
The ADEPT-50 time-sharing system

by R. R. LINDE and C. WEISSMAN

System Development Corporation
Santa Monica, California

and

C. E. FOX

King Resources Company
Los Angeles, California

INTRODUCTION

In the past decade, many computer systems intended
for operational use by large military and govern­
mental organizations have been "custom made" to
meet the needs of the particular operational situation
for which they were intended. In recent years, how­
ever, there has been a growing realization that this
design approach is not the best method for long term
system development. Rather, the development of
general purpose systems has been promoted that
provide a broad, general base on which to configure
new systems. The concepts of time-sharing and gen­
eral-purpose data management have been under de­
velopment for several years, particularly in university
or research settings.1,2,3 These methods of computer
usage have been tested, evaluated, and refined to
the point where today they are ready to be exploited
by a broad user community.

Work on the Advanced Development Prototype
(ADP) contract was begun in January 1967 for the
purpose of demonstrating—in an operational envi­
ronment—the potential of automatic information-
handling made possible by recent advances in com­
puter technology, particularly advances in time­
sharing executives and general-purpose data manage­
ment techniques. The result of this work is a large-
scale, multi-purpose system known as ADEPT, which

operates on IBM system 360 computers.*
The entire ADEPT system is now being used at

four field installations in the Washington, D. C. area,
as well as at SDC in Santa Monica. The system was
installed at the National Military Command System
Support Center in May 1968, at the Air Force Com­
mand Post in August 1968, and at two other govern­
ment agencies in January 1969. These four field sites
collectively run ADEPT from 80 to 100 hours per
week, providing a total of some 2000 terminal hours
of time-sharing service monthly to their users.

The ADEPT system consists of three major com­
ponents: a time-sharing executive; a data manage­
ment system adapted from SDC's Time-Shared Data
Management System (TDMS) described by Bleier,4

and a programmer's package. This paper deals ex­
clusively with the ADEPT Time-Sharing Executive,
and particularly with the more novel aspects of its
architecture and construction. Before examining these
aspects it will be instructive if we review the basic
design and hardware configuration of the system.

A general purpose operating system

The ADEPT executive is a general-purpose time-

* Development of ADEPT was supported in part by the Ad­
vanced Research Projects Agency of the Department of Defense.

39

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1478559.1478564&domain=pdf&date_stamp=1969-11-18

Fall Joint Computer Conference, 1969

sharing system. The system operates on a 360 Model
50 with approximately 260,000 bytes of core memory,
4 million bytes of drum memory, and over 250 million
bytes of disc memory, shown graphically in Figure
1 and schematically in the appendix. With this machine
configuration, ADEPT is designed to provide respon­
sive on-line interactive service, as well as background
service to approximately 10 concurrent user jobs. I t
handles a wide variety of different, independent ap­
plication programs, and supports the use of large
random-access data files. The design—basically a
swapping system—provides for flexibility and expan­
sion of system functions, and growth to more powerful
models in the 360 family.

ADEPT functions both as a batch processor (where­
by jobs are accumulated and fed to the CPU for opera­
tion one by one) and as an interactive, on-line system
(in which the user controls his job directly in real
time simply by typing console requests).

Viewed as a batch system, ADEPT allows jobs to
be submitted to console operators or submitted from
consoles via remote batch commands (remote job
entry). In either case, jobs are "stacked" for execution
by ADEPT in a first-in/first-out order. The stack is
serviced by ADEPT as a background task, subject
to the priorities of the installation and the demands
of "foreground" interactive users.; Viewed as an inter­
active system, ADEPT allows the user to work with
a typewriter, allowing computer-user dialog in real
time. Via ADEPT console commands, the user iden­
tifies himself, his programs, and his data files, and
selectively controls the sequence and extent of opera­
tion of his job in an ad lib manner. A prime advantage
of the interactive use of ADEPT is that the system
provides an extendable library of service programs
that permit the user to edit data files, compile or
assemble programs, debug and^ eliminate program
errors, and generally manage large data bases in a
responsive on-line manner.

System architecture

The architecture of the ADEPT executive is that
of the "kernel and the shell". The "kernel," referred
to as the Basic Executive (BASEX), handles the
major problems of allocating and scheduling hard­
ware resources. I t is small enough to be permanently
resident in low core memory, permitting rapid response
to urgent tasks, e.g., interrupt control, memory al­
location, and input/output traffic. The "shell," re­
ferred to as the Extended Executive (EXEX), provides
the interface between the user's application program
and the "kernel". I t contains those non-urgent, large-

j CORE (.26M BYTES)

77 1 "7
2303 DRUM
(3>9M BYTES)

2311 D!5C PACKS
(7.25M BYTES PER PACK)

2314 DISC STORAGE
(207M BYTES)

2302 DISC STORAGE
(226M BYTES)

Figure 1—Relative capacity of various ADEPT direct-access
storage media available in less than 0.2 seconds. The initial
system that operates at SDC utilizes core, 2303 drum, 2311 and
2314 disc packs, and 2302 disc storage. The NMCSSC system
utilizes 2314 disc storage in lieu of 2311 or 2302 discs. The archi­
tecture of the ADEPT executive is such that it permitp any
combination of the above types of disc storage in varying amounts

task extensions of the basic "kernel" processes that
are user-oriented rather than hardware-oriented;
they may, therefore, be scheduled and swapped.

The version of the ADEPT time-sharing system,
thus far developed has multiple levels of control
beyond the two-level "kernel-shell" structure—i.e.,
it can be thought of figuratively as an "onion skin".
Figure 2 shows these relationships graphically.

