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PREFACE

Part 3, the JOVIAL Primer, is a complete and self-contained text
on JOVIAL programming, with many examples and exercises. The treatment
is such that an experienced programmer should have little trouble in
comprehending the subject matter, although a beginner might require
some additional tutoring. Answers to the exercises in the Primer will
be found in Part 4, Supplement to the JOVIAL Manual.

Although the Primer contains all of the information found in Part
2, the Grammar and Lexicon, it is not meant to supersede that document,
since the organization of material in the two documents differs consider=-
ably. The Primer is organized so that, in general, simple topics are
presented first, more difficult (and less useful) topics later. The
Grammar, on the other hand, obeys the heirarchical structure of the
langusge and is organized for reference.

As an aid to legibility in the examples, lower case as well as
upper case letters will be used though, of course, JOVIAL itself con-
tains no such distinction. Lower case letters will be used within
comments and to expand the abbreviations that the language employs.
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INTRODUCTION

The circuitry of a digital computer allows it to process (input,
store, manipulate, and output) information under the direction of a
program of instructions supplied by the programmer. Information so
processed is composed of basic units called values. Because a digital
computer uses the on/off states of its hardware devices in processing
information, such computers represent values with binary symbols:
numeric values with symbols from the binary number system; other values
with more or less arbitrary codes, since no standard binary encoding
schemes exist for even the most common classes of non-numeric symbols.

Digital computers thus process not values but binary symbols repre=-
senting values. And since a language of binary symbols is convenient
only for machines, programmers have developed more intelligible program-
ming languages, composed of alphanumeric symbols, which can usually be
automatically translated into machine language by the computer itself.
These languages, closely resembling machine languages at first, have
evolved in the last few years to become less machine-oriented, more
procedure~oriented, and more powerful.

Such a procedure-oriented language is JOVIAL, designed by SDC for
programming large, computer based command/control systems. The JOVIAL
programmer thus describes and names the data his program is to process
and describes the processing with familiar symbols comprising lists of
declarations and statements. A JOVIAL compiler reads the declarations,
creates a dictionary of data names, decides the storage allocation for
the machine language symbols representing the data, and scans the
statements, replacing them with sets of equivalent, machine-like oper-
ations which it then uses to produce the machine language program.

NOTATION

The grammar used to describe JOVIAL syntax consists of rules with
the form:

element & string-of-elements

where an element either denotes or exhibits a JOVIAL form. (1) The
metasymbol § signifies syntactic equivalence, while the colon : signi=-
fies concatenation and the semicolon ; signifies selection between
adjacent elements. (2) A subscript for an element is a semantic cue,
with no syntactic effect. (3) The brackets [ and | group a string of
elements into a single element, while the brackets { and | group a

string of elements into a single, optional element. (4) The suffix s
signifies a string of one or more of the elements to which it is appended,
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while an element superscripting it is the separator, if any. (5) A
space signifies a string of JOVIAL blanks, and since JOVIAL symbols
are normally separated by blanks, this separation convention will not
be explicitly indicated.

JOVIAL is a programming language for professional programmers,
who are notoriously averse to redundant coding. JOVIAL consequently
uses certain abbreviations: S for Signed; F for Floating; B for Boolean;
and so on. Indeed, these abbreviations are the normal forms of the
language and must be explicitly defined away if the expanded versions
are to be used. For example:

DEFINE Boolean ''B'' $
To simplify the discussion, therefore, it is assumed that definitions

like the above have been given. The normal, JOVIAL abbreviation is the
capitalized, first letter.

ALPHABET AND VOCABULARY

JOVIAL's symbols are formed from an alphabet of 48 signs consisting
of 26 letters, l¢ numerals, and a dozen miscellaneous marks including
the blank, the prime, and the dollar sign.

letter § A;B;C;D;E;F;G;H;I;T;K;L;M;N;0;P5Q;5R;S; T U VWX Y52
numeral § $51;2;3;455;657;8;9
sign § letter;numeral;blank;);(;+;-3%;/5.5,:';=:;%

Certain strings of these signs are JOVIAL symbols: delimiters; identifiers;
and constants, which are themselves strung together to form the clauses and
sentences of the language. For legibility of layout, symbols are separated
by an arbitrary number of blanks, and may therefore contain no embedded
blanks. In JOVIAL, line endings perform no function so that, where neces-
sary, a symbol may extend past the end of a line.

DELIMITERS

Delimiters (so-called becausc one of their functions is to syntacti-
cally delimit identifiers and constants) are the verbs and the punctuation
of JOVIAL. They have fixed meanings best described in later context.
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arithmetic-operator § +;-;%;/;%

relational-operator § EQ;GR;GQ;LQ;LS;NQ

logical-operator & AND;OR;NOT

sequential-operator & IF;GOTO;FOR;TEST;CLOSE;RETURN;STOP;IFEITHer ; ORIF
file-operator § OPEN;SHUT;INPUT; OUTPUT

functional-modifier & BIT;BYTE;MANT;CHAR;SIGN;NENT;NWDSEN;ALL;ENTRY;

POSition
separator & .;,;=3==;';...;$
bracket & (;);(/;3/);($;$);'';" " ;BEGIN;END;DIRECT; JOVIAL; START; TERM

declarator § ITEM;MODE;ARRAY;TABLE;STRING;OVERLAY;DEFINE; SWITCH;

PROCedure; FILE

descriptor # Floating;fixed;Dual;Signed;Unsigned;Rounded;Hollerith;
Transmission;Status;Boolean;Variable;Rigid;Preset;Like;Parallel ;Serial;

Dense;;Medium;No;Binary

IDENTIFIERS

The totality of information needed for the correct functioning of
any program is called its environment. Since information in a digital
computer consists of both data and instructions, it is not surprising
that a program's environment consists of the data it processes, and the
program itself (including any necessary super or sub-ordinate programs.)
The environment of a JOVIAL program thus includes: statements, switches,
and procedures, which comprise programs; and items, tables, and files,
which comprise data.
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The elements of the environment of a JOVIAL program are briefly
described, pending more comprehensive discussion, as follows:

STATEMENTS are the instructions of JOVIAL. Each simple statement
describes a complete and individual computation affecting either
a designated value or the sequence of statement executions (or both).

SWITCHES are devices for describing the computation of a statement
name .

PROCEDURES are bounded sets of statements performing a computational
task which may be called for at any point in the progream.

ITEMS are the basic units of data in JOVIAL, since each corresponds
to an individual data value. An item consists of: a symbol, repre-
senting the value; a name, identifying the value; and possibly an
index, distinguishing the value from similar values with the same
name. Items may be organized into tables, strings, or arrays.

TABLES are matrices of item-values. The rows of a table are called
entries, and an entry consists of a related set of different items.
Typically, entry K (iteml,, item2,, item3,, ... , itemN ) would
consist of values measurinig the N pertinent attributes of “object"
K. All the entries of a table have the same structure in the sense
that each consists of a similarly named and ordered set of items.

A particular value in a table is designated by item name and entry
index.

FILES are collections of information contained in ‘external'’
storage devices, and thus provide the computer with its input and
output as well as auxilliary storage. (In practice, any storage
device containing information that cannot be accessed by a single
machine instruction may be considered an external storage device.)
In structure, a file is a linear, ordered set of records each of
which is a single, composite symbol representing the (many) values
of, perhaps, an entire "block"” of items. The information in a
file is input and output a record at a time.

Any program must, by means of symbols, refer constantly to its
environment. A machine language program refers to an element of its
environment by the address of the memory location or storage device
containing the element. A JOVIAL program, on the other hand, refers
to its environment by means of identifiers. A JOVIAL identifier,
therefore, is a statement name, a switch name, a procedure name, an
item name, a table name, or a file name.

An identifier is an arbitrary =-- though usually mnemonic =-- alpha-
numeric name, which serves to label a particular element in the environ-
ment of a JOVIAL program.
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t
name § letter:|'.letter;numera.l]s[——I

Names may be constructed to suit the convenience of the programmer but,
to enhance readability, should be as descriptive as possible. A name
must start with a letter, followed by any number of letters or numerals,
which may be punctuated for readability by the ' separator. (Since
embedded blanks are not permitted, single primes may be used to connect
multi-word names.) Some examples of JOVIAL names are given below.

STEP@1

U2

BRANCH

FLIGHT 'POSITION

A name may not have the same spelling as a delimiter, and may not end
in a prime.

The scope of an identifier consists of the set of statements for
which the identifier is defined. Within its scope, an identifier must
have a unique spelling. However, statement names and switch names are
distinguished by context from procedure names, item names, table names,
and Tile names so that uniqueness between these two categories is not
actually required. (Thus, for example, a statement name may duplicate
an item name, though this is not a recommended practice.)

Except for statement names which are defined by context, all JOVIAL
identifiers must be defined by a declaration of some sort so that the
association of identifiers with environmental elements is decidable.
These declarations may either be explicitly supplied by the programmer
or implicitly supplied by a COMPOOL list of system declarations. Identi-
fiers used but not defined in a procedure (or program) must be defined
at some higher level, i.e., in the program (or COMPOOL).

Identifiers may be defined for just a single procedure, a single
program, or an entire program system. Identifiers defined within a
program or procedure are entirely local and do not conflict with identi=-
cally spelled identifiers outside the program or procedure. Where such
conflict might be thought to occur, the scope of the "outside' identifier
excludes the scope of the "inside" identifier.

With these exceptions, the scope of an identifier naming a program
element (statements, switches, and procedures) includes the entire pro-
cedure, program, or system; while the scope of an identifier naming a
data element (items, tables, and files) includes Just the statements
listed after the defining declaration. (This means that data elements
must be declared before they may be referenced.)
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CONSTANTS

A constant denotes a particular data value that is unaffected by
program execution. JOVIAL programs manipulate four types of data: numeric
values, consisting of the class of rational numbers and rational number
pairs; literal values, consisting of strings of JOVIAL signs; status
values, consisting of independent sets of arbitrarily named states (such
as Good, Fair, Poor); and Boolean values, consisting of the two values
True and False. A JOVIAL constant, therefore, denotes g particular
value as represented by a particular machine language symbol. Numbers,
integers, and floating and fixed constants denote numeric values in the
conventional, decimal sense; while octal constants have the obvious
meaning of octal integers and dual constants denote pairs of numeric
values. Literal constants denote JOVIAL sign strings, represented in
one of two possible 6-bit-per-sign encoding schemes; status constants
are mnemonic names denoting qualities or categories rather than numeric
values; and Boolean constants denote either True or False.

constant # integer-constant;floating=constant;fixed-constant;octal-
constant;dual=constant;literal~constant;status-constant;boolean~-constant
A JOVIAL constant contains all the information needed by the compiler to
perform the necessary constant to machine symbol conversion, and since

machine symbols representing constant values are not duplicated, a single
symbol may represent many different values.

NUMBERS. A number is a string of numerals denoting an unsigned,
integral value: 9876543201, for example.

number & numerals

INTEGER CONSTANTS. Any integral value, positive or negative, may
be denoted by an integer constant, composed of an optional + or = followed
by a number. In the absence of a sign, the value is considered positive.

To avoid writing a lot of zeros, it is sometimes convenient to denote
a very large integer as a coefficient multiplied by a positive, integral
power of ten. Thus, both 25E9 and 25¢¢@@P@0@@ denote twenty-five billion.
Because the base 1f is always the same, it is omitted in the integer
constant and only the exponent need be written, separated from the co-
efficient by the abbreviation E for Exponent.
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integer-constant § L+ :number: (Eyponentubase~1g : Humber

Some examples of integer constants are given below.
27
-p$39
+331E9

FLOATING CONSTANTS. A floating constant (an optionally signed
decimal number with a decimal point) denotes as its value a rational
number with a floating-point machine language representation consisting
of two binary symbols: the mantissa, a signed fraction representing the
significant digits of the value; and the characteristic, a signed integer
representing the exponent of an implicit power of two multiplier for the
mentissa. Thus, the floating constant -5@. would be represented by a
mantissa of =.78124k1 and a characteristic of +6, since

-.781241 * 26 = -50.
As with integer constants, it is often convenient to denote either
a very large number or a very small number as a coefficient multiplied
by an integral power of ten. Thus, both .139TE-8 and .P@@@@@@@1397
denote
-8 ) -8 -3¢
1397 * 147", and since .1397 * 1§ =~ equals .15 * 2

the floating constant .139TE-8 would be represented by a mantissa of
+,15 and a characteristic of -3¢.

Notice that a floating constant must have a decimal point.

floating-constant § [f;-J:rhumber:.:Lpumberjj;r.:numberﬂ:[Exponent_base_l¢:

;=] s number |

Some examples of floating constants are given below.
27.
-$.$39
+3.31E-6
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FIXED CONSTANTS. A fixed constant denotes as its value a rational
number with a fixed-point machine language representation consisting of
a single binary symbol: a signed or unsigned mixed number.

fixed-constant § floatlng-constant:A:Lf;-J:numberof_fraction_bits

The floating constant preceding the abbreviation A denotes the value,
and the number following the abbreviation A indicates the precision of
the value thus denoted by specifying the number of fractional bits (pits
After the binary point) in the machine language symbol representing the
value. This indication of precision determines how the machine language
symbol is to be manipulated during arithmetic calculations, and also
serves to distinguish fixed from floating constants.

If the value portion of a fixed constant denotes more precision
than is indicated by the precision portion, the excess precision is
truncated. Such truncation may be illustrated symbolically by consider-
ing r, the rational number actually denoted by the (positive) fixed
constant vAp:

r =v - v (modulo 2°P)

Thus, 27.98A1 and 27.5A1 both denote the same rational number, as do
2f7.A-3 and 2§@.A-3.

A negative precision indicates the number of least significant
integral bits truncated, placing the binary point beyond the right end
of the machine language symbol representing the value. A zero precision
indicates an integral value (usually denoted by an integer constant).

Notice that a fixed constant must have a decimal point, the abbrevi-
ation A, and a precision indication.

