower Stream to return EINV AL, with the exception of 
close. This is why all modules have to be in place before the lower 
Stream is linked to the multiplexing driver. As a general rule, the lower 
Stream file should be closed after it is linked (see following section). 
This does not disturb the multiplexing configuration. 

Finally, note that the absence of direct linkage between the upper and 
lower Streams means that STREAMS flow control must be handled by 
special code in the multiplexing driver. The flow control mechanism can­
not see across the driver. 
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In general, multiplexing drivers should be implemented so that new 
Streams can be dynamically connected to the driver and existing Streams 
disconnected from the driver without interfering with its ongoing opera­
tion. The number of Streams that can be connected to a multiplexer is 
developer-dependent. NMUXLINK is the system limit to the number of 
Streams that can be linked in the system. (See Appendix E for more 
information on NMUXLINK.) 

11.3 Disconnecting Lower Streams 

Dismantling a lower multiplexer is accomplished by disconnecting 
(unlinking) the lower Streams. Unlinking can be initiated in three ways: 
an CUNLINK ioctl referencing a specific Stream, an CUNLINK indicating 
all lower Streams, or the last close of the control Stream (this causes the 
associated file to be closed). As in the link, an unlink sends a Iinkblk 
structure to the driver in an M_IOCTL message. The CUNLINK call, 
which unlinks a single Stream, uses the I index value returned in the 
CLINK to specify the lower Stream to be unlinked. The latter two calls 
must designate a file corresponding to a control Stream which causes all 
the lower Streams that were previously linked by this control Stream to 
be unlinked. However, the driver sees a series of individual unlinks. 

If the file descriptor for a lower Stream was previously closed, a subse­
quent unlink automatically closes the Stream. Otherwise, the lower 
Stream must be closed by close following the unlink. STREAMS automat­
ically dismantles all cascaded multiplexers (below other multiplexing 
Streams) if their controlling Stream is closed. An CUNLINK leaves 
lower, cascaded multiplexing Streams intact unless the Stream file 
descriptor was previously closed. 

11.4 Multiplexer Construction Example 

This section describes an example of multiplexer construction and usage. 
A multiplexing configuration similar to the Internet of Figure 6-3 in the 
Primer is discussed. Figure 11-1 shows the Streams before their connec­
tion to create the multiplexing configuration of Figure 11-2. Multiple 
upper and lower Streams interface to the multiplexer driver. The user 
processes of Figure 11-2 are not shown in Figure 11-1. 
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Figure 11-1 Internet Multiplexer Before Connecting 

The Ethernet, LAPB, and IEEE 802.2 device drivers tenninate links to 
other nodes. IP (Internet Protocol) is a multiplexer driver. IP switches 
datagrams among the various nodes or sends them upstream to one or 
more users in the system. The Net modules typically provide a conver­
gence function which matches the IP and device driver interface. 

Figure 11-1 depicts only a portion of the full, larger Stream. As shown in 
the dotted rectangle above the IP multiplexer, there is generally an upper 
TCP multiplexer, additional modules, and possibly additional multi­
plexers in the Stream. Multiplexers can also be cascaded below the IP 
driver if the device drivers are replaced by multiplexer drivers. 
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Figure 11-2 Internet Multiplexer After Connecting 

Streams A, B, and C are opened by the process, and modules are pushed 
as needed. Two upper Streams are opened to the IP multiplexer. The 
rightmost Stream represents multiple Streams, each connected to a pro­
cess using the network. The Stream second from the right provides a 
direct path to the multiplexer for supervisory functions. It is the control 
Stream, leading to a process which sets up and supervises this 
configuration. It is always directly connected to the IP driver. Although 
not shown, modules can be pushed on the control Stream. 

After the Streams are opened, the supervisory process typically transfers 
routing information to the IP drivers (and any other multiplexers above 
the IP), and initializes the links. As each link becomes operational, its 
Stream is connected below the IP driver. If a more complex multiplexing 
configuration is required, the IP multiplexer Stream with all its connected 
links can be connected below another multiplexer driver. 

As shown in Figure 11-2, the file descriptors for the lower device driver 
Streams are left dangling. The primary purpose in creating these Streams 
is to provide parts for the multiplexer. These Streams have no further 
function unless they are used for control or required for error recovery (by 
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reconnecting them through an CUNLINK ioetl). As stated above, these 
lower Streams can be closed to free the file descriptor without any effect 
on the multiplexer. A setup process installing a configuration containing 
a large number of drivers should do this to avoid running out of file 
descriptors. 

11.5 Multiplexing Driver Example 

This section contains an example of a multiplexing driver that imple­
ments an N-to-l configuration, similar to that of Figure 6-4 in the Primer. 
This configuration might be used for terminal windows, where each 
transmission to or from the terminal identifies the window. This resem­
bles a typical device driver, with two differences: the device handling 
functions are performed by a separate driver, connected as a lower 
Stream, and the device information (that is, relevant user process) is con­
tained in the input data rather than in an interrupt call. 

Each upper Stream is connected by an open, identical to the driver of 
Chapter 9. A single lower Stream is opened, and then it is linked by use 
of the multiplexing facility. This lower Stream might connect to the TIY 
driver. The implementation of this example is a foundation for an M-to-N 
multiplexer. 

As in the loop-around driver, flow control requires the use of standard and 
special code, since physical connectivity among the Streams is broken at 
the driver. Different approaches are used for flow control on the lower 
Stream for messages coming upstream from the device driver, and on the 
upper Streams for messages coming downstream from the user processes. 
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The multiplexer declarations are: 

#include "sys/types.h" 
#include "sys/param.h" 
#include "sys/sysmacros.h" 
#include "sys/stream.h" 
#include "sys/stropts.h" 
#include "sys/errno.h" 

static int muxopen ( ), muxclose ( ), muxuwput ( ), muxlwsrv ( ), rnuxl:r:put ( ) ; 

static struct module info info = { 
0, ''rnux'' , 0, INFPSz, 512, 128 

} ; 
static struct qinit urinit = { 1* upper read *1 

NULL, NULL, muxopen, muxclose, NULL, &info, NULL 
} ; 
static struct qinit uwinit = { 1* upper write *1 

muxuwput, NULL, NULL, NULL, NULL, &info, NULL 
}; 

static struct qinit lrinit = { 1* lower read *1 
muxl:r:put, NULL, NULL, NULL, NULL, &info, NULL 

}; 

static struct qinit lwinit = { 1* lower write *1 
NULL, muxlwsrv, NULL, NULL, NULL, &info, NULL 

} ; 

struct streamtab muxinfo = { &urinit, &uwinit, &lrinit, &lwinit }; 

struct mux { 
queue_t *qptr; 1* back pointer to read queue *1 

} ; 

extern struct mux mux _ mux [ ] ; 
extern int mux_cnt; 

queue _ t *muxbot; 1 * linked lower queue *1 
int muxerr; 1* set if error of hangup on lower stream *1 

The four streamtab entries correspond to the upper read, upper write, 
lower read, and lower write qinit structures. The multiplexing qinit 
structures replace those in each lower Stream head after the CLINK has 
completed successfully. (In this case there is only one lower Stream 
head.) In a multiplexing configuration, the processing performed by the 
multiplexing driver can be partitioned between the upper and lower 
QUEUEs. There must be an upper Stream write put procedure and a lower 
Stream read put procedure. In general, only upper write side and lower 
read side procedures are used. Application specific flow control require­
ments might modify this. If the QUEUE procedures of the opposite 
upper!lower QUEUE are not needed, the QUEUE can be skipped over and 
the message put to the following QUEUE. 
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The upper read side procedures are not used in the example. The lower 
Stream read QUEUE put procedure transfers the message directly to the 
read QUEUE upstream from the multiplexer. There is no lower write put 
procedure because the upper write put procedure directly feeds the lower 
write service procedure, as described below. 

The driver uses a private data structure, mux. mux _ mux[dev] points back 
to the opened upper read QUEUE. This is used to route messages coming 
upstream from the driver to the appropriate upper QUEUE. It is also used 
to find a free minor device for a CLONEOPEN driver open case. 

The upper QUEUE open contains the canonical driver open code: 

static int muxopen(q, dev, flag, sflag) 
queue t *q; 
{ -

struct mux *mux; 

if (sflag = CLONEOPEN) 
for (dev = 0; dev < mux cnt; dev++) 

if (rnux mux[devJ.qptr = 0) 
break; 

else 
dev = rninor(dev); 

if (dev >= mux_cnt) 
return OPENFAIL; 

rnux = &rnux _ rnux [devJ ; 
mux->qptr = q; 
q->qytr = (char *) rnux; 
WR(q)->qytr = (char *) mux; 
return dev; 

muxopen checks for a clone or ordinary open call. It loads qytr to point 
at the mux _ mux[] structure. 

The core multiplexer processing is as follows: downstream data written 
to an upper Stream is queued on the corresponding upper write message 
queue. This allows flow control to propagate towards the Stream head for 
each upper Stream. However, there is no service procedure on the upper 
write side. All M_DATA messages from all the upper message queues are 
ultimately dequeued by the service procedure on the lower (linked) write 
side. The upper write Streams are serviced in a round-robin fashion by 
the lower write service procedure. A lower write service procedure, 
rather than a write put procedure, is used in order to handle flow control 
coming up from the driver below. 
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On the lower read side, data coming up the lower Stream is passed to the 
lower read put procedure. The procedure routes the data to an upper 
Stream based on the first byte of the message. This byte holds the minor 
device number of an upper Stream. The put procedure handles flow con­
trol by testing the upper Stream at the first upper read QUEUE beyond the 
driver. That is, the put procedure treats the Stream component above the 
driver as the next QUEUE. 

Figure 11-3 Example Multiplexer Configuration 

This is shown in Figure 11-3. "Multiplexer Routines" are all the above 
procedures. VI and V2 are queue_t pairs, each including a write 
queue_t pointed at by an '_qtop in a linkblk (see beginning of this 
chapter). L is the queue_t pair which contains the write queue_t pointed 
at by '_qbot. Nl and N2 are the modules (or Stream head or another mul­
tiplexing driver) seen by L when read side messages are sent upstream. 
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11.5.1 Upper Write Put Procedure 

The upper QUEUE write put procedure, muxuwput, traps ioctls, in particu-. 
lar CLINK and CUNLINK: 

static int muxuwput (q, mp) 
queue t *q; 
rnblk_t *mp; 

int s; 
struct mux *mux; 

mux = (struct mux *) q->CI...Ptr; 
switch (mp->b datap->db type) 
case M_IOCTL:-( -

struct iocblk * iocp; 
struct linkblk *linkp; 

/* 
* Ioctl. Only channel 0 can do ioctls. Two 
* calls are recognized: LINK, and UNLINK 
*/ 

if (mux ! = mux mux) 
goto iocnak; 

iocp = (struct iocblk *) mp->b_rptr; 
switch (iocp->ioc_cmd) { 
case I LINK: 

/* 
* Link. The data contains a linkblk structure 
* Remember the bottom queue in muxbot. 
*/ "t. 

if (muxbot ! = NULL) 
goto iocnak; 

linkp = (struct linkblk *) mp->b_cont->b_rptr; 
muxbot = linkp->l_qbot; 
muxerr = 0; 
mp->b datap->db type = M IOCACK; 
iocp->loc count-= 0; -
qreply(q,-mp) ; 
break; 
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case I UNLINK: 
/*-

* Unlink. The data contains a linkblk structure. 
* Should not fail an unlink. Null out muxbot. 
*/ 

linkp = (struct linkblk *) rrp->b cont->b rptr; 
muxbot = NULL; --
rrp->b datap->db type = M IOCACK; 
iocp->ioc count-= 0; -
qreply(q, -rrp); 
break; 

default: 
iocnak: 

/ * fail ioctl * / 

mp->b datap->db type = M ICCNAK; 
qreply(q, rrp); - -

break; 

First, there is a check to ensure that the Stream associated with minor 
device 0 will be the single, controlling Stream. loctls are accepted only 
on this Stream. As described previously, a controlling Stream is the one 
that issues the CLINK. Having a single control Stream is a recommended 
practice. CLINK and C UNLINK include a Iinkblk structure, described 
previously, containing: 

I_qtop The upper write QUEUE froln which the ioetl is coming. 
It should always equal q. 

1_ qbot The new lower write QUEUE. It is the former Stream 
head write QUEUE. It is of most interest since that is 
where the multiplexer gets and puts its data. 

I index A unique (system-wide) identifier for the link. It can be 
used for routing or during selective unlinks, as described 
above. Since the example only supports a single link, 
I_index is not used. 

For CLINK, 1_ qbot is saved in muxbot and an ack is generated. From this 
point on, until an C UNLINK occurs, data from upper queues are routed 
through muxbot. Note that when an CLINK is received, the lower Stream 
has already been connected. This allows the driver to send messages 
downstream to peIform any initialization functions. Returning an 
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M_IOCNAK message (nak) in response to an CLINK causes the lower 
Stream to be disconnected. 

The C UNLINK handling code nulls out muxbot and generates an ack. A 
nak should not be returned to an CVNLINK. The Stream head makes sure 
that the lower Stream is connected to a multiplexer before sending an 
CVNLINK M_IOCTL. 

muxuwput handles M_FLUSH messages as a normal driver would: 

case M FLUSH: 
if- (*mp->b rptr & FLUSHW) 

flushq(q, FLUSHD~); 
if (*mp->b rptr & FLUSHR) { 

flushq(RD(q), FLUSHD~); 
*mp->b rptr &= -FLUSHW; 
qreply(q, mp); 

} else 
freemsg(mp) ; 

break; 
case M D~: 

/*-
* Data. If we have no bottom queue --> fail 
* Otherwise, queue the data, and invoke the lower 
* service procedure. 
*/ 

if (muxerr I I muxbot = NULL) 
goto bad; 

putq(q, mp); /* place message on upper write message queue */ 
qenable(muxbot); /* lower service write procedure */ 
break; 

default: 
bad: 

/* 
* Send an error message upstream. 
*/ 

mp->b datap->db type = M ERROR; 
mp->b-rptr = mp=>b wptr ~ mp->b datap->db base; 
*mp->b wptr++ = ErNvAL; - -
qreply(q, mp); 

M_DATA messages are not placed on the lower write message queue. 
They are queued on the upper write message queue. putq recognizes the 
absence of the upper service procedure and does not schedule the QUEUE. 
Then the lower service procedure, mux/wsrv, is scheduled with qenable 
(see Appendix C) to start output. This is similar to starting output on a 
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device driver. Note that muxuwput cannot access muxlwsrv by the con­
ventional STREAMS calls, putq or putnext (to a muxlwput). (muxlwsrv is 
the lower QUEUE write service procedure, contained in muxbot.) Both 
calls require that a message be passed, but the messages remain on the 
upper Stream. 

II.S.2 Lower QUEUE Write Service Procedure 

The lower (linked) queue write service procedure, muxlwsrv, is scheduled 
directly from the upper service procedures. It is also scheduled from the 
lower Stream, by being back-enabled when the lower Stream becomes 
unblocked from downstream flow control. 

static int muxlwsrv(q) 
register queue t *q; 
{ -

register mblk t *mp, *bp; 
register queue_t *nq; 

/* 
* While lower stream is not blocked, find an upper queue to 
* service (get next q) and send one message fram it downstream. 
*/ --

while (canput(q-~next)) 
nq = get next q(); 
if (nq";;;; NUI.J:") 

break; 
mp = getq (nq) ; 
/* 

* Prepend the outgoing message with a single byte header 
* that indicates the minor device number it came from. 
*/ 

if «bp = aHocb (1, BPRI MED)) = NULL) { 
printf (''mux: aHocb failed (size 1) \nn); 
freemsg(mp) ; 
continue; 

*bp->b_wptr++ = (struct mux *)nq->~tr - mux_mux; 
bp->b cont = mp; 
putneXt (q, bp) i 

muxlwsrv takes data from the upper queues and puts it out through mux­
bot. The algorithm used is simple round robin. While we can put to 
muxbot->q next, we select an upper QUEUE (via get next q) and 
move a message from it to muxbot. Each message is prefixed by a one­
byte header that indicates which upper Stream it came from. 
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Finding messages on upper write queues is handled by get_next _q: 

/* 
* Round-robin scheduling. 
* Return next upper queue that needs servlclng. 
* Returns NULL when.no more work needs to be done. 
*/ 

static queue_t * 
get next q() 
{- -

static int next; 
int i, start; 
register queue_t *q; 

start = next; 
for (i = next; i < mux cnt; i++) 

if (q = mux_mux[i]:qptr) { 
q = WR(q); 
if (q->q first) 

next -= i+l; 
return q; 

for (i = 0; i < start; i++) 
if (q = mux_mux[i] .qptr) 

q = WR(q) ; 
if (q->q first) 

next -:: i+l; 
return q; 

return NULL; 

get_next_q searches the upper queues in a round-robin fashion looking for 
the first one containing a message. It returns the queue _ t pointer or 
NULL if there is no work to do. 
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11.5.3 Lower Read Put Procedure 

The lower (linked) queue read put procedure is: 

static int muxlrput (q, mp) 
queue t *q; 
mblk t *mp; 
{ -

queue t *uq; 
mblk t *b cant; 
int dev; -

switch(mp->b datap->db type) 
case M_FLUSH: 

/* 
* Flush queues. NOTE: sense of tests is reversed 
* since we are acting like a "stream head" 
*/ 

if (*mp->b rptr & FLUSHR) 
flushq (q, 0); 

if (*mp->b rptr & FLUSHW) 
*mp->b-rptr &= -FLUSHR; 
qreply(q, mp); 

else 
freemsg (mp) ; 

break; 

case M_ERROR: 
case M_HANGUP: 

muxerr = 1; 
freemsg (mp) ; 
break; 

case M DATA: 
/* -
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* Route message. First byte indicates 
* device to send to. No flow control. 

