TM-555.-002,01

The JOVIAL Manual: Part 2, Revision 1

The JOVIAL Grammar and Lexicon

9 June 1961

™-555/002/01

TEGHNIGAL
MEMORANDUM

(TM Series)

e

THE JOVIAL MANUAL: SYSTEM
Part 2, Revision 1 DEVELOPMENT
CORPORATION

THE
JOVIAL GRAMMAR AND LEXICON 2500 COLORADO AVE.

SANTA MONICA
C. J. Shaw

CALIFORNIA
9 June 1961

Permission to quote from this document or to reproduce it, wholly or In part, should
be obtained in advance from the System Development Corporation.

A 1159-Rev 5/60

9 June 1961 1 ™=555/002/01
(page 2 blank)

Preface

Part 2, The JOVIAL Grammar and Lexicon, is a complete, concise,
and rigorously formal description of JOVIAL, an SDC-designed, pro-
cedure-oriented, programming languege. It is intended mainly as a
reference for programmers already familiar with the langusge.

The Grammar describes the syntax or appearance of JOVIAL,
while the Lexicon describes the semantics or meaning of JOVIAL.

The Lexicon, which is interleaved with the Grammar, asttempts to
ascribe a precise meaning to every 'grammatical' JOVIAL program by
describing the computing rule denoted by the program. 1In this it
is not entirely successful, for the interpretation of some few
JOVIAL expressions (especially in the input-output area) neces-
sarily varies from computer to computer so that these expressions
mist remain undefined. Machine independent programming can be
achleved, however, by avoiding undefined constructions.

Any grammatical construction not explicitly defined in the
Lexicon, as well as every ungrammatical construction, is to be
considered undefined, which merely means that its effect on the
operation of a program containing it is computer dependent. All un=-
grammatical constructions and many undefined constructions are misge
taken with regard to the intent of the programmer, and may even be
illegal -~ flagged as mistakes by the compiler.

9 June 1961 3

Table of Contents

Part 1. COMPUTERS, PROGRAMMING LANGUAGES AND JOVIAL

Part 2. THE JOVIAL GRAMMAR AND LEXICON

Prefaceecesssssssccccocccscccccoccsssccacennsnencs
Table of ContentBecesssscescccccscassssssssnsnsess
The Syntax Metalanguﬂgeoaooooooooo-ooooooooooooco
Notationesessessssseaseroreonosscscescsscesssnsane
Generalececcssscscsssvrssccssessssssssosscacesonssse
THE ALPHABET ¢ eosa00000000csccocccscscsccnssccssss
Lettercisscessssceessceeccoccesscrcoccccosscacons
Numerelecscesocoscosesccscccoscosssencassosncse
MarKeeeosooseocessesccscsccsascncssscesssssosese

sign....0....00...00........0.0.‘..0...0..0.'.

mEVWABUIARYOOOQl.QOQ.O.CQ....000000000000..00.
DmIMTERSQOu.o.O0000.'0...0...00..0.0.!....0.
Arithmetic OperatOresescseccseccesccccccscsssce
Reletional Operatoresccscsccscecscssscscsnes
Logical Operatorsccessccccscccccsscncsccnce
Sewentiu @erator......’.................
File Opera.tor..............'................
Functional Modifierccececececccscccssacssss
SeparatOrecscssescasessssscsscscccccsccsccnes
Bracket..........'.................‘...'...
Declarator....‘.".."...'........'........
AbbreViatiQnooooooooonoooo-o.o_oouoo_oooooooo
IDENTIFIERSQ........ooooooooooiooocqonoosooooa
La‘bel.‘...........‘....‘...‘.........’.....
Ttem Nameeeeseeoesossecsesossccsscsssoscsocnss
Floatim Item Nme......................
Fixed ITtem Nam@eeeosssosococsoscsscsccos

Dual Item NamEesseeososcessaccscsvencacse
Literal Item Namesescoooooccscccssosecses
Sta‘tus ItemNmo‘o.00000000.000..00..0.
molean ItemNme.................Q.....
Table Nm'........‘.......‘..‘......"....
File Nme.....‘..‘.........................
Statement Nameessesosssscoscssoscssocsocssnnse
SWitch Nm...............‘................
Procedure Nme.........‘.....'.......'.....
coNSmNTS...............'..........‘..........

Constantesesecosescssscocsssccescsrscsscssncs

1

3
T

%’&&&
BUBS
FWNK

A SRS R SR o8
SSeSsE

E

S §
2 BET
o\ =W

pL7

TM-555/002/01

Page Form Symbol

0

label
itemname
fname

aname

dname

lname

sname

bname
tablename
filename
statementname
switchname
procedurename

constant

9 June 1961 L

Nllmber....'....Q..'..'.....'.‘.....'...Ql.. lh
Integer CONstant.cesseecsssssasascsssasssas 1b
Floating ConstaNtesesssseseessoocssssassses Ll
Fixed Constant.ceceesscescscecccecssccccnnsne lu
Octal Constanticeccsscesccscoscsccccesccccne 15
Dual Constantesecsssessscccsesscccssasssses 1D
Literal- Constant.................‘......... 16
Boolean Constontececsesscosscecsesscsccsanss 1T
Sttt USeeecosecscacscessssnccssscossoscsscsases 17
CLAUSES: 4 estessessssssscnscoosesssnsassoesssasss 18
CMNT.......'................'..'.'......... 18
EXPRESSIONS. e soseesssssscsssosacassssssssssoss 18
variable‘....'.."..‘.........'...........' 18
Arithmetic Variableeeceessscecosccecscccsee 19
Literal Variableecescecacscasososcsescccnes 22
Status Variableeesessesscescccccccesssncne 23
BoolEanVariable........'........‘...... 23
ENtry Variable...ecececscscscscscscsasss 24
Fomjj—a....."......'.........‘..'.....‘... 25
FUNctioNeeceececcssonscocsscsscscocscocssccree 25
Arithmetic FormilBeccecescosssccescscccses 26
Ind-ex.'...‘....'...............‘........ 28
Literal FOrmilB.csscesccsscsccsccccocaces 29
Status FormilBecsescsssssscbocsecccecncnsce 30
Boolean FOrmMulBecessssssccscccsoscccance 30
Erltry Fomlla...'......“..........O.'.. 33
Sequentiﬁ&‘l. FOormilBecessesssesssaccscccccnce 3’4
mCES...................'..‘..'.....‘........ 35
SmmNTs..............‘.....‘..‘..‘......... 35
Named Statementeeccccccececcesssccsccccseccns 35
Compound Statementeecessceccseccscececsscces 36
Assignment Statementescescesesceosceccsscee 36
E}(Cha.nge Statementcececececocescccecssccccsese 38
GOTO Statementeececcecccscessosvescescsscssccee 39
IF Statementeececscesecssscccccosceccsccccee ho
FOR Statementececsssccesccosccsceccsccssncee h‘o
TEST Statementeeeccccescsssssncesccsscsscese L'J‘I'
CILOSE StatemenNteecescecececescccccsscccscsccce ll's
RETURN Statementecessccscescsesscsceccccnce l|'6
STOP Statement.eecesecesccssssescscsscsssse 4O
Alternative Statement.cesssscesccssessosces 47
Procedure Statementeecscsecocccecvcsccececens ,‘]’8
DIRECT Statementeesccccscesccoccccccscscecece l"9

™-555/002/01

#29
3
G
$32

#33
g3k

SRR eS
RS

33ETREE

icon
fcon
acon
ocon
dcon
lcon
bcon
status

variable
avar
lvar
svar
bvar
entvar
formila
function
aform
index
1form
sform
bform
entform
seqform

statement

9 June 1961

5
(page 6 blank)

Input-o‘ltput md FileSooooooooooocoooooo-oo

wm}T Statement..‘.............'.......
INPUT Statement-oooo.aooconcoo.o-ooooooo

Pmms.......l.....0.......Q...........l..‘..

Item DeBcription........u.................

Floa.ting Item Description...............
Fixed Item Description.-....u......o...
Dual Item Descriptionooooooooooc.ooonaoo
Literal Item Descrip‘bion.........u.....
Status Item Description.................
Boolean Item Description..onocooooooooco

Parameter setooonoooooooooooooooococooooooo
DECLARATIONS.......................-..o.......
ITEM Declaration...........................
Parameter ITEM Declarationicecscccesesscosce
MODE Decla.ra.tion...........................
OVERLAY Declarationesssscecsscsccsccssscose
TABLE Declara‘bion..........................
Defined Entry Structure TABIE«.cceecscscasce
Like TABLE Declarationeececscsscescsssscnce
ARRAY Declaration..........................
SWI'ICH Declaration..'..‘..................’
DEFINE Declaration...................‘.....
FmDeclwation.".'.....................‘
Procedure DeClarationon.ooooooo.oooo-oooo-o

PRmRAM...l.....'................Q...............

Part 30
Part ho

THE JOVIAL PRIMER
SUFPLEMENT TO THE JOVIAL MANUAL

50
51
52
55
55
55
56
56
57
57
58
58
59
60
60
61
61
62
64
65
66
67
69

69

TO
Th

™-555/002/01

description

parameter
declaration

program

9 June 1961 7 ™=-555/002/01

Part 2.
THE JOVIAL GRAMMAR AND LEXICON

A Complete, Concise, & Formal
Techniceal Description

Languages have three different aspects, representing successive
levels of abstraction: pragmatics, the langusge's use=~as described
in a Primer; semantics, the language's meaning--as described in a
Lexicon; and syntex, the language's appearance--as described in a
Grammar. Languages must be described in language, and it is cone
venient to call the language being described the 'object-language',
and the describing language, the 'metalanguage'. 1In the present
case, the object-language is, of course, JOVIAL. The metalanguage
of the JOVIAL Primer is English and JOVIAL, the metalanguage of the
JOVIAL Lexicon is English, and the metalanguasge of the JOVIAL Grammar
is a specially developed syntex metalanguage.

The Syntax Metalanguage

A language consists of certain signs, and certain strings of
these signs. An object-language sign-string may be exhibited, by
writing its signs in linear order, or it may be denoted, by a meta-
language sign-string. In describing the syntax metalanguage, both
exhibited and denoted object-language sign-strings will be called
symbols and may be distinguished by the fact that the object-languege
signs and the metalanguage signs do not intersect. A symbol, or a
sequence of symbols delimited by the metalinguistic connectors ":"

n,n
’

or , is a form, and the following grammar is just a set of rules

for substituting forms for metalanguage symbols.

Notation

: is the catenation operator, denoting the juxtaposition of
symbols. Thus, the form "A:B", which may be read "A con-
catenated with B", denotes "AB".

9 June 1961 8 ™-555/002/01

)]

684

§

is the selection operator, denoting a choice of symbols.

Thus, the form "A;B", which may be read "A or B", denotes
either "A" or "B". Selection has precedence over catenation,
so that the form "A:B;C:D", which may be read "A, concatenated
with B or C, concatenated with D", denotes either "ABD" or
“"ACD".

is a symbol denoting a single form, &. The ? and ? serve
only as metalanguage brackets.

is a symbol denoting a string of forms & of arbitrary length

one or greater, i.e., "?E?;?E:B?;?E:E:E?;?E:E:E:E?; etc."”

(A superscript number may be used to denote a string of forms
of specific length, e.g., “ghg " signifies "B:B:5:5:5:5:8".)

is the null symbol, used mainly to construct optional forms.
Thus, the form “A:g:B" denotes "AB", and "A:g;B" denotes
either "A" or "AB".

may be read "can be rewritten as".

To create a semi-pictorial grammar and thus facilitate legibility,

the following palr of definitions are introduced, augmenting the meta-

language:

1.
2.

The symbol # will denote a single blank character.
The blank will be used as a special catenator, denoting the

linkage of a symbol pair by a string of blanks of arbitrary length zero
or greater, or when used to concatenate & numeral-letter pair, of arbi-

trary length one or greater. Thus "A B", which may be read "A followed
by B", denotes "A:SE&:B", and "A 8" denotes ﬂA:gig:S",while "A $" denotes
"A=85$*3=$"-

A number subscripting a symbol has no syntactic significance, but
serves only to distinguish identical symbols with different meanings

in the semantic description. The remaining notational conventions

should be self-explanatory.

9 June 1961 9 ™-555/002/01

To 1llustrate the syntax metalanguage, consider the language|§,
which consists of the three signs $,), and (, and the following
sign-strings:

0, (0, (0N, (veeQ)een),
$ ($), (($)), ((($3), (eee($)ee0),
$$, ($8), (($%)), ((($))), (ceu($9)..0),
$+3, (388), (($38)), (C(389))), (...($88)...),
$ooedy (3008), ((30008)), ((($04.8))), (ven($eeed)ens).

The syntax of L may be completely described by the grammatical rule:
L I HOR(E)

vhich may be read "L can be rewritten as nothing, or $-string, or (

concatenated with L concatenated with)",

Note: A language whose syntax can be entirely described with the
above metalanguasge is a 'formal' language; a formal language
.whose syntax can be entirely described when the metalinguistic
connector denotes only the rewriting of a single metalanguage
symbol is & 'phrase~structure’ language; a phrase-structure
language whose syntax can be entirely described in terms of
exhibited sign-strings is a 'finite state'’ language. Both

L and JOVIAL are phrase-structure languages, but not finite
state languages.

General

JOVIAL is an ALGOL-type, procedure~oriented programming language
designed to permit simple and concise description of certain basic
information brocessing operations. These operations are:

1. Logical decision;

2. Specification of values for variable items of information;

3. Calculation necessary for both 1 and 2;

b, Input and Output of information.