Some further examples of fixed constants are given below.
-123.A4
5545
+.678E9A~2P
OCTAL CONSTANTS. An octal constant, composed of a string of octal

digits delimited by O( and ), denotes either an unsigned integral value,
or a literal value (see the paragraph on literal constants).
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octal-constant § Octal:(:r¢;1;2;3;h;5;6;71s:)

In denoting an integral value, an octal constant is useful in those
cases where the programmer is more concerned with the bit pattern of
the resulting machine language symbol representing the value than in
the value itself. Since:

g = 999,

1g = P91,
2g = P16,
3g = #11,
hg = 188,
5g = 161,
6g = 116,
Tg = L1,

the bit pattern is readily discernible. For example: the bit pattern
of the symbol representing the value denoted by 0(27153L46) is

gigriiggrigigringgiig.

The integer value i denoted by the octal constant O(onon_l e 02010¢)
is given symbolically:

. n n=-1 2
= + LI )
i=28 o, 8 o ., * + 8 o, + 80l + o¢

DUAL CONSTANTS. A dual constant, composed of a pair of integer,
fixed, or octal constants separated by a comma and delimited by D( and ),
denotes as its value a rational number pair, each with a fixed-point
machine language representation consisting of a single binary symbol: a
signed (or unsigned) integer or mixed number. Both halves of a dual value
must have the same precision.

dual-constant # D, :(: Mnteger-constant:, :integer-constant? ;

al

Ffixed-constant:,:fixed-constantW;Foctal-constant:,:octal-constant]:)

Dual constants are useful in calculations involving two-dimensional
(%x,y) coordinate systems. For example: D(+32.5PA5,-84.25A5) could denote
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a location 32% miles east and 8#% miles south of a sector center =- to
a precision of l/32nd of & mile. Some further examples of dual constants
are given below.

D(g,9)
D(-165.9E-5A23,+89.1E-4A23)

D(O(LTTT7TT),0(PPppdd) )

LITERAL CONSTANTS. A literal value is one identical to the symbol
denoting it. A literal constant therefore, composed of a string of
JOVIAL signs delimited by H( or T( and ) and prefixed by the number of
signs in the string, denotes as its value that selfsame string of signs,
each sign represented in machine language by a 6-bit symbol.

literal-constant #§ numberof-signs:Hollerith;Transmission—code:(:SIgns:)

Literal constants are useful for denoting non-mumeric values that
can be conveniently represented by symbols constructed from the alphabet
of JOVIAL signs, for example: words or phrases from a natural language
such as English, or from a formal language such as JOVIAL itself. Since
much of the communication between man and computer uses the JOVIAL alphabet,
literal constants are especially useful in the processing involved in form-
ing and interpreting such messages. Thus:

M¢H(READY MORE INPUT AND RESUME COMPUTATION. )
could denote an output message for the computer operator.

Of the two binary coding schemes available for representing literal
values, the more generally useful is Hollerith, the code by which literal
values are input and output. Occasionally, however, the programmer is
concerned with the exact form of the machine language representation of
his literal values, and standard Transmission code, with its defined
representation, 1s required.
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TRANSMISSION=- TRANSMISSION= TRANSMISSION=-

OCTAL CODE OCTAL CODE OCTAL CODE
o(pg) 17( ) 0(25) 17(P) o(5¢) 1T(*)
o(g6) 17T(A) 0(26) 17(Q) 0(51) 1T(<)
o(47) 17(B) o(27) 1T(R) 0(56) 17(,)

0(19) 17(C) 0(3p) 17(S) o(6g) 117(#)
0(11) 17(D) 0(31) 17(T) 0(61) 17(1)
0(12) 1T(E) 0(32) 17(U) 0(62) 17(2)
0(13) 17(F) 0(33) 17(V) 0(63) 17(3)
o(1k) 17(G) 0(3L4) 1T(W) o(6k4) 1T(L)
0(15) 1T(H) 0(35) 17(X) 0(65) 17(5)
0(16) 17(1) 0(36) 17(Y) 0(66) 17(6)
o(17) 17(J) 0(37) 17(Z) 0(67) 17(7)
0(29) 17(K) o(Lg) 17()) o(79) 17(8)
o(21) 17(L) o(L41) 17(=) o(71) 17(9)
o(22) 17(M) o(k2) 1T(+) 0o(72) 1r(!)
0(23) 17(N) O(Lk) 17(=) o(7h) 17(/)
o(2k) 17(0) o(k7) 17($) o(75) 17(.)

Literal values (or rather, their machine language representations)
may also be denoted by octal constants; in order, for example, to denote
a code not associated with a JOVIAL sign. To illustrate: the machine
language symbol representing O(77) has no counterpart in the standard
Transmission cncoding of the JOVIAL alphabet, while both 0(371625) and
37(ZIP) are represented in machine language by the same 18-bit symbol.

It is important to note that any JOVIAL sign may appear in a
literal constant's sign string, including parentheses and blanks, so
that the number of signs within the delimiting parentheses must be
exactly equal to the number preceding the abbreviation H or T.

STATUS CONSTANTS. A status constant, composed of a letter or name
delimited by V( and ), denotes one of a set of arbitrarily labeled values.

status=constant § V :(:letter;name:)

alue

Each value in such a set is denoted by its own unique and usually mnemonic
status=constant, and is represented in machine language by a single binary
integer. For example, playing card values might be denoted by the follow=-
ing set of status constants:

vvvvv AT
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and be represented by binary symbols equivalent to: ¢ for Joker; 1 for
Ace; 2 for Deuce; 3 for Trey; and so on, to 13 for King.

Since a particular status constant may denote several different
values from several different sets, the correspondence between status
constant and integer depends on context.

BOOLEAN CONSTANTS. A Boolean constant denotes one of the logical
values, True or False, of Boolean algebra ==- as represented in machine
language, either non~zero for True or zero for False.

boolean-constant  § ldenoting-true;¢denoting-false

Boolean constants may also be used to denote other pairs of dichotomous
values, for example: Yes/No; On/Off; Minus/Plus; Set/Reset; In/Out;
Friend/Foe; and so on.

EXERCISE (Constants)

(a) Construct a fixed constant denoting the value of
= 3.1415926536... to a precision of at least six decimal places.

3
|

(b) Construct a fixed constant denoting the value of
2.7182818285... to a precision of at least three decimal places.

()
i

(c) Express the rational number denoted by the fixed constant
81.5653¢4A15 in floating constant form as a fraction with a power of
ten multiplier.

(d) A sector has a radar site 89 miles NNW of the sector center.
Express this location, to a precision of % .¢5, as a dual constant.

(e) Construct an octal constant represented by the same machine

language symbol representing 6T(JOVIAL) and (f) construct an integer
constant represented by this symbol.

(g) The value 'Excellent' may be denoted by either 9H(EXCELLENT)
or V(EXCELLENT) and, as denoted by V(EXCELLENT), is typically represented
by a three-bit machine language symbol. What advantage, if any, is there
in denoting such a value by a status rather than by a literal constant,
and (h) what are the disadvantages?
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(i) A set of values consists of the two colors red and black.
Construct a pair of JOVIAL constants denoting these values.

(j) A set of values consists of the four playing card suits.
Construct a set of JOVIAL constants denoting these values.

COMMENTS

A comment, composed of an arbitrary string of JOVIAL signs delimited
by '' and '', allows the inclusion of clarifying text among the symbols
of a program. Comments are treated as strings of blanks by the compiler
and are thus ignored, having no operational effect whatever on the program

LI PP, 2!
blanks & FS1ENS oy cept-the-symbols-""-and-$"

Comments should be used generously nevertheless, since careful annotation
is necessary even when programs are coded in as readable a language as
JOVIAL -- for readability does not necessarily imply understandability,
and as much care should be taken to make a program understandable as must
be taken to make it workable.

Comments aid both the original programmer, who often tends to forget
the precise function of parts of his program after they have grown "cold,"
and his successors, who must complete or maintain or modify the program.
The programmer's intimate and detailed knowledge of his program and of
the problem it solves is more valuable than the program itself, and much
of this knowledge can be recorded as program comments. The importance of
adequate commentary cannot therefore be over-emphasized.

A comment may be inserted between any pair of symbols in a JOVIAL
program.*¥ This makes it possible to write JOVIAL sentences in a rather
spasmodic prose style that resembles English. For example:

IF''the current value of item''NTRK'', the number of tracks in sector''
($s$)''is''GR' 'eater than''31 $

""Then' 'GOTO' 'process ' '"EXCESS' 'tracks for sector''($s$)

''as described on pages 1T...21 of this listing''$
''Otherwise, set the''SITU''ation status item for sector''($s$) = V(FEW) $

illustrates the mechanics of inserting comments. Stripped of commentary,
the routine reads:

¥ Except within a DEFINE declaration.
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IF NTRK($S$) GR 31 $ GOTO EXCESS($S$) & SITU($S3) = V(FEW) $

which is actually not quite so cryptic as at first glance it might seem.
Comments at the above level of detail are rarely necessary unless the
program must be read by non-programmers, since it is usually not indi-
vidual statements that need explanation but groups of statements. (With
a little practice, the function of any simple JOVIAL statement is almost
immediately obvious.)

The text portion of a comment must include neither '', the double
prime bracket, (since this, of course, ends the comment) nor $, the
terminating separator (which is used exclusively for terminating JOVIAL
sentences). Further, the omission of either delimiting double prime is
a major error, for subsequent commentary is interpreted by the compiler
as program, and vice-versa. The results of compiling English language
comuents are not usually very rewarding.

CLAUSES

Strings of JOVIAL symbols (delimiters, identifiers, and constants),
separated by blanks that may be omitted where this does not join a
numeral/letter pair, form clauses, which are: item descriptions; vari-
ables; and formulas. An item description describes a value; a variable
designates a value; and a formula specifies a value.

ITEM DESCRIPTIONS

In JOVIAL, the basic units of data are called items. All the
necessary characteristics of an item's value, such as its type, and the
format and coding of the machine symbol representing it, need be supplied
only once, in an item description. Item descriptions for the various
types of value will be discussed separately, in the paragraphs on numeric,
literal, status, and Boolean clauses.

VARIABLES

A JOVIAL variable designates a value which may vary during the
caurse of program execution. (One of the main functions of any program
is to compute fresh values for the variables in its environment.) Vary-
ing the value of a variable is accomplished by replacing the machine
symbol representing the old value with another representing the new value.
A symbol may be thus replaced by the assignment of a specified symbol in
its place, by exchange with another symbol, or by the input of a record
from a file.
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There are four major types of variable in JOVIAL, corresponding
to the four basic types of data: numeric; literal; status; and Boolean.
(A fifth type of variable, the entry variable, designates a composite
value and is thus in a category by itself. Entry expressions will be
discussed later, along with the ENTRY functional modifier.) As basic
units of data, items are the principal variables of JOVIAL. A JOVIAL
variable is therefore usually composed of an item name -- possibly
suffixed by an index delimited by the subscription brackets ($ and $).

L($ index §)]

variable § name . ..o

An index¥* subscripting an item name distinguishes a particular value
from a set of values bearing the same item name. For example,

ALPHA($$,13,9,2$)

designates the value of the item ALPHA for row $, column 13, plane 9,
and space 2 of a b-dimensional array of ALPHAs. Similarly,

BETA($1$)
designates the value of the item BETA for entry I of some table; while

GAMMA

designates the value of a simple, "one-of=-a=-kind,
named GAMMA.

unsubscripted item

FORMULAS

A JOVIAL formula specifies a single data value and is, in effect,
a rule for obtaining that value =-- perhaps by means of a lengthy compu-
tation. Formulas are classified according to the type of data value
they specify: numeric; literal; status; and Boolean. They are composed
of operands, which are constants, variables, and functions, and of
arithmetic, relational, or logical operators. A numeric or Boolean
formula may specify a value in terms of a series of operations upon a
set of operands, while a literal or status formula must specify a value
in terms of a single operand.

* Indexes will be more fully discussed in a later paragraph.
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formula $ numeric-formula;literal-formula;status-formula;Boolean-

formula

FUNCTIONS. A function specifies a single data value and is composed
of a procedure name followed by a list of calling parameters, which are
either formulas or names, separated by commas and bracketed by the ( and )
parentheses. A parameterless function is possible, but the parentheses
may not be omitted.

function § name ( (Mformula;nemels’| )

of=procedure

Functions are numeric, literal, status, or Boolean -~ according to the
type of data value they specify. The value specified by a function is
computed by the procedure, which i1s automatically invoked whenever the
function's value is needed. In its execution, the procedure utilizes
the values specified by the calling parameter formulas and the environ-
ment elements denoted by the calling parameter names. (Both calling
parameters and the computation of function values by procedures will be
discussed later, in the section on procedures.)

Functions serve much the same purpose in JOVIAL that they do in
ordinary mathematics. That is: a function allows the specification of
a parameter dependent value to be removed from the description of how
the value is derived. Thus, in mathematics, once the cosine function
is defined, the term cos & may be used wherever it is required. Simi=~
larly, in JOVIAL, if an appropriate procedure named COS is defined, the
function
COS (THETA)

would specify the cosine of the angle given by the value of the item
THETA. Some further examples of functions are given below.

ARCSIN (GAMMA+2.72,1.@E-L)
RANDOM ()

SYMMETRIC (MATRIX'A)

BASIC NUMERIC CLAUSES

A numeric clause describes or designates or specifies a numeric
value, one that may be denoted by an integer, floating, fixed, dual, or
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octal constant. A floating, fixed, or dual item description describes
a numeric value (or rather the machine symbol representing the value)

~while a numeric variable designates and a numeric formula specifies a

numeric value. '

The discussion of numeric clauses will be based on the following
definitions:

« Precision =~ the number of digits with which a numeric value
is expressed. A convenient measure of precision is the minimum
value expressible in the same number of digits.

. Significance =~ the minimum number of digits with which a
numeric value could be expressed without loss of accuracy.

. Accuracy -- the number of 'correct' digits with which a
numeric value is known. A measure of accuracy is maximum error.

For example: the number P@@19.3416f has 6 or T significant digits
(trailing zeros may not be significant, leading zeros never are) and
is precise to .P@PPl, but may only be accurate to + .§@5. Obviously,
accuracy cannot exceed significance, and significance cannot exceed
precision.