Beyond EXEX, "object systems" may exist as
subsystems of ADEPT (developed by the user com­
munity without modification to EXEX or BASEX),
thus further distributing and controlling the system
resources for the object programs that form still
another level of the system. The design ideas embodied
in ADEPT parallel those of Dijkstra,5 Corbato,6

and Lampson,7 but differ in techniques of implemen­
tation.

The ADEPT Basic Executive operates in the lower
quarter of memory, thereby providing three quarters
of memory for user programs. With the current H
core configuration, ADEPT preempts the first 65,000
bytes of core memory, the bulk of which is dedicated
to BASEX; EXEX must then operate in user memory

The ADEPT-50 Time-Sharing System

OTHER FUNCTIONS

OBJECT PROGRAMS

OBJECT SYSTEMS

Figure 2—Multiple levels of control in ADEPT

in a fashion similar to user programs. ADEPT is
designed to operate itself and user programs as a
collection of 4096-byte pages. BASEX is identified
as certain pages that are fixed in main storage and
that cannot be overlayed or swapped. EXEX and
other programs are identified as sets of pages that
move dynamically between main storage and swap
storage (i.e., drum). I t is necessary to maintain con­
siderably more descriptive information about these
swappable programs than about BASEX. This
descriptive information is carried in a set of system
tables that, at any point in time, describe the current
state of the system and each program.

ADEPT views the user as a job consisting of some
number of programs (up to four for the 360/50H
configuration) that were loaded at the user's reouest.
These programs may be independent of one another
or, with proper design, different segments of a larger
task. Implicitly, EXEX is considered to be one of
these programs. To simplify system scheduling, com­
munication, and control, only one program in the
user's set may be active (eligible to run) at a time.
When ADEPT scheduling determines that a job may
be serviced, the current job in core is saved on swap
storage, and the active program of the next job is
brought into core from swap storage and executed
for a maximum period of time, called a quantum. The
process then repeats for other jobs. Figures 3 and 4
schematically depict these relationships.

Figure 3—Simple commutation of users programs. This figure
illustrates the relationship between user's programs' EXEX
and BASEX. Each spoke represents a user's job, with his EXEX
providing the interface between BASEX and the hardware
resources. The maximum number of interactive job the

IBM 360/50H configuration is ten.

: - <
USER'S EXEX OR OBJECT PROGRAM EXECUTION

TIME SERVICE I/O

)

Figure 4—ADEPT'S basic sequence of operation. This figure
shows the basic operating system cycle: idle loop is interrupted
by an external interrupt (an activity request); a program is
scheduled, swapped into core from the drum, and executed
escape from the execution phase occurs when quantum termina­
tion condition (e.g., time expiration, service or I/O call, error
condition) is met; the program is then swapped out and control
is returned to the idle loop (if no other programs are eligible to

be scheduled).

Basic executive (BASEX)

Table I lists the BASEX components and their
general functions as of the eighth and latest executive
release. These basic system components form an
integrated, non-reentrant, non-relocatable, perma-

Fall Joint Computer Conference, 1969

nently-resident, core memory package 16 pages long
(each page is 4096 bytes). They are invoked by hard­
ware interrupts in response to service requests by
users of terminals and their programs. Note the
division of input/output control into cataloged (SPAM
and IOS), terminal (TWRI), and drum (BXEC)
activities to permit local optimization for improved
system performance.

TABLE I—Basic executive components

Component Function

ALLOC Drum and core memory allocation.

BXBUG Debugger for executive programs.

BXEC Basic sequence and swap control.

BXECSVC SVC handlers for WAIT, TIME,
DEVICE, STOP AND DISMISS
calls.

EXEX Linkage routines for EXEX (BASEX/
EXEX interfaces); also services com­
mands DIALOFF, DIALON.

INTRUP First-level interrupt control.

IOS Channel-program level input/output
supervisory control.

RECORD Records SVC, interrupt activity in
BASEX.

SKED Scheduler.

SPAM Input/output access methods to cata­
loged storage.

TWRI Terminal input/output control.

System Tables Resident system data areas for com­
munication table (COMTAB)^ logged-
in user's table (JQB), loaded programs
table (PQU), d!rum and core status
tables (DSTAT, CSTAT), and a
variety of other tables.

Extended executive (EXEX)

Unlike the tight, closed package of integrated
BASEX components, EXEX isi a loose, open-ended
collection of semiautonomous programs. Table II
lists this collection of programs. EXEX is treated
by BASEX as a user program, with certain privileges,
and each user is given his own "copy" of the EXEX.
It is transparent to the user that EXEX is reentrant

TABLE II—Extended executive components

Component

AUDIT

BMON

CAT

DTD

DBUG

LOGIN

SERVIS

Function

Maintains a real-time recording of all
security transactions as an account­
ability log.

Batch monitor for control of back­
ground job execution.

Cataloger for file storage access con­
trol; also services FORGET command.

Transfers recording information from
drum to disc.

Debugger for non-executive (user)
programs.

User authentication and job creation.

Library of service commands that are
reentrant, interruptible and scheduled:
APPEND, CHANGE, CREATE,
CYLS, DELETE, DRIVES, INIT,
LISTF, LISTU, LOAD, LOADD,
LOAD and GO, OVERLAY, RE­
PLACE, RESTORE, RESTORED,
SAVE, SEARCH, VARYOFF,
VARYON.