A JOVIAL progrem* or procedure is a sequence of statements, which

*Terms for which a precise definition will be given later are underw
lined at their first occurrence.

9 June 1961 10 ™-555/002/01

may be supported by declarations. Each statement describes a rule
of computation and either explicitly or implicitly specifies a
successor statement, which is the next statement listed unless
otherwise stated. The computing rule given by a program is thus
the sequence of computations described by the statements, taken in
the order supplied by successor relations. Declarations, which are
not themselves computing rules, serve to describe the environment
in wvhich the computing rules are to operate by defining certain
properties of the ldentifiers appearing in the statements.

THE ALPHABET

Letter.

Form $¢1. e % A;B;C;D;E;F;G;H;13;3;K3L;M5N;0;P;Q5R; 8, T; U VW XY 52

Numeral.

Form @g2. # & 9;1;2;3;4;5;6;7;8;9

Mark.

Form ¢¢3. & b B3)i(GHs=s%3/50555"=58

Sign.
Form @Ppl. sign & @;#;:&

At the most basic level, a JOVIAL progrem consists of a single,
1inear string of signs -- segmented for convenience 6nly into lines
written on a coding sheet or punched in a card. 8igns do not have
individual meaning, but are used for forming the symbols of JOVIAL,
that is, delimiters, identifiers, and constants.

9 June 1961 11 ™-555/002/01

THE VOCABULARY

Signs are grouped into symbols, the words of JOVIAL. Symbols
contain no embedded blanks, since they may be separated from each
other by an arbitrary number of blanks. However, such separation
18 necessary only when both the adjacent signs being separated are
numerals or letters. Where necessary, symbols may extend past the
end of a line.

DELIMITERS

Form @g5. Arithmetic Operator § +;-;%;/;%%

Form §p6. Relational Operator § EQ;CR;GQ;LQ;LS;NQ

Form $@7. Logical Operator § AND;OR;NOT

Form 8. Sequential Operator § GOTO;IF;IFEITH;ORIF;FOR;TEST;
CLOSE ; RETURN ; STOP

Form $f9. File Operator § INPUT;OUTPUT;OPEN;SHUT

Form §1¢. Functional Modifier § BIT;BYTE;CHAR;MANT;ODD;
ALL;POS; ENTRY; NENT; NWDSEN ; A

Form $11. Separator & .;,;=;==;';...;$;ASSIGN

Form $12. Bracket & (;);(/;/)($:;4);''; " ; BEGIN;END;START
TERM; DIRECT; JOVIAL

Form §13. Declarator § MODE;ITEM; TABLE; STRING;ARRAY;FILE;
SWITCH; PROC ; DEFINE ; OVERLAY

9 June 1961 12 ™-555/002/01

Form $1k. Abbreviation & A;B;D;E;F;H;L;M;N;0;P;R;8;T;UsV

Delimiters have a fixed meaning, which is usually obvious,
and is best described in the context of the meaning of their use
in later forms.

IDENTIFIERS

Label.

Form @15. label § @:gg;':@;#z Except delimiters

Examples

AW3W

U2

NUMBER * OF ' SIGNLFICANT ' CORRELATTIONS
ALPHA

Item Name.

Form $16. itemname § fname;aname;dname;lname;bname;sname

Floating Item Name.

Form $17. fname § label

Fixed (Arithmetic) Item Name.

Form $18. aname § label

Dual Item Name.

Form $19. dname § label

Literal Item Name.

Form @2¢. 1lname § lebel

9 June 1961 13

Status Item Name.

Form §21. sname § 1label

Boolean Item Name.

Form @#22. bname § label

Table Name.

Form #23. teblename § label

File Name.

Form @§2k. filename § label

Statement Name.

Form @25. statementname § label

Switch Name.

Form $26. switchname § label

Procedure Name.

Form $27. procedurename § label

Identifiers serve to label the various elements of the program's

™~555/002/01

environment and have no inherent meaning, only that supplied them by

their defining declarations (or statements, in the case of statement

names.) All identifiers except statement names must be defined by an
appropriate declaration, which may be from a compool or list of system

declarations. Every identifier in a JOVIAL program must be unique
within its scope, in that no other identifier denoting a different
element with an overlapping scope may have the same spelling.

9 June 1961 1k ™-555/002/01

CONSTANTS

Constants serve to denote specific values, represented by specific
machine language symbols.

Constant.

Form $28. constant § icon;fconjacon;ocon;dcon;lcon;bcon

Number.

Form $29. n § S#z

Examples

g
123456789

Integer Constant.
Form @$30. icon & g;+;-:n:g;?E:n7

Examples
27

-pp39
+331E9

Floating Constant.
Form @31. fcon & ?g;+;-:n:.:g;n?;eg}+;-:.:n?:g;?E:g;+;-:n7

Examples
27,

-$.939
+3 031E"’6

Fixed (Arithmetic) Constant.

Form @32. acon § fcon:A:g;+;-:n

9 June 1961 15 ™-555/002/01

Examples
27.A¢

- .#p39A11
+3.31E6A-8

Numbers, and integer, fldating, and fixed constants have a
conventional, decimel meaning. The number following the abbrevi-
ation E (for Exponent) in some integer, floating, and fixed con-
stants 1s a scale factor, expressed as an integral power of l¢
multiplier. Thus, =-3.31E-6 denotes the same floating-point numeric
value as -.0@¢PPP331, and 3.31E6 the same as 3314¢¢P. The number
following the abbreviation A in all fixed-point constants indicates
the precision requirement, the number of fractionsal bits (bits
After the binary point) in the machine language representation of
the fixed-point numeric value. A negative number following the A
merelykindicates that the value (of the least significant bit) is
precise to the corresponding positive power of two.

Octal Constant.

Form #33. ocon #§ 0(:£¢;1;2;3;h;5;6;7g:)
Octal constants have the obvious meaning of octal integers.

Examples
o(p127)
o(777385)
Dual Constant.
Form §34. decon § D(:?icon:,:icon?;?gcon:,:acon?;?ocon:,:ocon?:)

Dual constents denote vector or complex quantities, with the
constants comprising the component pairs having the weanings already
described. If the component pair of constants are fixed constants,
their precision requirements (indicated number of fractional bits)
must be the same.

9 June 1961 16 TM-555/002/01

Examples
p(27,-$39)
D(-1.384E3A~2,+6.A-2)
p(0($127),0(77713))
Literal Constant.
Form $35. lcon § n:H;T:(:Ssignln:)

Literal constants denote strings of JOVIAL signs--represented
in machine language by a six bit-per-sign code. The initial number
indicates the number of signs, written inside the parentheses, to
be represented. Two coding schemes are used: Hollerith, indicated
by the abbreviation H; and Transmission code, indicated by the
abbreviation T. Hollerith code has an undefined numeric represen=-
tation, while Transmission code has the numeric representation given
in the following chart.

STANDARD TRANSMISSION CODE

E‘ g AlB
R
g tjc|olE|FlEafE]L]Y
T

slxlolm|N]o]lP]Q]R
o
c sls|Ttlulviwl]x]|Y]|Z
T
A 41 -1+ = $
L

5*(’
D
I gleglol2|3]efs]|8]"
G
,}789. /

g 1 2 3 4 5 6 7

SECOND OCTAL DIGIT

9 June 1961 17 ™-555/002/01

Examples

LBH(THIS IS A (+-*/.,='$) HOLLERITH LITERAL CONSTANT)
45T(THIS IS A TRANSMISSION CODE LITERAL CONSTANT.)
19H(#123456789)

17(()

Boolean Constant.

Form @36. beon § ¢;1

Boolean constants denote the logical values true and false
of Boolean algebra. True is denoted by 1 and false is denoted
by #. They are distinguished from the integers one and zero by
context.

Status.

Form @$37. status § V(:@;label:)

A status is, in essence, a mnemonic label denoting one of
the values of a status item, or one of the states of a file.
Statuses are useful in those cases where mnemonic labels are more
intelligible than numeric constants in denoting an item's value.
The actual, numeric value denoted by a status is implicitly defined
in the declaration of either the item or the file associated by
context with the status. A status may not duplicate other statuses
belonging to the same status item (or file), but may duplicate
statuses belonging to other status items (or files) since statuses
are defined only in connection with a specific status item (or file).

Examples

v(GooDp)
V(THIS'IS'A'STATUS)
v(x)

9 June 1961 18 ™-555/002/01

CLAUSES

Symbols are grouped into variaebles and formulas, which are
expressions, and into phrases. Expressions and phrases are the
clauses of JOVIAL.

COMMENT.

Form $38. s*g § ":gsigng: e Where Ssigng excludes the
symbols '' and $

A comment serves only to allow remarks or clarifying text to
be included smong the symbols of a program and has no operational
significance or effect on the program. With the sole exception of
the DEFINE declaration (form 11k), a comment may appear wherever an
arbitrary length string of blanks would be grammatical, that 1is,
between symbols.

Example
"ITHIS IS A REMARK."

EXPRESSIONS

Expressions are sald to express values (in general, quantities
denotable by constants) which may vary during the execution of the

program.

Variable.

Form $39. variable § avar;lvar;svar;bvar;entvar

A veriable designates a single value, which may be used to
compute other values, and which may be altered by the execution
of an assignment statement, an exchange statement, a procedure
statement, or an INPUT statement.

9 June 1961 19 © mM-555/002/01

Arithmetic Variable.

An arithmetic variable designates a numerical value, of the
type denotable by integers, floating constants, fixed constants,
octal constants, or dual constants; that is, the class of rational
numbers or rational number pairs.

Form Pig. avar § fname;aname;dname g;?($ index $)9
Floating, fixed,and dual items are arithmetic variables. Dual

items are similar, fixed-point item pairs. The terms 'floating-

proint' and 'fixed-point' refer to two systems of representing

rational numbers in machine language. In floating-point, scaling

information is carried as part of the physical representation of

the value and is manipulated either by the circuitry of the computer

or by subroutines. In fixed-point, scaling information must be

implicit in the instruction logic of the machine-language program.
Where the item name is subscripted, the index, enclosed in

the subscription brackets ($ and $), indicates a single value from

the set of values belonging to a table item, a string item, or an

array item.

Examples

ALPHA

GROSS'PAY(E)

R273(¢N+2, PRCA(H)**3$)

Form ghl. avar § @

Subscripts are identified by single letters and are integer
valued arithmetic variables designating both positive and negative
integers. Truncetion of the fractionel portions of any non-integer
value assigned to a subscript is implied. Subscripts, so-called
because their most typical use 1s specifying index values within
subscriptions, are defined by FOR statements, and their scope of
definition includes Just the next statement listed, and the scope

9 Junc 1961 20 ™=-555/002/01

of definition of any subscript defined in that statement.

Examples
I
J

Form Pu2. avar § BIT ($ index $) (itemname g;?($ index $)Y)

The functional modifier BIT, with its associated subscription,
operating on any simple or subscripted item is an arithmetic variable
designating a positive, integral value. The machine language
representation of the value of any item is a string of bits, indexed
from left (most significant) to right (least significant). For an
n-bit item, the index values range from ¢ thru n-1. The 1 or 2=
component index subscripting the BIT modifier indicates a substring
of the bits representing the value of the item, taken as an unsigned
integer. The first value of the index indicates the initial bit of
the substring. For a 2-component -index, the second value indicates
the number of bits in the substring. For & l-component index,
where the second value is omitted, the length of the substring is
implicitly 1, so that a l-bit integral value is designated.

The value of a BIT variable is defined only if the index sub=
scripting the BIT modifier indicates a substring of bits within the
bit range of the item. Furthermore, although the value of a bit-
string of length zero is zero, the value of a bit-string of negative
length is undefined. The value of a BIT variable over a signed
arithmetic item is also undefined, being computer dependent because

of the varying schemes for representing negative numbers.

Examples

BIT(9) (ALPHA)

BIT($ALPHA/2, T%7$) (CAMMAG@($BETA($I,K$)+3$))
BIT($BIT($¢$) (DELTA), N'DELTA-BIT($p$) (DELTA)$) (DELTA)

9 June 1961 21 ™-555/002/01

Form @43, avar § CHAR;MANT (fname g;?($ index $)Y)

The machine language representation of the value of a floating~
point item consists of two essentially f%xed-point components: +the
mantissae, a signed fraction; and the characteristic, a signed integer
scaling factor or power of two multiplier for the mantissa. The
functional modifier CHAR or MANT, operating on a simple or suﬁscripted
floating-point item, is an arithmetic variable designating the signed
integral value of the characteristic in the case of CHAR, or the
signed fractional value of the mantissa in the case of MANT.

Examples

CHAR(ALPHA)

MANT(R2TU4(I,J,K))

CHAR(BETA($MANT(ALPHA)$))

Form @hk, avar § POS (filename)

A file, consisting of a sequence of records, is a self-indexing
storage device, in the sense that the record available for transfer
to or from the file depends on the current position of the file.

The File Position functional modifier POS, operating on a file name,
is an arithmetic variable designating a positive, integral value
which determines or is determined by the current position of the file.
For a file consisting of k records, this value ranges from ¢ thru k,
corresponding to the k+l positions of the file. File position is
defined only for active files.

Exemple
POS(PERSONNEL ' FILE)

Form gLs. avar § NENT (tablename;itemname)
The functional modifier NENT (gumber of ENTries), operating on
8 table name or a table item name, is an arithmetic variable desig-

nating a positive, integral value: the number of entries in the

9 June 1961 22 ™-555/002/01

jndicated table. Actuslly, NENT acts as a true variable only if
the indicated table is a variable length table, or if the indicated
table item is an item in e variable length table. In all other

defined cases, NENT must be considered an unsigned integer constant.