* Extract and delete device number. If the leading block is 
* now empty and more blocks follow, strip the leading block. 
* The stream head interprets a leading zero-length block 
* as an EOF regardless of what follows. 
*/ 

dev = *mp->b rptr++; 
if (mp->b rptr == mp->b wptr && (b_cont = mp->b_cont)) { 

freeb(Inp); -
mp = b_cont; 



/* Sanity check. Device must be in range */ 

if (dev < 0 I I dev >= mux cnt) 
freemsg(mp); -
break; 

/* 
* If upper stream is open and not backed up, 
* send the message there, otherwise discard it. 
*/ 

uq = mux mux[dev] .qptr; 
if (uq !~ NULL && canput(uq->~next)) 

putnext(uq, mp); 
else 

freemsg (mp) ; 
break; 

default: 
freemsg(mp); 

Multiplexing 

muxlrput receives messages from the linked Stream. In this case, it is act­
ing as a Stream head. It handles M_FLUSH messages. Note that the code 
is reversed from that of a driver, handling M_FLUSH messages from 
upstream. 

muxlrput also handles M_ERROR and M_HANGUP messages. If one is 
received, it locks up the upper Streams. 

M_DATA messages are routed by looking at the first data byte of the mes­
sage. This byte contains the minor device of the upper Stream. If remov­
ing this byte causes the leading block to be empty and more blocks fol­
low, the block is discarded. This is done because the Stream head inter­
prets a leading zero-length block as an EOF [see read(S)]. Several sanity 
checks are made: Does the message have at least one byte? Is the device 
in range? Is the upper Stream open? Is the upper Stream not full? 

This mux does not do end-to-end flow control. It is merely a router (like 
the Department of Defense's IP protocol). If everything checks out, the 
message is put to the proper upper QUEUE. Otherwise, the message is 
silently discarded. 
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The upper Stream close routine simply clears the mux entry so that this 
queue will no longer be found by get_next _queue: 

/* 
* Upper queue close 
*/ 

static int muxclose(q) 
queue t *q; 
{ -

((struct mux *)q->~tr)->qptr = NULL; 
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12.1 Definition 

STREAMS provides the means to implement a service interface between 
any two components in a Stream and between a user process and the top­
most module in the Stream. A service interface is defined at the boundary 
between a service user and a service provider (see Figure 4-2). A service 
interface is a set of primitives and the rules for the allowable sequences 
of primitives across the boundary. These rules are typically represented 
by a state machine. In STREAMS, the service user and provider are 
implemented in a module, driver, or user process. The primitives are car­
ried bidirectionally between a service user and provider in M_PROTO and 
M_PCPROTO (generically, PROTO) messages. M_PCPROTO is the prior­
ity version of M_PROTO. 

12.2 Message Usage 

As described in Appendix B, PROTO messages can be multiblock, with 
the second through last blocks of type M_DATA. The first block in a 
PROTO message contains the control part of the primitive in a form 
agreed upon by the user and provider, and the block is not intended to 
carry protocol headers. (Although its use is not recommended, upstream 
PROTO messages can have multiple PROTO blocks at the start of the mes­
sage. getmsg compacts the blocks into a single control part when sending 
to a user process.) The M_DATA block or blocks contain any data part 
associated with the primitive. The data part may be processed in a 
module that receives it, or it may be sent to the next Stream component, 
along with any data generated by the module. The contents of PROTO 
messages and their allowable sequences are determined by the service 
interface specification. 

PROTO messages can be sent bidirectionally (up and downstream) on a 
Stream and bidirectionally between a Stream and a user process. putmsg 
and getmsg system calls are analogous to write and read respectively, 
except that the former allow both data and control parts to be (separately) 
passed, and they observe message boundary alignment across the user­
Stream boundary. putmsg and getmsg separately copy the control part 
(M_PROTO or M_PCPROTO block) and data part (M_DATA blocks) 
between the Stream and user process. 

An M_PCPROTO message is normally used to acknowledge M_PROTO 
messages and not to carry protocol expedited data. M_PCPROTO ensures 
that the acknowledgment reaches the service user before any other mes­
sage. If the service user is a user process, the Stream head stores only a 
single M_PCPROTO message, and it discards subsequent M_PCPROTO 
messages until the first one is read with getmsg. 
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The following rules pertain to service interfaces: 

• Modules and drivers that support a service interface must act upon 
all PROTO messages and not pass them through. 

• Modules can be inserted between a service user and a service pro­
vider to manipulate the data part as it passes between them. How­
ever, these modules cannot alter the contents of the control part 
(PROTO block, first message block) nor alter the boundaries of the 
control or data parts. That is, the message blocks comprising the 
data part can be changed, but the message cannot be split into 
separate messages or combined with other messages. 

In addition, modules and drivers must observe the rule that priority mes­
sages are not subject to flow control and forward them accordingly (see 
the beginning of modwsrv in the "Procedures" section of Chapter 8). 
Priority messages also bypass flow control at the user-Stream boundary 
[see putmsg(S)]. 

12.3 Example 

The example below is part of a module which illustrates the concept of a 
service interface. The module implements a simple datagram interface 
and mirrors the example in Chapter 4. 

12.3.1 Declarations 

The service interface primitives are defined in the declarations: 

#include "sys/types.h" 
#include "sys/param.h" 
#include "sys/strearn.h" 
#include "sys/errno.h" 

/* 
* Primitives initiated by the service user: 
*/ 

#define BIND REQ 1 /* bind request */ 
#define UNITD~ REQ 2 /* unitdata request */ 
/* -
* Primitives initiated by the service provider: 
*/ 

#define OK ACK 3 /* bind acknowledgment */ 
#define ERROR ACK 4 /*error acknowledgment */ 
#define UNI'IDATA_IND 5 /* unitdata indication */ 
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/* 
* The following structures define the format of the 
* stream message block of the above primitives. 
*/ 

struct bind req { /* bind request */ 
long PRiM type; /* always BIND REQ * / 
long BIND=addr; /* addr to bind */ 

} ; 
struct unitdata req 

long PRIM tYPe; 
long DEST=addr; 

}; 
struct ok ack { 

long PRIM_type; 
} ; 
struct error ack { 

long PRIM type; 
long UNIX=error; 

}; 
struct unitdata ind 

long PRIM tYPe; 
long SRC_addr; 

} ; 
union primitives { 

long type; 

}; 

struct bind req 
struct unitctata req 
struct ok ack -
struct error ack 
struct unitctata_ind 

/* unitdata request */ 
/* always UNITDATA REQ * / 
/* dest addr - */ 

/* ok acknowledgment */ 
/* always OK_ACK */ 

/* error acknowledgment */ 
/* always ERROR ACK */ 
/* UNIX error cOde *1 

/* unitdata indication */ 
/* always UNITDATA IND */ 
/* source addr - * / 

/* union of all primitives */ 

bind req; 
unitctata req; 
ok ack; -
error ack; 
unitctata _ ind; 

struct dgproto { 
short state; 
long addr; 

/* structure per minor device */ 
/* current provider state */ 
/* net address */ 

} ; 
/* Provider states */ 

#define IDLE 0 
#define BOUND 1 

Service Interface 

In general, the M_PROTO or M_PCPROTO block is described by a data 
structure containing the service interface information. In this example, 
union primitives is that structure. 
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Two commands are recognized by the module: 

Give this Stream a protocol address; that is, give 
it a name on the network. After a BIND_REQ is 
completed, datagrams from other senders will 
find their way through the network to this particu-
1ar Stream. 

UNITDATA_REQ Send a datagram to the specified address. 

Three messages are generated: 

A positive acknowledgment (ack) ofBIND_REQ. 

A negative acknowledgment ofBIND_REQ. 

UNITDATA_IND A datagram from the network has been received. 
(This code is not shown.) 

The ack of a BIND _REQ informs the user that the request was syntacti­
cally correct (or incorrect if ERROR_ACK). The receipt of a BIND_REQ 
is acknowledged with an M_PCPROTO to ensure that the acknowledg­
ment reaches the user before any other message. For example, a 
UNITDATA_IND might come through before the bind completed, and the 
user would get confused. 

The driver uses a per-minor device data structure, dgproto, which con­
. tains the following: 

state current state of the Stream (endpoint); IDLE or BOUND 

addr network address that was bound to this Stream 

It is assumed (though not shown) that the module open procedure sets the 
write queue q-ytr to point at one of these structures. 
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12.3.2 Service Interface Procedure 

The write put procedure is: 

static int protowput(q, mp) 
queue t *q; 
mblk. t *mp; 
{ -

union primitives *proto; 
struct dgproto *dgproto; 
int err; 

dgproto = (struct dgproto *) q->qytr; 

switch (mp->b datap->db type) 
default: - -

/* don't understand it */ 
mp->b datap->db type = M ERROR; 
mp->b-rptr = mp=>b wptr ~ mp->b datap->db base; 
*mp->b_wptr++ = EPROTO; - -
qreply (q, rnp); 
break; 

case M FLUSH: 
/ * -standard flush handling goes here ••• * / 
break; 

case M PROTO: 
/*-Protocol message -> user request */ 

proto = (union primitives *) mp->b_rptr; 

switch (proto->type) ( 
default: 

mp->b datap->db type = M ERROR; 
mp->b-rptr = rnp=>b wptr -:; mp->b datap->db base; 
*mp->b wptr++ = EPROTO; - -
qreply(q, mp); 
return; 

case BIND REQ: 
if (dgproto->state != IDLE) 

err = EINVAL; 
goto error_ack; 

} 
if (mp->b_wptr - mp->b_rptr != sizeof(struct bind_req)) { 

err = EINVAL; 
goto error_ack; 

if (err = chkaddr(proto->bind req.BIND addr)) 
goto error _ ack; - -

12-5 



Strea~s Programmer's Guide 

dgproto->state = BOUND; 
dgproto->addr = proto->bind req.BIND addr; 
mp->b datap->db type = M PcPROTO; -
proto=>type = OK ACK; -
mp->b wptr = mp->b rptr + sizeaf (struct ok ack); 
qreply(q, mp); - -
break; 

error ack: 
rrP->b_datap->db_type = M_PCPROTO; 
proto->type = ERROR ACK; 
proto->error ack.UNIX error = err; 
mp->b_wptr =-mp->b_rptr + sizeaf(struct error_ack); 
qreply(q, mp); . 
break; 

case UNITDATA REQ: 
if (dgproto->state != BOUND) 

goto bad; 
if (mp->b wptr - mp->b rptr ! = sizeof (struct unitdata req)) 

goto bad; - -
if (err = chkaddr(proto->unitdata req.DEST addr)) 

goto bad; --
if (mp->b cont) { 

putq(q, mp->b_cont); 

1* start device or mux output .•• *1 

break; 
bad: 

freemsg (mp) ; 
break; 

The write put procedure switches on the message type. The only types 
accepted are M_FLUSH and M_PROTO. For M_FLUSH messages, the 
driver perfonns the canonical flush handling (not shown). For M_PROTO 
messages, the driver assumes the message block contains a union primi­
tive and switches on the type field. Two types are understood: 
BIND_REQ and UNITDATA_REQ. 

For BIND_REQ, the current state is checked; it must be IDLE. Next, the 
message size is checked. If it is the correct size, the passed-in address is 
verified for legality by calling chkaddr. If everything checks, the incom­
ing message is converted into an OK_ACK and sent upstream. If there 
was any error, the incoming message is converted into an ERROR_ACK 
and sent upstream. 

For VNITDATA_REQ, the state is also checked; it must be BOUND. As 
above, the message size and destination address are checked. If there is 
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any error, the message is simply discarded. (This action may seem rash, 
but it is in accordance with the interface specification, which is not 
shown. Another speci fication might call for the generation of a 
UNITDATA_ERROR indication.) If all is well, the data part of the mes­
sage (if it exists) is put on the queue, and the lower half of the driver is 
started. 

If the write put procedure receives a message type that it does not under­
stand (either a bad b_datap->db_type or bad proto->type), the message is 
converted into an M_ERROR message and sent upstream. 

Another piece of code not shown is the generation of UNITDATA_IND 
messages. This normally occurs in the device interrupt if this is a 
hardware driver (like STARLAN) or in the lower read put procedure if 
this is a multiplexer. The algorithm is simple: the data part of the mes­
sage is prepended by an M_PROTO message block which contains a 
unitdata ind structure; it is then sent upstream. (Pre pending means that 
the M_PROTO message block is attached in front of the data part of the 
message.) 
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13.1 Recovering From No Buffers 

Use the bufcaU utility (see Appendix C) to recover from an aUocb 
failure. The call syntax is as follows: 

bufcall(size, pri, func, arg)i 
int size, pri, (*func) () i 
long argi 

bufcaU calls (*Junc)(arg) when a buffer of size bytes at pri priority is 
available. When Junc is called, it has no user context and must return 
without sleeping. Also, because of interrupt processing, there is no 
guarantee that a buffer will actually be available when Junc is called 
(someone else may steal it). bufcall returns 1 on success, indicating that 
the request has been successfully recorded, or 0 on failure. On a failure 
return, the requested function will never be called. 

Warning 

Care must be taken to avoid deadlock when holding resources while 
waiting for bufcall to call (*Junc)(arg). bufcaU should be used 
sparingly. 
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Two examples are provided. Example one is a device receive interrupt 
handler: 

#include "sys/types.h" 
#include "sys/param.h" 
#include "sys/stream.h" 

dev rintr (dev) 
{ -

/* 

/* process incoming message .•. */ 

/* allocate new buffer for device */ 
dev_re_load(dev); 

* Reload device with a new receive buffer 
*/ 

dev re load (dev) 
{ - -

rnblk_t *bp; 

if ((bp = allocb (DEVBLKSZ, BPRI MED)) = NULL) { 
printf ("dev: allocb failure - (size %d) \n", DEVBLKSZ); 
/* 
* Allocation failed. Use bufcall to 
* schedule a call to ourself. 
*/ 

(void) bufcall (DEVBLKSZ, BPRI_MED, d.ev_re_load, d.ev); 
return; 

/* pass buffer to device .•• * / 

dev _rintr is called when the device has posted a receive interrupt. The 
code retrieves the data from the device (not shown). dev rintr must then 
give the device another buffer to fill by a call to dev re load, which calls 
allocb with the appropriate priority and buffer Size (DEVBLKSZ, 
definition not shown). If allocb fails, dev re load uses bufcall to call 
itself when STREAMS determines that a buffer of the appropriate size and 
priority is available. 
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Note 

Since bufeall can fail, there is still a chance that the device can 
hang. A better strategy, in the event bufeaU fails, is to discard the 
current input message and resubmit that buffer to the device. Losing 
input data is generally better than hanging. 

The second example is a write service procedure, mod _ wsrv, which needs 
to prepend each output message with a header (similar to the multiplexer 
example of Chapter 11). mod _ wsrv illustrates a case for potential 
deadlock: 

static int mod_wsrv(q) 
queue t *q; 
{ -

int qenable () ; 
mblk_t *rrp, *bp; 

while (rrp = getq(q)) 

/* check for priority messages and canput ... */ 

/* 
* Allocate a header to prepend to the message. If 
* the allocb fails, use bufcall to reschedule ourself. 
*/ 

if ((bp = allocb (HDRSZ, BPRI MEn)) = NULL) { 
if (!bufcall (HDRSZ, BPRIlvlED, qenable, q)) { 

} 
/* 

/* -
* The bufcall request has failed. Discard 
* the message and keep running to avoid hanging. 
*/ 

freemsg (rrp) ; 
continue; 

* Put the message back and exit, we will be re-enabled later 
*/ 

putbq (q, rrp); 
return; 

/* process message .... */ 

However, if alloeb fails, mod wsrv wants to recover without loss of data 
ands calls bufeaU. In this case, the routine passed to bufeaU is qenable 
(see below and Appendix C). When a buffer is available (of size HDRSZ, 
definition not shown), the service procedure is automatically re-enabled. 
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Before exiting, the current message is put back on the queue. This exam­
pIe deals with bufcall failure by discarding the current message and con­
tinuing in the service procedure loop. 

13.2 Advanced Flow Control 

Streams provides mechanisms to alter the normal queue scheduling pro­
cess. putq does not schedule a QUEUE if noenable(q) was previously 
called for this QUEUE. noenable instructs putq to queue the message 
when called by this QUEUE, but not to schedule the service procedure. 
noenable does not prevent the QUEUE from being scheduled by a flow 
control back-enable. The inverse of noenable is enableok(q). 

