
TM-3628/009/00
Rmprodu-d by

NATIONAL TECHNICAL
INFORMATION SERVICE COMPUTER-ASSISTED PLANNING

D. C, CS SrifieI, Va. 22151

Final Semiannual Technical Summary Report to the Director,
JN 29) 1972

Advanced Research Projects Agency, for the period

1 j 16 March 1971 to 15 September 1971

_____I Sponsored by the Advanced Research Projects AgencyS....ARPA Order No. 1327

Unclassified
S.curity CIa,•uifcatio -n

DOCUMENT CONTROL DATA . R & D
(Soewilly clsassitiotlton of title, body *i ibs tract an Idrndeulj snotaiaon must be entered when the .w"rll PsAwt is claatfilld)

I OPIGINAToNG ACtivit (Coo.-p-te-a.bu) . - . REPORT StCURInTY CLASSIFICATION

System Development Corporation Unclassfied
2500 Colorado Avenue 2b. GROUP

Santa Monica, California 90406
3ýNEIOAT TITLE

COMPUTER-ASSISTED PLANNING: Final Semiannual Technical Summary Report to the Director,

Advanced Research Projects Agency, for the Period 16 March 1971 to 15 September 1971

4- OESCRIPTIVE NOtfp e(ES•l'p ee& arMcIaalt'e does.)

Technical Final Semiannual 16 March 1971 to 15 September 1971
IAUTHORI5I(f iflu.* aidis iaitisl. *eisa.)

Clark Weissman (Project Director)

!REPORT OATE 7. tCTAL NO. OF PAGES rA. NO, OF REVS

15 October 1971 88 34
i045. CONTRACT OR 40RANt NO. n0. O11ioiNATORWS REPORT NUMOERIUI

DAHCl5-67-C-0149, ARPA Order No. 1327 M-3628/009/O0
" b. PROJECT NO.

l• D30
1D30 ub. OTHER REPORT NOMIG (Anky other ha. *teMat may he asidoad

this report)

d•. NONE

0. DISTRIBUTION STATEMENT

"Approved for public release; distribution unlimited.

11 SUPPLEMENTARY NOTES 1 2. SPONIORING MI•iTARY ACTIVITY

is ABDSTRACTr

This final report describes research and development activities carried out by System
Development Corporation during the period 16 March 1971 through 15 September 1971
under contract number DAHCl5-67-C-0149 with the Advanced Research Projects Agency,
Information Processing Techniques Office. '2e report also summarizes activities for

the contract year ending 15 September 1971. 'The purpose of the activities described
in this report, which have been carried out under the title of Computer-Assisted Plan-

ning, has been explore the practical implications and potential uses of computer tech-

t nology in comprehensive military planning. These activities have built on earlier
work in Computer-Aided Command and extend the application to military planning problems

of the ADEPT prototype military computer utility and time-sharing system. Four tasks

are reported on: (1) Computation and Communication Tradeoff Studies, which is develop-

ing computer-based models for use in the analysis and acquisition of military computer

K networks; (2) Natural Computer Input and Output, which is directed at the research and

implementation considerations associated with English-language data management, compu-

t erized speech recognition and synthesis, and hand-printed mathematical and symbolic

input and output; (3) Systems Research, focusing on computer-network integration and

communication techniques and on the mathematical foundations for computer-program opti-

imzation; and (4) Interactive Systems, focusing on techniques and languages for inter-

active man-machine problem solving and on the extension of the ADEPT time-sharing sys-

Stem to support increasingly sophisticated interactive terminal capabilities. Progress

i toward stated project goals during the reporting period is described, and the achieve-

Sments of the contract year are summarized.

5 DFORMI)D, Nov.1473 Unclassified
Security Ciassiftcetion

4

Unclassif ied 4

Security Classification nn__.. _.'_

14 LINK A LINK 8 LINK C

XRL WORDW R-OL WY ROL E WT

ADEPT Time-Sharing System

ARPA Network

Compiler Technology

Computer-Asslsted Planning

Computer Networks

CONVERSE System

Distributed Data Management

Distributed Intelligence

English Data Management

Graphic Input/Output

Graph Theory

Man-Machine Synergy

Problem Solving

Program Optimization

Speech Understanding

Unclassified
Security Classification

4

S BOEs BASE NO / VOL REISSUE

T 3628 /009/00

(TM Series)

The work reported herein was supported by the
Advanced Research Projects Agency of the Depart-
ment of Defense under contract DAHCl5-67-C-0149,
ARPA Order No. 1327, Program Code No. iP10.

COMPUTER-ASSISTED PLANNING SYSTEM

Final Semiannual Technical Summary Report DEVELOPMENT
to the Director,

Advanced Research Projects Agency CORPORATION

for the period 2500 COLORADO AVE.
16 March 1971 to 15 September 1971

SANTA MONICA
C. Weissman, Project Director

Tel. (213) 393-9411 CALIFORNIA

15 October 1971 90406

The views and conclusions contained in
this document are those of the author
and should not be interpreted as
necessarily representing the official
policies, either expressed or implied,
of the Advanced Research Projects Agency
or the U.S. Government.

A-! 1 59 IS/ 68)

15 October 1971 i System Development Corporation
(Page ii Blank) TM-3628/009/00

ABSTRACT

This final report describes research and development activities carried out by
System Development Corporation during the period 16 March 1971 through 15
September 1971 under contract number DAHC15-67-C-0149 with the Advanced Research
Projects Agency, Information Processing Techniques Office. The report also
summarizes activities for the contract year ending 15 September 1971.

The purpose of the activities described in this report, which have been carried
out under the title of Computer-Assisted Planning (CAP), has been to eýplore
the practical implications and potential uses of computer technology in com-
prehensive military planning. These activities have built on earlier work in
Computer-Aided Command and extend the application to military planning problems
of the ADEPT prototype military computer utility and time-sharing system.t Four
task areas are reported on: (1) Computation and Communication Tradeoff Studies,
which is developing computer-based models for use in the analysis and acquisition
of military computer networks; (2) Natural Computer Input and Output, which is
directed at the research and implementation considerations associated with
English-language data management, computerized speech recognition and synthesis,
and hand-printed mathematical and symbolic input and output; (3) Systems Research,
focusing on computer-network integration and communication techniques and on the
mathematical foundations for computer-program optimization; and (4) Interactive
Systems, focusing on techniques and languages for interactive man-machine prob-
lem solving and on the extension of the ADEPT time-sharing system to support
increasingly sophisticated interactive terminal capabilities. Progress toward
stated project goals during the reporting period is described, and the achieve-
ments of the contract year are summarized.

I\

System Development Corporation
15 October 1971 iii TM-3628/009/00

TABLE OF CONTENTS

1. SUMM.A.RY * . 1

2. COMPUTATION AND COWMUNICATION TRADEOFF STUDY (CACTOS)........5

2.1 Progress 5

2.2 Summary 18

2.3 Staff 20

2.4 Documentation 20

3. NATURAL COMPUTER INPUT/OUTPUT 22

3.1 CONVERSE: An English Data Management System 23

3.1.1 Progress 23

3.1.2 Summary 32

3.2 Voice Input/Output 34

3.2.1 Progress........... 34
3.2.2 Summary 38

3.3 Graphic Input, Output 40

3.3.1 Progress 40

3.3.2 Summary 52

3.4 Staff 54

3.5 Documentation 54

4. SYSTEMS RESEARCH 56

4.1 Networks 57

4.1.1 Progress 58

4.1.2 Summary 59

4.2 Graph-Meta 61

4.2.1 Progress 61

4.2.2 Summary 70

4.3 Staff 72

4.4 Documentation 72

II

~1

System Development Corporation
15 October 1971 iv TM-3628/009/00

TABLE OF CONTENTS (Cont'd)

Page

5. INTERACTIVE SYSTEMS 73

5.1 Problem Solving and Learning by Man-Machine Teams 74

5.1.1 Progress 74

5.1.2 Summary 76

5.2 Time-Sharing 77

5.2.1 Progress 77

5.2.2 Summary 79

5.3 LISP Extensions 80

5.3.1 Progress 80

5.3.2 Summary 80

5.4 Staff 82

5.5 Documentation 82

\

,\

K_

System Development Corporation
15 October 1971 v TM-3628/009/00

(Page vi Blank)

LIST OF FIGURES

Figure 2-1 CACTOS Overview 6

Figure 2-2 Computer Hardware Tradeoffs: Job Type A 10

Figure 2-3 Computer Hardware Tradeoffs: Job Type B 11

Figure 2-4 Computer Hardware Tradeoffs: Job Type C 12

Figure 2-5 Computer Hardware Tradeoffs: Job Type D 13

Figure 2-6 Computer Hardware Tradeoffs: Job Type E 14

Figure 2-7 Incremental Improvement Plan Without Look-Ahead 16

Figure 2-8 Incremental Improvement Plan With Look-Ahead 17

Figure 3-1 Initial PLC Model for VDMS 35

Figure 3-2 Quadratic Formula 42

Figure 3-3 Matrix Arithmetic 43 & 44

Figure 3-4 Function Definition and Use 45 & 46

Figure 3-5 Iteration Statements 47

Figure 3-6 Flowchart-Input System50 & 51

Figure 4-1 Program Control Flow Graph 66

LIST OF TABLES

Page

Table 2-1 Dedicated Versus Public Operations 7

Table 3-1 Impact of Voice I/O-CONVERSE Research on Problems
Facing Speech Understanding by Computer 39

!i

TI

System Development Corporation

15 October 1971 1 TM-3628/009/00

1. SUMMARY

This final report describes the progress and results of System Development
Corporation's research in Computer-Assisted Planning for the six months from
16 March 1971 through 15 September 1971. Our research in Computer-Assisted
Planning (CAP) has built on earlier work both on Computer-Aided Command and
on the development of the Advanced Development Prototype (ADEPT) computer
utility and time-sharing system, which serves as the basic CAP support
facility.

The CAP program has been directed toward the long-range goal of clarifying
and systematizing the strategic planning process, with the eventual objective
of constructing an experimental, prototype computer-based planning system.
The program's immediate goal has been to explore the effects of improved
communications on the use of computers by Department of Defense planners."IlCmunications," in this context, includes both communication between plan-
ners and their computer resources and the flow of communications among com-
puter facilities, particularly those that are time-shared or networked.
The program has focused on (1) developing models and procedures that will
assist military planners in strategic and tactical planning and in planning
the acquisition and use of computation and communications resources; (2) de-
signing and developing prototype communications-interface systems that will
enable planners to communicate with computers in ordinary English, by voice,
and by means of conventional hand-drawn mathematics; (3) advancing the state
of the art of time-shared and networked computer systems in order to contribute
to the development and evolution of the ARPA Network, of which SDC is a part;
and (4) providing the bases for enhanced interaction between planners and
computer systems. These activities,which are summarized below, are the basis
for the organization of the body of this report.

Computation and Communication Tradeoff Studies (CACTOS)

The CACTOS project is examining the 1975-80 Department of Defense requirements
for computation and communications resources, with particular attention to
the tradeoffs between concentrated and distributed computational power. Having
focused during the first half of the contract year on the development of a
computer-based tradeoff-analysis model and on the selection of an existing

military computer network for analysis, the project has spent the past six
months refining the model and conducting two experimental analyses--one of the
Marine Manpower Management System centered in Klnaas City, Missouri, and one
of the throughput characteristics of a hypothetical network, using the CACTOS
model and several alternative hardware configurations. The project staff has
also conferred with military personnel responsible for data-processing planning
and operations and has prepared several forecasts of technological developments
during the 1975-80 time period. These activities are described in detail in a
separate report (SDC document number TM-4743/012/00).

System Development Corporation

15 October 1971 2 TM-3628/009/00

Natural Computer Input and Output

Although communication between men and computers is unlikely ever to be as
"natural" as communication between men, we are making considerable progress in
the design of communications interfaces that enable computers to process and
interpret ordinary English sentences input to them via a tele-typewriter
terminal, words and phrases spoken into a microphone, and mathematical
expressions and flow diagrams written or drawn on a data tablet.

The CONVERSE project staff has now completed the implementation of Versions
1 and 2 of the CONVERSE system, which incorporate syntactic and semantic
extensions to the CONVERSE intermediate language--the language processor that
accepts a wide variety of English sentence types, analyzes them into their
constituent parts, and passes them to the natural-language compiler, which
then translates them into statements in the LISP 1.5 programming language.
A major extension of the grammatical-analysis component of the system was
achieved in Version 1 by the addition of a series of transformational rules
that generalize syntactic analysis and simplify the production of well-formed
semantic interpretations of sentences. Version 2 adds to CONVERSE the ability
to process both declarative and imperative sentences (in addition to the
interrogative sentences that have been the primary form of input to the
system in prior years). Version 2 also incorporates features that permit a
user to describe and maintain a variety of data-base contents and structures
by means of ordinary English sentences. These features represent an impor-
tant step toward the achievement of an on-line system with which planners can

conveniently communicate with data files of substantial size and expanding
content.

The Voice Input/Output project, now completing its first full year, is pursuing
speech understanding by computer on the basis of the hypothesis that both a
human's "inquiry state" and the words and phrases he uses can be dynamically
modeled and predicted--an hypothesis that, if it proves valid and can be imple-
mented, will greatly increase the likelihood that the computer will recognize
and interpret human speech. During the past year, the project has developed
and implemented the basic components of a system that will accept continuous
speech. A high-quality audio-recording environment has been provided that
allows precise control of speech sampling. Computer interface hardware and
software have been developed, and several software modules for recording and
producing acoustic waveforms have become operational. With these achievements,
the project is now prepared for full-scale research and development efforts
directed toward the implementation of a Vocal Data Management System and,
ultimately, a vocal CONVERSE.

II

System Development Corporation
15 October 1971 3 TM-3628/009/00

The Graphic Input/Output project has focused, during the year, on the
refinement of existing components of an interactive data-tablet display
system, on the development of a new component that recognizes and interprets
hand-drawn flowcharts, and on the synthesis of these components into a system,
called TAM (The Assistant Mathematician), that processes and evaluates con-
ventional mathematical expressions. The long-range goal of our research in
computational graphics is the development of a system that will replace
traditional computer-programming technique& which are almost totally tied to
expertise in programming languages, with a facility by means of which
engineers, planners, and mathematicians (as well as computer programmers) can
write programs and input them to the computer via ordinary mathematics, using
the conventions that are most suitable. or even idiomatic, to the types of
problems to which their programs will be addressed. Although such a system is
still only a vision, our success in developing and implementing TAM gives us
confidence that it is a vision capable of realization.

Systems Research

Our systems-research activity encompasses two projects: the Networks project,
which is focused on integrating the ADEPT system into the ARPA Network and
on making available to other members of the Network our natural input/output
facilities, and the Graph-Meta project, concluding this year, which has
focused on the applications of graph theory to the optimization of computer-
program compilers.

During the past six months, the Networks project staff has completed Version 2
of HOSTOSS, the subsystem of ADEPT that interfaces with the ARPA Network.
HOSTOSS permits programs running under ADEPT to communicate both with each
other and with programs running elsewhere in the Network. Together with our
TELNET program, it also permits SDC users to log in on systems running at
remote Network nodes and makes ADEPT available to as many as five remote users.
The Networks staff has also completed the initial phase of a study whose
purpose is to define and implement techniques that will permit the sharing of
data by different data-management systems within a computer network. The
search for a "common" data-management language that would permit data exchange
by disparate data-management systems has long been a dream of computer-science
researchers, and, were such a language found, it would have a major impact on
military user agencies, to whom the quick and efficient communication of com-
puterized data is essential. Although we are yet in the early phase of this
study, it does appear that the CONVERSE natural-language compiler can be

adapted to serve as such a common language, and that translation modules could
be implemented at the various nodes of a computer network to process requests
for data stated in the CONVERSE intermediate language. With this initial in-
vestigation completed, the study will be focused during the coming year on
data-sharing experiments with other mabers of the ARPA Network.

System Development Corporation

15 October 1971 4TM-3628/009/00

Several years of research into the theoretical foundations of optimizing com-
pilers--compilers that, in addition to transforming programnming-language state-
ments into machine code, carry out operations that render the code maximally ef-
ficient--have culminated in the completion and draft publication of a textbook
describing the theory and its applications, particularly to programs written in
the FORTRAN IV programming language. Although other researchers have devoted
themselves to the problems of program optimization, we believe that our work
is the first to develop a rigorous and viable mathematical foundation for
their solution. The most dramatic practical implication of this achievement
is that it may now become possible for engineers, scientists, and planners who
have only modest skills in computer programming to write programs whose ef-
ficiency approaches tha& of programs written by the most expert professional
programmers.