Example
NENT(DATA8)

Literal Variable.

A literal varieble designates as its value a string of JOVIAL
signs. The value of a literal variable is denotable by either a

literal constant or an octal constant.

Form PL6. lver 4 1lname g;?($ index $)Y
Literal items, both simple and subscripted, are literal
variables designating as values strings of JOVIAL signs.

Exsmples

WORD

EMPLOYEE 'NAME(E)

A273(N,M)

Form P47, lvar § BYTE ($ index $) (lname g;e($ index $)3)

The functionsl modifier BYTE, with its associated subscription,
operating on any simple or subscripted literal item, is a literal
veriable designating e substring of the item modified. The BYTE
modifier functions in a manner entirely analogous to the operation
of the BIT modifier. The machine language representation of a
literal item is & string of bytes -- each byte itself a bit-string of
length 6 representing a single sign. The bytes of an n~-byte literal
{tem are indexed from left to right from § thru n-l. The l=- or 2-
component index subscripting the BYTE modifier indicates a sub-
string of the bytes representing the value of the item modified.

9 June 1961 23 ™-555/002/01

The first value of the index indicates the initial byte of the
substring. For a 2-component index, the second value indicates
the number of bytes in the substring. For a l-component index,
vhere the second value is omitted, the length of thelsubstring is
implicitly 1, so that a l-byte literal value is designated.

The value of a BYTE varisble is defined only if the index
subscripting the BYTE modifier indicates a substring of bytes
within the byte range of the item. Furthermore, the value of a
byte-string of length zero is blanks, and the velue of a byte=
string of negative length is undefined.

Examples

BYTE($#$) (WORD)

BYTE($DELTA+K/2, 4$) (EMPLOYEE 'NAME($E-13))
BYTE(N,M) (A273($,M$))

Status Variable.

A status variable designates a 'symbolic' value, essentially
e mnemonic label. The value of a status variable is denotable by

a status.

Form @L8. svar § sname g;?($ index $)Y
Status items, both simple and subscripted, are status variables.

Exemples

WEATHER

DEPARTMENT(E)
A275($1+1, J, J-1$)

Boolean Varisble.

A Boolean variasble designates one of the logical values, true
or false, of Boolean algebra. The value of a Boolean variable can

9 June 1961 ol ™-555/002/01

be denoted by a Boolean constant: true by 1; and false by g.

Form P49. bvar § bname g;e($ index $)¥
Boolean items, both simple and subscripted, are Boolean
variables.

Example
BOOL
EXEMPT(E)

Form @#50. bvar & oD { @;Pfname;aname g;?($ index $)%9)

The functional modifier ODD, operating on a subscript or a float-
ing or fixed item, is a Boolean variable. ODD designates the value
true when the least significant bit of the modified subscript or item
represents a magnitude of one, and false when it represents a magnitude
of zero. ODD is true, therefore, when the magnitude of the modified
velue is odd, taken as an integer, and false when that magnitude is

evene.

Examples
ODD(K)
ODD(CHI(K))

Entry Variable.

A table is an ordered set of entries (indexed from $ thru n-1
for an n-entry table) and an entry is egain an ordered set-~-of
related items. An entry variable designates as its value a con-
glomeration of the values comprising an entry in a table. The
velue of an entry variable depends both on the structure of the
entry and on the values of the constituent items, and is denotable
by ¢ (meaning that all items in the entry have values represented
by zero) or is not denotable at all in JOVIAL.

9 June 1961 25 ™-555/002/01

Form @51. entvar § ENTRY (tablename;itemnsme ($ index $))

The functional modifier ENTRY, operating on a subscripted table
name or table item name, is an entry variable. The table name or
table item name serves to indicate the table, while the l-component
index of the subscription indicates the prarticular entry.

Example
ENTRY(BETA($(/DELTA-C**2/)$))

Formula.

Form @52. fornila § aform;lform;sform;bform

A formula specifies a single value, elther by simply designating
it, or by describing the process of computing it. A formula may
contain variables, and the value it specifies is, as will be described,
generally dependent on the values designated by those variables.

Function.

Form @53. function § procedurename (g;?formula;itemname;tablename;
statementname g5£ , formula;itemname;tablename;statementnameg?)
A function specifies the value arising from the application of
the algorithms defining the procedure to the calling paresmeters within
the parentheses -~ the labels and the values specified by the formulas.
To be more explicit, a function actually refers to an item, with the
seme name as the procedure itself, declared within the procedure.
The value specified by the function is thus the value designated by
this item following the execution of the procedure. The formula type
in which a function appears must therefore be compatible with its

synonymous item.

Examples
RANDOM()
SEQUEL(E)

PREDICATE(K~BETA($DELTA$)**.5A1, BYTE(L)(WORD), V(SOON), AA($BAKER$)
NQ 37.3 OR BOOL, AIRBASE'CENTRAL, SORT)

9 June 1961 26 ™-555/002/01

Arithmetic Formula.

An arithmetic formula specifies a numerical value, of the
type designated by arithmetic variables.

Form ¢5‘+. aform Q icon;fconjacon;ocon;dcon;avar; function

When the arithmetic formula consists of Jjust a single operand,
the value it specifies is obvious: that value denoted by the
constant, or designated by the variable, or specified by the
function.

Examples

-1.35TELAT

W

EMPLOYEE ' NUMBER(E)

BIT($@, N'BETA$) (BETA($1,ALPHA/W,W$))
SIN(OMEGA*T*¥2)

Form $55. aform § NWDSEN (tableneme;itemnsme)

The functional modifier NWDSEN (Number of WorDS per ENtry),
operating on a table name or & table item name, is an arithmetic
formula specifying a positive, integral velue equal to the number
of storage units, called words or registers, allocated per entry
of the indicated table.

Example
NWDSEN(ABLE ' TABLE)

Form @#56. aform & 0O+;- aformy; @(aform)¥;P(/ afarm NY;
Patorm +;-;%;/ ;%% aform)

An arithmetic formula containing one or more arithmetic
operators specifies the value arising fram the computation(s)
described by the formula, in the familiar sense as defined by
the notation of ordinary algebra. The binary arithmetic operators

9 June 1961 27 ™-555/002/01

+y, =, %, /, and ** have the conventional meanings addition, sub-
traction, multiplication, division, and exponentiation. (Because
of the limited range of the JOVIAL sign set, the symbols * for
multiplication--which for syntactic reasons must always be ex=
Plicitly denoted--and ** for exponentiation necessarily differ
from conventional notation.) The unary arithmetic operator =
denotes the operation of negation, and the unary operator +,
though redundant, is allowed. The parentheses perform their
usual grouping function, and the bracket pair (/ and /) denote
the absolute magnitude of the value specified by the arithmetic
formule they enclose. Division by zero is undefined, as is an’
exponentiation such as (-2)*%*.5 which would result in a complex
root being taken.

Scope. The scope of any operation in an arithmetic formula
may be indicated by the use of parentheses (or absolute magnitude
brackets.) In the absence of bracketing, negations are performed
first, then exponentiations, then multiplications and divisions,
and finally, additions and subtractions. Within these categories,
the sequence of operations is from left to right. These rules of
prrecedence allow any desired sequence of operations, provide an
unambiguous indication of the scope of each operation, and conform
to customary usage.

Mode. Arithmetic computations are performed in one of three
modes of arithmetic: floating-point; fixed-point; or dual fixed-
point. (Dual mode arithmetic is performed on duel, fixed-point
operands, the indicated operation being performed individually
on both the left and right components of the operands involved.)
Mode selection for a particular operation is based on the operands
involved and on the intended use of the result. In general:
operations involving only floating operands will be performed in
the floating-point mode; operations involving only fixed operands
will be performed in the fixed-point mode; and operations involving

9 June 1961 28 -555/002/01

dual operands will be performed in the dual mode. Operations
involving both floating and fixed operands will be performed in
a mode compatible with the intended use of the result, with an
automatic conversion between floating and fixed representation
implied. Operations involving a dual operand will be performed
in the dual mode and will yield a dual result, with any mono-
valued operands involved being 'twinned' in the process to yleld
a dual value.

Precision. Floating-point computations are carried out with
numbers of fixed though undefined significance, and varying pre-
cision. Fixed-point computations, on the other hand, involve
numbers of fixed precision, and varying significance. Since the
size of the result of a fixed-point arithmetic opersation may not
exceed the least multiple of the computer's word size that can
contain the most significant operand, results with greater possible
significance must be truncated to this limit; This truncation is
performed first on the least significant fraction bits and then,
if necessary, on the most significant integer bits. In determining
the maximum possible significance of a fixed-point result, integers

are regarded as arbitrarily precise.

Examples

ALPHA - SIN(OMEGA * T %% 3) *¥ 2

W %% (SIN(ZYMES(A)) + 2.93)

(-ALPHA * 9 + (/CHI($F+63)/) ** BIT($P,K$)(RB2T6($T,T-1,K$)))/2

Index.
Form §57. index § aform g;g s aformg

An index, composed of an ordercd 1ist of arithmetic formulas
separated by commas, is a vector whose components are positive (non-
negative) integral values. (Consequently, any fractional part of
the value specified by an arithmetic formula in an index list is

9 Junc 1961 29 ™=-555/002/01

truncated.) An index serves to indicate a particuler velue in

the designation of values which are elements of tables, of strings
or of multi-dimensional arrays. Such a value is designated by an
index subscripting an item name. Thus, a simple item is unsub-
scripted; a table item is subscripted by a l-component index
indicating the table entry in which the value occurs; & string
item is subscripted by a 2-component index, the first value
indicating the 'beed' or element within the string and the second
value indicating the table entry in which the value occurs; and

a multi-dimensional array item is subscripted by a correspondingly
multi-component index, the first value indicating the row, the
second velue indicating the column, the third value indicating

the plane, and so on.

An index, when subscripting a BIT or BYTE functional modifier,
also serves to indicate a substring of the bits or bytes represent-
ing the value of the item being modified, the first value indicating
the initial bit or byte, and the second value indicating the number
of bits or bytes == with an omitted second value implying a sub-
string or length 1.

An index is undefined if the number of components does not
correspond to the dimensionality of the item (or functional modifier)
it subscripts, or if any of its component values fall outside the
range bounded by the index limits (f and n-l for an n-element set)
of the corresponding dimension of the item (or functionsl modifier)
being subscripted.

Exemples

$ 1, 2

BETA(7)

K,J,I-3%DELTA, (/R273($I’2*J)K/2$)/)}¢

Literal Formula.

Form $58. lform § 1lconjocon;lvar;function

9 June 1961 30 ™-555/002/01

The value specified by a literal formula is that value denoted
by the literal or octal constant, or designated by the literal
variable, or specified by the literal function.

Examples
17H(THIS IS AN LFORM.)

11T(s0 IS THIS.)

o(7T7)

WORD($ALPHA$)

BYTE($K**.5A1%) (BETA($A,A-1/2+DELTA$))
TATL(BYTE(A, B) (SYMBOL), 0(174), 18)

Status Formula.

Form $59. sform & status;svar;function

The value specified by a status formula is that value denoted
by the status, or designated by the status variable, or specified
by the status function.

Examples
V(AMAZING)

WEATHER(K)
TYPE(WORD($COUNT$))

Boolean Formuila.

The value specified by a Boolean formula is one of the values
true (1) or false () of Boolean algebra.

Form P6g. bform § beon;bvar;function

When the Boolean formula consists of just a single Boolean
operand, the velue it specifies is that value, true or false,
denoted by the Boolean constant, or designated by the Boolean
varieble, or specified by the Boolean function.

9 June 1961 31 T-555/002/01

Examples

1

BOOL

INDICATOR($I,J,K**3$)

SIGN(ALPHA)

ATOM(CDR(FORM(K)))

EQUAL(BYTE($I+1$)(ALPHA), BYTE($GAMMAS)(ALPHA))

Form P61. bform § aform g EQ;GR;GQ;1Q;LS;NQ afomg

A relational operator denotes a relation between the values
specified by the pair of formulas immediately bracketing it. A
simple Boolean formule (i.e., with no logical operators) con=-
taining relational operators specifies the value true whenever
all the corresponding relations are satisfiled for the formulas
involved, otherwise, the value specified is false.

The relational operators denote primarily numeric relations:

EQ is EQual to

GR is GReater than

GQ is Greater than or eQual to
1Q is Less than or eQual to
LS is LesS than

NQ is Not eQual to

Between arithmetic values, the meaning of these relations is
fairly obvious: the test of a relation being implemented by an
arithmetic comparison. Between dual-valued arithmetic formulas,
the relation, to specify the value true, must hold for both com=
ponent pairs, and between a single-valued and & dual-valued formula,
it must hold between the single value and both halves of the dual
value. The precision of an arithmetic comparison, though undefined,
is at least as precise as the least precise of the two values in-

volved.

9 June 1961 32 ™-555/002/01

Examples

X EQ -2

(/BETA(1) - BETA(J)/) IQ I +J

ALPHA GR NENT(BETA) IQ R273(I,I)+49 LS ¢

Form @62. bform & 1form g EQ;GR;GQ;I1Q:LS:NQ lform&

Exemples

ALPHA EQ BETA(H)

ALPHA GR ST(GREEN)

BYTE($QRU($K$)$) (ALPHA) NQ O(T7T)

BYTE($@,3$) (ALPHA) NQ BYTE($J,3$)(BETA(H)) NQ 3H(...)

