
SCQ™ TCP/IP

Derived from

LACHMAN™ SYSTEM V STREAMS TCP

Administrator's Guide

The Santa Cruz Operation™

Portions copyright © 1988, 1989 The Santa Cruz Operation, Inc. All rights reserved.

Portions copyright © 1987, 1988 Lachman Associates, Inc. All rights reserved.

Portions copyright © 1987 Convergent Technologies, Inc. All Rights Reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor

translated into any human or computer language, in any form or by any means, electronic,

mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written

permission of the copyright owner, The Santa Cruz Operation, Inc., 400 Encinal, Santa Cruz,

California, 95061, USA. Copyright infringement is a serious matter under the United States and

foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User only for use

in strict accordance with the End User License Agreement, which License should be read

carefully before commencing use of the software. Information in this document is subject to

change without notice and does not represent a commitment on the part of The Santa Cruz

Operation, Inc.

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES GOVERNMENT IS

SUBJECT TO RESTRICTIONS AS SET FORTH IS SUBPARAGRAPH (c)(1) OF THE

COMMERCIAL COMPUTER SOFTWARE -- RESTRICTED RIGHTS CLAUSE AT FAR

52.227-19 OR SUBPARAGRAPH (c)(l)(ii) OF THE RIGHTS IN TECHNICAL DATE AND

COMPUTER SOFTWARE CLAUSE AT DFARS 52.227-7013.

"CONTRACTOR/MANUFACTURER" IS THE SANTA CRUZ OPERATION, INC., 400

ENCINAL STREET, P.O. BOX 1900, SANTA CRUZ, CALIFORNIA 95061, U.S.A.

SCO TCP/IP was developed by Lachman Associates.

SCO TCP/IP is derived from LACHMAN™ SYSTEM V STREAMS TCP, a joint development

of Lachman Associates and Convergent Technologies.

This document was typeset with an IMAGEN® 8/300 Laser Printer.

SCO, The Santa Cruz Operation, and the seo logo are trademarks of The Santa Cruz Operation, Inc.

UNIX is a registered trademark of AT&T.

LACHMAN is a trademark of Lachman Associates, Inc.

Ethernet is a registered trademark of Xerox.

SCQ Document Number: 11-25-89-1.1.0D

Printed: 12/1/89

Contents

1 Network Administration

Introduction 1-1
Kernel Configuration 1-2
Runtime Configuration of STREAMS Drivers 1-5
Setting Interface Parameters 1-8
Local Subnetworks 1-9
Internet Broadcast Addresses 1-11
Routing 1-12
U sing UNIX System Machines as Gateways 1-14
Network Servers 1-15
Network Databases 1-16
Network Tuning and Troubleshooting 1-19

2 Introduction to sendmail

Introduction 2-1
Communicating with sendmail 2-2
Overview of sendmail Operation 2-4
Sendmail Implementation 2-7
Configuration 2-11
Comparing sendmail with Other Mail Programs 2-13

3 Installing and Operating send mail

Introduction 3-1
Basic Installation 3-2
Quick Configuration Startup 3-4
The System Log 3-5
The Mail Queue 3-6
The Alias Database 3-10
Per-User Forwarding (.forward Files) 3-12
Special Header Lines 3-13
Arguments 3-14
Tuning 3-16
The Configuration File 3-20
Command Line Flags 3-35
Configuration Options 3-37
Mailer Flags 3-40
Summary of Support Files 3-42

-i-

4 Name Server Operations Guide for BIND

Introduction 4-1
The N arne Service 4-2
Types of Servers 4-3
Setting Up Your Own Domain 4-5
Remote Servers 4-9
Initializing the Cache 4-10
Standard Resource Records 4-11
Some Sample Files 4-19
Additional Sample Files 4-23
Domain Management 4-25

5 Synchronizing Network Clocks

Introduction 5-1
Guidelines 5-3
Options 5-5
Daily Operation 5-6

-ii-

Chapter 1

Network Administration

Introduction 1-1

Kernel Configuration 1-2

Runtime Configuration of STREAMS Drivers 1-5
Cloning Drivers with One Major Number per Interface 1-5
Cloning Drivers Using unit select or DL_ATIACH 1-6
Non-Cloning Drivers 1-6

Setting Interface Parameters 1-8

Local Subnetworks 1-9

Internet Broadcast Addresses 1-11

Routing 1-12

Using UNIX System Machines as Gateways 1-14

Network Servers 1-15

Network Databases 1-16
The /etc/hosts.equiv File 1-16
The /etc/ftpusers File 1-17

Network Tuning and Troubleshooting 1-19
STREAMS Tuning 1-19
Active Connections Display 1-19
Interfaces 1-21
Routing Tables 1-22
Statistics Display 1-24

Introduction

Introduction
This chapter covers topics related to setting up and administering your
TCP/IP network. When you installed your system, many of these tasks
were perfonned automatically to configure a basic networked system. If
you want to customize your installati9n or expand your network, you
should read this chapter.

If your network is not perfonning well, the section "Network Tuning and
Troubleshooting" at the end of this chapter might provide helpful sugges­
tions.

Network Administration 1-1

Kernel Configuration

Kernel Configuration
The following table lists the drivers that must be included in the kernel,
along with their associated device nodes.

Name
arp
arpproc
ip
icmp
tcp
udp
llcloop
socket
cp
vty
ttyp

Device Node
/dev /inet/ arp
(none)
/dev/inet/ip
/dev /inet/icmp
/dev /inet/tcp
/dev /inet/udp
/dev /llcloop
/dev /socksys
/dev /socksys 1
/dev /ptypnn
/dev /ttypnn

Description

Address Resolution Protocol

Internet Protocol
Internet Control Message Protocol
Transmission Control Protocol
User Datagram Protocol
Loopback interface
Socket compatibility package
Copy protection driver

Virtual TTY drivert

t The Virtual ITY driver is used by rlogin(TC) and telnet(TC). There
must be one ptyp device and one ttyp device for each virtualITY config­
ured. Following ptyp or ttyp in the device node name is a two-digit hexa­
decimal number corresponding to the minor number of the device. For
example, vty minor 0 is referenced by device node /dev/ptypOO, and ttyp
minor 0 is referenced by device node /dev/ttypOO.

In addition to the drivers listed above, you may also include one or more
drivers for your network interface hardware:

Name
e3Ann
e3Bnn
wdnn
sIn

Device Node
/dev/e3Ann
/dev/e3Bnn
/dev/wdnn
/dev/slip

Description
3COM 3C501 ethernet board
3COM 3C503 ethernet board
Western Digital WD8003E ethernet board
Serial Line IF interface

The character n in the device nodes indicates anyone of the digits 0
through 3. That is, up to four boards of each type are supported. If there
were two 3COM 3C503 Ethernet boards, their device nodes would be
/dev/e3AO and /dev/e3Al.

The interrupt vectors you choose for the various Ethernet boards should
be consistent with your hardware requirements.

1-2 TCP/IP Administrator's Guide

Kernel Configuration

All drivers must have references in the following files:

• An entry in letclconflcj.dlmdevice

• A file corresponding to that driver in the letc/conjlsdevice.d direc­
tory

• An entry in letc/conJ/cj.d/sdevice
These drivers are normally added to the kernel configuration during in­
stallation of TCPjIP. The following display shows the information from a
partial mdevice file:

ip ocis iSc ip C 23 0 256 --
rip ocis iSc rip C 24 0 256 - -
socket ocrwis ic sock C 25 0 256 - -
ttyp ocrwi ict ttyp C 26 0 16 - -
vty ocrwi ic vty C 27 0 16 - -
arpprococi is app C 0 0 256 --
e3AO I iScH e3c C 28 1 1 --
imp ocis iSc iarp C 29 0 256 - -
llcloopocis iSc 10 C 30 0 256 --
slip s iSc s1 C 31 0 256 - -
tcp ocis iSc tcp C 33 0 256 - -
udp ocis iSc udp C 35 0 256 ---

Some of the information in this file may vary depending on the system
configuration. In these cases, the numbers that are used depend on the
specific system configuration and are probably different from the values
shown in this example.

Column six contains the major block device number, which varies
depending upon the drivers that were installed in the system and the order
in which they were installed. The actual value for any given driver does
not actually matter as long as each driver has a different number and the
number in this file matches the major number of the device name in the
Idev directory that is supposed to refer to it. The arpproc module is a
special case, as it has no corresponding pathname in Idev; for this driver,
the block major device number is O.

Network Administration 1-3

Kernel Configuration

The following is a partial sdevice file (comments have been removed for
clarity):

sio y 1 7 1 4 3f8 3ff 0 0
sio y 1 7 1 3 2f8 2ff 0 0
slip y 256 0 0 0 0 0 0 0
socket y 256 0 0 0 0 0 0 0
sp Y 0 0 0 0 0 0 0 0
spt y 0 0 0 0 0 0 0 0
ss Y 0 0 0 0 0 0 0 0
str Y 0 0 0 0 0 0 0 0
svdsp Y 1 0 0 0 0 0 0 0
svkbd y 1 0 0 0 0 0 0 0
sxt N 1 0 0 0 0 0 0 0
sy Y 1 0 0 0 0 0 0 0
tcp Y 256 0 0 0 0 0 0 0
timod Y 1 0 0 0 0 0 0 0
tirdwr Y 1 0 0 0 0 0 0 0

The sdevice file is actually assembled from component files in the direc­
tory letc!conflsdevice.d. Each component file contains the line describing
that driver. The "Y" or "N" in the second column indicates whether the
the driver is to be linked into the kernel. Column six is the interrupt vec­
tor, which varies depending upon which cards are in the system and the
vectors for which they are setup.

The format of these files is defined in sdevice(F) and mdevice(F).

1-4 TCP/IP Administrator's Guide

Runtime Configuration of STREAMS Drivers

Runtime Configuration of STREAMS
Drivers
STREAMS configuration (linking the various STREAMS drivers and
modules together) is handled by the sU.,k(ADMN) program, which is nor­
mally executed at boot time by tcp(ADMN). The slink program reads the
file /etclstrcj, which contains a list of STREAMS operations to perform.
Most of /etclstrcj is the same on every system. However, under unusual
circumstances, it may be necessary to edit the section of /etclstrc! that
configures the network interfaces. Examples for various types of network
drivers are provided. In some cases, it is necessary to write new driver
setup procedures. See slink(ADMN) and strcf(SFF) for further informa­
tion.

SLIP drivers are handled automatically by the slattacb(ADMN) com­
mand, which is invoked in the /etcltcp script. This portion of the script is
set up during installation of the SLIP driver.

The following sections present examples of slink configuration com­
mands for several different driver types.

Cloning Drivers with One Major Number per
Interface

Drivers of this type, such as the 3COM 3C503 e3BO driver or Western
Digital WD8003E wd driver, use cloning but do not support a method of
selecting a particular network interface (such as unit select). Rather, this
is done by allocating a separate major device number to each network
interface. The slink function cenet configures an interface of this type.
The command line to configure such an interface has the form:

cenet ip /dev/e3BO e3BO 0

To add a second interface, add the following line:

cenet ip /dev/e3BO e3BO 1

Note that the device node actually used is formed by concatenating the
given device node name prefix (/dev/e3BO) and the given unit number (0
or 1). The interface name is formed in a similar manner using the sup­
plied interface name prefix (e3BO) and the unit number. Thus, the first
example configures an interface named e3BO, which accesses the device
referred to by /dev/e3BO.

Network Administration 1-5

Runtime Configuration of STREAMS Drivers

Cloning Drivers Using unit select or DL ATTACH

These drivers have only one device node and one major number, which
are used for all interfaces. (The SLIP drivers are of this type, but they are
a special case in that individual SLIP interfaces do not need explicit con­
figuration in letclstrcf The STREAMS configuration of SLIP drivers is
handled by the slattach(ADMN) command, which is invoked from
letcltcp during system startup. The appropriate slattach command is au­
tomatically placed in the letcltcp file during installation of TCP/IP Run­
time.) The desired interface is selected using either the unit select or the
DL_ATTACH primitive. (Normally, a given driver recognizes only one of
these primitives.) A primitive is a type of command used to invoke a
primitive operation. A primitive operation can be described as part of an
interface between two programs or pieces of software. In this case, a
primitive operation is a service provided by one of the protocol layers.

The slink functions uenet and denet configure this type of driver; uenet
uses unit select, while denet uses DL ATTACH. The command line to
configure an interface of this type has the form:

uenet ip /dev/~e en 0

For a driver that uses DL_ATTACH, use denet in pl~ce of uenet. To con­
figure a second interface, add the following line:

uenet ip /dev/~e en 1

The denet and uenet functions form the interface name in the same
manner as does cenet (see previous section), but the device node name is
unchanged (ldev/abc is open in both of these examples).

Non-Cloning Drivers
Drivers of this type have a separate device node for each minor device,
with some fixed number of minor devices allocated to each network inter­
face. The slink functions sen etc and senet are used for this driver type.
(The senetc function allows the specification of a convergence module.)
The following command line configures such an interface:

senete ip eli Idev/emdO /dev/emdl enO

If a convergence module is not required, use senet in place of senetc and
omit "eli."

The last argument (enO in. this example) gives the name by which the
newly created interface is known for the purpose of performing
interface-con figuration operations via ifconfig(ADMN). For further in-

1-6 TCP/IP Administrator's Guide

Runtime Configuration of STREAMS Drivers

fonnation, refer to the section entitled "Setting Interface Parameters"
later in this chapter.

Assuming that there are four minor devices assigned to each network
interface, a second interface would be configured as follows:

senete ip eli /iev/emd4 /dev/emd5 enI

Network Administration 1-7

Setting Interface Parameters

Setting Interface Parameters
All network interface drivers, including the loop back interface, require
that their host addresses be defined at boot time. This is done with
ifconfig(ADMN) commands included in the lercltep shell script. These
commands are nonnally set up autom~tically during installation. This
configuration applies only to simple, basic configurations. For example,
if you want to use the network feature of ifconfig, you need to edit
fetclrep manually and modify the ifconfig commands there.

ifconfig can also be used to set options for an interface at boot time.
Options are set independently for each interface and apply to all packets
sent using that interface. These options include disabling the use of the
Address Resolution Protocol. This may be useful if a network is shared
with hosts running software that does not yet provide this function. Alter­
natively, translations for such hosts can be set in advance or published by
a UNIX System host by use of the arp(ADMN) command.

1-8 TCP/IP Administrator's Guide

Local Subnetworks

Local Subnetworks
In TCP/lP, the DARPA Internet support includes the concept of the subnet­
work. This is a mechanism that enables several local networks to appear
as a single Internet network to off-site hosts. Subnetworks are useful
because they allow a site to hide the lo.cal topology, requiring only a sin­
gle route in external gateways. This also means that local network num­
bers may be locally administered.

To set up local subnetworks, you first need to know how much of the
available address space is to be partitioned. The term "address" is used
here to mean the Internet host part of the 32-bit address. Sites with a
class A network number have a 24-bit address space with which to work,
sites with a class B network number have a l6-bit address space; and sites
with a class C network number have an 8-bit address space. To define
local subnets you must steal some bits from the local host address space
for use in extending the network portion of the internet address.

This reinterpretation of internet addresses is done only for local networks.
It is not visible to off-site hosts. For example, if your site has a class B
network number, hosts on this network have an Internet address that con­
tains the network number, 16 bits, and the host number, another 16 bits.
To define 254 local subnets, each possessing at most 255 hosts, 8 bits may
be taken from the local part to be used for the subnetwork ID. (The use of
subnets 0 and all-l's, 255 in this example, is discouraged to avoid confu­
sion about broadcast addresses.) New network numbers are then con­
structed by concatenating the original l6-bit network number with the
extra 8 bits containing the local subnetwork number.

The existence of local subnetworks is communicated to the system when
a network interface is configured with the netmask option to the
ifconfig(ADMN) program. A network mask defines the portion of the
internet address that is to be considered the network part for that network.
This mask normally contains the bits corresponding to the standard net­
work part as well as the portion of the local part that was assigned to sub­
nets. If no mask is specified when the address is set, a mask is set accord­
ing to the class of the network. For example, at Berkeley (class B net­
work 128.32), 8 bits of the local part are reserved for defining subnet­
works. Consequently, the fetcltep file contains lines of the form:

/etc/ifconfig e3BO netmask OxffffffOO 128.32.1.7

This specifies that for interface e3BO, the upper 24 bits of the internet
address should be used in calculating network numbers (netmask
OxffffffOO). The internet address of the interface is 128.32.1.7 (host 7 on

Network Administration 1-9

Local Subnetworks

network 128.32.1). Hosts m on subnetwork n of this network would then
have addresses of the fonn 128.32.n.m. For example, host 99 on network
129 would have an address 128.32.129.99. For hosts with multiple inter-

. faces, the network mask should be set for each interface, although in prac­
tice only the mask of the first interface on each network is actually used.

1-10 TCP/IP Administrator's Guide

Internet Broadcast Addresses

Internet Broadcast Addresses
The broadcast address for internet networks is defined according to
RFC-919 as the address with a host part of all 1's. The address used by
4.2BSD was the address with a host part of O. The UNIX System uses the
standard broadcast address (all 1's) by default, but allows the broadcast
address to be set (with ifconfig) for each interface. This allows networks
consisting of both 4.2BSD and UNIX System hosts to coexist while the
upgrade process proceeds. In the presence of subnets, the broadcast
address uses the subnet field as for normal host addresses, with the
remaining host part set to 1's (or a's, on a network that has not yet been
converted). The UN1X System hosts recognize and accept packets sent to
the logical-network broadcast address as well as those sent to the subnet
broadcast address, and, when using an all-l' s broadcast, also recognize
and receive packets sent to host a as a broadcast.

Network Administration 1-11

Routing

Routing
If your environment allows access to networks not directly attached to
your host, you need to set up routing information to allow packets to be
properly routed. Two schemes are supported by the system. The first
employs the routing table management daemon routed(ADMN) to main­
tain the system routing tables. The routing daemon uses a variant of the
Xerox Routing Information Protocol to maintain up-to-date routing tables
in a cluster of local-area networks. By using the fete/gateways file, the
routing daemon can also initialize static routes to distant networks. (See
the next section for further discussion.) When the routing daemon is
started (usually from fete/tep) , it reads fete/gateways if it exists and
installs those routes defined there. It then broadcasts on each local net­
work to which the host is attached to find other instances of the routing
daemon. If any responses are received, the routing daemons cooperate in
maintaining a globally consistent view of routing in the local environ­
ment. This view can be extended to include remote sites also running the
routing daemon by setting up suitable entries in fete! gateways. See
route(ADMN) for a more thorough discussion.

The second approach is to define a default or wildcard route to a smart
gateway and depend on the gateway to provide leMP routing redirect in­
formation to create dynamically a routing data base. This is done by add­
ing an entry to fete/tep as in the following example:

jete/route add defau~~ srnc~t-gateway 1

See route(ADMN) for more information. The system uses the default
route as a last resort in routing packets to their destinations. Assuming
the gateway to which packets are directed can to generate the proper rout­
ing redirect messages, the system then adds routing table entries based on
the information supplied. This approach has certain advantages over the
routing daemon, but it is unsuitable in an environment where there are
only.bridges. (For example, pseudo-gateways do not generate routing­
redirect messages.) Further, if the smart gateway goes down, there is no
alternative, save manual alteration of the routing table entry, to maintain
service.