NUMERIC -ITEM DESCRIPTIONS

A numeric item description describes the machine symbol used to
represent the value of a floating, fixed, or dual item. Two optional
elements are common to all three descriptions:

l. The Rounded descriptor, which declares that any value
assigned to the item be rounded to the required precision rather
than truncated, as would otherwise be the case. (Rounding is
accomplished by first adding 2P=1 to the magnitude of the value
being assigned to the item, where 2P is the value that can be
represented by the magnitude of the item's least significant bit.
The symbol representing the resulting sum is then truncated to
the precision of the item, replacing the symbol representing the
item's old value. Thus, the value L4.75 assigned to a rounded
integer item becomes 5, and assigned to a truncated integer iten,
the same value becomes 4.) Rounding is generally useful where

it is desired to squeeze the maximum accuracy out of computations
with a limited precision.

2. A pair of constants, separated by the ... separator, which
declare, in order, the estimated minimum and maximum absolute
values of the item. (This optional magnitude range may be used
by a JOVIAL compiler to optimize the machine language program's
manipulation of the item's value.)
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FLOATING-POINT ITEM DESCRIPTIONS. A floating-point item description,
composed of the type descriptor Floating, followed by the optional Rounded
descriptor, followed by an optional pair of floating constants separated
by the ... separator, is used to declare an item whose arithmetic value
is represented by a floating-point machine symbol.

description § Floating (Rounded| |floating-

of-floating=point-item

constant ... floating-constant |

® The type descriptor Floating declares the item a floating-point
type item.

0 The Rounded descriptor declares the item's value to be rounded.

o The optional pair of floating constants declare an estimated
absolute value range.

Some examples of floating-point item descriptions are given below.
Floating
Floating Rounded
Floating §.1E-20...0.5E+20

Floating Romlded ¢~ cee 09E"'9

FIXED~-POINT ITEM DESCRIPTIONS. A fixed-point item description,
composed of the type descriptor fixed (which may be abbreviated by A),
followed by number of bits, either the Signed or Unsigned descriptor,
an optional number of fraction bits, the optional Rounded descriptor,
and an optional pair of integer or fixed constants separated by the
«++ separator, is used to declare an item whose numeric value is
represented by a fixed-point machine symbol.

descrlptlonof—fixed-point—item $ fixed number . ... Signed;Unsigned

Lt+;-J:nuMberof-fraction-bitsJ |[Rounded| |integer=-constant;fixed-constant

++. integer-constant;fixed-constant
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e The type descriptor fixed (or the abbreviation A) declares the
item a fixed~point type item.

e The number of bits declares the total number of bits in the
item's machine symbol, including any sign bit.

® The Signed descriptor declares a signed value, with one of the
bits of the machine symbol serving as a sign=-bit. The Unsigned descriptor
declares an unsigned value that is always positive.

o The optional, signed number of fraction bits declares the number
of fractional bits in the item's machine symbol. A zero indicates an
integral value and may be omitted for exact integers. A number equal
to the number of magnitude bits (total number of bits if unsigned, total
minus 1 if signed) indicates a purely fractional value. A number greater
than the number of magnitude bits indicates that the first few fraction
bits of the value are not significant and thus need not be represented.

A negative number indicates that the last few integer bits of the value
are not significant and thus need not be represented.

o The optional Rounded descriptor declares the item's value to be
Rounded.

0 The optional pair of integer or fixed constants declare an
estimated absolute value range.

The following examples illustrate the effect of a fixed-point item
description on the format of the machine symbol being described. (Where
s is a sign-bit, i is an integer-bit, f is a fraction-bit, and - is an
implied bit, not included in the machine symbol.)

Description Format

fixed T Signed siiiiii.
fixed T Unsigned 2 iiiii.ff
fixed 7 Unsigned 9 PETC T S i A A A A 4
fixed T Signed -2 siiiiii--~.

In designing a fixed-point item description, certain information
must be available about the value being described, mainly: the precision
with which it need be represented; and its range of variation. Precision
determines the number of fractional bits required while range determines

the number of integral bits required, as well as whether the value need
be signed or not.
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For example: suppose the variable ALPHA ranges in value between
@ and 1¢@, and requires .Pl precision. Since:

26 - @ < 1pp < 128 = 27

it can be seen that T integral bits are needed to represent the maximum
value of ALPHA. Similarly, since:

2T = 4781 < .B1 < .$156 = 270

it can be seen that T fractional bits are needed to provide the desired
precision. And since:

§ < ALPHA

the machine-symbol representing ALPHA need not include a sign-bit.
These considerations lead to the conclusion that a machine-symbol with
the format

iiiiiii.fffffft

will suffice to represent all values of ALPHA. A fixed-point item
description for this format is

fixed 14 Unsigned 7 Rounded @...10¢
which may be expanded with comments to
fixed''point''lh''bits''Unsigned''T''fraction bits''Rounded’'range''d...10¢

The following examples further illustrate the way in which fixed=-
point item descriptions are designed.

Consider the item YTD'NET, year-to-date net earnings, from a typical
personnel file. Assume this item is measured in dollars and must be
precise to the nearest penny. As before, a precision of .¢l requires
T fractional bits. If the annual salary of the firm's president is

$108, 0P8, then 17 integral bits will suffice to represent any earnings,
since:

216 - 65536 < 1pppp < 131672 = 217

As net earnings mean after deductions, negative values are conceivable
so the item must be signed. In short:

fixed 25 Signed 7 @.AT ... 1.ES5AT
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Consider the item ALTITUDE used in processing aircraft flight
data. ALTITUDE is measured in feet but need be precise only to the
nearest 1¢¢ foot interval. Since:

26 = 64 < 1fP < 128 = of

we find that, far from needing any fractional bits, the precision re=-
quirement allows us to dispense with the 6 least significant integral
bits. This precision is declared as =6 fraction-bits. A comfortable
190, PP¢ foot ceiling means that, as before, 17 integral bits are needed.
Chopping off the 6 least significant bits to agree with the precision
requirement yields a total of 1l magnitude bits, and since ALTITUDE is
implicitly positive, it needs no sign. A fixed-point machine symbol
representing ALTITUDE would therefore have the format

131111 1id13i1dide«@°=«w- .

with the binary point 6 positions past the right end of the symbol.
In short:

fixed 11 Unsigned =6

If, however, the value of ALTITUDE must be precise to the nearest foot,
then

fixed 17 Unsigned
describing a 1T7-bit, unsigned integer is needed instead.

Consider the item DELTA from an engineering problem, where:

- .$PPP5 < DELTA < +.¢@@d5

Since:

o™ gpdgs < DELTA < +.00005 < + 2”

the absolute magnitude of DELTA is less than 2-lh, indicating that the
required number of integral bits is -1, which means that the 14 most
significant fractional bits are unnecessary and may therefore be omitted.
If DELTA must be precise to + 1¢~7, then 3@ fractional bits are required,
since:

2™39 . l¢—9 <2

1k

To represent both positive and negative values of DELTA, a sign-bit is
needed, so that the total number of bits required is the sum of (the
number of integral bits) -1k, (the number of fractional bits) 3@, and
(the sign-bit) 1. This ylelds a total of 17, so that DELTA must be
represented by a machine-symbol with the format
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Sem = = = = = = = = = = LT S A A A S A Al S A i A A Al A A
which may be described as follows:
fixed 17 Signed 3P Rounded

FIXED VS. FLOATING REPRESENTATION. A fundamental problem in

numerical calculations is that of maintaining significance in the
values involved.

To maintain significance using fixed-point machine symbols, it
must always be possible to predict the maximum size of the variable
values being represented, and often the minimum size as well. For
some problems, however, it is extremely difficult or even impossible
to make such predictions. Or where prediction is possible, the vari-
ation in size may be so great that a very large machine symbol would
be required to retain significance over the entire range. Consequently,
fixed=-point representation is practical only for those variables with
a limited and predictable range in size.

Floating~-point machine symbols, on the other hand, automatically
maintain the 8 or l¢ most significant decimal digits of values typi-
cally ranging in size between 1.E-3@p and 1.E+3@p. (Particular limits
are, of course, machine dependent.) Such symbols are also much easier
to describe than fixed-point machine symbols since only one format is
possible. They are, however, less efficiently manipulated by the com-
puter than fixed-point symbols and are not really suited for the repre-
sentation of exact values, such as integers, which must be specifically
precise. In addition, floating=-point computations can produce violent
and unexpected arithmetic errors unless thoroughly analyzed. For example:

(.56789¢123u*1¢1¢¢ - .56789¢1123*1¢1¢¢) * .98765¢123u*1¢7 = .1¢96291637*1¢1¢¢

The result of this computation with decimal floating-pcint symbols is
clearly not accurate to 1 digits as shown, because the subtraction lost
T digits.

DUAL ITEM DESCRIPTIONS. A dual fixed=-point item description,
composed of the type descriptor Dual, followed by number of bits per
component, either the Signed or Unsigned descriptor, an optional number
of fraction bits per component, the optional Rounded descriptor, and an
optional pair of dual constants separated by the ... separator, is used
to declare an item whose dual numeric value is represented by a dual,
fixed=-point machine symbol.
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description § Dual number Signed;Unsigned ||+;=]:

of=bits
|[Rounded | [dual-constant ... dual-constant |

of-dual=-item

DUIDET o praction-bitsd
e The type descriptor Dual declares the item a dual, fixed-point
type item. The remainder of the description applies to each of the two

component halves of the item and has the same meaning as the corresponding
elements in the fixed-point item description.

e The number of bits declares the total number of bits in the
machine symbol representing a single component of the dual value, in-
cluding any sign-bit.

e The Signed descriptor declares a signed component, and the Un-
signed descriptor declares an unsigned component.

o The optional, signed number of fraction bits declares the number
of fractional bits in the machine symbol representing a component value.
Both components thus have the same precision.

o The optional Rounded descriptor declares both components' values
to be rounded.

o The optional pair of dual constants declare an estimated absolute
value range.

Dual item descriptions are designed in much the same way as are
fixed item descriptions. For example: consider the item AIRCRAFT'POSITION,
expressed in X,y coordinates measured in nautical miles from a sector
center. AIRCRAFT'POSITION must be precise to .§5 miles, and aircraft
further than 1f@@ miles from the sector center are not recorded.
ATRCRAFT'POSITION is a dual value requiring l¢ integral bits in each
component to represent values as great as 1f¢P, since:

27 = 512 < 19gp < 1f2h = 21¢

Aircraft can be East or West, North or South of the sector center, so
the component values must be signed, and since:

272 = #3125 < .f5 < .P625 = ot

each component requires 5 fractional bits, making a total of 16 bits
per component, for a grand total of 32 bits. The item description

Dual 16 Signed 5 Rounded

describes a machine symbol with a format
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siiiiiiiiiifffeffsiidiiidiiiicfsr s

meeting the specifications.

EXERCISE (Numeric Item Descriptions)

(a) Design an item description for a variasble with a range =1l.E2
thru +1.E6, which must be precise to * .#@@5.

(b) Design an item description for a varisble with a range 16
thru 8¢¢¢¢, which must be precise to the nearest integer.

(c) Design an item description for a variable with a range -l.El¢¢
thru +l.El¢¢, where exact precision is unimportant.

(d) Discuss the variable with the following item description in
terms of range and precision: fixed 17 Signed 2¢

(e) Design an item description and give the units of measure,
for a variable whose value must locate any point on the surface of the
earth to a precision of + .¢5 nautical miles. (Hint: use latitude and
longitude. 1~ of arc at the equator = 6@ nautical miles.) Also,
construct a constant denoting the location, in the vicinity of New
Orleans, at 3¢ON,9¢OW.

HUMERIC VARIABLES

A numeric variable designates either a rational number as repre-
sented by a fixed or floating=-point machine symbol, or a rational
number pair, as represented by a dual fixed-point machine symbol.

Floating, fixed, and dual items (both simple and subscripted by
an index) are thus numeric variables. For example:

ALPHA
YTD 'HET( $EMPLOYEE 'IR$)
ALTITUDE( $F$)

DELTA( $I+1,J,K-1$)
AIRCRAFT'POSITION(S$FS)

are all numeric variables, designating values described in the preceding
sections.
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A single-letter subscript is also a numeric variable, designating
a signed, integral value. Subscript variables may be considered as
elements of the language, because they are implicitly described. Sub-
script description varies from machine to machine, but the basic format
may be thought of as

siii...1idii.

that is, a sign-bit and an undefined number of integer bits. (A sub-
script will always suffice to index the greatest array that may be
stored in the computer's memory.) Subscripts are activated (i.e.,
defined and assigned an initial value) by FOR statements, and though as
many as 26 subscripts (A thru Z) may be active simultaneously, a sub-
script's range of activity is strictly limited. (See the section on
FOR statements.)

Other numeric variables, involving functional modifiers, will be
discussed later.

NUMERIC FORMULAS

A numeric formula specifies a single, numeric value, obtained by
executing any indicated arithmetic operations on the values of the
numeric operands composing the formula. These operand values may be:
denoted by integer, floating, fixed, octal, or dual constants; desig-
nated by arithmetic variables; or computed as function values by pro-
cedures.

numeric-formula § integer;floating-constant;fixed-constant;octal-constant;

variable ;function 5 [ numeric-formula )];

of-numeric=-type of-numeric=-type

[/ mmeric-formila /)];|+;-] numeric-formalas3™5*3/5*

A JOVIAL numeric formula containing arithmetic operators specifies
a value in much the same way as would a similar formula in the language
of ordinary algebra. Thus, the arithmetic operators +, -, ¥, and / have
the expected meanings of addition, subtraction or negation, multiplication,
and division; while the arithmetic operator ** has the, perhaps, not so
obvious meaning of exponentiation, raising to a power.

As in algebra, division by zero is undefined. Fractional or mixed
exponents are possible, but since JOVIAL deals only with rational numbers,
any exponentiation vhich would specify a complex root in algebra, such as
(=2%x.5), is also undefined.
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The parentheses ( and ) perform their usual grouping function, and
the absolute value brackets (/ and /) specify the magnitude of the value
of the numeric formula they enclose. With these brackets, formulas
of any complexity may be constructed.

Consider the familiar algebraic formula:
AX® + Bx + C
An equivalent JOVIAL formula is:
AAXX*¥*2 + BB*¥XX + CC

Note that, unlike algebra, multiplication must be explicitly indicated
in JOVIAL and also, though algebra customarily uses a single letter to
designate a value, JOVIAL customarily uses multi-character identifiers
since JOVIAL is restricted in alphabet while algebra is not.