RUN Remote batch job submission control
servicing commands RUN and

1 CANCEL.

XXTOO Library of small, fast, executive
service commands: CPU, BGO>
BQUIT, BSTOP, DIAL, DRUMS,
GO, LOGOUT, QUIT, RESTART,
SKED, SEEDOFF, STATUS,
STOP, TIME, USERS.

SYSDEF Defines input/output hardware con­
figuration at time of system start up.

SYSLOG Defines authorized user/terminal se­
curity profiles at time of system
start up.

TEST Initializes system tables at tims of
system start up.

SYSDATA Non-resident, shared, system data
table for dial messages and other
common data, e.g., lists of all logged4n
users; other non-resident, job-specific
tables also exist, e.g., job environment
pagej push-down list data page.

The ADEPT-50 Time-Sharing- System 43

and is being shared with other users, except for its
data space. Each job has its own "machine state"
tables saved in its unique set of environment pages.
This structure permits flexible modification and orderly-
system expansion in a modular fashion. EXEX is
always scheduled in the same way as other user pro­
grams.

Though EXEX components are, in large part ,
non-self-modifying reentrant routines and thus, could
at small cost, be relocatable; neither user programs
nor EXEX components are relocated between swaps.
The lack of any mapping hardware on the IBM 360/50
and the design goal and knowledge that most user
programs would be of maximum size made unnecessary
a software provision to relocate programs dynamically.
User programs may be relocated once at load time,
however.

Communication and control techniques used in ADEPT

Communication is the generic term used to cover those
services that permit two (or more) programs to inter­
communicate, be they system program, user program,
or both. From this communication vantage point we
shall examine the connective mechanism used between
the Basic and Extended Executives; the techniques
that allow components within the EXEX to make
use of one another; and the system design that permits
an object program to control its own behavior as well
as to communicate with the system and with other
object programs.

The ADEPT job or process

Before we discuss the system mechanics, let us
examine how the system treats each user logically.
A user in the system is assigned a job number. Each
job in the system may be viewed as a separate process,
and each process is, by definition, independent of all
other processes running on the machine. A process—
or job— is not a program. I t is the logical entity for
the execution of a program on the physical processor,
and it may contain as many as four separate programs.
A program consists of the set of machine instructions
swapped into the processor for execution, and the
Extended Executive is one of these programs.

The ADEPT executive requires a large number of
system tables to permit Basic and Extended Execu­
tive communication. Conceptually, the use of descrip­
tive tables defining the condition of a user's process
is analogous to the state vector (or state word) dis­
cussed by Lampson and Saltzer.8-9 That is, the col­
lection of information contained by these tables is

sufficient to define an inactive user's process state
at any given moment. By resetting the central proc­
essor from the state vector, a user's job proceeds
from an inactive to an active state as if no interrup­
tion had occurred. The state vector contains such
items as the program counter, the processor's general
registers, the core and drum map of all the programs
in the job, and the peripheral storage file data. All
of the collective data for each program or task in the
process are contained in the state vector.

Basic and extended executive communication

Each ADEPT user (i.e., any person who initiates
some activity within the system by typing in com­
mands) is given a job number and assigned an entry
in the JOB table. The JOB table contains the system's
top-level bookkeeping on user activity. I t contains
the user's identification, his location, his security
clearance, and a pointer to his program queue. Each
user is assigned one entry, or JOB, in the table. As­
sociated with each JOB are the one or more programs
that the user is running.

Top-level bookkeeping on programs is contained
in the Program Queue (PQU) table. Each PQU entry
contains a program identification and some (but not
all) information that describes that program in terms
of its space requirements, its current activity, its
scheduling conditions, and its relationship to other
programs in the PQU that belong to the same JOB.
The detailed descriptive information and the status
of each JOB and its programs are carried in the swap-
pable environment space.

The environment pages (there can be as many as
four) comprise a number of separate tables that con­
tain such information as the contents of the general
registers, the swap storage page numbers where the
balance of the program resides, the program map,
and lists of all active data files. A single environment
page (or pages) is shared by all programs that belong
to the same JOB (user). The system design allows for
environment page overflow at which time additional
pages are assigned dynamically. The environment
pages, PQU table, JOB table, and data pages com­
prise the state vector of the user's job.

To permit storage of "global'' system variables,
and to allow system components to reference system
data that may be periodically relocated, there exists
a system communication table, which resides in low
core so that it can be referenced without loading a
base register.

The IBM 360 supervisor call (SVC) is used exclu-

44 Fall Joint Computer Conference, 1969

sively by EXEX components and object programs to
request BASEX services. Though additional overhead
is incurred in the handling of the attendant interrupt,
the centralization of context switching provided is
of considerable value in system design, fabrication,
and checkout.

Extended executive communication

An EXEX may make use of another EXEX func­
tion by use of the SVC call mechanism. To support
the recursive EXEX, an additional SVC processing
routine is required to manage the different recursive
contexts. This routine, called the SVC Dispatcher,
processes calls from user and EJXEX functions alike,
manages a swappable data page, and switches to an
interface linkage routine. The data page contains
a system communication stack that consists of a
program's general registers and: the Program Status
Word at the time of the SVC. This technique is
analogous to the push-down logic of recursive pro­
cedure calls found in ALGOL or LISP language
systems. The stack provides a convenient means of
passing parameters between routines in the EXEX.
Since each job has its own unique data page and en­
vironment page, EXEX is both recursive and reentrant.