An example of this is driver upstream flow control. Although device 
drivers typically discard input when unable to send it to a user process, 
STREAMS allows driver read side flow control, possibly for handling tem­
porary upstream blocks. This is done through a driver read service pro­
cedure which is disabled during the driver open with noenable. If the 
driver input interrupt routine determines that messages can be sent 
upstream (from canput), it sends the message with putnext. Otherwise, it 
calls putq to queue the message. The message waits on the message 
queue until the upstream QUEUE becomes unblocked. (The queue length 
can be checked when new messages are enqueued by the interrupt rou­
tine.) When the blockage abates, STREAMS back -enables the driver read 
service procedure. The service procedure sends the messages upstream 
using getq and canput, as in Chapter 8. This is similar to /ooprsrv in 
Chapter 10, where the service procedure is present only for flow control. 

qenable, another flow control utility, allows a module or "driver to 
schedule one of its QUEUEs or another module's QUEUEs. In addition to 
the usage shown in Chapters 10 and 11, qenable can be used when a 
module or driver wants to delay message processing for some reason. An 
example of this is a buffer module that gathers messages in its message 
queue and forwards them as a single, larger message. This module uses 
noenable to inhibit its service procedure, and it queues messages with its 
put procedure until a certain byte count or "in queue" time has been 
reached. When either of these conditions is met, the put procedure calls 
qenable to cause its service procedure to run. 

Another example is a communication line discipline module that imple­
ments end-to-end flow control (that is, to a remote system). Outbound 
data is held on the write side message queue until the read side receives a 
transmit window from the remote end of the network. Then, the read side 
schedules the write side service procedure to run. 
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13.3 Signals 

STREAMS allows modules and drivers to signal one or· more user 
processes through an M_SIG or M_PCSIG message sent upstream (see 
Appendix B). M_PCSIG is a priority version of M_SIG. For both mes­
sages, the first byte of the message specifies the signal for the Stream 
head to generate. If the signal is not SIGPOLL [see signal(S) and 
sigset(S)], then the signal is sent to the process group associated with the 
Stream (see below). If the signal is SIGPOLL, the signal is sent only to 
processes which have registered for the signal by using the CSETSIG ioctl 
[also see streamio(STR)] call. 

A process group is associated with a Stream during the open of the driver 
or module. If u.u _ttyp is NULL prior to the driver or module open call, the 
Stream head checks u.u ttyp after the driver or module open call returns. 
If u.u _ttyp is non-zero, It is assumed to point to a short that holds the pro­
cess group ID for signaling. The process group and indirect TTY 
(/dev/tty) inode are recorded in the Stream head. 

If the driver or module wants to have a process group associated with the 
Stream, it should include code of the following form in its open pro­
cedure: 

pp = u.u-procp; 
pdp = ••• 

/* pointer to process structure * / 
/* private data pointer * / 

if (pp->p-pid == pp->p~rp 
&& u. u ttyp == NULL 
&& pdp=>pgrp == 0) { 

/* process group leader */ 
/* with no controlling TTY */ 
/* and this stream is unassigned */ 

/* assign controlling TTY */ 

u.u_ttyp = &pdp->pgrp; 
pdp->pgrp = pp->p ygrp; 

A private data structure containing a short pgrp element is required. 

M_SIG can be used by modules or drivers that wish to insert an explicit 
inband signal into a message stream. For example, an M_SIG message 
can be sent to the user process immediately before a particular service 
interface message to gain the immediate attention of the user process. 
When the M_SIG reaches the head of the Stream head read message 
queue, a signal is generated and the M_SIG message is removed. This 
leaves the service interface message as the next message to be processed 
by the user. Use of M_SIG is typically defined as part of the service inter­
face of the driver or module. 
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13.4 Control of Stream Head Processing 

The M_SETOPTS message allows a driver or module to exercise control 
over certain Stream head processing (see Appendix B). An M_SETOPTS 
can be sent upstream at any time. The Stream head responds to the mes­
sage by altering the processing associated with certain system calls. The 
options to be modified are specified by the contents of the stroptions 
structure contained in the message. (See Appendix B for more informa­
tion on the stroptions structure.) 

Six Stream head characteristics can be modified. As described in Appen­
dix B, four correspond to fields contained in queue_t (minimax packet 
sizes and high-/low-water marks). The other two are discussed here. 

13.4.1 Read Options 

The value for read options (so _readopt) corresponds to the three modes a 
user can set via the CSRDOPT ioctl call (see streamio): 

byte-stream (RNORM) 
The read(S) call completes when the byte count is 
satisfied, the Stream head read queue becomes empty, 
or a zero-length message is encountered. In the last 
case, the zero-length message is put back on the queue. 
A subsequent read will return 0 bytes. 

message non-discard (RMSGN) 
The read call completes when the byte count is 
satisfied or at a message boundary, whichever comes 
first. Any data remaining in the message is put back on 
the Stream head read queue. 

message discard (RMSGD) 
The read call completes when the byte count is 
satisfied or at a message boundary. Any data remain­
ing in the message is discarded. 

Byte-stream mode is similar to pipe data transfer. Message non-discard 
mode is similar to a TTY in canonical mode. 
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13.4.2 Write Offset 

The value for write offset (so wroff) is a hook to allow more efficient data 
handling. It works as follows: In every data message generated by a 
write(S) system call and in the first M_DATA block of the data portion of 
every message generated by a putmsg(S) call, the Stream head leaves 
so _ wroffbytes of space at the beginning of the message block. Expressed 
as a C language construct: 

bp->b_rptr = bp->b_datap->db_base +write offset. 

The write offset value must be smaller than the maximum STREAMS mes­
sage size, STRMSGSZ (see the section titled "Tunable Parameters" in 
Appendix E). In certain cases the write offset might not be included in 
the block (for example, if a buffer large enough to hold the offset+data is 
not currently available). To be general, modules and drivers should not 
assume that the offset exists in a message; they should always check the 
message. 

The intended use of write offset is to leave room for a module or a driver 
to place a protocol header before user data in the message; otherwise, the 
module or driver must allocate and prepend a separate message. This 
feature is not general and its use is discouraged. A more general tech­
nique is to put protocol header information in a separate message block 
and link the user data to it. 
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A.I Kernel Structures 

This appendix summarizes previously described kernel structures com­
monly encountered in STREAMS module and driver development. 

STREAMS kernel structures are contained in <sys/stream.h> and 
<sys/strstat.h> . 

Note 

These and other STREAMS structures contained in this guide will 
remain fixed in subsequent releases of the UNIX System, subject to 
the following: the offset of all defined elements in each structure 
will not change. However, the size of the structure may be 
increased to add new elements. 

A.2 streamtab 

As discussed in Chapter 5, this structure defines a module or driver: 

struct streamtab 

}; 

struct qinit *st rdinit; 
struct qinit *st_wrinit; 
struct qinit *st_muxrinit; 
struct qinit *st_muxwinit; 

/* defines read QUEUE */ 
/* defines write QUEUE */ 
/* for multiplexing drivers only */ 
/* for multiplexing drivers only */ 
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A.3 QUEUE Structures 

Two sets of QUEUE structures form a module. The structures, discussed 
in Chapters 5 and 8, are queue_t, qinit, moduleJnfo and, optionally, 
module stat: 

struct queue { 

struct qinit 

struct msgb 

struct msgb 

*'L-qinfo; /* procedures and limits for queue */ 

*'L-first; /* head of message queue for this QUEUE * / 

*'L-last; /* tail of message queue for this QUEUE */ 

}; 

struct queue *'L-next; /* next QUEUE in Stream*/ 

struct queue *'L-link; /* link to next QUEUE onSTREAMS scheduling queue * / 

caddr_t 'L-Ptr; /* to private data structure */ 

ushort 

ushort 

short 

short 

ushort 

ushort 

'L-count; 

q_flag; 

q_minpsz; 

'L-maxpsz; 

'L-hiwat; 

q lowat; 

/ * weighted count of characters on message queue * / 

/ * QUEUE state * / 

/* min packet size accepted by this QUEUE * / 
/ * max packet size accepted by this QUEUE * / 

/ * message queue high water mark, for flow control * / 
/ * message queue low water mark, for flow control * / 

typedef struct queue queue_t; 

When a queue _ t pair is allocated, their contents are zero unless 
specifically initialized. The following fields are initialized: 

• q_qinfo - from streamtab.sC[rd/wr]init (or sCmux[rw]init) 

• q_ptr - optionally, by the driver/module open routine 

struct qinit { 

}; 
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int (*qi_putp) () ; 
int (*qi_srvp) () ; 
int (*qi_qopen) (); 
int (*qi_qclose) () ; 

int (*qi_qadmin) () ; 

/ * put procedure * / 
/* service procedure */ 

/ * called on each open or a push * / 
/* called on last close or a pop * / 
/* reserved for future use */ 

struct module_info *qi_minfo; /* information structure */ 
struct module_stat *qi_mstat; /* statistics structure -optional */ 
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struct module_info [ 

); 

ushort 
char 
short 
short 
short 
ushort 

mi_idnum; 
*mi_idname; 
mi_minpsz; 
mi_maxpsz; 
mi_hiwat; 
mi_lowat; 

/ * module ID number * / 

/* module name */ 
/* min packet size accepted, for developer use */ 
/* max packet size accepted, for developer use */ 
/* hi-water mark, for flow control */ 
/* lo-water mark, for flow control */ 

struct module_stat 
long ms _pcnt; 
long ms scnt; -
long ms - ocnt; 

long ms ccnt; -
long ms acnt; -
char *ms _xptr; 
short ms xsize; -
); 

/* count of calls to put proc */ 
/* count of calls to service proc * / 
/* count of calls to open proc */ 

/* count of calls to close proc * / 
/* count of calls to admin proc */ 
/* pointer to private statistics * / 
/* length of private statistics buffer */ 

Note that if these counts are calculated by modules or drivers, the counts 
will be cumulative over all occurrences of modules with the same 
fmodsw entry and drivers with the same cdevsw entry. 

A.4 Message Structures 

As described in Chapter 7, a message is composed of a linked list of tri­
pIes, consisting of two structures and a data buffer: 

struct msgb 

struct msgb 
struct msgb 
struct msgb 

*b_next; 
*b_prev; 

*b_cont; 

/* next message on queue * / 
/* previous message on queue * / 
/* next message block of message */ 

unsigned char 
unsigned char 
struct datab 

*b_rptr; 
*b_wptr; 
*b_datap; 

/* first unread data byte in buffer */ 
/* first unwritten data byte in buffer * / 
/* data block */ 

); 

typedef struct msgb mblk_t; 

struct datab [ 
struct datab *db_freep; 
unsigned char *db_base; 
unsigned char *db_lim; 
unsigned char db_ref; 
unsigned char db_type; 

/* used internally */ 
/* first byte of buffer */ 
/* last byte+l of buffer */ 
/* count of messages pointing to this block * / 
/* message type */ 

unsigned char db_class; /* used internally */ 
); 

typedef struct datab dblk_t; 
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A.S iocblk 

As described in Chapter 9 and Appendix B, this is contained in an 
M_IOCTL message block: 

struct iocblk { 
int ioc cmd; -
ushort ioc _uid; 
ushort ioc_gid; 
uint ioc id; -
uint ioc count; -
int ioc error; -
int ioc rval; -

}; 

A.6 Iinkblk 

/* ioctl command type */ 
/* effective uid of user */ 
/* effective gid of user */ 

/* ioctl id * / 
/* count of bytes in data field * / 
/* error code * / 
/* return value */ 

As described in Chapter 11, this is used in lower multiplexer drivers: 

struct linkblk { 

queue_t *l_qtop; 
queue_t *l_qbot; 
int I_index; 

}; 
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/* lowest level write queue of upper stream */ 
/* highest level write queue of lower stream */ 

/* system-unique index for lower stream. * / 
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B.1 Message Types 

Eighteen STREAMS message types are defined. The message types differ 
in their intended purposes, their treatment at the Stream head, and in their 
message queueing priority (see Chapter 8). 

STREAMS does not prevent a module or driver from generating any mes­
sage type and sending it in any direction on the Stream. However, esta­
blished processing and direction rules should be observed. Stream head 
processing according to message type is fixed, although certain parame­
ters can be altered. 

The message types are described below, classi fied according to their mes­
sage queueing priority. Ordinary messages are described first, with prior­
ity messages following. In certain cases, two message types may perform 
similar functions, differing in priority. Message construction is described 
in Chapter 7. The use of the word module generally implies "module or 
driver." 

B.2 Ordinary Messages 

These message types are subject to flow control. They are referred to as 
non-priority messages when received at user level. 

M DATA 

M PROTO 

Intended to contain ordinary data. Messages allo­
cated by the allocb routine (see Appendix B) are 
type M_DATA by default. M_DATA messages are 
generally sent bidirectionally on a Stream, and their 
contents can be passed between a process and the 
Stream head. In the getmsg and putmsg system 
calls, the contents of M_DATA message blocks are 
referred to as the data part. Messages composed of 
multiple message blocks typically have M_DATA as 
the message type for all message blocks following 
the first. 

Intended to contain internal control information and 
associated data. The message format is one 
M_PROTO message block followed by zero or more 
M_DATA message blocks as shown below. The 
semantics of the M_DATA and M_PROTO message 
block are determined by the STREAMS module that 
receives the message. 

The M_PROTO message block typically contains 
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implementation-dependent control information. 
M_PROTO messages are generally sent bidirection­
ally on a Stream, and their contents can be passed 
between a process and the Stream head. The con­
tents of the first message block of an M_PROTO mes­
sage are generally referred to as the control part, and 
the contents of any following M_DATA message 
blocks are referred to as the data part. In the getmsg 
and putmsg system calls, the control and data parts 
are passed separately. These calls refer to M_PROTO 
messages as non-priority messages. 

Although this usage is not recommended, the format 
of M_PROTO and M_PCPROTO (generically 
PROTO) messages sent upstream to the Stream head 
allows multiple PROTO blocks at the beginning of 
the message. getmsg compacts the blocks into a sin­
gle control part when passing them to the user pro­
cess. 

Figure B-1 M_PROTO and M_PCPROTO Message Structure 

Generated by the Stream head in response to an 
CSTR and certain other ioctl system calls [see 
streamio(STR)]. When one of these ioctls is 
received from a user process, the Stream head uses 
values from the process (supplied in the call) to 
create an M_IOCTL message containing them, and 
sends the message downstream. M_IOCTL messages 
are intended to perform the general ioctl functions 
of character device drivers. 
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The user values are supplied in a structure of the fol­
lowing fonn, provided as an argument to the ioetl 
call [see CSTR in streamio(STR)]: 

struct strioctl 

int ic cmd; /* downstream request */ 
-

int ic _timout; /* ACK/NAK timeout */ 
int ic len; /* - length of data arg */ 
char *ic _dp; /* ptr to data arg */ 

}; 

where ie emd is the request (or command) defined 
by a downstream module or driver, ie _timout is the 
time the Stream head will wait for acknowledgment 
to the M_IOCTL message before timing out, and 
ic dp is a pointer to an optional data argument. On 
input, ie_len contains the length of the data argu­
ment passed in; on return from the call, it contains 
the length of the data, if any, being returned to the 
user. 

The fonn of an M_IOCTL message consists of one 
M_IOCTL message block linked to zero or more 
M_DATA message blocks. STREAMS constructs an 
M_IOCTL message block by placing an ioeblk struc­
ture in its data buffer: 

struct iocblk 

}; 

int ioc_cmd; /* ioctl command type */ 
ushort ioc_uid; /* effective user ID number */ 
ushort ioc_gid; /* effective group ID number */ 

uint ioc_id; /* ioctl identifier */ 
uint ioc_count; /* byte count for ioctl data */ 
int ioc_error; /* error code */ 
int ioc_rval; /* return value */ 

The ioeblk structure is defined in <sys/stream.h>. 
ioe _ emd corresponds to ie _ emd. ioe _ uid and 
ioe _gid are the effective user and group IDs for the 
user sending the ioetl and can be tested to detennine 
if the user issuing the ioetl call is authorized to do 
so. ioe _count is the number of data bytes, if any, 
contained in the message; it corresponds to ie_len. 

ioe _id is an identifier generated internally; it is used 
to match each M_IOCTL message sent downstream 
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with a response which must be sent upstream to the 
Stream head. The response is contained in an 
M_IOCACK (positive acknowledgment) or an 
M_IOCNAK (negative acknowledgment) message. 
Both of these message types have the same fonnat 
as an M_IOCTL message and contain an iocblk 
structure in the first block with optional data blocks 
following. If one of these messages reaches the 
Stream head with an identifier which does not match 
that of the currently outstanding M_IOCTL message, 
the response message is discarded. A common 
means of ensuring that the correct identifier is 
returned is for the replying module to convert the 
M_IOCTL message type into the appropriate 
response type and set ioc _count to 0 if no data is 
returned. Then the qreply utility (see Appendix C) 
is used to send the response to the Stream head. 

ioc error holds any return error condition set by a 
downstream module. If this value is non-zero, it is 
returned to the user in ermo. Note that both an 
M_IOCNAK and an M_IOCACK can return an error. 
ioc rval holds any M_IOCACK return value set by a 
responding module. 