Interactive Systems

Our work on Gaku, an on-line, interactive system designed specifically for use
by planners, concluded this year with the completion of the User Adaptive
Language (UAL), which is the vehicle for expressing and modifying the con-
ceptual structure of complex planning problems. A complete description of the
language and its applications has been published. In addition, during the
past six months, we have published the results of an earlier extensive program
of experiments (co-sponsored by ARPA and tie Office of Naval Research) in
human intellectual problem-solving behavior.

As our research in natural input/input and computer networking progresses, in-
creasingly complex demands are placed on the ADEPT system. The task of re-
sponding to these demands while maintaining ADEPT as a highly reliable time-
sharing facility is the responsibility of the Time-Sharing project, which this
year increased the capabilities of the Programmed Multiline Controller (PMLC),
a hardware/software complex, centered in a Honeywell DDP-516 computer, that
serves as the interface between our interactive terminals and the ADEPT system.
The PFLC is now capable of supporting terminals operating at rates of 10, 30,

and 60 characters per second with a dramatic reduction in overhead and storage
requirements. A capability was also added that will support five users at
remote nodes of the ARPA Network, and the planning work to increase the number
of interactive ADEPT users from 10 to 15 has been completed.

Finally, our work to extend the capabilities of our LISP 1.5 system, which is
the primary support system for CONVERSE, concluded with the implementation of
several techniques for providing additional space in the system for its users'
program data.

System Development Corporation
15 October 1971 5 TM-3628/009/00

2. COMPUTATION AND COMMUNICATION TRADEOFF STUDY (CACTOS)

The goal of the Computation and Communication Tradeoff Study is to determine
specific DoD requirements for computation and communication networks on a
regional, functional, and categorical basis for the 1975-80 time period. With
the continuing advance of technology in computer hardware. software, and
communications, it is important that an overall analysis be done of DoD
requir•rirnts in these areas. Implicit in such an analysis are the tradeoffs
between various characteristics of computer and counication networks, which
must be examined several years prior to the procurement of equipment and
facilities, and which must be related not only to cost and time, but to each
other. Such a tradeoff study must be at least in part quantitative and be
capable of wide usage so as to relate to specific network configurations
within DoD.

To achieve this goal, the following objectives have been identified:

1. Determine amounts of data processed, stored, retrieved, and
transmitted, including response time and tradeoffs between security,
vulnerability, throughput, reliability, cost, and time.

2. Construct analytic models for evaluating and modifying selected
networks.

3. Perform tradeoff studies based, in part, on the results of the model
analysis.

4. Validate the analysis using an existing military network.

5. Describe future technology in areas relating to computers and
communications.

The interrelationships of these objectives are illustrated in Figure 2-1.

2.1 PROGRESS

During the past six months, the CACTOS project has focused on two groups of
experiments, in which the prototype network-analysis model developed
earlier in the year was used to study (1) an existing military computer
network (the Marine Manpower Management System headquartered in Kansas City,
Missouri) and (2) the effects on throughput in a hypothetical network of
variations in hardware configurations at its nodes. The detailed results of
these experiments and a detailed description of the model as it is presently
constituted are contained in separate reports listed in section 2.4; the
experiments are summarized here.

System Development Corporation
15 October 1971 6 TM-3628/009/00

SKUU

SNOLIV3INII'10

IIDI

System Development Corporation
15 October 1971 7 TM-3628/009/00

Marine Manpower Management System (MMS) Experiments

The experiments with the Marine Manpower Management System (MMS) had a dual
purpose: first, to validate the prototype network-analysis model by testing
it against the operations of an existing military data network; second, to
produce immediately practical results of the CACTOS activity.

The Marine Manpower Management/Joint Uniform Military Pay System (MMS/JUMPS)
is centered in the Marine Corps Automated Service Center (MCASC) in Kansas
City, Missouri, with satellite Data Processing Installations at Marine Corps
bases in the continental United States and overseas. It is a part of
AUTODIN. A major part of the study of MMS/JUMPS was to discover improved
topologies and/or functional allocations of tasks and traffic to improve the
timeliness of system performance. Of perhaps greatest concern is the
potential 5-to-10-day response delay in processing a change throughout the
system. Using the MMS/JUMPS data, the model gave results for delays within
5 percent of actual figures. At the request of Marine Corps Headquarters,
the CACTOS project compared the MMS/JUKPS data with that drawn from a
dedicated system outside AUTODIN. Table 2-1 presents the results of the
comparison. Column 1 in the table shows the computer times taken at MCASC,
and, on an average, throughout the network, to process MMS/JUMPS data in a
system dedicated to Marine personnel business alone. Column 2 shows the
results of loading the system up to a 90 percent utilization rate. Not much
change is seen at MCASC, where the computer is already quite busy with MMS
applications. However, the network average jumps beyond the MCASC response
time, largely because wait time is larger for the smaller nodes.

Table 2-1. Dedicated Versus Public Operations

Dedicated Shared
HMS Only 90% Load
Hrs/Min Hrs/Min

Single Message :11 :37

All Messages 1:10 19:25

Network Average

Single Job 1:06 3:59
All Jobs 16:50 27:04

MCASC Average

Single "Job" :31 1:33

All Jobs 20:42 23:34

Total Response

MCASC 21:52 46:29
Network 18:00 42:59

System Development Corporation
15 October 1971 8 TH-3628/009/00

CACTOS also studied the effect of having a priority assignment for certain
percentages of jobs. Experiments were run for priority processing for jobs
and messagesof 10 percent, 20 percent, and 30 percent of the MMS jobs. It was
observed that even assuming a 2U-percent penalty for processing the priority
tasks, enough wait time is avoided to decrease total response time somewhat.
The network average, where the MMS load is less than MCASC, benefits
more from prioritizing than does MCASCO which has a substantial MWS
computation load.

Experiments were also run on a distributed processing system split between
MCASC and HQ4C. Although there was some improvement, it was not judged
significant as compared to cost.

Throughput Experiments

The other major part of the CACTOS activity during the past six months was a
set of computer-throughput experiments with the CACTOS model. The purposes
of these experiments were to:

1. Evaluate the usability, credibility, and potential application value
of the assumptions underlying the model, including those rlated to
queueing.

2. Gain insight into the effect of controllable computer hardware
characteristics on system performance.

3. Discover the effects of hardware throughput on job (software)
characteristics.

4. Demonstrate the effectiveness of the computer-throughput model
as a tool for use in developing computer selection and replacement
strategies.

To concentrate on the computation characteristics of a network, communication
characteristics (such as job load) were fixed. The network configuration, as
illustrated below, consisted of six nodes and seven fully duplexed lines.

I1

System'Development Corporation
15 October 1971 TH-M3628/009/00

Twenty-five users were assumed at each node, 50--k11bit lines were used
throughout, all internode distances were assumed to be 1,000 miles, the
average job size was 1,000,000 modified bits, and the average message size
for all jobs was 400 bits. Computer hardware, while varied from run to run,
was assumed to be the same at all six nodes during any given run. Twenty-five
hardware configurations were tested, each against five types of jobs, for a
total of 125 runs. To simplify cost calculations and comparisons, all equip-
ment was selected from the IBM 360 line. A variety of core, CPU, and disc
matches were run. Jobs varied according to overlap charactersitics and the
relative amounts of CPU and I/O required. Figures 2-2 through 2-6 show the
results of the runs for job types A through E. The vertical axis represents
total response time per job; the horizontal axis represents systeb, cost. Only
the varying and pertinent costs were used, which included (1) the CPU with
the appropriate amount of core; (2) the disc unit; and (3) the appropriate
controller, if any, for interfacing with the'disc unit. Costs were computed
from actual monthly lease rates, as quoted in Auerbach's Standard EDP Reports.
Each point on a job's graph represents an expected response time for that Job
on a given system and is located according to the cost of the system.

The graphs have been found useful for at least three types of applications:

1. Developing general insights into hardware cost-performance relation-
ships and tradeoffs.

2. System selection guidance.

3. System replacement and upgrading guidance.

The graphs exhibit a hyperbolic relationship between cost and response time.
The asymptotic lines of least possible cost and best possible performance
may be quickly located and understood as boundaries among the alternatives.
The shell of dominant points (such as 1, 5, 2, 6, 10, 7, 11, 15, 23, 24, and
25 in Figure 2.-4), which represent the alternatives with the greatest overall
cost-effectiveness, are readily located, and all other choices might
logically be eliminated from further consideration.

Detailed inspection reveals other interesting points. As an example, on the
graph (Figure 2-5) for Job Type D, we see that the lines reflecting changes in
CPU speed are nearly horizontal. This means that for this type of job and in
this range of equipment, performance cannot be significantly improved simply
by getting a faster CPU. The only situation in which such a change would
be justified would be to get a computer for which more core or faster peripherals
are available. Note that this situation does not prevail for job types that
have no I/O-CPU overlap--a result very much to be expected.

!:I

System Development Corporation
15 October 1971 10 TX-3628/009/00

COMPUTER HARDWARE TRADEOFFS

O B TYPE k 70% COMPUTE

NO OI 0.1 OVERLAP

HO I O.CPU OVERLAP
UP TO 74 BYTES DISC SPACE

-- CHANCE CPU SPEED
S.......... CHANGE DISC SPEED

CHANGE CORE SIZE

N H

"S i
I

I

107

7 " 208 12

23 -"'"'"[• ° I_25

I/• I | | I I I

0 2 1 1 II Io ii 14 04 II 2 2 24 i

FMONguLY COST (dOLLARS 0 o0001

Figure 2-2. Computer Hardware Tradeoffs: Job Type A

System Development Corporation
15 October 1971 11 TM-3628/009/00

COMPUTER HARDWARE TRADEOFFS

2.,

WO 1 0-1 0 OVERLAP
NOI ".PU OVERLAP
lTO 10 71 BYTES DiSC SPACE

2.2 aWAG CPU WEED0
2 CHANGE DISC SPEED

CKAUdi CORE SIZE

I' I
.13

1.4

1412

10 6 0 1

0A

2 • S U Ii 14 16 Is N 2N it

SGWMY COST (DOLLAR. X 1ipl

Figure 2-3. Computer Hardware Tradeoffs: Job Type B

System Development Corporation
15 October 1971 12 TM-3628/009/00

COMPUTER HARDWARE TRADEOFFS3
I-,

JOB TYPE C: 70% 0

5A 10W1 0 YERLAP
SNO I OCPU OVERLAP

UP TO 76 BYTE3 DISC STORACE

.. .- - - CHANGE CPU SPEED
. CHANGE DISC WPEED
--____ CHANGE COORE SIZE

1 19

to 6 1 14 li 2024 21

WA•THLY COST (DOLLIARS X INC)

Figure 2-4. Computer Hardware Tradeoffs: Job Type C

:tF

SJI

System Development Corporation
15 October 1971 13 U4-3628/009/O0

COMPUTER HARDWARE TRADEOFFS

U

JO. TYKPE D 70t1,0

44% I'O-CPU OVERLAP
NO 1!O.1.O OVERLAP
UP TO iU BYTES DISC STORAGE

CHANGE CPU SPEED
..... ** CHIANGE DISC SPEED

CHARGE CORE SIZE

2.0

3 1.3

1'1
•.................17

.46

11 *• 4 12 6
I. 2

42 1 12 14 b it 21 22 24

KONTHLY COST (DOLLAR5 X IMO)

Figure 2-5. Computer Hardware Tradeoffs: Job Type D

I

System Development Corporation
15 October 1971 14 TM-3628/009/00

"3 2COMPUTER HARDWARE TRADEOFFS

JOB TYPE E! 70% I'0
29% I O-CPU OVERLAP
NO 1 0.1 0 OVERLAP

UP TO 7M BYTES DISC STORAGE

S.....~ CHANGE CPU SPEED
....... * CHANGE DISC SPEED

CHANGE CORE SIZE

213

U

125

2 14

S 4 4 S II 12 1 t II 202 2

MONTHLY COST (OOLLARS X I0W)

Figure 2-6. Computer Hardware Tradeoffs: Job Type E

System Development Corporation
15 October 1971 15 TM-3628/009/00

The graphs can be used as guides to system selection. If a fixed require-
ment is known, the user can simply pass a straight edge from left to right
along the graph until the first point that meets the requirement is encountered.
For example, if a requirement for Job Type D (Figure 2-5) is a response time
of no more than 0.4 seconds, the first point encountered is configuration 15,
which woulV be the least costly selection that meets the requirements.
Similarly, if a fixed price limit is known, a straight edge can be moved upward
until a point to the left of the price limit is found. This will indicate
the "best" system configuration at that cost. For Job Type D, the best system
at less than $8,000/month is configuration 7, which costs $7,485/month and
has a response time of 0.485 seconds. If neither requirement limits nor cost
limits are set, the dominant points may be examined and further tradeoffs
among them may be performed. (A dominant point on these graphs has no points
both to the left and below it.) The lines on the graph indicate optimal
ways in which existing systems may be upgraded or incrementally replaced. At
least two approaches may be used here, depending on whether or not there is a
long-range goal. If there is no long-range goal and the system analyst is
concerned only with making the most cost-effective improvement to his existing
system, the graph clearly indicates what the available options are and which
one is likely to be the most cost effective. If the point that corresponds
to an existing system is viewed as a decision point, and if the set of lines
leading from that point to an improved performance value represent the possible
decisions, then the best decision corresponds to the line that lies to the
right of all the others when viewed from the decision point. This strategy
was used to generate the chains of improvements from configuration 1, shown
in Figure 2-7.

On the other hand, if a long-range goal can be established, this step-by-step
approach will not ensure that the goal will be reached. Thus, occasional
non-optimal steps may have to be taken to reach the goal. In this case, it
is just as important to work backward from the goal as forward from the
existing system to find the path that represents the best solution. Examples
of the use of this strategy, in which the owner of configuration 1 wishes to
incrementally improve his system until configuration 23 is attained, are shown
in Figure 2-8. Note that if the look-ahead method is not used, configuration
23 is never attained; only by the use of locally non-optimal decisions may
the globally optimal path be followed. Note, also, that not all the solutions
are the same, either for the look-ahead or no-look-ahead case. For example,
a user with a 40G computer and 2314 discs (configuration 11) should increase
his core size with Job Type D to get a 401 computer (configuration 12); with
Job Type C he should, instead, move to a 50G computer (configuration 18).

/

System Development Corporation
15 October 1971 16 TM-3628/009/00

1 2370

30C 2311

2 3765

30E 2311

6 4690

r- -- -- ----- 40E 2311

7 7485 8 17480

40of6 2311 1 ,o, 231 1

11 8405 15 1001 840 16 20085

400 2314 403 334 2314 401 3330

I B 11955 21 14019 21950 22 23635
500 2314 506 501 2314 501 3330

i IF

24 14840 25 24835

5OG 2305 501 2305

JOB TYPE A
CONFIG. MONTHLY'1 -.--.- 1 JOBTYPE B
NUMBER COST JOB TYPES C, D

CORE DISC JOB TYPE E
CORE

Figure 2-7. Incremental Improvement Plan Without Louk-Ahead

System Development Corporation
15 October 1971 17 TM-3628/009/00

1 2370

30C 2311

........................... 2 0 3765 ______

4 4685 6 4690

30E 2314 40E 2311

10 5610 14 7295

40E 2314 40E 330

20 10845

50E 3330

CONFIG. MONTHLY

NUMBER COST 23 12045
CPU,

CORE DISC 5 E 2050 SE 2305

JOBTYPESA,B,C,E

JOB TYPED

Figure 2-8. Incremental Improvement Plan With Look-Ahead

h'

System Development Corporation
15 October 1971 18 TM-3628/009/00

A common reason for upgrading a system is to handle increased workload as
well as improve system performance. While the graphs used here represent a
constant workload, they could be modified to reflect a workload that is
increasing with time, perhaps by defining a new performance measure based on,
say, throughput and the number of users. The results of these experiments
point to the following areas in which additional useful work might be
performed in the future:

The study can be extended to include tradeoffs among more hardware
parameters. The three choices considered here (CPU, core size, and
disc units) represent only a small part of the spectrum of
possibilities.