The environment status table (ESTAT) contains
the swap and core location for each component in
the EXEX and for each program in the job. I t resides
in the job environment page. When an EXEX service
is requested, only that particular EXEX program is
brought in from swap storage,! rather than the full
service library. The interface linkage routine provides
this management function; it lies as a link between
the SVC Dispatcher and the particular EXEX
function. The interface routine picks up necessary
work pages for the EXEX component involved and
branches to that component after it is brought into
core. The interface routine maintains a separate push­
down stack of return addresses; providing the means
for the EXEX component to properly exit and return
control to its interface routine and then to the system.

The EXEX component called may make additional
EXEX SVC calls before exiting. To provide correct
work page allocation during recursive calls, the inter­
face routine also saves the work page core and drum
page addresses in the push-down stack. Upon com­
pletion of a call, the EXEX component returns to
its interface routine; the interface routine releases
all allocated work pages to the system and branches
to a common unwind procedure.

The unwind procedure, like the SVC Dispatcher,
is simply a switching mechanism. I t determines, via

the stack, whether to return to a still higher level
EXEX function, or to turn the EXEX off and exit
to the Basic Sequence. This recursive/reentrant con­
trol is the most complex portion of ADEPT and is
the "glue" that binds BASEX and EXEX together.
Figure 5 illustrates the recursive process.

Object program communication

One of the more stringent services required of an
operating system is the rapid interchange of large
quantities of data between object programs. The
interchange of even simple arrays, matrices, and tables
via stack parameters or a common file suffers from the
inadequacy of limited capacity or extensive I/O time.
Many operating systems ignore this requirement,
thereby restricting the general-purpose applications.
Yet there are solutions to this problem, and one suc­
cessful technique employed in the ADEPT system is
that of "shared memory". Shared memory is achieved
by using the basic mechanism for managing reentrancy,
namely the program environment page map. Through
the ADEPT SHARE Page call, an object program
can request that designated pages of another program

UNWIND
DECREMENTS
STACK.

Figure 5—Block diagram of EXEX behavior a,nd
control

The ADEPT-50 Time-Sharing System 45

in the job be added to its map. If core page numbers
are passed as parameters in various service calls, whole
pages of data may be passed between programs. EXEX
and many object programs operating under this system
use this method for inter-program communication.

ADEPT operating on the IBM 360/50H restricts
its user programs to 46 active core pages. However,
by utilizing the GETPAGE call, an object program
may acquire up to 128 drum pages and may subse­
quently activate and deactivate various page sets
by utilizing another service call, ACTDEACT (acti­
vate/ deactivate). This scheme permits bulk data from
disc storage to be placed on drum and operated upon
at "swap" speeds. Thus skilled system users can
achieve efficient use of time and memory by managing
their own "paging". We consider this the best alterna­
tive considering the questionable state of other, auto­
matic paging algorithms.10'11-12-13 Most EXEX com­
ponents use these calls for just such purposes. For
example, the interface routines mentioned above use
activate calls to "turn on" called components of the
EXEX.

The Allocator component of ADEPT manages the
page map for each program. This software map re­
flects the correspondence between drum and core
pages, established initially by the SERVIS (service)
component at load time. The Allocator's function is
to inventory available core and drum pages by main­
taining two resident system tables: one for core, the
other for drum. Whenever drum pages are released
or obtained, the Allocator updates the page map in
the job's environment page. The Allocator processes
the SHARE (page), GETPAGE, FREEPAGE, and
ACTDEACT calls from EXEX and object programs.
SERVIS allows a program at run time to add data
pages or to overlay program segments from disc or
tape. In so doing, SERVIS makes use of the various
Allocator calls.

Simulating console commands

An important attribute of ADEPT time-sharing
is that nearly all the functions and services that can
be initiated at the user's console can also be called
forth within a user's program. A program designer
can, for example, build a system of programs, which
can operate in batch mode under the control of a pro­
gram by issuing internal commands in much the same
manner as the user sitting at the console. With this
approach, the ADEPT batch monitor controls back­
ground tasks by simulating user terminal requests.
Batch requests can be enqueued by users from any

console and then processed in turn by this supervisor
function.

Armed interrupts and rescue function

The basic design of ADEPT conveniently provides
for processing object program "armed" interrupt
calls. This means that an object program is able to
conditionally start (wakeup) and stop (sleep) the
execution of its own programs, and others as well.
The conditions for employing wakeup calls include
too much elapsed time, or the occurrence of unpre­
dictable but anticipated events, e g., errors and other
program calls. In "arming" these "software-inter­
rupt" conditions by object program calls, the program
entry point(s) for the various conditions are specified.
When such conditions occur, the operating system
transfers to the specified entry point and gives the
appropriate condition code. (Note that if we take this
call one step further, and permit one object program
to arm the software and hardware interrupts of another
object program, we have the basic control mechanism
necessary to permit the operation of "object systems-
necessary to permit the operation of "object systems,"
i.e., subexecutives—another level in the "onion skin"
of ADEPT control.)

User programs interface with the ADEPT system
primarily via the supervisor call (SVC) instruction;
a secondary interface is provided via the program
check interrupt that protects the program and system
after various error conditions. The executive design
allows user programs to trap all such interfaces with
the system via its rescue arming mechanism. This
means that one program can trap and get first-level
control of all occurrences of SVC's and program checks
within a single job. This mechanism also means, then,
that the responsibility and meaning for these inter­
faces can be redefined at the user program level.

As of this writing, this mechanism is being employed
to construct object systems for an improved batch
monitor, an interface for the proposed ARPA Net­
work,14 and to experiment with automatic translators
for compatibility with other operating systems. Other
uses include improvements in program recovery in
a variety of user tools, e.g., compiler diagnostics.