If a user supplies data to be sent downstream, the 
Stream head copies the data (pointed to by ic _ dp in 
the strioctl structure) into M_DATA message blocks. 
It then links the blocks to the initial M_IOCTL mes­
sage block. ioc _count is copied from ie_len. If 
there is no data, ioc _count is zero. 

If a module wants to send data to a user process as 
part of its response, it must construct an M_IOCACK 
message that contains the data. The first message 
block of this message contains the iocblk data struc­
ture, with any data stored in one or more M_DATA 
message blocks linked to the first message block. 
The module must set ioc count to the number of 
data bytes sent. On completion of the call, this 
number is passed to the user in ic len. Data associ­
ated with an M_IOCNAK message is not returned to 
the user process and is discarded by the Stream 
head. 
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The first module or driver that understands the 
request contained in the M_IOCTL acts on it and 
generally returns an M_IOCACK message. Inter­
mediate modules that do not recognize a particular 
request must pass it on. If a driver does not recog­
nize the request, or if the receiving module cannot 
acknowledge it, an M_IOCNAK message must be 
returned. 

The Stream head waits for the response message and 
returns any information contained in an M_IOCACK 
to the user. The Stream head will "time out" if no 
response is received in ie_timeout interval. 

Generated by modules that wish to send information 
to a particular module or type of module. M_ CTL 
messages are typically used for intermodule com­
munication, as when adjacent STREAMS protocol 
modules negotiate the terms of their interface. An 
M_CTL message cannot be generated by a user-level 
process and is always discarded if passed to the 
Stream head. 

Sent to a driver to request that BREAK be transmit­
ted on whatever media the driver is controlling. 

The message format is not defined by STREAMS and 
its use is developer-dependent. This message may 
be considered a special case of an M_CTL message. 
An M_BREAK message cannot be generated by a 
user-level process and is always discarded if passed 
to the Stream head. 

Sent to a media driver to request a real-time delay 
on output. The data buffer associated with this mes­
sage type is expected to contain an integer to indi­
cate the number of machine ticks of delay desired. 
M_DELAY messages are typically used to prevent 
transmitted data from exceeding the buffering capa­
city of slower terminals. 
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M_PASSFP 

The message format is not defined by STREAMS, 
and its use is developer-dependent. Not all media 
drivers may understand this message. This message 
can be considered a special case of an M_ CTL mes­
sage. An M_DELAY message cannot be generated 
by a user-level process and is always discarded if 
passed to the Stream head. 

This is used by STREAMS to pass a file pointer from 
the Stream head at one end of a Stream pipe to the 
Stream head at the other end of the same Stream 
pipe. (A Stream pipe is a Stream that is terminated 
at both ends by a Stream head; one end of the 
Stream can always find the other by following the 
q_next pointers in the Stream. The means by which 
such a structure is created are not described in this 
document.) 

The message is generated as a result of an 
CSENDFD ioetl [see streamio(STR)] issued by a 
process to the sending Stream head. STREAMS 
places the M_PASSFP message directly on the desti­
nation Stream head's read queue to be retrieved by 
an CRECVFD ioctl [see streamio(STR)]. The mes­
sage is placed without passing it through the Stream 
(that is, it is not seen by any modules or drivers in 
the Stream). This message type should never be 
present on any queue except the read queue of a 
Stream head. Consequently, modules and drivers do 
not need to recognize this message type, and it can 
be ignored by module and driver developers. 

M_SETOPTS Alters some characteristics of the Stream head. It is 
generated by any downstream module and is inter­
preted by the Stream head. The data buffer of the 
message has the following structure: 

struct stroptions 

I; 

short so_flags; /* options to set */ 
short so_readopt; /* read option */ 
ushort so_wroff; /* write offset */ 

short so_minpsz; /* minimum read packet size */ 

short so_maxpsz; /* maximum read packet size */ 
ushort so_hiwat; /* read queue high-water mark */ 

ushort so_lowat; /*read queue low-water mark*/ 
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where so Jiags specifies which options are to be 
altered, and can be any combination of the follow­
ing: 

• SO_ALL - Update all options according to 
the values specified in the remaining fields of 
the stroptions structure. 

• SO_READOPT - Set the read mode [see 
read(S)] to RNORM (byte stream), RMSGD 
(message discard), or RMSGN (message non­
discard), as specified by the value of 
so _readopt. 

• SO_WROFF - Direct the Stream head to 
insert an offset specified by so _ wroff into the 
first message block of all M_DATA messages 
created as a result of a write system call. 
The same offset is inserted into the first 
M_DATA message block, if any, of all mes­
sages created by a putmsg system call. The 
default offset is zero. 

The offset must be less than the maximum 
message buffer size (system-dependent). 
Under certain circumstances, a write offset 
may not be inserted. A module or driver 
must test that b rptr in the mblk t structure 
is greater than db base in the dblk t struc­
ture to determine whether an offset has been 
inserted in the first message block. 

• SO_MINPSZ - Change the minimum packet 
size value associated with the Stream head 
read queue to so minpsz (see q minpsz in the 
queue _ t structure, in Appendix A). This 
value is advisory for the module immediately 
below the Stream head. It is intended to limit 
the size of M_DATA messages that the 
module should put to the Stream head. There 
is no intended minimum size for other mes­
sage types. The default value in the Stream 
head is o. 

• SO_MAXPSZ - Change the maximum 
packet size value associated with the Stream 
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head read queue to so _ maxpsz (see q_ maxpsz 
in the queue t structure, in Appendix A). 
This value IS advisory for the module 
immediately below the Stream head. It is 
intended to limit the size of M_DATA mes­
sages that the module should put to the 
Stream head. There is no intended maximum 
size for other message types. The default 
value in the Stream head is INFPSZ, the max­
imum STREAMS allows. 

• SO_HIWAT - Change the flow control high­
water mark on the Stream head read queue to 
the value specified in so _ hiwat. 

• SO_LOWAT - Change the flow control low­
water mark (see q_ minpsz in the queue _ t 
structure, Appendix A) on the Stream head 
read queue to the value specified in so _Iowat. 

Sent upstream by modules or drivers to post a signal 
to a process. When the message reaches the Stream 
head, the first data byte of the message is 
transformed into a signal (as defined in 
<sys/signal.h» to the process( es) according to the 
following: 

If the signal is not SIGPOLL and the Stream contain­
ing the sending module or driver is a controlling 
TTY, the signal is sent to the associated process 
group. A Stream becomes the controlling TTY for 
its process group if, on open, a module or driver sets 
u.u _ttyp to point to a (short) "process group value." 

If the signal is SIGPOLL, it is sent only to those 
processes which have explicitly registered to 
receive the signal [see CSETSIG in streamio(STR)]. 

B.3 Priority Messages 

Priority messages are not subject to flow control. 
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M_PCPROTO This message type has the same format and charac­
teristics as the M_PROTO message type, except for 
priority and the following additional attributes: 
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When an M_PCPROTO message is placed on a 
queue, its service procedure is always enabled. The 
Stream head allows only one M_PCPROTO message 
to be placed in its read queue at a time. If an 
M_PCPROTO message is already in the queue when 
another arrives, the second message is silently dis­
carded and its message blocks freed. 

This message type is intended to allow data and 
control information to be sent outside the normal 
flow control constraints. 

The getmsg(S) and putmsg(S) system calls refer to 
M_PCPROTO messages as priority messages. 

M_ERROR This message type is sent upstream by modules or 
drivers to report some downstream error condition. 
When the message reaches the Stream head, the 
Stream is marked so that all subsequent system calls 
issued to the Stream, excluding close and poll, will 
fail with errno set to the first data byte of the mes­
sage. POLLERR is set if the Stream is being polled 
[see poll(S)]. All processes sleeping on a system 
call to the Stream are awakened. An M_FLUSH 
message with an FLUSHRW argument is sent down­
stream. 

M_HANGUP This message type is sent upstream by a driver to 
report that it can no longer send data upstream. For 
example, this might be due to an error or to the 
dropping of a remote line connection. When the 
message reaches the Stream head, the Stream is 
marked so that all subsequent write and putmsg 
system calls issued to the Stream will fail and return 
an ENXIO error. Those ioctls that cause messages to 
be sent downstream are also failed. POLLHUP is 
set if the Stream is being polled [see poll(S)]. 

However, subsequent read or getmsg calls to the 
Stream will not generate an error. These calls will 
return any messages (according to their function) 
that were on, or in transit to, the Stream head read 
queue before the M_HANGUP message was 
received. When all such messages have been read, 
read will return 0, and getmsg will set each of its 
two length fields to O. 
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This message also causes a SIGHUP signal to be sent 
to the process group if the device is a controlling 
TTY (see M_SIG). 

M_IOCACK This message type signals the positive acknowledg­
ment of a previous M_IOCTL message. The mes­
sage may contain information sent by the receiving 
module or driver. The Stream head returns the 
information to the user if there is a corresponding 
outstanding M_IOCTL request. The format and use 
of this message type is described further under 
M_IOCTL. 

M_IOCNAK This message type signals the negative acknowledg­
ment (failure) of a previous M_IOCTL message. 
When the Stream head receives an M_IOCNAK, the 
outstanding ioetl request, if any, will fail. The for­
mat and usage of this message type is described 
further under M_IOCTL. 

M_FLUSH This message type requests all modules and drivers 
that receive it to flush their message queues (discard 
all messages in those queues) as indicated in the 
message. An M_FLUSH can originate at the Stream 
head or in any module or driver. The first byte of 
the message contains flags that specify one of the 
following actions: 

B-IO 

• FLUSHR: Flush the read queue of the 
module. 

• FLUSHW: Flush the write queue of the 
module. 

• FLUSHRW: Flush both the read and the write 
queue of the module. 

Each module passes this message to its neighbor 
after flushing its appropriate queue(s) until the mes­
sage reaches one of the ends of the Stream. 

Drivers are expected to include the following pro­
cessing for M_FLUSH messages: When an 
M_FLUSH message is sent downstream through the 
write queues in a Stream, the driver at the Stream 
end discards it if the message action indicates that 
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the read queues in the Stream are not to be flushed 
(only FLUSHW set). If the message indicates that 
the read queues are to be flushed, the driver sets the 
M_FLUSH message flag to FLUSHR and then sends 
the message up the Stream's read queues. When a 
flush message is sent up a Stream's read side, the 
Stream head checks to see if the write side of the 
Stream is to be flushed .. If only FLUSHR is set, the 
Stream head discards the message. However, if the 
write side of the Stream is to be flushed, the Stream 
head sets the M_FLUSH flag to FLUSHW and sends 
the message down the Stream's write side. All 
modules that enqueue messages must identify and 
process this message type. 

This message type has the same fonnat and charac­
teristics as the M_SIG message type except for prior­
ity. 

M START and M STOP 
- These messages request devices to start or stop their 

output. They are intended to produce momentary 
pauses in a device's output, not to tum devices on or 
off. 

The message fonnat is not defined by STREAMS and 
its use is developer-dependent. These messages can 
be considered special cases of an M_ CTL message. 
These messages cannot be generated by a user-level 
process, and each is always discarded if passed to 
the Stream head. 
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Utilities 

C.I Utilities 

This appendix specifies the set of utilities that STREAMS provides to 
assist development of modules and drivers. There are over 30 utility rou­
tines and macros. 

The general purpose of the utilities is to perfonn functions that are com­
monly used in modules and drivers. However, some utilities also provide 
the required interrupt environment. A utility must always be used when 
operating on a message queue and when accessing the buffer pool. 

The utilities are contained in either the system source file io/stream.c or, 
if they are macros, in <sys/stream.h>. 

Note 

The utilities contained in this appendix represent an interface that 
will be maintained in subsequent versions of the UNIX System. 
Functions contained in the STREAMS kernel code (other than these 
utilities) may change between versions. (Also see the section titled 
"Accessible Symbols and Functions" in Appendix D; these func­
tions will not change between versions.) 

All structure definitions are contained in Appendix A unless otherwise 
indicated. All routine references are found in this appendix unless other­
wise indicated. The following definitions are used: 

Blocked 

Enable 

Free 

A queue that cannot be enabled due to flow control 
(see the section titled "Flow Control" in Chapter 
6 of the Primer). 

To schedule a queue. 

De-allocate a STREAMS storage. 

Message block (bp) 
A triplet consisting of an mblk t structure, a 
dblk t structure, and a data buffer. It is referenced 
by its mblk_t structure (see Chapter 7). 

Message (mp) One or more linked message blocks. A message is 
referenced by its first message block. 
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Message queue Zero or more linked messages associated with a 
queue (queue_t structure). 

Queue (q) A queue _ t structure. This is generally the same as 
QUEUE in the rest of this document (e.g., see the 
definitions for enable and schedule). When it 
appears with "message" in certain utility descrip­
tion lines, it means "message queue". 

Schedule Place a queue on the internal linked list of queues 
which will subsequently have their service pro­
cedure called by the STREAMS scheduler. 

The word module generally means "module and/or driver". The phrase 
"next/following module" generally refers to a module, driver, or Stream 
head. Message queueing priority (see Chapter 8 and Appendix B) can be 
ordinary or Priority (to avoid "priority priority"), 

C.2 Utility Descriptions 

The utilities are described below. A summary table is included at the end 
of this appendix. 

adjmsg - trim bytes in a message 

int adjmsg(mp, len) 
mblk_t *mp; 
intlen; 

adjmsg trims bytes from either the head or tail of the message specified 
by mp. If len is greater than zero, it removes len bytes from the beginning 
of mp. If len is less than zero, it removes (-)len bytes from the end of mp. 
If len is zero, adjmsg does nothing. adjmsg only trims bytes across mes­
sage blocks of the same type. It will fail if mp points to a message con­
taining fewer than len bytes of similar type at the message position indi­
cated. adjmsg returns 1 on success and 0 on failure. 
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allocb - allocate a message block 

mblk _ t *allocb(size, pri) 
int size, pri; 

Utilities 

allocb returns a pointer to a message block of type M_DATA, in which the 
data buffer contains at least size bytes. pri indicates the priority of the 
allocation request and can have the values BPRCLO, BPRCMED, or 
BPRCHI (see the section titled "Buffer Allocation Priority" in this 
appendix). If a block can not be allocated as requested, allocb returns a 
NULL pointer. 

baekq - get pointer to the queue behind a given queue 

queue _ t *baekq( q) 
queue_t *q; 

backq returns a pointer to the queue behind a given queue. That is, it 
returns a pointer to the queue whose q_next (see queue_t structure) 
pointer is q. If no such queue exists (as when q is at a Stream end), backq 
returns NULL. 

bufeaU - recover from failure of allocb 

int bufcall(size, pri, func, arg) 
int (*func)O; 
int size, pri; 
long arg; 

bufeall is provided to assist in the event of a block allocation failure. If 
allocb returns NULL, indicating a message block is not currently avail­
able, bufcall may be invoked. 
bufeaU arranges for (*func)(arg) to be called when a buffer of size bytes 
at pri priority (see the section titled "Buffer Allocation Priority") is 
available. Whenfunc is called, it has no user context. It cannot reference 
the u _area and must return without sleeping. bufcall does not guarantee 
that the desired buffer will be available whenfunc is called since interrupt 
processing may acquire it. 
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bufeaU returns 1 on success, indicating that the request has been success­
fully recorded, or 0 on failure. On a failure return, Junc will never be 
called. A failure indicates a (temporary) inability to allocate required 
internal data structures. 

can put - test for room in a queue 

int canput( q) 
queue_t *q; 

can put determines if there is room left in a message queue. If q does not 
have a service procedure, eanput will search further in the same direction 
in the Stream until it finds a queue containing a service procedure (this is 
the first queue on which the passed message can actually be enqueued). If 
such a queue cannot be found, the search terminates on the queue at the 
end of the Stream. eanput tests the queue found by the search. If the 
message queue in this queue is not full (see the section titled "Flow Con­
trol" in Chapter 6 of the Primer), eanput returns 1. This return indicates 
that a message can be put to queue q. If the message queue is full, canput 
returns O. In this case, the caller is generally referred to as blocked. 

eopyb - copy a message block 

mblk_t *eopyb(bp) 
mblk_t *bp; 

eopyb copies the contents of the message block pointed to by bp into a 
newly allocated message block of at least the same size. copyb allocates 
a new block by calling aUoeb with pri set to BPRCMED (see the section 
titled "Buffer Allocation Priority"). All data between the b _rptr and 
b _ wptr pointers of a message block are copied to the new block, and these 
pointers in the new block are given the same offset values they had in the 
original message block. On successful completion. eopyb returns a 
pointer to the new message block containing the copied data. Otherwise, 
it returns a NULL pointer. 
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copymsg - copy a message 

mblk_t *copymsg(mp) 
mblk_t *mp; 

Utilities 

copymsg uses copyb to copy the message blocks contained in the mes­
sage pointed to by mp to newly allocated message blocks, and links the 
new message blocks to fonn the new message. On successful completion, 
copymsg returns a pointer to the new message. Otherwise, it returns a 
NULL pointer. 

datamsg - test whether message is a data message 

#define datamsg(mp) ..• 

The datamsg macro returns TRUE if mp (declared as rnblk t *mp) 
points to a data type message, that is, M_DATA, M_PROTO, or 
M_PCPROTO (see Appendix B). If mp points to any other message type, 
datamsg returns FALSE. 

dupb - duplicate a message block descriptor 

mblk _ t *dupb(bp) 
mblk_t *bp; 

dupb duplicates the message block descriptor (mblk_t structure) pointed 
to by bp. dupb copies it into a newly allocated message block descriptor. 
A message block is fonned with the new message block descriptor point­
ing to the same data block as the original descriptor. The reference count 
in the data block descriptor (dblk t structure) is incremented. dupb does 
not copy the data buffer, only the message block descriptor. 
On successful completion, dupb returns a pointer to the new message 
block. If dupb cannot allocate a new message block descriptor, it returns 
NULL. 