Communication parameters can be traded off against computation para-
meters in a study of the interactions of these two on total system
performance, using communication and computation hardware that is
actually available today.

a For the sake of credibility, the results should be verified by a
parallel study using simulation techniques. This is standard procedure
when a completely new approach and new equations are being tested for
the first time, as is the case here.

A refinement of the planning techniques outlined here could be
programmed on the computer, whereby the computer could select optimal
paths through the "alternatives graph" and automatically guide the
user toward system optimization.

2.2 SUMMARY

The basic goal of CACTOS is to advise the Department of Defense on the most
cost-effective means of meeting its future data-processlng needs. During
the past year, through tradeoff analyses of hardware, software, and commu-
nications characteristics, CACTOS has shown that improvements can be attained
through tradeoff studies that focus on throughput, response time, cost,
reliability, and similar measures of performance. In particular, incremental
improvements phased over time can be atialyzed and projected. Results from
analyzing the Marine Matipower Management System and the ARPA Network support
the validity and accuracy of the CACTOS network-analysis model. The through-
put model has, to date, incorporated several important hardware properties.
The technology state-of-the-art studies, although not the central focus of
CACTOS, have provided guidance for studying future improvements in hardware,
software, and communication systems.

In the coming year, the working prototype model will be expanded to enable the
storing of configurations constructed on-line, the handling of priority traffic,

ii

System Development Corporation
15 October 1971 19 TM-3628/009/00

and the capability of processing larger numbers of centers, lines, and data.
The major emphasis will be placed on a simulation effort sensitive to both
hardware and software characteristics. The simulation results will be
incorporated into the modified CACTOS model. With the simulation, the model
can be further expanded to perform switching and routing analyses as well as
more detailed throughput studies. Because of the need for probing both
existing and proposed DoD networks, CACTOS will continue to gather data and
perform experiments, with frequent review by the relevant military agencies.
The next year's work will include a preliminary review of the integration
of existing networks for performance enhancement.

iI
,N

System Development Corporation
15 October 1971 20 TM-3628/009/00

2.3 STAFF

Dr. B. P. Lientz, Principal Investigator

G. Cady, Programming Task Leader
D. Lashier
L. Waul (part time)
D. Reingold (part time)

Dr. R. L. Citrenbaum, Analysis Task Leader
Dr. L. G. Chesler
Dr. R. E. Marsten
Dr. R. B. Parente

Dr. N. E. Willmorth, Data Collection and Modeling Task Leader
D. Gunn (part time)
R. Mosier (part time)
C. Weitzman (part time)

2.4 DOCUMENTATION*

Cady, G. M. An Approach to Computer Throughput Analysis. SDC document
TM-4743/006/00. July 1971.

Cady, G. M. Computer Network Models: Packets, Acknowledgments, and Other
Considerations. SDC document TM-4743/011/00. August 1971.

Citrenbaum, R. L. An On-Line Model for Computation-Communication Network
Analysis and Modification. SDC document TM-4743/003/00.
May 1971.

Citrenbaum, R. L. CACTOS Experiment Results. SDC document TM-4743/008/00.
August 1971.

Citrenbaum, R. L., and L. G. Chesler. CACTOS Experiment Specifications.
SDC document TM-4743/007/00. July 1971.

Gunn, D. M. Survey of Digital Data Communications. SDC document
TM-4743/005/00. May 1971.

Mosier, R. A. Memory Organization and Addressing. SDC document
TM-4743/004/00. May 1971.

Weitzman, C. Aerospace Computers and Peripherals. SDC document
TM-4743/010/00. July 1971.

These documents are not available for public release.

System Development Corporation

15 October 1971 21 TM-3628/009/00

Willmorth, N. E. CACTOS Overview 1970-71. SDC document TM-4743/012/00.
September 1971.

Willmorth, N. E. Minimizing Network Costs. SDC document TM-4743/001/00.
May 1971.

Willmorth, N. E. The Case for Distributed Intelligence. SDC document
TM-4743/002/00. May 1971.

FI
System Development Corporation

15 October 1971 22 TM-3628/009/00

3. NATURAL COMPUTER INPUT/OUTPUT

As the power of both computer hardware and computer software increases and
the price decreases, the computer becomes more omnipresent as both a tool
and a necessity in our daily lives. As the expanding circle of contact
between men and computers continues to increase, the disparity between man
and computer in communications capability becomes more evident and less
tolerable. Therefore, it behooves us to divert some of the available power
of computer systems to mediate the communication gap and provide computer
input and output systems that are "natural" and convLM~ent to men. Toward
this end, the Natural Computer Input/Output task is providing research and
development in computer processing and semantic interpretation of natural
English, hand-drawn pictorial and symbolic input, computer-generated images,
speech understanding by the computer, and computer-synthesized speech.

The Natural Computer Input/Output work is divided into three projects: the
CONVERSE project (the development of an English data management system),
the Voice Input/Output project (speech understanding and synthesis), and
the Graphic Input/Output project (recognition and utilization of hand-drawn
and hand-printed input). The interdependence between the Voice Input/Output and
CONVERSE projects is both obvious and natural, and-though the two projects
are at different levels of attainment--communication, cooperation, and
commonality of basic intent are uppermost in their direction. The Graphic
Input/Output project's primary concerns are with information whose content r
cannot be readily conveyed by either the spoken or the written word, but

rather through pictorial or notational conventions best portrayed and con-
veyed in two dimensions. The major emphasis of this work has been on hand-
printed input and computer-generated output of mathematics, developing
applications requiring mathematical notation, and extending the notational
capability into other domains.

Taken as a whole, the Natural Computer Input/Output task is providing the
technological basis for operational man-machine systems for which the
ultimate end user will require little, if any, special training in computer
science.

j I'

System Development Corporation
15 October 1971 23 TM-3628/009/00

3.1 CONVERSE: AN ENGLISH' DATA MANAGEMENT SYSTEM

The goal of this project is to realize a conversational on-line English data
management system that will allow a computer user to manage and maintain

complex data files of substantial size and to retrieve data from these files
through the computer's processing of user-specified English sentences.
Successful achievement of this goal will eliminate current on-line communication
restrictions due to the severe compromises existing in today's artificial query
languages-compromises between expressive power on the one hand and ease of
communication on the other.

Our long-range objective is the construction of a language processor capable
of carrying out sophisticated syntax-analysis, inference, and semantic-
interpretation procedures in order to provide the user with a virtually
unconstrained English subset, one that he can use effectively to carry out
all data management tasks. This objective is being attained through the
construction of successively tore powerful versions of the CONVERSE prototype
system.

The shorter-range objectives pursued during this contract year include: (1)
the ability to recognize a substantial subset of English sentences; (2) the
ability to efficiently store and search large quantities of conceptual and
factual information; and (3) the implementation of user-dialog-enhancement
features such as user feedback and user extensibility of the English subset.
Particular emphasis has been placed on developing a versatile prototype system,
one that is potentially applicable to the management of a wide variety of data
file types including files of formatted, complex relational, and textual
information.

In the first six months of this contract year we completed and demonstrated
version zero (VO) of CONVERSE. This system was implemented using the 46-page
configuration of our LISP 1.5 programming system under ADEPT on the IBM
360/67 computer. VO could process questions of moderate complexity and
produce answers from a census data base of approximately 4,000 facts about
California cities. A major step forward occurred during this time when we
were able to generate 85-page configurations of LISP 1.5 and use them in the
construction of more powerful versions of the CONVERSE natural-language
compiler and data management system.

3.1.1 Progress

During the past six months we have constructed and demonstrated versions 1
and 2 of CONVERSE. Version 1 (VI) permits English on-line question answering
of a 12,000-fact data base; version 2 (V2) adds to VI the capability to
process declarative and imperative sentences, which permits a user to describe
and maintain data bases in English as well as interrogate them. Both versions
employ an expanded natural-language compiler that produces procedural semantic

1!

System Development Corporation
15 October 1971 24 TM-3628/009/00

interpretations from deep syntactic structures. The key areas in which progress
has been made are: dictionary and data base development, English analysis,
question answering, user feedback, English assertions and commands, and advanced
language processing developments. The remainder of this section describes
progress in these areas.

Dictionary and Data Base Development

Each user of CONVERSE is now provided with a dictionary comprising several
hundred English function words ("of", "the", etc.) and a few basic
conceptual primitive terms (e.g., "person', "thing", "relation"). With
the aid of this dictionary and recently developed DECLARE commands, the CONVERSE
vocabulary and concept net can be expanded, and data bases of various content
and structure can be described. The number of syntactic features present in
many lexical entries in the dictionary has been increased to facilitate case
assignment. The dictionary file can now be compiled with any of three other
content-word dictionary files containing open-class words and concept-net
information associated with different data bases.

The census data-base file currently consists of 12,000 facts concerning cities
in California and New York. This file was used in the demonstration of
CONVERSE VI in June. For purposes of testing the new DECLARE commands that
have recently been added to the intermediate language, a smaller census data
base of roughly 150 facts has been created. DECLARE commands tell the data
management system how to create hierarchies of concepts in the concept net,
how to assign internal proper names to objects and concepts, how to insert new
objects into the universe of discourse, and how to build set extensions for classes,
properties, functions, and relations.

For some time, we have been using and expanding a file of English sentences to
facilitate checkout of the parser (the syntax-recognition component of the
natural-language compiler). A special subset of sentences tailored to the
census data base permits a quick checkout of the parser's ability to recognize
sentences querying this data base. A much larger set of sentences is used to
test the parser's syntactic generality. In the past year, the following catego-
ries of sentences have been expanded: declaratives, yes/no questions,
informative questions (which, where, etc.), conjunctions, quantification,
relatives, superlatives, complementation, and articles, A special emphasis has
been placed on comparatives and is reflected in a large number of comparative
sentences. The file now consists of about 500 English sentences illustrating
a wide range of parsing, storage, and retrieval phenomena.

A recent extension of the dictionary-building procedures has made it possible
for CONVERSE to handle information about symbolic objects that do not have
short alphanumeric names. This change permits the description, storage, and
retrieval of complex symbolic objects such as text strings (sentences, phrases,

System Development Corporation

15 October 1971 25 TM-3628/009/00

document abstracts, etc.) or arbitrary LISP symbolic expressions (functions,
grammar rules, subroutines, etc.). The first use of this extended dictionary
facility will be to introduce the file of sentences as complex objects to
be described in a new data base for CONVERSE. This sentence file has already
been described in English and in CONVERSE intermediate language (IL)--i.e.,
sentences are sorted into applicable attribute classes such as negative,
comparative, declarative, etc. Version 2 allows the user to refine any of
these subclassifications, and the system is being extended so that English
commands can generate actions that will result in calls upon the parser itself.
In the future, therefore, the sentence data base will be usable in contexts in
which a user can make statements such as "Parse all yes/no questions containing
restrictive relative clauses:" This will lead to the retrieval of the appro-
priate subset of sentences, which, in turn, will be passed on to the parser
one at a time. This sentence data base will allow us to use the system in a
reflexive or "boot-strapping" fashion to further increase the generality of
the English-analysis procedures.

English Analysis

The CONVERSE parser employs a bottom-to-top, right-to-left, nondeterministic
algorithm to produce all possible parsings in a single pass. During the past
six months the parser has been greatly enlarged in scope and capability, most
importantly by the addition of a series of general structure-changing (SC)
rules that efficiently carry out transformational operations on tree structures
output by a series of phrase-structure-building (SB) rules. The SB rules are
nondirected, and the SC rules are called from within the SB rules. This allows
the two types of rules to operate in such a fashion that deep and surface
structures are built up simultaneously.

The new parser was first demonstrated in CONVERSE Vl in June. Since then, the
SB rules have been expanded to handle additional syntactic constructs such as
quantifier floating ("Are all the cities smoggy?", "Are the cities all smoggy?"),
preposed adjectives ("Is Downey as large a city as Fresno?"), and a number of
additional forms of nominalization, negation, complementation, clefting, tag
questions, and verb-particle constructions. Rules have also been added that
permit the user to query the structure of the concept network and introduce
new terms and phrases during the process of data base description.

The SC rules create deep structures in the form of verbal predicates followed
by series of actant arguments. This form facilitates the later application of
semantic rules to create IL expressions. These rules have been expanded to
create underlying structures out of the wide variety of surface structures
present in relativization, clefting, informative questions, yes/no questions,
and complements. In addition to simplifying the semantic-interpretation process,
the SC rules generalize the syntactic component to enable the system to process

System Development Corporation

15 October 1971 26 TM-3628/009/00

a larger number of syntactic paraphrases--for -xample, some of those for a simple
question having to do with whether or not the ,pulation of a certain city is
of a particular value:

1. Is Downey's population 60,000?

2. Is the population for Downey 60,000?

3. The population of Downey is 60,000 isn't it?

4. Is the population of the city of Downey equal to 60,000?

5. The city of Downey has a population of 60,000 doesn't it?

6. Is Downey's population equal to 60,000?

7. Does Downey have a population of 60,000?

8. Is Downey a city that has a population of 60,000?

Because this query is of a simple form, the possibilities for paraphrase are
limited. More complex queries would have many more possible paraphrases, and
it is especially in these situations that the SC rules play an important part
in effecting paraphrase reduction.

The power of the grammar has been increased by the addition of a system of
grammatical case in the deep structure of sentences. Case specifies the semantic
relationships between a sentence's syntactic elements. This year we have
concentrated on case as it applies to verb phrases, with particular emphasis on
prepositions and question words (who, what, how, etc.). Case analysis of
nominalized phrases will be implemented next year. Initially, a detailed study
was made on all of the prepositions used in verb phrases in a representative
sample of English sentences. Semantic criteria were used to classify the
prepositions, and the set of cases was derived from these classes. Out of this
set we selected nine cases for initial implementation in CONVERSE:

CASE NAME PRINCIPAL RELATIONSHIP

1) Domain logical subject
2) Neutral direct object
3) Goal location toward which action is directed
4) Benefactive entity that benefits from a performed action
5) Location where an action is performed
6) Time when an action is performed
7) Manner the way in which an action is peformed
8) Means the instrument or agent with which an action

is performed
9) Source location where the action originates

II

System Development Corporation

15 October 1971 27 TM-3628/009/00

While prepositions are important in identifying case roles, not all sentence
constituents with case functions have prepositions. Our treatment of case also
includes several adverbial constituents in sentences (temporals, locationals,
manner, etc.), so that we handle in a unified framework what requires several
different mechanisms in other systems.*

The following examples illustrate the assignment and use of case information:

The assertion: "The firm sold five truckloads of goods to the state." maps
into the following data structure format: (SELL (DOMAIN = the firm),
(NEUTRAL = five truckoads of goods), (GOAL = the state)].

This form of data structure i1 especially convenient for interrogation from
our derived deep syntactic structures.

Two possible queries of this structure are:

1. What was sold to the state?

2. To whom did the firm sell five truckloads of goods?

The deep syntactic structures of these sentences, including case information,
are:

(1) S S Sentence

VP VP = Verb Phrase

V NP NP V =Verb

Sell to the state what NP Noun Phrase

(Case = Goal) (Case Neutral)

(2) S

VP

VNP NP NP

Sell the firm five truckloads to whom
of goods

(Case = Domain) (Case = Neutral) (Case = Goal)

*Woods, William A. Augmented Transition Networks for Natural Language Analysis.
Report No. CS-l Computation Laboratory, Harvard University. December 1969.

Winograd, Terry. Procedures as a Representation for Data in a Computer Program
for Understanding Natural Language. MAC TR-84, Project MAC MIT. February 1971.

WI

System Development Corporation
15 October 1971 28 TH-3628/009/00

In (1), case information identifies the Neutral entry in the data base as the
part of the relation being queried; in (2), it is the Goal.

A second set of examples assumes a data base containing information on airline
schedules. Information is stored in the form:

Flights depart from <places> for <places> at times.

(where <places> are cities or airports)

Typical queries might be:

1. How many flights depart from L. A. before 7:00 p.m.?

2. At what time does American Airlines Flight #27 depart from
Chicago for Philadelphia?

The syntactic deep structures are:

(1) S

VP

V NP NP NP

depart how many flights from LA before 7:00 p.m.