Resource allocation, access, and management

ADEPT system design, of course, includes a com­
plete set of resource controls that monitor secondary
storage devices.

46 Fall Joint Computer Conference, 1969

The cataloger

The Cataloger, an EXEX component, is functionally
analogous to the core/drum Allocator, but is used
for devices accessible by user programs. It maintains
an inventory of all assignable storage devices, assigns
unused storage on the devices, maintains descrip­
tions of the files placed on these devices, controls
access to these files, and—upon authorized request—
deletes any file. Specifically, the Cataloger:

• Assigns storage on 2302, 2311 and 2314 discs.

. Assigns tape drives.

• Locates an inventoried file by its name and cer­
tain qualifiers that uniquely identify the file.

• Issues tape or disc pack mounting instructions
to the operator when necessary.

• Verifies the mounting of labeled volumes.

• Passes descriptive information to the user pro­
gram opening a file.

• Allows the user of a file to request more storage
for the file.

• Denies unauthorized users access to files.

• Returns assigned storage to available storage
whenever a file is deleted.

• Maintains a table of contents on each disc volume.

As the largest single component of the ADEPT
Eexcutive (j65,000 bytes), the Cataloger was written
in a new, experimental programming language called
MOL-360 (Machine-Oriented Language for the 360) .l5

I t is a "higher-level machine language" developed
under an ARPA-sponsored SDC research project on
metacompilers. I t resolved the dilemma involving
our desire for higher-level source language and our
need to achieve flexibility with machine code. The
Cataloger design and checkout, enhanced by the use
of MOL-360, showed simultaneously the validity
of MOL compilers for difficult machine-dependent
programming.

The SPAM component

SPAM is a BASEX component that permits sym­
bolic, user-oriented I/O. I t can be viewed as a special-
purpose compiler that compiles symbolic user program
I/O calls into 360 channel programs, and delivers them
to the Input/Output Supervisor (IOS) for execution
via the EXCP (execute channel program) call. The

results of EXCP for the call are "interpreted" by
SPAM and returned to the user program as status in­
formation. As such, SPAM represents a more symbolic
I/O capability than the EXCP level. I t provides a
relatively simple method for executing the operations
of reading, writing, altering, searching for, and po­
sitioning records within ADEPT cataloged and con­
trolled disc-based and tape-based file structures.

Resource management

As of this writing, the computer operator has a set
of commands at his disposal that allow him to control
the system resources. Various privileged on-line com­
mands enable him to monitor the terminal activities
of system users and to control assignment and availa­
bility of storage devices. However, there is an in­
creasing need for a "manager" to be given more
latitude in dynamically controlling the system re­
sources and observing the status of system users,
particularly because ADEPT was designed to handle
sensitive information in classified government and
military facilities. To meet these objectives, a design
effort is under way that gives the computer operator
system-manager status, with the ability to observe
and control the actions of system users. The result
will be a program that encompasses some of the man­
agement techniques reported by Linde and Chaney16

tailored to present needs.

Swapping and scheduling user programs

Most of the programs that run under ADEPT
occupy all of the core memory that is not used by
the resident Basic Executive (46 pages on the 360/
50H). If the set of needed pages could be reduced
considerable reduction in swap overhead could be
expected. One way to achieve this is to mark for swap-
out only those pages that were changed during pro­
gram execution. The hardware needed to automatically
mark changed pages is unavailable for the 360/50;
however, through use of the store-protect feature on
the Model 50, ADEPT software can simulate the ef­
fect and produce noteworthy savings in swap time.

Page marking

Whenever a user program is swapped into core, its
pages are set in a read-only condition. As the program
executes, it periodically attempts to store data (write)
in its write-protected pages. The resulting interrupt
is fielded by the system. After satisfying itself that
the store is legal for the program, the executive marks
the target page as "written," turns off write-protect

The ADEPT-50 Time-Sharing System 47

for that page, and resumes the program's execution.
The situation repeats for each additional page written.
At the completion of the program's time slice, the
swapper has a map of all the program pages that
were changed (implied in the storage keys with no
write protection). Only the changed pages are swapped
out of core. Measurement of this scheme shows that
about 20 percent of the pages are changed; hence,
for every five pages swapped in, only one need be
swapped out, for a total swap of six pages, rather
than the full swap of ten pages (five in, five out). The
scheme makes the drum appear to be 40 percent faster.

The use of the storage protection keys is based on
the functional status of each page rather than on
some user identity. User programs always run with
a program status word key of one, and the bits in
the storage key associated with the programs start
out at zero. After a page has been initially changed,
its key is set to one also. The other bits in the key are
used to indicate: first, a page is transient, not yet
completely moved to or from swap storage; second,
a page is unavailable, i.e., it belongs to someone else;
third, a page is locked and cannot be swapped or
changed; and finally, a page is fetch-protected because
it may contain sensitive information.

Scheduling algorithm

The scheduling algorithm provides for three levels
of scheduling. Jobs that are in a "terminal I/O com­
plete" state get first preference in the schedule. Jobs
in the second level, or background queue, are run if
there are no level-one jobs to run. A job is placed in
level two when the two-second quantum clock alarm
terminates its operation two consecutive times. Com­
pute and I/O-bound programs are treated alike. A
level-two job—when allowed to run—is given quantum
interval equal to the basic quantum time multiplied
by the scheduling level (i.e., 2 sec X 2 = 4 sec).
However, a level-two background job may be pre­
empted after two seconds for terminal I /O. Any opera­
tion a level-two job makes that terminates its quan­
tum prematurely will return the job to a level-one
status. The batch monitor job is run when the first
two queues are empty. User programs may be written
to overlap execution and I/O activity. Our choice of
scheduling parameters for quantum size, and num­
ber of service levels was selected empirically and as a
result of prior experience.17

A command SKED, which is limited to the opera­
tor's terminal, has the effect of forcing top priority
for a job (the job stays at level one all the time). Only

one job may run in this privileged scheduling state
at a time.