This routine allows message blocks that exist on different queues to refer­
ence the same data block. In general, if the contents of a message block 
with a reference count greater than 1 are to be modified, copyb should be 
used to create a new message block, and only the new message block 
should be modified. This ensures that other references to the original 
message block are not invalidated by unwanted changes. 
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dupmsg - duplicate a message 

mblk _ t *dupmsg(mp) 
mblk_t *mp; 

dupmsg calls dupb to duplicate the message pointed to by mp. This is 
done by copying all individual message block descriptors and then link­
ing the new message blocks to form the new message. dupmsg does not 
copy data buffers, only message block descriptors. On successful comple­
tion, dupmsg returns a pointer to the new message. Otherwise, it returns 
NULL. 

enableok - re-allow a queue to be scheduled for service 

#define enableok( q) ... 

The enableok macro cancels the effect of an earlier noenable on the 
same queue q (declared as queue t *q). It allows a queue to be 
scheduled for service when that queue-had previously been excluded from 
queue service by a call to noenable. 

ftushq - flush a queue 

int ftushq(q, ftag) 
queue_t *q; ." 
int ftag; 

ftushq removes messages from the message queue in queue q and frees 
them, using freemsg. If flag is set to FLUSHDATA, then ftushq discards 
all M_DATA, M_PROTO, and M_PCPROTO messages (see datamsg), but 
leaves all other messages on the queue. If flag is set to FLUSHALL, all 
messages are removed from the message queue and freed. FLUSHALL 
and FLUSHDATA are defined in <sys/stream.h>. 
If a queue behind q is blocked, ftushq may enable the blocked queue, as 
described in putq. 
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freeb - free a message block 

int freeb(bp) 
mblk_t *bp; 

Utilities 

freeb will free (deallocate) the message block descriptor pointed to by 
bp, and will free the corresponding data block if the reference count (see 
dupb) in the data block descriptor (dblk _ t structure) is equal to 1. If the 
reference count is greater than 1, freeb will not free the data block, but 
will decrement the reference count. 

freemsg - free all message blocks in a message 

int freemsg(mp) 
mblk_t *mp; 

freemsg uses freeb to free all message blocks and their corresponding 
data blocks for the message pointed to by mp. 

getq - get a message from a queue 

mhlk_t *getq(q) 
queue_t *q; 

getq gets the next available message from the queue pointed to by q. 
getq returns a pointer to the message and removes that message from the 
queue. If no message is queued, getq returns NULL. 
getq and certain other utility routines affect flow control in the Stream as 
follows: If getq returns NULL, the queue is internally marked so that the 
next time a message is placed on it, it will be scheduled for service 
(enabled, see qenable). Also, if the data in the enqueued messages in the 
queue drops below the low-water mark, q_lowat, and a queue behind the 
current queue had previously attempted to place a message in the queue 
and failed (that is, was blocked, see canput), then the queue behind the 
current queue is scheduled for service (see the section titled "Flow Con­
trol" in Chapter 6 of the Primer). 
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insq - put a message at a specific place in a queue 

int insq(q, emp, nmp) 
queue_t *q; 
mblk _ t *emp, *nmp; 

insq places the message pointed to by nmp in the message queue con­
tained in the queue pointed to by q. It is placed immediately before the 
already enqueued message pointed to by emp. If emp is NULL, the mes­
sage is placed at the end of the queue. If emp is non-NULL, it must point 
to a message that exists on the queue q, or a system panic could result. 
Note that the message is placed where indicated, without consideration of 
message queueing priority. The queue will be scheduled in accordance 
with the rules described in putq for ordinary priority messages. 

linkb - concatenate two messages into one 

int linkb(mpl, mp2) 
mblk_t *mpl; 
mblk_t *mp2; 

linkb puts the message pointed to by mp2 at the tail of the message 
pointed to by mpl. 

msgdsize - get the number of data bytes in a message 

int msgdsize(mp) 
mblk_t *mp; 

msgdsize returns the number of bytes of data in the message pointed to by 
mp. Only bytes included in data blocks of type M_DATA are included in 
the total. 

noenable - prevent a queue from being scheduled 

#define noenable( q) •••• 

The noenable macro prevents the queue q (declared as queue_t *q) 
from being scheduled for service by putq or putbq when these routines 
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enqueue an ordinary priority message, or by insq when it enqueues any 
message. noenable does not prevent the scheduling of queues when a 
priority message is enqueued, unless it is enqueued by insq. 

OTHERQ - get pointer to the mate queue 

#define OTHERQ( q) •.• 

The OTHERQ macro returns a pointer to the mate queue of q (declared as 
queue _ t *q). If q is the read queue for the module, it returns a pointer 
to the module's write queue. If q is the write queue for the module, it 
returns a pointer to the read queue. 

pullupmsg - concatenate bytes in a message 

int *puUupmsg(mp, len) 
mblk_t *mp; 
int len; 

pullupmsg concatenates and aligns the first len data bytes of the passed 
message into a single, contiguous message block. Proper alignment is 
hardware-dependent. To perform its function, pullupmsg allocates a new 
message block by calling aIlocb with pri set to BPRCMED (see the sec­
tion titled "Buffer Allocation Priority"). pullupmsg only concatenates 
across message blocks of similar type. It will fail if mp points to a mes­
sage of less than len bytes of similar type. A len value of -1 requests a 
pull-up of all the like-type blocks in the beginning of the message pointed 
to by mp. 
At completion of concatenation, pullupmsg replaces mp with a pointer to 
the new message block, so that mp still points to the same message block 
at the end of the operation. However, the contents of the message block 
may have been altered. On success, pullupmsg returns 1. On failure, it 
returns O. 
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putbq - return a message to the beginning of a queue 

int putbq(q, bp) 
queue_t *q; 
mblk_t *bp 

putbq puts the message pointed to by bp at the beginning of the queue 
pointed to by q, in a position in accordance with the message's type. 
Priority messages are placed at the head of the queue, and ordinary mes­
sages are placed after all priority messages, but before all other ordinary 
messages. The queue will be scheduled in accordance with the same 
rules described in putq. This utility is typically used to replace a mes­
sage on a queue from which it was just removed. 

putctl - put a control message 

int putctl( q, type) 
queue_t *q; 
int type; 

putctl creates a control (not data, see datamsg above) message of type 
type, and calls the put procedure in the queue pointed to by q, with a 
pointer to the created message as an argument. putctl allocates new 
blocks by calling allocb with pri set to BPRCHI (see the section titled 
"Buffer Allocation Priority"). On successful completion, putctl returns 
1. It returns 0 if it cannot allocate a message block, or if type M_DATA, 
M_PROTO, or M_PCPROTO was specified. 

putctll - put a control message with a one-byte parameter 

int putctll( q, type, p) 
queue_t *q; 
int type; 
int p; 

putctll creates a control (not data, see datamsg) message of type type 
with a one-byte parameter p, and calls the put procedure in the queue 
pointed to by q, with a pointer to the created message as an argument. 
putctll allocates new blocks by callingallocb with pri set to BPRCHI 
(see the section titled "Buffer Allocation Priority"). On successful com­
pletion, putctll returns 1. It returns 0 if it cannot allocate a message 
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block, or if type M_DATA, M_PROTO, or M_PCPROTO was specified. 

putnext - put a message to the next queue 

#define putnext( q, mp) 000 

The putnext macro calls the put procedure of the next queue in a Stream, 
and passes it a message pointer as an argument. The parameters must be 
declared as queue t *q and mblk t *rnp. q is the calling queue (not 
the next queue) and-mp is the message to be passed. putnext is the typi­
cal means of passing messages to the next queue in a Stream. 

putq - put a message on a queue 

int putq( q, bp) 
queue_t *q; 
mblk_t *bp; 

putq puts the message pointed to by bp on the message queue contained 
in the queue pointed to by q and enables that queue. putq queues mes­
sages appropriately by type (that is, message queueing priority; see 
Chapter 8). 
putq always enables the queue when a priority message is queued. putq 
enables the queue when an ordinary message is queued if the following 
condition is set, and if enabling is not inhibited by noenable: The condi­
tion is set if the module has just been pushed [see CPUSH in 
streamio(STR)], or if no message was queued on the last getq call, and 
no message has been queued since. 
putq is intended to be used from the put procedure in the same queue in 
which the message will be queued. A module should not call putq 
directly to pass messages to a neighboring module. putq can be used as 
the qiyutpO put procedure value in either or both of a module's qinit 
structures. This effectively bypasses any put procedure processing and 
uses only the module's service procedure(s). 
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qenable - enable a queue 

int qenable( q) 
queue_t *q; 

qenable places the queue pointed to by q on the linked list of queues that 
are ready to be called by the STREAMS scheduler (see the definition for 
"Schedule" at the beginning of this appendix, and the section entitled 
"Put and Service Procedures" in Chapter 5 of the Primer). 

qreply - send a message on a stream in the reverse direction 

int qreply( q, bp) 
queue_t *q; 
mblk_t *bp; 

qreply sends the message pointed to by bp up (or down) the Stream in the 
reverse direction from the queue pointed to by q. This is done by locating 
the partner of q (see OTHERQ) and then calling the put procedure of that 
queue's neighbor (as in putnext). qreply is typically used to send back a 
response (M_IOCACK or M_IOCNAK message) to an M_IOCTL message 
(see Appendix B). 

qsize - find the number of messages on a queue 

int qsize( q) 
queue_t *q; 

qsize returns the number of messages present in queue q. If there are no 
messages on the queue, qsize returns O. 

RD - get pointer to the read queue 

#define RD( q) ... 

The RD macro accepts a write queue pointer, q (declared as queue_t 
* q), as an argument and returns a pointer to the read queue for the same 
module. 
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rmvb - remove a message block from a message 

mblk_t *rmvb(mp, bp) 
mblk_t *mp; 
mblk_t *bp; 

Utilities 

rmvb removes the message block pointed to by bp from the message 
pointed to by mp and then restores the linkage of the message blocks 
remaining in the message. rmvb does not free the removed message 
block. rmvb returns a pointer to the head of the resulting message. If bp 
is not contained in mp, rmvb returns a -1. If there are no message blocks 
in the resulting message, rmvb returns a NULL pointer. 

rmvq - remove a message from a queue 

int rmvq(q, mp) 
queue_t *q; 
mblk_t *mp; 

rmvq removes the message pointed to by mp from the message queue in 
the queue pointed to by q and then restores the linkage of the messages 
remaining on the queue. If mp does not point to a message that is present 
on the queue q, a system panic could result. 

splstr - set processor level 

int splstrO 

splstr increases the system processor level to block interrupts at a level 
appropriate for STREAMS modules when those modules are executing 
critical portions of their code. splstr returns the processor level at the 
time of its invocation. Module developers are expected to use the stan­
dard kernel function splx(s), where s is the integer value returned by 
splstr, to restore the processor level to its previous value after the critical 
portions of code are passed. 
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strlog - submit messages for logging 

int strlog(mid, sid, level, flags, fmt, argl, •.. ) 
short mid, sid; 
char level; 
ushort flags; 
char *fmt; 
unsigned argl; 

strlog submits messages containing specified infonnation to the log 
driver. Required definitions are contained in <sys/strlog.h> and 
<sys/log.h>. mid is the STREAMS module ID number for the module or 
driver submitting the log message. sid is an internal sub-ID number usu­
ally used to identify a particular minor device of a driver. level is a trac­
ing level that allows selective screening of messages from the tracer. 
flags are any combination of SL_ERROR (the message is for the error 
logger), SL_TRACE (the message is for the tracer), SL_FATAL (advisory 
notification of a fatal error), and SL_NOTIFY (request that a copy of the 
message be mailed to the system administrator). fmt is a printf(S) style 
fonnat string, except that %s, %e, %E, %g, and %0 conversion 
specifications are not handled. Up to NLOGARGS numeric or character 
arguments can be provided. [See Chapter 6 of the Primer and log(STR).] 

testb - check for an available buffer 

int testb(size, pri) 
int size, pri; 

testb checks for the availability of a message buffer of size size at priority 
pri (see the section titled "Buffer Allocation Priority") without actually 
retrieving the buffer. testb returns 1 if the buffer is available and 0 if no 
buffer is available. A successful return value from testb does not guaran­
tee that a subsequent allocb call will succeed (for example, in the case of 
an interrupt routine taking buffers). 
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unlinkb - remove a message block from the head of a message 

mblk t *unlinkb(mp) 
mblk=t *mp; 

Utilities 

unlinkb removes the first message block pointed to by mp and returns a 
pointer to the head of the resulting message. unlinkb returns a NULL 
pointer if there are no more message blocks in the message. 

WR - get pointer to the write queue 

#define WR( q) .•. 

The WR macro accepts a read queue pointer, q (declared as queue_t 
*q), as an argument and returns a pointer to the write queue for the same 
module. 

C.3 Buft'er Allocation Priority 

STREAMS buffers are normally allocated with allocb, described above. 
An associated set of allocation priorities has been established. These 
priorities are also used in other utility routines: 

BPRCLO Low priority. At this priority, allocb may fail even 
though the requested buffer size is available. This 
priority is used by the Stream head write routine to hold 
data associated with user calls. 

BPRCMED Medium priority. This priority is typically used for nor­
mal data and control block allocation. As above, allocb 
may fail at this priority even though a buffer of the 
requested size is available. However, for a given block 
size, an BPRCLO allocb call will fail before a 
BPRCMED allocb call. 

BPRCHI High priority. This priority is typically used only for 
critical control message allocations. Calls to allocb 
will succeed if a buffer of the appropriate size is avail­
able. Developers should exercise restraint in use of 
BPRCHI allocation requests. 
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The values BPRCLO, BPRCMED, arid BPRCHI are defined in 
<sys/stream.h> . 

STREAMS does not guarantee successful buffer allocation -any set of 
resources can be exhausted under the right conditions. The bufeaU func­
tion will help modules recover from buffer allocation failures, but it does 
not guarantee that the resources will be available. Developers should be 
aware of this when implementing modules. 

C.4 Utility Routine Summary 

ROUTINE DESCRIPTION 
adjmsg trim bytes in a message 
alloeb allocate a message block 
baekq get pointer to the queue behind a given queue 
bufeall recover from failure of alloeb 
eanput test for room in a queue 
eopyb copy a message block 
eopymsg copy a message 
datamsg test whether message is a data message 
dupb duplicate a message block descriptor 
dupmsg duplicate a message 
enableok re-allow a queue to be scheduled for service 
ftushq flush a queue 
freeb free a message block 
freemsg free all message blocks in a message 
getq get a message from a queue 
insq put a message at a specific place in a queue 
Iinkb concatenate two messages into one 
msgdsize get the number of data bytes in a message 
noenable prevent a queue from being scheduled 
OTHERQ get pointer to the mate queue 
puUupmsg concatenate bytes in a message 
putbq return a message to the beginning of a queue 
putetl put a control message 
putctll put a control message with a one-byte parameter 
putnext put a message to the next queue 
putq put a message on a queue 
qenable enable a queue 
qreply send a message on a stream in the reverse direction 
qsize find the number of messages on a queue 
RD get pointer to the read queue 
rmvb remove a message block from a message 
rmvq remove a message from a queue 
splstr set processor level 
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striog 
testb 
unIinkb 
WR 

submit messages for logging 
check for an available buffer 

Utilities 

remove a message block from the head of a message 
get pointer to the write queue 
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D.I Appendix D: Design Guidelines 

This appendix summarizes STREAMS module and driver design guide­
lines and rules presented in previous chapters. Additional rules that 
developers must observe are included. Where appropriate, the section of 
this document containing detailed information is named. The end of the 
appendix contains a brief description of error and trace logging facilities. 

Unless otherwise noted, "module" implies "modules and drivers." 

D.2 General Rules 

The following are general rules that developers should follow when writ­
ing modules. 

1. Modules cannot access information in the u _area of a process. 
Modules are not associated with any process, and therefore have 
no concept of process or user context. 