The main difference, however, between a JOVIAL numeric formula
and an algebraic formula arises from the fact that JOVIAL is a linear
language: everything must be strung out as on a single line. As a
result, JOVIAL requires special symbols for subscripting and super-
scripting, and a JOVIAL arithmetic formula will often contain a pro-
fusion of parentheses where none are required in algebra. For eXample,
the algebraic formula:

could appear in JOVIAL as:
(AA($P¢)*x2)/(AA($1$)-(AA($23$)/ (xXX+(1/xX))))

While algebra customarily uses many kinds of brackets to group
sub-formulas, JOVIAL is limited to ( and ), which sometimes makes it
difficult to mate left and right parentheses properly. A method for
finding parenthesis pairs is to number each parenthesis from left to
right, increasing the count by one for each left parenthesis and de-
creasing 1t by one for each right parenthesis. The number of the last
Parenthesis in the formula should be zero. The mate to a left paren-
thesis is the first right parenthesis with a smaller number. Thus,

(= (mmm ) mem (0 mem ) == ) )
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would be numbered and paired as follows:

ee 000000
.

1 2 1
)

Y -

e s 0000000000000
®e 000000000

®0600000s0000e
3 .
. .

ee e e

H eoe0vee

1 1) 2 3 4
(AA($P$)**2) /(AA($13)-(aA($2$)/ (xX+(1/xxX

shows that the sub-formulas have been acceptably grouped. Actually, not
all the parentheses used in this example are necessary, and the formula
could appear as

AA($0%) %2/ (AA($1$)-AA($23) / (XX+1/%X))

Three pair of parentheses are redundant because of the implicit ordering
of operations in a JOVIAL numeric formula.

SEQUENCE OF NUMERIC OPERATIONS. The sequence of operations described
in a numeric formula is determined primarily be the way the formula is
bracketed, and secondarily by an operator precedence scheme. Operations
within sub-formulas, enclosed in parentheses or the absolute value brackets
(/ and /), are performed first. Thus, 2%((6+3)/3) specifies 6 as follows:
(6+3) specifies 9; (9/3) specifies 3; and 2%3 specifies 6. Any particular
operator may thus be given precedence by bracketing it and its operands.
Where bracketing does not unambiguously indicate precedence, (i.e., in
sub-formulas with more than one operator) the conventional rules apply:

A. Negations are performed first. Thus, -2+3 specifies +1 and not
-5. (The unary* operator + is allowed, but is redundant, ignored, and
usually omitted except for emphasis, as +1 in the previous sentence.)
In a bracketless formula, negations either come first or follow another
operator, for example: ALPHA/-9.TE6.

B. Exponentiations are performed next. Thus, 2%2¥¥2 specifies 8,
not 16; and 2+2%¥2 specifies 6, not 16.

C. Multiplications and divisions are performed before additions and
subtractions. Thus 2+2/2 specifies 3, not 2; and 2-2%2 specifies -2, not f.

* A unary operator works on a single operand, unlike a binary operator,
which works on two.
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D. Additions and subtractions are performed last.

E. Within the above categories, operations are performed from
left to right in order of listing. Thus: 2%¥3%%2 specifies 64, not
512; 2./2./*2. specifies 2., not .5; and 2./2./2. specifies .5, not 2.

The sequence of operations given by these rules of precedence can,
of course, be altered by the use of additional parentheses. And it is
often desirable to emphasize a correct sequence of operations with
redundant parentheses, to avoid possible misunderstanding.

ALGEBRA OF NUMERIC OPERATIONS. By algebraic manipulation, it
is often possible to rearrange a numeric formula to yield a more
efficient scheme of operations. Constant terms, for example, should
be combined. This easy=-to-correct inefficiency is illustrated in the
formula

3.¥ALPHA/1.E6
which could be rewritten as

ALPHA/333333.3333

to contain only one operation and require storage for only one constant
machine symbol.

The factoring-out of common terms can also reduce the number of
operations to be performed. To illustrate: the algebraic formula used
previously,

Ax® + Bx + C
was written in JOVIAL as

AA*LX¥¥%2 + BB¥XX + CC

The formula indicates five arithmetic operations, which by simple
algebra

Ax2+Bx+C=(Ax+B)x+C
could be reduced to four, thus:
(AA¥XX + BB)*XX + CC

This particular type of factorization is called ‘'nesting', for a
reason which requires a slightly more ambitious polynomial to illustrate.
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Consider then:

Ahxu+A3x3+A2x2+Alx+A¢ = (((Aux+A3)x+A2)x+Al)x+A¢

In the right-hand formula, successive factors are embedded in 'nests'
of parentheses, thus 'nesting'. When transliterated to JOVIAL, the
nested formula

(((AA($us)ax+AA($3$) ) BX+AA($25) ) X +AA($1$) ) ¥XX+AA($03)

specifies only eight operations, as against the dozen or so that the
unnested version would have required.

The process of transliterating a formula from algebra into JOVIAL
is shown in the following examples:

Algebra JOVIAL
Loy by L, AA/3.+4 . *¥BB/3.+CC/3. or better:
3 3 3

AA/3.+1.333333333%BB+CC/3. or
better yet: (AA+4.¥BB+CC)/3.

xth 1 (5. %KX+4.)/(2.X+8.) + .5 or
ax+ better: (3. %xK+k.)/(XX+k.)
(%(A+B+C)(B+C)(A+C)(A+B))% (+5%( AA+BB+CC ) *( BB+CC ) *( AA+CC)
*(AA+BB) )*¥.5
Lx = A% + (2 + a) ((/30K-AR/ Y¥% .5+(KKA*24AR) ) /AAYEL .5
2372

(x2) (3403 (HoRR3*(KK+2) ) /(3 - 4KK*.,25 ) (3. 5KK) %%.5
3x4
(o, )° (ALPHA($T$) %61 ) %52

2
o ALPHA($T-13)%%( T%%2)
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MODES OF NUMERIC OPERATION. In JOVIAL, numeric values have three
modes of representation: floating-point; fixed-point; and dual fixed-
point. Any arithmetic operation, upon operands of like mode, may be
performed in any one of these modes. However, a numeric formula may
combine operands having different modes of representation, so that auto-
matic conversion between modes is implied.

Mode conversion is best described in terms of three fictitious
functions: Float; Fix; and Twin. Float converts a value in fixed-point
representation to floating representation. Thus:

Float(2) is 2.

Fix, on the other hand, converts a value in floating-point representation
to fixed representation of an undefined precision. Thus:

Fix(2.) is 2.A?

Twin, finally, converts a value in fixed-point representation to dual
representation by the simple expedient of duplicating the value, for
example:

Twin(2) is D(2,2)
Twin(Fix(2.)) is D(2.A%,2.A2)

Mode selection for an operation is based primarily on the mode of
the operands involved, so that an operation on two operand values of
like mode will be performed in that mode and will yield a resulting
value in that mode. In the floating-point mode, for example: L.s + 2.
specifies 6.5, and in the fixed-point mode: 4.5A3 % 2.A3 specifies 9.A3.
In the dual fixed-point mode, operations are done in parallel, with the
left component of one operand combined with the left component of the
other to yield the left component of the result, and similarly for right
components. Thus: D(4.543,9.A3) - D(2.A3,-2.A3) specifies D(2.5A3,11.A3);
and D(4.5A43,9.43)%*D(2,2) specifies D(2@.25A3,81.A3).

When a dual operand is combined with a floating or a fixed operand,
the mode of operation and the result are dval, with the implicit con-
version Twin =~ and if necessary, Fix -~ employed on the mono-valued
operand. Thus: D(4.543,9.A3)/2. specifies D(2.25A7,4.5A7); and
L .5A3%*D(2.A3, .5A3) specifies D(2§.2543,2.12A3).

When a fixed operand is combined with a floating operand, the mode
of operation depends on the intended use of the result, as determined
by the context of the formula. A mode of operation is selected which
minimizes the number of Fix and Float conversions necessary in evaluating
the formula, so that 4.5A3%2. could specify either 9. or 9.A%.
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Note: For the sake of program efficiency, arithmetic formulas
should be written to minimize the number of implicit Fix or Float
conversions needed. (The minimization of Twin conversions in a
formuls is usually less important, because of the trivial nature of
the conversion.) However, when any value, floating, fixed or dual,
is to be raised to an integral power, an integer valued exponent is
preferable, since it results in a more efficient program. In other
words, though 3.¥¥2. and 3.¥*2 both specify 9., the latter formula,
with the integer exponent, is better.

PRECISION OF NUMERIC OPERATIONS. The computations performed in
carrying out the intent of a JOVIAL numeric formula may possibly vary,
" in detail, for different computers. In particular, the representation
and manipulation of negative values and the method of carrying signs
will very likely differ. Another and more important point of difference
is the precision with which computations are performed.

The precision* of the result of a floating=-point computation
cannot be defined, since it depends both on the magnitude of the wvalue
(which, of course, varies) and on the length of the mantissa portion
of the floating-point machine symbol representing the value (which,
of course, is computer dependent. ) Where C is the value of the
characteristic and n is the number of blts in the mantissa, the pre-
cision of a floating-point number is oC-n or, as JOVIAL would say

2. **% (CHARACTERISTIC - NUMBER'OF'MANTISSA'BITS)

The precision of the result of a fixed=-point computation also
cannot be exactly defined, but some useful limits can be established.
(These limits also apply to dual fixed-point results.) The problem of
fixed-point precision arises because, although the significance of the
result of a fixed-point arithmetic operation can exceed the significance
of the most significant operand (e.g., multiplication -- where an m-bit
multiplier and an n-bit multiplicand can produce an mn~bit product) the
accuracy of the result cannot exceed the significance of the least
significant operand, while the number of bit positions available for
the result is usually limited to the least multiple of the computer's

¥ In floating-point computations, it is ordinarily not precision which
is of interest, but accuracy. Computational accuracy is established
by a b-step error analysis, determining: first, the probable initial
error in the data; second, the local error arising from each compu-
tation; third, the propagated error as particular computations are
repeated; and finally, the cumulative error for the total computation
Error analysis is not simplified by floating-point representation.
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word size that may contain the most significant operand. Where the
maximum significance of the result exceeds this limit, a precision
must be selected so the result may be truncated with a minimum
sacrifice of accuracy. Such truncation is performed in the following
manner: first, the least significant fraction bits of the result are
truncated; and second, if necessary, the most significant integer bits.

To give a decimal example of this truncation rule, suppose two
variables are multiplied whose maximum magnitudes are 999.9999 and
9.9999 and whose product is limited to ten significant digits. Since
the actual product could have as many as four significant integral
digits and eight significant fractional digits, the two least sig-
nificant fractional digits would be truncated, and the maximum product
would be carried as 9999.8999P@, with six fractional digits rather than
eight. As another example, if two variables have maximum magnitudes of
999999.9 and 99999., then their product would have as many as eleven
significant integer digits and one significant fractional digit, or
twelve significant digits in all. If their product is again limited
to ten significant digits, then both the fractional digit and the most
significant integral digit would be truncated. Such truncation intro-
duces the possibility of spurious results, which must be carefully
guarded against.

Note: Because of the unavoidable differences introduced by the
truncation of intermediate results, not all algebraic identities are
necessarily JOVIAL arithmetic identities. In algebra, for example:
A+(B+C) = A+B+C and (A+B)/C = A/C+B/C. In JOVIAL, however: AA+(BB+CC)
does not necessarily specify the same value as AA+BB+CC; nor does
(AA+BB)/CC necessarily specify the same value as AA/CC+BB/CC. (such
truncation errors, of course, apply to all computations, and not just
those involving fixed-point operands.)

EXERCISE (Numeric Formulas)

(a) Assuming I and N are active subscripts, designating the
algebraic values i and n, and that AA, BB, CC, and XX are floating-
point items designating the algebraic values A, B, C, and x, trans-
literate the following algebraic formulas into JOVIAL numeric formulas.

1 n n n
Loy + x5+ x5)
2. Aix¢ + Bixl + Cix2

(xn)212
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> - B)x3 2 _ -
Ax; + (AC - B)x_ + Cx_ - |BCx = C°|

o

x. + C
n

1
5. % - §(A2|x|2)
5
2, 2. 2
6. (An + B+ cn)
(1% + 0%)

8. (x-A)3 - 9.51(;‘:-;\)2 + 1.9(x=A) + 5

x5+ oL
1 n

9. 1+

X, + X
1

_T_+1

0. 2+ &%+ 3% -2

(v) Each one of the following JOVIAL numeric formulas contains
an error or an inefficiency. Where the meaning of the formula is clear,
make the appropriate correction.
1. ((ALPHA * XX ** 2 + BETA) * XX - GAMMA)(XX + 3.)
2. ALPHA * XX + 1. / (2. * ALPHA) - L. * ALPHA * (/XX - ALPHA/)
3. ALPHA * XX - (1. + ALPHA * XX %% 2,) / 8. % XX ** 2,
b, XX %% -2 * SIN(ALPHA) + 2 % YY %% 2 % COS(ALPHA) + 9.312k

ALPHA * LOG((XX + (/XX ** 2 - ALPHA ** 2/) ** .5) / * ALPHA)

\
.

6. AA($I$) * (ALPHA - 2. ** XX) ** =9 + AA($I-1$) * (ALPHA - 2.
** XX) *¥* -6 + AA($I-2$) * (ALPHA - 2. ** XX) ** =3 + AA($I-3$)

To (((XX = =1.) / AA($P$) ** 2 + (XX + -1.) / AA($1$) ** 2) /
(AA($0$) + AA($13))

(((ALPHA * BETA * XX + BETA * GAMMA) * XX - 9. % ALPHA * BETA
*7(0(-9- *)‘)GAWA*BETA)/((MPHA*)o(+GAmA)*()o<+3.)
*H-3o

[0 ¢]
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9. T($K$) * (XX - 1.) + T($K-1$) * (XX ** 2 - 1.) + T($K-2$)
1p. (= (/Ap/) ** =3) ** .5 + (XX ** .73468) + (/ALPHA/)
(c¢) Transliterate the following JOVIAL numeric formulas into
the language of algebra.
1o ((xx($1$) * (XX($I$) ** 2 + XX($I$) + 1.)) / ALPHA) ** 2
2. =l./ (XX * (XX ** 2 = 1.) ** .,5)
3. =~ ((ALPHA / BETA ** 2) / (GAMMA ** 3 + XX *¥ 2)) %% XX
Lo (B-5/XX+4/xx*2)/ (L+2/ %K %%2)) ¥ I
5. ((R * OMEGA * SIN(THETA)) ¥ (R * OMEGA ** 2 % COS(THETA))
- (R * OMEGA * COS(THETA)) * (R * OMEGA **¥ 2 % SIN(THETA)))

/ (R %% 2 % OMEGA ** 2 * SIN(THETA) ** 2 + R % OMEGA *
COS(THETA) %% 2) ** ,5A15

(8) The following pair of JOVIAL numeric formulas purportedly
specify the same value (where XPON is a floating-point item). Choose
5 test values for XPON and evaluate both formulas to check their
agreement. On the basis of these evaluations, determine which formula
is likely to be more efficient.