The system always listens to, and processes, routing redirect information,
and so it is possible to combine both of the above facilities. For example,
the routing table management process might be used to maintain up-to­
date information about routes to geographically local· networks, while
employing the wildcard routing techniques for distant networks. The

1-12 TCPIIP Administrator's Guide

Routing

netstat(TC) program displays routing table contents as well as various
routing-oriented statistics. The following example displays the contents
of the routing tables:

netstat -r

Alternatively, the following shows the number of routing table entries
dynamically created as a result of routing redirect messages and so forth:

netstat -r -8

Network Administration 1-13

Using UNIX System Machines as Gateways

Using UNIX System Machines as
Gateways
Any UNIX System machine that is connected to more than one network
functions as a gateway. At a gateway machine, packets received on one
network that are destined for a host on another network are automatically
forwarded. If a packet cannot be forwarded to the desired destination, an
ICMP error message is sent to the originator of the packet. When a packet
is forwarded back through the interface on which it arrived, an ICMP
redirect message is sent to the source host if it is on the same network.
This improves the interaction of UNIX System gateways with hosts that
configure their routes via default gateways and redirects.

Local-area routing within a group of interconnected Ethemets and other
such networks can be handled by routed(ADMN). Gateways between the
ARPANET or MILNET and one or more local networks require an addi­
tional routing protocol, the Exterior Gateway Protocol (EGP), to infonn
the core gateways of their presence and to acquire routing infonnation
from the core. (EGP is not currently supported in this product.)

1-14 TCP/IP Administrator's Guide

Network Servers

Network Servers
In the UNIX System, most of the server programs are started by a super
server, called the "internet daemon." The internet daemon, fete/inetd,
acts as a master server for programs specified in its configuration file,
fete/inetd.conf, listening for service requests for these servers, and start­
ing up the appropriate program whenever a request is received. The con­
figuration file includes lines containing a service name (as found in
fete/services), the type of socket the server expects (for example, stream
or dgram), the protocol used with the socket (as found in fete/protocols),
whether to wait for each server to complete before starting up another, the
user name under which the server should run, the server program's name,
and at most five arguments to pass to the server program. Some trivial
services are implemented internally in inetd(SFF), and their servers are
listed as internal. For example, an entry for the file-transfer protocol
server would appear as:

ftp stream tcp nowait root /etc/ftpd ftpd

Consult inetd(ADMN) for more details on the format of the configuration
file and the operation of the Internet daemon.

Network Administration 1-15

Network Databases

Network Databases
Several data files are used by the network library routines and server pro­
grams. Most of these files are host independent and updated only rarely.
The following table lists the data files used.

File
letc/hosts
/etc/networks
/ete/ services
/etc/protocols
/etc/hosts.equiv
/etc/ftpusers
/etc/inetd.conf

Manual Reference
hosts (SFF)
networks (SFF)
services (SFF)
protocols (SFF)
rshd(ADMN)
ftpd(ADMN)
inetd (ADMN)

Use
host names
network names
list of known services
protocol names
list of "trusted" hosts
list of "unwelcome" ftp users
list of servers started by inetd

The files distributed are set up for ARPANET or other internet hosts.
Local networks and hosts should be added to describe the local configura­
tion. Network numbers must be chosen for each Ethernet. For sites not
connected to the Internet, these can be chosen more or less arbitrarily;
otherwise, the normal channels should be used for allocation of network
numbers.

The /etc/hosts.equiv File

There are several files that are used to establish user equivalence. One is
the letclhosts.equiv file, which covers the system as a whole, except for
the root account. The other is the .rhosts file in the individual user
account's home directory. This file covers only the individual user
account. (For root, this is I.rhosts.) These two files work together with a
third file, letc/passwd, to determine the extent of user equivalence.

There are two ways to establish user equivalence:

• An entry in .rhosts and in letclpasswd

• An entry in /etclhosts.equiv and in /etclpasswd

In both cases, letclpasswd must contain an entry for the user name from
the remote machine. However, the two methods have differing scopes. If
the file .rhosts is used in a particular account, then user equivalence is
established for that account only. However, if there is an entry in
letclhosts.equiv for a host name and an account on that host, then that
account has user equivalence for any account (except root). If the entry

1-16 TCP/lP Administrator's Guide

Network Databases

in letclllOsts.equiv has only the remote host name, then any user on that
host has user equivalence for all local accounts (except root). Such a host
is considered a "trusted host."

Entries in letclhosts.equiv can create large holes in system security.
Be sparing in their use. In most circumstances, it is unwise to create
entries that allow all users on remote machines to access all
accounts on your local machine.

For example, suppose you have an account under the user name "Testl"
on machine "Admin." You want to establish user equivalence on the
remote machine "Systemb." The administrator for the machine Systemb
must add an entry to the letclpasswd file for an account name Testl. Note
that this file cannot be edited directly under UNIX. You must use the
sysadmsh(ADM) utility to add a user ~to the letclpasswd file. They must
also include the following entry in the file letclhosts.equiv on Systemb:

Admin Testl

This gives user equivalence for all accounts except root to user Testl on
the machine Systemb. Suppose that Testl really only needed access to
the account Testb on Systemb. Then it would be better to remove the
above entry from letclhosts.equiv on Systemb and use the following entry
in the file .rhosts in the home directory for Testb:

Admin Test::.

Note that entries for .rhosts must include both the system name and the
account name. The file letclhosts.equi!· does allow entries for the system
name only, as discussed earlier.

If there are entries in both .rhosts and letclhosts.equiv for the same ma­
chine or machine/account combination, then the entry from
letclhosts.equiv determines the extent of user equivalence.

The letc/ftpusers File

The ftp server included in the system provides support for an anonymous
ftp account. Because of the inherent security problems with such a facil­
ity, you should read this section carefully if you want to provide such a
service.

Network Administration 1-17

Network Databases

An anonymous account is enabled by creating a user called ftp. When a
client uses the anonymous account, a chroot(ADM) system call is per­
formed by the server to restrict the client from moving outside that part of
the filesystem where the ftp home directory is located. Because a chroot
call is used, certain programs and files used by the server process must be
placed in the ftp home directory. Further, you must be sure that all direc­
tories and executable images are unwritable. The following directory
setup is recommended: .

cd -ftp
chmod 555 .; chown ftp .; chgrp ftp .
mkdir bin etc pub lib dev
chown root bin etc lib dev
chmod 555 bin etc lib dev
chown ftp pub
chmod 777 pub
cd bin
ep /bin/sh /bin/ls .
chmod 111 sh Is
cd .. /etc
ep /etc/passwd /etc/grc 'P •
chmod 444 passwd group
cd • • /lib
ep /shlib/libc s .
cd ., -
find /dev/socksys -prir~ I epio -dumpv .

When local users want to place files in the anonymous area, they must
place them in a subdirectory. In the setup here, the directory]ip/pub is
used.

Another issue to consider is the / etc! passwd file placed here. It can be
copied by users who use the anonymous account. They can then try to
break the passwords of users on your machine for further access. A good
choice of users to include in this copy might be root, daemon, uucp, and
the ftp user. All passwords here should probably be *.

Aside from the problems of directory modes and such, the ftp server pro­
vides a loophole for interlopers if certain user accounts are allowed. The
file letc!ftpusers is checked on each connection. If the requested user
name is located in the file, the request for service is denied. It is sug­
gested that this file contain at least the following names:

uucp
root

Accounts with nonstandard shells should be listed in this file. Accounts
without passwords need not be listed in this file; the ftp server does not
service these users.

1-18 TCP/IP Administrator's Guide

Network Tuning and Troubleshooting

Network Tuning and Troubleshooting
It is likely that from time to time you will encounter problems using your
network. The first thing to do is check your network connections. On
networks such as the Ethernet a loose cable tap or poorly placed power
cable can result in severely deteriorated,service. The ping(ADMN) com­
mand is particularly useful for confirming the existence of network con­
nections. If there is no hardware problem, check next for routing problems
and addressing problems.

The netstat(TC) program can also be helpful in tracking down hardware
malfunctions. In particular, look at the -i and -s options in the manual
page. The netstat(TC) program also shows detailed information about
network behavior. Examples of netstat displays appear later in this
chapter.

If you think a communication protocol problem exists, consult the proto­
col specifications and attempt to isolate the problem in a packet trace.
The SO_DEBUG option can be supplied before establishing a connection
on a socket, in which case the system traces all traffic and internal actions
(such as timers expiring) in a circular trace buffer. This buffer can then be
printed out with the trpt(ADMN) program. Most of the servers distrib­
uted with the system accept a -d option forcing all sockets to be created
with debugging turned on. Consult the appropriate manual pages for
more information.

STREAMS Tuning

The crasb(ADM) command can be used to display STREAMS usage of
buffers of various sizes. Typical symptoms of inadequate STREAMS
buffer space include the following: lost connections for no reason; pro­
cesses that communicate over the network hang; and programs that com­
municate over the network suddenly malfunction. Use the UNIX Link Kit
configure command to increase STREAMS buffer resources.

Active Connections Display

The active connections display is the default display of the netstat(TC)
command. It displays a line of information for each active connection on
the local machine under the headings described below.

Network Administration 1-19

Network Tuning and Troubleshooting

netstat -a

Active Internet connections (including servers) are as follows:

scobox$ netstat -a
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address foreign Address (state)
ip 0 0 *.* *.*
tcp 0 0 scobox.telnet pcoter.2460 ESTI\BLISHED
tcp 0 0 *.smtp *.* LISTEN
tcp 0 0 *.1024 *.* LISTEN
tcp 0 0 * .sunrpc *.* LISTEN
tcp 0 0 *.chargen *.* LISTEN
tcp 0 0 * . daytime *.* LISTEN
tcp 0 0 * .time *.* LISTEN
tcp 0 0 *.domain *.* LISTEN
tcp 0 0 *.finger *.* LISTEN
tcp 0 0 *.exec *.* LISTEN
tcp 0 0 *.ftp *.* LISTEN
tcp 0 0 *.telnet *.* LISTEN
tcp 0 0 * . login *.* LISTEN
tcp 0 0 *.shell *.* LISTEN
tcp 0 0 scobox.listen *.* LISTEN
tcp 0 0 scobox.nterrn *.* LISTEN
tcp 0 0 *.* *.* CLOSED
udp 0 0 *.1035 *.*
udp 0 0 *.1034 *.*
udp 0 0 *.1033 *.*
udp 0 0 *.1032 *.*
udp 0 0 *.2049 *.*
udp 0 0 *.1028 *.*
udp 0 0 *.sunrpc *.*
udp 0 0 scobox.domain *.*
udp 0 0 localhost.domain *.*
scobox$

1-20 TCP/IP Administrator's Guide

Network Tuning and Troubleshooting

Descriptions of the Display Headings

• The protocol used in the connection.

• Receive queue. The number of received characters (bytes) of data
waiting to be processed.

• Send queue. The number of characters (bytes) of data waiting to
be transmitted. .

• The port number of the local connection, displayed symbolically.
The port numbers are taken from the fete! services file.

• The port number of the remote connection, displayed symbolically.
The port numbers are taken from the letcl services file.

• The current state of the connection. Each protocol has its own set
of states. For the protocol-dependent states that can be displayed,
see the appropriate protocol specification.

Interfaces

This display describes activities on all the local machine's interfaces to
the net, in the form of a table of cumulative statistics. This display is
available through netstat with the -i option.

netstat -i

scobox$ net stat -i
Name Mtu Network Add-ress Ipkts Ierrs Opkts Oerrs Collis
enO 1500 sco-eng-ne scobox No Statistics Available
e3BO 1500 128.174.14 128.174.14.1 0 0 0 0 0
100 2048 loopback localhost 189 0 189 0 0
scobox$

Network Administration 1-21

Network Tuning and Troubleshooting

Descriptions of the Display Headings

Each interface is described by a line with the following headings:

Name

Mtu

Network

Address

Ipkts

lerrs

Opkts

Oerrs

Collis

Routing Tables

The name of the network interface. For example,
enO is the name of the first Ethernet interface
board.

Maximum transmission unit (in bytes). This is the
largest size pennitted for any single packet sent
through this interface.

The name of the network address of the interface
as given in tetclnetworks.

The name of the machine address of the interface
in tetclhosts.

Input packets. The number of packets received on
the interface.

Input errors. The number of errors detected in
packets of data received on this interface.

Output packets. The number of packets transmit­
ted on the interface.

Output errors. The number of errors detected and
corrected in packets of data transmitted on this
interface.

Collisions that occurred on the network.

The Routing Table display provides information about the usage of each
route you have configured. A route consists of a destination host or net­
work and a network interface used to exchange packets. Direct routes are
created for each interface attached to the local host.

1-22 TCP/IP Administrator's Guide

netstat -r

scobox$ netstat -r
Routing tables
Destination Gateway

Network Tuning and Troubleshooting

Refcnt Use
localhost localhost

Flags
UH 4 0

Interface
100

sco-eng-net
128.174.14
128.174
scobox$

scobox
128.174.14.1
scoffle

U
U
UG

4 537 enO
o 0 e3BO
o 0 enO

Descriptions of the Display Headings

The infonnation displayed for each route is as follows.

Destination

Gateway

Flags

Refcnt

Use

Interface

The network or machine to which this route
allows you to connect.

The name of the gateway you configured for this
route. If you are directly connected, this is a local
address. Otherwise, it is the name of the machine
through which packets must be routed.

The state of the route. Valid states are:

u up
G a route to a gateway
N a route to a network
H a route to a host

The current number of active connections using
the route. Connection-oriented protocols nor­
mally hold on to a single route for the duration of
the connection, while connectionless protocols
obtain a route and then discard it as needed.

The current number of packets sent using this
route.

The name of the physical network interface used
to begin the route.

Network Administration 1-23

Network Tuning and Troubleshooting

Statistics Display

The Protocol Statistics display provides protocol-specific errors. The
errors in the display are grouped under headings for each higher-level
protocol in your system. The headings are protocol-specific.

• Internet Protocol (ip)

• Internet Control Message Protocol- (icmp)

• Transmission Control Protocol (tcp)

• User Datagram Protocol (udp)

netstat -s

ip:

ianp:

1-24

3209 total packets received
o bad header checksums
o with size smaller than minimum
o with data size < data length
o with header length < data size
o with data length < header length
o fragments received
o fragments dropped (dup or out of space)
o fragments dropped after timeout
o packets forwarded
o packets not forwardable
o redirects sent

1 call to icmp error
o errors not generated because old message was icmp
Output histogram:

destination unreachable: 1

(Continued on next page.)

TCP/IP Administrator's Guide

Network Tuning and Troubleshooting

tcp:

(Continued)

o messages with bad code fields
o messages < minimum length
o bad checksums
o messages with bad length
Input histogram:

destination unreachable: 640
o message responses generated

348 packets sent
202 data packets (3661 bytes)
o data packets (0 bytes) retranSIT~tted

101 ack-only packets (60 delayed)
o URG only packets
o window probe packets
o window update packets
45 control packets

411 packets received
233 acks (for 3654 bytes)
19 duplicate acks
o acks for unsent data
200 packets (1677 bytes) receivea 1n-sequence
o completely duplicate packets (0 b~es)
o packets with some dup. data (0 bytes duped)
9 out-of-order packets (0 bytes)
o packets (0 bytes) of data after wL~dow
o window probes
o window update packets
o packets received after close
o discarded for bad checksums
o discarded for bad header offset fields
o discarded because packet too short

25 connection requests
12 connection accepts
21 connections established (including accep:s)
72 connections closed (including 0 drops)
16 embryonic connections dropped
233 segments updated rtt (of 259 attempts)
o retransmit timeouts

o connections dropped by rexmit timeout

(Continued on next page.)

Network Administration 1-25

Network Tuning and 1roubleshooting

(Continued)

o persist timeouts
o keepalive timeouts

o keepali ve probes sent
o connections dropped by keepalive

o connections lingered
o linger timers expired
o linger timers cancelled
o linger timers aborted by signal

udp:
o incomplete headers
o bad data length fields
o bad checksums

1-26 TCP/lP Administrator's Guide

Chapter 2

Introduction to sendmail

Introduction 2-1

Communicating with sendmail 2-2
User Interface Program 2-2
SMTP over Pipes 2-3
SMTP over a Berkeley-Style Socket 2-3

Overview of sendmail Operation 2-4
Argument Processing and Address Parsing 2-4
Collecting Messages 2-4
Delivering Messages 2-5
Queueing for Retransmission 2-5
Return to Sender 2-5
Editing the Message Header 2-5
The Configuration File 2-5

Sendmail Implementation 2-7
Sendmail and Arguments 2-7
Mailing to Files and Programs 2-7
Aliasing, Forwarding and Including Mail 2-8
Collecting Messages 2-9
Delivering Messages 2-10
Queued Messages 2-10

Configuration 2-11
Macros 2-11
Header Declarations 2-12
Mailer Declarations 2-12
Rules for Rewriting an Address 2-12
Setting Options 2-12

Comparing sendmail with Other Mail Programs 2-13
Comparing sendmail with delivermail 2-13
Comparing sendmail with MMDF 2-14
Sendmail and the Message-Processing Module 2-14

Introduction

Introduction
The sendmail program acts as a central "post office" which routes inter­
network mail. Such mail has more complex addresses than local mail or
mail within a single network, because the various networks which com­
pose an internetwork often have differeI,lt address standards which must
be reinterpreted if the mail is to be routed correctly. The sendmail pro­
gram interprets and translates addresses to ensure that mail reaches the
intended destination.

The sendmail program does not interface with the user. Neither does it
perform the actual mail delivery. Rather, it collects a message generated
by a user interface program such as UNIX mail(C), edits the message as
required by the destination network, and calls appropriate mailers to carry
out the mail delivery or queueing for network transmission. This allows
the insertion of new mailers at minimum cost. The sendmail program is
designed to interface with such mail delivery channels as UUCP and
SMTP (Simple Mail Transfer Protocol).

Introduction to sendmail 2-1

Communicating with sendmail

Communicating with sendmail
There are several ways in which send mail can communicate with the out­
side world, both in receiving and in sending mail:

• the conventional UNIX argument vector/return status (that is, a
user interface program which invokes send mail)

• SMTP (Simple Mail Transfer Protocol) over a pair of UNIX pipes

• SMTP over a Berkeley-style socket

These methods are discussed in the sections that follow.

User Interface Program

This technique is the standard UNIX method for communicating with the
process. In this method, a user interface program invokes send mail. A
list of recipients is sent in the argument vector (that is, the list of argu­
ments), and the message body is sent on the standard input. Anything that
the mailer prints is simply collected and sent back to the sender if there
were any problems. The Return or Exit status from the mailer is collected
after the message is sent, and a diagnostic is printed if appropriate.

Here is an example which illustrates the concept of argument vectors:

main (argc, argv)
int argc; /* Number of a=guments */
char *argv [1 ;
{

/* argument vector (~ist of arguments) */

int i;

for (i = 1; i < argc, i++)

printf (%s%c, argv[il, (i<argc-l) ?

exit (0);

'\n') ;

Since argv[O] is the name by which the program was invoked, argc will
be at least 1.

2-2 TCPIIP Administrator's Guide

Communicating with send mail

SMTP over Pipes

The Simple Mail Transfer Protocol (SMTP) can be used to run an interac­
tive lock-step interface with the mailer. A subprocess is still created, but
no recipient addresses are passed to the mailer via the argument list.
Instead, they are passed one at a time in commands sent to the process's
standard input. Anything appearing on the standard output must be a
reply code in a special fonnat. The pipes are between the parent process
and the child (sub)process's stdout and stdin. (The interactive lock-step
interface is the interactive control between the parent process and the
subprocess.) For more infonnation on SMTP, see its definition in
RFC821. There is also some related material in RFC822.

SMTP over a Berkeley-Style Socket

This technique is similar to the previous one, except that it uses a
Berkeley-style socket. This method is exceptionally flexible, as it is not
necessary for the mailer to reside on the same machine. This technique is
normally used to connect to a sendmail process on a different machine.