The capacity to pass u _area information upstream using messages 
has been provided where required. This can be done in M_IOCTL 
handling (see Chapter 9 and Appendix B). A module can send 
error codes upstream in an M_IOCACK or M_IOCNAK message, 
where they will be placed in u _error by the Stream head. Return 
values can be sent upstream in a M_IOCACK message and will be 
placed in u _ rvall. Information can also be passed to the u _area 
via an M_ERROR message (see Chapter 10 and Appendix B). The 
Stream head recognizes this message type and informs the next 
system call that an error has occurred downstream by setting 
u error. Note that in both instances, the downstream module can­
not access the u _area, but it informs the Stream head to do so. 

2. In general, modules should not require the data in an M_DATA 
message to follow a particular format, such as a specific alignment. 
This makes it easier to arbitrarily push modules on top of each 
other in a sensible fashion. Not following this rule may limit 
module reusability (the ability to use the module in multiple appli­
cations). 

3. Every module must process an M_FLUSH message according to the 
value of the argument passed in the message (see Chapters 8 and 9, 
and Appendix B). 

4. A module should not change the contents of a data block whose 
reference count is greater than 1 (see dupmsg in Appendix C) 
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because other modules which have references to the block may not 
want the data changed. To avoid problems, it is recommended that 
the module copy the data to a new block and then change the new 
one. 

5. Modules should manipulate message queues and manage buffers 
only with the utility routines provided for those purposes (see 
Appendix C). 

6. Filter modules pushed between a service user and a service pro­
vider (see Chapter 12) cannot alter the contents of the M_PROTO 
or M_PCPROTO block in messages. The contents of the data 
blocks can be manipulated, but the message boundaries must be 
preserved. 

D.3 System Calls 

These rules pertain to module and drivers as noted. 

1. open and close routines may sleep, but the sleep must return to the 
routine in the event of a signal. That is, if they sleep, they must be 
at priority <= PZERO or with PCATCH set in the sleep priority. 

2. The open routine must return >= zero on success or OPENFAIL if it 
fails. This ensures that a failure will be reported to the user pro­
cess. errno may be set on failure. However, if the open routine 
returns OPENF AIL and errno is not set, STREAMS will automati­
cally set errno to ENXIO. 

3. If a module or driver recognizes and acts on an M_IOCTL message, 
it must reply by sending a M_IOCACK message upstream. A 
unique ID is associated with each M_IOCTL, and the M_IOCACK 
or M_IOCNAK message must contain the ID of the M_IOCTL it is 
acknowledging. 

4. A module (not a driver) must pass on any M_IOCTL message it 
does not recognize (see Appendix B). If an unrecognized 
M_IOCTL reaches a driver, the driver must reply by sending a 
M_IOCNAK message upstream. 
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D.4 Data Structures 

Only the contents of qytr, q_ minpsz, q_ maxpsz, q_ hiwat, and q_Iowat in 
a queue _ t structure can be altered. The latter four quantities are set when 
the module or driver is opened, but they can be modified subsequently. 

As described in Appendix E, every module and driver is configured with 
the address of a streamtab structure (see Chapter 5). For a driver, a 
pointer to its streamtab is included in cdevsw. For a module, a pointer to 
its streamtab is included in fmodsw. 

D.S Header Files 

The following header files are generally required in modules and drivers: 

types.h 

stream.h 

stropts.h 

contains type definitions used in the S1REAMS 
header files 

contains required structure and constant definitions 

primarily for users, but contains definitions of the 
arguments to the M_FLUSH message type also 
required by modules 

One or more of the header files described below may also be included 
(also see the following section). No standard UNIX System header files 
should be included except as described in the following section. This is 
to prevent attempts to access data that cannot or should not be accessed. 

errno.h defines various system error conditions and is needed 
if errors are to be returned upstream to the user 

sysmacros.h contains miscellaneous system macro definitions 

param.h 

signal.h 

file.h 

defines various system parameters, particularly the 
value of the PCATCH sleep flag 

defines the system signal values and should be used if 
signals are to be processed or sent upstream 

defines the file open flags and is needed if O_NDELAY 
is interpreted 
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D.6 Accessible Symbols and Functions 

The following lists the only symbols and functions to which modules or 
drivers can refer (in addition to those defined by STREAMS), if hardware 
and UNIX System release independence is to be maintained. Use of sym­
bols not listed here is unsupported. 

• user.h (from open/close procedures only) 
struct proc *u_procp 
short *u_ttyp 
char u_error 
ushort u_uid 
ushort u~id 
ushort u_ruid 
ushort u_rgid 

process structure pointer 
TTY group ID pointer 
system call error number 
effective user ID 
effective group ID 
real user ID 
real group ID 

• proc.h (from open/close procedures only) 
short p _pid process ID 
short p _pgrp process group ID 

• functions accessible from open/close procedures only 
fig = sleep( chan, pri) sleep until wakeup 
delay(ticks) delay for a specified time 

• universally accessible functions 
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bcopy(from, to, nbytes) 
bzero(buffer, nbytes) 
t = max(a, b) 
t = min(a, b) 
mem=malloc(mp, size) 
mfree(mp, size, i) 
mapinit(mp, mapsize) 
addr = vtop(vaddr, NULL) 

printf(format, ... ) 
cmn_err(level, ... ) 
s = spInO 
id = timeout(func, arg, ticks) 
untimeout(id) 
wakeup( chan) 

copy data quickly 
zero data quickly 
return max of args 
return min of args 
allocate memory space 
deallocate memory space 
initialize map structure 
translate from virtual to physical 
address 
print message 
print message and optional panic 
set priority level 
schedule event 
cancel event 
wake up sleeper 
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• sysmacros.h 
t = major(dev) return major device 
t = minor( dev) return minor device 

• systm.h 
time_t lbolt clock ticks since boot in HZ 
time_t time seconds since epoch 

• param.h 
PZERO zero sleep priority 
PCATCH catch signal sleep flag 
HZ clock ticks per second 
NULL 0 

• types.h 
dev_t combined major/minor device 
time_t time counter 

All data elements are software read-only except: 
u_error - may be set on a failure return of open 
u_ttyp - may be set in open to create a controlling TTY 

D.7 Rules for Put and Service Procedures 

To ensure proper data flow between modules, the following rules should 
be observed in put and service procedures. The following rules pertain to 
put procedures. 

1. A put procedure must not sleep. 

2. Each QUEUE must define a put procedure in its qinit structure for 
passing messages between modules. 

3. A put procedure must use the putq utility to enqueue a message on 
its own message queue. This is necessary to ensure that the vari­
ous fields of the queue _ t structure are maintained consistently. 

4. When passing messages to a neighbor module, a module cannot 
call putq directly, but must call its neighbor's put procedure (see 
putnext in Appendix C). Note that this rule is distinct from the 
one above it. The previous rule states that a module must call 
putq to place messages on its own message queue, whereas this 
rule states that a module must not call putq directly to place mes­
sages on a neighbor's queue. 
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However, the 'L qinfo structure that points to a module's put pro­
cedure may point to putq (that is, putq is used as the put procedure 
for that module). When a module calls a neighbor's put procedure 
that is defined in this manner, it will be calling putq indirectly. If 
any module uses putq as its put procedure in this manner, the 
module must define a service procedure. Otherwise, no messages 
will ever be sent to the next module. Also, because putq does not 
process M_FLUSH messages, any module that uses putq as its put 
procedure must define a service procedure to process M_FLUSH 
messages. 

5. The put procedure of a QUEUE with no service procedure must call 
the put procedure of the next QUEUE directly if a message is to be 
passed to that QUEUE. If flow control is desired, a service pro­
cedure must be provided. 

Service procedures must observe the following rules: 

1. A service procedure must not sleep. 

2. The service procedure must use getq to remove a message from its 
message queue so that the flow control mechanism is maintained. 

3. The service procedure should process all messages on its message 
queue. The only exception is if the Stream ahead is blocked (that 
is, if canput fails; see Appendix C). Adherence to this rule is the 
only guarantee that STREAMS will enable (schedule for execution) 
the service procedure when necessary, and that the flow control 
mechanism will not fail. 

If a service procedure exits for any other reason (for example, 
buffer allocation failure), it must take explicit steps to ensure that 
it will be re-enabled. 

4. The service procedure must follow the steps below for each mes­
sage that it processes. STREAMS flow control relies on strict 
adherence to these steps. 

Step 1: 
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Remove the next message from the message queue 
using getq. It is possible that the service procedure 
could be called when no messages exist on the queue, 
and so the service procedure should never assume that 
there is a message on its message queue. If there is no 
message, return. 



Step 2: 

Step 3: 

Step 4: 

Design Guidelines 

If all the following conditions are met: 

• can put fails and 

• the message type is not a priority type (see 
Appendix B) and 

• the message is to be put on the next QUEUE. 

then, continue at Step 3. Otherwise, continue at Step 4. 

The message must be replaced on the head of the mes­
sage queue from which it was removed using putbq 
(see Appendix C). Following this, the service pro­
cedure is exited. The service procedure should not be 
re-enabled at this point. It will be automatically back­
enabled by flow control. 

If all the conditions of Step 2 are not met, the message 
should not be returned to the queue. It should be pro­
cessed as necessary. Then, return to Step 1. 

D.S Error and Trace Logging 

STREAMS error and trace loggers are provided for debugging and for 
administering modules and driver. Chapter 6 of the STREAMS Primer 
contains a description of this facility which consists of log(STR), 
strace(ADM), strclean(ADM), strerr(ADM), and the strlog function 
described in Appendix C. 
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E.I Appendix E: Configuring 

This appendix contains infonuation about configuring STREAMS modules 
and drivers into the UNIX System on your computer. This appendix also 
includes a list of STREAMS system tunable parameters and system error 
messages. 

E.2 Configuring STREAMS Modules and Drivers 

Each character device that is configured into a UNIX System results in an 
entry which is placed in the kernel cdevsw table. Entries for STREAMS 
drivers are also placed in this table. However, because system calls to 
STREAMS drivers must be processed by the STREAMS routines, the 
configuration mechanism distinguishes between STREAMS drivers and 
character device drivers in their associated cdevsw entries. 

The distinction is contained in the d str field which was added to the 
cdevsw structure for this purpose. d str provides the appropriate single 
entry point for all system calls on STREAMS files, as shown below: 

extern struct cdevsw 

struct streamtab *d_str; 
cdevsw[ ]; 

The configuration mechanism fonus the d _ str entry name by appending 
the string "info" to the STREAMS driver prefix. The "info" entry is a 
pointer to a streamtab structure (see Appendix A) that contains pointers 
to the qinit structures for the read and write QUEUEs of the driver. The 
driver must contain the external definition: 

struct streamtab p~fixinfo = { 

If the d_str entry contains a non-NULL pointer, the operating system 
recognizes the device as a STREAMS driver and calls the appropriate 
STREAMS routine. If the entry is NULL, a character I/O device cdevsw 
interface is used. Note that only streamtab must be externally defined in 
STREAMS drivers and modules. streamtab is used to identify the 
appropriate open, close, put, service, and administration routines. These 
driver/module routines should generally be declared static. 

The configuration mechanism supports various combinations of block, 
character, STREAMS devices, and STREAMS modules (see below). For 
example, it is possible to identify a device as a block and STREAMS 
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device, and entries will be inserted in the appropriate system switch 
tables. A device cannot be both a character and STREAMS device. 

When a STREAMS module is configured, an fmodsw table entry is gen­
erated by the configuration mechanism. fmodsw contains the following: 

#define FMNAMESZ 8 

extern struct fmodsw 
char f_name[FMNAMESZ+l]; 
struct streamtab *f_str; 

fmodsw[ ]; 

f_name is the name of the module used in STREAMS-related ioctl calls. 
f_str is similar to the d_str entry in the cdevsw table. It is a pointer to a 
streamtab structure which contains pointers to the qinit structures for the 
read and write QUEUEs of this STREAMS module (as in STREAMS 
drivers). The module must contain the external definition: 

struct streamtab preft~info = { ... 

E.2.1 Configuration Mechanism 

STREAMS modules and drivers are configured into the system by use of 
the configure(ADM) and config(ADM) commands. Use configure in ins­
tallation scripts for target machines which do not have the development 
system. If the development system is installed, you can choose to use 
config, which requires that you edit the master file lusrlsyslconflmaster 
directly. 

To configure a STREAMS driver with configure, use the following: 

configure -s -c -m major -a drvinit drvintr drvpoll drvinfo 

where major is the major device number, drvinit is the initialization rou­
tine for the driver, drvintr is the interrupt routine for the driver, drvpoll is 
the poll routine, and drvinfo is the data structure for the driver. Note that 
drvinit, drvintr, and drvpoll are optional. The traditional cdevsw routines 
are not used for STREAMS drivers. 

To configure a STREAMS module with configure, use the following: 

configure -s -a drvinfo 
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where drvinfo is the streamtab structure for the module. 

This generates entries in the file lusrlsyslconf/master. Here is an example 
of entries for STREAMS modules and drivers in this file: 

* name vsiz msk typ hndlr na bmaj emaj # spl vee1 vee2 vee3 vee4 

* 1 2 3 5 6 7 8 9 10 11 12 13 14 

stream modules 
timod 0 1000 000 tim 0 0 0 0 0 
tirdwr 0 1000 000 trw 0 0 0 0 0 0 

# stream drivers 
CLONE 0 1000 004 eln 0 0 50 0 0 
LOG 0 1000 004 log 0 0 51 0 0 

The "msk" value 01000 is an indicator that the entry is a STREAMS 
driver or module. If the "typ" mask contains 04, then the entry is a 
STREAMS driver, not a module. The characters under "hndlr" are the 
prefix used for the symbol name of the streamtab structure as well as the 
driver routine names. The characters under "name" are used for the 
I_name field in the struct Imodsw entry for the driver. This is the same as 
the string that is used for the ioctl arg for CPUSH and I_POP commands. 

E.3 Thnable Parameters 

Certain system parameters referenced by STREAMS are configurable 
when building a new operating system (see the Installation and Mainte­
nance manual for further details). This can be done by selecting the 
correct configuration options. "queues" refers to queue_t structures. 
These parameters are: 

NQUEUE 

NSTREAM 

NBLK4096 

Total number of queues that may be allocated at 
one time by the system. Queues are allocated in 
pairs. Each STREAMS driver, Stream head, and 
pushable module requires a pair of queues. A 
minimal Stream contains 4 queues (two for the 
Stream head, two for the driver). 

Total number of Streams that may be open at 
one time in a system. 

Total number of 4096-byte data blocks available 
for STREAMS operations. The pool of data 
blocks is a system-wide resource, and so enough 
blocks must be configured to satisfy all Streams. 
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NBLK2048 

NBLK1024 

NBLK512 

NBLK256 

NBLK128 

NBLK64 

NBLK32 

NBLK16 

NBLK4 

NMUXLINK 

NSTREVENT 

MAXSEPGCNT 
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Total number of 2048-byte data blocks available 
for STREAMS operations. 

Total number of 1024-byte data blocks available 
for STREAMS operations. 

Total number of 512-byte data blocks available 
for STREAMS operations. 

Total number of 256-byte data blocks available 
for STREAMS operations. 

Total number of 128-byte data blocks available 
for STREAMS operations. 

Total number of 64-byte data blocks available 
for STREAMS operations. 

Total number of 32-byte data blocks available 
for STREAMS operations. 

Total number of 16-byte data blocks available 
for STREAMS operations. 

Total number of 4-byte data blocks available for 
STREAMS operations. 

Total number of Streams in the system that can 
be linked as lower Streams to multiplexer 
drivers [by an CLINK ioctl, see 
streamio(STR)]. 

Initial number of internal event cells available 
in the system to support bufeall (see Appendix 
C) and poll [see poll(S)] calls. 

The number of additional pages of memory that 
can be dynamically allocated for event cells. If 
this value is 0, only the allocation defined by 
NSTREVENT is available for use. If the value is 
not 0 and if the kernel runs out of event cells, it 
will under some circumstances attempt to allo­
cate an extra page of memory from which new 
event cells can be created. MAXSEPGCNT 
places a limit on the number of pages that can 
be allocated for this purpose. Once a page has 



NSTRPUSH 

STRMSGSZ 

STRCTLSZ 

STRLOFRAC 

STRMEDFRAC 
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been allocated for event cells, however, it can­
not be recovered later for use elsewhere. 

Maximum number of modules that can be 
pushed onto a single Stream. 

Maximum bytes of infonnation that a single 
system call can pass to a Stream to be placed 
into the data part of a message (in M_DATA 
blocks). Any write exceeding this size will be 
broken into multiple messages. A putmsg with 
a data part exceeding this size will fail. 

Maximum bytes of infonnation that a single 
system call can pass to a Stream to be placed 
into the control part of a message (in an 
M_PROTO or M_PCPROTO block). A putmsg 
with a control part exceeding this size will fail. 

The percentage of data blocks of a given class at 
which low priority block allocation requests are 
automatically failed. For example, if 
STRLOFRAC is 80 and there are forty-eight 
256-byte blocks, a low priority allocation 
request will fail when more than thirty-eight 
256-byte blocks are already allocated. This 
value is used to prevent deadlock situations in 
which a low priority activity might starve out 
more important functions. For example, if 
STRLOFRAC is 80 and there are 100 blocks of 
256 bytes, then when more than 80 of such 
blocks. are allocated, any low priority allocation 
request will fail. This value must be in the 
range 0 <= STRLOFRAC <= STRMEDFRAC. 