Form $63. bform § svar;filename EQ;GR;GQ;LQ;LS;NQ sform

Examples

WEATHER EQ V(FAIR'AND'WARMER)
BETA($2*DELTA, #$) GR V(A3L)
PERSONNEL'FILE NQ V(ACTIVE)

Form P6k. bform @ entvar EQ;NQ entform

Examples
ENTRY(BETA(K)) EQ ¢
ENTRY(DELTA(1)) NQ ENTRY(DELTA(p))

Between non~arithmetic values of the literal, status, or entry
type, the meaning of the relations denoted by the relational oper=
ators is based on the machine language representation of the values
involved. For purposes of comparison, the machine language symbols
representing such values are treated as unsigned integers.

Literal values are thus right justified during comparison,
though if they are of different length, the shorter literal value
is prefixed by blanks. Although the relation between two literal

9 June 1961 33 ™-555/002/01

values depends on their numeric encoding, it cen usually be inter=
preted in an alphabetic sense.
Status values are similarly compared on the basis of their
numeric encoding. (The status value specified by a file name is
one of the set of statuses associated, by the file declaration,
with the states of the file. In this context, a file name specifies
the current state of the file and may be thought of as a status
pseudo-varieble, automatically updated prior to the comparison.)
Entry values, finally, are represented by single, composite
symbols which are likewise compared as unsigned integers.

Form @65. bform § ONOT bform®;®(vform)T;Coform AND;OR bformf

The logical operators AND, OR, and NOT allow simple Boolean
formules to be combined into more complex Boolean formulas. Their
meaning is given in the following éable:

P 9q NOTgq pANDg pORGQg
g ¢ 1 ¢ ¢
g 1 ¢ g 1
1 ¢ @ 1
1 1 1 1

The scope of & logical operation in a Boolean formuls may be
indicated by the use of parentheses. In the absence of parentheses,
NOT's are performed first, then AND's and finally OR's. Within

these categories, the sequence of operations is from left to right.

Examples
NOT ALPHA+BETA(91) Ls ¢
BOOL AND NOT (ALPHA GR BETA($C**2$) OR ATOM(FORM(C)))

Entry Formula.

Form $66. entform & @;entvar

9 June 1961 3L ™-555/002/01

The velue specifled by an entry formula is an entry value
denoted by zero or designated by an entry variable.

Examples
p
ENTRY(DATAS($GAMMAS))
Sequential Formula.
Form P67. seqform § statementname;Pswitchname g;?($ index $)7Y

A sequential formula specifies a sequel in the sequence of
statement executions. The value specified by a sequential formula
is thus a statement name. This value may be directly denoted, or
it may be the value designated by & simple or subscripted switch
name. A switch name refers to the defining switch declaration which
lists the set of statement names that the switch may designate as
values. Since these statement names are themselves specified by
sequential formulas, the determination of a switch's value is
obviously a recursive process.

Two kinds of switches may be declared: index switches; and item
switches. The value of the l-component index subscripting an index
switch serves to indicate directly a switch value from the list in
the switch declaration. The index (if any) subscripting an item
switch serves to index the item whose name is part of the switch
declaration. The value so designated is used (in a manner described
in the switch declaration) to determine the value of the switch.

In some cases, & switch may have no value, since sequential
formulas need not be specified for all possible values of the index
or the item. A sequential formula with no value has no effect on

the statement execution sequence.

9 June 1961 35 ™-555/002/01

Examples

sg1

MATRIX 'MULTIPLICATION

SWIMAGE(B)

WHICH($DELTA+I, DELTA+J, DELTA+K$)

SENTENCES

With certain delimiters, expressions form statements and
rhrases form declarations. These are the sentences of JOVIAL,

STATEMENTS

Statements are the operational units of JOVIAL, and describe
closed and self-contained rules of computation. The statements of
& program or procedure are normally executed in the sequence listed.
However, this sequence of operations may be broken by GOTO statements,
which define their successor explicitly; shortened by IF statements,
which may cause certain statements to be iterated; and otherwise
altered by CLOSE statements, which close or remove certain statements
from the normal sequence of statement executions. Statements may
be named, and sequences of statements may be grouped into compound
statements. Simple (non-compound) statements are invarisbly termi-
nated by the termination separator $.

Named Statement.

Form @68. statement § statementname . statement

A statement may be identified by attaching a name to it. The
neme precedes the statement it identifies, which may be simple or
compound, or already named, and is separated from it by the statement
name separator . which is distinguished from the decimal point by
context .

9 June 1961 36 ™-555/002/01

Examples

RESET'CELL'COUNT. CELL'COUNTER = § $

HALT. QUIT. CEASE. DESIST. WHQA. STOP $

CLEAR. BEGIN FOR R = ALL(BETA) $ BETA(R) = § $ END

Compound Statement.

Form $69. statement ¢ BEGIN g declaration;statementz END

A string of statements, which may be interspersed with decla=-
rations, are combined into a single, compound statement by enclosing
them in the statement brackets BEGIN and END. The statements com=-
prising a compound statement may themselves be compound.

Examples
BEGIN IF CTR GR § $ BEGIN CTR = CTR-1 $ RETURN $ END END
BEGIN MP = (MV+MM(K))/2 $ MM(K) = MN $§ MN = MP $ END

Assignment Statement.

An assignment statement assigns the value specified by a
formula to be the value thereafter designated by a varigble. The
symbol = separating the left-hand variable from the right-hand
formula is the assignment separator and, denoting assignment, has
an imperative meaning not to be confused with that of the equals
sign of ordinary mathematics, which merely states a passive con=-
dition of equality

Form @79. statement § avar = aform $

An erithmetic assignment statement assigns an arithmetic
variable the value specified by an arithmetic formula. If the
value is specified to greater precision than required by the
variable, the excess precision is truncated unless, in the case

of an item, rounding (to the closest value with the required

9 June 1961 37 ™-555/002/01

precision) is specifically indicated in the item description. If
the value 1s specified to less precision than required by the
variable, the remaining bit positions will be filled in with bits
of zero magnitude. If the value specified has greater significance
than accepted by the variable, the value's most significant bits
may be lost during assignment -- a condition known as 'overflow'.
The value specified by a mono-valued formula will be 'twinned'
when assigned to a dual item and, where necessary, an automatic
conversion between floating-point and fixed-point representation
is implied.
The results of assigning a negative value to an unsigned
variable, and a dual value to a mono-valued variable, are undefined.

Examples

DELTA = -(BETA($X-1$)+1.65E4A-3) ** -5 $

EETA(D) = BETA(D)+1 $

BIT($I,K+2$)(DELTA) = (/MAXIMUM(OMEGA, 2@.) * GAMMA/) $

Form $71. statement § 1lvar = lform $
Examples
TAG = 6H() $

ALPHA(D) = ALPHA($D+13) $
BYTE($k/2,8$) (LINE ' IMAGE($I,DELTA-J$)) = O(TTTTTITITTITITTITT) $

Form @72. statement § svar = sform $
Examples

WEATHER(k) = v(GLIM) $

ARGUS($BETA($D$)$) = MoDUS $

Form $#73. statement § ©bvar = bform $

Examples
BOOL = NOT (DELTA+7.4 EQ (/BETA(K)*3./) OR BOOL) AND SIGN(GAMMA) $
INDIC($DELTA**2$) = 1 $

9 Junc 1961 38 ™-555/002/01

Form @7k. statecment § entvar = entform $
Examples ~
ENTRY(BETA(k)) = ¢ $

ENTRY(BETA(K)) = ENTRY(BETA(J)) $

Non-arithmetic assignment statements operate as if on unsigned
integers. This has the effect of right Justification on literal
values. A literal value assigned to a shorter variable may thus
lose its leading signs. A literal value assigned to a longer
variable, however, is prefixed by blanks.

Exchange Statement.

Form @75. statement § avar == avar $

Examples

ALPHA == B $

DELTA(I) == DELTA($I+1$) $

CHAR(GAMMA) == BIT($@,CHAR'SIZE$)(R273($4,B,C,D$)) $

Form @76. statement § 1lvar == lvar $

Exemples
WORD(Y) == WORD($¢$) $
BYTE(U) (FEW(V)) == BYTE(W)(GAMMA) $

Form $77. statement § svar == svar $

Examples

ARGUS($GAMMA$) == ARGUS($cAMMA-1$) $
MODE'A == MODE'B $

Form @78, statement § Dbvar == bvar $

9 June 1961 39 ™-555/002/01

Examples
BOOL == MODUS(I) $
SIGN(DELTA) == INDICATOR(I,J,K) $

Form §79. statement & entvar == entvar §

Examples
ENTRY(DART2($¢$)) == ENTRY(DART2(s)) $
ENTRY(BETA(K)) == ENTRY(DELTA(K)) $

An exchange statement exchanges the values designated by a
pair of compatible variasbles. An exchange operates as if the value
designated by each variable were assigned, concurrently, to the
other. The protocols of the assignment statement are thus doubly
applicable. The symbol == separating the pair of variables is
the exchange separator.

GOTO Statement.

Form $8¢. statement § GOTO seqform $

A GOTO statement may interrupt the ordinary, listed sequence
of statement executions, defining its successor explicitly by the
value specified by & sequential formula. This interruption will
not occur if the sequential formule has no value, as may be the
case with a switch, and the next statement executed will there~-
fore be the next listed. If the value of the sequential formula
is the name of a closed statement, the interruption may only be
temporary, since a closed statement, upon execution, will normally
return control to the next statement listed after the GOTO
statement that activated it. And finally, if the value of the se-
quential formula is an ordinary statement name, the interruption
of the statement execution sequence will be permanent, with the
next statement executed being the one bearing the specified

statement name.

9 Junc 1961 40 ™-555/002/01

Examples

GOTO sg1 $

GOTO SLEEP $

GOTO SWIMAGE($A-3+DELTA$) $

IF Statement.

Form @81. statement § IF bform $

An TF statement causes the evaluation of a Boolean formula.
If false, the execution of the next statement listed will be omitted.
Thus, the execution of any statement can be made to depend on the
truth of a Boolean formula by preceding the statement with an IF
statement. Put another way: an IF statement may be said to combine
with the next statement listed to form a statement pair with the
same operational effect as its latter part if the Boolean formula
specifies the value true, but with the effect of 'no operation'
otherwise.

Exemples

IF BOOL $

IF EQUAL(BYTE($U,12$)(WORD), 12H(ESOTROOROISM)) AND SIGN(DELTA) $
IF TEMPERATURE EQ V(HIGH'6@'S) $

IF DELTA*2/BETA($C-3$) 1@ (/GAMMA/) OR BETA(C) NQ 18.4 $

FOR Statement

The execution of a FOR statement defines a subscript (integer
valued variable identified by a single letter) whose scope of
definition includes just the FOR-statement string defining it, and
the simple or compound statement lmmediately following. A FOR-
statement string, which is a FOR statement and any FOR-statement
string immediately following 1it, causes the statement which it

precedes to be repeatedly executed, one or more times. Prior to

9 June 1961 b ™-555/002/01

each such execution, values are assigned to some or all of the
subscripts defined by the FOR-statement string. In general, the
process consists of the five following steps: '

A. Initialize: Assign initial value(s) to the subscript(s).

B. Execute: Execute the statement following.

C. Modify: Assign modified value(s) to the subscript(s).

D. Test: Test the value of the controlling subscript to
determine whether or not to omit the next step.

E. Iterate: Return to step B.

The list of arithmetic formulas following the assignment separator
in a FOR statement gives a rule for obtaining the sequence of

values which are to be assigned to the subscript. The first
arithmetic formula specifies the subscript's initial value (step A).
The second specifies the increment used to modify the subscript's
velue (step C), and implies iteration (step E). The third arithme-
tic farmula specifies a final, boundary value used to test the
subscript's value (step D). The last one or two arithmetic formulas,
and the steps corresponding, may be omitted.

It should be clear that the modify, test, and iterate steps

(Cc, D, and E) are all expressible in terms of more elementary
statement forms. In fact, a FOR-statement string functions merely
as an abbreviation for these statements. It is therefore important
to note that these steps imply a compound statement for their reali-
zation. This implied statement, automaticelly inserted, has all the
properties of an equivalent, explicit statement.

Two points concerning the scope of definition of a subscript

must be emphasized:) '

l. A FOR statement may not re-define a subscript already
defined.

2. A subscript is defined over a simple or compound statement
only if the statement previously executed was the FOR-
statement string defining the subscript. This obviously
excludes a GOTO statement entering a loop from outside
the loop.

9 June 1961 Lo ™-555/002/01

Form @82. statement & FOR @ = aform $

A l-factor, incomplete FOR statement, containing a single
arithmetic formula, serves only to define a subscript and assign
it a value. A FOR-statement string consisting of one or more
FOR statements of this type results in a one-pass loop; that is,
since no modification, test, or iteration is generated, the

statement following is executed only once.

Examples
FOR N = =27 $
FOR Z = BETA($N**2-1$)*5 $

Form $83. statement § FOR @ = aform , aform §

The pair of arithmetic formulas in a 2-factor, incomplete
FOR statement specify a theoretically infinite sequence of values
for assignment to the defined subscript. Each new value is
obtained by edding the value of the second arithmetic formula to
the current value of the subscript. A FOR-statement string con-
taining one or more 2-factor FOR statements (and no 3-factor FOR
statement) results in a loop with potentially an infinite number
of iterations. Since this is clearly intolerable in a correctly
functioning program, it is the programmer 's responsibility to
provide for the ultimate termination of the loop by transferring
the execution sequence to a statement outside the loop after a
finite number of iterations.