Introduction to sendmail 2-3

Overview of sendmail Operation

Overview of sendmail Operatio.n
When a sender wants to send a message, a request is issued to sendmail
using one of the three methods described above. The sendmail program
operates in two distinct phases. During the first phase, it collects and
stores the message. During the second ppase, the message is delivered. If
errors occur during the second phase, send mail creates and returns a new
message describing the error. Alternatively, it may return a status code to
indicate what went wrong.

Argument Processing and Address Parsing

If sendmail is called using SMTP over pipes or through a socket, the fol­
lowing sequence occurs. The arguments are first scanned and option spe­
cifications are processed. Recipient addresses are then collected, either
from the command line or from the SMTP command RCPT (recipient),
and a list of recipients is created. Aliases are expanded at this point. This
includes any aliases that are part of a mailing list. At this stage, as much
validation of the addresses as possible is done. Syntax is checked and
local addresses are verified, but detailed checking of host names and
addresses is deferred until delivery. Forwarding is also performed as the
local addresses are verified.

The send mail program appends each address to the recipient list after
parsing the recipient list. When a name is aliased or forwarded, the old
name is retained in the list, and a flag is set that tells the delivery phase to
ignore this recipient. This list is kept free from duplicates, preventing
alias loops and duplicate messages from being delivered to the same reci­
pient' as might occur if a person is in two groups.

Collecting Messages

The sendmail program collects the message after the address parsing is
complete. The message should have a header at the beginning. No for­
matting requirements are imposed on the message, except that they must
be lines of text; binary data is not allowed. The header is parsed and
stored in memory, and the body of the message is saved in a temporary
file.

To simplify the program interface, the message is collected even if no
addresses are valid. The message is then returned to the sender with an
error.

2-4 TCP/IP Administrator's Guide

Overview of sendmail Operation

Delivering Messages

For each unique mailer and host in the recipient list, send mail calls the
appropriate mailer. Each mailer invocation sends to all users receiving
the message on one host. Mailers that accept only one recipient at a time
are handled accordingly.

The message is sent to the mailer, using one of the same three interfaces
used to submit a message to sendmaU. Each copy of the message is
prepended by a customized header. The mailer status code is caught and
checked, with a suitable error message given as appropriate. The exit
code must conform to a system standard; otherwise, a generic message
such as "Service unavailable" is given.

Queueing for Retransmission

If the mailer returns a status code that indicates the possibility of being
able to handle the mail later, sendmail puts the mail on the queue and
tries again later.

Return to Sender

If errors occur during processing, send mail returns the message to the
sender for retransmission. If the user agent (mail) detects the error, then
it will be put in the dead. letter file located in the sender's home directory.
If a sendmail server is connecting with a send mail client on another ma­
chine, then the user is presumed to have become detached from the tran­
saction, and so the message is mailed back to them.

Editing the Message Header

A certain amount of editing occurs automatically to the message header.
Header lines can be inserted under control of the configuration file. Some
lines can be merged. For example, a "From:" line and a "Full-name:"
line can be merged under certain circumstances.

The Configuration File

Almost all configuration information for send mail is read at runtime from
the ASCII file lusrlUblsendmail.cf This file has macro definitions encoded

Introduction to sendmail 2-5

Overview of send mail Operation

III It. These define such details as the value of macros used internally,
header declarations, mailer definitions and address rewriting rules.

The header declarations are used to tell send mail the format of header
lines that will be processed specially. For example, any lines that are
added or reformatted receive special processing. The mailer definitions
give infonnation such as the location and characteristics of each mailer.
The address rewriting rules enable sendmail to be highly configurable
and customizable, though this comes at the cost of some complexity. See
the chapter "Installing and Operating sendmail" for more information on
the sendmail configuration file.

2-6 TCP/lP Administrator's Guide

Sendmail Implementation

Sendmail Implementation
The following sections contain infonnation on the implementation of the
sendmail program.

Sendmail and Arguments

Arguments to send mail can be flags and addresses. The send mail pro­
gram is initially invoked through a command line in the file Jetc/tep. Vari­
ous flags can be set on this command line to control different processing
options. For example, there are flags to run in ARPANET mode, to run as
a daemon, to initialize the alias database, to use the SMTP protocol, and
many other options. Control messages can also be sent to sendmail while
it is operating.

Address arguments can be given following flag arguments, unless you are
running in SMTP mode. These addresses follow the syntax in RFC822
for ARPANET address fonnats. Briefly, the fonnat is as follows:

• Anything in parentheses is thrown away (as a comment).

• Arguments in angle brackets « » are preferred over anything
else. This rule implements the ARPANET standard. This means
that addresses of the following fonn will send to the electronic ma­
chine-address rather than the human user name.

user name <machine-address>

• Double quotes (") quote phrases; backslashes (\) quote charac­
ters. Backslashes are more powerful in that they will cause other­
wise equivalent phrases to compare differently.

Parentheses, angle brackets, and double quotes must be properly balanced
and nested.

Mailing to Files and Programs

Any address passing through the initial parsing algorithm as a local
address (that is, not appearing to be a valid address for another mailer) is
scanned for two special cases. If prefixed by a vertical bar (I), the rest of
the address is processed as a shell command. If the user name begins
with a slash mark (/), the name references the name of a file instead of a
login name.

Introduction to sendmail 2-7

Sendmail Implementation

Files that have setuid or setgid bits set but no execute bits set have those
bits honored if send mail is being run by root. For example, if the file per­
missions are rwSrw-r-- or rw-rwSr--, then these file permission bits will
be honored. However, if any execute bits are set, such as rwsr-xr--, then
the read and write permissions will not be honored. (See Is(C) and
chmod(C) for more information on file permissions.)

Aliasing, Forwarding and Including Mail

The send mail program reroutes mail in any of the following three ways:

• by aliasing

• by forwarding

• by inclusion

Aliasing applies across the entire system. Forwarding allows all users to
reroute incoming mail destined for their accounts. Inclusion directs send­
mail to read a file for a list of addresses. Forwarding is normally used in
conjunction with aliasing. Each of these methods is described in more
detail in the next three sections.

Aliasing

Aliasing matches names to address lists using a system-wide file. This
file is indexed to speed access. Only names that parse as local are
allowed as aliases. This guarantees a unique key. The alias file is usually
configured to be lusrlliblaliases. This file is not in the same format as the
alias file lusrlliblmaillaliases. The identity of the alias file is configured
through the sendmail.cf file. (See the chapter "Installing and Operating
sendmail" for more information on alias files.)

Forwarding

After aliasing, recIpIents that are local and valid are checked for the
existence of a forward file in their home directory. If one exists, the mes­
sage is not sent to that user, but rather to the list of users in that file.
Often, this list will contain only one address, and the feature will be used
for network mail forwarding.

Forwarding also permits a user to specify a private incoming mailer. For
example, forwarding to:

" I /usr/local/newrnail myname"

will use a different incoming mailer.

2-8 TCPIIP Administrator's Guide

Send mail Implementation

Including

The syntax for including a file is:

: include: pathname

An address of this form reads the file specified by pathname and sends to
all users listed in that file.

The intention is not to support direct use of this feature, but rather to use
this as a subset of aliasing. In the following example, the fonn of the
alias used is a method of letting a project maintain a mailing list without
interaction with the system administration, even if the alias file is pro­
tected.

project: :include:/usr/project/userlist

It is not necessary to rebuild the index on the alias database when a list of
this type is changed. All that is needed is to edit the include file to reflect
the changes. In this example, the include file is lusrlprojectl userlist.

Collecting Messages

Once all recipient addresses are parsed and verified, the message is col­
lected. The message comes in two parts. These parts are:

• the message header

• the message body

The two parts are separated by a blank line.

The header is formatted as a series of lines of the fonn:

field-name: field-value

Field-value can be split across lines by starting the lines that follow with
a space or a tab. Some header fields have special internal meaning, in
which case they are subject to special processing. Other headers are sim­
ply passed through. Some header fields, such as time stamps, may be
added automatically.

The message body is a series of text lines. It is completely uninterpreted
and untouched by send mail, except that lines beginning with a dot (.)
have the dot doubled when transmitted over an SMTP channel. This extra
dot is stripped by the receiver. (SMTP uses lines beginning with a dot to
signal the end of the message.)

Introduction to sendmail 2-9

Send mail Implementation

Delivering Messages

The send queue is sequenced by the receiving host before transmission in
order to implement message batching. Each address is marked as it is
sent, and so rescanning the list is safe. An argument list is built as the
scan proceeds. Mail to files is detected during the scan of the send list.

After a connection is established, sendmail makes the changes to the
header necessary for correct interpretation by a particular mailer and
sends the result to that mailer. If any mail is rejected by the mailer, a flag
is set to invoke the return-to-sender function after all delivery completes.

Queued Messages

If the mailer returns a "temporary failure" exit status, the message is
queued. A control file is used to describe the recipients to be sent to and
various other parameters. This control file is formatted as a series of
lines, each describing a sender, a recipient, the time of submission, or
some other significant parameter of the message. The header of the mes­
sage is stored in the control file, so that the associated data file in the
queue is just the temporary file that was originally collected.

2-10 TCPIIP Administrator's Guide

Configuration

Configuration
Configuration is controlled primarily by the configuration file
/usrllib/ sendmail.ef, which is read at startup. The sendmail program
should not need to be recompiled unless it is necessary to perform any of
the following:

• Change operating systems (V6, V7/32V, 4BSD).

• Remove or insert the DBM (UNIX database) library.

• Change ARPANET reply codes.

• Add header fields requiring special processing.

Adding mailers and changing parsing (that is, rewriting) or routing infor­
mation do not require recompilation of sendmail. Instead, these changes
are made in the configuration file.

If the mail isbeingsentbyalocaluser.andthefile.maile! exists in the
sender's home directory, that file is read as a configuration file after the
system configuration file. The primary use of this feature is to add header
lines.

The configuration file encodes macro definitions, header definitions,
mailer definitions, rewriting rules, and options. The following sections
contain a brief description of some of the infonnation contained in the
send mail configuration file. See the chapter "Installing and Operating
sendmail" for more information on the configuration file.

Macros

Macros can be used in three ways. They can be used to transmit unstruc­
tured textual information into the mail system. An example of this is the
name that sendmail uses to identify itself in error messages. Macros can
be used to transmit information from sendmail to the configuration file in
creating other fields (such as argument vectors to mailers). Examples are
the name of the sender, and the host and user of the recipient. Other mac­
ros are unused internally. These macros can be used as shorthand in the
configuration file.

Introduction to sendmail 2-11

Configuration

Header Declarations

Header declarations infonn send mail of the fonnat of known header
lines. Knowledge of a few header lines is built into sendmail, such as the
From: and Date: lines.

Most configured headers will automatically be inserted in the outgoing
message if they don't exist in the incoming message. Certain headers are
suppressed by some mailers.

Mailer Declarations

Mailer declarations tell sendmail of the various mailers available to it.
The mailer declaration specifies the internal name of the mailer, the path­
name of the program to call, some of the flags associated with the mailer,
and an argument vector to be used in the call to the mailer.

Rules for Rewriting an Address

The heart of address parsing in send mail is a set of rewriting rules. These
are an ordered list of pattern-replacement rules, which are applied to each
address. These rewriting rules are contained in the configuration file for
send mail. The configuration file also supports the editing of addresses
into different fonnats. For example, an address of the fonn:

ucsfcgl!tef

might be mapped into:

tef@ucsfcgl.UUCP

to conform to the syntax of a different domain. Translations can also be
done in the opposite direction.

Setting Options

There are several options that can be set from the configuration file.
These include the pathnames of various support files, timeouts, default
modes and so forth.

2-12 TCP/IP Administrator's Guide

Comparing send mail with Other Mail Programs

Comparing send mail with Other Mail
Programs
The remainder of this chapter compares send mail with three other mail
programs:

• delivermail

• MMDF (Multichannel Memorandum Distribution Facility)

• MPM (Message Processing Module)

These comparisons are provided for those who are familiar with these
other mail routing programs.

Comparing sendmail with deliver mail

The sendmail program is an outgrowth of delivermail. The primary
differences are:

• Configuration information is not compiled in. This change
simplifies many of the problems of moving to other machines. It
also simplifies debugging of new mailers.

• Address parsing is more flexible. For example, delivermail only
supported one gateway to any network, whereas sendmail can be
sensitive to host names and reroute to different gateways.

• The forward and include features of send mail eliminate the
requirement that the system alias file be writable by any user (or
that an update program be written, or that the system administra­
tion make all changes).

• The send mail program supports message batching across networks
when a message is being sent to multiple recipients.

• A mail queue is provided in sendmail. Mail that cannot be
delivered immediately but can potentially be delivered later is
stored in this queue for a later retry. The queue also provides a
buffer against system crashes; after the message has been col­
lected, it may be reliably redelivered even if the system crashes
during the initial delivery.

Introduction to sendmail 2-13

Comparing sendmail with Other Mail Programs

• The sendmail program uses the networking support of 4.2BSD,
which provides a direct interface to networks such as ARPANET
or Ethernet using SMTP (the Simple Mail Transfer Protocol) over a
TCP/lP connection.

Comparing sendmail with MMDF

The Multichannel Memorandum Distribution Facility (MMDF) spans a
wider problem set than send mail. For example, the domain of MMDF
includes a "phone network" mailer, whereas sendmail calls on pre­
existing mailers in most cases.

MMDF and sendmail both support aliasing, customized mailers, message
batching, automatic forwarding to gateways, queueing, and retransmis­
sion. MMDF supports two-stage timeout, which sendmail does not sup­
port. (MMDF uses two-stage timeout when routing mail through ma­
chines to users. If a message can't be forwarded to a particular machine
or to a particular user on a machine, a warning is sent back to the mail
message sender. This is stage 1. At some future time (configurable by
the administrator), the message is relayed again. If it fails, a failure mes­
sage is returned to the sender, and MMDF makes no further attempts to
resend the original message. This is stage 2.)

The configuration for MMDF is compiled into the code.

Since MMDF does not consider backwards compatibility as a design
goal, the address parsing is simpler but much less flexible.

It is somewhat harder to integrate a new channel into MMDF. In particu­
lar, MMDF must know the location and format of host tables for all chan­
nels, and each channel must speak a special protocol. This allows MMDF
to do additional verification (such as verifying host names) at submission
time.

MMDF strictly separates the submission and delivery phases. Although
sendmail has the concept of each of these stages, they are integrated into
one program, whereas in MMDF they are split into two programs.

Sendmail and the Message-Processing Module

The Message Processing Module (MPM) matches sendmail closely in
terms of its basic architecture. However, like MMDF, the MPM includes
the network interface software as part of its domain.

2-14 TCP/IP Administrator's Guide

Comparing sendmail with Other Mail Programs

MPM also postulates a duplex channel to the receiver, as does MMDF.
This allows simpler handling of errors by the mailer than is possible in
send mail. When a message queued by send mail is sent, any errors must
be returned to the sender by the mailer itself. Both MPM and MMDF
mailers can return an immediate error response, and a single error pro­
cessor can create an appropriate response.

MPM prefers passing the message as a structured object, with { type,
length, value} triples. Such a convention requires a much higher degree
of cooperation between mailers than is required by send mail. MPM also
assumes a universally agreed-upon internet name space (with each
address in the form of a net-host-user tuple), which sendmail does not.

Introduction to sendmail 2-15

Chapter 3

Installing and Operating
sendmail

Introduction 3-1

Basic Installation 3-2
Off-the-Shelf Configurations 3-2
Installation 3-3

Quick Configuration Startup 3-4

The System Log 3-5
Format 3-5
Levels 3-5

The Mail Queue 3-6
Printing the Queue 3-6
Format of Queue Files 3-6
Forcing the Queue 3-8

The Alias Database 3-10
Rebuilding the Alias Database 3-10
Potential Problems 3-11

Per-User Forwarding (.forward Files) 3-12

Special Header Lines 3-13
Retum-Receipt-to: 3-13
Errors-To: 3-13
Apparently-To: 3-13

Arguments 3-14
Queue Interval 3-14
Daemon Mode 3-14
Forcing the Queue 3-14
Debugging 3-14
Trying a Different Configuration File 3-15
Changing the Values of Options 3-15

Thning 3-16
Timeouts 3-16
Read Timeouts 3-16
Forking During Queue Runs 3-17
Queue Priorities 3-17
Delivery Mode 3-18
File Modes 3-18

The Configuration File 3-20
The Syntax 3-20
The Semantics 3-23
The "error" Mailer 3-29
Building a Configuration File from Scratch 3-29

Command Line Flags 3-35

Configuration Options 3-37

Mailer Flags 3-40

Summary of Support Files 3-42

Introduction

Introduction
The send mail program implements a general purpose internetwork mail­
routing facility under the UNIX operating system. It is not tied to anyone
transport protocol. Its function may be likened to a crossbar switch, relay­
ing messages from one domain into anot;her. Included as part of this pro­
cess, it can do a limited amount of message-header editing to put the mes­
sage into a format that is appropriate for the receiving domain. All of this
is done under the control of a configuration file.

Due to the requirements of flexibility for sendmail, the configuration file
can seem somewhat unapproachable. However, there are only a few
basic configurations for most sites, for which standard configuration files
have been supplied. Most other configurations can be built by adjusting
existing configuration files incrementally.

Although sendmail is intended to run without the need for monitoring, it
has a number of features that may be used to monitor or adjust the opera­
tion under unusual circumstances.

Installing and Operating sendmail 3-1

Basic Installation

Basic Installation
There are two basic steps to installing send mail. They are:

• building the configuration table

• installing the software

The configuration table is a file that sendmail reads when it starts up.
This file describes the mailers that sendmail knows about, how to parse
addresses, how to rewrite the message header, and the settings of various
options. Although the configuration table is quite complex, a configura­
tion can usually be built by adjusting an existing off-the-shelf configura­
tion. The second step is performing the actual installation. This means
creating the necessary files and so on.

The remainder of this section describes the installation of sendmail. The
description assumes that you can use one of the existing configurations
and that the standard installation parameters are acceptable.

Off-the-Shelf Configurations

Several sample configuration files are included with this release. They
are found in the directory lusrllocalllibi sendmail. The makefile in the cf
directory makes two files, node.cf and relay.cf. Node.cf is the configura­
tion to use on a host that is not a central mail router. Relay.cf should be
used on a major mail relay machine in your installation.

Once these variables are changed, the file is now ready for installation as
/usr /lib/ sendmail.cf.

The configuration file you need should be copied to a file with the same
name as your system, as in the following example:

cp relay.cf laidbak.cf

There are some variables that need to be changed in both files, and the
Tune script in the cf directory can be used to take care of this. These
variables are as follows:

3-2 TCP/IP Administrator's Guide

Basic Installation

Tunable Parameters
Parameter Value
ZZHOST Host Name
ZZRELAY Mail Relay Host Name
ZZDOMAIN Your subdomain, e.g. Lachman.
ZZDOM Your domain, e.g. COM.

You can use the Tune script to change these variables. Tune takes the
qualified hostname and the relay as arguments. It splits the hostname up
to generate ZZHOST, ZZDOMAIN, and ZZDOM.

This file is now ready for installation as lusrl/iblsendmail.cf

Installation

For details about how to install the sendmail software, see the TCPIlP
Runtime Release and Installation Notes.