The percentage of data blocks of a given class at 
which medium priority block allocation requests 
are automatic all y failed. 

E.4 System Error Messages 

Messages are reported to the console as a result of various error condi­
tions detected by STREAMS. These messages and the action to be taken 
on their occurrence are described below. In certain cases, a tunable 
parameter (see previous section) may have to be changed. 
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stropen: out of streams 
A Stream head data structure could not be allocated during 
the open of a STREAMS device. If this occurs repeatedly, 
increase NSTREAM. 

stropen: out of queues 
A pair of queues could not be allocated for the Stream head 
during the open of a driver. If this occurs repeatedly, 
increase NQUEUE. 

KERNEL: allocq: out of queues 
A pair of queues could not be allocated for a pushable 
module (CPUSH ioctl) or driver (open). If this occurs 
repeatedly, increase NQUEUE. 

strinit: can not allocate stream data blocks 
During system initialization, the system was unable to allo­
cate enough memory for the STREAMS data blocks. The 
system must be rebuilt with fewer data blocks specified. 

KERNEL: strinit: odd value configured for v.v _nqueue 
KERNEL: strinit: was qcnt, set to nqcnt 

During system initialization, the total number of queues 
allocated, qcnt, was not a multiple of 2. The system resets 
this to an appropriate value, nqcnt. 

WARNING: bufcall: could not allocate stream event 
A call to bufcall has failed because all Stream event cells 
have been allocated. If this occurs repeatedly, increase 
NSTREVENT. 

KERNEL: ·sealloc: not enough memory for page allocation 
An attempt to dynamically allocate a page of Stream event 
cells failed. If this occurs repeatedly, decrease MAX­
SEPGCNT. 

KERNEL: munlink: could not perform ioctl, closing anyway 
A linked multiplexer could not be unlinked when the con­
trolling Stream for that link was closed. The linked Stream 
will be unlinked and the controlling Stream will be closed 
anyway. 
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F.1 Appendix F: (STR) Manpages 

This appendix contains the (STR) manpages. 
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Name 

clone - open any minor device on a STREAMS driver 

Description 

clone is a STREAMS software driver that finds and opens an unused 
minor device on another STREAMS driver. The minor device passed 
to clone during the open is interpreted as the major device number of 
another STREAMS driver for which an unused minor device is to be 
obtained. Each such open results in a separate stream to a previously 
unused minor device. 

The clone driver consists solely of an open function. This open func­
tion performs all of the necessary work so that subsequent system calls 
[including close(S)] require no further involvement of clone. 

clone will generate an ENXIO error, without opening the device, if the 
minor device number provided does not correspond to a valid major 
device, or if the driver indicated is not a STREAMS driver. 

Warnings 

Multiple opens of the same minor device cannot be done through the 
clone interface. Executing stat(S) on the file system node for a cloned 
device yields a different result from executing Jstat(S) using a file 
descriptor obtained from opening the node. 

See Also 

log(STR). 
STREAMS Programmer's Guide. 
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Name 

log - interface to STREAMS error logging and event tracing 

Description 

log is a STREAMS software device driver that provides an interface 
for the STREAMS error logging and event tracing processes 
[strerr(ADM), strace(ADM)]. log presents two separate interfaces: a 
function call interface in the kernel through which STREAMS drivers 
and modules submit log messages; and a subset of ioctl(S) system 
calls and STREAMS messages for interaction with a user level error 
logger, a trace logger, or processes that need to submit their own log 
messages. 

lCernel Interface 

log messages are generated within the kernel by calls to the function 
strlog: 

strlog(mid, sid, level, flags, fmt, argl, ... ) 
short mid, sid; 
char level; 
ushort flags; 
char *fmt; 
unsigned arg 1; 

Required definitions are contained in <sys/strlog.h> and <sys/log.h>. 
mid is the STREAMS module id number for the module or driver sub­
mitting the log message. sid is an internal sub-id number usually used 
to identify a particular minor device of a driver. level is a tracing 
level that allows for selective screening out of low priority messages 
from the tracer. flags are any combination of SL_ERROR (the message 
is for the error logger), SL_TRACE (the message is for the tracer), 
SL_FATAL (advisory notification of a fatal error), and SL_NOTIFY 
(request that a copy of the message be mailed to the system adminis­
trator). fmt is a printj(S) style format string, except that %s, %e, %E, 
%g, and %0 conversion specifications are not handled. Up to NLO­
GARGS (currently 3) numeric or character arguments can be provided. 

User Interface 

log is opened via the clone interface, /dev/log. Each open of /dev/log 
obtains a separate stream to log. In order to receive log messages, a 
process must first notify log whether it is an error logger or trace 
logger via a STREAMS CSTR ioctl call (see below). For the error 
logger, the CSTR ioctl has an ic_cmd field of CERRLOG with no 
accompanying data. For the trace logger, the ioctl has an ic_cmd field 
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of CTRCLOG, and must be accompanied by a data buffer containing 
an array of one or more struct trace_ids elements. Each trace_ids 
structure specifies an mid, sid, and level from which message will be 
accepted. strlog will accept messages whose mid and sid exactly 
match those in the trace_ids structure, and whose level is less than or 
equal to the level given in the trace_ids structure. A value of -1 in any 
of the fields of the trace_ids structure indicates that any value is 
accepted for that field. 

At most one trace logger and one error logger can be active at a time. 
Once the logger process has identified itself via the ioctl call, log will 
begin sending up messages subject to the restrictions noted above. 
These messages are obtained via the getmsg(S) system call. The con­
trol part of this message contains a log_ctl structure, which specifies 
the mid, sid, level, fiags, time in ticks since boot that the message was 
submitted, the corresponding time in seconds since Jan. 1, 1970, and a 
sequence number. The time in seconds since 1970 is provided so that 
the date and time of the message can be easily computed, and the time 
in ticks since boot is provided so that the relative timing of log mes­
sages can be determined. 

Different sequence numbers are maintained for the error and trace log­
ging streams, and are provided so that gaps in the sequence of mes­
sages can be determined (during times of high message traffic, some 
messages may not be delivered by the logger to avoid hogging system 
resources). The data part of the message contains the unexpanded text 
of the format string (null terminated), followed by NLOGARGS words 
for the arguments to the format string, aligned on the first word boun­
dary following the format string. 

A process may also send a message of the same structure to log, even 
if it is not an error or trace logger. The only fields of the log_ctl struc­
ture in the control part of the message that are accepted are the level 
and flags fields; all other fields are filled in by log before being for­
warded to the appropriate logger. The data portion must contain a null 
terminated format string, and any arguments (up to NLOGARGS) must 
be packed one word each, on the next word boundary following the 
end of the format string. 

Attempting to issue an CTRCLOG or CERRLOG when a logging pro­
cess of the given type already exists will result in the error ENXIO 
being returned. Similarly, ENXIO is returned for CTRCLOG ioctls 
without any trace_ids structures, or for any unrecognized CSTR ioctl 
calls. Incorrectly formatted log messages sent to the driver by a user 
process are silently ignored (no error results). 
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Examples 

Example of CERRLOG notification. 

struct strioctl ioc; 

ioc.ic_cmd = CERRLOG; 
ioc.ic_timout = 0; 
ioc.ic_len = 0; 

/* default timeout (15 secs.) */ 

ioc.ic_dp = NULL; 

ioctl(log, CSTR, &ioc); 

Example ofCTRCLOG notification. 

struct trace_ids tid[2]; 

tid[O].ti_mid = 2; 
tid[O].ti_sid = 0; 
tid[O] .ti_Ievel = 1; 

tid[1].ti_mid = 1002; 
tid [1 ] .ti_sid = -1; 
tid[l].ti_Ievel = -1; 

ioc.ic_cmd = CTRCLOG; 
ioc.ic_timout = 0; 

/* any sub-id will be allowed */ 
/* any level will be allowed * / 

ioc.ic_len = 2 * sizeof(struct trace_ids); 
ioc.ic_dp = (char *)tid; 

ioctl(log, CSTR, &ioc); 

Example of submitting a log message (no arguments). 

struct strbuf ctl, dat; 
struct log_ctl Ie; 
char *message = "Don't forget to pick up some milk on the way home"; 

ctl.len = ctl.maxlen = sizeof(Ie); 
ctl.buf = (char *)&Ie; 

dat.len = dat.maxlen = strlen(message); 
dat.buf = message; 

Ie.level = 0; 
Ie.flags = SL_ERRORISL_NOTIFY; 

putmsg(log, &ctl, &dat, 0); 
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Files 

/dev/log, <sys/log.h>, <sys/strlog.h> 

See Also 

clone(STR). 
strace(ADM), strerr(ADM), intro(S), getmsg(S), putmsg(S) in the 
XENIX Reference. 
STREAMS Programmer's Guide. 
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Name 

streamio - STREAMS ioctl commands 

Syntax 

#include <stropts.h> 
int ioctl fildes, command, arg) 
int fildes, command; 

Description 

STREAMS [see intro(S)] ioctl commands are a subset of ioctl(S) sys­
tem calls which perform a variety of control functions on streams. 
The arguments command and arg are passed to the file designated by 
fildes and are interpreted by the stream head. Certain combinations of 
these arguments may be passed to a module or driver in the stream. 

fildes is an open file descriptor that refers to a stream. command 
determines the control function to be performed as described below. 
arg represents additional information that is needed by this command. 
The type of arg depends upon the command, but it is generally an 
integer or a pointer to a command-specific data structure. 

Since these STREAMS commands are a subset of ioctl, they are sub­
ject to the errors described there. In addition to, those errors, the call 
will fail with ermo set to EINV AL, without processing a control func­
tion, if the stream referenced by fildes is linked below a multiplexer, 
or if command is not a valid value for a stream. 

Also, as described in ioctl, STREAMS modules and drivers can detect 
errors. In this case, the module or driver sends an error message to the 
stream head containing an error value. This causes subsequent system 
calls to fail with errno set to this value. 

Command Functions 

The following ioctl commands, with error values indicated, are appli­
cable to all STREAMS files: 

CPUSH Pushes the module whose name is pointed to by arg 
onto the top of the current stream, just below the 
stream head. It then calls the open routine of the 
newly-pushed module. On failure, errno is set to one 
of the following values: 

[EINVAL] Invalid module name. 
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CPOP 

CLOOK 

CFLUSH 

CSETSIG 

[EFAULT] 

[ENXIO] 

[ENXIO] 

STREAMIO (STR) 

arg points outside the allocated 
address space. 

Open routine of new module failed. 

Hangup received onfildes. 

Removes the module just below the stream head of 
the stream pointed to by fildes. arg should be 0 in an 
CPOP request. On failure, errno is set to one of the 
following values: 

[EINVAL] 

[ENXIO] 

No module present in the stream. 

Hangup received onfildes. 

Retrieves the name of the module just below the 
stream head of the stream pointed to by fildes, and 
places it in a null terminated character string pointed 
at by argo The buffer pointed to byarg should be at 
least FMNAMESZ+ 1 bytes long. An [#include 
<sys/conf.h>] declaration is required. On failure, 
errno is set to one of the following values: 

[EFAULT] 

[EINVAL] 

arg points outside the allocated 
address space. 

No module present in stream. 

This request flushes all input and/or output queues, 
depending on the value of argo Legal arg values are: 

FLUSHR 

FLUSHW 

FLUSHRW 

Flush read queues. 

Flush write queues. 

Flush read and write queues. 

On failure, errno is set to one of the following values: 

[ENOSR] 

[EINVAL] 

[ENXIO] 

Unable to allocate buffers for flush 
message due to insufficient STREAMS 
memory resources. 

Invalid arg value. 

Hangup received onfildes. 

Informs the stream head that the user wishes the ker­
nel to issue the SIGPOLL signal [see signal(S) and 
sigset(S)] when a particular event has occurred on the 
stream associated with fildes. CSETSIG supports an 
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asynchronous processing capability in STREAMS. 
The value of arg is a bitmask that specifies the events 
for which the user should be signaled. It is the 
bitwise-OR of any combination of the following con­
stants: 

A non-priority message has arrived on 
a stream head read queue, and no 
other messages existed on that queue 
before this message was placed there. 
This is set even if the message is of 
zero length. 

A priority message is present on the 
stream head read queue. This is set 
even if the message is of zero length. 

The write queue just below the stream 
head is no longer full. This notifies 
the user that there is room on the 
queue for sending (or writing) data 
downstream. 

A STREAMS signal message that con­
tains the SIGPOLL signal has reached 
the front of the stream head read 
queue. 

A user process may choose to be signaled only of 
priority messages by setting the arg bitmask to the 
value S_HIPRI. 

Processes that wish to receive SIGPOLL signals must 
explicitly register to receive them using CSETSIG. If 
several processes register to receive this signal for the 
same event on the same Stream, each process will be 
signaled when the event occurs. 

If the value of arg is zero, the calling process will be 
unregistered and will not receive further SIGPOLL sig­
nals. On failure, errno is set to one of the following 
values: 

[EINVAL] 

[EAGAIN] 

arg value is invalid or arg is zero and 
process is not registered to receive the 
SIGPOLL signal. 

Allocation of a data structure to store 
the signal request failed. 
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CGETSIG Returns the events for which the calling process is 
currently registered to be sent a SIGPOLL signal. The 
events are returned as a bitmask pointed to by arg, 
where the events are those specified in the description 
of CSETSIG above. On failure, errno is set to one of 
the following values: 

CFIND 

CPEEK 

[EINVAL] 

[EFAULT] 

Process not registered to receive the 
SIGPOLL signal. 

arg points outside the allocated 
address space. 

Compares the names of all modules currently present 
in the stream to the name pointed to by arg, and 
returns 1 if the named module is present in the stream. 
It returns 0 if the named module is not present. On 
failure, errno is set to one of the following values: 

[EFAULT] 

[EINVAL] 

arg points outside the allocated 
address space. 

arg does not contain a valid module 
name. 

Allows a user to retrieve the information in the first 
message on the stream head read queue without taking 
the message off the queue. arg points to a strpeek 
structure which contains the following members: 

struct strbuf ctlbuf; 
struct strbuf databuf; 
long flags; 

The maxlen field in the ctlbuJ and databuJ strbuJ struc­
tures [see getmsg(S)] must be set to the number of 
bytes of control information and/or data information, 
respectively, to retrieve. If the user sets flags to 
RS_HIPRI, CPEEK will only look for a priority mes­
sage on the stream head read queue. 

CPEEK returns 1 if a message was retrieved, and 
returns 0 if no message was found on the stream head 
read queue, or if the RS_HIPRI flag was set in flags 
and a priority message was not present on the stream 
head read queue. It does not wait for a message to 
arrive. On return, ctlbuJ specifies information in the 
control buffer, databuJ specifies information in the 
data buffer, and flags contains the value 0 or 
RS_HIPRI. On failure, errno is set to one of the fol­
lowing values: 

November 29, 1988 Page 4 



STREAA1IO(STR) STREAA1IO(STR) 

CSRDOPT 

CGRDOPT 

CNREAD 

[EFAULT] arg points, or the buffer area specified 
in etlbuf or databuf is, outside the 
allocated address space. 

[EBADMSG] Queued message to be read is not 
valid for CPEEK 

Sets the read mode using the value of the argument 
argo Legal arg values are: 

RNORM Byte-stream mode, the default. 

RMSGD Message-discard mode. 

RMSGN Message-nondiscard mode. 

Read modes are described in read(S). On failure, 
errno is set to the following value: 

[EINVAL] arg is not one of the above legal 
values. 

Returns the current read mode setting in an int pointed 
to by the argument arg. Read modes are described in 
read(S). On failure, errno is set to the following 
value: 

[EFAULT] arg points outside the allocated 
address space. 

Counts the number of data bytes in data blocks in the 
first message on the stream head read queue, and 
places this value in the location pointed to by arg. 
The return value for the command is the number of 
messages on the stream head read queue. For exam­
ple, if zero is returned in arg, but the ioetl return value 
is greater than zero, this indicates that a zero-length 
message is next on the queue. On failure, errno is set 
to the following value: 

[EFAULT] arg points outside the allocated 
address space. 

CFDINSERT Creates a message from user specified buffer(s), adds 
information about another stream and sends the mes­
sage downstream. The message contains a control 
part and an optional data part. The data and control 
parts to be sent are distinguished by placement in 
separate buffers, as described below. 
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arg points to a strfdinsert structure which contains the 
following members: 

struct strbuf 
struct strbuf 
long. 

ctlbuf; 
databuf; 
flags; 
fildes; 
offset; 

int 
int 

The len field in the ctlbuf strbuJ structure [see 
putmsg(S)] must be set to the size of a pointer plus the 
number of bytes of control information to be sent with 
the message. fildes in the strfdinsert structure 
specifies the file descriptor of the other stream. offset, 
whkch must be word-aligned, specifies the number of 
bytes beyond the beginning of the control buffer where 
CFDINSERT will store a pointer. This pointer will be 
the address of the read queue structure of the driver 
for the stream corresponding to fildes in the strfdinsert 
structure. The len field in the databuJ strbuJ structure 
must be set to the number of bytes of data information 
to be sent with the message or zero if no data part is to 
be sent. 

flags specifies the type of message to be created. A 
non-priority message is created if flags is set to 0, and 
a priority message is created if flags is set to 
RS_HIPRI. For non-priority messages, CFDINSERT 
will block if the stream write queue is full due to 
internal flow control conditions. For priority mes­
sages, CFDINSERT does not block on this condition. 
For non-priority messages, CFDINSERT does not 
block when the write queue is full and ° _NDELAY is 
set. Instead, it fails and sets errno to EAGAIN. 