Examples
FOR Y
FOR H

g, 2 $
ALPHA, -6*BETA(Y) $

Form @8L. statement § FOR @ = aform , aform , aform $
A 3-factor, complete FOR statement specifies a finite seduence
of values for assignment to the defined subscript, each subsequent

9 June 1961 W3 ™~555/002/01

value being obtailned by adding the value specified by the middle
arithmetic formula to the current value of the subscript. The
subscript's freshly modified value 1s then tested to determine
whether to include it in the sequence of subscript values, or to
terminate the loop. The test compares the subscript's modified
value with a final, boundary value-=-the value specified by the
third arithmetic formuwla of the list. The nature of this com-
parison depends on the sign of the increment value specified by
the middle arithmetic formula. If the current value of this incre=-
ment is negative (less than zero), then the loop is terminated
when the subscript's modified value is less than the boundary
velue. If the current value of the increment is positive, then
the loop is terminated when the subscript's modified value is
greater than the boundary value.

A FOR-statement string containing a complete FOR statement
produces a loop with a finite number of iterations, equal to the
number of values assigned to the completely defined, controlling
subscript =~ excluding, of course, the value vhich terminates the
loop. A FOR-statement string may contain only one complete FOR
statement, which must precede any 2-factor FOR statements in the
string. The third arithmetic formula in any complete, 3-factor
FOR statement which follows any 2 or 3~factor FOR statements will
be ignored, thus converting it into a 2-factor FOR statement for
all practical purposes. Thls means that a FOR-statement string
can produce Jjust a single loop. Loops within loops must be con-
structed by embedding the inner loop in the compound statement
being iterated by the outer loop.

Exemples

FOR M = FIRST, NEXT(M), 8 $
FOR K = @, 1, NENT(BETA)-1 $
FORR =99, -1, § $

9 Junc 1961 il ™-555/002/01

Form $85. statement § FOR @ = ALL (tablename;itemname) $
In the utilization of complete FOR statements, by far the

most common type of loop processes an entire table, with the

number of iterations of the loop equal to the number of entries

in the table. Where the order of processing is unimportant, such

a loop may be elicited by a FOR-ALL statement which, in effect, 1is

an abbreviation of either:

FOR @ = @,1,NENT(tablename;itemname)-1 $ or
FOR @ = NENT(tablename;itemname)-l,-1,0 $.

Examples
FOR S = ALL (BETA)
FOR E = ALL (EMPLOYEE'NUMBER) $

TEST Statement.

Form $86. statement § TEST g;@ $

A TEST statement serves to terminate the current iteration
of a FOR statement loop by transferring the statement execution
sequence to one of the implicit subscript‘modifications at the
loop's end. It therefore is defined only when 1t occurs within
a compound statement being iterated by the effect of a FOR-
statement string. A TEST statement causes an interruption in the
execution sequence similar to that caused by a GOTO statement,
but a subscript modification, being only implied, can have no
statement name, and thus a GOTO is ineppliceble. If a subscript
appears in the TEST statement, sequence control is transferred
to the modification of that subscript, or if no subscript appears,
sequence control is transferred to the first subscript modification
of the set.

Subscript modificetions are supplied and therefore executed
in reverse of the order in which the subscripts were defined in
the FOR-stetement string, so that, for example, a TEST statement

9 June 1961 45 ™-555/002/01

containing the last subscript defined in a FOR-statement string
would have the same effect of modifying all the subscripts as
would a subscript-less TEST statement. For subscript-controlled
FOR-statement loops, the subscript test always follows the sub-
script modification(s). Since not all loops are subscript-con-
trolled (e.g., 2-factor FOR statement loops), & subscript test
is not always performed, so the word TEST is thus a slight mis-
nomer.

Examples
TEST $
TEST D $
CLOSE Statement.
Form @67. statement § CLOSE statementname $ statement

A CLOSE statement allows the simple or compound statement
forming its latter part to be removed from the normal, listed
sequence of statement executions. The execution of this ‘closed!
statement may thus only be definitively invoked by a GOTO statement
vhose sequential formula has as its value the statement name follow=
ing the CLOSE sequential operator. The normal successor to a
closed statement is that statement listed immediately following
the invoking GOTO statement.

9 June 1961 L6 ™-555/002/01

Example

CLOSE PCR'SORT $ ''CLOSED STATEMENT WHICH SORTS THE PCR TABLE
BY KEY ITEM, USING THE SHUTTLE EXCHANGE METHOD,''
BEGIN
FOR I = @,1,NENT(PCR)-2 $
BEGIN :
IF PCR'KEY($I+1$) LS PCR'KEY(I) $

BEGIN
ENTRY(PCR(I)) == ENTRY(PCR($I+1$)) $
FOR J = I,-1 $

BEGIN
IF J EQ § OR PCR'KEY(J) GQ PCR'KEY($J-1$) $
TEST I $
ENTRY(PCR(J)) == ENTRY(PCR($J-1$)) $
END
END
END

END

RETURN Statement.

Form $88. statement § RETURN $

A RETURN statement indicates an operational end to a pro-
cedure or a closed statement, and may thus appear only within a
procedure or a closed statement. Tt serves to terminate the
execution of & procedure or a closed statement by transferring
the statement execution sequence to the exit routine which auto-
matically follows the last listed statement of the procedure or
closed statement. An exit routine, being an implied function,
can have no statement name, and the RETURN statement performs for
procedures and closed statements much the same service that TEST

does for loops.

STOP Statement.

Form $89. statement § STOP g;statementname $

A STOP statement serves to halt, or at least delay for an
indefinite time, the sequence of statement executions. It usually
indicates an operational end to the program in which it appears.

9 June 1961 b7 ™-555/002/01

If a 're-start' of the program is performed by some exterior
agency, the execution sequence will resume with the next statement
listed, or with the statement bearing the specified statement name
if one is given in the STOP statement.

Examples
STOP $
STOP TASK'L $
Alternative Statement.
Form @og. statement § IFEITH bform $ statement g ORIF

bform § statementg END

An alternative statement has the effect of selecting for
execution from a set of statements that statement associated with
the first true Boolean formula in & corresponding set of Boolean
fornmlas. Each of the Boolean formulas, embedded in an IF-like
sub-statement between a sequential operator IFEITH or ORIF and a
termination separator, is followed by its associated statement.
The Boolean formulas are evaluated in turn until one with the value
true is encountered, whereupon the statement associated with that
formula is executed. Following this, the sequence of statement
executions would normally continue with the next statement listed
after the alternative statement. The effect of an alternative
statement is therefore equivalent to that of the selected statement
by itself. Note, however, that an ORIF sub-statement is not a
complete statement, grammatically speaking, and consequently cannot
be meaningfully cambined with a preceding IF or FOR statement.

Examples
IFEITH I EQJ $ DIAG =1$ ORIF 1 $ DIAG = ¢ $ END

IFEITH ALPHA GR § $ A = ALPHA*2 $ ORIF AIPHA LS § $ A = ALPHA/2 $
ORIF ALPHA EQ # $ A = A+l $ END

9 June 1961 18 ™-555/002/01

Procedure Statcment.

Form $91. statement § procedurename g;?(g;?formula;itemname;
tablename ; statementname g;g » formula;itemname;tablename;statementnameg?
g;?= variable;itemname;tablename;Estatementname g g;g , variable;

i temname ; tablename ; Pstatementname .?g?)Y %

A procedure statement serves to call for the execution of a
procedure which is a closed and self-contained process with a fixed
and ordered set of formal parameters, permanently defined by a pro-
cedure declaration. In general, a procedure statement consists of
a procedure neme, a set (possibly empty) of calling parameters, and
necessary delimiters. The assignment separator, where it appears,
separates the input calling parameters on the left from the output
calling parameters on the right. Célling parameters are either
values (as specified by input formulas or designated by output
varisbles) or labels (as directly denoted). A procedure statement,
by invoking the procedure, may be said to specify a set of values
for the calling parameter output variables that depend on the values
of the calling parameter input formulas and that involve the calling
parameter labels. The execution of the procedure 1s effected as
though all formal parameters listed in the procedure declaration
either designated calling parsmeter values, or were replaced with
calling parameter labels. The calling parameters of a procedure
statement are placed in one-to-one correspondence with the formal
parameters of the procedure declaration, and must agree with them
in number. A celling parameter value must further agree in type
(1n -the sense of assignment) with its corresponding formal parameter,
and a calling parameter label must agree in usage. v

Examples
INITIALIZE $
COMPUTE 'TAX $

9 June 1961 h9o ™=-555/002/01

A19(8T(34Q'T$AR)) $

TRY(BETA(A)+1, 2.83E-7, MAXIMUM(®,ALPHA)**R) $

SUM(=A) $

SIGMAT(= BETA($A-1$), BIT($@,CHI($A-1,7$)$)(ALPHA), GAMMA) $
LINK(ALPHA = BETA(XYZ)) $

G'C'D(BETA(A)/3, (/DELTA/)**.5 = Y, ARG'ERROR) $

DIRECT Statement.

Form @$92. statement § DIRECT gsign g ; Pass1GN ?A('g‘icon)

= itemname g :0($ index $)9Y;Pitemname g P($ 1ndex $)9

= A(: g icon:)Y $?z JOVIAL

A DIRECT statement allows a routine coded in a more direct

(i.e., machine-oriented) programming language to be included for
execution among the statements of a JOVIAL program. A DIRECT
statement consists of the sign-string comprising the direct
language routine, enclosed in the brackets DIRECT and JOVIAL.
So that such a routine may manipulate item values, it may include
8 JOVIAL~-like ASSIGN statement which assigns the value designated
by an item to be the value contained in the accumlator, an un-
defined machine register == or vice versa. The accumilator is.
denoted by the functional modifier A suffixed with a parenthesized
integer constant indicating the number of fractional bit positions
within the register, usually zero for all but fixed-point arithmetic
variebles. If the integer is omitted, the register contains a
floating-point arithmetic value. The effect of a DIRECT statement,
being machine dependent, is undefined.

Example

DIRECT

ASSIGN A(@) = FIVE'DECIMAL'DIGIT'LITERAL $
XCA
PXD
CAQ DECBIN

ASSIGN BINARY'INTEGER(X) A(18) $
JOVIAL

9 June 1961 50 ™-555/002/01

Input-Output and Files

Many data storage devices impose certain accessing re-
strictions in that the insertion or withdrawal of the value of
an arbitrary item of information may be a relatively complex
operation, requiring the transfer of an entire block or record
of data. Such devices are termed 'external' storage devices, as
contrasted with the 'internal' memory of the camputer. To allow
e reasonably efficient description of algorithms involving the
data stored in an external storage device, the file concept is
introduced, so ihat all data which enters or leaves the internal
memory of the camputer is organized into files.

A file is a collection of records each of which is again a
collection==of bits or bytes depending on the file type: binary
or Hollerith. A file of length k may be considered a k-dimensional
vector, arranged as follows:

»(9), R¢: p(1), Rl’ eee » P(k-1), Rk-l’ p(k)

where the R's are records, the components of the vector, and the
p's are partition symbols, with an undefined physical representation,
which may be interpreted as:

p(k) = end-of-file; p(n < k) = end=-of-record.

If the record currently available for transfer to or from the
file is R , the file is positioned at partition symbol p(n), and the
value designated by “POS(FILE'NAME)" is n. An assignment statement
"poS(FILE'NAME) = N $" positions the file to the value specified
by N, where § < N < k. In particular, "POS(FILE'NAME) = § $"
trewinds' the file. Any file for which the general positioning
operation is to be avoided as inefficient (e.g., tape) or impossible
(e.g., cards, printer) is called a serial, as opposed to addressable,
file.

A record in a file may be input by a read operation or output
by a write operation, although some files are read-only or write-only

9 June 1961 51 ™-555/002/01

depending on the characteristics of the storage device involved.

OUTPUT Statement.

Form $#93. statement § OPEN;SHUT OUTPUT fileneme %;consta.nt:
varieble ;itemname ; Ptablename g;?($ index g;(’... indexy $)YY $

Examples

OPEN OUTPUT NAME'FILE §

OPEN OUTPUT PERSONNEL'FILE PERSONNEL'TABLE $
SHUT OUTPUT PRINTER $

SHUT OUTPUT DRUM@3 RAGL($A...A+99$) $

Form ¢9h. statement § OUTPUT filename constant;variable;
itemname ; Ptablename g; P($ index g;?... indexy $)99 $

Examples

OUTPUT NAME'FILE DE'BUG(JALPHA*KS) $

OUTPUT SENSE'LITE'S 1 $

OUTPUT PRINTER 29H(YOU GOOFED AGAIN, DIDN'T YOU.) $
OUTPUT FPERSONNEL'FILE PERSONNEL'TABLE(K) $

A file may be written by the execution of a sequence of OUTPUT
statements. The first statement executed in such a sequence must
be an OPEN OUTPUT statement, and the last statement executed, a
SHUT OUTPUT statement.

The 'data~neme' portion of an OUTPUT statement, following the
file name, specifies the record to be written, which may consist
of the bits or bytes representing: a single value, denoted by a
constant or designated by a variable; the values comprising an
array, indicated by an array item name; the values comprising a
teble, indicated by a table name; the values comprising a table
entry, indicated by a table name subscripted by a l-component
entry index; the values comprising a consecutive set of table

9 June 1961

£

™-555/002/01

Y

entries, indicated by a table name subscripted by a pair of 1-
dimensional entry indices separated by the continuation separator ...
vhose values specify the boundary indices of the entry set.