Pervasive security controls

Integrated throughout the ADEPT executive are
software controls for safeguarding security-sensitive
information. The conceptual framework is based
upon four "security objects": user, terminal, file,
and job. Each of these security objects is formally
identified in the system and is also described by a
security profile triplet: Authority (e.g., TOP SE­
CRET, SECRET), Need-to-Know Franchise, and
Special Category (e.g., EYES ONLY, CRYPTO).
At system initialization time, user and terminal
security profiles are established by security officers
via the system component SYSLOG. SYSLOG also
permits the association of up to 64 passwords with
each user. At LOGIN time, a user identifies himself
by his unique name, up to 12 characters, and enters
his private password to authenticate his identity. The
LOGIN component of ADEPT validates the user
and dynamically derives the security profile for the
user's job as a complex function of the user and ter­
minal security profiles. The job security profile is
used subsequently as a set of "keys," used when access
is made to ADEPT files. The file security profile is
the "lock" and is under control of the file subsystem.

File access Need-to-Know is permitted for Private,
Semi-Private, and Public use. With the CREATE
command, a list of authorized users and the extent of
their access authorization (i.e., read-only, write-only,
read and write) can be established easily for Semi-
Private files. Newly created files are automatically
classified with the job's "high water mark" security
triplet—a cumulative security profile history of the
security of files referenced by the job. Through ju­
dicious use of the CHANGE command, these proper­
ties may be altered by the owner of the file.

Security controls are also involved in the control
of classified memory residue. Software and hardware
memory protection is extensively used. Software
memory protection is achieved by interpretive, le­
gality checking of memory bounds for I/O buffer
transfers, legality checking of device addresses for
unauthorized hardware access, and checks of other
user program attempts to seduce the operating system
into violating security controls.

The hardware protection keys are used to fetch-
protect all address space outside the user program and
data area. Also, newly allocated space to user programs
is zeroed out to avoid classified memory residue.

The ADEPT-50 Time-Sharing System 48

for that page, and resumes the program's execution.
The situation repeats for each additional page written.
At the completion of the program's time slice, the
swapper has a map of all the program pages that
were changed (implied in the storage keys with no
write protection). Only the changed) pages are swapped
out of core. Measurement of this scheme shows that
about 20 percent of the pages are changed; hence,
for every five pages swapped in, ionly one need be
swapped out, for a total swap of six pages, rather
than the full swap of ten pages (five in, five out). The
scheme makes the drum appear to be 40 percent faster.

The use of the storage protection keys is based on
the functional status of each page rather than on
some user identity. User programs always run with
a program status word key of one, and the bits in
the storage key associated with the programs start
out at zero. After a page has been initially changed,
its key is set to one also. The other bits in the key are
used to indicate: first, a page is transient, not yet
completely moved to or from swap storage; second,
a page is unavailable, i.e., it belongs to someone else;
third, a page is locked and cannot be swapped or
changed; and finally, a page is fetch-protected because
it may contain sensitive information1.

Scheduling algorithm

The scheduling algorithm provides for three levels
of scheduling. Jobs that are in a "terminal I/O com­
plete" state get first preference in ;the schedule. Jobs
in the second level, or background queue, are run if
there are no level-one jobs to run. A job is placed in
level two when the two-second quantum clock alarm
terminates its operation two consecutive times. Com­
pute and I/O-bound programs are treated alike. A
level-two job—when allowed to run-?—is given quantum
interval equal to the basic quantum time multiplied
by the scheduling level (i.e., 2 sec X 2 = 4 sec).
However, a level-two background job may be pre­
empted after two seconds for termiiial I/O. Any opera­
tion a level-two job makes that terminates its quan­
tum prematurely will return the job to a level-one
status. The batch monitor job is run when the first
two queues are empty. User programs may be written
to overlap execution and I/O activity. Our choice of
scheduling parameters for quantum size, and num­
ber of service levels was selected empirically and as a
result of prior experience.17

A command SKED, which is limited to the opera­
tor's terminal, has the effect of fdrcing top priority
for a job (the job stays at level one all the time). Only

one job may run in this privileged scheduling state
at a time.

Pervasive security controls

Integrated throughout the ADEPT executive are
software controls for safeguarding security-sensitive
information. The conceptual framework is based
upon four "security objects": user, terminal, file,
and job. Each of these security objects is formally
identified in the system and is also described by a
security profile triplet: Authority (e.g., TOP SE­
CRET, SECRET), Need-to-Know Franchise, and
Special Category (e.g., EYES ONLY, CRYPTO).
At system initialization time, user and terminal
security profiles are established by security officers
via the system component SYSLOG. SYSLOG also
permits the association of up to 64 passwords with
each user. At LOGIN time, a user identifies himself
by his unique name, up to 12 characters, and enters
his private password to authenticate his identhVy. The
LOGIN component of ADEPT validates the user
and dynamically derives the security profile for the
user's job as a complex function of the user and ter­
minal security profiles. The job security profile is
used subsequently as a set of "keys," used when access
is made to ADEPT files. The file security profile is
the "lock" and is under control of the file subsj^stem.