CFDINSERT also blocks, unless prevented by lack of 
internal resources, waiting for the availability of mes­
sage blocks in the stream, regardless of priority or 
whether O_NDELAY has been specified. No partial 
message is sent. On failure, errno is set to one of the 
following values: 

[EAGAIN] 

[ENOSR] 

A non-priority message was specified, 
the O_NDELAY flag is set, and the 
stream write queue is full due to inter­
nal flow control conditions. 

Buffers could not be allocated for the 
message that was to be created due to 
insufficient STREAMS memory 
resources. 
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CSTR 

[EFAULT] 

[EINVAL] 

[ENXIO] 

[ERANGE] 

STREAMIO (STR) 

arg points, or the buffer area specified 
in ctlbuJ or databuJ is, outside the 
allocated address space. 

One of the following: fildes in the 
stifdinsert structure is not a valid, 
open stream file descriptor, the size of 
a pointer plus offset is greater than the 
len field for the buffer specified 
through ctlptr; offset does not specify 
a properly aligned location in the data 
buffer; an undefined value is stored in 
flags. 

Hangup received on fildes of the ioctl 
call or fildes in the stifdinsert struc­
ture. 

The len field for the buffer specified 
through databuJ does not fall within 
the range specified by the maximum 
and minimum packet sizes of the top­
most stream module, or the len field 
for the buffer specified through data­
buf is larger than the maximum 
configured size of the data part of a 
message, or the len field for the buffer 
specified through ctlbuJ is larger than 
the maximum configured size of the 
control part of a message. 

CFDINSERT can also fail if an error message was 
received by the stream head of the stream correspond­
ing to fildes in the stifdinsert structure. In this case, 
errno will be set to the value in the message. 

Constructs an internal STREAMS ioctl message from 
the data pointed to by arg and sends that message 
downstream. 

This mechanism is provided to send user ioctl requests 
to downstream modules and drivers. It allows infor­
mation to be sent with the ioctl and will return to the 
user any information sent upstream by the downstream 
recipient. CSTR blocks until the system responds 
with either a positive or negative acknowledgment 
message or until the request "times out" after some 
period of time. If the request times out, it fails with 
errno set to ETIME. 
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At most, one CSTR can be active on a stream. Further 
CSTR calls will block until the active CSTR com­
pletes at the stream head. The default timeout inter­
val for these requests is 15 seconds. The O_NDELAY 
[see open(S)] flag has no effect on this call. 

To send requests downstream, arg must point to a 
strioetl structure which contains the following 
members: 

int 
int 
int 
char 

ic_cmd; 
ic_timout; 
ic_Ien; 
*ic_dp; 

/* downstream command * / 
/* ACK/NAK timeout */ 
/* length of data arg * / 
/* ptr to data arg * / 

ie emd is the internal ioctl command intended for a 
downstream module or driver; and ie timout is the 
number of seconds (-1 = infinite, 0 = use default, >0 = 
as specified) an CSTR request will wait for ack­
nowledgment before timing out. ie len is the number 
of bytes in the data argument and ic dp is a pointer to 
the data argument. The ie len field-has two uses: on 
input, it contains the length of the data argument 
passed in, and on return from the command, it con­
tains the number of bytes being returned to the user 
(the buffer pointed to by ie_dp should be large enough 
to contain the maximum amount of data that any 
module or the driver in the stream can return). 

The stream head will convert the information pointed 
to by the strioetl structure to an internal ioctl com­
mand message and send it downstream. On failure, 
errno is set to one of the following values: 

[ENOSR] 

[EFAULT] 

[EINVAL] 

[ENXIO] 

Unable to allocate buffers for the ioetl 
message due to insufficient STREAMS 
memory resources. 

arg points, or the buffer area specified 
by ie _ dp and ie_len (separately for 
data sent and data returned) is, outside 
the allocated address space. 

ie_len is less than 0 or ie_len is larger 
than the maximum configured size of 
the data part of a message or ie _timout 
is less than -1. 

Hangup received onfildes. 
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CSENDFD 

CRECVFD 

[ETIME] 

STREAMIO (STR) 

A downstream ioetl timed out before 
acknowledgment was received. 

An CSTR can also fail while waiting for an ack­
nowledgment if a message indicating an error or a 
hangup is received at the stream head. In addition, an 
error code can be returned in the positive or negative 
acknowledgment message, in the event the ioctl com­
mand sent downstream fails. For these cases, CSTR 
will fail with errno set to the value in the message. 

Requests the stream associated with fildes to send a 
message, containing a file pointer, to the stream head 
at the other end of a stream pipe. The file pointer 
corresponds to arg, which must be an integer file 
descriptor. 

CSENDFD converts arg into the corresponding system 
file pointer. It allocates a message block and inserts 
the file pointer in the block. The user id and group id 
associated with the sending process are also inserted. 
This message is placed directly on the read queue [see 
intro(S)] of the stream head at the other end of the 
stream pipe to which it is connected. On failure, 
ermo is set to one of the following values: 

[EAGAIN] 

[EAGAIN] 

[EBADF] 

[EINVAL] 

[ENXIO] 

The sending stream is unable to allo­
cate a message block to contain the 
file pointer. 

The read queue of the receiving 
stream head is full and cannot accept 
the message sent by CSENDFD. 

arg is not a valid, open file descriptor. 

fildes is not connected to a stream 
pipe. 

Hangup received onfildes. 

Retrieves the file descriptor associated with the mes­
sage sent by an CSENDFD ioetl over a stream pipe. 
arg is a pointer to a data buffer large enough to hold 
an strrecvfd data structure containing the following 
members: 

int fd; 
unsigned short uid; 
unsigned short gid; 
char fill[8]; 
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fd is an integer file descriptor. uid and gid are the user 
id and group id, respectively, of the sending stream. 

If O_NDELAY is not set [see open(S)] , CRECVFD will 
block until a message is present at the stream head. If 
O_NDELAY is set, CRECVFD will fail with errno set 
to EAGAIN if no message is present at the stream 
head. 

If the message at the stream head is a message sent by 
an CSENDFD, a new user file descriptor is allocated 
for the file pointer contained in the message. The new 
file descriptor is placed in the fd field of the strrecvfd 
structure. The structure is copied into the user data 
buffer pointed to by arg. On failure, errno is set to one 
of the following values: 

[EAGAIN] A message was not present at the 
stream head read queue, and the 
O_NDELAY flag is set. 

[EBADMSG] The message at the stream head read 
queue was not a message containing a 
passed file descriptor. 

[EFAULT] arg points outside the allocated 
address space. 

[EMFll..E] NOFll..ES file descriptors are currently 
open. 

[ENXIO] Hangup received onfildes. 

The following two commands are used for connecting and disconnect­
ing multiplexed STREAMS configurations. 

CLINK Connects two streams, where fildes is the file descrip­
tor of the stream connected to the multiplexing driver, 
and arg is the file descriptor of the stream connected 
to another driver. The stream designated by arg gets 
connected below the multiplexing driver. CLINK 
requires the multiplexing driver to send an ack­
nowledgment message to the stream head regarding 
the linking operation. This call returns a multiplexer 
ID number (an identifier used to disconnect the multi­
plexer, see CUNLINK) on success, and a -Ion failure. 
On failure, errno is set to one of the following values: 

[ENXIO] Hangup received onfildes. 
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CUNLINK 

[ETIME] 

[EAGAIN] 

[ENOSR] 

[EBADF] 

[EINVAL] 

[EINVAL] 

[EINVAL] 

STREAMIO (STR) 

Time out before acknowledgment 
message was received at stream head. 

Temporarily unable to allocate storage 
to perform the CLINK. 

Unable to allocate storage to perform 
the CLINK due to insufficient 
STREAMS memory resources. 

arg is not a valid, open file descriptor. 

fildes stream does not support multi­
plexing. 

arg is not a stream, or is already 
linked under a multiplexer. 

The specified link operation would 
cause a "cycle" in the resulting 
configuration; that is, if a given 
stream head is linked into a multi­
pie xing configuration in more than 
one place. 

An CLINK can also fail while waiting for the multi­
plexing driver to acknowledge the link request, if a 
message indicating an error or a hangup is received at 
the stream head of fildes. In addition, an error code 
can be returned in the positive or negative ack­
nowledgment message. For these cases, CLINK will 
fail with errno set to the value in the message. 

Disconnects the two streams specified by fildes and 
argo fildes is the file descriptor of the stream con­
nected to the multiplexing driver. fildes must 
correspond to the stream on which the ioetl CLINK 
command was issued to link the stream below the 
multiplexing driver. arg is the multiplexer ID number 
that was returned by the CLINK. If arg is -1, then all 
Streams which were linked to fildes are disconnected. 
As in CLINK, this command requires the multiplexing 
driver to acknowledge the unlink. On failure, errno is 
set to one of the following values: 

[ENXIO] 

[ETIME] 

Hangup received onfildes. 

Time out before acknowledgment 
message was received at stream head. 
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See Also 

[ENOSR] 

[EINVAL] 

Unable to allocate storage to perfonn 
the C UNLINK due to insufficient 
STREAMS memory resources. 

arg is an invalid multiplexer ID 
number or fildes is not the stream on 
which the CLINK that returned arg 
was perfonned. 

An CUNLINK can also fail while waiting for the mul­
tiplexing driver to acknowledge the link request, if a 
message indicating an error or a hangup is received at 
the stream head of fildes. In addition, an error code 
can be returned in the positive or negative ack­
nowledgment message. For these cases, CUNLINK 
will fail with errno set to the value in the message. 

close(S), fcntl(S), intro(S), ioctl(S), open(S), read(S), getmsg(S), 
poll(S), putmsg(S), signal(S), sigset(S), write(S) in the XENIX Refer­
ence. 
STREAMS Programmer's Guide. 
STREAMS Primer. 

Diagnostics 

Unless specified otherwise above, the return value from ioctl is 0 upon 
success and -1 upon failure with errno set as indicated. 
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Name 

timod - Transport Interface cooperating STREAMS module 

Description 

timod is a STREAMS module for use with the Transport Layer Inter­
face (TLI) functions of the Network Services library. The timod 
module converts a set of ioctl(S) calls into STREAMS messages that 
may be consumed by a transport protocol provider which supports the 
Transport Layer Interface. This allows a user to initiate certain TLI 
functions as atomic operations. 

The timod module must only be pushed (see STREAMS Primer) onto a 
stream terminated by a transport protocol provider which supports the 
TLI. 

All STREAMS messages, with the exception of the message types gen­
erated from the ioctl commands described below, will be transparently 
passed to the neighboring STREAMS module or driver. The messages 
generated from the following ioctl commands are recognized and pro­
cessed by the timod module. The format of the ioctl call is: 

#include <sys/stropts.h> 

struct strioctl strioctl; 

strioctl.ic_cmd = cmd; 
strioctl.ic_timeout = INFTIM; 
strioctl.ic_len = size; 
strioctl.ic_dp = (char *)buf 

ioctl(fildes, CSTR, &strioctl); 

where, on issuance, size is the size of the appropriate TLI message to 
be sent to the transport provider and on return, size is the size of the 
appropriate TLI message from the transport provider in response to the 
issued TLI message. buf is a pointer to a buffer large enough to hold 
the contents of the appropriate TLI messages. The TLI message types 
are defined in <sys/tihdr.h>. The possible values for the cmd field 
are: 

TCBIND Bind an address to the underlying transport protocol 
provider. The message issued to the TCBIND ioctl 
is equivalent to the TLI message type T_BIND_REQ 
and the message returned by the successful comple­
tion of the ioctl is equivalent to the TLI message 
type T_BIND_ACK. 
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TCUNBIND Unbind an address from the underlying transport 
protocol provider. The message issued to the 
TCUNBIND ioet! is equivalent to the TLI message 
type T_UNBIND_REQ and the message returned by 
the successful completion of the ioel! is equivalent 
to the TLI message type T_OK_ACK. 

TCGETINFO Get the TLI protocol specific information from the 
transport protocol provider. The message issued to 
the TCGETINFO ioet! is equivalent to the TLI mes­
sage type T _INFO _REQ and the message returned 
by the successful completion of the ioetl is 
equivalent to the TLI message type T_INFO_ACK. 

TCOPTMGMT Get, set, or negotiate protocol specific options with 
the transport protocol provider. The message issued 
to the TCOPTMGMT ioet! is equivalent to the TLI 
message type T_OPTMGMT_REQ, and the message 
returned by the successful completion of the ioel! is 
equivalent to the TLI message type 
T_OPTMGMT_ACK. 

Files 

<sys/timod.h> 
<sys/tiuser .h> 
<sys/tihdr.h> 
<sys/errno.h> 

See Also 

tirdwr(STR). 
STREAMS Primer. 
STREAMS Programmer's Guide. 
Network Programmer's Guide. 

Diagnostics 

If the ioell system call returns with a value greater than 0, the lower 8 
bits of the return value will be one of the TLI error codes as defined in 
<sys/tiuser.h>. If the TLI error is of type TSYSERR, then the next 8 
bits of the return value will contain an error as defined in 
<sys/errno.h> [see inlro(S)]. 
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Name 

tirdwr - Transport Interface read/write interface S1REAMS module 

Description 

tirdwr is a S1REAMS module that provides an alternate interface to a 
transport provider which supports the Transport Layer Interface (TLI) 
functions of the Network Services library (see Section NSL). This 
alternate interface allows a user to communicate with the transport 
protocol provider using the read(S) and write(S) system calls. The 
putmsg(S) and getmsg(S) system calls may also be used. However, 
putmsg and getmsg can only transfer data messages between user and 
stream. 

The tirdwr module must only be pushed [see CPUSH in 
streamio(STR)] onto a stream tenninated by a transport protocol pro­
vider which supports the TLI. After the tirdwr module has been 
pushed onto a stream, none of the Transport Layer Interface functions 
can be used. Subsequent calls to TLI functions will cause an error on 
the stream. Once the error is detected, subsequent system calls on the 
stream will return an error with errno set to EPROTO. 

The following are the actions taken by the tirdwr module when pushed 
on the stream, popped [see CPOP in streamio(STR)] off the stream, or 
when data passes through it. 

push-

write -

When the module is pushed onto a stream, it will check 
any existing data destined for the user to ensure that only 
regular data messages are present. It will ignore any mes­
sages on the stream that relate to process management, 
such as messages that generate signals to the user 
processes associated with the stream. If any other mes­
sages are present, the CPUSH will return an error with 
errno set to EPROTO. 

The module will take the following actions on data that 
originated from a write system call: 

All messages with the exception of messages that con­
tain control portions (see the putmsg and getmsg sys­
tem calls) will be transparently passed onto the 
module's downstream neighbor. 

Any zero length data messages will be freed by the 
module and they will not be passed onto the module's 
downstream neighbor. 

Any messages with control portions will generate an 
error, and any further system calls associated" with the 
stream will fail with errno set to EPROTO. 
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read - The module will take the following actions on data that 
originated from the transport protocol provider: 

All messages with the exception of those that contain 
control portions (see the putmsg and getmsg system 
calls) will be transparently passed onto the module's 
upstream neighbor. 

The action taken on messages with control portions 
will be as follows: 

Messages that represent expedited data will 
generate an error. All further system calls asso­
ciated with the stream will fail with errno set to 
EPROTO. 

Any data messages with control portions will 
have the control portions removed from the 
message prior to passing the message to the 
upstream neighbor. 

Messages that represent an orderly release indi­
cation from the transport provider will generate 
a zero length data message, indicating the end 
of file, which will be sent to the reader of the 
stream. The orderly release message itself will 
be freed by the module. 

Messages that represent an abortive disconnect 
indication from the transport provider will cause 
all further write and putmsg system calls to fail 
with errno set to ENXIO. All further read and 
getmsg system calls will return zero length data 
(indicating end of file) once all previous data 
has been read. 

With the exception of the above rules, all other 
messages with control portions will generate an 
error and all further system calls associated with 
the stream will fail with errno set to EPROTO. 

Any zero length data messages will be freed by the 
module and they will not be passed onto the module's 
upstream neighbor. 

pop - When the module is popped off the stream or the stream is 
closed, the module will take the following action: 

If an orderly release indication has been previously 
received, then an orderly release request will be sent 
to the remote side of the transport connection. 
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See Also 

streamio(STR), timod(STR). 
intro(S), getmsg(S), putmsg(S), read(S), write(S) in the XENIX Refer­
ence. 
intro(NSL) in Appendix D of the Network Programmer's Guide. 
STREAMS Primer. 
STREAMS Programmer's Guide. 
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