An OPEN OUTPUT statement serves to determine the availability
of the file indicated by the file name, for example: vwhether or
not the appropriate external storage device may be connected. If
available, the file is activated and prepared for writing (e.g., &
file identification may be written.) An OPEN OUTPUT statement need
not specify a record to be written, in which case, file position is
initialized tc zero. If, however, an output record is specified,
the write operation is initiated and file position is set to 1.

An OUTPUT statement initiates a write operation for the
specified output record and increments the file position by 1. The
sequence of statement executions may ccntinue, concurrently, with
the write operation, although the file is 'busy' until the write is
successfully terminated, when all the specified bits or bytes are
written without the occurrence of any uncorrectable error in the
data transmission. In some files, partition symbols and thus file
positions are predetermined. Consequently, a write operation started
from the end-of=file position would be unsuccessful. In other files,
notably tape files, the partition symbols are determined by the
write operation itself so that, in effect, the end-of-file partition
symbol follows the last record written.

A SHUT OUTPUT statement serves to deactivate the file, causing
ite termination by an end-of-file partition symbol and releasing
the external storage device associated with the file for possible
other use. A SHUT OUTPUT statement need not specify a record to
be written, but if an output record is specified, the write oper-
ation is completed prior to the deactivation of the file.

INPUT Statement.

Form $95. statement § OPEN;SHUT INPUT filename };variable;
itemname;etablename g;€($ index g;e... 1ndex) $)7? $

9 June 1961 53 ™-=-555/002/01

Examples

OPEN INPUT PERSONNEL'FILE $
OPEN INPUT CLOCK T $

SHUT INPUT CLOCK $

SHUT INPUT CARD LINE(K) $

Form $96. statement § INPUT filename variable;itemname;
Ptablename g;?($ index g;?... indexy $)9Y $
Examples

INPUT ENTRY'KEY'8 BOOL $
INPUT TAPEP7 MATRIX $
INPUT PERSONNEL'FILE PERSONNEL'TABLE($I...J$) $

A file may be reed by the execution of a sequence of INPUT
statements. The first statement executed in such a sequence must
be an OPEN INPUT statement, and the last statement executed, a
SHUT INPUT statement.

The data-name portion of an INPUT statement, following the
file name, designates the values which are to be represented by
the bits or bytes read from the input record. These may consist of
a single value designated by a variable or a set of values indi-
cated in the manner described for OUTPUT statements.

An OPEN INPUT statement serves to determine the availability
of the file indicated by the file name (for example: whether the
appropriate external storage device is connected; whether the file
identification is correct; etc.) If available, the file is acti~
vated and prepared for reading. An OPEN INPUT statement need not
designate a record to be read, in which case, file position is
initialized to zero. If, however, values are designated to be read
from an input record, the read operation is initiated and file
position 1s set to 1.

9 June 1961 5l ™-555/002/01

An INPUT statement initiates a read operation transferring
data from the input record to represent the designated values, and
increments the file position by 1. The sequence of statement
executions may continue, concurrently, with the read operation
although the file is 'busy' until the read is successfully termi-
nated. This occurs when a partition symbol is encountered, or
when all the designsted values have been read from the input
record. A read operation is unsuccessful when started from the
end-of-file position or when uncorrectable errors occur in the
data transmission.

A SHUT INPUT statement serves to deactivate the file, re-
leasing the external storage device associated with the file for
possible other use. A SHUT INPUT statement need not deslgnate
values to be read from an input record, but if any are designated,

the read operation is completed prior to the deactivation of the
file.

The records of a file have no structure, and may be thought
of as strings of bits or bytes. Structure is supplied only by
the data-name portion of the INPUT or OUTPUT statement. Thus,
reading and writing are just information transfers, and no editing
or rearranging of data (except that required for conversion to
6-bit Hollerith code) is implied. A write transfers just the bits
or bytes specified by the data-name. A read transfers just the
bits or bytes of the record, to the maximum designated by the
data-neme.

A SHUT statement is defined only for active files, and an
OPEN statement is defined only for inactive files. Further, some
file pairs may not be active concurrently, for example: two files
on the same tape reel. INPUT-OUTPUT statements are defined only
for sctive files, and in general, an active file may be both
written and read, and positioned -- if the file characteristics

9 June 1961 55 ™-555/002/01

allow. Thus, & read or position with a serial, write-only file
such as a printer is undefined. The characteristics of some
files, however, also preclude the initiation of a read or write
operation when the file is 'busy', thus eliminating the possi-
bility of stacking input-output operations.

PHRASES

Item Description.

The basic operations of dats processing concern the manipu-
lation of the values of items. In JOVIAL, these values are
designated by name and, where applicable, by index. Other
characteristics required for their manipulation, such as storage
location and form of representation, are either implicitly de-
rived or need be supplied only once, and not with each'desig-
nation. All the necessary explicit characteristics of an item's
value may be declared by the programmer with an item description.

Floating Item Description.

Form @97. description § F g;R g;?fcon ... fcony

The abbreviation F declares a Floating type item; the optional
abbreviation R declares that any value assigned to the item be
Rounded instead of truncated; the optional pair of floating con-
stants, separated by the continuation separator ... declare an
estimated minimum through maximum absolute value range, for
possible use in optimizing the machine languege program.

Exemples

F

FR

F 17.4...14.4E1¢

F R 1.137E-6...9.34E24

9 June 1961 56 M-555/002/01

Fixed (Arithmetic) Item Description.

Form $98. description § A n 85U g;?g;+;-:n? g;R g;?icon;acon
e icon;acon7

The abbreviation A declares a fixed type item; the number
declares the total number of bits required by the item, including
any sign bit; the ebbreviation S declares a Signed item; the
sbbreviation U declares an Unsigned (positive) item; the optional,
signed number declares the number of fractional bits in the item -=-
zero may be omitted for exact integers; the optional abbreviation R
declares that any value assigned to the item be Rounded instead of
truncated; the optional pailr of fixed or integer constants separated
by the continuation separator ... declare an estimated minimum
through maximun ebsolute value range, for possible use in optimizing
the machine language program.

S R 1.TEQAP ... 1.12E15AP
s 3 R
1T U R
u 26
u -k $...1EL

Dual Item Description.

Form $99. description & D n 8;U g;?g;+;-:n? g;R g;fdcon .o
dcon?

The sbbreviation D declares a Dusl type item; and the remainder
of the description pertains to either component 9f the item; the
number declares the total number of bits required by each component
including eny sign bit; the abbreviation S declares a Signed component;
the abbreviation U declares an Unsigned (positiﬁe) component; the
optional, signed number declares the number of fractional bits in
a component =- zero may be omitted for exact, dual integers; the

9 June 1961 57 ™-555/002/01

optional abbreviation R declares that both components of any (dual)
value assigned to the ltem be Rounded instead of truncated; and the
optional pair of dual constants separated by the continuation
separator ... declare an estimated minimum through maximum absolute
value range for possible use in optimizing the machine language
program.

Examples
16
16
2k
2p
gl
45

¢5
18 R D(13.98A18,27.A18)...D(27.5A18,31.98A18)

-2 D(8,8)...D(L48,48)
5¢ R

U U U v oo
o Ccun nn

Literal Item Description.

Form 1¢4p. description & H;Tn

The abbreviation H declares a Hollerith coded literal item;
the abbreviation T declares a Transmission-coded literal item; the
number declares the number of bytes in the item.

Examples
H1l
T 6
T 499
Status Item Description.
Form 1§1. description § S g;n S statusg

The abbreviation S declares a Status type item; the optional
number declares the total number of bits to be allocated the item,
otherwise derived from the number of the item's status velues; the

9 June 1961 58 ™-555/002/01

sequence of statuses denote the values of the item, which are
represented by the sequential numeric values @, 1, 2, 3, and so
forth. If a number of bits k is declared, the number of statuses
should not exceed 2k.

Examples
S V(FULL) V(EMPTY) V(SOME)
s 4 v(N) V(NNE) V(NE) V(ENE) V(E) V(ESE) V(SE) V(SSE) V(8) V(SSW)

v(sw) v(wsw) v(w) v(wnw) v(NW) V(NNW)
Boolean Item Description.

Form 1§2. description § B
The ebbreviation B declares a Boolean type item.

Example
B
Parameter Set.
Form 1§3. parameter § constant ; status; PBEGIN g parameterz DY

A parameter set denotes a value, a list of values, or an array
of values which serve to indicate the initial values of & simple item,
a table item, a string item, or an array item. The dimension of the
parameter set should agree with the dimension of the item being
initialized. The values denoted by the elements of a parameter set
should, of course, be assigneble to that item, and although integer,
floating, and fixed constents may be intermixed, the elements of a
paremeter set should otherwise all be of the same type.

Unless declared by a parameter set, the intiel value(s) of an
{tem is (are) not preassigned and is (are) therefore undefined.

Examples
98
2.937T8E3AL
V(EXACT)

9 June 1961 59 ™-555/002/01

BEGIN -13. 78. 35. -16. @. 64. END

BEGIN

BEGIN
BEGIN §111¢ END
BEGIN 1 ¢ ¢ ¢ 1 END
BEGIN 1§ ¢ @1 END
BEGIN 1¢¢ @1 END
BEGIN 19 @ @1 END
BEGIN L@@ @1 END
BEGIN §111¢ END

END

BEGIN
BEGIN §111¢ END
BEGIN 11111 END
BEGIN 11¢ 11 END
BEGIN 11¢ 11 END
BEGIN 11¢ 11 END
BEGIN 11111 END
BEGIN §111¢ END

END

END
DECLARATIONS

Declarations serve to define certain properties of the identifiers
occurring within a procedure, a progrem, or a program system. These
constitute a 3-level hierarchy, with procedures belonging to programs
and programs comprising progrem systems. Identifiers may be defined
at any of these levels: by a COMPOOL of system declarations at the
program system level; and by programmer supplied declarations at the
program and procedure level. All identifiers must be defined by
declaration, except statement names which are defined by context, and
simple item names which may be defined by mode.

Unless defined by COMPOOL declarations, programmer-supplied
definitions of item names, table names, and file names must all appear
in the progrem listing before these names may be definitively used.

By scope of definition, identifiers fall into two distinct and
non-overlapping categories: (a) statement and switch names; and (b)
item, table, procedure, and file names. Within these two categories,

9 June 1961 60 ™-555/002/01

an identifier's scope includes just the procedure, program, Or
program system for which it was defined and excludes component
procedures or programs which define identifiers with the same
spelling. Consequently, a particular jdentifier, defined within
a program Or procedure, may be used for other purposes outside

that program or procedure -- Or even outside its above category.

ITEM Declaration.

Form 1@b4. declaration § ITEM itemname description $

An ITEM decleration, beginning with the declarator ITEM and
ending with the termination separatar $, declares a simple item,
with the item name taking on the type indicated by the item
description.

Examples

ITEM DELTA F 1.283E-T...T.9E16 $

ITEM IDEX8 A 16 U R $

ITEM AK'1S A T4 S 15 R $

ITEM TRKXY D 16 S 5 %

ITEM LINE§ H 119 $

1TEM HEAD S V(N) V(NE) V(E) V(SE) v(s) v(sw) v(w) v(nw) $
ITEM INDIC B $

Parsmeter ITEM Declaration.

Form 1¢5. declaration & ITEM itemname ?description P parameter?;
constant $
A parameter ITEM declaration serves to declare a simple item
with & specific initial value. This may be done by following the
item description with the abbreviation P (for Parameter) and then
a single parameter denoting the desired value. For all parameter
items except those of status or Boolean type, however, the item
description is somewhat redundant, enough so that both it and the

9 June 1961 61 M-555/002/01

abbreviation P may be omitted. In such cases, the parameter deter=-
mines the item type, anlong with other necessary information. Note
that an octal constant, a 1, or a @ all declare integer valued,
fixed-point items, rather than literal or Boolean items.

Examples

ITEM AVERAGE -1.965 $

ITEM MASQUE A 36 U P O(@@ggTT777688) $
ITEM SITE'3 D(+14.85A5,-77.¢A5) $

MODE Declaration

Form 1¢6. declaration § MODE description g;?P paremetery $

A MODE declaration serves to declare a normal mode of definition
for simple (unsubscripted) item nemes which are not otherwise defined.
An item mode pertains to all such undefined item names whose first
listed occurrence follows the MODE declarstion. Item names so
defined take on the type indicated by the item description and may
initially designate the value denoted by the single optional para-
meter. The effect of a MODE declaration persists until superseded
by the subsequent listing of another MODE declaration.

Examples

MODE F $

MODE A 16 S R $

MODE A 16 S 5 P +39875.E-3A5 $
MODE T 6 $

MODE B $

OVERLAY Declaration.

Form 1¢7. declaration § OVERLAY itemname;tablename E?S y 3=
1temname;tablename& $
An OVERLAY declaration arranges items, tables, and arrays in

9 June 1961 62 ™-555/002/01

machine storage by allocating to them blocks of consecutive units
of storage space. The storage space allocated tables and arrays
consists of undefined units called 'registers'. The storage space
allocated items depends on a packing mode: No packing -- storage
allocated in register units; Medium packing -- storage allocated
in sub-register units; Dense packing -- storage allocated in bit
position units.

Starting with a specific but undefined origin, the items,
tables, and arrays indicated by the set of names separated by
commas and delimited by the equals sign =, are allocated a linear,
consecutive block of storage space and, except for packed items
which may be rearranged for storage efficiency, the order of allo-
cation is the same as the order of names in the declaration. If
more than one such set of names is included in an OVERLAY decla-
ration, each set will be allocated storage beginning at the same
origin, thus 'overlaying' the others. Consequently, if a name is
separated from its predecessor by a comma, storage allocation will
(in general) commence immediately following the storage unit just
allocated. If, however, the name is separated from its predecessor
by an equals sign =, storage allocation will commence at the common
origin.