1. 1./(((.pPL8992 * XPON ** 2 + .B66512) * XPON ** 2 + 1.$3) * XPON
** 2 + 3,99416)

2. 2.71828 %% XPON / (1. + 2.71828 ** =XPON) %% 2

(e) Given: Name, Value, and Description

of ITEM AA 1.638LETA-1p fixed 15 Unsigned -1p Rounded
ITEM BB 1.E4Ag fixed 15 Unsigned @@ Rounded
ITEM  CC 1.E-4A2g fixed 15 Unsigned 2@ Rounded
ITEM XX .333A1¢ fixed 16 Signed 1§ Rounded
ITEM  YY 1.E1A1§ fixed 16 Signed 1@ Rounded

Estimate the values specified by the following numeric formulas, assuming
that the result of an arithmetic operation is limited to fifteen magnitude
bits and one sign bit. (Hint: the necessary calculations may be done in
d.ecimal,5 using the rule-of-thumb: ten bits is equivalent to three decimal
digits.
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1. XX * Yy * (XX *¥ 2 = YY % 2) / (XX ¥% 2 + YY *¥ 2))
2. A/ ((BB + 1.A1¢) * (cCc - 1.A18))

3. (AA+BB+cCC)/ XX/ YY

L. 3.A10 * (1.A1f - XX %% 2 + BB ¥*¥ 2) ** .5A1p

5. AA - 5.E5A1§ * CC

INDEXES

In JOVIAL, an item name may be common to just one value, or to
an entire array of values. Arrays of any dimension are possible, and
1- or 2-dimensional arrays may even be organized into tables. As in
algebra, the value of an array element is designated by (item) name,
subscripted by an index indicating the position of the value within
the array. For example: AA($1,2,0$) could designate the circled value
in the 3 by 4 by 2 array shown below.

ooooooooooooooooooooooooooooo

€000 000500000000 L R A

Mgy s A Aoy Az

D Ao o Bon1 : Baan o

A JOVIAL index is composed of a list of numeric formulas, separated
by commas.

index § numeric-formulas’

An index is always delimited by the subscription brackets ($ and $), and
usually serves as a subscription expression following an item name. (Table
names and certain functional modifiers may also be subscripted, as will be
described later.)
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An index is, in fact, a type of formula specifying a vector value
whose components are positive integers, each of which indicates a po=-
sition in the corresponding dimension of an array. Thus, an index
specifying 1,2,f as before, indicates row 1, column 2, and plane @ of
a 3-dimensional array.

An index component may be specified by a numeric formula of any
complexity. For example:

AA(SALPHA($I$)*I**2-BETA( $T**2$),2%T, I-1$)

is just as correct, where subscript I is active, as AA($I,2,0$), and
might even designate the same value. Complicated indexes of this type
are useful in those cases where determining the value to be designated
from an array of values requires arithmetic computation. Notice that
even subscripted items may be used in indexes, leading to subscription
expressions within subscription expressions =-- to any level. For
example: if STATE($S,I$) designates the state resulting when a system
in state number s is given instruction number i, then

STATE( $STATE( $STATE( $STATE( $STATE( $8,A3$), B$) ,C$),D3$),E$)

designates the state resulting when the system, in state number @, is
given, in sequence, instructions numbered a, b, ¢, d, and e.

The number of components in an index must equal the dimension of
the item it subsecripts. Thus, an item name designating a single value
goes unsubscripted, while a linear array of values requires a l-com-
ponent index specified by a single numeric formula, and a multi-dimension-
al array requires a correspondingly multi-component index. Further, the
value of any index component must be within the index limits of the
corresponding dimension of the item being subscripted. (In JOVIAL, an
n-element set has the index limits: § ... n-1.) For example, an index
subscripting the 3 by 4 by 2 array item AA, of a previous page, must
consist of exactly 3 numeric formulas, which may, in order, specify
the values @ thru 2, ¢ thru 3, and ¢ or 1.

Since the components of an index vector are integer values, any
fractional value specified by an arithmetic formula in an index is
truncated. For example: ALPHA($2/3+1/3$) is the same as ALPHA($P$),
bec;use f.666===6 + $.333===3 specifies $.999-==9, which is truncated
to O.

BASIC LITERAL CLAUSES

A literal clause describes, or designates, or specifies a literal
value (i.e., a value consisting of a string of JOVIAL signs, which may
be denoted by either a literal or an octal constant). Literal values
are described by literal item descriptions, designated by literal vari=
ables, and specified by literal formulas.
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LITERAL ITEM DESCRIPTIONS

A literal item description, composed of the Hollerith or Trans-
mission descriptor followed by number of signs, describes a literal
value in terms of the coding and size of the machine symbol repre=-
senting the value.

§ Hollerith;Transmission number

description code of-signs

of-litergl-item

e The Hollerith descriptor declares the item as a literal type
item whose value is represented by a Hollerith coded machine symbol.
The Transmission descriptor declares the item as a literal type item
whose value is represented by a Transmission-coded machine symbol.
Since the JOVIAL alphabet contains 48 distinct signs, and

2 - 32 < 48 < 64 = 26

both coding schemes require 6 bits-per-sign for the representation of
literal values.

e The number of signs after the Hollerith or Transmission
descriptor declares the number of signs in the value being described
and thus, indirectly, the number of bits (6 ¥ number-of-signs) in the
machine symbol representing the value.

For example, the item description
Hollerith 3

describes a 3-character literal value represented by an 18-bit, Hollerith
coded machine symbol, while

Transmission l¢¢¢

describes a l¢¢¢-character literal value represented by a 6¢¢¢-bit
Transmission-coded machine symbol.

Hollerith coding is used in transmitting literal information to
and from files (the basic input/output medium in JOVIAL) and thus varies
from computer to computer. Hollerith coding is, therefore, undefined.
Transmission-coding, on the other hand, is used where the literal-value/
machine-symbol correspondence must be exactly defined, to ensure, for
instance, a particular alphabetic order. Transmission-coding is defined
on page 17.
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LITERAL VARIABIES

Both simple and subscripted literal items designate literal values
and are thus literal variables. For example:
EMPLOYEE 'NAME ( $EMPLOYEE 'NUMBER$)
FLIGHT 'IDENT( $F+1$)
WORD
ERROR 'MESSAGE( $PHASE, TYPE$)
A231($T**2/3+(/xx/)$)
Another type of literal variable, involving a functional modifier

that allows a segment of a literal value to be designated, will be
discussed later.

LITERAL FORMULAS

A literal formula specifies a literal value as denoted by a literal
or octal constant, as designated by a literal variable, or as computed
by a literal function.

formula % literal-constant;octal-constant;variableo

of=literal-type

STUNCtion oy 3teral-type

f-

literal=-type

A literal formula thus consists of a single, literal operand.

STATUS CLAUSES

A status clause describes, or designates, or specifies a status
value, which is a non-numeric value that is one of a set of qualities
or categories -- as denoted by status constants, which are essentially
arbitrary, though mnemonic, names. Status values are described by
status item descriptions, designated by status variables, and specified
by status formulas.

STATUS ITEM DESCRIPTIONS

A status item description, composed of the type descriptor Status
followed by an optional number of bits and a list of status constants,
describes a status value in terms of the coding and (either explicitly
or implicitly) the size of the machine symbol representing the value.
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description § Status Enumberof_bitsj status-constants

of=status-itenm

e The Status descriptor declares the item as a status type item.

o The optional number of bits declares the number of bits in the
machine symbol representing the value of the item. When this number is
omitted, machine symbol size is derived from the number of status
constants, as follows:

(number-of-bits = 1) (number-of-bits)
2

< number-of-status-constants < 2

e The list of status constants declare the possible values of the
item. Any particular value of the item may thus be denoted by one of
these status constants. (If a number of bits k is declared, the number
of status constants should not exceed 2%¥k.) The order of the status
constants in the description determines the coding of the item, for the
sequence of values so denoted is represented by the series of integers
¢, 1, 2, 3, and so on. Consequently, no status constant may duplicate
another status constant in the same item description (without making
the status—constant/machine-symbol correspondence undecidable.) How=
ever, since status constants are defined only in context with the name
of a particular status item, different status items may have (different)
values denoted by identical status constants.

To illustrate the status item description and the concept of status
values, consider:

(a) An item, QUALITY, which could be described

Status V(ROTTEN) V(BAD) V(POOR) V(MEDIOCRE) V(FAIR) V(GOOD) V(FINE)
V(SUPERB)

The values of QUALITY are represented by a 3=bit machine symbol ranging
nmumerically from ¢ for Rotten to 7 for Superb. The correspondence
between the natural order of the status values, from Rotten to Superb,
and the order of the machine symbol representation, from @ to T, 1is
occasionally quite useful.

(b) The item PRECEDENCE, used in ordering the sequence of message
transmissions in an automated communication system. The description of
PRECEDENCE is
Status V(DEFERRED) V(ROUTINE) V(PRIORITY) V(OPERATIONAL'IMVEDIATE) V(FLASH)

The values of PRECEDENCE are also represented by a 3-bit machine symbol,
since there are 5 precedences and
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®=L4c5<8=2

(¢) The item CARD'NUMBER, which has five possible values repre-
sented by a 5-bit positional code:

Card number

1 2 3 L4 5
Binary code f@pfL  @@g1d plIgp  pipgd  1pPpP
1 2 L 8 16

Decimal code
The item, CARD'NUMBER, could be described as a status item:
Status 5 V(NULLA) V(CARD1) V(CARD2) V(NULLB) V(CARD3) V(NULLC) V(NULILD)
V(NULIE) V(CARDY) V(NULLF) V(NULLG) V(NULLH) V(NULLI) V(NULLJ) V(NULIK)
V(NULLL) V(CARDS5)
The null statuses ensure the proper coding of the card number values and
would probably not be used in the program which processes the item,
CARD 'NUMBER .

STATUS VARIABLES

Both simple and subscripted status items are status variables,
designating status values.

STATUS FORMULAS

A status formula specifies a status value as denoted by a status

constant, as designated by a status varlable, or as computed by a status
function.

status-formila & status-constant;variable

of-status-type;funCtiono

fe

status-type

BASIC BOOLEAN CLAUSES

A Boolean clause describes, or designates, or specifies a Boolean
value, either True or False. Boolean values are the criteria by which
a program makes logical decisions, choosing between two alternate, sub-
sequent courses of operation. They are described by Boolean item de-
scriptions, designated by Boolean variables, and specified by Boolean
formulas.
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BOOLEAN ITEM DESCRIPTIONS

A Boolean item description is composed of the Boolean descriptor,
which declares the item as Boolean in type.

description $ Boolean

of=boolean~item

BOOLEAN VARIABLES

Both simple and subscripted Boolean items are Boolean variables,
designating either True or False. (Another type of Boolean variable
involving a functional modifier will be discussed later.)

SIMPLE BOOLEAN FORMULAS

A simple Boolean formula composed of a single operand, specifies
a Boolean value, True or False, as denoted by the Boolean constants 1
or ¢, as designated by a Boolean variable, or as computed by a Boolean
function.

boolean-formula & 1;@;variable ;function

of-boolean=-type of-boolean~type

RELATIONAL BOOLEAN FORMULAS

A relational formula states a proposition about a relation between
a pair of values, specified by arithmetic, literal, or status formulas.
If, on comparison, the pair of values satisfies the relation, the re-
lational formula specifies the value True, or if the relation is not
satisfied, the formula specifies the value False. Such comparisons, as
described by relational Boolean formulas, are the basis for all variable
Boolean values, and thus of all programmed decisions in JOVIAL.

Relational Boolean formulas have the basic format:
formula relational-operator formula

where the formulas must be similar in type, that is: both arithmetic,
both literal, or both status. (In the status case, the left-hand value
must be designated by a status variable.) A relational Boolean formula
involving arithmetic or literal values may contain more than one re-
lational operator and, it follows, more than two formulas specifying
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values for comparison. Each relational operator in such a portmanteau
formula relates the two values specified by the arithmetic or literal
formulas immediately adjacent, and the whole formula specifies True
only if each relation composing it is satisfied.

relational=operstor

boolean-formula § numeric-formulas ;literal-

relational~operator,

formulas ; [variable relational-

of=-status=-type

operator status-formula]

The six relational operators signify primarily numeric relations:

Relational Conventional

Operator Notation Meaning

EQ = is EQual to

GR S is GReater than

GQ > is Greater than or eQual to
1Q < is Less than or eQual to
Ls is LesS than

A

2 (@] is ulNeQual to
For most numeric values, the significance of a relational formula is
fairly obvious. For instance

IEQ 27

Either I designates the value 27 (in which case the relationsl formula
specifies True) or it does not (and the relational formula specifies
False). When a relational-formula compares fixed-point values, the
precision of the comparison is never less than the precision of the
least precise value, and never more than the precision of the most
precise value. Unless a careful analysis has been made, therefore,

it is dangerous to entrust an important program decision to an equality/
inequality relation between values of widely differing precision. This,
of course, also applies to floating-point values, whose precision varies.

A relational formula comparing dual fixed-point values specifies
True only if both components of each value satisfy the relation. For
example:

FLIGHT 'POSITION($K$) GR D(@,#)
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specifies True only if flight number K's designated location is within
the Northeast quadrant of the sector.