Installing and Operating sendmail 3-3

Quick Configuration Startup

Quick Configuration Startup
A fast version of the configuration file can be set up by using the -bz flag,
as in the following example:

/usr/lib/sendmail -bz

This creates the file lusrlliblsendmailfc (frozen configuration). This file
is an image of sendmail' s data space after reading in the configuration
file. If this file exists, it is used instead of lusrl libl sendmail.cj. The
sendmailfc file must be rebuilt manually every time sendmail.cf is
changed.

The frozen configuration file will be ignored if a -C flag is specified or if
send mail detects that it is out of date. However, the heuristics are not
strong, and so this should not be trusted.

3-4 TCP/IP Administrator's Guide

The System Log

The System Log
The system log is entered in the file lusrladmlsyslog.

Format

Each line in the system log consists of a timestamp, the name of the ma­
chine that generated it (for logging from several machines over the ether­
net), the word "sendmail," and a message.

Levels

A large amount of information can be logged. The log is arranged as a
succession of levels. At the lowest level, only extremely strange situa­
tions are logged. At the highest level, even the most mundane and inin­
teresting events are recorded for posterity. As a convention, log levels
under ten are consiedered "useful;" log levels above ten are usually for
debugging purposes.

Installing and Operating sendmail 3-5

The Mail Queue

The Mail Queue
The mail queue should be processed transparently. However, you may
find that manual intervention is sometimes necessary. For example, if a
major host is down for a period of time the queue may become clogged.
Although sendmail ought to recover gracefully when the host comes up,
you may find performance unacceptably bad in the meantime.

Printing the Queue

The contents of the queue can be printed using the mailq command (or by
specifying the -bp flag to sendmail):

mailq

This produces a listing of the queue identifiers, the size of the message,
the date the message entered the queue, and the sender and recipients.

Format of Queue Files

All queue files have the form xfAA99999, where AA99999 is the ID for
this file and x is a type. The types are:

3-6

d The data file. The message body (excluding the header) is
kept in this file.

n

q

t

The lock file. If this file exists, the job is currently being
processed, and a queue run will not process the file. For
that reason, an extraneous If file can cause a job to seem to
disappear. (It will not even time out!)

This file is created when an ID is being created. It is a
separate file to ensure that no mail can ever be destroyed
due to a race condition. It should exist for no more than a
few milliseconds at any given time.

The queue control file. This file contains the information
necessary to process the job.

A temporary file. This is an image of the qf file when it is
being rebuilt. It should be renamed to a qf file very
quickly.

TCP/IP Administrator's Guide

The Mail Queue

x A transcript file, existing during the life of a session, show­
ing everything that happens during that session.

The qf file is structured as a series of lines, each beginning with a code
letter. The lines are as follows:

D The name of the data file. There can only be one of these
lines.

H A header definition. There can be any number of these
lines. The order is important: it represents the order in the
final message. This uses the same syntax as header
definitions in the configuration file.

R A recipient address. This will normally be completely
aliased, but is actually realiased when the job is processed.
There will be one line for each recipient.

S The sender address. There can only be one of these lines.

E An error address. If any such lines exist, they represent the
addresses that should receive error messages.

T The job creation time. This is used to compute how long a
job remains in the queue undelivered, before being
returned to the sender.

P The current message priority. This is used to order the
queue. Higher numbers mean lower priorities. The prior­
ity changes as the message sits in the queue. The initial
priority depends on the message class and the size of the
message.

M A message. This line is printed by the mailq command,
and is generally used to store status information. It can
contain any text.

Installing and Operating sendmail 3-7

The Mail Queue

As an example, the following is a queue file sent to "mckee@calder" and
"wnj:"

DdfAl3557
Seric
T404261372
P132
Rmckee@calder
Rwnj
H?D?date: 23-oct-82 15:49:32-PDT (Sat)
H?F?fran: eric (Eric Allman)
H?x?full-name: Eric Allman
Hsubject: this is an example message
Hmessage-id: <8209232249.13557@UCBARPA.BERKELEY.ARPA>
Hreceived: by UCBARPA.BERKELEY.ARPA (3.227 [10/22/82])

id Al3557; 23-oct-82 15:49:32-PDT (Sat)
HTo: mckee@calder, wnj

This shows the name of the data file, the person who sent the message, the
submission time (in seconds since January 1, 1970), the message priority,
the message class, the recipients, and the headers for the message.

Forcing the Queue

The sendmail program should run the queue automatically at intervals.
The algorithm is to read and sort the queue, and then to attempt to process
all jobs in order. When it attempts to run the job, sendmail first checks to
see if the job is locked. If so, it ignores the job.

There is no attempt to ensure that only one queue processor exists at any
time, since there is no guarantee that a job cannot take forever to process.
Due to the locking algorithm, it is impossible for one job to freeze the
queue. However, an uncooperative recipient host or a program recipient
that never returns can accumulate many processes in your system. Unfor­
tunately, there is no way to resolve this without violating the protocol.

In some cases, you may find that if a major host goes down for a couple of
days, this can create a prohibitively large queue. This situation will cause
sendmail to spend an inordinate amount of time sorting the queue. This
situation can be fixed by moving the queue to a temporary place and
creating a new queue. The old queue can be run later, when the offending
host returns to service.

3-8 TCP/IP Administrator's Guide

The Mail Queue

To do this, it is acceptable to move the entire queue directory:

cd /usr/spool
mv mqueue omq~eue; mkdir mqueue; chmod 777 mqueue

You should then kill the existing daemon (since it will still be processing
in the old queue directory) and create a new daemon.

To run the old mail queue, run the following command:

/usr/lib/send~3il -oQ/usr/spool/omqueue -q

The -oQ flag specifies an alternate queue directory, and the -q flag says
just to run every job in the queue. If you have a tendency toward voyeu­
rism, you can use the -y flag to watch what is going on.

When the queue is finally emptied, you can remove the directory:

rmdir /usr/spool/omqueue

Installing and Operating sendmail 3-9

The Alias Database

The Alias Database
The alias database exists in two fonns. One is a text fonn, maintained in
the file /usrllib/a/iases. The aliases are of the fonn

name: name}, name2, ...

Only local names can be aliased. For example:

eric@mit-xx: eric@berkeley.EDU

will not have the desired effect. Aliases can be continued by starting any
continuation line with a space or a tab. Blank lines and lines beginning
with a pound sign (#) are comments.

The second fonn is processed by the dbm(S) library. This fonn is in the
files /usrllib/aliases.dir and /usrllib/aliases.pag. This is the fonn that
sendmail actually uses to resolve aliases. This technique is used to
improve perfonnance.

Rebuilding the Alias Database

The DBM version of the database can be rebuilt explicitly by executing
the command:

newaliases

This is equivalent to giving sendmail the -bi flag:

lusr/Iib/sendmail -bi

If the "D" option is specified in the configuration, send mail will rebuild
the alias database automatically, if possible, when it is out of date. It will
do this under either or both of the following conditions:

• The DBM version of the database is mode 666.

• send mail is running setuid to root.

Auto-rebuild can be dangerous on heavily loaded machines with large
alias files; if it might take more than five minutes to rebuild the database,
there is a chance that several processes will start the rebuild process
sim ultaneousl y.

3-10 TCPIIP Administrator's Guide

The Alias Database

Potential Problems

There are a number of problems that can occur with the alias database.
They all result when a sendmail process accesses the DBM version while
it is only partially built. This can happen under two circumstances:
either one process accesses the database while another process is rebuild­
ing it, or the process rebuilding the database dies (due to being killed or a
system crash) before completing the rebuild.

The sendmail program includes two techniques to try to relieve these
problems. First, it ignores interrupts while rebuilding the database; this
avoids the problem of someone aborting the process and leaving a par­
tially rebuilt database. Second, at the end of the rebuild it adds an alias of
the form:

@: @

(Note that this is not normally legal.) Before sendmail will access the
database, it checks to ensure that this entry exists. The send mail program
will wait for this entry to appear, at which point it will force a rebuild
itself.

List Owners

If an error occurs on sending to a certain address, say "x," send mail will
look for an alias of the form "owner-x" to receive the errors. This is typi­
cally useful for a mailing list where the submitter of the list has no con­
trol over the maintenance of the list itself; in this case the list maintainer
would be the owner of the list. For example:

unix-wizards: eric@ucbarpa, wnj@monet, nosuchuser,
sam@matisse

owner-unix-wizards: eric@ucbarpa

This would cause "eric@ucbarpa" to get the error that will occur when
someone sends to unix-wizards, due to the inclusion of "nosuchuser" on
the list.

Installing and Operating sendmail 3-11

Per-User Forwarding (.forward Files)

Per-User Forwarding (.forward Files)
As an alternative to the alias database, any user can put a file with the
name forward in his or her home directory. If this file exists, sendmail
redirects mail for that user to the list of addresses listed in the forward
file. For example, if the home directory for user mckee has a forward file
with contents: .

mckee@ernie
kirk@calder

then any mail arriving for "mckee" will be redirected to the specified
accounts.

3-12 TCP/IP Administrator's Guide

Special Header Lines

Special Header Lines
Several header lines have special interpretations defined by the configura­
tion file. Others have interpretations built into sendmail that cannot be
changed without changing the code. These built-ins are described here.

Return-Receipt-to:

If this header is sent, a message will be sent to any specified addresses
when the final delivery is completed, that is, when successfully delivered
to a mailer with the I flag (local delivery) set in the mailer descriptor.

Errors-To:

If errors occur anywhere during processing, this header will cause error
messages to go to the listed addresses rather than to the sender. This is
intended for mailing lists.

Apparently-To:

If a message comes in with no recipients listed in the message (in a To:,
Cc:, or Bcc: line), then sendmail will add an "Apparently-To:" header
line for any recipients it is aware of. This is not put in as a standard reci­
pient line to warn any recipients that the list is not complete.

Installing and Operating sendmail 3-13

Arguments

Arguments
Some important arguments of the send mail program are described here.

Queue Interval

The amount of time between forking a process to run through the queue is
defined by the -q flag. If you run in mode f or a, this can be relatively
large, since it will only be relevant when a host that was down comes
back up. If you run in q mode, it should be relatively short, since it
defines the maximum amount of time that a message may sit in the queue.

Daemon Mode

If you allow incoming mail over an IPC connection, you should have a
daemon running. This should be set by your letclrc file using the -bd flag.
The -bd flag and the -q flag may be combined in one call:

/usr/lib/sendmail -bd -q30m

Forcing the Queue

In some cases, you may find that the queue has gotten clogged for some
reason. You can force a queue run using the -q flag (with no value). It is
entertaining to use the -v flag (verbose) when this is done, to watch what
happens:

/usr/lib/sendmail -q -v

Debugging

There is a fairly large number of debug flags built into sendmail. Each
debug flag has a number and a level, where higher levels cause more in­
formation to be printed out. The convention is that levels greater than
nine are not required. They print out so much information that you would
not normally want to see them, except for debugging that particular piece
of code. Debug flags are set using the -d option. The syntax is:

3-14 TCP/IP Administrator's Guide

debug-flag:
debug-list:
debug-option:
debug-range:
debug-level:

-d debug-list
debug-option [, debug-option]
debug-range [. debug-level]
integer I integer - integer
integer

where spaces are for reading ease only. For example,

-d12
-dI2.3
-d3-17
-d3-17.4

Set flag 12 to level .1
Set flag 12 to level 3
Set flags 3 through 17 to level 1
Set flags 3 through 17 to level 4

Arguments

For a complete list of the available debug flags you will have to look at
the code. (They are too dynamic to keep this documentation up to date.)

Trying a Different Configuration File

An alternative configuration file can be specified using the -C flag. The
following example uses the configuration file test.cf instead of the default
/usr/ lib/ sendmail.cf

/usr/lib/sendrnail -Ctest.cJ

If the -C flag has no value, it defaults to sendmail.cf in the current direc­
tory.

Changing the Values of Options

Options can be overridden using the -0 flag. For example:

/usr/lib/sendmail -oT2m

sets the T (timeout) option to two minutes for this run only.

Installing and Operating sendmail 3-15

Tuning

Tuning
There are a number of configuration parameters you may want to change,
depending on the requirements of your site. Most of these are set using an
option in the configuration file. For example, the line "OT3d" sets option
"T" to the value "3d" (three days).

Most of these options default appropriately for most sites. However, sites
having very high mail loads may find they need to tune them as appropri­
ate for their mail load. In particular, sites experiencing a large number of
small messages, many of which are delivered to many recipients, may
find that they need to adjust the parameters dealing with queue priorities.

Timeouts

All time intervals are set using a scaled syntax. For example, "10m"
represents ten minutes, whereas "2h30m" represents two-and-a-half
hours. The full set of scales is:

s seconds
m minutes
h hours
d days
w weeks

The argument to the -q flag specifies how often a subdaemon will run the
queue. This is typically set to between fifteen minutes and one hour.

Read Timeouts

It is possible to time out when reading the standard input or when reading
from a remote SMTP server. Technically, this is not acceptable within
the published protocols. However, it might be appropriate to set it to
something large (such as an hour) in certain environments. This will
reduce the chance of large numbers of idle daemons piling up on your
system. This timeout is set using the r option in the configuration file.

3-16 TCP/lP Administrator's Guide

Tuning

Message Timeouts

After sitting in the queue for a few days, a message will time out. This
means that if a message cannot be delivered for some reason, it is
returned to the sender. This ensures that at least the sender is aware that
the message was not sent. The timeout is typically set to three days. This
timeout is set using the T option in the configuration file.

The time of submission is set in the que~e, rather than the amount of time
left until timeout. As a result, you can flush messages that have been
hanging for a short period by running the queue with a short message
timeout. For example:

/usr/lib/sendmail -oTld -q

will run the queue and flush anything that is one day old.

Forking During Queue Runs

When the Y option is set, sendmail will fork before each individual mes­
sage while running the queue. This prevents sendmail from consuming
large amounts of memory, and so it may be useful in memory-poor
environments. However, if the Y option is not set, send mail will keep
track of hosts that are down during a queue run, which can improve per­
formance dramatically.

Queue Priorities

Every message is assigned a priority when it is first instantiated, consist­
ing of the message size (in bytes) offset by the message class multiplied
by the "work class factor" and the number of recipients multiplied by the
"work recipient factor." The priority plus the creation time of the mes­
sage (in seconds since January 1, 1970) are used to 'order the queue.
Higher numbers for the priority mean that the message will be processed
later, when running the queue.

The message size is included so that large messages are penalized rela­
tive to small messages. The message class allows users to send high­
priority messages by including a "Precedence:" field in their message;
the value of this field is looked up in the P lines of the configuration file.
Since the number of recipients affects the size of load a message presents
to the system, this is also included into the priority.

Installing and Operating sendmail 3-17

Tuning

The recipient and class factors can be set in the configuration file by using
the y and z options respectively. They default to 1000 (for the recipient
factor) and 1800 (for the class factor). The initial priority is:

pri = size - (class * z) + (nrcpt * y)

(Remember, higher values for this parameter actually mean that the job
will be treated with lower priority.)

The priority of a job can also be adjusted each time it is processed (that is,
each time an attempt is made to deliver it) using the "work time factor,"
set by the Z option. This is added to the priority, so it normally decreases
the precedence of the job, on the grounds that jobs that have failed many
times will tend to fail again in the future.

Delivery Mode

There are a number of delivery modes for sendmail, and they are set by
the d configuration option. These modes specify how quickly mail will
be delivered. Legal modes are:

i deliver interactively (synchronously)
b deliver in background (asynchronously)
q queue only (do not deliver)

There are tradeoffs. Mode "i" passes the maximum amount of informa­
tion to the sender, but is hardly ever necessary. Mode "q" puts the mini­
mum load on your machine, but means that delivery may be delayed for
up to the queue interval. Mode "b" is probably a good compromise.
However, this mode can cause large numbers of processes if you have a
mailer that takes a long time to deliver a message.

File Modes

There are several files involved with sendmail that can have a number of
modes. The modes depend on the functionality you want and the level of
security you require.

3-18 TCP/IP Administrator's Guide

Thning

To suid or not to suid?

The sendmail program can safely be made setuid to root. At the point
where it is about to exec(S) a mailer, it checks to Se~ if the userid is zero.
If so, it resets the userid and groupid to a default (set by the u and g
options). (This can be overridden by setting the S nag to the mailer for
mailers that are trusted and must be called as root. I However, this will
cause mail processing to be accounted to root rather than to the user send­
ing the mail.

Temporary File Modes

The mode of all temporary files that send mail creates is determined by
the F option. Reasonable values for this option are 0600 and 0644. If the
more permissive mode is selected, it will not be necessary to run send­
mail as root at all (even when running the queue).

Should My Alias Database Be Writable?

The database that send mail actually uses is represented by two files.
These files are:

• aliases.dir

• aliases.pag

Both files are located in lusrl lib. The mode on these files should match
the mode on /usr/lib/aliases. If aliases is writable and the DBM files
(aliases.dir and aliases.pag) are not, users will be unable to reflect their
desired changes through to the actual database. However, if aliases is
read-only and the DBM files are writable, a slightly sophisticated user
can arrange to steal mail anyway.

If your DBM files are not writable by the world or you do not have auto­
rebuild enabled (with the D option), then you must be careful to recon­
struct the alias database each time you change the text version:

newaliases

If this step is ignored or forgotten, any intended changes will also be
ignored or forgotten.

Installing and Operating sendmail 3-19

The Configuration File

The Configuration File
This section describes the configuration file in detail, including hints on
how to write one of your own if you have to.

There is one point that should be made clear immediately: the syntax of
the configuration file is designed to be reasonably easy to parse, since this
is done every time send mail starts up. As a result, the configuration file
is not particularly easy for a human to read or write.

An overview of the configuration file is given first, followed by details of
the semantics.

The Syntax

The configuration file is organized as a series of lines, each of which
begins with a single character defining the semantics for the rest of the
line. Lines beginning with a space or a tab are continuation lines
(although the semantics are not well defined in many places). Blank lines
and lines beginning with a pound symbol (#) are comments.

Rand S - Rewriting Rules

The core of address parsing is the rewriting rules. These are an ordered
production system. The sendmail command scans through the set of
rewriting rules looking for a match on the left hand side (LHS) of the rule.
When a rule matches, the address is replaced by the right hand side (RRS)
of the rule.

There are several sets of rewriting rules. Some of the rewriting sets are
used internally and must have specific semantics. Other rewriting sets do
not have specifically assigned semantics, and may be referenced by the
mailer definitions or by other rewriting sets.

The syntax of these two commands are:

Sn

Sets the current ruleset being collected to n. If you begin a ruleset more
than once, it deletes the old definition.

3-20 TCP/lP Administrator's Guide

The Configuration File

Rlhs rhs comments

The fields must be separated by at least one tab character; there may be
embedded spaces in the fields. The lhs is a pattern that is applied to the
input. If it matches, the input is rewritten to the rhs. The comments are
ignored.

D - Define Macro

Macros are named with a single character. These may be selected from
the entire ASCII set, but user-defined macros should be selected from the
set of uppercase letters only. Lowercase letters and special symbols are
used internally.

The syntax for macro definitions is:

Dxval

where x is the name of the macro and val is the value it should have.
Macros can be interpolated in most places using the escape sequence $x.

C and F - Define Classes

Classes of words may be defined to match on the left-:-hand side of rewrit­
ing rules. For example, a class of all local names for this site might be
created so that attempts to send to oneself can be eliminated. These can
either be defined directly in the configuration file or read in from another
file. Classes may be given names from the set of uppercase letters.
Lowercase letters and special characters are reserved for system use.

The syntax is:

Cc word1 word2 ...
Fcfile

The first form defines the class c to match any of the named words. It is
permissible to split them among multiple lines; for example, the two
forms:

and:

CHmonet ucbmonet

CHmonet
CHucbmonet

Installing and Operating sendmail 3-21

The Configuration File

are equivalent. The second form reads the elements of the class c from
the named file.