(Case Domain) (Case Source) (Case = Time)

(2) S
I

V NP NP

depart A.A. Flt. #27 from Chicago for Phil. at what time

(Case = Domain) (Case = Source) (Case = Goal) (Case = Time)

Our implementation of case provides some distinct advantages in the parser.
First of all, case forms a natural link between a sentence's deep syntactic
structure and its semantics because the semantic rules make use of the case

System Development Corporation
15 October 1971 29 TM-3628/009/00

information to translate an English sentence to an IL equivalent that operates
on the data base. There is a direct correspondence between data base entries
and the case categories of any verb in the data base. This correspondence is
used not only in querying information already in the data base but also in
determining how to store new information contained in English sentences.

Two principal improvements have been made in the semantic processing: first,
the power to block unwanted syntactic parsings has been increased; second,
input from declarative and imperative sentences can now be converted into
commands to store, delete, and search information in the data base. The latter
improvement is significant because it permits all three of the major types of
English sentences to be processed and translated into calls upon the four major
data management commands.

An initial version of an English sentence generator has been completed. It
translates IL statements and data management answer expressions into stylized
but readable English sentences that enhance on-line communication by providing
the user with appropriate English feedback messages and, in certain cases,
English answers to questions.

Question Answering

Our experience with question answering from the 12,000-fact data base has been
quite satisfactory. Almost all questions are answered in a few seconds.
Depending on the form and content of the original question, the system responds
with one of three basic types of answers: a single-word answer, such as "yes",
"no", a number, or "none"; a tabular array of data in report format; and, in
some circumstances, a complete English sentence. The sentence format is
resorted to by an algorithm that decides when the English sentence form is
helpful in expressing a complete answer to the question. Since imperative
sentences are now recognized (see below, "Assertions and Commands"), many
questions can be stated as commands (e.g., "List the population of Downey."',
"Determine the land area of each city in the Western states!").

User Feedback

A user will have confidence in the question-answering system only if it gives
him an informative response to any reasonably well-formed English input
sentence, whether or not the sentence can be completely matched to the contents
of the data base. User feedback is most essential when the system detects, and
is unable to interpret or resolve, anomalies or ambiguities in the user's query.
These anomalies and ambiguities may be lexical, syntactic, or semantic. Thus,
a user may use in a sentence words that are not defined in the CONVERSE
vocabulary, syntactic patterns that are not currently recognizable by the
parser, or a combination of terms that are in the vocabulary but cannot be
matched to the contents of the data base. There may also be some unresolved
instances of ambiguity that require a clarifying response from the user.
CONVERSE deals with these situations straightforwardly. When ambiguity is

System Development Corporation
15 October 1971 30 TM-3628/009/00

detected and unresolved, several IL semantic interpretations are usually generated.
They are then back-translated into English and printed out as alternative search
requests for the user to review, so that he can choose the one that is closest to
his intended meaning. For example, if the user enters the simple but lexically
ambiguous query: "What is New York's population?", the system returns two
alternative queries: "What is the population of New York City?" and "What is the
population of New York State?". The user selects the query he wants and obtains
the answer directly. When a question could be misinterpreted because of the use
of certain function words, as in the disjunctive "Did Downey or Lakewood have a
land area less than 10?", the system factors the query into two separate requests
and provides the two responses: "It is not the case that Downey has a land area
less than 10." and "It is the case that Lakewood has a land area less than 10.".
In CONVERSE V2, additional feedback facilities will ensure that users supply
sufficient information to adequately characterize or describe a new data base.

Assertions and Commands

A major extension in implementing CONVERSE V2 has been the addition of rules
for translating declarative and imperative sentences into calls on the four
basic CONVERSE IL commands: DECLARE, STORE, FORGET, and RETURN.

Declarative sentences can be used to state assertions where new terms or phrases
are introduced through the use of quotation marks. This permits the user to
introduce new concepts into the system in order to characterize or extend data
base descriptions. Assertions of new relations and facts using the existing
vocabulary can also be stated. Simple examples of the former are: "County is
a place.", "City is a place.", "Smoggy is a property.", "Los Angeles is a city.",
and "Los Angeles is a county.". Examples of the latter are: "No counties are
cities.", "Some cities are smoggy.", and "The population of the city of Los
Angeles is 7,500,000." Imperative sentences can be used to invoke commands that
define new concepts in terms of concepts ;Ierivable by the system or that call
for the retrieval of data.

A mechanism called "generalized define" has recently been added to the system.
It allows a user to extend the system by increasing its working vocabulary,
enriching its concept net, and defining functions that increase its data-
manipulation capability. The user types "Define <new concept> as <old concept>:"
to the parsing mechanism and the old concept is parsed to give the new concept
its semantic meaning in the system. The most trivial use of this facility is to
introduce synonyms for previously defined words. A more interesting use is to
define a new concept in terms of the semantic interpretation of the old concept.
The most powerful use of the capability is to introduce new operators that can
then be used in questions to derive implicit data from the explicitly stored
facts.

System Development Corporation
15 October 1971 31 TM-3628/009/00

Advanced Development

Extended Intermediate Language. We have made considerable progress in the design
of an extended intermediate language (IL2) with greater expressive power, greater
compatibility fith the English deep structures from which IL expressions are
derived, and the gbility to drive sophisticated deductive processes.*
IL2 can express interconnections among sets and relations even when the inter-
connections involve implicit quantifiers, complex interactions among quantifiers
and among quantifiers and other operators like negation, and n-ary relations
where n is greater than 2. It can represent such sets as "cities north of every
city in Los Angeles county" or "flights which depart from cities for cities
farther east" compactly and clearly. To facilitate translation from English as
well as computational interpretation of the expressions, the use of variables
has been minimized in IL2.

Case relations are explicitly designated in IL2 expressions (in contrast to the
use, in the predicate calculus, of position in the argument string as an implicit
indicator of case). This simplifies the translation from English deep structure
to IL2 given the deep structure representation which has been adopted for CONVERSE.

IL2 expressions will drive a data management system that can (1) do explicit
retrieval, (2) call LISP programs to evaluate functional expressions defined in
terms of other expressions, and (3) call deduction processes that make use of
the general information (the relation interconnections) stored in the data base.
An IL2 interpreter is now being designed. Its design is complicated by the fact
that when all of the above ways of evaluating relational expressions are available
for the same expression, the interpreter must try them in appropriate order and
with appropriate effort limits. (Predicate-interpretation programs are therefore
to be written in a language like Hewitt's PLANNER** with a TRY operator and effort
parameters.)

Inference Making. The development of the deduction grapher, which will enable
CONVERSE to draw inferences from general facts, is continuing. The language for
specifying IL2 interpretations will be capable of driving the deduction grapher
and specifying which strategies the grapher will use. (Thus, for example, the
deduction grapher can be told that in evaluating the predicate "P" as in "P(a)"

it should chain backward, or that it should start with some "P(b)" and chain
forward, with the general statement "(P(x) & R(x,y)) - P(y)". In this case, it
is told that it should deduce from a particular general statement and is also
told a possible strategy for using the general statement.)

The deduction grapher is designed to make inferences in an information retrieval
context in which the task of selecting relevant premises (both general and
specific facts) from a very large set of premises is at least as difficult as

*Kellogg, C. ILS2 Working Note 1. SDC document N-24490. 31 August 1971.

Kuhns, J. L. jiWkinNoe2. SDC document N-24490/O00/00. 16 September 1971.

Kuhns, J. L. IL2 Working Note 3. SDC document N-24490/0021/00. 16 September 1971.

Hewitt, Carl. PLANNER. MAC-M-386, Project MAC, MIT. Revised August 1970.

System Development Corporation
15 October 1971 32 TM-3628/009/00

that of showing that the selected premises have the needed deductive relationships.
The grapher proceeds by generating derivation proposals (structures of possible
relevant premises) and then, if possible, filling out the details of the proposals
to build a complete derivation. Proposals can be modified or new ones can be
generated as required. The selected proposals represent derivations that would
be valid if only truth-functional structure and first-level unification of
predicate occurrences were considered. Programming done so far has been on the
algorithm for generating these original proposals. The programs for filling out
the proposals have been partially specified.

Analysis of Fundamental Syntactic/Semantic Relations. Definitions in dictionaries--
in particular, Webster's 7th Collegiate (W7)--are being analyzed and generalized
to (1) get at basic relations, particularly basic case relations, that can be
efficiently incorporated in all versions of CONVERSE regardless of subject matter;
(2) generate syntactic and semantic interpretation rules for productive uses of
suffixes; and (3) discover the general premises that are needed for correct
deductions over many different domains of discourse.

The procedure focuses on the keywords of the major defining formulas in W7--for
example, the word "state" as used in the definition of nouns ending in "-iTon",
"-ment", "-ity", etc. After a (computer-aided)survey of some 45,000 formulaic
definitions in W7, an initial set of 50 notions was selected. Concertual analyses
have been prepared so far for "quality", "state", "process", "action", "act",
"cause", and "person", and also for seven notions ("will", "purpose",
"deliberation", "goal", "agent", "behavior", and "effect") that have no direct
counterparts among the keywords of defining formulas but that underlie case or
thematic relations. Further formalization of these analyses via translation
into IL2 will be undertaken.

3.1.2 Summary

At the beginning of the current contract year, initial versions of a natural-
language compiler and its associated data management system were implemented.
The utility and capability for expansion of each program were limited by the
severe restrictions of core-memory working space within the LISP 1.5 system on
ADEPT/50. CONVERSE VO was implemented within these memory constraints and
demonstrated during the first half of the contract year. VO could translate
questions of moderate complexity into intermediate-language procedures by means
of surface-structure rules and the use of a small concept network. These
procedures could then be passed to the data management system for evaluation,
and tabular answers could be returned. In pushing this demonstration milestone
to a successful conclusion, we managed to solve a number of problems in
program/program and program/disc-file communication, but core-memory constraints
prohibited the expansion necessary to incorporate further improvements in the
prototype.

System Development Corporation
15 October 1971 33 TM-3628/009/00

With the advent of ADEPT/67 and its increased core memory we have been able to
implement CONVERSE versions VI and V2. A major extension of the grammatical-
analysis component was achieved in Vi by the addition of a series of trans-
formational structure-changing rules. These rules both generalize syntax analysis
and simplify the production of well-formed semantic interpretations. Other
important features of Vi include English user feedback, generation of English
answers where appropriate, and exercise of the data management system with a
data base of medium size and complexity.

V2 adds to CONVERSE the ability to handle and process declarative and imperative
sentences. It also incorporates features that permit a user to describe and
maintain data bases of diverse content and structure by means of ordinary English

sentences. These initial user-extensibility features represent an important
step toward the achievement of an on-line system with which people can conven-

iently and effectively communicate with data files of substantial size andkexpanding content. These features will receive increasing attention as future
on-line experiments are carried out. The addition of case assignment in V2
has expanded sentence analysis beyond that available in Vl. The case-assignment
procedure uses general linguistic knowledge about the interrelations among
English question words, prepositions, and verbs to identify the basic semantic
relationships that underlie the syntactic constituents of deep structure.

Further versions of CONVERSE will grow out of our efforts in on-line experimentation
with different data bases and such advanced developments as deductive inference,!i morphological and thematic analysis, IL2, and predictive linguistic constraints

to support speech recognition. The present CONVERSE software has been designed
to allow for such future growth. Efficient, functional 1/O routines now exist
for use of auxiliary disc memory storage for (1) binary code (functions and
grammar rules), (2) symbolic expressions (concept-net entries and complex symbolic
objects), and (3) arrays (set extensions and dictionary entries).

During the year progress has been made in developing a closer liaison with the
Voice I/O project and a better understanding of the nature of the critical inter-
face problems to be solved before an eventual vocal CONVERSE can be constructed.
Steps have been taken to direct much of our advanced work in semantics, syntax,
and morphological analysis toward the solution of these interface problems. A
close tie between the projects will be achieved when a common data base is
selected. This is a high-priority objective, to be attained early in next year's
research. In addition, our work on an advanced formal language for expressing
data management functions (IL2) will be closely associated with the objective
and experimental work to be carried out by the Network Data Sharing project
(Section 4.1). Our increasing association with both of these projects, added
to our own experimental efforts,leads us to expect increasing activity with
other researchers through the resources of the ARPA Network.

System Development Corporation
15 October 1971 34 TM-3628/009/00

3.2 VOICE INPUT/OUTPUT

The long-term goal of the Voice Input/Output project is the operation of SDC's
CONVERSE system with vocal speech input and output. CONVERSE (see Section 3.1)
is a natural-language question-answering system that employs a user-extensible
subset of English and aims, eventually, at employing a virtually unconstrained
subset of English for data base management. In order to achieve a vocal
CONVERSE, we will have to attack and solve almost all of the outstanding
research problems regarding the recognition of speech by a computer-including
the recognition of continuous speech (as opposed to the recognition of single
words), the ability to handle large vocabularies, and the development of
scanning processes and system integration techniques that allow parsing and
disambiguation of noisy input. Because of its difficulties, the task of
solving these problems must be approached in increments. The first two
increments are (1) a reimplementation of the Vicens-Reddy speech recognition
system from the Stanford University PDP-10 to the SDC IBM 360/67 and the
Raytheon 704 and (2) the implementation of a Vocal Data Management System (VDMS)
that employs a highly constrained subset of spoken English.

VDMS has been selected as a test and development vehicle for tackling continuous
speech. Its major thrust is called Predictive Linguistic Constraints (PLC).
In present natural-language and compiler systems, symbolic rules describe a
symbolic input, and various types of sophisticated pattern-matching techniques
are used to establish validity and transform the input into an object-level
language. Experience of investigators has shown that this approach is not
appropriate for understanding speech utterances; selecting a word from the
input stream and using it as a key into a symbol table or concept net does
not work. Instead, PLC predicts highly plausible components in the input.
The match criterion may be relaxed because a reasonably good match merely
confirms a hypothesis. Of course, a PLC system must preserve options to change
assumptions or readjust the parsing to data based upon further information.
Figure 3-1 is an overview of the system.

3.2.1 Progress

During the past six months, the implementation of virtually all of the hardware
and software tools necessary to support full-scale speech-understanding
research was completed. A graphics display package for waveform analysis has
been developed for the Raytheon 704 computer. Because the package is a
collection of callable FORTRAN IV subroutines, it can be used in a variety
of applications, such as displaying the speech signal and various parameters
extracted from it. A disc-partitioning system has been implemented on the 704
so that multiple overlay routines can communicate without physical intervention.
Other utilities that are now operational include a mini-LISP System, digital-
to-analog (DAC) and analog-to-digital (ADC) conversion systems, data formatters
that allow the exchange of tapes between the IBM 360/67 and the Raytheon 704,
a program (VOICEBOX) that controls the audio environment, and MUSIC V, a program

System Development Corporation

15 October 1971 35 TM-3628/009/00

RETRIEVAL
PACKAGEPRCSO

USER'S STATE zU

CONCORDANCENG

CONCORDANCE zTODRVRC

I. ______________________

I Fiure3-1. Iniial LC odelforVDM

System Development Corporation
15 October 1971 36 TM-3628/009/00

that will be used for speech synthesis. Utility routines for mathematical
support of acoustic processing include Fast Fourier Transforms (Frrs), CHIRP-Z
transforms, a CEPSTRUM analyzer, and a group of digital filters. Various
algorithms for each of these routines have been compared for accuracy, computa-
tion time, and core requirements. A formant tracker has been constructed and
is undergoing detailed analysis. Several all-integer versions of the FFTs are
being designed and constructed.

CWIPER Implementation

CWIPER, the acoustic processing portion of the planned VDMS, is based upon the
speech-understanding system implemented by Vicens and Reddy at Stanford
University.* The Vicens-Reddy system is unique in the sense that it approaches
the problem of speech recognition as a whole, rather than treating particular
aspects of the problem as in previous attempts. For example, where earlier
systems treated only segmentation of speech into phoneme groups, or detected
phonemes in a given context, the Vicens-Reddy system processes the incoming
speech signal, applies heuristics to segment the signal and to identify
phoneme-like units, and then uses the total phonemic pattern to recognize an
entry in the lexicon. The segmentation portions are identical. CWIPER will
differ from the Vicens-Reddy system in that it will use different algorithm
and pattern-matching techniques that allow searching for words (or phrases)
in a sample of continuous speech.

To construct CWIPER, the Vicens-Reddy system has been reimplemented on the IBM
360/67. The software has successfully built a lexicon and recognized a set
of 20 speech samples comprising five distinct words utter by two different
speakers. Detailed program documentation has been written, and an extensive
analysis of the heuristics in the Vicens-Reddy system has been undertaken, with
the results documented in the program description. The analysis and the
documentation will allow easier modification of and extension to the system
in the future.