A relational formula comparing numeric values of dissimilar type
invokes the implicit functions Twin, Float, and Fix. Such a comparison
involving a dual fixed=-point value is performed in the dual mode, and
one involving a floating and a fixed value is done in the floating=-
point mode.

A relational Boolean formula compares non-numeric values as though
the machine symbols representing them represented, instead, unsigned
integers. For literal values, therefore, the significance of & re=-
lational formula depends on the ordering of the signs of the JOVIAL
alphabet in the particular encoding scheme, Hollerith or Transmission
code, used to represent the values. Consequently, a comparison of
similarly encoded literal values determines that one value is related
to the other with respect to this ordering.

In Transmission-code, the letters A thru Z and the numerals $ thru
9 are represented by ascending sequences of numeric values, so that a
relational formula involving Transmission-coded literal values can be
interpreted in an slphabetic sense. This means, for example, that the
relational formula 6T(ABACUS) LS 6T(ZODIAC) specifies the value True,
as does 2T(99) GR 2T(gg).

In Hollerith code, on the other hand, both ordering and repre-
sentation, though pre-determined, are undefined, so that the interpre-
tation of relstional formulas involving Hollerithecoded literal values
is computer dependent.

When a relational formmla compares literal values of unequal length,
the shorter value is, in effect, right justified and prefixed by blanks.
(In Transmission-code, blanks are represented by zero.) Thus,

LT(AAAA) GR 2T(2Z) is entirely equivalent to 4T(AAAA) GR 4T( 2z) in
that both specify the value True. This can also be seen from the fact
that UT(AAAA) EQ O(P6P6epege), and 2T(22) EQ O(373T).

Any number of relational operators may appear in a relational
formula, so long as each is bracketed by a pair of arithmetic or literal
formulas. The most common form, however, consists of two operators
linking three formulas, the outer pair of which specify the boundaries
of a range of values for the middle formula. To illustrate:

2%*%(NUMBER 'OF 'BITS-1) LQ NUMBER'OF'STATUS'CONSTANTS LS 2¥*NUMBER 'OF'BITS

is the JOVIAL version of the formula, used previously, for determining
the number of bits needed for a given number of status constants.
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For status values, the significance of a relational formuls again
depends on the numeric encoding of the values, and thus, ultimately,
on their order of declaration in the status item description. Consider,
for example, the status item QUALITY, described as before:

Status V(ROTTEN) V(BAD) V(POOR) V(MEDIOCRE) V(FAIR) v(Goop) V(FINE)
V(SUPERB)

The relstional formmla
QUALITY($N$) GR QUALITY($M$)

specifies True only if "object" N is of "better” quelity than "object"
M. Notice that this interpretation depends on the ordering of the
status constants as given in the item description, and that should
this ordering change, the meaning of the formula would change with it.
The relational formula

QUALITY($N$) EQ V(GOOD)

on the other hand, is independent of any ordering of the status constants
in the item description, and specifies True only if the value designated
by the item QUALITY for "object" N is, indeed, Good.

In a relational formula involving status values, only the right-
hand value may be denoted by a status or specified by a status function.
And when a status is used, it must be one of those included in the de-~
scription of the status item designating the left-hand value. Thus,
the relational formuls

QUALITY($I$) NQ V(INFERIOR)

specifies neither True nor False, and is therefore meaningless and un-
defined, because Inferior is not one of the possible values of QUALITY.
The relational formula

V(POOR) LQ QUALITY($N$)

is equally incorrect, since it is ungramatical.

COMPLEX BOOLEAN FORMULAS

A complex Boolean formula is a description of a process for com-
puting a Boolean value, True or False, and is constructed of simple
and relational Boolean formulas connected by logical operators. The
value of such a formula depends both on its logical structure and on
the values of the less complex formulas composing it.
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boolean-formula £ [{ boolean-formule )7; [|NOT| boolean-formulasIANDSORTW

The grammar of complex Boolean formulas is analogous to that of
numeric formilas in containing brackets, and both unary and binary
operators. The parentheses group Boolean sub-formulas in the ordinary
manner. The unary operator NOT reverses the value specified by the
Boolean formula immediately following it from True to False or from
False to True. The value of any Boolean formula may therefore be
reversed by preceding it with the logical operator NOT. For example:

NOT QUALITY($R$) EQ V(FAIR)

The binary operator AND combines the two Boolean values specified by
the formulas on either side of it to yield the value True only if both
operand formulas specify True. The binary operator OR also combines
the values specified by the adjacent Boolean formulas and yields the
value False only if both operand formulas specify False. The follow=
ing examples illustrate the logical operators AND and OR in use:

QUALITY($R$) EQ V(FAIR) AND R NQ 27
QUALITY($R$) EQ V(FAIR) OR QUALITY($R$) EQ V(FINE)

The meaning of the logical operators is summarized in the follow=-
ing chart, where p and q signify Boolean values:

® e s 0000000000 ® 9 00000000000 RNERGOROIOOLINLIOEIOIOGIEOEOIOEDS

If . p + is < False : False . True . True -
and . q « is . False . True . False . True .
then NOT q . is ¢ True : False . True . False .
+p AND g . is . False . False . False « True =
. p OR g . is . False . True . True =+ True .

Unless parenthese indicate otherwise, the precedence of the
logical operations is: NOTs first; ANDs second; ORs last. Within
these three categories, operations are performed from left to right,
and the formula's value is completely specified as soon as the evalu-
ation of a sub-formula conclusively determines a value for the entire
formula. For example: in a set of Boolean sub-formulas connected by
ANDs, the value False is specified for the entire formula as soon as
any sub-formula specifying False is evaluated; and similarly, a set

Af Ranlaarn anhoePavrmiala AT~ O

of Boolean sub-formulas connected by ORs specifies True as soon as
any sub-formula specifying True is evaluated. In such formulas,
execution time can be saved by placing toward the left those sub-
formulas most likely to be: False in the case of connecting ANDs;

and True in the case of connecting ORs.
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It should be noted that the Boolean values True and False, along
with the three logical operators NOT, AND, and OR, constitute what is
known as a Boolean algebra. A complex Boolean formula may therefore
be manipulated according to the rules of Boolean algebra in much the
same way that an arithmetic formula is manipulated according to the
rules of ordinary algebra. The object of such manipulation on the
part of the JOVIAL programmer is twofold: (1) to simplify the formula;
and (2) to uncover tautologies and contradictions.

A tautology is a Boolean A contradiction is a Boolean
formula that always specifies formula that always specifies
True no matter what the truth- False no matter what the truth-
value of its component simple value of its component simple
and relational Boolean and relational Boolean
formulas. formulas.

Tautologies and contradictions may always be removed from any program
in which they occur, for logical decisions must be based on Boolean
formulas which are neither tautologies nor contradictions to really
choose between alternate paths of action.

A Boolean formula that is a tautology can always be reduced, by
application of the theorems and axioms of Boolean algebra, given below,
to the form of one of the following two basic tautologies:

l. p OR NOT p
2. pOR NOT p OR g

It is easy to see that no matter what truth-values are assigned to p
and g, the above formulas are always True. Contradictions can similarly
be reduced to a negation of one of these forms.

For readers unfamiliar with Boolean algebra, a list of its most
useful axioms and theorems follows. The form following the § may be
substituted for the form preceding (and vice-versa) without affecting
truth-values.

1. NOT (NOT p)
2. p AND p
3. PORpP

L, p AND (g OR NOT q)
5. p OR (q AND NOT q)
6. p AND (p OR q)

T. p OR (p AND q)

8. p AND q

Wb P P b b mbe dbe P
Te I < B (e B e IR e I e B e I @

AND p
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q OR p

(p AND q) AND r
(pORgq) ORr

p AND (g OR r)
P OR (g AND r)
NOT p OR NOT g
NOT p AND NOT q

9. p OR q

10. p AND (g AND r)

11. p OR (q OR r)

12. (p AND q) OR (p AND r)
13. (p OR q) AND (p OR 1)
14, NOT (p AND q)

15. NOT (p OR q)

b adbe adpPe b P P wgpe

In addition to the above equivalences based on the properties of
the logical operators, the following equivalences based on the pro-
perties of the relational operators may prove useful, where x and y
are a pair of arithmetic, literal, or status formulas.

16. NOT (xEQy) $ xNQy § yNex
17. NOT (x GRy) & =xIQy & y&x
18. NoT (xGRy) $ =xILsy & yGRx
19. NOT (x1Qy) & xGRy & yLsx
2f. wor (xLsy) ¢ x&y & yIax
21. NOT (xNQy) & =xEQy & yEQ=x

To illustrate some of the techniques of working with Boolean
formulas, consider the following items and their descriptions:

ITEM PRICE fixed 15 Unsigned $

ITEM QUALITY Status V(ROTTEN) V(BAD) V(POOR) V(MEDIOCRE) V(FAIR)
v(GooD) V(FINE) V(SUPERB) $

ITEM REQUIREMENT Boolean $

and the process of simplifying the following complex Boolean formula
involving these items.

((1f¢ La PRICE($I$) LQ 1P@¢P AND QUALITY($I$) EQ V(BAD) AND REQUIREMENT($I$))
OR ((1f¢ 1Q PRICE($I$) LQ 1P@@P AND QUALITY($I$) EQ V(BAD) AND NOT
$?§UIRE§§§§($I$)) OR ((1p¢ La PRICE($I$) IQ 1@p@p AND QUALITY($I$) EQ

The first step is to isolate the simple and relational Boolean
formulas so that they may be replaced by even simpler symbols to better
show the logical structure of the formula:
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(1¢¢ 1 PRICE($I$) 1 1489¢) & »
(QUALITY($1$) EQ V(BAD)) SRR
REQUIREMENT( $I$) §
(QUALITY($I$) EQ V(ROTTEN) $ %,

The second step is to rewrite the formula using the artificial symbols
Just generated:

(pAN‘DqlANDr) OR (pANDqlANDNOTr) OR (pANDqE)

and then, simplify the rewritten formila using the rules of Boolean
algebra:

§ p AND ((ql AND r) OR (ql AND NOT r) OR qe) by #12
§pAND(qlAND(r OR NOT r) OR q2) by #12
§ p AD (q; OR q,) by 4

Returning to JOVIAL, the simplified formula becomes:

(149 1a PRICE($I$) Lo 1f@pfP) AND (QUALITY($I$) EQ V(BAD) OR QUALITY(S$I$)
EQ V(ROTTEN))

Due to the structure of the status item quality, a still further simpli-
fication could be effected:

(1#9 1q PRICE($I$) 1Q 1p¢@p) AND (QUALITY($I$) L V(BAD))

EXERCISE (Boolean Formulas)

(a) Using the items price, quality, and requirement as described
in the last example, simplify the following Boolean formulas, checking
for tautologies and contradictions.

1. (PRICE($E$) GR 650p8 AND QUALITY($E$) EQ V(FINE)) OR REQUIREMENT($ES$)
AND PRICE(SE$) GR 650p@)

PRICE($E$) 1Q 999 OR QUALITY($E$) EQ V(FAIR) OR NOT PRICE($E$) LS 1p¢p

NOT (PRICE($E$) LQ PRICE(S$E-1$) AND QUALITY(S$ES) WQ QUALITY($E-13))

= WP

NOT PRICE($E$) LS PRICE($E-1$) AND PRICE($E-1$) 1Q PRICE(SES)

. QUALITY($E$) EQ V(MEDIOCRE) AND (PRICE($E$) EQ 65088 OR
(REQUIREMENT($E$) AND QUALITY($ES) EQ V(SUPERB) AID PRICE($ES$) EQ §))

1



26 December 1961 55 ™-555/003/00

6. (PRICE($E3)**2 Lq Lopd OR QUALITY($ES) EQ V(SUPERB) OR NOT
REQUIREMENT($E$) ) AND (PRICE($ES)**2 LQ Lo@P OR QUALITY(SES)
EQ V(SUPERB) OR REQUIREMENT($E$)) AND (PRICE($ES) 1A 50)

7. ((QUALITY($E$) EQ V(SUPERB)) OR ((QUALITY($E$) EQ V(SUPERB))
AND (REQUIREMENT($E$))) OR ((PRICE(SES) LQ 65¢0¢) OR ((QuaLITY($ES)
EQ V(SUPERB)) AND (PRICE($E$) L 65¢¢08))))

8. noT ((REQUIREMENT($E$)) OR NOT (REQUIREMENT($ES)) AND (PRICE($ES)
Ls 1¢¢9))

9. (PRICE($E$) LS 1f@p AND NOT REQUIREMENT($ES) AND QUALITY($E$) NQ
V(ROTTEN) ) OR (PRICE($E$) LS 1fP@ AND QUALITY(SES) NQ V(ROTTEN)
AID NOT REQUIREMENT($E$)) OR NOT REQUIREMENT(S$ES)

10. (NOT (QUALITY($E$) EQ V(FINE)) OR ((NOT REQUIREMENT( $E$)) AND
(REQUIREMENT($ES)))) OR (((PRICE($ES) LS 5@) AND (PRICE($13) GQ
35)) OR NOT (QUALITY($E$) EQ V(FINE))) OR (NOT (QUALITY{$E$) EQ
V(FINE))) OR ((PRICE($E$) LS 5¢) AND (PRICE($ES) GQ 35))

SENTENCES

With certain delimiters, clauses are combined to form statements
and declarations, which are the sentences of JOVIAL. Statements
assert actions that the program is to perform, and declarations
describe the environment in which the actions are to occur.

The remainder of this document deals with the construction of
such sentences and with their combination to form programs and pro-
cedures.

BASIC DATA DECLARATIONS

A major part of the environment of any program consists of the
data it must manipulate. In machine-oriented programming, data
description is buried within the program, as machine instructions
for accessing the data each time it is required. In JOVIAL, data
is described once, with a set of data declarations, and is there-
after referred to by name. When the data changes slightly, only
these declarations need be modified and, upon re-compilatici, all
the necessary changes are reflected in the resulting machine language
program.

Data declarations have no operational meaning, and their de-
scriptive affect is not alterable by the execution of the program.
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They merely determine how the program is to manipulate the data values
in its enviromment, making it necessary to precede any reference to a
data value with a defining declaration. These do not necessarily have
to be supplied by the programmer but may appear in a COMPOOL.