M - Define Mailer

Programs and interfaces to mailers are defined in this line. The format is:

Mname, {field=value }*

where name is the name of the mailer (used internally only) and the
"field=name" pairs define attributes of the mailer. Fields are:

Path
Flags
Sender
Recipient
Argv
Eol
Maxsize

The pathname of the mailer
Special flags for this mailer
A rewriting set for sender addresses
A rewriting set for recipient addresses
An argument vector to pass to this mailer
The end-of-line string for this mailer
The maximum message length for this mailer

Only the first character of the field name is checked.

H - Define Header

The format of the header lines that sendmail inserts into the message is
defined by the H line. The syntax of this line is:

H[?mflags?]hname: htemplate

Continuation lines in this spec are reflected directly into the outgoing
message. The htemplate is macro-expanded before insertion into the
message. If the mjlags (surrounded by question marks) are specified, at
least one of the specified flags must be stated in the mailer definition for
this header to be automatically output. If one of these headers is in the
input, it is reflected to the output, regardless of these flags.

Some headers have special semantics, described below.

o -Set Option

There are a number of "random" options that can be set from a configura­
tion file. Options are represented by single characters. The syntax of this
line is:

00 value

3-22 TCP/IP Administrator's Guide

The Configuration File

This sets option 0 to be value. Depending on the option, value may be a
string, an integer, a boolean (with legal values "t", "T", "f", or "F"; the
default is TRUE), or a time interval.

T - Define Trusted Users

Trusted users are those who are pennitted to override the sender address
using the -f flag. These typically are "rQot," "uucp," and "network," but
in some cases it may be convenient to extend this list to include other
users, perhaps to support a separate UUCP login for each host. The syn­
tax of this line is:

Tuser 1 user2 ...

There may be more than one of these lines.

P - Precedence Definitions

Values for the "Precedence:" field may be defined using the P control
line. The syntax of this field is:

Pname=num

When the name is found in a "Precedence:" field, the message class is set
to num. Higher numbers mean higher precedence. Numbers below zero
have the special property that error messages will not be returned. The
default precedence is zero. For example, our list of precedences is:

Pfirst-class=O
Pspecial-delivery= 1 00
Pjunk=-lOO

The Semantics

This section describes the semantics of the configuration file.

Special Macros, Conditionals

Macros are interpolated using the construct $x, where x is the name of the
macro to be interpolated. In particular: lowercase letters are reserved to

Installing and Operating sendmail 3-23

The Configuration File

have special semantics, used to pass information in or out of sendmail;
some special characters are reserved to provide conditionals; and so on.

Conditionals can be specified using the syntax:

$?x textl $1 text2 $.

This interpolates textl if the macro $x is set, and text2 otherwise. The
"else" ($1) clause may be omitted.

The following macros must be defined to transmit information into send­
mail:

e The SMTP entry message
j The official domain name for this site
I The format of the UNIX from line
n The name of the daemon (for error messages)
o The set of "operators" in addresses
q default format of sender address

The $e macro is printed out when SMTP starts up. The first word must be
the $j macro. The $j macro should be in RFC821 format. The $1 and $n
macros can be considered constants, except under terribly unusual cir­
cumstances. The $0 macro consists of a list of characters that will be
considered tokens and that will separate tokens when parsing. For exam­
ple, if "@" were in the $0 macro, then the input "a@b" would be
scanned as three tokens: "a", "@", and "b". Finally, the $q macro
specifies how an address should appear in a message when it is defaulted.
For example, on our system, these definitions are:

De$j Sendmail $v ready at $b
DnMAll...ER-DAEMON
DlFrom $g $d
Do.:%@!"=/
Dqg?x ($x)$.
Dj$H.$D

An acceptable alternative for the $q macro is "$?x$x $.<$g>". These
correspond to the following two formats:

3-24

eric@Lachman (Eric Allman)
Eric Allman <eric@Lachman>

TCPIIP Administrator's Guide

The Configuration File

Some macros are defined by sendmail for interpolation into argv's for
mailers or for other contexts. These macros are:

a The origination date in Arpanet format
b The current date in Arpanet format
c The hop count
d The date in UNIX (ctime) format
f The sender (from) address
g The sender address relative ~o the recipient
h The recipient host

The queue id
p sendmail' s pid
r Protocol used
s Sender's host name
t A numeric representation of the current time
u The recipient user
v The version number of sendmail
w The hostname of this site
x The full name of the sender
z The home directory of the recipient

There are three types of dates that can be used. The $a and $b macros are
in Arpanet format; $a is the time as extracted from the "Date:" line of the
message (if there was one), and $b is the current date and time (used for
postmarks). If no "Date:" line is found in the incoming message, $a is set
to the current time also. The $d macro is equivalent to the $a macro in
UNIX (ctime) format.

The $f macro is the id of the sender as originally determined; when you
are mailing to a specific host, the $g macro is set to the address of the
sender _relative to the recipient. For example, if I send to
"bollard@matisse" from the machine "ucbarpa," the $f macro will be
"eric" and the $g macro will be "eric@ucbarpa."

The $x macro is set to the full name of the sender. This can be deter­
mined in several ways. It can be passed as a flag to sendmail. The
second choice is the value of the "Full-name:" line in the header if it
exists, and the third choice is the comment field of a "From:" line. If all
of these fail, and if the message is being originated locally, the full name
is looked up in the /etc/passwd file. .

When sending, the $h, $u, and $z macros are set to the host, user, and
home directories (if local) of the recipient. The first two are set from the
$@ and $: parts of the rewriting rules, respectively.

The $p and $t macros are used to create unique strings (for example, for
the "Message-Id:" field). The $i macro is set to the queue id on this host;

Installing and Operating sendmail 3-25

The Configuration File

if put into the timestamp line, it can be extremely useful for tracking mes­
sages. The $v macro is set to be the version number of send mail; this is
normally put in timestamps and has proved extremely useful for debug­
ging. The $w macro is set to the name of this host, if it can be deter­
mined. The $c field is set to the "hop count," that is, the number of times
this message has been processed. This can be determined by the -h flag
on the command line or by counting the timestamps in the message.

The $r and $s fields are set to the prQtocol used to communicate with
sendmail and the sending hostname; these are not supported in the
current version.

S pedal classes

The class $=w is set to be the set of all names by which this host is
known. This can be used to delete local hostnames.

The Left-Hand Side

The left-hand side of rewriting rules contains a pattern. Normal words
are simply matched directly. Metasyntax is introduced using a dollar
sign. The metasymbols are:

$* Match zero or more tokens
$+ Match one or more tokens
$- Match exactly one token
$=x Match any token in class x
$-x Match any token not in class x

If any of these match, they are assigned to the symbol $n for replacement
on the right-hand side, where n is the index in the LHS. For example, if
the LHS:

$-:$+

is applied to the input:

UCBARPA:eric

then the rule will match, and the values passed to the RHS will be:

3-26

$1 UCBARPA
$2 eric

TCP/IP Administrator's Guide

The Configuration File

The Right-Hand Side

When the left-hand side of a rewriting rule matches, the input is deleted
and replaced by the right-hand side. Tokens are copied directly from the
RHS, unless they begin with a dollar sign. Metasymbols are:

$n
$[name$]
$>n
$#mailer
$@host
$: user

Substitute indefinite token n from LHS
Canonicalize name
Call ruleset n
Resolve to mailer
Specify host
Specify user

The $n syntax substitutes the corresponding value from a $+, $-, $*, $=,
or $- match on the LHS. It can be used anywhere.

A host name enclosed between $[and $] is looked up using the gethos­
tent(3) routines and replaced by the canonical name. For example,
"$[csam$]" would become "lbl-csam.arpa", and "$[[128.32.130.2]$]"
would become "vangogh. berkeley .edu. "

The $>n syntax causes the remainder of the line to be substituted as usual
and then passed as the argument to ruleset n. The final value of rule set n
then becomes the substitution for this rule.

The $# syntax should only be used in ruleset zero. It causes evaluation of
the rule set to terminate immediately, and it signals to sendmail that the
address has completely resolved. The complete syntax is:

$#mailer$@host$:user

This specifies the {mailer, host, user} 3-tuple necessary to direct the
mailer. If the mailer is local, the host part can be omitted. The mailer
and host must be a single word, but the user can be multi-part.

A RHS can also be· preceded by a $@ or a $: to control evaluation. A
$@ prefix causes the ruleset to return with the remainder of the RHS as
the value. A $: prefix causes the rule to terminate immediately, but the
ruleset to continue. This can be used to avoid continued application of a
rule. The prefix is stripped before continuing.

The $@ and $: prefixes can precede a $> spec. For example,

R$+ $:$>7$1

matches anything, passes that to ruleset seven, and continues; the $: is
necessary to avoid an infinite loop.

Installing and Operating sendmail 3-27

The Configuration File

Substitution occurs in the order described; that is, parameters from the
LHS are substituted, hostnames are canonicalized, "subroutines" are
called and, finally, $#, $@, and $: are processed.

Semantics of Rewriting Rule Sets

There are five rewriting sets that have specific semantics. These are
related as depicted by Figure 4-1.

~ resolved address

msg

D - sender domain addition
S - mailer-speci fic sender rewriting
R - mailer-speci fic recipient rewriting

Figure 3-1 Rewriting Set Semantics

Ruleset three should tum the address into "canonical form." This form
should have the basic syntax:

local-part@host-domain-spec

If no "@" sign is specified, then the host-domain-spec can be appended
from the sender address (if the C flag is set in the mailer definition corre­
sponding to the sending mailer). Ruleset three is applied by send mail
before doing anything with any address.

Ruleset zero is applied after ruleset three to addresses that are actually
going to specify recipients. It must resolve to a {mailer, host, user} triple.
The mailer must be defined in the mailer definitions from the configura­
tion file. The host is defined into the $h macro for use in the argv expan­
sion of the specified mailer.

Rulesets one and two are applied to all sender and recipient addresses,
respectively. They are applied before any specification in the mailer
definition. They must never resolve.

Ruleset four is applied to all addresses in the message. It is typically used
to translate internal to external form.

3-28 TCP/IP Administrator's Guide

The Configuration File

Mailer Flags

There are several flags that can be associated with each mailer, each
identi tied by a letter of the alphabet. Many of them are assigned seman­
tics internally. Any other flags may be used freely to assign headers con­
ditionally to messages destined for particular mailers.

The "error" Mailer

The mailer with the special name "error" can be used to generate a user
error. The (optional) host field is a numeric exit status to be returned, and
the user field is a message to be printed. For example, the entry:

$#error$:Host unknown in this domain

on the RHS of a rule will cause the specified error to be generated if the
LHS matches. This mailer is only functional in ruleset zero.

Building a Configuration File from Scratch

Building a configuration file from scratch is an extremely difficult job.
Fortunately, it is almost never necessary to do so; nearly every situation
that may come up may be resolved by changing an existing table. In any
case, it is critical that you understand what you are trying to do and come
up with a philosophy for the configuration table. This section is intended
to explain the real purpose of a configuration table and to give you some
ideas as to what your philosophy might be.

What You are Trying to Do

The configuration table has three major purposes. The first and simplest
is to set up the environment for sendmail. This involves setting the
options, defining a few critical macros, and so on. Since these are
described in other sections, we will not go into more detail here.

The second purpose is to rewrite addresses in the message. This· should
typically be done in two phases. The first phase maps addresses in any
format into a canonical form. This should be done in ruleset three. The
second phase maps this canonical form into the syntax appropriate for the
receiving mailer.

The send mail program performs this second phase in the following three
subphases: Rulesets one and two are applied to all sender and recipient
addresses, respectively. After this, you can specify per-mailer rule sets for

Installing and Operating sendmail 3-29

The Configuration File

both sender and recipient addresses. This allows mailer-specific customi­
zation. Finally, ruleset four is applied to do any default conversion to
external form.

The third purpose of the configuration table is to map addresses into the
actual set of instructions necessary to get the message delivered. Ruleset
zero must resolve to the internal form, which is in tum used as a pointer
to a mailer descriptor. This describes the interface requirements of the
mailer.

Relevant Issues

The canonical form you use should almost certainly be as specified in the
Arpanet standards documents RFC819 and RFC822.
RFC822 describes the format of the mail message itself. The sendmail
program follows this RFC closely, to the extent that many of the stan­
dards described in this document can not be changed without changing
the code. In particular, the following characters have special interpreta­
tions:

<>()"\

Any attempt to use these characters for other than their RFC822 purpose
in addresses is probably doomed to disaster.

RFC819 describes the specifics of the domain-based addressing. This is
touched on in RFC822 as well. Essentially, each hpst is given a name
that is a right-to-Ieft dot-qualified pseUdo-path from a distinguished root.
The elements of the path need not be physical hosts; the domain is logical
rather than physical. For example, at Lachman, one legal host might be
"a.CC.Lachman.EDU"; reading from right to left, "EDU" is a top level
domain comprising educational institutions, "Lachman" is a logical
domain name, "CC" represents the Computer Center, (in this case a
strictly logical entity), and "a" is a host in the Computer Center.

When reading RFC819, be aware that there are a number of errors in it.

How to Proceed

Once you have decided on a philosophy, it is worth examining the avail­
able configuration tables to decide whether any of them are close enough
for you to steal their major parts. Even under the worst of conditions,
there is a fair amount of boilerplate that can be collected safely.

The next step is to build ruleset three. This will be the hardest part of the
job. Beware of doing too much to the address in this ruleset, because

3-30 TCP/IP Administrator's Guide

The Configuration File

anything you do will reflect through to the message. In particular, strip­
ping of local domains is best deferred, as this can leave you with
addresses with no domain specs at all. Because send mail likes to append
the sending domain to addresses with no domain, this can change the
semantics of addresses. Also, try to avoid fully qualifying domains in this
ruleset. Although technically legal, this can lead to unpleasantly and
unnecessarily long addresses reflected into messages. The Lachman con­
figuration files define rule set nine to qualify domain names and strip local
domains. This is called from rule set . zero to get all addresses into a
cleaner form.

Once you have ruleset three finished, the other rulesets should be rela­
tively trivial. If you need hints, examine the supplied configuration
tables.

Testing the Rewriting Rules: the -bt Flag

When you build a configuration table, you can do a certain amount of
testing using the "test mode" of sendmail. For example, you could
invoke sendmail as:

sendmail -bt -Ctest.cf

which would read the configuration file "test.cf" and enter test mode. In
this mode, you enter lines of the form:

rwset address

where rwset is the rewriting set you want to use and address is an address
to which to apply the set. Test mode shows you the steps it takes as it
proceeds, finally showing you the address with which it ends up. You
may use a comma-separated list of rwsets for sequential application of
rules to an input; ruleset three is always applied first. For example:

1,21,4 monet:bollard

first applies ruleset three to the input "monetbollard." Ruleset one is then
applied to the output of rule set three, followed similarly by rulesets
twenty-one and four.

If you need more detail, you can also use the "-d21" flag to tum on more
debugging. For example:

send mail -bt -d21.99

turns on an incredible amount of information. A single-word address will
probably print out several pages of information.

Installing and Operating sendmail 3-31

The Configuration File

Building Mailer Descriptions

To add an outgoing mailer to your mail system, you must define the
characteristics of the mailer.

Each mailer must have an internal name. This can be arbitrary, except
that the names "local" and "prog" must be defined.

The pathname of the mailer must be given in the P field. If this mailer
should be accessed via an IPC connection, use the string "[IPC]" instead.

The F field defines the mailer flags. You should specify an "f" or "r" flag
to pass the name of the sender as a -f or -r flag, respectively. These flags
are only passed if they were passed to sendmail, so that mailers that give
errors under some circumstances can be placated. If the mailer is not
picky, you can just specify "-f $g" in the argv template. If the mailer
must be called as root, the S flag should be given. This will not reset the
userid before calling the mailer. If this mailer is local (that is, it will per­
form final delivery rather than another network hop), the I flag should be
given. Quote characters (backslashes and " marks) can be stripped from
addresses if the s flag. is specified. If this is not given, they are passed
through. If the mailer is capable of sending to more than one user on the
same host in a single transaction, the m flag should be stated. If this flag
is on, then the argv template containing $u will be repeated for each
unique user on a given host. The e flag will mark the mailer as being
expensive, which will cause sendmail to defer connection until a queue
run.

An unusual case is the C flag. This flag applies to the mailer that the mes­
sage is received from, rather than the mailer being sent to; if set, the
domain spec of the sender (that is, the @host.domain part) is saved and is
appended to any addresses in the message that do not already contain a
domain spec. For example, a message of the form:

From: eric@ucbarpa
To: wnj@monet, mckee

will be modified to:

From: eric@ucbarpa
To: wnj@monet, mckee@ucbarpa

if and only if the C flag is defined in the mailer corresponding to
eric@ucbarpa.

The S and R fields in the mailer description are per-mailer rewriting sets
to be applied to sender and recipient addresses, respectively. These are
applied after the sending domain is appended and the general rewriting

3-32 TCPIIP Administrator's Guide

The Configuration File

sets (numbers one and two) are applied, but before the output rewrite
(ruleset four) is applied. A typical use is to append the current domain to
addresses that do not already have a domain. For example, a header of
the form:

From: eric

might be changed to be:

From: eric@ucbarpa

or:

From: ucbvax!eric

depending on the domain it is being shipped into. These sets can also be
used to do special-purpose output rewriting in cooperation with ruleset
four.

The E field defines the string to use as an end-of-line indication. A string
containing only newline is the default. The usual backs lash escapes (\r,
\n, \f, \b) may be used.

Finally, an argv template is given as the E field. It may have embedded
spaces. If there is no argv with a $u macro in it, send mail will speak
SMTP to the mailer. If the pathname for this mailer is [IPC], the argv
should be:

IPC $h [port]

where port is the optional port number to connect to.

For example, the specifications:

Mlocal, P=/usr/bin/mail, F=lsDFMmnPS S=10, R=20, A=lmail $u
Mether, P=[IPC], F=meC, S=11, R=21, A=IPC $h, M=l00000

specify a mailer to do local delivery and a mailer for Ethernet delivery.
The first is called local; it is located in the file /bin/mail, takes a picky -r
flag, and does local delivery; quotes should be stripped from addresses,
and mUltiple users can be delivered at once; ruleset ten should be applied
to sender addresses in the message, and ruleset twenty should be applied
to recipient addresses. The argv to send to a message will be the word
mail, the word -d, and words containing the name of the receiving user. If
a -r flag is inserted, it will be between the ~ords mail and -d. The second
mailer is called ether; it should be connected to via an IPC connection; it
can handle multiple users at once; connections should be deferred; and
any domain from the sender address should be appended to any receiver

Installing and Operating sendmail 3-33

The Configuration File

name without a domain. Sender addresses should be processed by ruleset
eleven and recipient addresses by rule set twenty-one. There is a
lOO,OOO-byte limit on messages passed through this mailer.

3-34 TCP/IP Administrator's Guide

Command Line Flags

Command Line Flags
Arguments must be presented with flags before addresses. The flags are:

-f addr

-r addr

-h ent

-Fname

-n

-t

-bx

The sender's machine address is addr. This flag is
ignored unless the rel;ll user is listed as a "trusted user"
or addr contains an exclamation point (because of cer­
tain restrictions in UUCP).

An obsolete form of -f.

Sets the "hop count" to ent. This represents the num­
ber of times this message has been processed by send­
mail (to the extent that it is supported by the underly­
ing networks). ent is incremented during processing,
and if it reaches MAXHOP (currently 30) send mail
throws away the message with an error.

Sets the full name of this user to name.