File access Need-to-Know is permitted for Private,
Semi-Private, and Public use. With the CREATE
command, a list of authorized users and the extent of
their access authorization (i.e., read-only, write-only,
read and write) can be established easily for Semi-
Private files. Newly created files are automatically
classified with the job's "high water mark" security
triplet—a cumulative security profile history of the
security of files referenced by the job. Through ju­
dicious use of the CHANGE command, these proper­
ties may be altered by the owner of the file.

Security controls are also involved in the control
of classified memory residue. Software and hardware
memory protection is extensively used. Software
memory protection is achieved by interpretive, le­
gality checking of memory bounds for I/O buffer
transfers, legality checking of device addresses for
unauthorized hardware access, and checks of other
user, program attempts to seduce the operating system
into violating security controls.

The hardware protection keys are used to fetch-
protect all address space outside the user program and
data area. Also, newly allocated space to user programs
is zeroed out to avoid classified memory residue.

The ADEPT-50 Time-Sharing System 49

Typically, the complete system reaches "on the air"
status in less than a minute.

System instrumentation

Many of the parameters built into the scheduling
and swapping of early ADEPT versions were based
upon empirical knowledge. The latest versions of
the Basic and Extended Executives include routines
to record system performance, reliability, and security
locks.

Built into the BASEX is a routine to measure the
overall and the detailed system performance.20 Such
factors as the number of users, file usage, hardware
and software errors, and page transaction response
time are recorded on unused portions of the 2303
drum. These measurements provide a better under­
standing of the system under a variety of inputs and
give the designers insight into how the hardware and
software components of the system affect the per­
formance of the human user.

An AUDIT program was made part of the EXEX
to record the security interaction of terminals, users,
and files. AUDIT records EXEX activity in the areas
of LOGIN, LOGOUT, and File Manipulation. This
routine strengthens the security safeguards of the
executive. Specific items that are recorded involve:
type of event, user identification, user account num­
ber, job security, device identification, time of event,
file identification, file security and event success. In
addition, this routine provides accounting informa­
tion and is used as a means of debugging the security
locks of new system releases.

In addition to the BASEX recording function,
several object programs have been written that simu­
late various modes of user activity and provide con­
trolled job distributions. These programs, called
"benchmarks," run under controlled conditions and
enhance the means of improving system performance
and throughput, as described elsewhere by Karush.21

The programs are designed to gather performance
measures on the major routines of the executive and
have been of considerable help in system "tuning,"
because they reflect the effect of coding and design
changes to various system routines. The routines in
the executive that are of primary concern are the
swapper, the scheduer, the terminal read/write pack­
age, and the interrupt handling processes. Attempts
are being made to design a set of benchmarks that
represent a typical job mix. However, we are primarily
interested in measuring the performance of our system
against various modifications of itself and in measuring
its behavior with respect to different job mixes.

SUMMARY

The ADEPT executive is a second-generation, general-
purpose, time-sharing system designed for IBM 360
computers. Unlike the monolithic systems of the past,1-2

it is structured in modular fashion, employing distrib­
uted executive design techniques that have permitted
evolutionary development. This design has not only
produced a flexible executive system but has given the
user the same facilities used by the executive for
controlling the behavior of his programs. ADEPT'S
security aspects are unique in the industry, and the
testing and fabrication methods employ a number
of novel approaches to system checkout that con­
tribute to its operational reliability.

I t is important to note that this system deals par­
ticularly well with size limitation problems of very
large files and very large programs. The provisions
made for multiple programs per job, active/inactive
page status for programs larger than core size, page
sharing between programs, common file access across
programs within jobs, and the commitment of con­
siderable space to active file environment tables (up
to four pages worth) contribute to this success. Never­
theless, all these capabilities are designed to handle
the smaller entities as well. We feel ADEPT-50 is
a significant contribution to the technology of general-
purpose time-sharing.

ACKNOWLEDGMENTS

We would like to express our appreciation for the
dedicated efforts of some very adept individuals who
participated in the design and building of this time­
sharing system. Our thanks go to Mr. Salvador Aranda,
Mr. Peter Baker, Mrs. Martha Bleier, Mr. Arnold
Karush, Mrs. Patricia Kribs, Mr. Reginald Martin,
Mr. Alexander Tschekaloff and all the others who
have followed their lead.

REFERENCES

1 P CRISMAN editor
The compatible time-sharing system: A programmer's guide
MIT Press Cambridge Mass 1965

2 J SCHWARTZ et al
A general-purpose time-sharing system
Proc SJCC Vol 25 1964 397-411 Spartan Books Baltimore

3 E W FRANKS
A data management system for time-shared file-processing
using a cross-index file and self-defining entries
AFIPS Proc Vol 28 1966 79-86 Also available as SDC
document SP-2248 21 April 1966

5G Fall Joint Computer Conference, 1969

4 R E BLEIER
Treating hierarchical data structures in the SDC time-shared
data management system (TDMS)
Proc 22nd Na t ACM Conf Thompson Book Co 1967 41-49

5 E W DIJKSTRA
The structure of T.H.E. multiprogramming system
C A C M Vol 11 No 5 May 1968 !

6 F J CORBATO V A VYSSOTSKY
Introduction and overview of the multics system
Proc FJCC Nov 3Q 1965 Las Vegas Nevada

7 B W LAMPSON
Time-sharing system reference manual
Working Doc Univ of Calif Doc No 30.1030
Sept 1965 Dec 1965

8 B W LAMPSON
A scheduling philosophy for multi-processing systems
C A C M Vol 11 No 5 May 1968

9 J H SALTZER
Traffic control in a multiplexed computer system
MAC-TR-30 thesis M I T Press July 1966

10 G H F I N E et al
Dynamic program behavior under paging
Proc ACM 1966 223-228 Thompson Book Co Wash D C

11 E G COFFMAN L C VARIAN
Further experimental data on the behavior of programs in a
paging environment
C A C M Vol 11 No 7 July 1968 471-474