ITEM DECLARATIONS. In data processing, the natural unit of infor-
mation is tne value. In JOVIAL, values are denoted by constants, desig=
nated by variables, and specified by formulas. Values other than those

denoted by constants or utilized only as intermediate results (e.g., in
a Boolean formula) must be formally declared as items.

An item declaration, composed of the declarator ITEM followed by
a name and an item description, and terminated by the $ separator, de-
clares the identifier to be an item name designating a single value of
the type given in the item description.

declaration $ ITEM name description $

of-item

e The ITEM declarator begins the declaration.

e The identifier is declared to be a simple item name, designating
the item's value.

e The floating, fixed, dual, literal, status, or Boolean item
description declares the item's type and describes its value in terms
of the machine symbol representing it.

e The $ separator terminates the declaration.

The following is a summary of JOVIAL item declarations. For more

detailed explanation, refer to the sections on the various item de=-
scriptions.

ITEM name Floating |Rounded| |floating-constant ... floating-constant | $

. b ) . .
ITEM name fixed num eT rbits Signed;Unsigned Lpumberof-fraction-bitsj

|Rounded | |integer;fixed-constant ... integer; fixed-constant | $

ITEM name Dual number Signed;Unsigned |number

of=bits of-fraction-bitsj

|Rounded| |dual-constant ... dual-constant] $
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ITEM name Hollerlth;Transmlss1oncode num'berof_signS $

ITEM name Status |number itsJ status-constants $

of=b

ITEM name Boolean $

Examples of the six types of item declaration are given below.
ITEM P6 Floating Rounded @.1E-1@...@.1E+1@ &

declares the name P6 to be an item name designating a floating=-point
value that was rounded upon being assigned to the item and that is

expected to range in magnitude from .¢¢¢¢¢¢¢¢¢¢l to l¢¢¢¢¢¢¢¢¢.
ITEM TALLY fixed 15 Unsigned $

declares the name TAILY to be an item name designating a fixed-point,
15-bit, unsigned, integral value.

ITEM PLACE Dual 16 Signed 5 $

declares the name PLACE to be an item designating a duvual fixed-point,
16~bit-per-component, signed value with 5 fraction bits per component.

ITEM IDENT Hollerith 12 $

declares the name IDENT to be an item name designating a Hollerith coded,
l2=-character, literal value.

ITEM OP'TYPE Status 6 V(ARITH) V(RELAT) V(LOGIC) V(OTHER) $

declares the name OP'TYPE to be an item name designating a status value,
encoded in 6 bits rather than the minimal 3, signifying Arith, Relat,
Logic, or Other.

ITEM SPARE'INDICATION Boolean $

declares the name SPARE'INDICATION to be an item name designating a Boolean
value.

MODE DECLARATICNS. When a program requires that many individual
values of similar type be given explicit definition, it is somewhat tedious
to have to write an entire set of item declarations, identical but for name.
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For example: a sizeable program for reducing floating=-point test data
might require scores of simple, floating-point items just for tempo-
rary results. The mode declaration eliminates the necessity of de=
claring each of these items separately.

A mode declaration, composed of the MODE declarator followed by
an item description and terminated by the $ separator, declares an
implicit mode of definition for subsequent simple item names that are
otherwise undefined.

declaration # MODE description $

e The MODE declarator begins the declaratiom.

e The item description defines simple and otherwise undefined
item names, listed after the declaration, by declaring their type and
describing their value.

e The $ separator terminates the declaration.

The effect of a mode declaration depends on its place in the JOVIAL
program listing since it can only apply to subsequently used item=-names.
After a mode declaration, the initial occurrence of any unsubscripted
and undefined label, in any context where an item name is expected,
serves at that point to declare the label an item name, defined accord=-
ing to the mode. If simple items with different definitions are also
needed, they may, of course, be explicitly declared (prior to their
initial use, however, lest they too be defined "a' la mode").

A mode declaration remains effective until it is superseded by
another mode declaration. This means that different portions of a
program may have their own, local modes of implicit item definition.
Thus, one part of a JOVIAL program might deal mostly with floating=-point
values, so that
MODE Floating Rounded $

would be applicable. Another portion might require that integers be
the mode, and

MODE fixed 16 Signed $
would be used. For programming vector calculations,

MODE Duel 24 Signed 1§ $
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might be convenient, and a procedure for manipulating 5~character literal
values might be easier to write if

MODE Transmission 5 $

were used. A routine involving many similar status items might be pre=-
ceded by

MODE Status V(STATE@) V(STATELl) V(STATE2) V(ETC) $
and a logically complex routine might need

MODE Boolean $

ARRAY DECLARATIONS. An array declaration describes the structure
of a collection of similar values, and also provides a means of identi-
fying this collection with a single item name. 1In JOVIAL, therefore,
an array is a structured collection of similar values identified by a
single item name. A vector is an example of a one-~dimensional or linear
array, and a matrix is an example of a two-dimensional array. Rectangu~
lar arrays of any dimension may be declared, but one and two dimensional
arrays are by far the most common.

An array declaration, composed of the ARRAY declarator followed by
a name, a list of dimension numbers, an item description, and terminated
by the $ separator, declares the name to be an array item name designat~
ing an array of values with the structure imposed by the dimension numbers
and of the type given in the item description.

numbers

declaration § RAY nameof—array-item of-elements-per-dimension

description $

e The ARRAY declarator begins the declaration.

e The identifier 1s declared to be an array item name, designating
all the array's values. Since each value in the array bears this name,
individual values must be distinguished by an index subscripting the name.

e A dimension number declares the size of one dimension of the
array: first, the number of rows; second, the number of columns; third,
the number of planes; and so on.

e The item description declares the array's type and describes its
values in terms of the machine symbols representing them.
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e The $ separator terminates the declaration.

In designating an individual value from an n-dimensional array,
the array item name must be subscripted by an n-component index. And
where the size of a dimension is k, the value of the corresponding

component of the index can only range from ¢ thru k-=1l.¥ To illustrate,
consider the declaration

ARRAY ALPHA 2 4 3 fixed T Unsigned §...99 $

which declares ALPHA a 2 by 4 by 3 array of positive integers less than
1¢@#. A typical set of values for ALPHA is:

180 113 o1 i k8 :

DO T G S =
000000'000000000000:017 :92 :99 :65 :

MY R ¢ R, Rd- 7~ R
.0.00.0'.0.0....0.0:.69 :31‘-:32 :17 :

EI??.E.%@OE.%?.E.%?.E
Thus, ALPHA($@,2,1$) specifies 99, and ALPHA($1,3,2$) specifies 15. The
index 1,3,2 is the maximum index that may subscript ALPHA.

To further illustrate arrays and array declarations, consider:
(a) The declaration

ARRAY IDENT 6 Transmission 8 $

which declares IDENT a 6-element vector of 8-character, Transmission-
coded, literal values. A typical set of values for IDENT is:

® e 0000000000000

. 87( UNKNOWN)

600000 OOSEPOIDS

. 81( PENDING)

8000000 e 00 000

. 87( HOSTILE) 5
: 8T(FR'_1.ZENDI:.Y) .

. 8T(FRIENDLY)

Pescs0ecsvsscssee

. 87( PENDING)

s es 00000t 0000e0 0

* This means that the first elément of any array is indexed by zeros.
Thus, MATRIX($f,P$) is the first element of a 2-dimensional array.
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and IDENT($2$) specifies 8T( HOSTILE).
(b) The declaration
ARRAY TIC'TAC'TOE 3 3 Status V(EMPTY) V(NOUGHT) V(CROSS) $

which declares TIC'TAC'TOE a 3 by 3 matrix of rather obvious status
values. A typical set of values for TIC'TAC'TCE is:

® 9 00000000 00U 0LPN 000000 CRSICSIOSIELIERTPOEOINOSIEOITOSIES
.

. V(CROSS) . V(NOUGHT) s« V(EMPTY) =

0 0000008 0000000000000 000000000s0000000

+ V(NOUGHT) « V(EMPTY) . V(EMPTY)

0 0060000000000 00000080000080800000s0s00

. v(cross) . v(EMPTY) . V(CROSS)

.
.
.
.
.

® 09 00000 000000000 CCEOPNIOOIRSEOONCTOIOGONINOONOLER

and whether NOUGHT's plays TIC'TAC'TOE($1,1$) or TIC'TAC'TCE($2,1$),
CROSS's will win.

(¢) The declaration
ARRAY CHARACTER 27 18 Boolean $

vhich declares a 27 by 18 Boolean matrix. A typical set of values for
CHARACTER 1is:

000000000000 000000
QOO0O000000 | 1 OO000
0000001t 1111110000
OOOOOIIIélIIIIlOOO
Q0001111000001 1100
00001 1 100000011 100
00001 10000001 t tO00
00001 10000001 1 § 000
Q0001 1000001 1 10000
Q00011100011 100000
00000111011 1000000
00000011 1110000000
00000001 1 1 1 OOO0000
Q000Q0C1 1§ 1 1t O00000
00000011 1001 1 00000
000001 1 100001 10000
000001 1000001 1 OO0
QOO0 11 10000011 1000
Q0001 10000001 1 1000
Q001 1 10000001 1 1000
0001 1 0000000111000
0001 10000001 1 10000
Q001 1O0001 1 110000
Q0001 1111111100000
O0000I1 111110000000
200000000000000000
O00000000000000000

and much current research effort is devoted to the development of general
processing rules for converting such a matrix into the value 1H(8).
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BASIC STATEMENTS

The programmer's job, once the problem has been analyzed and the
data described, is to determine a sequence of processing operations
which will transform the input data into a solution for the problem.
In JOVIAL, the fundamental unit of expression in the description of
processing operations is the statement. Thus, a sequence of process=
ing operations may be described by a list of JOVIAL statements. (Such
a list, interspersed with declarations describing the data, forms a
program which may be transformed by a JOVIAL compiler into an equiva=-
lent, machine=( oriented)=-language program.)

JOVIAL statements are normally executed* in the sequence in which
they are listed. Few problems, however, are so simple that a single,
unbroken sequence of processing operations will suffice to provide
solutions from all possible sets of input data. Consequently, the
programmer must provide alternate sequences, and determine processing
operations which allow the computer to choose between them. Simple
JOVIAL statements are therefore divided into two classes: (1) statements
which affect the data, by varying variable values; and (2) statements
which affect (the execution of) the program, by altering the normal
sequence of statement execution.

NAMED STATEMENTS. It is often necessary to attach a name to a
statement so that it may be referred to elsewhere in the program and
executed out of its normal, listed sequence. A named statement, com-
posed of a statement name followed by the . separator and a statement,
may be referenced for this purpose at any point in the program.

statement & name o o oionent © Statement

Any JOVIAL statement == simple, compound, or even already named == may
be identified in this manner, but a statement name is needed only when
the statement 1s to be executed out of sequence.

A statement name may describe the purpose of the statement, as in
COMPUTE 'TAX. Statement

or it may merely indicate a relative position in the program listing,
as in

* By "the execution of a statement” is meant the computer's execution
of the machine-language routine compiled from the statement.
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STEP'19. Statement

COMPOUND STATEMENTS. It is frequently desirable to group several
statements together into a larger form which itself is to be considered
a single statement. Such a statement is called a compound statement,
and is composed of the BEGIN bracket followed by a list of statements
(possibly interspersed with declarations) and terminated by the END
bracket.

statement § BEGIN [declaration;statement]s END

A compound statement is completely equivalent to a single, simple
statement. The BEGIN and END brackets serve as opening and closing
statement parentheses and, since the statements they enclose may them-
selves be compound, whole strings of BEGINs or, more commonly, of ENDs
often occur. For example:

BEGIN
Statement
BEGIN
Statement
BEGIN
Statement
Statement
END
END
END

The indentation is a useful typogrephical device, helping to match
BEGINs and ENDs. The correct matching of BEGINs and ENDs is as im-
portant to the meaning of a program as the correct matching of paren-
theses is to the meaning of a numeric formula.

Certain other forms, involving the grouping of several statements,
automatically constitute compound statements and will be discussed in
greater deteil later.

ASSIGNMENT STATEMENTS. An assignment statement, composed of a
variable followed by the = separator and a formula, and terminated by
the $ separator, assigns the value specified by the formula to be the
value thereafter designated by the variable.

statement § variable = formula $
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This is accomplished by evaluating the formula, and then replacing the
machine symbol representing the value of the variable with the result.
The formule umust, however, specify a value of the same type as the
variable, that is, formula and varieble must both be: numeric; literal;
status; or Boolean.

As used in an assignment statement, the = separator signifies the
process of replacement. Thus:

OMEGA = GAMMA*SIN(ALPHA-BETA) $

means, ''the value designated by OMEGA is replaced by the value specified
by GAMMA*SIN(ALPHA-BETA)." An assignment ‘statement is therefore, in
effect, a command to compute and to substitute, and should not be con-
fused with an algebraic equation where the equals sign has the meaning
of the JOVIAL relational operator EQ. For example, the construction

%X = Y+2 $
has no meaning in JOVIAL, while
X = (Y+2)/2 $

is a valid statement that can be executed by a compiled program. The
distinction is best appreciated when assignment statements such as

ALPHA = ALPHA + 27. $

are considered. This perfectly legal assignment statement merely
describes the process of incrementing the value of the item ALPHA by
twenty-seven, and does not claim that zero and twenty-seven are equal.

NUMERIC ASSIGNMENT STATEMENTS. In a numeric assignment
statement, both variable and formula are numeric in type. Numeric
values, however, have three modes of representation: floating-point;
fixed=-point; and dual fixed=-point, and a numeric assignment statement
may mix any two of these modes. When this occurs, the implicit con=-
version functions Fix, Float, and Twin are necessarily invoked. The
following cases must be considered:

(a) A floating-point value may be assigned to any numeric
variable. Assignment to a fixed-point variable implies conversion to
fixed=-point representation. Assignment to a dual fixed-point variable
implies: first, a conversion to fixed-point; and then, a twinning con-
version to dual.
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(b) A fixed-point value may also be assigned to any numeric
variable. Assignment to a floating=point variable implies conversion
to floating-point representation. Assignment to a dual fixed=-point
variable implies a twinning conversion to dual.

(e¢) A dual fixed-point value may only be assigned to a dual
variable, since no implicit "Untwin" conversion exists.