Do not alias or forward.

Read the header for To:, Cc:, and Bcc: lines, and send
to everyone in those lists. The Bcc: line will be
deleted before sending. Any addresses in the argument
vector will be deleted from the send list.

Set operation mode to x. The operation modes are:

m Deliver maf(~default)
a Run in ARPANET mode (see below)
s Speak SMTP on input side
d Run as a daemon

Run in test mode
v Just verify addresses, do not collect or deliver

Initialize the alias database
p Print the mail queue
z Freeze the configuration file

The special processing for the ARPANET includes
reading the From: line from the header to find the
sender, printing ARPANET-style messages (preceded
by three-digit reply codes for compatibility with the
FrP protocol), and ending lines of error messages with
<CRLF>.

Installing and Operating sendmail 3-35

Command Line Flags

-qtime

-Cfile

-dlevel

-ox value

Try to process the queued up mail. If the time is given,
sendmail will run through the queue at the specified
interval to deliver queued mail; otherwise, it only runs
once.

Use a different configuration file. The send mail pro­
gram runs as the invoking user (rather than root) when
this flag is specified.

Set debugging level.

Set option x to the specified value. These options are
described in the next section.

There are a number of options that can be specified as primitive flags
(provided for compatibility with delivermail). These are the e, i, m, and
v options. Also, the f option can be specified as the -s flag.

3-36 TCP/IP Administrator's Guide

Configuration Options

Configuration Options
The following options can be set using the -0 flag on the command line or
the 0 line in the configuration file. Many of them cannot be specified
unless the invoking user is trusted.

Afile Use the named file as the alias file. If no file is
specified, use aliases in the current directory.

aN If set, wait up to N minutes for an @:@ entry to exist
in the alias database before starting up. If it does not
appear in N minutes, rebuild the database (if the D
option is also set) or issue a warning.

Bc Set the blank substitution character to c. Unquoted
spaces in addresses are replaced by this character.

c If an outgoing mailer is marked as being expensive, do
not connect immediately. This requires that queueing
be compiled in, since it will depend on a queue run
process to actually send the mail.

dx Deliver in mode x. Legal modes are:

D

ex

Fn

i Deliver interactively (synchronously)
b Deliver in background (asynchronously)
q Just queue the message (deliver during queue run)

If set, rebuild the alias database if necessary and possi­
ble. If this option is not set, sendmail will never
rebuild the alias database unless explicitly requested
using -bi.

Dispose of errors using mode x. The values for x are:

P Print error messages (default)
q No messages, just give exit status
m Mail back errors
w Write back errors (mail if user not logged in)
eMail back errors and give zero exit stat always

The temporary file mode, in octal. 644 and 600 are
good choices.

Installing and Operating sendmail 3-37

Configuration Options

f Save UNIX-style "From" lines at the front of headers.
Normally, they are assumed redundant and discarded.

gn Set the default group id for mailers to run into n.

Hfile Specify the help file for SMTP.

Ignore dots in incoming messages.

Ln Set the default log level to n.

Mxvalue Set the macro x to value. This is intended only for use
from the command line.

m Send to me, too, even if I am in an alias expansion.

Nnetname The name of the home network (ARPA is the default).
The argument of an SMTP HELO command is checked
against hostname.netname, where hostname is
requested from the kernel for the current connection.
If they do not match, Received: lines are augmented
by the name that is determined in this manner, so that
messages can be traced accurately.

o Assume that the headers may be in old format; that is,
spaces delimit names. This actually turns on an adap­
tive algorithm: if any recipient address contains a
comma, parenthesis, or angle bracket, it will be
assumed that commas already exist. If this flag is not
on, only commas delimit names. Headers are always
output with commas between the names.

Qdir Use the named dir as the queue directory.

qfactor Use factor as the multiplier in the map function to
decide when just to queue up jobs rather than run them.
This value is divided by the difference between the
current load average and the load average limit (x flag)
to determine the maximum message priority that will
be sent. Defaults to 10,000.

rtime Timeout reads after time interval.

Sfile Log statistics in the named file.

s Be extra safe when running things, that is, always
instantiate the queue file, even if you are going to
attempt immediate delivery. The send mail program

3-38 TCP/lP Administrator's Guide

Ttime

tS,D

un

v

xLA

XLA

yfact

y

zfact

Zfact

Configuration Options

always instantiates the queue file before returning con­
trol the client.

Set the queue timeout to time. After this interval, mes­
sages that have not been successfully sent will be
returned to the sender.

Set the local time zone name to S for standard time and
D for daylight time .. This is only used under version
six.

Set the default userid for mailers to n. Any mailer
without the S flag in the mailer definition will run as
this user.

Run in verbose mode.

When the system-load average exceeds LA, just queue
messages (that is, do not try to send them).

When the system load average exceeds LA, refuse
incoming S11TP connections.

The indicated factor is added to the pnonty (thus
lowering the priority of the job) for each recipient, that
is, this value penalizes jobs with large numbers of reci­
pients.

If set, deliver each job that is run from the queue in a
separate process. Use this option if you are short of
memory, since the default tends to consume consider­
able amounts of memory while the queue is being pro­
cessed.

The indicated factor is multiplied by the message class
(determined by the Precedence: field in the user header
and the P lines in the configuration file) and subtracted
from the priority. Thus, messages with a higher Prior­
ity will be favored.

The factor is added to the priority every time a job is
processed. Thus, each time a job is processed, its
priority will be decreased by the indicated value. In
most environments, this should be positive, since hosts
that are down are all too often down for a long time.

Installing and Operating sendmail 3-39

Mailer Flags

Mailer Flags
The following flags can be set in the mailer description.

f The mailer wants a -ffrom flag, but only if this is a network for­
ward operation (that is, the mailer will give an error if the exe­
cuting user does not have special permissions).

r Same as f, but sends a -r flag.

S Do not reset the userid before calling the mailer. This would be
used in a secure environment where sendmail ran as root. This
could be used to avoid forged addresses. This flag is suppressed
if given from an unsafe environment (for example, a user's
mail.cf file).

n Do not insert a UNIX-style From: line on the front of the mes­
sage.

This mailer is local (that is, final delivery will be performed).

s Strip quote characters off the address before calling the mailer.

m This mailer can send to multiple users on the same host in one
transaction. When a $u macro occurs in the argv part of the
mailer definition, that field will be repeated as necessary for all
qualifying users.

F This mailer wants a From: header line.

D This mailer wants a Date: header line.

M This mailer wants a Message-Id: header line.

x This mailer wants a Full-Name: header line.

P This mailer wants a Return-Path: line.

u Uppercase should be preserved in user names for this mailer.

h Uppercase should be preserved in host names for this mailer.

A This is an Arpanet-compatible mailer, and all appropriate
modes should be set.

3-40 TCP/IP Administrator's Guide

Mailer Flags

U This mailer wants UNIX-style From: lines with the ugly
UUCP-style "remote from <host>" on the end.

e This mailer is expensive to connect to, so try to avoid connect­
ing nonnally. Any necessary connection will occur during a
queue run.

X This mailer want to use the hidden dot algorithm as specified in
RFC821. Basically, any line beginning with a dot will have an
extra dot prepended (to be stripped at the other end). This
ensures that lines in the message containing a dot will not ter­
minate the message prematurely.

L Limit the line lengths as specified in RFC82 1.

P Use the return-path in the SMTP "MAIL FROM:" command,
rather than just the return address. Although this is required in
RFC821 , many hosts do not process return paths properly.

I This mailer will be speaking SMTP to another sendmail. As
such, it can use special protocol features. This option is not
required (that is, if this option is omitted, the transmission will
still operate successfully, although perhaps not as efficiently as
possible).

C If mail is received from a mailer with this flag set, any
addresses in the header that do not have an at sign (@) after
being rewritten by ruleset three will have the @domain clause
from the sender tacked on. This allows mail with headers of the
fonn:

From: usera@hosta
To: userb@hostb, userc

to be rewritten automatically as:

From: usera@hosta
To: userb@hostb, userc@hosta

E Escape lines beginning with From in the message with a '>'
sign.

Installing and Operating sendmail 3-41

Summary of Support Files

Summary of Support Files
This is a summary of the support files that send mail creates or generates.

lusrl libl sendmail The binary of sendmail.

lusrlbinlnewaliases A link to lusrlliblsendmail; causes the
alias database to be rebuilt. Running this
program is completely equivalent to giv­
ing sendmail the -bi flag.

lusrlbinlmailq Prints a listing of the mail queue. This
program is equivalent to using the -bp
flag to send mail.

lusrl libl sendmail.cf The configuration file, in textual form.

lusrl/iblsendmailJc The configuration file represented as a
memory image.

lusrllibl sendmail.hf The SMTP help file.

lusrlliblsendmail.st A statistics file; need not be present.

lusrl libl aliases The textual version of the alias file.

lusrlliblaliases.{pag,dir} The alias file in dbm(S) format.

lusrlspoollmqueue The directory in which the mail queue
and temporary files reside.

lusrlspoollmqueuelqf*' Control (queue) files for messages.

lusrlspoollmqueueldj* Data files.

lusrlspoollmqueuellj* Lock files

lusr/spoollmqueueltj* Temporary versions of the qf files, used
during queue-file rebuild.

lusrlspoollmqueuelnj* A file used when creating a unique id.

lusrlspoollmqueuelxj* A transcript of the current session.

3-42 TCP/IP Administrator's Guide

Chapter 4

Name Server Operations Guide for
BIND

Introduction 4-1

The Name Service 4-2

Types of Servers 4-3
Master Servers 4-3
Caching-Only Servers 4-4
Remote Servers 4-4
Slave Server 4-4

Setting Up Your Own Domain 4-5
Boot File 4-6
Domain 4-6
Directory 4-6
Primary Master 4-6
Secondary Master 4-7
Caching-Only Server 4-7
Forwarders 4-8
Slave Mode 4-8

Remote Servers 4-9

Initializing the Cache 4-10

Standard Resource Records 4-11
Separating Data into Multiple Files 4-12
Changing an Origin in a Data File 4-12
The Start of Authority Resource Record (SOA) 4-13
The Name Server Resource Record (NS) 4-14
The Address Resource Record (A) 4-14
The Host Information Resource Record (HINFO) 4-14
The Well-Known Services Resource Record (WKS) 4-15
The Canonical Name Resource Record (CNAME) 4-15
The Domain Name Pointer Resource Record (PTR) 4-15
The Mailbox Resource Record (MB) 4-16
The Mail Rename Resource Record (MR) 4-16

The Mailbox Infonnation Resource Record (MINFO) 4-16
The Mail Group Member Resource Record (MG) 4-17
The Mail Exchanger Resource Record (MX) 4-17

Some Sample Files 4-19
Caching-Only Server 4-19
Primary Master Server 4-19
Secondary Master Server 4-20
The /etc/resolv.conf File 4-20
root.cache 4-20
named.local 4-21
hosts 4-21
hosts .rev 4-22

Additional Sample Files 4-23
named. boot 4-23
root.cache 4-23
named.local 4-24
sco-host.s.rev 4-24
sco.soa 4-24

Domain Management 4-25
Starting the Name Server 4-25
/etc/named.pid 4-25
/etc/hosts 4-25
Reload 4-26
Debugging 4-26

Introduction

Introduction
A name server is a network service that enables clients to name resources
or objects and share this information with other objects in the network.
The Berkeley Internet Name Domain (BIND) Server implements the
DARPA Internet name server for the UNIX operating system. In effect,
this is a distributed database system for objects in a computer network.
BIND is fully integrated into network programs for use in storing and
retrieving host names and addresses. The system administrator can con­
figure the system to use BIND as a replacement for the original host table
lookup of information in the network hosts file fetc!hosts. The default
configuration does not use BIND. BIND is initially disabled. If you want
to use it, you must first set up the necessary configuration files.

Name Server Operations Guide for BIND 4-1

The Name Service

The Name Service
The basic function of the name server is to provide information about net­
work objects by answering queries. The advantage of using a name server
over the host table lookup for host-name resolution is to avoid the need
for a single centralized clearinghouse for all names. The authority for
this information can be delegated to the different organizations on the net­
work responsible for it.

The host table lookup routines require that the master file for the entire
network be maintained at a central location by a few people. This works
well for small networks where there are only a few machines and the
different organizations responsible for them cooperate. However, this
does not work well for large networks where machines cross organiza­
tional boundaries.

With the name server, the network can be broken into a hierarchy of
domains. The name space is organized as a tree, according to organiza­
tional or administrative boundaries. Each node, called a domain, is given
a label, and the name of the domain is the concatenation of all the labels
of the domains from the root to the current domain; listed from right to
left, separated by dots. A label need only be unique within its domain.
The whole space is partitioned into several areas called zones, each start­
ing at a domain and extending down to the leaf domains or to domains
where .other zones start. Zones usually represent administrative
boundaries. An example of a host address for a host at the University of
California, Berkeley, would look as follows:

monet . Berkeley. EDU

The top-level domain for educational organizations is EDU; Berkeley is a
subdomain of EDU and monet is the name of the host. Additional top­
level domains include:

COM Commercial Organizations

GOV Government Organizations

MIL Military Departments

ORG Miscellaneous Organizations

4-2 TCP/IP Administrator's Guide

Types of Servers

Types of Servers
There are several types of servers. These are:

• master servers

• caching-only servers

• remote servers

• slave servers

These types of servers are descrlbed in more detail in the following four
sections.

Master Servers

A master server for a domain is the authority for that domain. This server
maintains all the data corresponding to its domain. Each domain should
have at least two master servers: a primary master, and some secondary
masters to provide backup service if the primary is unavailable or over­
loaded. A server may be a master for multiple domains, being primary for
some domains and secondary for others.

Primary

A primary master server is a server that loads its data from a file on disk.
This server may also delegate authority to other servers in its domain.

Secondary

A secondary master server is a server that is delegated authority and
receives its data for a domain from a primary master server. At boot time,
the secondary server requests all the data for the given zone from the pri­
mary master server. This server then periodically checks with the pri­
mary server to see if it needs to update its data.

Name Server Operations Guide for BIND 4-3

Types of Servers

Caching-Only Servers

All servers are caching servers. This means that the server caches the in­
formation that it receives for use until the data expires. A caching only
server is a server that is not authoritative for any domain. This server ser­
vices queries and asks other servers that have the authority for the infor­
mation needed. All servers keep data in their caches until the data
expires, based on a time-to-live field attached to the data when it is
received from another server.

Remote Servers

A remote server is an option given to people who would like to use a
name server on their workstation or on a machine that has a limited
amount of memory and CPU cycles. With this option, you can run all of
the networking programs that use the name server without running the
name server on the local machine. All of the queries are serviced by a
name server that is running on another machine on the network.

Slave Server

A slave server is a server that always forwards queries it cannot satisfy
locally to a fixed list of forwarding servers instead of interacting with the
master name servers for the root and other domains. The queries to the
forwarding servers are recursive queries. There may be one or more for­
warding servers, and they are tried in tum until the list is exhausted. A
slave and forwarder configuration is typically used when you do not wish
all the servers at a given site to be interacting with the rest of the Internet
servers. A typical scenario would involve a number of workstations and a
departmental timesharing machine with Internet access. The worksta­
tions might be administratively prohibited from having Internet access.
To give the workstations the appearance of access to the Internet domain
system, the workstations could be slave servers to the timesharing ma­
chine, which would forward the queries and interact with other name
servers to resolve the query before returning the answer. An added
benefit of using the forwarding feature is that the central machine devel­
ops a much more complete cache of information that all the workstations
can take advantage of. The use of slave mode and forwarding is dis­
cussed further under the description of the named bootfile commands.

4-4 TCPIIP Administrator's Guide

Setting Up Your Own Domain

Setting Up Your Own Domain
When setting up a domain that is going to be on a public network, the site
administrator should contact the organization in charge of the network
and request the appropriate domain registration form. An organization
that belongs to multiple networks (such as CSNET, DARPA Internet, and
BITNET) should register with only one network.

The contacts are as follows:

DARPA Internet

Sites that are already on the DARPA Internet and need information on set­
ting up a domain should contact HOSTMASTER@SRI-NIC.ARPA. You
may also want to be placed on the BIND mailing list, which is a mail
group for people on the DARPA Internet running BIND. This group
discusses future design decisions, operational problems, and other related
topics. To request placement on this mailing list, send mail to the follow­
ing address:

bind-request @ ucbarpa .Berkeley .EDU.

CSNET

A CSNET member organization that has not registered its domain name
should contact the CSNET Coordination and Information Center (CIC) for
an application and information about setting up a domain.

An organization that already has a registered domain name should keep
the CIC informed about how it would like its mail routed. In general, the
CSNET relay prefers to send mail via CSNET if possible (as opposed to
BITNET or the Internet). For an organization on multiple networks, this
may not always be the preferred behavior. The CIC can be reached via
electronic mail at cic @ sh. cs. net, or by phone at (617) 497-2777.

BITNET

If you are on the BITNET and need to set up a domain, contact
INFO@BITNIC.

Name Server Operations Guide for BIND 4-5

Setting Up Your Own Domain

Boot File

The name server uses several files to load its database. The major file
used is the boot file. This is the file that is first read when named starts
up. This tells the server what type of server it is, which zones it has
authority over, and where to get its initial data. The default location for
this file is Jete! named.boot. However, this can be changed by setting the
BOOTFILE variable when you compile named or by specifying the loca­
tion on the command line when named starts up.

Domain

The boot file. contains a line of code that designates the default domain.
The line for the server looks like this:

domain Berkeley.Edu

The name server uses this information when it receives a query for a
name without a "." that is unknown. When it receives one of these
queries, it appends the name in the second field to the query name. This
is an obsolete facility, which will be removed from future releases.

Directory

The directory line specifies the directory in which the name server should
run, allowing the other filenames in the boot file to use relative path­
names.

directory /usr/local/lib/narned

If you have more than a couple of named files to be maintained, you may
wish to place the named files in a directory such as JusrJ local! domain and
adjust the directory command properly. The main purposes of this com­
mand are to make sure named is in the proper directory when trying to
include files by relative pathnames with $INCLUDE and to allow named
to run in a location that is reasonable to dump core if it feels the urge.

Primary Master

The line in the boot file that designates the server as a primary server for a
zone looks like the following:

primary Berkeley.Edu ucbhosts

4-6 TCP/IP Administrator's Guide

Setting Up Your Own Domain

The first field speci fies that the server is a primary one for the zone stated
in the second field. The third field is the name of the file from which the
data is read.

Secondary Master

The line for a secondary server is similar to that for the primary, except
that it lists addresses of other servers. (usually primary servers) from
which the zone data is obtained.

secondary Berkeley.Edu 128.32.0.10 128.32.0.4

The first field specifies that the server is a secondary master server for the
zone stated in the second field. The two network addresses specify the
name servers that are primary for the zone. The secondary server gets its
data across the network from the listed servers. Each server is tried in the
order listed until it successfully receives the data from a listed server. If a
filename is present after the list of primary servers, data for the zone is
dumped into that file as a backup. When the server is first started, the
data are loaded from the backup file if possible, and a primary server is
then consulted to check that the zone is still up-to-date.

Caching-Only Server

You do not need a special line to designate that a server is a caching
server. A caching-only server is indicated by the absence of authority
lines, such as secondary or primary in the boot file.

All servers should have the following line in the boot file to prime the
name server's cache:

cache root.cache

The period C.) specifies the current domain. All cache files listed are read
in at named boot time and any values still valid are reinstated in the cache
and the root name server information in the cache files are always used.
For information on the cache file, see the later section, "Initializing the
Cache."