Hardware Development

The Voice Laboratory hardware that supports the CWIPER and Vicens-Reddy systems
has been designed, constructed, checked out, and integrated with the Raytheon
704 ADC and DAC systems. It includes positive and negative peak-detection and
threshold-crossing counters. Digital interfaces allow program control of the
entire subsystem. The recording booth has been wired and a two-level pluggable
patch panel has been installed to allow modular use of the Laboratory's audio
facilities.

Vicens, P., Aspects of Speech Recognition by Computer, Stanford University,
Memo AI-85 (CS 127), 1969, 210 pp.

Reddy, D. R., An Approach to Computer Speech Recognition by Direct Analysis
of the Speech Wave, Stanford University, Memo AI-43 (CS 49), 1966, 144 pp.

System Development Corporation
15 October 1971 37 TM-3628/009/00

VOICEBOX

VOICEBOX, a program that operates interactively on the Raytheon 704, has been
implemented to control the audio environment. A partial list of its capabilities
is as follows:

* Record speech samples from the microphone or tape recorder.

* Play back all or part of a speech sample, either once or
repetitively.

* Scale the speech sample.

* Pass the sample through one or more of the filters attached to
the Raytheon 704.

e Play back all or part ozf the filtered signal, either once or
repetitively.

a Determine the parametric input to CWIPER for the speech sample.

e Symbolically display the speech sample, filter contributions,
or CWIPER parameters.

e Construct binary "save" tapes of recording sessions.

VOICEBOX also has a macro definition and execution facility to allow the
on-line user to catalog often-repeated sequences of tasks.

MUSIC V

MUSIC V,a sound-synthesis program originally developed by Mathews at Bell Labs,
has been made to operate on the IBM 360/67 and the Raytheon 704, and some
short (approximately10-second) samples of music have been synthesized on the
704. MUSIC V will be used to synthesize speech segments of approximately one
to two seconds to enable us to verify the assumptions made by the speech-
recognition system.

Work in Progress

In several areas, work has started but not reached culmination. The CWIPER
software is being moved from the IBM 360/67 to the Raytheon 704. This does
not appear to be a major task because the FORTRAN discrepancies are minor
and well understood. The 704 CWIPER will be used for CWIPER verification
and data-base-building tasks to be undertaken during the next contract year.

r;!

System Development Corporation

15 October 1971 38 TM-3628/009/00

The design of true root means square (TRMS) hardware has begun. This hardware
will be used for additional parameter input to CWIPER and will allow vastly
improved fricative detection and classification. Another hardware activity
underway is the design of the Raytheon 704-IMP interface to move the 704 into
the ARPA Network next year.

Version I of a system to aid equipment maintenance procedures is now being
checked out. The system vocally directs the user to set a group of switches
and toggles, and then asks for the status of various fault lights. The user
answers the questions (currently by typing the answers on a teletypwriter
terminal, but later, in Version II, by speaking into a microphone). After
interpreting the answer, the computer asks the next question. This sequence
is repeated until the faulty component(s) is located and replaced. (The
same question-answer sequencing is used in many computer-assisted instruction
systems.) Version II will use the 704 CWIPER for vocal input.

3.2.2 Summary

The Voice Input/Output project, now completing its first full year, is pursuing
speech understanding by computer on the basis of the hypothesis that both th%:
human's "inquiry state" and the words and phrases he uses can be dynamically
modeled and predicted to greatly increase the likelihood that the computer
will recognize and interpret his spoken utterances. During the past year,
the project has developed the tools that will allow the design and development
of a speech-understanding system that accepts continuous-speech input. A high-
quality audio-recording environment has been provided that allows precise control
of speech sampling. Computer interface hardware and software have been developed.
Several software modules for recording and producing acoustic waveforms have

become operational; they include CWIPER, MUSIC V, and VOICEBOX. Appropriate
mathematical analytical tools have been incorporated into the system.

In its Final Report on Speech-Understanding Systems,* an ad hoc study group
formed at the request of ARPA's Information Processing Techniques office and
consisting of ARPA/IPT research contractors (including SDC's Voice Input/Out-
put Project Leader) formulated a list of 19 problem areas in which technical
bre- .chroughs must be achieved before flexible natural-language speech-under-
standing systems will be a reality. This list, plus two additions of our own,
is shown in Table 3-1, a matrix that identifies the future milestones for the
Voi. Input/Output and CONVERSE projects. As the matrix indicates, we expect
to ach.,ve substantial progress toward solutions in 11 of the 21 areas and some
insight in two more, which suggests that there is considerable promise of
achieving a vocal CONVERSE within the next five years.

Speech-Understanding Systems: Final Report of a Study Group. Published for
tie Study Group by Computer Science Department, Carnegie-Mellon University,
Pittsburgh. May 1971.

System Development Corporation
15 October 1971. 39 TM-3628/009/00

Table 3-1. Impact of Voice I/O-CONVERSE Research
on Problems Facing Speech Understanding
by Computer

M4AJORl 1971-72
A(rTIVITIES FOR VOICE

1I0OAND COOVERSE
PREOJECT&

g:0V 4

3SPROEMAE REDALCS 0____ ___q,

1. EONVIRUONUETA NOSP E ____ _

5. TELEPHONE -

6. TUNABIUITY _____ _____ J
7. USER TRAINING

10. SEMANTIC SUPPORT

11. PREDICTIVE GRAWAARP

-12. USER MODEL

15.OYT E I TUEDT IN ROCAESUDGROUPRE- R

-7 PRO MAJORN PROGERESTWRSOUINMIETEIETIED

MARESERC PRGESECTOWARD SOUI N(LESTONIE IDENTIFIED)

F1-FALLOUT (POSSIBLE INSIGHT INTO PROBLEM)

System Development Corporation
15 October 1971 40 TM-3628/009/00

3.3 GRAPHIC INPUT/OUTPUT

Enchancing communication between man and computer by providing functions and
facilities that are compatible with, or equivalent to, techniques used in
visual man-to-man communication is the principal goal of the Graphic Input/
Output (I/O) project. Our concern has been to develop methods of graphical
input and output that will permit a user to carry on a dialog with a computer
in the language and notation of his discipline or problem domain. The func-
tional entities required for such a dialog are a data-input tablet (e.g.,

the RAND Tablet), an interactive CRT display operable as a terminal in a
time-sharing system, and a character-recognition program that will accept the
symbols used in the notational expressions.*

The near-term project goal is to develop programming systems that utilize
two-dimensional notation. Our initial efforts are to use mathematics, the
most ubiquitous scientific notation for numeric and symbolic programming, and

to develop a programming system that uses flowcharts as its source language.
The work is based upon previously developed programs that accept two-
dimensional mathematical expressions hand-drawn on the input tablet, extract

the explicit and implicit information they contain, and transform that informa-
tion into representations amenable to existing processing techniques.

3.3.1 Progress

In this reporting period we completed the first version of a system called
The Assistant Mathematician (TAM). TAM uses ordinary mathematics to specify
numerical computation. TAM accepts much of the commonly used mathematical
notation to provide a casual user, such as an engineer or a scientist, with
a powerful, flexible, natural, and easy-to-use computing resource.

We have completed the initial version of a fiowchart-input program that allows
a user to construct a freehand flowchart on the graphics console. We have
also begun work toward conducting experiments using our character recognizer
with graphic-tablet data transmitted over the ARPA Network. In addition,
various graphics programs, such as the Parser and Unparser, have been improved.

The Assistant Mathematician (TAM)

Our goal in constructing TAM is to create a powerful computational system that
uses mathematics, the common language of technology, as its programming
language. TAM is an incremental system; each statement is executed before
the next statement is requested. It accepts a wide range of commonly used
mathematical notation. TAM provides arithmetic manipulation using a powerful
set of operators on constants, variables, and one-dimensional or two-dimensional

Bernstein, M. T. Hand-Printed Input for On-Line Systems. SDC document
TM-3937. April 1968.

System Development Corporation
15 October 1971 41 TM-3628/009/00

arrays, and incorporates looping facilities, single-statement functions, and
user-defined input/output. Some built-in functions, such as square root,
logarithm, and the trigonometric functions, and built-in constants, such as
R and e, are also provided. Considerable effort has been made in the imple-
mentation of the system to ensure that the system does what a user who is not
sophisticated in the use of computers would expect it to do.

The description that follows attempts to give the reader a "feel" for the use
of the system by describing a complete sequence of operations. A more detailed
and formal description of the system is available.*

Figure 3-2 is a sequence of photographs showing the use of TAM to find a root
of a quadratic equation using the formula

-b + j b2 -4ac

for one root of the equation aX;+bX+c=i. In Figure 3-2(a), the user has hand-

printed the e)pression on the TAM console. In Figure 3-2(b), the expression

has been processed by the character recognizer and the Parser. The character
recognizer has replaced each hand-printed character with a computer-generated
character of the same size, aspect ratio, and position so that the user can

verify character recognition, while the Parser has operated on the characters
to produce a linear-string form of the two-dimensional mathematical expression.
This linear form has been converted back to two-dimensional form by the Unparser
and is displayed so that the user can verify the results of linearization.
In Figure 3- 2 (c), the user has, through use of the button labeled TAM, requested
that the system execute the expression; the result is displayed at the top of
the screen.

Figure 3-3 shows the use of TAM for matrix arithmetic. (Photographs of the hand
printed input are omitted from here on.) In Figure 3-3(a), a matrix has been
defined; in 3-3(b), the value has been stored in TAM. Figures 3-3(c) and
3-3(d) show the matrix-inversion operation, denoted in the usual way. Figures
3-3(e) and 3-3(f) show matrix multiplication (the C matrix was stored
previously).

The sequence of photographs in Figure 3-4 illustrates function definition. In
Figure 3-4(a), the first-order approximation of the orbital velocity of a
satellite as a function of height has been input. Selecting the TAM button

Bebb, Joan. The 4ssistant Mathematician (TAM). SDC document TM-4790/000/00.
October 1971.

System Development Corporation
15 October 1971 42 TM-3628/009/00

I..

.00

Cd

"-4

NOT REPRODUCIBLE

System Development Corporation

15 October 1971 43 TM-3628/009/00

U

44

NOT REPRODUCIBLE

System Development Corporation

15 October 1971 44 TM-3628/009/00

42)
4.J

0
0

4-4 9

1-4

NOT REPRODUCIBLE

System Development Corporation15 October 1971 45 TM-3628/009/00

V

~ 0)

0

4

NOT REPRODUCIBLE

System Development Corporation
15 October 1971 46 TM-3628/009/00

0

NOT REPRODUCIBLE

System Development Corporation
15 October 1971 47 TM-3628/009/00

$4

"NO R

NOT REPRODUCIBLE

System Development Corporation
15 October 1971 48 TM-3628/009/00

stores this for later use (Figure 3-4(b)). Similarly, in Figures 3- 4 (c)
3-4(d), the orbital time as a function of altitude is defined and stored. In
Figure 3-4(c), the orbital time of a satellite at an altitude of 150 miles has
been requested. TAM recognizes that the constants "g" and "R' in the functions
have not yet been defined, and requests their definitions (Figures 3-4(d), (e).,
(f), and (g)). When all needed constants are defined, TAM computes the answer
(Figure 3-4(h)).

An iteration capability is also avilable in TAM. In Figure 3-5(a), TAM has been
requested to print the orbital times for altitudes of 150, 300, 450, 600,
900 miles, with the result given in Figure 3-5(b). An alternative form of the
iteration statement, shown in Figure 3-5(c), gives orbital times for altitudes
of 780, 832, 1150, and 22,500, shown in Figure 3-5(d).

TAM also incorporates an editing system to aid the user in composing and
altering expressions. The user may delete, change, or move groups of characters
as necessary to obtain the expression he desires. Previously used expressions
are saved and may be recalled as necessary.

TAM has been operational, in various stages of development, for four months.
During this time, it has been used by a number of people not connected with
the project. Their responses to TAM's capabilities have been enthusiastic.
We feel that TAM is an important contribution to the systems and techniques
needed for truly natural man-machine communication.

Flowchart Input

A flowchart, a graphical representation of a computer program or routine,
provides considerable aid in constructing and debugging a program. The overall
aim of the flowchart-programming system is to allow direct entry and use of the
flowchart for computer programming. The programs described here allow entry
of flowchart structures. These programs are the initial part of a complete
flowchart programming system.

A detailed description of the flowchart programming system is available (see
Section 3.5). Briefly, a flowchart consists in circles and boxes connected
by lines indicating the direction in which information flows among them.
Boxes contain either executable statements or decision statements, the distinc-
tion being made by the number of exiting flow lines: a processing box has one
exiting flow line, a decision box two. Circles indicate remote connectors and
switches. A remote connector to a subsequent page of a flowchart is defined by
a circle with only an entering flow line; its use on the subsequent page is
specified by a circle with only an exiting flow line. A circle with an entering
flow and multiple exiting flow lines defines a switch. Both boxes and circles
may have only one entering flow line; subsequent flow lines entering a previously
entered box or circle should be connected to the entering flow line. Flow lines
may intersect each other, but they may not overlap a circle or box.

System Development Corporation
15 October 1971 49 TM-3628/009/00

To use the flowchart-input system, the user must supply two dictionaries for
use by the character recognizer. One must consist of boxes and circles, and
is used for the construction of the flowchart itself. The other should contain
all of the numerio,alphabetic, Greek, and special characters that the user needs
to provide text and header information for the flowchart. In particular, the
second dictionary should contain all of the characters the user will need for
the programming language statements to be placed within the boxes and circles.

Figure 3- 6 (a) shows the initial state of the flowchart-input system as it is
ready for construction of a flowchart. Each flowchart consists of a single
page--in this case, page number 1. The user must supply the name of the routine
and its type, procedure) or function. Figure 3-6(b) shows the results after
this header information is supplied.

After the header information is completed, the user may start flowcharting by
inputting boxes, circles, and lines. Strokes recognized as buxes and circles
are replaced by system-generated boxes and circles at the same position and of

approximately the same size. A stroke is considered to be a flow line if an
arrowhead exists on one end. The direction of a flow line is determined by the
placement of the arrowhead regardless of the direction in which the line was
drawn. Each flow line is approximated to the nearest 45* angle, the horizontal
line being at zero degrees. Flow lines that intersect boxes and circles are
illegal and are ignored.

Figures 3- 6 (c), (d), (e), and (f) show the construction of a flowchart. In
Figure 3-6(c), a remote connector has been defined and a processing box has
been used. In Figure 3-6(d), a decision box has been added; in 3-6(e), a
switch has been used. In Figure 3-6(f), interconnecting lines have been added,
showing how flow lines are connected to provide multiple entrance to a box or
circle.

t The user inputs textual information by touching the TEXT light button. Text is
entered in circles or beside flow lines, as shown in Figure 3-6(g). If a box
is selected after the TEXT button has been used, an asterisk appears in the
upper right corner so that the user can verify selection of the box. This is
shown in Figure 3-6(h).

The user erases elements by a scrubbing motion of the light pen. A box or
circle is erased by a scrub in its center; when a box or circle is erased, its
exiting flow lines are automatically deleted. The user erases a line by
scrubbing its arrowhead. The user terminates the program by touching the EXIT
button.

The flowchart-input program is an important first step toward the development
of a complete flowchart programming system. When this program is coupled to a
flowchart interpreter, a compiler, and a numeric processing facility such as
TAM, a user will hake-a powerful progranmiiing, facility that operates directly

!I

System Development Corporation
15 October 1971 50 TH-3628/009/00

(a) (b)

(c) NOT REPRODUCIBLE (d)

Figure 3-6. Flowchart-Input System

I ____ _____

System Developmenc Corporation

15 October 1971 51 TM-3628/009/00

(g) NOT REPRODUCIBLE(ge) (h)

Figure 3-6. Flowchart-Input System (Cont'd)

System Development Corporation

15 October 1971 52 TM-3628/009/00

in a flowchart language. This will allow him to create, debug, and test his
program in a small fraction of the time presently required by conventional
means.

ARPA Network Graphics

At the first ARPA Network Graphics meeting, which was hosted by MIT on July 18-20,
1971, the SDC Graphic I/O project and MIT Dynamic Modeling and Computer Graphics
(J. C. R. Licklider) defined an initial graphics experiment for the ARPA Network.
It involves the use of SDC's character recognizer with data generated at a data
tablet in the DMCG facility, the purpose being to study the feasibility of remote
character recognition--in particular, the interaction times involved. The exper-
iment should also suggest ways in which the Network could be used to compare the
character recognizers available at its various nodes. We are now writing the
programs that will interface our character recognizer to our Network Control
Program, and we expect the experiment to be finished during October 1971.