12 L A BELADY
A study of replacement algorithms for d virtual storage computer
IBM Systems Journal Vol 5 No 2 1966

13 R W O'NEIL
Experience using a time-shared multi-programing system

14

with dynamic address relocation hardware
Proc SJCC 1967 Vol 30 611-627 Thompson Book Co
Washington D C
L G ROBERTS
Multiple computer networks and intercomputer networks and
intercomputer communication
ACM Symposium on Operating System Principles
Oct 1-4 1967 Gatlinburg Tenn

15 E BOOK D C SCHORRE S J SHERMAN
Users manual for MOL-360
SCC Doc TM-3086/003/01

16 R R LINDE P E CHANEY
Operational management of time-sharing systems
Proc ACM 1966 149-159

17 P V McISSAC
Job descriptions and scheduling in the SDC Q-32 time­
sharing system
SDC Doc TM-2996 June 1966 28

18 C WEISSMAN
Security controls in the ADEPT-50 time-sharing system
AFIPS Proc FJCC Vol 35 1969

19 W A BERNSTEIN J T OWENS
Debugging in a time-sharing environment
AFIPS Proc FJCC Vol 33 1968 7-14
A D KARUSH
The computer system recording utility: application and
theory
SDC Doc SP-3303 Feb 1969
A D KARUSH
Benchmark analysis of time-sharing system
SDC Doc SP-3343 April 1969

20

21

APPENDIX A: Advanced development prototype sys­
tem block diagram.

20S0-H C O M
M O CABINETS 254 " » V « S
HEAD AND WHITE PROTECT I 2ESEC
RFQ M29240 FETCH PROTECT

ALL TIANSFEIS IE1WEEN CPU, CORE,
AND/CM SELECTOR CHANNELS AIE
4 IVTES I N M A L L E I , TIANSFEIS TO A N 0
M O M MULTIPLEXOR AIE I IYTE (I IT PARALLEL)

W U T M O O E "
ONLY
*333KIYTES
H I SECOND
EACH

(I IYTE WIDE)

BURST OR
^MULTIPLEX

MODE

2121 C O N T I O L UNIT
I I 00LPM '3615

UNIV C H A I SET "I637
ADAPTS! Htf PRINTER 00E

CARD HEADER/PUNCH

2303
ATTACHMENT
1 0 7 7 KH

i l l M IYTE CAPACITY
312.JK IYTE/SEC TRANSFERIATE
I t M SEC AVERAGE ACCESS TIME

2 CHANNEL
SWITCH
1 1 0 0

2141-1 CONTROL UNIT

2 CHANNEL
SWITCH
* I I0Q

2141-1 C O N T I O L UNIT
PILE SCAN
RECORD OVERFLOW

I IIT-SEIIAL'

AVE ACCESS W / O
M O V I N G HEAD - 17 MS;
WITH M O V I N G HEAD 120 MS
TRANSFER RATI
143 K I Y 1 E V S K
CAPACITY 2 2 i MBYTES

2302-4 !
DISC
STORAGE
2A0-1A0

0000
IPO/290 I 9 I / J 9 I 192/292 193/293

DISC DIIVES
7.2S M IYTE CAPACITY EACH
• 151 K BYTES/SEC TRANSFER RATE
A V E I A G I ACCESS TIME 19 MSEC
20 DISC PACKS t ' l J U) AVAILAM.I

ABSOLUTE VECTOR AND CONTROL
ALPHANUMERIC KEYIOAID 1243
IK IUPPEI 1499
CHARACTER GENERATOR I M 0
LIGHT PEN 47B5
FUNCTION KEYIOARD 5135
231 K IYTESAEC

DUAL TAPE DRIVES
800 BITS -'INCH
7 9-TRACK AND 1 7-TftACK
90 K BYTES SEC TRANSFER *t

UNIVERSAL CHAR SET * M 4 0
HN2 PRINT TRAIN *9J64
4 /10 LINES/INCH (I P Q) W 9 I 9 9 0

2702 TRANSMISSION C O N T I O L UNIT

REVISED 30 APRIL I 9 « i

2741 TEHMIMAL

7912 TELEGRAPH
TERMINAL C O N T I O L
TYPE II

793S TERMINAL
C O N T I O L
EXPANSION

•OSS BREAK P O I 2741

(4) 4419 4-WIRE ADAPTERS

- » j 2741 |
H a 7 , l l ' i GEO

4435 4-WIRE *,DAPTU
4701 INTERRUPT
•341 TYKMAl ' IC
IPO REV M1AK I 4 0 M I
IPO PRINT INHIBIT I 43953

021

• 2741 TERMINAL VIA DATA SET

y -

WU DATA SIT — H ^ O O M

MUX CABLE
ASSEMHY
3721292

2141
DISPLAY

C O N T I O L

1
4717
LINE

ADDRESSING

3340
N O N -

OESTIUCTIVE
CURSOR

2240
DISPLAY

040 STATION

1
4 7 M

KEYIOAID

(2) O N O N L Y O N I 2741

2701 DATA ADAPTEI UNIT

H I N , E ' f A"l 1 TML°T |

' TO REMOTE CONSOLES VIA DATA SETS (WHEN NEEDED)