Name Server Operations Guide for BIND 4-7

Setting Up Your Own Domain

Forwarders

Any server can make use of forwarders. A forwarder is another server
capable of processing recursive queries to try to resolve queries on behalf
of other systems. The forwarders command speci fies forwarders by
internet address as follows:

forwarders 128.32.0.10 128.32.0.4

There are two main reasons for wanting to do so. First, the other systems
may not have full network access and may be prevented from sending any
IF packets into the rest of the network and, therefore, must rely on a for­
warder that does have access to the full net. The second reason is that the
forwarder sees a union of all queries as they pass through the forwarder's
server and, therefore, the forwarder builds up a very rich cache of data
compared to the cache in a typical workstation name server. In effect, the
forwarder becomes a meta-cache that all hosts can benefit from, thereby
reducing the total number of queries from that site to the rest of the net.

Slave Mode

Slave mode is used if the use of forwarders is the only possible way to
resolve queries because of lack of full net access or if you wish to prevent
the name server from using other than the listed forwarders. Slave mode
is activated by placing the simple command

slave

in the bootfile. If slave is used, then you must specify forwarders. When
in slave mode, the server forwards each query to each of the forwarders
until an answer is found or the list of forwarders is exhausted.

4-8 TCP/lP Administrator's Guide

Remote Servers

Remote Servers
To set up a host that uses a remote server instead of a local server to
answer queries, create the file letc!resolv.conf. This file designates the
name servers on the network that should be sent queries. It is not advis­
able to create this file if you have a local server running. If this file exists,
it is read almost every time gethostbyname(SLIB) or g(!~hostbyaddr is
called. .

Name Server Operations Guide for BIND 4-9

Initializing the Cache

Initializing the Cache
The name server needs to know the identities of the authoritative name
servers for the root domain of the network. To do this, you have to prime
the name server's cache with the address of these higher authorities. This
is done in a file called root.cache. The location of this file is specified in
the boot file letclnamed.boot.

There are three standard files used to specify the data for a domain.
These files are:

named. local
hosts
host. rev.

The named. local file specifies the address for the local loopback inter­
face, better known as loealhost, with the network address 127.0.0.1. The
location of this file is specified in the boot file.

The hosts file contains all the data about the machines in this zone. The
location of this file is specified in the boot file.

The hosts.rev file specifies the IN-ADDR. ARPA domain. This is a spe­
cial domain for allowing address-to-name mapping. Because Internet
host addresses do not fall within domain boundaries, this special domain
was formed to allow inverse mapping. The IN-ADDR. ARPA domain has
four labels preceding it. These labels correspond to the four octets of an
Internet address. All four octets must be specified even if an octet is zero.
The Internet address 128.32.0.4 is located in the domain
4.0.32. 128. IN-ADDR. ARPA. This reversal of the address is awkward
to read but allows for the natural grouping of hosts in a network.

4-10 TCP/IP Administrator's Guide

Standard Resource Records

Standard Resource Records
The records in the name server data files are called resource records. The
following is a general description of a resource record:

{nane} {ttl} ad:lr-clas.s Perord 'lYfe Reoord Sj:ecific data

Resource records have a standard format, as shown above. The first field
is always the name of the domain record and it must always start in
column 1. For some resource records, the name can be left blank. In such
cases, the name of the previous resource record is used. The second field
is an optional time-to-live field. This specifies how long this data is
stored in the database. When this field is left blank; the default time-to­
live is specified in the Start of Authority resource record discussed later
in this chapter. The third field is the address class. There are currently
two classes: IN for internet addresses and ANY for all address classes.
The fourth field states the type of the resource record. The fields after
that are dependent on the type of the resource record. Case is preserved
in names and data fields when loaded into the name server. All comparis­
ons and lookups in the name server database are case-insensitive.

The following characters have special meanings:

A free-standing dot in the name field refers to the
current domain.

@ A free-standing @ in the name field denotes the current
origin.

\X

\DDD

()

Two free-standing dots represent the hull domain name
of the root when used in the name field.

Where X is any character other than a digit (0-9), \X
quotes that character so that its special meaning does
not apply. For example, "\." can be used to place a dot
character in a label.

Where each D is a digit, \DDD is the octet correspond­
ing to the decimal number described by DDD. The
resulting octet is assumed to be text and is not checked
for special meaning.

Parentheses are used to group data that crosses a line. In
effect, line terminations are not recognized within
parentheses.

Name Server Operations Guide for BIND 4-11

Standard Resource Records

*

A semicolon starts a comment; the remainder of the line
is ignored.

An asterisk signifies a wildcard.

Most resource records have the current origin appended to names if they
are not tenninated by a ".". This is useful for appending the current
domain name to the data, such as machine names, but can cause problems
where you do not want this to happen. The following is a good rule of
thumb: if the name is not in the domain for which you are creating the
data file, end the name with a ".".

Separating Data into Multiple Files

An include line begins with $INCLUDE (starting in column 1) and is fol­
lowed by a file name. This feature is particularly useful for separating
different types of data into multiple files. Here is an example:

$INCLUDE /usr/named/data/mailboxes

The line would be interpreted as a request to load the file
lusrlnamedldatalmailboxes. The $INCLUDE command does not cause
data to be loaded into a different zone or tree. This is simply a way to
allow data for a given zone to be organized in separate files. For exam­
pIe, mailbox data might be kept separately from host data using this
mechanism.

Changing an Origin in a Data File

Use the $ORIGIN command to change the origin in a data file. The line
starts in column 1 and is followed by a domain origin. This is useful for
putting more than one domain in a data file. For example,
letclnamed.hosts might contain lines of the fonn:

4-12

$ORIGIN CC.Berkeley.EDU
[assorted domain data ...]
$ORIGIN EE.Berkeley.EDU
[assorted domain data ...]

TCP/lP Administrator's Guide

Standard Resource Records

The Start of Authority Resource Record (SOA)

The Start of Authority record designates the start of a zone. An SOA
record includes the following fields:

• Name

• Origin

• Person in charge

• Serial number

• Refresh

• Retry

• Expire

• Minimum

"Name" is the name of the zone. "Origin" is the name of the host on
which this data file resides. "Person in charge" is the mailing address for
the person responsible for the name server. "Serial number" is the ver­
sion number of this data file; this number should be incremented when­
ever a change is made to the data. (Note that the name server cannot han­
dle numbers over 9999 after the decimal point.) "Refresh" indicates how
often, in seconds, a secondary name server is to check with the primary
name server to see if an update is needed. "Retry" indicates how long, in
seconds, a secondary server is to retry after a failure to check for a
refresh. "Expire" is the upper time limit, in seconds, that a secondary
name server is to use the data before it expires for lack of getting a
refresh. Minimum is the default number of seconds to be used for the
time-to-live field on resource records. There should only be one SOA
record per zone. Here is an example of an SOA record:

narre {ttl} ad:1r-class S':¥i Origin Person m charge
@ ill S':¥i ucbvax.Eerk:eley.Edu. kjducbvax.Eerkeley.Edu. (

1.1 ; Serial
3600 ; Refresh
300 ; Ret:ry
3600000 ; Expire
3600) ; Minirrun

N arne Server Operations Guide for BIND 4-13

Standard Resource Records

The Name Server Resource Record (NS)

The name server record (NS) lists a name server responsible for a given
domain. The first name field lists the domain that is serviced by the listed
name server. There should be one NS record for each primary master
server for the domain. Here is an example of a name server record:

{narre} {ttl} adJr-class NS N::me servers narre
IN NS u~.Eerkeley.Edu.

The address class is IN (Internet addresses), and the record type is name
server (NS). The record uses the default ttl (time-to-live) value. Here,
the record-specific data is the identity of the name server.

The Address Resource Record (A)

The address record (A) lists the address for a given machine. The name
field is the machine name and the address is the network address. There
should be one A record for each address of the machine. Here is an exam­
pIe of an address record for a machine named ucbarpa with two network
addresses:

{narre} {ttl} ~lass A actlress
ud::ar:p3. ill A 128.32.0.4

ill A 10.0.0.78

The Host Information Resource Record (HINFO)

The host information resource record (HINFO) is for host-specific data. It
lists the hardware and operating system that are running at the listed host.
It should be noted that only a single space separates the hardware infor­
mation and the operating-system information. If you want to include a
space in the machine name, you must quote the name. Host information
is not specific to any address class, so ANY may be used for the address
class. There should be one HINFO record for each host. Here is an exam­
pIe:

{narre} {ttl} ~s HINED Hardware co
P.NY HINED VN..-ll/780 lNIX

Note that the current release ignores any records that appear after an
HINFO record. Thus, you can use only one HINFO record within the file,
and it should be the last record in the file.

4-14 TCP/IP Administrator's Guide

Standard Resource Records

The Well-Known Services Resource Record
(WKS)

The well-known services record (WKS) describes the well-known ser­
vices supported by a particular protocol at a specified address. The list of
services and port numbers comes from the list of services specified in
fete! services. There should be only one WKS record per protocol per
address. Here is an example of a WKS re~ord:

{narre} {ttl} ad::lr-class WKS ad:l.ress
IN WKS 128.32.0.10
IN WKS 128.32.0.10

protcx:x:>l list of sexvioes
UDP wOO route t:irce::i d:::rrain
TCl? (echo teJ..ret

discard. sump:: sftp
uucp-path systat daytine
netstat cptd nntp
link chargen ftp
auth tine wh:>is mtp
fXP rje fin;'er sntp
sup::iup hostnarres

d:nain
narre server)

The Canonical Name Resource Record (CNAME)

The canonical name resource record (CNAME) specifies an alias for a
canonical name. An alias should be the only record associated with the
alias name; all other resource records should be associated with the
canonical name and not with the alias. Any resource records that include
a domain name as their value (for example, NS or MX) should list the
canonical name, not the alias. Here is an example of a CNAME record:

{ttl} aOOr--c.lass Q\lAt.E Cancnical narce

The Domain Name Pointer Resource Record
(PTR)

A domain name pointer record (PTR) allows special names to point to
some other location in the domain. The following example of a PTR
record is used in setting up reverse pointers for the special IN­
ADDR.ARPA domain. This line is from the example:

hosts.rev file.

Name Server Operations Guide for BIND 4-15

Standard Resource Records

In this record, the name field is the network number of the host in reverse
order. You only need to specify enough octets to make the name unique.
For example, if all hosts are on network 127.174.14, then only the last
octet needs to be specified. If hosts are on networks 128.174.14 and
127.174.23, then the last two octets need to be specified. PTR names
should be unique to the zone. Here is an example of a PTR record:

name {ttl} addr-class PlR real name
7.0 rn PlR m:::net • :Berkeley. Edu.

The Mailbox Resource Record (MB)

The mailbox resource record has a record type of MB. It lists the ma­
chine where a user wants to receive mail. The name field is the user's
login; the machine field denotes the machine to which mail is to be
delivered. Mail box names should be unique to the zone. Here is an
example of an MB record:

name {ttl} a~lass M3 M3.d1:ine
miriam rn 1'£ vineyd.DECCXM.

The Mail Rename Resource Record (MR)

The mail rename record (MR) can be used to list aliases for a user. The
name field lists the alias for the name listed in the fourth field, which
should have a corresponding MB record. Here is an example of a mail
rename record:

name {ttl} ~s l'R oorresp::nd.ing M3
Post:m:i.stress m l'R miriam

The Mailbox Information Resource Record
(MINFO)

The mail information record MINFO creates a mail group for a mailing
list. This resource record is usually associated with a mail group, but it
can be used with a mail box record. The "name" specifies the name of
the mailbox. The "requests" field is where mail such as requests to be

4-16 TCP/lP Administrator's Guide

Standard Resource Records

added to a mail group should be sent. The "maintainer" is a mailbox that
should receive error messages. This is particularly appropriate for mail­
ing lists when errors in members' names should be reported to a person
other than the sender. Here is an example of this record:

rene {ttl} ad::lr-class MINFO requests naintainer
BrnD ill MINFO BIID-RmJES"T kjd.Be:::keley.Edu.

The Mail Group Member Resource Record (MG)

The mail group record (MG) lists members of a mail group.

{nail group narre} {ttl} ad::lr-class M:; rrari:;er narre
ill M:; Blcx:m

An example for setting up a mailing list is as follows:

Bind IN MINED Bind-Feq.1est kjd.Berkeley.Edu.
IN M:; Fa.l}:h • Berkeley . Edu.
IN M:; ZhcJU • Berkeley .Edu.
IN M:; Painter • Berkeley .Edu.
IN M:; Riggle • Berkeley .Edu.
ill M:; Terry. p3..Xerox. Can.

The Mail Exchanger Resource Record (MX)

narre {ttl} ad::lr-class MX preference value nailer exd1anger
M..mna.ri. 02 .AU • IN MX 0 Seisro. Q3S. CUJ.

*.IL. IN MX 0 REIAY.CS.NET.

Mail exchanger records (MX) are used to identify a machine that knows
how to deliver mail to a machine that is not directly connected to the net­
work. In the first example above, Seismo. CSS • GOV. is a mail gateway
that knows how to deliver mail to Munnari . OZ. AU • but other machines
on the network cannot deliver mail directly to Munnari. These two ma­
chines may have a private connection or use a different transport medium.
The preference value is the order that a mailer should follow when there
is more then one way to deliver mail to a single machine. See RFC974
for more detailed information.

Wildcard names containing the character "*,, may be used for mail rout­
ing with MX records. There are likely to be servers on the network that
simply state that any mail to a domain is to be routed through a relay. In

Name Server Operations Guide for BIND 4-17

Standard Resource Records

the second example above, all mail to hosts in the domain IL is routed
through RELAY.CS.NET. This is done by creating a wildcard resource
record, which states that *.IL has an MX of RELAY.CS .NET.

4-18 TCP/IP Administrator's Guide

Some Sample Files

Some Sample Files
The following sections contain sample files for the name server. This
covers example boot files for the different types of server and example
domain database files.

Caching-Only Server

; Eoot file for cadring Cnly N3rre Server

; typ:! d:rrain scurce file or h:lst

d:::rra.1n Berkeley.Edu
cache / etc/nam:dca
primaJ:y 0.0.127.in-ad::ir.al:p3. / etc/nam:dloca.l

Primary Master Server

; Eoot file for Prmmy M3ster N3rre Server

; type

directoxy
primaJ:y
pr:inal:y
prirrmy
cache

/usr/loca.l/lib/narred
EeI:keley.Edu
32.128.in-ad::ir.al:p3.
0.0.127.in-ad::ir.al:p3.

source file or host

ud::tlosts
ud::tlosts.rev
nam:dlocal
J:COt.cache

Name Server Operations Guide for BIND 4-19

Some Sample Files

Secondary Master Server

; Boot file for -Seoorrllly Narre Server

; tYfe

directory
seoon::lary
seoon::lary
prirraJ::y

cacte

/usr/1ocal/lili/narred
Berkeley.Fdu
32.128.in-ad::ir.cu:p3.
0.0.127.in-ad::ir.cu:p3.

source file or host

128.32.0.4 128.32.0.10 128.32.136.22 ucbh::lSt.b3k
128.32.0.4 128.32.0.10 128.32.136.22 ucbh::lSts. rev.bak

~local
root.cache

The letc/resolv.conf File

d:nai.n l3erkeley.Fdu
name seI:Ver 128.32.0.4
name seI:Ver 128.32.0.10

root.cache

Initial cache data for root d::nain servers.

99999999 IN NS SRI -NIc.ARPA.
99999999 IN NS NS.NASA.GJV.
99999999 IN NS 'IERP .lM).IDJ.
99999999 IN NS A.ISI.IDJ.
99999999 IN NS BRIr-l\OS.ARPA.
99999999 IN NS GNIER-lIDAM.ARPA.
99999999 IN NS c.NYSER.NEI'.

; Pn:p the cache (hotwire the ad:lresses) •
SRI -NICABPA. 99999999 IN A 10.0.0.51
SRI -NICABPA. 99999999 IN A 26.0.0.73
NS.NASA.GJV. 99999999 IN A 128.102.16.10
BRIr-l\OS.ARPA. 99999999 IN A 128.20.1.2
A.ISI.IDJ. 99999999 IN A 26.3.0.103
BRIr-l\OS.ARPA. 99999999 IN A 192.5.25.82
GNIER-ADAM.ARI?A. 99999999 IN A 26.1.0.13
c.NYSER.NEl'. 99999999 IN A 128.213.5.17
'IERP .u-D.EOO'. 99999999 IN A 10.1.0.17

4-20 TCP/IP Administrator's Guide

Some Sample Files

named.local
@ ill SJA. ucbvax.Berkeley.F.du. kjducbvax.Berkeley.Edu.

1 ; Serial
10800 ; Refresh
1800 ; Retry
3600000 ; Expire
86400) ; Min.irrum

ill NS ucbvax.Berkeley.F.du.
1 ill PIR locaJ.h::>st.

hosts

@ (#)ucb--hosts 1.1 (l::erkeley) 86/02/05

@ ill SJA ucbvax.Berkeley.Edu. kjd.m:::oet.Berkeley.Edu.
1.1 ; Serial
3600 ; Refresh
300 ; Retry
3600000 ; Expire
3600) ; M:inimJm

ill NS u~ey.Edu.
ill NS ucbvax.Be:J:keley.Edu.

locaJ.h::>st ill A 127.1
uci:exp3. ill A 128.32.4

ill A 10.0.0.78
ill HlNEQ VNiC-ll/780 UNIX

atp3. ill GW£ uci:exp3.
ernie ill A 128.32.6

ill HlNEQ VNiC-ll/780 UNIX
ucbemie ill GW£ ernie
m:::net ill A 128.32.7

ill A 128.32.130.6
ill HlNEQ VNiC-ll/750 UNIX

ud::rronet ill GW£ m:net

Name Server Operations Guide for BIND 4-21

Some Sample Files

ucbvax IN A 10.2.0.78
IN A 128.32.10
IN HINFO Vl>X-ll/750 mIX
IN W<S 128.32.0.10 illP syslog route tirred d::nain
IN W<S 128.32.0.10 'ICP (echo telnet

di.scaxd suru:p::: sftp
uuc:p-p:tth systat daytirre
netstat q:Jtd rmtp
link chargen ftp
auth tine ~is mtp
p:p rje finger snt:p
sup:lup hostnarres
d:na:in
narre server)

vax IN Q\JAlI.E ucbvax
toybox IN A 128.32.131.119

IN HINFO Pro350 RI'l1
toyl:x)x IN MX: 0 m::net.Berkeley.Edu
miriam IN M3 vineyd.DEX:. aM.
postrnist.ress IN t-R Miriam
Bind IN MINFO Bind-Fecpest kjd.Berkeley.Edu.

IN M; PaJ..t:h.Berkeley. Edu.
IN M; Zhou.Berkeley .Edu.
IN M; Painter • Berkeley .Edu.
IN M; Riggle • Berkeley .Edu.
IN M; Terry. pa.Xerox. Can.

hosts. rev

@(#)udb-hosts.rev 1.1 (Berkeley) 86/02/05

@ IN SIJA ucbvax.Berkeley.E::lu. kjd.rronet.BeI:keley.Edu.
1.1 ; Serial
10800 ; Fef:resh
1800 ; RetI:y
3600000 ; ~ire
86400) ; Mininun

IN NS uc:i:al:p3.Berkeley.E::lu.
IN NS ucbvax.Berkeley.E::lu.

4.0 IN PIR ud:aJ:pa.Eerkeley.E::lu.
6.0 m PIR emie.Berkeley.Edu.
7.0 IN PIR rronet.Berkeley.E::lu.
10.0 IN PIR ucbvax.BeI:keley.E::lu.
6.130 m PIR rronet.Berkeley.E::lu.