A neme may sppear only once in an OVERLAY declaration, but may
appear in more than one OVERLAY declaration if logical inconsistencies
are avoided. To overlay items in ﬁ table, the OVERLAY declaration
must appear within the TABLE decleration.

TABLE Declaration.

Form 1$8. declaration § TABLE g;tablename V;R n g;P;S g;N;M;D $
BEGIN g ITEM itemneme description $ g;parameter g;?OVERLAY itemname

g;g y 3= itemname& $?g END

9 June 1961 63 TM-555/002/01

’

A TABLE declaration serves to declare an optionally named
table; the dbbreviation V declares a Variable length table; the
abbreviation R declares a Rigid length table; the number declares
_the number of entries (indexed from @ thru n-l) comprising the table
-- & maximum in the case of a variable length table; the optional
abbreviations P or S declare either a Parallel or Serial entry
structure; the optional abbreviations N, M, or D declare either
No packing, Medium packing, or Dense packing of the items within
an entry.

The composition of an entry is described within the BEGIN and
END brackets. The set of ITEM declarations declare the items com~
prising an entry. In designating the value of a table item, a
l-component index subscripting the item name indicates the entry.

A parameter list of length k (less than or equal to the number of
entries) following an ITEM declaration denotes a list of k values
which the first k successive entries of the item are to initially
designate. If an OVERLAY declaration is used in describing entry
structure, the item names involved must have been previously declared
as part of the entry.

Examples

TABLE R 199 $
BEGIN

ITEM ALPHA A 16 U R $
ITRM BETA T 6 $

ITEM INDIC B $

END

TABLE TAV@
BEGIN
ITEM TTAG

V 124 8 D $
H

ITEM TNMI B
B
A

18 $

$
ITEM TNOS $:
ITEM TIVD 12 U$ BEGIN 9 14 33 18 62 78 113 § 77 END
ITEM TPRO F 6.89@3E=6...2.14TE9 $
ITEM TSTA S V(NULL) V(UNDER) V(LEVEL) V(OVER) $
OVERLAY TPRO = TTAG, TIVD $
END

9 June 1961 N ™-555/002/01

TABLE FACTORIALS R 1¢ N §
BEGIN
ITIM FACTORIAL A 48 U $ BEGIN 11 2 6 24 12¢ 72p 5p48

Lp32p 362888 END
END

Defined Entry Structure TABLE Declaration.

Form 1¢9. declaration § TABLE g;tablename ViR ny g;P;S n,
BEGIN g ?ITEM itemname description n3 n, g;N;M;D $?;?STRING itemname
description ny 0y g;N;M;D ng ng $Y g;parameterz END

A TABLE declaration of this type serves to declare an optionally
named table with a completely specified entry structure. In the
TABLE declaration proper: the abbreviation V declares a Variable
length table; the abbreviation R declares a Rigid length table; the
number nl declares the (maximum) number of entries; the optional
ebbreviations P or S declare either a Parallel or Serial entry
structure; and n, declares the number of storage registers consti-
tuting en entry.

The composition and structure of an entry is described wifhin
the brackets BEGIN and END. The set of ITEM and STRING declarations
declare the items comprising an entry, and contain information com=
pletely specifying and describing the item packing within an entry.
An ITEM declaration declares a table item, which has Just one
occurrence per entry of the table. A STRING declaration declares
a string item, which may heve & varieble number of occurrences
(beads) per entry of the table. In designating the value of a
particular bead, e o-dimensional index must subscript the string
jtem neme indicating, first, the bead, and second, the entry.

After either the ITEM or STRING declarator, the item naﬁe and
item description nemes and describes the item; and following the
item description, n3 decleres the index of the register in the entry
and ny, declares the indgx of the bit position in the register to be
the origin, bit @, of (the first occurrence of) the item. The

9 June 1961 65 ™-555/002/01

optional abbreviations N, M, or D declare the type of item packing
arising from the bit allocation: No packing; Medium packing; or

Dense packing. In the STRING declaration only: the number n5 gives
the increment to the index of the next register in the entry containe
ing a bead of the string by declaring the frequeney of occurrence

of the string item in the entry's registers (i.e., every nsth register);
and the number ng glves a packing factor by declaring the number of
beads per register. The termination separator $ ends both ITEM and
STRING declarations.

As before, a parameter list or l-dimensional paremeter set
following an ITEM declaration denotes initial values to be designated
by the first successive entries of the table item. A 2-dimensional
parameter set following a STRING declaration denotes initial values
to be designated by the various beads of the string item == the
parameter lists comprising the set denoting values for the first
successive entries of the string, and the individual constants within
a list denoting values for the beads within an entry.

Examples

TABLE KEY'REFERENCES V 1¢¢¢p s 1 $
BEGIN

ITEM KEY T 6 ¢ ¢ M $

ITEM N'REFERENCES A 12 U @ 36 M $
STRING REFERENCE A 24 U 1 ¢ M 1 2 %
END

TABLE TRC R 4 2§

BEGIN

ITEM TRCA A 12 U R @ @b $

ITEM TRCB H 6 1

ITEM TRCC A 4 8 ¢ 9 ¢ $ BEGIN =4 3 3 =7 END

ITEM TRCD S 20 v(COND'A) v(coND'B) v(coNp'c) v(coND'D) ¢ 15 $

Like TABLE Declaration

Form ll¢. declaration § TABLE teblename:@;# g;?V;R n? g;P;S
g;N;M;D L$

9 Junc 1961 66 T™=-555/002/01

A like TABLE declaration serves to declare e table with an
entry structure like that of a previously declared and named table.
The 1like table's name is formed by suffixing a numeral or letter
to the name of the pattern table, and its items are automatically
named with the item names, similarly suffixed, of the pattern table,
The composition and structure of a like table's entry is taken as
being generated by the declarations describing the pattern table's
entry structure, with the difference, of course, of the numeral or
letter attached to each item neme. As with other forms of TABLE
declaration, the abbreviation V declares a Variable length table;
the abbreviation R declares a Rigid length table; and the number
declares the number of entries. If this information is omitted,
the pattern table's specifications for these characteristics are
used. Again, the optional abbreviations P or S declare either
Parallel or Serial entry structure and the optional abbreviations
N, M, or D declare either No packing, Medium packing, or Dense
packing of the items in the like table's entry. The abbreviation L
immediately preceding the termination separator $ declares the table
a Like table.

Examples

TABLE G'TABLE§ L $

TABLE TAVPQ R 1 P D L $
TABLE TAV§Y S N L $

ARRAY Declaration.

Form 111. declaration 4§ ARRAY itemname g ng description $
g;parameter

An ARRAY declaration serves to declare en item name as desig-
nating & multi-dimensional erray of values, giving the type and the
dimensions of the array item. Each number in the sequence of numbers

9 June 1961 67 ™-555/002/01

following the item name declares the number of elements in the
corresponding dimension of the array. The first number in the
sequence declares the number of rows, the second number declares
the number of columns, the third number declares the number of
planes, and so on. (In designating a particular value within an
array, an index with as many components as the number of the
array's dimensions must subscript the array item neme.) The item
description declares the type and other pertinent characteristics
of the array item, and is followed by the termination separator $.
An array or sub-array of values for the array to initially desig-
nate may be denoted by a parameter set following the declaration.
The parameter lists between the innermost BEGIN and END bracket
pairs denote rows of values, and are thus indexed by row. The
individual elements in a parameter list are indexed by column,

and the parameter matrices are indexed by plane, and so on.

Examples

ARRAY TIC'TAC'TOE 3 3 § V(EMPTY) V(CROSS) V(NOUGHT) $
ARRAY NODE 2¢ 18 54 F 8.¢E-6...3.¢E1¢ $

ARRAY GRID'A T 5 B $

BEGIN ‘
BEGIN ¢#@1¢g @ END
BEGIN §1¢1¢ END
BEGIN 1 4@ @1 END
BEGIN 11111 END
BEGIN 1 ¢ @ @1 END
BEGIN 1@ @@ 1 END
BEGIN 1 ¢ ¢ @1 END

END

SWITCH Declaration.

A SWITCH declaration lists the sequential formulas which specify
the set of statement names associated with the switch name.

9 June 1961 68 T-555/002/01

Form 112. declaration & SWITCH switchname = (g;seqform
' H };seqform)) $

In an index switch, the sequential formulas are indexed
according to their position in the list. Each of the k positions
of the list, indexed from left to right from $ to k-1, is separated
by a comma from the adjacent position(s). A position without a
sequential formula implies a 'no-value', equivalent to the name of
the statement following the GOTO statement invoking the switch. 1In
designating & particular value of an index switch, a l-component
index must subscript the switch name. A switch value is therefore
defined only if the index specified is within the index range
(f thru k-1) of the list.

Example
SWITCH TOGGLE = (BL9T, , ST$L($ALPHA$), , , LOOP, EMIT($I,J$)) $
Form 113. declaration § SWITCH switchname (itemname;filename)

= (parameter = seqform g;g , perameter = seqformg) $

Tn en item switch, the sequential formulas are each assoclated
with a single parameter. The value of the switch depends on the
value of the indicated item, or on the current state of the indicated
file. The value of the sequentisl formula associated with the para-
meter denoting the value of the item or the state of the file is,
therefore, the value specified by the switch. However, if none of
the peremeters in the SWITCH declaration denote the velue of the item
or the state of the file, the switch's value is 'no-value', equivalent
to the name of the statement following the GOTO statement invoking the
switch. '

Example

SWITCH WHICH (BETA) = (3H(ARY) = ST34, 3H(fL9) = FINIS($A/2$),
3() = Sp1, 3H(ABC) = S¢2, 3H(''') = EXIT, 3 (===) = 841,
3u(.$.) = ESSO($4,B,C$), O(TTT777) = STPL, 3H(XXX) = PCR'SORT) $

9 June 1961 69 ™-555/002/01

DEFINE Declaration

Form 114. declaration § DEFINE label ":gsign)): ''"'$§ Vhere
gsigng does not include the symbol ''

A DEFINE decleration serves to define a label as being equiva-
lent to the 'quoted' sign-string. This equivalence is established
by a process of substituting the sign-string for the label wherever
it may subsequently be listed, except within another sign-string
(for example: in a comment; in the machine languege portion of a
DIRECT statement; or in a literal constant) or as the label of a
DEFINE declaration. This last exception allows a label to be re-
defined as being equivalent to another sign-string at some later
point in the program listing.

Examples

DEFINE ROW ''127'' $

DEFINE AS '' '' §

DEFINE IF'EITHER AS ''IFEITH'' $

FILE Declaration

Forn 115. declaration § FILE filename H;B n, ViR n, g statusg
label $

A FILE declaration serves to declare either a Hollerith file
indicated by the ebbreviation H, or a Binary file indicated by the
abbreviation B. The number nl declares the (estimated maximum)
number of records in the file; the abbreviation V declares a Variable
record size; the abbreviation R declares a Rigid record size; and n,
decleres the (estimated maximum) number of bits or bytes in & record.
The set of statuses correspond serially to the states of the file,
which are undefined since they depend on the characteristics of the
external storage device containing the file, and on the complexity

buillt into the machine language input~output routines by the JOVIAL

9 June 1961 70 ™-555/002/01

compiler. The label preccding the termination separator $ is un-
defined and serves to indicate a particular external storage device
in computer dependent terms. A workable definition of this hardware-
name lsbel must include a description of the characteristics of the
external storesge device it references, and an ordered list of the

states pertaining to any file using the device.

Examples

FILE NAME'FILE B 1¢¢ V 9999 V(UNREADY) V(READY) V(BUSY)
V(END'OF'FILE) TAPE@3 $

FILE PRINTER H U3 R 12§ V(UNREADY) V(READY) V(BUSY) SYSPRT $

Procedure Declaration.

A procedure declaration defines a procedure as a statement,
headed by & declaration list, whose execution may only be invoked
through the use of a procedure statement or a function call. This
statement, constituting the body of the procedure, may operate on
certain values designated by a fixed set of formal input parameters,
may utilize certain labels denoted by a fixed set of formal parameters,
and may produce a fixed set of resulting values designated by formal
output parameters.

Form 116. declaration § PROC procedureneme g;e(g;elabel
g3£ , label%? g;?: label g;. g;g , label g;.g?)Y $ g;g declarationg
statement

In general, & procedure declaration consists of the declarator
PROC, a procedure name, a set (possibly empty) of formal parameter
labels, and necessary delimiters followed by a declaration list which
heads the procedure-body statement. The assignment separator =, where
it eppears, separates the formal input parameters on the left from the
formal output parameters on the right, either or both of which may be
lacking in a particular case.

9 June 1961 T1 ™-555/002/01

To each formal parameter in the procedure declaration must
correspond a calling parameter in the invoking procedure statement
or function call. This list of calling parameters may contain:
formulas, which specify velues to be initially designated by formal
input parameters; variables, which are assigned the final values
designated by formal output parameters; and certain labels, which
(in effect only) replace their corresponding formel input or output
parameters at each occurrence throughout the heading declarations
and the body statements. Formal parameters thus either designate
values or denote labels.

Each formal parameter which is to designate a value must be
declared by one of the declarations heading the procedure body as
the name of a simple item of appropriate type. It is this item
which is assigned the value of the calling parameter input formula
before the execution of the procedure, or which designates the
value assigned to the calling parameter output variable after the
execution of the procedure.