3.3.2 Summary

The work of the Graphic I/O project during the past year can be divided into two
areas: (1) conversion and refinement of various graphic components (character
recognizer, Parser, Unparser) and the development of a new component (flowchart
input), and (2) the synthesis of the components into a complete system (TAM).
From a long-range viewpoint, the synthesis effort is the more important of the r
two. In particular, by building TAM, we have obtained valuable information on
both the operational problems of constructing interactive graphics systems
efficiently and the problems of processing the language of mathematics.

TAM is constructed from modules written in several different languages. The
graphic components are written in SDC's L6 assembly language; the interpreter,
which performn the necessary analysis and computation, is written in the META
compiler and translator language; the linkage between these components is
handled by FORTRAN programs. We have developed techniques for easily managing
and linking these modules together. By using special languages for each sub-
task in TAM, we gain flexibility and efficiency in altering its capabilities.
This makes TAM a powerful vehicle for experimentation with the language of
mathematics.

The drawbacks of conventional mathematics as a computer language are that it is
ambiguous and context dependent. Various symbols have different meanings
depending on context; for example, + refers to the addition operation in conven-
tional algebra and to the OR operation in Boolean algebra, i can mean the
or be a variable (j also is used as Y/-) . These drawbacks can be ameliorated
by introducing new symbols or declarations to specify the nature of symbols,
but that solution runs counter to the concept of natural computer communication;
after all, the user, within the context in which he is working, uses methematics
in a completely consistent manner. An important reason for developing TAM was

System Development Corporation
15 October 1971 53 T,,3628/009/00

co begin exploring the tradeoffs between constraints on the naturalness of the
language and the problem-solving domain over which the language is consistent.
The development of TAM has led to the notion, to be e.plored in the next
contract period, of defining a problem-solving context in which the user operates
and incorporating that definition into the system in order to reduce ambiguity
and take advantage of the context-dependency of mathematics. The system will
then be of maximum assistance to the user while requiring minimum alteration of
his customary problem-solving behavior. The development of this concept should
provide a major breakthrough in man-machine communication.

II

!-.

Ii

System Development Corporation
15 October 1971 54 TH-3628/009/00

3.4 STAFF

Natural Computer Input/Output Staff

T. G. Williams, Head

CONVERSE Project

C. H. Kellogg, Principal Investigator
J. H. Burger
T. C. Diller
K. J. Fogt
J. C. Olney lConsultants
L. Travis

Voice 1/O Project

J. A. Barnett, Principal Investigator
C. A. Kalinowski
Iris Kameny (part time)

L. M. Molho
H. B. Ritea
R. DeCrescent Consultant (part time)
R. Bobrow (part time)

Graphic I/O Project

T. G. Williams, Principal Investigator
Joan Bebb (part time)
Jean Igawa
D. R. Lashier
J. McGahey
Jean Saylor

3.5 DOCUMENTATION*

Bebb, Joan. TAM. SDC document TM-4790. October 1971.

Bernstein, M. I. On-Line, Interactive Parsing and Programming. SDC document
TM-4582. August 1970.

Kameny, Iris, and H. Barry Ritea. Analysis and Development of the Vicens-
Reddy Speech Recognition System: Table of Contents for Document Series
TM-4652. SDC document TM-4652/000/01. In press.

Kameny, Iris, and H. Barry Ritea. Introduction and Overview of the Vicens-
Reddy Speech Recognition System. SDC document TM-4652/001/00. December 1970.

The documents listed here are available for public release.

ii!

System Development Corporation
15 October 1971 55 TM-3628/009/00

Kameny, Iris, and H. Barry Ritea. Description and Analysis of the Vicens-
Reddy Preprocessing and Segmentation Algorithms. SDC document TM-4652/200/00.
December 1970.

Kameny, Iris, and H. Barry Ritea. Description and Analysis of the Vicens-
Reddy Recognition Algorithms. SDC document TM-4652/300/00. March 1971.

Kameny, Iris. The Lexicon Design for the IBM 360/67. SDC document
TM-4652/400/00. May 1971.

Kameny, Iris, and H. Barry Rites. Description of the Vicens-Reddy Lexicon
Candidate Selection Algorithms. SDC document TM-4652/500/00. In press.

System Development Corporation
Ii October 1971 56 TM-3628/009/00

4. SYSTEMS RESEARCH

The systems research projects are developing new hardware and software
tools and techniques useful to ARPA's computer-science research community.
These projects presently include the ARPA Networks development activity and
the Graph-Meta analysis work, each of which is concerned with both the designr
and the implementation aspects of the overall system to support computer-
assisted military planning. The Graph-Meta research is based on a rigorous
analytical foundation in graph theory, while the Networks effort is more
applications oriented, involving ROST-to-HOST protocol development and
studies of distributed data-base systems in a computer network. Both projects
have been quite active during the reporting period, and have developed Network-
related facilities for experimental use by the other ARPA-sponsored SDC
research projects.

If
Ii

K1

F1

iii

System Development Corporation
15 October 1971 57 TM-3628/009/O0

4.1 NETWORKS

The goalsof the Networks project are to make SDC's ADEPT Time-Sharing System
an operating part of the ARPA Network and to explore ways in which it can
both contribute resc .rces to the ARPA community and benefit from the services
the community makes available to us. As part of our Network effort, we are
also investigating the "distributed data base" problem, and have considered
a number of possible ways of integrating dissimilar data management systems
within a computer network. Because of the long lead time needed for the
development of a feasible, practical approach, this effort is being pur'iued
in parallel with the HOST-to-HOST protocol implementation, so that we can
utilize the ARPA Network for data-sharing experiments.

The ADEPT system runs on an IBM 360/67 computer and utilizes a Honeywell
DDP-516 peripheral computer as an interactive I/O controller. The ARPA
Tnterface Message Processor (IMP) is also connected to the DDP-516 which
collects messages and passes them between the Network and the IBM 360/67.
The subsystem of ADEPT that interfaces with the Network, called HOSTOSS
(HOST Operating Sub~ystem), has the following features:

1. Interprocess communication. Programs running u-ider
ADEPT can communicate with each other and with
programs running elsewhere in the Network. All users
can simultaneously have multiple connections. (Presently,
there is an overall limit of 32 connections for ADEPT,
but this can be increased, if necessary, by enlarging
some system tables.)

2. Ability to log in on remote systems. This has been
accomplished by writing a user-level program incorporating
the TELNET specifications (RFC #158)* and using interprocess
communications. Our initial version of TELNET has been
coded in LISP.

3. Abilitýy to make ADEPT available to remote users. The
software provides up to five job entries to remote
users in addition to the ten local job entries. Initially,

however, we may administratively limit the external ARPA
community to one or two jobs.

References to RFCs refer to the "Request for Comments" series of informal
ARPA Network documentation.

System Development Corporation
15 October 1971 58 TM-3628/009100

4.1.1 Progress

HOST-to-HOST Protocol Implementation

Version 2 of HOSTOSS, which includes the new protocol features specified in
RFC #107, is r'w debugged and working. The interprocess communication
feature has been tested via coimuunication between two LISP systems running
under ADEPT and communication with test facilities at The RAND Corporation.

The TELNET pragram, which was designed to facilitate access to foreign
(outside SiC) systems, has been debugged and tested, and was used to checkout
Version 2 of HOSTOSS. Our TELNET program conforms to the specifications of
RFC #158 and includes a self-explaining capability to aid beginning users
and to help people who use it only occasionally to remember details they
may forget.

The LOGGER works and uses the initial connection protocol (ICP) defined in
RFC #156. The LOGGER and ICP have been tested by RAND and by logging SDC's
TELNET program into ADEPT via the Network. In both cases we successfully

logged in and loaded a program.

Distributed Data Base Study

A study of three approaches to data sharing on computer networks (SDC document

TM-4760) brought us to the conclusion that the "integrated" approach is
worth pursuing. The main advantage of this approach is that it facilitates
the integration of existing data management systems and their associated data
in such a way that data can be shared on a computer network. The integrated
approach has two primary components.

1. A common data management language to be used by all
users who wish to shire data on the computer network.
The language should have the power to define data

(including data structure and data relations); to
update, modify, and retrieve the data; and to add
to and delete existing data.

2. Interfaces that translate requests in the common
language to requests in the languages of existing

data management systems. For the purpose of having
a fail-safe system, it is desirable to locate the
interfaces at the nodes where their associated data
management systems are. However, it is possible to
locate all the interfaces at a single node.

We chose to concentrate our efforts on studying the intexfaces by using the
natural-language compiler of the CONVERSE English data management system
developed at SDC (see Section 3.1). CONVERSE accepts requests in English

r

System Developnent Corporation
15 October 1971 59 Tf-3628/009/0W

and represents them in a formal intermediate language (1L). IL is the common
language that will translate requests into the different data management
languages. We chose to experiment initially with the languages of DS/2
(a proprietary SDC data management system), D1-i (which will be available
at RADC), and FFS-NIPS (a data management system used in military agencies).

Data management languages strongly depend on the logical structure of data,
IL depends on a relational data structure, in which one can describe relations
between elements of sets. The function of an interface is to translate a
request in IL, described in terms of a relational data structure, into a request
(or a series of requests) in terms of the data base structure of the target
data management system. Two major questions currently being investigated
are:

1. Is the relational data structure assumed in IL general
enough to represent a variety of system data structures,
such as hierarchical (tree) structures and network
structures? If not, what data structure should a common
language be based on?

2. How can a request in IL be translated into a data
management language based on a different data structure?

Coordination with Other Projects

The personnel of the Networks project offer their consulting services to
SDC's other ARPA research projects. We have worked with the Graphic I/O
project to use the ARPA Network to communicate graphic-tablet data between

programs at SDC and MIT-DMCG. (See Section 3.2.1 of this report.) We have
also consulted with our systems programmers to set up a background job to
run under ADEPT that will handle the MAILBOX protocol discussed in RFC #196.
(See section 5.2.1.)

We have pursued HOST-to-HOST protocol developments and other Network
coordination efforts through attendance at the quarterly Network Working
Group meeting and as a member of the TELNET and data management committees.
We also participated in SRI's meeting concerning TNLS, which is the on-line
system to be used by the Network Information Center.

4.1.2 Summary

HOST-to-HOST Protocol Implementation

The ADEPT time-sharing system running on the IBM 360/67 computer has been
integrated into the ARPA Network. Interprocess communication, TELNET, initial
connection protocol, and the LOGGER have been debugged and tested, both
internally and by RAND. During this contract year the Network component of

System Development Corporation
15 October 1971 TM-3628/009/00

ADEPT, called HOSTOSS/360, was coded and debugged. In addition to HOSTOSS/360,
which is coded in IBM 360 assembly language, additional development of HOSTOSS/
516 continued, network primitives were added to the LISP system, and TELNET was
coded in LISP.

Distributed Data Bases

During the past year we have identified the problems associated with data
sharing on computer networks and have studied several alternative approaches
to solving them. We have chosen an evolutionary approach that permits the
use of existing data management systems as well as facilitating data sharing.
We believe that this approach will promote the acceptance of the value of
data sharing and eventually evolve into a system in which the best data
management systems will be used the most.

We have chosen to concentrate on the problem of interface translators by
using the intermediate language of CONVERSE as a common network data-sharing
language. We are now identifying the problems involved in actually implementing
the translators.

II

I.i

System Development Corporation

15 October 1971 61 TM-3628/009/00

4.2 GRAPH-META

The purpose of our Graph-Meta research, on which this is the final report, was
threefold. First, we wanted to explore the theoretical bases for designing
compilers that would accept a program written not only by a professional
programmer but by engineers or scientists with only rudimentary expertise in
p ogramming and, through the compilation process, optimize it---that is, produce
program code whose efficiency would approach, if not equal, the efficiency of the
same program written by an expert programmer. Second, we wanted to build
into an optimizing compiler certain analysis capabilities that would result in
tighter code than even the most skilled programmer is capable of achieving--
capabilities drawing on the power of the computer to examine the complex
interrelationships among segments of a large system prosram. Third, and
consequently, we wanted to extend the GENERATOR language, developed earlier
by SDC researchers, to make optimizations of these types possible. During
the past two years, this research has progressed from the extension of purely
syntax-directed compiling techniques, through code generatior with local
optimization, to the theoretical foundations for global optimization using
graph-theoretic techniques. A treatise on the mathematical theory of global
program optimization has been completed, extensions have been added to the
GENERATOR language, and an experimental optimizing FORTRAN IV compiler has been
written to validate the theoretical work.

4.2.1 Progress

During the past six months, we have focused on a number of problems, not fully
resolved by other investigators, involving the solution of Boolean equations
relating the availability of certain computations on entrance to certain
blocks of code within a computer program. A major problem concerns strongly
connected subgraphs, or loops, of the program that have multiple entry points--
i.e., loops that can be entered from several parts of the program without
first going through a common block of code.

Investigators at the National Science Foundation have detailed a technique of
solving these equations by a non-unique transformation of the program graph
into any one of a family of equivalent graphs such that all loops must be
entered through a node that is unique to each loop. Such a graph is called a
"split graph" because numerous nodes are split into identical copies, each
placed into an image of the loop. Hence, in the split graph, at least one
loop that had multiple entry points in the original graph is reduced to a loop
having a single entry point. This type of transformation has been described
primarily through diagrams; no well-defined mathematical algorithm has been
forthcoming that would produce either a unique split graph for a given program
graph or a choice function to evaluate alternative split graphs produced from
a given graph. As a result, the construction of an optimizing compiler that
takes full advantage of the mathematical theory of optimization has not been
possible. Instead, the process has been to not recognize these parts of code
as loops, and instead to perform only more localized optimization on them.

15 October 1971 6System Development Corporation
162 TM-3628/009/00

We have found that by applying a Boolean distributive lattice algebra to the
prime cycles of a graph (that is, to those loops in the program that contain
no proper subloops), numerous mappings of the graph into split graphs are
possible. Once we have identified all possible split graphs, the remaining
probler. is to determine which of the split graphs is the most preferable. We
have chosen one distinct type: that utich can be partitioned into a maximum
number of non-trivial intervals.

Not all existing optimizinr compilers produce correct, safe optimizations. The
reason for this may have to do with the system of Boolean equations relating
the availability of various computations on entrance to blocks of code. The
graph-theoretic solution is dependent upon the time at which the substitutions
into simultaneous equations are performed. This problem does not occur in
the solution of systems of simultaneous equations in algebraic fields in
general, but the solution process does involve the minimization and maximi-
zation of two independent sets of equations that are assumed to have different
initial conditions but that tend toward the common limit of an infite series
of approximations. It is apparent that because we are working with a Boolean
lattice algebra, and because each variable attains the value of 0 or 1, if
at some time a premature substitation is made, a value that should ultimately
reach a value of 0 could be promoted to 1, or vice versa. Since the limit of
the series is achieved through a monotonically increasing or decreasing series,
it is clear that such a mistake would make a correct solution impossible.
Our understanding of the errors found in various optimizing compilers indicates
that they have not taken full cognizance of this hazard. Hence, due to a lack
of pessimism on the part of other investigators, it is possible that a number
of computations will be assumed to be available within a certain block of code
when, in fact, they are not.

We were made aware of these hazards through a random simulation of the analysis
process using random program data. We have successfully implemented a solution
of a series of redundancy equations fcr arbitrary graphs, splitting nodes where
necessary. One optimization we consider desirable involves identifying a
computation that necessarily occurs in every sucessor block of code exiting a
given node, d, but that does not occur within d itself. Under appropriate
conditions, introducing that computation within d would render it redundant
with each of the successor blocks in the sense that its computation in d
would lead to its being available on entrance to each successor block. The
optimization does, of course, require a simple store of the computation with
a special variable. If the computation occurs only once in each successor
block, no execution time is saved by the optimization, but there is a saving
in core allocation, making the program somewhat smaller than it would other-
wise be. This process is referred to as "hoisting an expression," and we
have rigorously described the configurations of code that permit it. We have
also investigated the possibilities of an analogouu process, called "sinking
an expression," in which computations are moved forward in code, rather than
backward; the theorems that describe these processes are listed in Chapter 9
of the textbook as Theorems 9.11 and 9.13.