4-22 TCP/IP Administrator's Guide

Additional Sample Files

Additional Sample Files
The following sections contain an additional set of sample files for the
name server.

named. boot

Name Server boot file for Domain seo.COM

Type Domain Source file or Host

domain seo.COM
primary seo.COM /ete/named.data/seo-hosts
cache /ete/named.data/root.eaehe
secondary seo.COM /ete/named.data/seo-host.s.rev
primary seo.COM /ete/named.data/named.loeal

root.cache

Initial cached data for root domain servers.

99999999 IN NS
99999999 IN NS
99999999 IN NS

USC-ISIB.ARPA.
BRL-AOS.ARPA.
SRI-NIC.ARPA.

Insert your own name servers here

99999999 IN NS seovert.seo.COM

Prep the cache (hotwire the addresses)

tandy.seo.COM. 99999999 IN A 192.9.200.2
;viseous.seo.COM.99999999 IN A 128.0.21.6

; Root servers go here

tandy.seo.COM.
;SRI-NIC.ARPA.
;USC-ISIB.ARPA.
;BRL-AOS . ARPA.
; BRL-AOS . ARPA.

99999999 IN A
99999999 IN A
99999999 IN A
99999999 IN A
99999999 IN A

Name Server Operations Guide for BIND

192.9.200.2
10.0.0.51
10.3.0.52
128.20.1.2
192.5.22.82

4-23

Additional Sample Files

named.local

Don't forget to increment the serial number in
named.soa

$INCLUDE /etc/named/sco.soa
192.9.200.2 IN PTR localhost.

sco-host.s.rev

Don't forget to increment the serial number in
named.soa

$INCLUDE /etc/named/sco.soa

192.9.200.1 IN
192.9.200.2 IN
192.9.200.3 IN

PTR merlin
PTR tandy
PTR tvi

sco.soa

@

4-24

Don't forget to increment the serial number when you
change this. SCCS or RCS might be a good idea here.

IN SOA tandy.sco.COM. root.tandy.sco.COM. (
1.0 Serial
3600 Refresh
300 Retry
3600000 Expire
3600) Minimum

IN NS tandy.sco.COM.

TCP/IP Administrator's Guide

Domain Management

Domain Management
This section contains infonnation for starting, controlling, and debugging
named(ADMN), the Internet domain name server.

Starting the Name Server

The host name should be set to the full domain style name (that is,
monet.Berkeley.EDU.) using hostname(TC). The name server is started
automatically if the configuration file fetclnamed.boot is present. Do not
attempt to run named from inetd(ADMN). This continuously restarts the
name server and defeats the purpose of having a cache.

/etc/named.pid

When named is successfully started, it writes its process ID into the file
fetclnamed.pid. This is useful to programs that want to send signals to
named. The name of this file can be changed by defining PIDFILE to the
new name when compiling named.

/etc/hosts

The gethostbyname library call can detect whether named is running. If
it is detennined that named is not running, it looks in letclhosts to resolve
an address. This option whs added to allow ifeonfig(ADMN) to configure
the machine's local interfaces and to enable a system manager to access
the network while the system is in single-user mode. It is advisable to put
the local machine's interface addresses and a couple of machine names
and addresses in fetclhosts, so the system manager Can copy files from
another machine with rep when the system is in single-user mode. The
fonnat of letclhosts has not changed. See hosts(SFF) for more infonna­
tion. Because the process of reading I etcl hosts is slow, it is not advisable
to use this option when the system is in multiuser mode.

Name Server Operations Guide for BIND 4-25

Domain Management

Reload

There are several signals that can be sent to the named process to have it
do tasks without restarting the process. The SIGHUP signal causes
named to read named. boot and reload the database. All previously
cached data is lost. This is useful when you have made a change to a data
file and you want named's internal database to reflect the change.

Debugging

When named is running incorrectly, look first in lusrladmlsyslog and
check for any messages logged by syslog. Next, send it a signal to see
what is happening.

SIGINT dumps the current database and cache to
lusrltmplnamed _ dump.db This should give you an indication as to
whether the database was loaded correctly. The name of the dump file
can be changed by defining DUMPFILE to the new name when compiling
named.

The following two signals only work when named is built with
DEBUG defined.

SIGUSRI - Thrns on debugging. Each following USRI increments the
debug level. The output goes to lusrltmplnamed.run. The name of this
debug file can be changed by defining DEBUGFILE to the new name
before compiling named.

SIGUSR2 - Turns off debugging completely.

For more detailed debugging, define DEBUG when compiling the resolver
routines into lusrllibllibsocket.a.

4-26 TCP/IP Administrator's Guide

Chapter 5

Synchronizing Network Clocks

Introduction 5-1

Guidelines 5-3

Options 5-5

Daily Operation 5-6

Introduction

Introduction
The clock synchronization service is composed of a collection of time
daemons (timed(ADMN» running on the machines in a local-area net­
work. The algorithms implemented by the service are based on a master­
slave scheme. The time daemons comml;micate with each other using the
Time Synchronization Protocol (TSP), which is built on the DARPA UDP
protocol.

A time daemon has a two-fold function. First, it supports the synchroni­
zation of the clocks of the various hosts in a local-area network. Second,
it starts (or takes part in) the election that occurs among slave time dae­
mons when, for any reason, the master disappears. The synchronization
mechanism and the election procedure employed by the program timed
are described in the manual page timed(ADMN). This chapter is mainly
concerned with the administrative and technical issues of running timed
at a particular site. The next section is a brief overview of how the time
daemon works. A master time daemon measures the time differences
between the clock of the machine on which it is running and those of all
other machines on its network. The master computes the network time as
the average of the times provided by nonfaulty clocks. (A clock is con­
sidered to be faulty when its value is more than a small specified interval
apart from the majority of the clocks of the other machines.) The master
time daemon then sends to each slave time daemon the correction that
should be performed on the clock of its machine. This process is repeated
periodically.

Because the correction is expressed as a time difference rather than an
absolute time, transmission delays do not interfere with the accuracy of
the synchronization. When a machine comes up and joins the network, it
starts a slave time daemon that asks the master for the correct time and
resets the machine's clock before any user activity can begin. The time
daemons are thus able to maintain a single network time in spite of the
drift of clocks away from each other. The present implementation is capa­
ble of keeping processor clocks synchronized to within 20 milliseconds,
but some hardware is not adjustable at less than 1 second intervals.

To ensure that the service provided is continuous and reliable, it is neces­
sary to implement an election algorithm to elect a new master should the
machine running the current master crash, the master terminate (for
example, because of a runtime error), or the network be partitioned.

Synchronizing Network Clocks 5-1

Introduction

Under this algorithm, slaves are able to realize when the master has
stopped functioning and to elect a new master from among themselves. It
is important to note that the failure of the master results only in a gradual
divergence of clock values; thus, the election need not occur immedi­
ately.

The machines that are gateways between distinct local-area networks
require particular care. A time daemon on such machines may act as a
"submaster." This artifact depends on. the current inability of transmis­
sion protocols to broadcast a message on a network other than the one to
which the broadcasting machine is connected. The submaster appears as
a slave on one network and as a master on one or more of the other net­
works to which it is connected.

A submaster classifies each network as one of three types. A slave net­
work is a network on which the submaster acts as a slave. There can only
be one slave network. A master network is a network on which the sub­
master acts as a master. An ignored network is any other network that
already has a valid master. The submaster tries periodically to become
master on an ignored network, but gives up immediately if a master
already exists.

5-2 TCP/IP Administrator's Guide

Guidelines

Guidelines
While the synchronization algorithm is quite general, the election algo­
rithm, which requires a broadcast mechanism, puts constraints on the kind
of network on which time daemons can run. The time daemon works only
on networks with broadcast capability augmented with point-to-point
links. Machines that are only connected to point-to-point, non-broadcast
networks cannot use the time daemon.

If submasters are excluded, there is normally only one master time dae­
mon in a local-area internetwork. During an election, only one of the
slave time daemons becomes the new master. Not all machines are suit­
able as masters; some do not have sufficiently accurate timing mecha­
nisms or cannot afford the extra overhead. Therefore, a subset of ma­
chines must be designated as potential master time daemons. A master
time daemon requires CPU resources proportional to the number of slaves
(in general, more than a slave time daemon), and so it may be advisable to
limit master time daemons to machines with more powerful processors or
lighter loads. Also, machines with inaccurate clocks should not be used
as masters. This is a purely administrative decision; an organization may
well allow all of its machines to run master time daemons.

At the administrative level, a time daemon on a machine with multiple
network interfaces may be told to ignore all but one network or to ignore
one network. This is done with the timed -0 network and -i network
options, respectively, at startup time. 'JYpically, the time daemon would
be instructed to ignore all but the networks belonging to the local admin­
istrative control.

There are some limitations to the current implementation of the time dae­
mon. It is expected that these limitations will be removed in future
releases. The constant NHOSTS in /usrlsrc/etc/timedl globals.h limits the
maximum number of machines that can be directly controlled by one
master time daemon. The maximum is (NHOSTS - 1). Currently, the
maximum is 99. The constant must be changed and the program recom­
piled if a site wishes to run timed on a larger network.

In addition, there is a pathological situation to be avoided at all costs.
This situation can occur when time daemons run on multiply-connected
local-area networks. In this case, time daemons running on gateway ma­
chines are submasters, and they act on some of those networks as master
time daemons. Consider machines A and B that are both gateways
between networks X and Y. If time daemons were started on both A and
B without constraints, it would be possible for submaster time daemon A
to be a slave on network X and the master on network Y, while submaster

Synchronizing Network Clocks 5-3

Guidelines

time daemon B would be a slave on network Y and the master on network
x. This loop of master time daemons does not function properly or
guarantee a unique time on both networks, and it causes the submasters to
use large amounts of system resources in the form of network bandwidth
and CPU time. In fact, this kind of loop can also be generated with more
than two master time daemons, when several local-area networks are
interconnected.

5-4 TCP/IP Administrator's Guide

Options

Options

The options for the timed command are:

-n network Considers the named network.

-i network Ignores the named network.

-t Places tracing information in /usrladmltimed.log.

-M Allows this time daemon to become a master. A time
daemon run without this option is forced into the state
of slave during an election.

Synchronizing Network Clocks 5-5

Daily Operation

Daily Operation
The timedc(ADMN) command is used to control the operation of the
time daemon. It can be used to do the following:

• measure the differences between machines' clocks

• find the location where the master timed is running

• cause election timers on several machines to expire at the same
time

• enable or disable tracing of messages received by timed

See the manual pages on timed(ADMN) and timedc(ADMN) for more
detailed information.

The rdate(ADMN) command can be used to set the network date.

5-6 TCP/IP Administrator's Guide

Index

A

Access privileges 1-16
Active connections display 1-19
Address

resource record 4-14
Address parsing rules 3-20
Alias database 3-10

alternatives to 3-12
list owners 3-11
potential problems 3-11
rebuilding 3-10
writable or nonwritable 3-19

Alias files 2-8
Aliasing mail 2-8
Anonymous account 1-17
Apparently-To header line 3-13
Argument vector/return status 2-2

B

BIND (Berkeley Internet Name Domain) 4-1
BITNET 4-5
Boot files for name server 4-19
Broadcast address for internet 1-11

c

Cache initialization 4-10
Caching-only server, example of 4-19
chroot system call 1-17
Classes, defining 3-21
Clock synchronization service 5-1
Cloning drivers 1-5
Collecting messages 2-9
Command line flags 3-35
Conditionals 3-24
Configuration file 2-11

building from scratch 3-30
description 3-20
format 1-15
semantics 3-23
sendmail program and 2-5
special header lines 3-13

Configuration file 2-11 (continued)
syntax of 3-20
trying a different 3-15

Configuration options 3-37
Configuring

STREAMS 1-5
the interface 1-8

CSNET 4-5

D

Daemon mode 3-14
DARPA internet 4-5
Databases

network 1-16
dead.letter file 2-5
Debugging sendmail 3-14
Define classes 3-21
Define macro 3-21
Define mailer 3-22
Delivering messages 2-10
delivermail program 2-13
Delivery mode in sendmail3-18
Display

active connections 1-19
interfaces 1-21
protocol statistics 1-24
routing table 1-22

DL_ATTACH primitive 1-6
Domain

database files for name server 4-19
management 4-25
name pointer resource record 4-15
setting up your own 4-5

Driver
cloning of 1-5
device nodes 1-2
in kernel 1-2
non-cloning 1-6

E

EGP (Exterior Gateway Protocol) 1-14
Equivalence 1-16
Error mailer 3-29
Errors-To header line 3-13
/etc/ftpusers 1-17
/etc/hosts 4-25

1-1

Index

/etc/hosts.equi v 1-16
/etc/named.pid 4-25
/etc/resolv.conf 4-20
Exterior Gateway Protocol (EGP) 1-14

F

File modes in sendmail 3-18
Forcing the queue 3-8,3-14
Forking during queue runs in sendmail 3-17
.forward files 3-12
Forwarding mail 2-8
ftp account 1-17

G

Gateway
machines 1-14
smart 1-12

gethostbyname call 4-25

H

Header declarations 2-12
Header lines

apparently-to 3-13
errors-to 3-13
retum-receipt-to 3-13
special 3-13

Host
information resource record 4-14

hosts file 4-21
hosts.equiv file 1-16
hosts.rev file 4-22

I

ifconfig
commands 1-8
netmask option 1-9

Including mail 2-8, 2-9
inetd command 1-15
Initializing

cache 4-10

1-2

Installing sendmail 3-1
Interface

configuration 1-8
display 1-21
options, setting 1-8

Interface programs and sendmail2-2
Internet

broadcast addresses 1-11
daemon 1-15

K

Kernel
configuration 1-2

L

List owners 3-11
Local

subnetworks 1-9

M

Macro define 3-21
Macros in sendmail 2-11
Mail

aliasing 2-8
editing the message header 2-5
exchanger resource record 4-17
forwarding 2-8
group member resource record 4-17
including 2-9
rename resource record 4-16

Mail between networks 2-1
Mail program 2-1
Mail queue 3-6

file format 3-6
forcing 3-8
printing 3-6

Mailbox
information resource record 4-16

Mailer declarations 2-12
Mailer, defining 3-22
Mailer flags 3-29, 3-40
Mailing to files and programs 2-7
Master

servers 4-3

Master (continued)
time daemon 5-1

Master files 1-2
Message

body 2-9
collecting 2-9
header 2-9
queued 2-10

Message Processing Module (MPM) 2-14
Message timeouts in send mail 3-17
Messages, delivering 2-10
MICOM-Interlan driver 1-5
MMDF, compared to send mail 2-14
MPM (Message Processing Module) 2-14

N

Name resource record, canonical 4-15
Name server

address resource record 4-14
cache initialization 4-10
caching-only server example 4-19
canonical name resource record 4-15
changing origin 4-12
data files 4-11
defined 4-1
domain name pointer record 4-15
host infonnation resource record 4-14
mail box resource record 4-16
mail exchanger resource record 4-17
mail group member resource record 4-17
mail rename resource record 4-16
mailbox infonnation resource record 4-16
master servers 4-3
multiple files 4-12
record 4-14
remote 4-9
resource record 4-14
sample files 4-19, 4-23
SOArecord 4-13
starting 4-25
types of 4-3
well known services record 4-15

named program
debugging 4-26
defined 4-25
signals to reload 4-26

named.local file 4-21
netstat program 1-13, 1-19
Network

databases 1-16
servers 1 ;..15

Index

Network (continued)
troubleshooting 1-19

Non-cloning drivers 1-6

p

Packet trace 1-19
Per-user forwarding 3-12
Precedence definitions 3-23
Primary master server, example file 4-19
Printing the queue 3-6
Protocol

statistics display 1-24

Q

Queue, forcing the 3-14
Queue interval 3-14
Queue intervals in sendmail 3-16
Queue priorities in sendmail 3-17
Queue runs, forking during 3-17
Queued messages 2-10

R

Read timeouts in sendmail 3-16
Rebuilding the alias database 3-10
Remote name servers 4-9
Resource records 4-11
Return-Receipt-To header line 3-13
Rewriting an address 2-12
Rewriting rules 3-20

left hand side 3-26
right hand side 3-27
testing 3-32

RFC8212-3
RFC822 2-3, 2-7
RFC9191-11
.rhosts file 1-16
root.cache file 4-20
routed(ADMN) program 1-12
Routing

default 1-12
table

display 1-22
management daemon 1-12

wildcard 1-12

1-3

Index

Rule sets, rewriting 3-28

s

Secondary master server
example file 4-20

Sending mail between networks 2-1
sendmail

interface programs and 2-2
sendmail program 2-1

address parsing 2-4
alias database 3-19
aliasing mail 2-8
argument processing 2-4
arguments and 2-7
arguments to 3-14
basic installation 3-2
changing option values 3-15
collecting messages 2-4
command line flags 3-35
compared to delivermail 2-13
compared to MMDF 2-14
compared to MPM 2-14
configuration 2-11

file, building from scratch 3-30
file, description of 3-20
file semantics 3-23
off-the-shelf 3-2
quick startup 3-4
sample files 3-2
trying a different file 3-15

configuration file and 2-5
daemon mode 3-14
debugging 3-14
delivering messages 2-5
delivery mode 3-18
editing the message header 2-5
error mailer 3-29
file modes 3-18
flags 3-29
forwarding mail 2-8
header declarations 2-12
how sendrnail works 2-4
implementation 2-7
including mail 2-8
installing 3-1
macros and 2-11
mail queue 3-6
mailer declarations 2-12
mailer flags 3-29
Message Processing Module 2-14
options, changing values of 3-15

1-4

sendmail program 2-1 (continued)
queue, forcing the 3-14
queue interval 3-14
queueing for retransmission 2-5
rerouting mail 2-8
return to sender 2-5
rewriting an address 2-12
rewriting rules 3-20
setting options 2-12
special header lines 3-13
suid 3-19
support files 3-42
system organization 2-1
temporary file modes 3-19
tuning 3-16

delivery mode 3-18
file modes 3-18
forking during queue runs 3-17
message timeouts 3-17
queue interval 3-16
queue priorities 3-17
read timeouts 3-16
timeouts 3-16

Setting interface options 1-8
slink

program 1-5
slink functions

cenet 1-5
denet 1-6
uenet 1-6

Smart gateway 1-12
SMTP

over Berkeley-style sockets 2-3
over pipes 2-3

SOA (Start of Authority) record 4-13
Sockets

SMTP over 2-3
SO_DEBUG option 1-19
Special classes 3-26
Special macros 3-24
Standard resource record format 4-11
STREAMS

configuring 1-5
tuning 1-19

Subnetworks 1-9
suid in sendmail 3-19
Support files, summary of 3-42
Synchronization 5-1
System

equivalence 1-16

T

Temporary file modes, sendmail 3-19
Time daemon

constraints 5-3
master 5-1
options 5-5

timed program, administration 5-1
timedc command 5-6
Timeouts in sendmail3-16
Troubleshooting

network 1-19
trpt program 1-19
Trusted users, defining 3-23
Tuning sendmail program 3-16

delivery mode 3-18
file modes 3-18
forking during queue runs 3-17
message timeouts 3-17
queue interval 3-16
queue priorities 3-17
read timeouts 3-16
timeouts 3-16

Tuning STREAMS 1-19

u

unit select 1-6
User

equivalence 1-16
/usr/sys/conf/master 1-2
/usr/sys/conf/unixconf 1-2

w

Well known services resource record 4-15

Index

1-5

	0001
	0002
	001
	002
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-001
	3-002
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	4-001
	4-002
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	I-01
	I-02
	I-03
	I-04
	I-05