All formal parameters not declared as items must denote calling
parameter labels -- table names, array item names, or statement names.
A formal output parameter meant to denote a statement name must be
distinguished by a dummy suffix consisting of a period, whereas a
formal input parameter meant to denote a (closed) statement name is
not so distinguished.

Formel parameters which denote calling parameter labels may Be
used within the procedure declaration wherever the substitution of
their corresponding labels would be defined. However, a formal
paremeter meant to denote & table name or an array item name must
also be declared as the name of a table or array within the pro-
cedure, to provide the procedure with a fixed definition of the
structure of the tables or arrays that the formal paremeter is to

denote.

9 June 1961 T2 ™-555/002/01

Any identifier (except a subscript) already defined for the
program at a procedure's listing is similarly defined for that
procedure, unless an identical identifier, with an overlapping
scope, is declared within the procedure or is one of the procedure's
formel parameters. All identifiers declared within the procedure,
however, are defined only for the procedure, and have no relation=-
ship to identical identifiers outside the procedure. No limitations
exist on procedure statements or function calls invoking procedures
within procedures. However, procedure declarations themselves may
not be nested; that is, a procedure declaration may not appear
within another procedure declaration. ‘

For a procedure to specify the value of a function, the
procedure declaration must have no formel output parameters. The
procedure name itself, declared in the procedure heading as an item,
must be considered as the sole output parameter, to which the
function's value must be assigned during the execution of the
procedure .

The execution of a procedure is terminated after the execution
of the last procedure-body statement 1listed, by a RETURN statenment,
or by a GOTO statement containing a formal output parameter denoting
a statement name. The execution of a GOTO statement containing a
formal input parameter denoting & (closed) statement neme normally

only interrupts the execution of the procedure.

Examples

PROC BETA'SUM $ ''A NO-PARAMETER PROCEDURE TO SET THE ARITHMETIC
SUM OF THE FIRST N VALUES OF BETA AS THE VALUE OF
THE N+1ST BETA.''

BEGIN
BETA($NENT(BETA)$) = § $
FOR N = ALL(BETA) $
BETA($NENT(BETA)$) = BETA($NENT(BETA)$)
+ BETA($NS) $ NENT(BETA) = NENT(BETA)+1 $
END

9 June 1961 T3 ™-555/002/01

PROC

ITEM
ITEM
ITEM

PROC

ITEM
ITEM

PROC

ITEM
ITEM

ARCSIN (SINE) $ ''A FIXED-POINT ARCSIN POLYNOMIAL
APPROXIMATION FUNCTION. MAXIMUM ERROR ABOUT
.5E-6. SEE HASTINGS, PAGE 163.'!
ARCSIN A 368 38R $
SINE A36835R $ ‘
ALPHA 8 A 36 8 34 $ BEGIN +1.57@7963@5¢A3k
-$.2145988¢16A3L
+@ .#8897989TLA3L
- .B5@17h3pL6A3L
+@.§3p8918810A34
-@ . P17P881265A3L
+# . PP66TPP9P1A3L
-@.pP12624911A34 END

RANDOM (=WHERE) $ ''MULTIPLICATIVE PSEUDO-RANDOM NUMBER
GENERATOR.'!
WHERE A 48 U P 539182189@627261 $
TEMP A96U $
BEGIN
TEMP = WHERE ** 2 $
WHERE = BIT($2k,48$)(TEMP) $
END

REFERENCE 'SEARCH (WORD = NUMBER, FAILURE.) $ ''THIS PROCEDURE
SEARCHES THE KEY'REFERENCE TABLE (GIVEN AS AN EXAMPLE
OF FORM 1¢9) FOR AN ENTRY WHOSE KEY IS IDENTICAL TO WORD,
SETTING THE ENTRY-INDEX IN NUMBER. IF NO KEY MATCHES
WORD, THE FAILURE EXIT IS TAKEN. AFTER A SUCCESSFUL
RETURN, THE SET REFERENCE($@...N'REFERENCES($NUMBER$)-1,
NUMBER$) IS ASSOCIATED WITH THE KEY WORD.''
WORD T 6 $
NUMBER A 14 U $
BEGIN
FOR I = @, 1.5A1+N'REFERENCES(I)/2.A1, NENT(KEY)-1 $
BEGIN
IF WORD EQ KEY(I) $
BEGIN
NUMBER = I $ RETURN $
END
END
GOTO FAILURE $
END

9 June 1961 Th ™-555/002/01

PROGRAM.

Form 117. progrem § START g declaration; statementg TERM
g;statementname $

A JOVIAL program is a string of declarations and statements
enclosed in the brackets START and TERM. If a statement name is
provided following the TERM, the first statement in the program's
execution sequence is the one bearing that name. Otherwise, 1t is
the first (non-procedure-body) statement listed. The typographic
end of the program is indicated by the termination separator $.

START

' 'L'AUTOMATON. A PROGRAM WHICH READS A SEQUENCE OF INPUT SYMBOLS,
DECIDES WHETHER OR NOT THEY FORM A SENTENCE IN LANGUAGE L (DESCRIEBED
ON PAGE 9), AND WRITES THE SEQUENCE AND THE DECISION AS ITS OUTPUT

MESSAGE. L'AUTOMATON WILL WRITE A REQUEST FOR INPUT AND STOP.
WHEN INPUT IS READY, COMPUTATION MAY RESUME. '

DEFINE O 'S
DEFINE TRUE ''1'' $
DEFINE RIGID ''R'' $
DEFINE STATUS ''S'' $
DEFINE INTEGER '' '' $
DEFINE IFEITHER ''IFEITH'' $
DEFINE UNSIGNED ''U'' $

DEFINE HOLLERITH ''H'' $
DEFINE PROCEDURE ''PROC'' $
DEFINE FIXED'POINT '‘A'' $

DEFINE N'COLUMNS '' '' $!'NUMBER OF SYMBOLS PER RECORD
(1q 12¢) TO BE SUPPLIED BY PROGRAM'S USER.''
FILE SYMBOLS HOLLEFRITH 5@¢@ ''RECORDS MAXIMUM'' RIGID

' 1RECORD SIZE OF'' N'COLUMNS V(INACTIVE)
V(AVAILABLE) V(BUSY) V(ERROR) V(FINISHED)
CARD'READER $
FIIE MESSAGE HOLLERITH 5@@ ''RECORDS MAXIMUM'' RIGID
1 'RECORD SIZE OF'' 12¢ V(INACTIVE)
v(TRANSMITTED) V(BUSY) V(ERROR) LINE'PRINTER $
ITEM SYMBOL'LIST HOLLERITH N'COLUMNS $ ’

ITEM RESULT STATUS V(SENTENCE) V(PHRASE) V(GARELE)
V(EXCESS) $
ITEM STATE FIXED'POINT 15 ''BIT'' UNSIGNED INTEGER

TIRANGE'! @...2U575 $

9 June 1961

PROCEDURE L 'MACHINE

ITEM IN'SYMBOL
ITEM OUT ! SYMBOL

ITEM ACTION
SWITCH MECHANISM
llo(

75 ™-~555/002/01

(IN'SYMBOL = OUT'SYMBOL) $ ''THIS PROCEDURE

IS A SEQUENTIAL MACHINE WHICH, GIVEN A SYMBOL
FROM AN INPUT SEQUENCE, WILL RESPOND WITH AN
OUTPUT SYMBOL INDICATING WHETHER THE SEQUENCE

OF SYMBOLS INPUT THUS FAR IS A COMPLETE SENTENCE
IN LANGUAGE L, A PHRASE OR INCOMPLETE SENTENCE,
A NON-SENTENCE OR GARELE, OR WHETHER THE LENGTH
OF THE SEQUENCE IS IN EXCESS OF THE MACHINE'S
ABILITY TO DECIDE (ROUGHLY AT LEAST 16@@@
SYMBOLS.) INITIAL AND TERMINAL BLANKS ARE
IGNORED. '*

HOLLERITH 1 ''CHARACTER'' $

STATUS V(SENTENCE) V(PHRASE) V(GARBLE)

V(EXCESS) $

FIXED'POINY 6 ''BIT'' UNSIGNED INTEGER $

=("uE() 1(() 1H($) 1H()) OTHER'!
)'' DECIDE, CHANGEl, CHANGE2, GARBLE, GARBLE,

"10(#PPP1) .. .O(177T6)'" GARBLE, CHANGEL, CHANGE2, CHANGE3, GARELE,

' *o(177T7
'ro(20ggg

;" GARBLE, EXCESS, CHANGE2, CHANGE3, CARBLE,
'* CHANGE2, GARBLE, DECIDE, GARBLE, GARBLE,

"o(2¢¢¢1).::8(37777)" GARBLE, GARBLE, DECIDE, CHANGEL, GARBLE,

(Lpggd)'' DECIDE, GARELE, GARBLE, GARBLE, GARBLE,
"'o(LggPl)...0(577T6)'" GARBLE, GARBLE, GARBLE, CHANGES, GARBLE,
Y'o(5TTTT)'Y EXIT, EXIT, EXIT, EXIT, GARBLE
BEGIN -
IFEITHER STATE EQ O(@@@@d) $ ACTION =
ORIF O(@@@g@l) LQ STATE LQ O(17776) $ ACTION =
ORIF STATE EQ O(17777) $ ACTION =
ORIF STATE EQ O(2¢@p@) $ ACTION =
ORIF O(2¢@@l) LQ STATE LQ O(37777) $ ACTION =
ORIF STATE EQ O(Lgg@g) $ ACTION =
ORIF O(4p@p1l) LQ STATE LQ O(57T776) $ ACTION =
ORIF STATE EQ O(STTT77) $ ACTION =
ORIF TRUE $

WWMND N HFYSS ~—
\D £\0 £&F\0 &0 &
€A-€A-R-€A-€0-€0-€R- 65

3-

<

STOP $ ''PROGRAM OR COMPUTER ERROR. STATE CAN'T

EXCEED O(57777).""
END

IFEITHER IN'SYMBOL EQ 1H() $ ACTION = ACTION
ORIF IN'SYMBOL EQ 1H(() $ ACTION = ACTION
ORIF IN'SYMBOL EQ 1H($) $ ACTION = ACTION
ORIF IN'SYMBOL EQ 1H()) $ ACTION = ACTION

END

LI T I |
H oW &
€A-€-65-€5-

9 June 1961 76 ™-555/002/01

GOTO MECHANISM($ACTIONG) $
GARBLE. OUT'SYMBOL = V(GARBLE) $
GOTO Sl $
EXCESS. OUT'SYMBOL = V(EXCESS) $
Sl. STATE = O(5TTT7) $
EXIT. RETURN $
CHANGELl. STATE = STATE + O(¢¢@g1L) $
GOTO DECIDE $
CHANGE2. STATE = STATE + O(2¢p¢@) $
GOTO DECIDE $
CHANGE3. STATE = STATE + O(37777) $
GOTO DECIDE $
CHANGE4. STATE = STATE + O(L7777) $
GOTO DECIDE $
CHANGE5. STATE = STATE - O(@@pgL) $
DECIDE. IFEITHER BIT($2,13$)(STATE) EQ # $
OUT'SYMBOL = V(SENTENCE) $
ORIF TRUE $
OUT'SYMBOL = V(PHRASE) $
END
END
L'AUTOMATON. BEGIN
OPEN OUTPUT MESSAGE 46H(L'AUTOMATON READY FOR
INPUT SEQUENCE. PROCEED.) $
STATE = O(pgggd) $
STOP $
OPEN INPUT SYMBOLS $
READ'SYMBOLS. INPUT SYMBOLS TO SYMBOL'LIST $
READY'TEST. IF SYMBOLS EQ V(AVAILABLE) AND MESSAGE EQ
V(TRANSMITTED) $
BEGIN
OUTPUT MESSAGE: SYMBOL'LIST $
FOR I = @, 1, N'COLUMNS. - 1 $
L'MACHINE(BYTE(I) (SYMBOL'LIST), RESULT) $
GOTO READ'SYMBOLS $
END
IF SYMBOLS EQ V(BUSY) OR MESSAGE EQ V(BUSY) $
GOTO READY'TEST $

9 June 1961 T7 ™-555/002/01

IF SYMBOLS EQ V(FINISHED) $
BEGIN
SHUT INPUT SYMBOLS $
IFEITHER RESULT EQ V(SENTENCE) $
SHUT OUTPUT MESSAGE 4TH(THE ABOVE SEQUENCE
IS A SENTENCE IN LANGUAGE L.) $
ORIF RESULT EQ V(PHRASE) ?
SHUT OUTPUT MESSAGE 45H(THE ABOVE SEQUENCE
IS A PHRASE IN LANGUAGE L.) $
ORIF RESULT EQ V(GARBLE)
SHUT OUTPUT MESSAGE 4SH(THE ABOVE SEQUENCE
IS A GARBLE IN LANGUAGE L.) $
ORIF RESULT EQ V(EXCESS) f
SHUT OUTPUT MESSAGE T3H(THE LENGTH OF THE
ABOVE SEQUENCE EXCEEDS L'AUTOMATON'S ABILITY TO DECIDE.) $
END
GOTO L'AUTOMATON $
END
STOP L'AUTOMATON $
END
TERM L'AUTOMATON $

-,
f /1 7 72 xrsss
s
L 74
74

SYSTEM DEVELOPMENT CORPORATION / 2500 COLORADO AVENUE / SANTA MONICA, CALIFORNIA

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	xBack