System Development Corporation
15 October 1971 63 TM-3628/009/00

We have paid considerable attention to guaranteeing a program's correctness,
as well as its logical and computational integrity, as it undergoes optimization.
A program that has been Vrocessed by a nonoptimizing compiler and that runs
successfully should continue to operate correctly after it is processed by an
optimizing compiler. Hence, we have made a thorough study of the criteria
for identifying computations that should not be moved because moving them
might produce a divide exception or program interruption that does not occur
with the existing code. The result is a pessimistic optimizing compiler that
maintains safety. We have determined that certain types of optimization,
though they may result in loss of precision or the possibility of overflow
or underflow in dealing with multiple-precision and floating-point numbers,
have a high probability of being safe and correct. If a programmer is not
concerned with the possible loss of precision or does not expect certain
operations to produce the other exceptions, certain applications of the
destributive, commutative, and associative laws of algebra can be applied to
his program, causing it to run more rapidly.

Other guarantees we must honor for the programmer concern the formal specifi-
cation of the programming language itself. For example, since all subroutines
in a FORTRAN program must be capable of being independently compiled, it is
not possible to make a thorough analysis of the data flow involved on either
side of the invocation of a subroutine. Even though the entire subroutine
compile time, a portion of the program might be recompiled at a later time,

thereby seriously affecting certain of the optimizations that were performed.*

It is also necessary to consider the frequency with which any piece of code
is expected to be executed in the flow of the program. Those parts of the
program that are most frequently executed need to receive the most meticulous
optimization, while those parts that are rarely executed, or are executed

For example, if the computation a x b is performed immediately prior to a
call on a subroutine and is again performed immediately after returning from
the subroutine and either a or b is a global (common) variable, it is
possible that the function itself modifies either a or b, in which case the
second computation of a x b must be recomputed. If it is known that the
function will have absolutly no effect on a x b, then recomputing a x b
introduces an additional computation to the program that would not other-wise be needed. However, there is no guarantee that the function will not
be recompiled in the future in such a manner that a i b would be affected
by it. Therefore, a price is paid in the optimization that need not be
paid where the language specification is altered.

I|

System Development Corporation
15 October 1971 64 TM-3628/009/00

only once, need not be optimized at all, since the optimization may have an
insignificant effect on the program's overall execution time. Since it is
difficult to ascertain the execution frequency of code, we have assumed that
code in loops is executed more frequently than code that is not in loops, and
that nested loops are executed more frequently than the loops that contain
them. These assumptions can, obviously, fail--it is possible that code in
a loop may never be executed.

If a computation in a loop remains constant throughout the loop's execution,
it is desirable to provide a variable, outside the loop, that contains the
computation. As a result, the computation is available to the loop without
further need for recomputation. If this is done, however, and if the non-
executed code remains in the loop, we have lengthened execution time rather
than shortened it, since the computation that would not otherwise be performed
must now be performed prior to entry into the loop.

We have studied methods for determining the relative execution frequencies of
blocks of code within loops using Markov processes,* and we believe that with
this method it may in the future be possible, provided that we have necessary
information from a programmer and data from previous executions of his
program, to perform a total program optimization.

The Optimizing FORTRAN IV Compiler

The first pass of the optimizing compiler scans syntax and allocates storage.
Its output can be fed either to the second pass for optimization or to the
third pass for code generation without optimization. The FORTRAN language
allows storage allocation and overlay through the use of both labeled and

unlabeled COMON; the GENERATOR language proved to be well suited for
progranaming chis type of storage allocation in the first pass. The routine
that does this was coded in only 3/4 of a page, while the corresponding code
in the CDC FORTRAN, which was itself coded in FORTRAN, took more than six
pages.

The second pass is the most important for our research because it does the
optimization. It begins by breaking the code into blocks of consecutive instruc-
tions so that control comes in through the top of the block, passes straight
through, and exits from the bottom. These blocks become nodes of a graph

We found that the stochastic analysis of execution frequency is highly
dependent on bianching probabilities, and that a minor change in just
one of the transition probabilities can result in an enormous distortion
of certain execution frequencies.

System Development Corporation
15 October 1971 65 TM-3628/009/00

that represents the flow of control of the FORTRAN program; this is done for
the program and for each subroutine. The graph in Figure 4-1 represents the
flow of control of a program. Each node of the graph is a block of code.
Control enters tr-e top of the block, goes straight through, and exits from
the bottom. The graph may be thought of as a function from the nodes to their
successors. It may be represented as a list of pairs; the first term of
each pair is a node and the second term is a list of its successors.

Related nodes of the graph are grouped into what is called an interval. The
intervals then become the nodes of a derived graph. The derived graph can
be further reduced by grouping its nodes into intervals, forming another
derived graph. The process continues until a graph is derived that has only
one node. During this process, it is sometimes necessary to split nodes--i.e.,
to reproduce a node in more than one place in the graph without altering the
flow of control. In doing this, the second pass follows the lattice-algebra
algorithm that was formulated in the theoretical portion of this project.

A data-flow analysis is performed on these layers of derived graphs. Some
optimizations, such as the elimination of common subexpressions, can then be
performed on the basic blocks of the program, making use only of this data-
flow information. Other optimizations, such as removing invariant subexpressions
from loops and reduction in strength of operators in loops (i.e., substituting
a less time-consuming computation, such as addition, for a more time-consuming
one, such as multiplication), require going through the layers of derived
graphs while the optimization is taking place. Finally, register allocation
is optimized.

The third pass generates code. Although it is basically similar to other
compilers that have been written in the GENERATOR language, it has capabilities
not found in them. One is a new register-allocation scheme, written entirely
in the GENERATOR language, that makes it unnecessary to transfer intermediate
results from machine registers to temporary core storage while an expression
is being evaluated.

Extensions of the GENERATOR Language for Global Program Optimization

Floating-point arithmetic and several types of arrays have been added to the
GENERATOR language to facilitate global optimization. The floating-point
arithmetic is used to evaluate constant expressions at compile time. One-
dimensional Boolean arrays are used in the data-flow analysis to hold such
information as which expressions are available on exit from a block or which
are busy on entrance to a block. A two-dimensional integer array is used as
a distance matrix in computing the prime cycles of a graph. (This is part
of the node-splitting algorithm mentioned earlier.)

if

System Development Corporation
15 October 1971 66 TM-3628/009/00

F G

H I

II

K T

tt

I.
N 0

Figure 4-1. Program Control Flow Graph

System Development Corporation
15 October 1971 67 TM-3628/009/00

We will illustrate the use of the GENERATOR language to encode optimization
algorithms by describing a few functions that involve the flow-of-control graph.
The first two, LOOK and PREDECESSORS, are elementary operations on the graph.
They are followed by definitions of the functions INTERVAL, PARTITION, and
CONDENSE, which group nodes together to form a simpler graph. Each time this
collapsing operation is performed in an optimizing compiler, the various
optimization functions have been applied over the intervals.

The function LOOK is used to find the value of any function represented in
list structure. In GENERATOR language, it is defined as:

LOOK($[A,B], X) -> .FIRST(B .SUCH A-X)

The function LOOK has two parameters: a list of pairs [A, B] and an argument
X. It searches the list until a pair is found whose first term, A, equals the
argument X, then returns the corresponding B. If the graph of Figure 4-1
is represented by a list of pairs in the variable GRAPH, then the
successors of (for example) the node F may be computed by LOOK(GRAPH, 'F'); the
value of this expression is the list ['H', 'I']. Because finding the value
of a function that has been enumerated as a list structure occurs often, ther&
is a special notation for this--GRAPH: [X]--which produces the same value as
LOOK(GRAPH, X).

Although most operations work in terms of the successors of a node, there are
times when predecessors are needed as well. This is more difficult because the
structure representing the graph has been organized to facilitate the finding
of successors. To find predecessors of the node in X, the following function
is used:

PREDECESSORS($[A, B1, X) -> $(A .SUCH XcB)

Because this funiction is seldom used, no special notation has been provided
for it.

A control-flow graph is partitioned into subgraphs called intervals. The first
node of an interval, called its "head," is the node to which control passes.
This greatly reduces the analysis required in the optimization process, since
the interior nodes of the interval may be reached only by first executing the
code in the head.

The following GENERATOR function is the algorithm for finding an interval,
given a graph and a node to be used as the head:

System Development Corporation
15 October 1971 68 TM-3628/009/00

INTERVAL(GRAPH, H) >$Z

.WHERE $Z :- [H]; X :- NIL;

,LOOP UNTIL X - $Z:

X := $Z;

$W : MAKESET([$-[GRAPH:[Z]]-]) $Z;

$Z :- [-[X]-, -[$(W .SUCH PREDECESSORS(GRAPH, W)<<X)]-] .END

GRAPH, again, is the graph, represented by a list of pairs,and H is the
interval head. The list of nodes that is returned by the function is called
$Z. The algorithm begins by initializing the list $Z to the list containing
only the head. The variable X is initialized to the empty list. Each time

the loop is executed, new nodes will be added to $Z. The variable X will
contain the previous value of $Z, and the loop will continue until no new

nodes are added--i.e., until X contains the same nodes as $X, X=s$Z (though
possibly in a different order). $W is set to the list of successors of nodes
in $Z that are not themselves in $Z. The function MAKESET removes duplicates
from a list. The " symbol used as an infix operator yields the difference of
two sets; only those members of $W whose predecessors are already in $Z can
be added to $Z. Subset is represented by the relational infix operator <

Now we are ready to partition the graph GRAPH.

PARTITION (GRAPH) - P

.WHERE P NIL;

$[A, $B] :-GRAPH; E $A; $Z := [E.I];

LOOP UNTIL $Z = NIL:

$X $INTERVAL(GRAPH, Z);

P :=[-[P]-, -[$x]-];
$Q : $ []]

E :=E - $Q;
$Z :=MAKESETQt$-tGRAPH:tQ]]-]) **E .END;

.IF E x NIL

.THEN .SPEAK 'UNREACHABLE BLOCKS -- '; PRINT(E) .END

The value P, which is returned, is a list of intervals. Each node of GRAPH
that can be reached will appear in exactly one of the intervals; nodes that
cannot be reached will not appear in the partition. Within the loop, E will

'1 _____

System Development Corporation
15 October 1971 69 TM-3628/009/00

represent the nodes of the graph that have not yet been included in the
partition P. $Z will contain a list of interval heads whose intervals have
not yet been included in P. Inside the loop, $X is set to all the intervals
whose heads are in $Z; these intervals are then added to the partition P. $Q
is set to the list of nodes that have just been added to P. In the next
statement these nodes are removed from E, which contains the list of all
nodes not yet included in P. In the last statement of the loop, a new set of
interval heads is created, consisting of only those successors of the nodes
just added to P that are not yet in P. (The infix operator ** represents
intersection of sets.) Any nodes remaining in E at the end of the loop can-
not be reached and are not included in the partition. The partition can then
be formed into the following graph:

The function that performs this can be expressed in GENERATOR language as:

/CONDENSE($$P, GRAPE) -> $[$P.1, $44GRAPH:[P]**H - [$P.1]]

. WHERE H := $($P.1)

The argument $$P is the partition and the original graph is called GRAPH.
The variable H is set to the interval heads, which are used for the nodes of
the derived graph. The expression $++GRAPH:[P] forms the union of the
successors of the node P.

The Optimization Text

The treatise entitled A Mathematical Theory of Global Program Analysis has
been completed and published as an SDC document series. The first three
chapters have been approved by ARPA for unlimited publication, and the
remaining chapters are in the process of being submitted for approval. Once
the necessary approvals have been received, a publisher will he sought. The
complete table of contents is as follows:

Iq
System Development Corporation

15 October 1971 70 TH-3628/009/00

Part I

Overview of Part I

Preliminary Notation

Weak Ordering Associated With a Graph

Dominance, Partitions and Intervals of Graphs

Derived Intervals, Reducible and Irreducible Graphs

Vertex Ordering Algorithms

Lattice Algebra and the Reduction of Irreducible Graphs

The Connectivity Matrix and Prime Cycles

Part II

Overview of Part II

Data Flow Analysis: Dependency and Redundancy Equations

Constant Subsumption, Common Subexpression Suppression and Code Motion

Loop Optimization: Invariant Expression Removal and Reduction in
Strength of Operators
Safety, Profitability and Execution Frequency Considerations

Subroutine Linkages

The Elimination of Dead Code and the Allocation of Storage and Registers

BIBLIOGRAPHY

APPENDICES

4.2.2 Summary

A treatise on the mathematical theory of global program optimization has been
completed. In the course of its completion, several new theoretical results
were obtained, the most important of which is a node-splitting algorithm based
on lattice algebra. Other results involved a general algorithm for hoisting,
an area of optimization that had been investigated only superficially by

' System Development Corporation
15 October 1971 71 TM-3628/009/00

other workers. New features, including floating-point arithmetic and Boolean
and integer arrays, were added to the GENERATOR language to facilitate
optimization. An experimental optimizing FORTRAN IV corpiler was written,
which proves that the GENERATOR language with its new features is a tool well
suited for the production of practical optimizing ccmpilers based on the
mathematical techniques of global program optimization as described in the
treatise.

System Development Corporation

15 October 1971 72 TK-3628/009/00

4.3 STAFF

Systems Research Staff

E. Book, G. D. Cole, ManLgere

Networks Project

Dr. R. E. Long, Principal investigator

Dr. A. Shoshani
A. S. Landsberg
Janet Troxel, NIC Station Agent (part time)

Graph-Meta Project

D. V. Schorre, Principal Investigator

M. Schaefer

4.4 DOCUMENTATION*

Long, R. E. ARPA Network Project--Status and Goals. SDC document
N-(L)-24451. February 1971.

S Schorre, D. V. GRAPH META. SDC document N-(L)-24448. February 1971.

Shoshani, A. Distributed Data Base Study. SDC document N-(L)-24452.
February 1971.

Shoshani, A. Three Approaches to Data Sharing on Computer Networks. SDC
document TM-4760.

,
Documents in the SDC "N" series are internal working papers and are not
available for public release.

System Development Corporation

15 October 1971 73 TH-3628/009/00

5. INTERACTIVE SYSTEMS

Interactive systems projects reported here include Problem Solving and Learning
by Man-Machine Teams, Time-Sharing, and LISP Extensions. Although they are
part of the larger task of Systems Research covered in Section 4, they are
reported separately here because they all deal with man-machine interfaces,
whereas Section 4 tasks focus on internal, manhine-machine problems. Further-
more, two of the projects--Time-Sharing and LISP Extensions--are "shadow
activities" in that they are mandatory supporting efforts to the more visible
research reported earlier.

Because the operation of Gaku, a man-machine problem-solving system, is
dependent upon the man-machine communication language, the major effort
during the contract period has been devoted to implementing the User Adaptive
Language (UAL) on the ADEPT time-sharing system, using LISP 1.5 as its source
language. More than 80 percent of UAL's features are now implemented. Updated
documentation of UAL is available (Hormann, et al., SDC document TM-4539/000/01).

Our ADEPT Time-Sharing System supports the bulk of our research program, and,
although no research effort is specifically expended for its expansion, I
development work is carried on to accommodate the research objectives of SDC's
other ARPA research projects, most notably Networks, CONVERSE, and Problem
Solving. Developments embodied in ADEPT Releases 8.8 and 8.9 include a near-
doubling of user-program memory to 85 pages (approximately 348,000 bytes) of
core, completion of the Object Sub-System control mechanism, development of a
combined hardware/software communications front end for the Programmable
Controller, and further efforts to improve system reliability.

System Development Corporation
15 October 1971 74 TM-3628/009/00

5.1 PROBLEM SOLVING AND LEARNING BY MAN-MACHINE TEAMS

The primary objectives of this project are to explore ways in which a man and
an appropriately programmed computer can augment each other's capabilities
and to develop techniques by which those augmented capabilities can be used
effectively in a variety of decision-making and problem-solving situations.
Teaming man with an "adaptive" machine that can be made to "cc-evolve" with
him through interaction is expected to be needed especially in those complex
problem situations for which complete analyses and detailed decision making
in advance are not feasible. Such situations arise mainly from the combinatorial
complexity and uncertainty of possible events and their impacts and from the
incompleteness and impreciseness of information in changing problem situations.

5.1.1 Progress

Since the development of Gaku is dependent upon man-machine interaction, the
major effort during the past six months was spent on implementing and documenting
the User Adaptive Language (UAL) on the ADEPT time-sharing system, using LISP
1.5 as its source language. UAL is used for two purposes: as a programming
language, it is used for initial Gaku implementation; in its extended form, it
is used for user-Gaku interaction in problem solving and for designer-Gaku
interaction in system modification.

More than 80 percent of UAL's features have now been Implemented. Major efforts
have been directed at (1) refining the current version of UAL, (2) documenting its
design and user-oriented features, (5) conducting detailed analyses of experimental
data gathered from the earlier Shimoku experiments (supported in part by ARPA
and in part by the Office of Naval Research) and interpreting the results, and
(4) continuing conceptual work in man-machine techniques in problem solving,
planning, and evaluative judgmental processes.

A report, published jointly by SDC and the UCLA School of Architecture and Urban
Planning, summarizes earlier work in artificial intelligence research,
machine-aided problem solving, and the Gaku design that has evolved, and
presents detailed accounts of the Shimoku experiments. Some highlights of
the experimental results are summarized below. Working exclusively with the
"."objective game records" kept by the computer of the subjects' actions, it
was possible to group their problem-solving procedures into three main types:
Incremental (INC), Master Planned (MP), and Adaptive Master Planned (AMP).
INC procedures resulted in final scores ranging from -64 to 110. All MP and
AMP scores were over 110, XP peaking at 185 and AMP at 241 points. Thus, task

Ii

rI

System Development Corporation

15 October 1971 75 TM-3628/009/00

performances describable as generated by different types of procedures had
detectable consequences in the effectiveness with which elements of the
experimental problem situation could be handled to attain the stated objective.

The INC procedure can be characterized as a short-range, piecemeal attack
on a problem with a collection of rules of thumb that suggests ways to
modify "he execution of the basic incremental approach. Attempts to
execute incremental procedures while taking note of many interrelated
elements and events seriously overloaded even highly intelligent subjects
and led to oversimplification and disorganization in weaker subjects. If
the rules of thumb were appropriate and their application well managed,
higher-range scores were attained by the INC group.

* In contrast, the group that used HP procedures prepared a totally pre-
planned goal for conditions of the environment in the form of a structure
diagram and proceeded to construct the desired conditions according to an
easily operationalized, nearly "algorithmic" prescription. Little
adaptation to the given conditions of the environment was attempted, and
the imposition of a master plan reduced the cognitive load on the subjects
considerably. HP subjects, however, while considering their games
"optimal," did not score as high as the AMP subjects.

The AMP subjects employed strong features of both INC and HP procedures
to prepare and use (a) rules of thumb to guide on-line decision-action
processing adaptively and (b) a preplanned, but flexible, structural
scheme. Adaptability and flexibility in both planning and in plan
execution seem to set the AMP procedures apart from the others. The
given conditions in the environment were not ignored, as they were by
most MP subjects; instead, many elements of the given environmental
conditions were capitalized on toward producing the desired goal con-
ditions.

A very general description of the experimental findings is that the study showed
(a) how subjects' different understanding of the "real nature" of the same
problem depended on their search for problem representations; (b) how the
representations selected imposed different information-processing demands; and(c) how these representations permitted different procedures (INC, NP, and AMP
types) for formulating solution steps--which, in turn, determined different
degrees of success.

S|

System Development Corporation
15 October 1971 76 TM-3628/009/00

5.1.2 Summary

To explore and develop effective techniques for man-machine cooperative problem
solving, efforts during the course of this research have been concentrated on
the following four interrelated groups of questions:

1. What machine capabilities, including adaptivity, are needed to
effectively couple human and machine functions? What can be
preprogrammed and what must be left to man-machine interaction?

2. What are some of the more apparent weaknesses and strengths of
human cognitive processes? What cognitive limits can be extended,
and what weaknesses can be foitified, by man-machine techniques?
How can man's special faculties, such as intuition, imagination,
inductive reasoning, and pattern recognition be promoted and put
to good use in man-machine partnerships?

3. What characteristics of problem situations are especially in need
of man-machine synergistic work, and from which can substantial
payoffs be expected?

4. What type of language is needed for man-machine communication
toward man-machine synergy--to enable the man to express evolving
concepts and problem-solving methods dynamically--i.e., to facil-
itate interaction even at the problem-conceptualization and
definition stage as well as at the exploratory and intuition-
guided stage of problem solving?

Previous models of Gaku, a man-machine system used as a vehicle for exploring
these questions, were geared mainly to autonomous evolvement of ?roblem-
solving capabilities. The new design of Gaku is especially geared to provide
assistance to team planning and problem-solving groups, with structured
coordination that permits higher-level planners to maintain broad and comprehen-
sive views of problem situations while exploiting the detailed knowledge and
specialized skills available in the lower echelons of problem-solving and
planning organizations. Three major efforts involved were (1) to gain a
deeper understanding of human intellectual behavior in complex problem-solving
situations, aiming toward extending and fortifying human capabilities; (2)
to develop a man-machine interactive language that will better enable man to
express evolving concepts and problem-solving methods dynamically; and (3) to
examine a variety of real-world problems that may be amenable to a man-machine
approach.

If

System Development Corporation
15 October 1971 77 TM-3628/009/00

5.2 TIME-SHARING

The ADEPT Time-Sharing System Executive functions as the operating system for
SDC's ARPA research projects and serves as an experimental basis for systems
research in time-sharing, networking, natural input/output, and natural
English data management. The time-sharing research activities center on a
combined hardware/software communications controller consisting of a Honeywell
DDP-516 computer and several specially developed interfaces. Connected to
the IBM 360/67, which supports the primary requirements of the ADEPT system,
the DDP-516 handles the high-overhead interactive device functions such as
display refresh, interrupt handling, and terminal I/O buffering.

During the past six months, the Time-Sharing project was concerned with the
hardware/software systems design and implementation related to the continued
support of the ADEPT user community and with providing several enhancements
to the system capabilities. These changes, motivated by new user requirements,
have required that a careful balance be maintained between system flexibility
and system reliability. Several such features that have contributed to this
balance are discussed in the following section.

5.2.1

Communications Multiplexor

The DDP-516 Programmable Controller handles all of the interactive terminals
of the ADEPT system, including display devices and teletypewriter terminals.
The latter devices were initially limited to a maximum of 15-character/second
operation, which allowed software bit-sampling of terminal input/output
instead of the more expensive hardware approach. However, accommodating
higher-speed teletypewriter devices with software resulted in excessively
high overhead in the Programmable Controller and limited its ability to handle
other tasks effectively. A cost-effective solution to this problem was found
through the use of a modified communications multiplexor that forms the
characters and transfers them directly to the core memory of the DDP-516 via
a synchronous single-line controller. This system, now in use with our ADEPT
system, provides the capability of supporting terminal rates of 10, 30, or 60
characters/second while, at the same time, freeing a significant amount of
processor and storage resources. The estimated processor overhead has been
reduced from more than 50% to approximately 25%, and the storage requirement
has been reduced by more than 2,000 bytes.

We originally intended to use some of the freed DDP-516 resources to implement
a memory-protect system to prevent user-oriented programs in the DDP-516 from

damaging the executive code. The apparent need for such a system arose from
the existence of several "non-supervisory" DDP-516 programs, such as those
utilized by the Graphic i/0 and Networks projects. However, the occurrence
of system failures due to such programs has been reduced to the point that

I.

System Development Corporation
15 October 1971 78 TM-3628/009/00

implementing the memory-protect system became unnecessary. This was brought
about by the development of appropriate change-control procedures and the
extended "shakedown" period during the development of the multiplexor.

ARPA Network Interface

Five ghost-job table entries were added to the system to support remote ARPA-
Network users wishing to operate under ADEPT. These jobs have been pre-armed
by our system-initialization routine to trap all object program and system
supervisor calls. These jobs 4ffer from an ADEPT interactive job in that they
may not read or write a terminal directly and are pre-armed for hardware
interrupts; the processing of these interrupts is under the control of HOSTOSS
rather than the ADEPT Executive.

An operator's subjob table entry was added to the system to support the MAILBOX
Protocol (see Network Working Group RFC #196). The MAILBOX Protocol will
permit the Network Information Center to deliver and receive messages and
documents from remote sites without having to know the details of path-name
conventions and file-system commands at each site. An ADEPT operator's sub-
job receives its commands from the operator through a shared-page facility
and can write the operator's terminal but cannot read it directly. An operator's
command, /LISTEN, was added to the system to cause the subjob to wake up, log in,
and issue a supervisor call for command filter activation; as a consequence,
the command string, /MAILBOX, is processed by the Extended Executive. This will
cause a LOAD and GO command for the LISP program named, MAILBOX, to be processed.
The appropriate protocol for the MAILBOX program will be incorporated into this
program during the next contract period.

Extended User Capability

The planning phase for extending the number of interactive ADEPT users from 10
to 15 has been completed and will be implemented early in the next contract
period. This task will be more difficult to implement than our ghost-job
facility because it will require four system modules, involving both the
DDP-516 and the 360/67, rather than one 360/67 module. Also, interactive
jobs require more table space than non-conversational jobs, and resident
routines may be shifted to upper core or to swap storage to meet this require-
ment. As a consequence, new system-tape fabrication will be required.

Extension to ADEPT F-Level Assembler

A library facility was added to the ADEPT interactive F-level assembler. This
assembler is used primarily by ADEPT system programmers during time-sharing
hours; the library facility will allow system support personnel to share commonly
used system macros during the assembly process. The macro library is created and
placed on auxiliary storage through an object program called LIBRARY, and the
OS-360 Macro library is available to ADEPT programmers via this facility.

Ii

System Development Corporation
15 October 1971 79 TM-3628/009/00

System Reliability

Efforts to improve the software and hardware reliability of the ADEPT-67 system
have continued during this period. Mean time between failures (MTBF) for the
last six months has varied between three and fifteen hours. The changes in
the MTBF can be attributed to new user support functions incorporated into
executive releases and to the random nature of hardware and software errors in
a dynamic research-support system such as ADEPT.

5.2.2 Sumnary

The ADEPT time-sharing system was significantly modified to support our changing
system environment and user needs. The first of these changes was the transfer
from a dedicated IBM 360/50H to a block of time on the SDC 360/671 to meet the
constraints of a smaller operational budget, while providing additional core
memory to support large-program users. The I-core (512K-byte) memory of the
360/67 allowed us to extend the allowable user-program space from 46 pages to
85 pages, an extension that was readily exploited by several users.

Other system changes were required by the Networks project. ADEPT release 8.9
incorporated these changes and has been in regular operational use since April
1971. Building this ARPA-Network interface involved redesigning our earlier
batch-monitor job (an operator's subjob) so that it would support an executive
Network Control Program and an object process that runs in the supervisory
state. Five pre-armed ghost jobs were added for remote Network users, and one
operator's subjob was added to support the MAILBOX protocol. Other changes
involved adding a supervisor-state call (SVC) and an executive, internal LOAD
and GO call to the system.

A third area of change involved replacing the software bit-sampling routines
of our DDP-516 Programmable Controller with a more optimal and cost-effective
combination of hardware and software. An inexpensive communications multiplexor
was utilized for hardware character reassembly, with subsequent software
processing remaining much as before. This change significantly reduced the
processor and memory requirements of the communications controller, particularly
in the case of handling the higher-speed terminals that are currently available.
The system is presently supporting ASCII terminals operating at speeds of 10,
30, and 60 characters/second.

Other, less significant, areas of change have included enhancements to system

performance, maintainability, and reliability in an effort to better support
ADEPT users.

System Development Corporation
15 October 1971 80 TM-3628/009/00

5.3 LISP EXTENSIONS

The SDC LISP 1.5 system is a proprietary SDC product written in 1968.* The
system operates under the TS/DKS time-sharing system executive on IBM 360
computers. SDC has made the LISP system available (on a no-cost basis) to
ARPA for many years. It is the basic product that was modified for operation
under the ADEPT system. The principal users of the LISP 1.5 system are the
ARPA-sponsored CONVERSE and Problem Solving and Learning by Man-Machine Teams
projects (Sections 3.1 and 5.1, respectively).

5.3.1 Progress

During the past six months, efforts were focused on three extensions and
refinements of the system as it was configured at the end of the first six
months of the contract year:

1. The program reference space was expanded by 3/4 page (768
reference words) to gain additional core space. Gaining
additional core in this manner proved to be simpler and less
costly than writing a Core Image Generator, as had originally
been planned.

2. An I/0 feature was added that allows LISP, via the Teletype
or any other terminal, to read and write any of the 256 EBCDIC
characters regardless of the character set of the device.

3. A provision was made to permit the evaluation of LISP symbolic
code (function EVAL) without using the LISP compiler, thus
permitting the removal of the compiler/assembler code (about
3506 words in core) by means of a mechanism, developed
earlier in the contract year, that allows portions of LISP's
binary program space to be unloaded onto disc, giving more
space in core for data.

With these extensions, LISP is now capable of supporting all of the present
and anticipated demands of its users, and no further extension work is
planned.

5.3.2 Summary

During the past year, significant improvements were made in the SDC LISP 1.5
system's capability of supporting the increasing demands that have been made
upon it by the SDC ARPA research projects that are its principal users. The
most significant improvement during the year was the incorporation into the

Barnett, J. A., and R. E. Long. The SDC LISP 1.5 System for IBM 360 Computers.
SDC document SP-3043. January 1968.

System Development Corporation
15 October 1971 81 TM-3628/009/00

system of a GROW feature that permits the system to expand from 46 to 85 pages,
thus quadrupling the amount of data space available to users (from 11.5 to 47
pages). Additional data space was made available through a mechanism that
allows portions of the system's program space to be swapped between core and
disc. Improvements were also made in the capabilities and user conventions
of the system's interaction, via the ADEPT Executive, with peripheral input/
output devices, and in the system's editing capabilities. We believe that the
system is now fully capable of supporting the increased requirements that will
be made upon it during the next contract year, when major advances are planned
in the CONVERSE, Voice I/0, and Networks project activities.

k

I t

System Development Corporation

15 October 1971 82 TH-3628/009/00

5.4 STAFF

Problem SolvinK and Learning by Man-Machine Teams Project

Aiko M. Hormann, Principal Investigator
A. Leal

Time-Sharing. Project*

R. R. Linde, Leader

B. D. Gold
D. M. Gunn
Patricia Kribs
R. H. Larson
A. Tachekaloff

LISP Extensions Project*

J. F. Burger, Leader

J. A. Barnett
A. Leal
Dr. R. E. Long

5.5 DOCUMENTATION**

Hormann, Aiko M. "A Man-Machine Synergistic Approach to Planning and Creative
Problem Solving: Part I." International Journal of Man-Machine Studies,
Vol. 3, No. 2 (1971).

Hormann, Aiko M. Machine-Aided Value Judgements Using Fuzzy-Set Techniques.
SDC document SP-3590. March 1971.

Hormann, Aiko M. "A Man-Machine Synergistic Approach to Planning and Creative
Problem Solving: Part I," International Journal of Man-Machine Studies,
Vol. 3, No. 2 (1971).

Hormann, Aiko M. "A Man-Machine Synergistic Approach to Planning and Creative
Problem Solving: Part II," International Journal of Man-Machine Studies,
Vol. 3, No. 3 (1971).

Hormann, Aiko M., A. Lead and D. Crandell. User Adaptive Language (UAL):
A Step Toward Man-Machine Synergism. SDC document TM-4539/000/01.

The nature of this task is such that it does not require full-time activity,
but the part-time services of a nunber of people. Only the principals are

noted here.

Documents in the SDC "N" series are internal working papers and are not
available for public release.

System Development Corpcration
83 TM-3628/009/00

(Last Page)

Hormann, Aiko K., 5. Kaufman-Diamond and C. Martin Cinto. Problem Solving
and Learning by Man-Machine Teams (Final Technical Summary Report to The
Office of Naval Research). SDC document TM-4771.

Landis, D. ADEPT Performance Statistics--Calculation, Interpretation. and
History. SDC document N-24469. April 1971.

Larson, R. UTIL User's Guide. SDC document N-24276/302. July 1971.

Linde, Richard R. ADEPT Extensions Schedule. SDC document N-(L)-24453.
February 1971.

Linde, Richard R. Program Specifications for the I Core Version of ADEPT.
SDC document N-(L)-24461. March 1971.

Peng, Te-Fu. The Correction of the Attention Bit Problem in the 516/360
Coupler. SDC document N-(L)-24465. March 1971.

A,