(d) A negative value, in any mode of representation, may only
be assigned to a signed variable. Since floating=point variables
are implicitly signed, this restriction only applies to unsigned
fixed-point and dual fixed-point variables.

When a numeriec value is assigned to a fixed-point variable, the
machine-symbol representing the value must be tailored to fit the
format of the variable, both in significance and in precision. Thus,
if the specified value has less significance than the variable, its
machine symbol representation is prefixed by leading zeros upon as=-
signment, or if the specified value is less precise than the variable,
its machine symbol representation is suffixed by trailing zeros. If,
on the other hand, the specified value has more significance than the
variable, this excess significance may be lost upon assignment (a
condition known as "overflow"), or if the specified value is more
precise than the variable, excess precision is lost, either by trun-
cation or by rounding. To illustrate these concepts, consider:

1t

ITEM ALPHA fixed $5 Signed 1 $ ''Format s ooiii.foo
ITEM BETA fixed @9 Signed 3 $ ''Format s iiiii.fff 1
ITEM GAMMA fixed 13 Signed 5 $ ''Format siiiiiii.fffff"

and the assignment statements:

BETA
BETA

ALPHA $
GAMMA $

non

The effect of these two assignment statements can be readily seen by
comparing the machine symbol formats above. Upon assignment to BETA,
the value of ALPHA has both leading and trailing zero magnitude bits
affixed, while the value of GAMMA loses both precision, as underlined,
and probably significance, as doubly underlined.

Unforeseen loss of significance, or overflow, occurs in fixed-
point assignments as the result of a programming error: failure to
declare enough bits for the variable item. In the case of the as=
signment
BETA = GAMMA $

the error is obvious, and is easily corrected by revising the item
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declaration for BETA so that seven rather than five integer bits are
declared. Other cases, however, are not quite so obvious and a detailed
analysis may be necessary.¥* Consider

BETA = (/31*ALPHA+GAMMA/)¥*@.5A3+13.43 $

By substituting values of ALPHA and GAMMA which maximize the value
specified by the formula (i.e., +7.5A1 for ALPHA, and +127.9TA5 for
GAMMA), the maximum possible value assigned to BETA can be determined.
This value is 31.99, and would be truncated to 31.875 without overflow
upon assignment to BETA. Had BETA been declared rounded, though, as in

ITEM BETA fixed 9 Signed 3 Rounded $

the rounding of 31.99 to 32.+ by the effective addition of 2'LL (or .p625)
during assignment, could create an overflow condition, since 31.875 is
the maximum value that BETA can designate.

In this paragraph, some examples of numeric assignment statements
are presented as solutions to the following problem: As the result of
previous computation, values a and c have been assigned to the floating-
point items AA and CC. A JOVIAL statement is needed to assign x and y
as the values of the floating~point items XX and YY, where:

1 j// ay3, cy2 (a6 a3, ¢
x=rrg,  ve W@ @ - (@
C

3
- [/((—g-)%-;-ﬁ- @° + (@Y - 2

SOLUTION1. BEGIN

XX = 1./(1./aA+1./cc) $

YY = ((((AA/3.)*¥¥3+CC/2.)**2-(AA/3.)**6)** .5
-((AA/3.)¥**3+CC/2.))%%.3333333333 - ((((AA/3.)*¥3+CC/2.)%*2-(AA/3.)
*%6)%%.5+( (AA/3.)¥¥3+CC/2.) ) **.3333333333 ~ AA/3. $

END

Notice that the formula specifying the value y contains duplicate sub-
formulas. To avoid inefficiently computing the same value twice, the

* Where such an analysis is either difficult or impossible, floating-
point representation should be considered.
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computation can be broken down into several smaller assignment statements,
saving such intermediate results for later use. If the values a and c
are not needed for further computation, the items AA and CC can be used,
along with YY, for temporary storage, thus eliminating a need for the
declaration of two extra floating=-point items for this purpose.

SOLUTION2. BEGIN
1./(1./aA+1./cc) $

AA/3. $

AAX*3 $

Yy+cc/2.

(cexx2- YY**E)**.5 $
(YY-CC)**.3333333333~(YY+CC)**.3333333333-44 $

LA | | | R [ |

S HEY

LITERAL ASSIGNMENT STATEMENTS. In a literal assignment
statement, both variable and formula are literal in type. Where the
value being assigned and the variable being set are similarly encoded
(i.e., both Hollerith or both Transmission-code) and equal in size,
the effect of a literal assignment statement is clear. Thus, given

ITEM C'DATA Transmission 6 $
the statement
Sl. C'DATA = 6T( JOINT) $

cannot be misinterpreted. If, however, the literal value being assigned
were larger than the variable, for example:

S2. C'DATA = 1@T(CLIP JOINT) $

then its leading characters would be lost ("CLIP" in the above case).
And, finally, if the literal value being assigned were smaller than the
variable, as in

S3. C'DATA = 5T(JOINT) $

then it would be right justified and prefixed by the necessary number
of blank characters. Notice that the three literal assignment statements,
81, S2, and S3, all produce the same effect on the literal variable C'DATA.

Where the value being assigned and the value being set are not
similarly encoded (i.e., one is Hollerith, the other, Transmission-code),

+ . a1t 41 I i o1
the above considerations on size per tain, but the results are, in general,

undefined -- to the same extent that Hollerith representation itself is
undefined. (Any prefixed blanks are encoded according to the represen=
tation of the variable being set.)
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STATUS ASSIGIMENT STATEMENTS. In a status assignment
statement, the value assigned to the status item varisble may be de-
noted by one of its status constants, designated by another status
item, or computed by a status function. Where the specified value
is denoted by a status constant, it must, of course, be one of the
declared status constants of the item being assigned, for example:

QUALITY($K$) = V(BAD) $

And where the specified value is designated by a status item or computed
by a status function, a meaningful correspondence should exist between
the set of status values that may be specified by the formula, and the
set of status values that may be designated by the varizble item. When
these are identical sets of similarly encoded status values, the corre-
spondence is obvious. Thus

QUALITY($K$) = QUALITY($I$) $

states that value K of QUALITY is to be the same as value I of QUALITY.
Since an assignment statement manipulates status values as integers,
any correspondence between different sets of status values is based on
their numerical encoding, and not on any coincidental similarities in
the status constants themselves.

BOOLEAN ASSIGNMENT STATEMENTS. In a Boolean assignment
statement, both variable and formula are Boolean in type. A Boolean
assignment statement, therefore, assigns a Boolean variable that value,
True denoted by 1 or False denoted by ¢, specified by a Boolean formila.

Some examples of Boolean assignment statements are presented in
the solution to the following problem: The environment contains two
27 by 18 Boolean arrays, GRID1 and GRID2. Previous statements have
activated the subscripts I and J, and assigned them values. Write a
JOVIAL statement assigning the value True to item I,J of GRID2 if the
corresponding value of GRID1 is either True or is bracketed (hori-
zontally, vertically, or diagonally) by a pair of true values, and
assigning the value False otherwise. (The iteration of this statement
over an entire array would fill in small holes in the pattern.) Notice:
There are, obviously, only four possible ways a GRID1 value may be
bracketed by a pair of True's,

[o]e}
O
o1t

000
000
Q-0
0=0

Q01
O O
100

QO=

and these are all applicable only when the center value is, indeed, an
interior value of the array.
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SOLUTION. BEGIN

MODE Boolean $

INSIDE'ROW = @ LS I LS 26 $

INSIDE'COLUMN = § LS J LS 17 $

CASEl = INSIDE'ROW AND GRID1($I-1,J$) AND
GRIDL($I+1,3%) $ CASE2 = INSIDE'COLUMN AND GRID1($I,J-1$) AND
GRIDL($I,J+13%) $ CASE3 = INSIDE'ROW AND INSIDE'COLUMN AND
GRIDL($I-1,J-1$) AND GRIDL($I+1,J+13$) $

CASE4 = INSIDE'ROW AND INSIDE'COLUMN AND
GRID1($I-1,J+1$) AND GRIDL($I+1,J-1$)$

GRID2($I,J$) = GRIDL($I,J$) OR CASEl OR CASE2
OR CASE3 OR CASEL4 $ END

It n

The Boolean mode declaration allows temporary Boolean items to be used
without explicitly declaring them. These items are not strictly neces-
sary since the entire function of the above statement could be compressed
into a single assignment, but the resulting Boolean formula would be both
large and computationally inefficient due to duplicated sub-formulas.

The greatest computational efficiency, however, could probably be at-
tained by combining the last five assignment statements into one, to

take advantage of the fact that all Boolean sub-formulas need not always
be evaluated for the entire formula to specify a value.

EXCHANGE STATEMENTS. An exchange statement, composed of a variable
followed by the == separator and another variable, and terminated by the
$ separator, exchanges the values designated by the two variables.

statement $ variable == variable $

The effect of an exchange statement on either of the variables involved

is as if each had been assigned the value designated by the other. Conse-
quently, the rules of assignment pertain, and both variables must be the
same type: numeric; literal; status; or Boolean.

An exchange statement is operationally equivalent to a sequence of
three assignment statements -- augmented by a declaration of temporary
storage. To illustrate, consider the exchange statement

AA == BB $

which has precisely the effect of
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BEGIN
ITEM TEMPORARY ''Include here an item description duplicating that of
item AA.'' $
TEMPORARY = AA $
AA = BB $
BB = TEMPORARY $
END

except, of course, that an exchange statement does not explicitly declare
an item named TEMPORARY.

To emphasize the effect of the exchange statement, consider the
following rather roundabout way of assigning the value True to BOOL, a
Boolean varieable.

BEGIN

ITEM AIPHA Transmission 5 $

ITEM OMEGA Transmission 5 $
ALPHA = ST(ALPHA) $
OMEGA = ST(OMEGA) $

EXCHANGE . ALPHA == OMEGA $

BOOL = ALPHA EQ 5T(OMEGA) AND OMEGA EQ S5T(ALPHA) $
END

IF STATEMENTS. It often happens during a calculation that the
computer must chcose between one of two alternate sequences of operation
depending on whether a specified criterion is or is not met. A good
example is the calculation of gross pay for an hourly employee who gets
time-and-a~half for hours worked in excess of h¢ per week. Clearly,
the basis for choice is: Has the man worked more than 4§ hours this
week? For employee number E, this question can be expressed as a
Boolean formula in an IF statement:

IF HOURS'WORKED($E$) GR Lf $

Where a criterion is expressed as a Boolean formula, an IF
statement serves to choose between two alternate sequences of operation.
An IF statement, composed of the IF sequential operator followed by a
Boolean formula and terminated by the $ separator, causes the next
statement listed to be executed or skipped depending on whether the
Boolean formula specifies True or False.

statement & IF boolean-formula $

In other words, if the Boolean formula of the IF statement specifies
the value True, the statement following it is executed. If, on the
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other hand, the Boolean formula of the IF statement specifies the value
False, the statement following it is skipped, and operation continues
with the next statement listed.

A JOVIAL statement computing gross pay for employee E can therefore
be written as

BEGIN COMPUTE'GROSS'PAY.
STEP1. GROSS'PAY($E$) = HOURS'WORKED( $E$)*HOURLY 'PAY($ES) $
STEP2. IF HOURS'WORKED(S$E$) GR Lg $
STEP3 . GROSS 'PAY($E$) = GROSS'PAY($E$)+( HOURS 'WORKED( $ES$) -L4#)
* HOURLY'PAY($ES) / 2 $

END

In STEP1, the employee's gross pay is computed at straight-time for all

hours worked. In STEP2, if the employee has worked more than h¢ hours,

then, in STEP3, his gross pay is incremented at half-time for the excess
hours, thus paying time-and-a-half for overtime.

The statement execution flow

for this process can be graphically Flow Chart

illustrated, as in the accompanying for

diagram. COMPUTE
GROSS PAY

It is important to realize that
the conditional statement following
an IF statement can be compound as
well as simple. For example:

STEP1. IF GAMMA LS DELTA $

BEGIN
STEP2. ALPHA = LOG(GAMMA)
+ DELTA¥¥2 §$
STEP3 . BETA = EXP(GAMMA)
+ ALPHA¥**3 $
END
STEPL. IF GAMMA EQ DELTA $
BEGIN
STEPS. ALPHA = P. $
STEP6. BETA = 0. $
END
STEPT. IF GAMMA GR DELTA $
BEGIN
STEPS. ALPHA = LOG(DELTA)
- GAMMA*¥%2
STEP9. BETA = GAMMA¥¥.5 $

NTTY
INL

<!
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One and only one of the three compound
statements above will be executed,
although this is not apparent from

the statement execution flow.

The use of the IF statement in
decision-making will be illustrated
by some further examples, wherein
the environment contains SCORE, a
linear, 4-element floating-point
array declared

ARRAY SCORE 4 Floating Rounded $
Write JOVIAL statements to:

(a) Compute ALPHA, a floating-
point item, equal to the least value
of SCORE.

BEGIN COMPUTE 'ALPHA.

ALPHA = SCORE($$$) $

IF ALPHA GR SCORE($1$) $
ALPHA = SCORE($1$) $

IF ALPHA GR SCORE($2$) $
ALPHA = SCORE($2$) $

IF ALPHA GR SCORE($3$) $
ALPHA = SCORE($3$) $

END

(b) Compute BETA, a floating-
point item, equal to the sum of all
greater than average values of SCORE.

BEGIN COMPUTE'EBETA.
ITEM AVERAGE Floating Rounded $
AVERAGE = (SCORE($p$)+SCORE($1$)
+ SCORE($23)+SCORE($3$))/4. $
BETA = §. $
IF SCORE($P$) GR AVERAGE $

BETA = BETA+SCORE($P$) $
IF SCORE($1$) GR AVERAGE $

BETA = BETA+SCORE($1$) $
IF SCORE($2$) GR AVERAGE $

BETA = BETA+SCORE($2$) $
IF SCORE($3$) GR AVERAGE $

BETA = BETA+SCORE($3$) $
END

™-555/003/00

Flow Chart
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(¢c) Compute GAMMA, a Boolean item, which is True when the number
of greater than average values of SCORE equals the number of lower than
average values, and False otherwise.

BEGIN COMPUTE 'GAMMA
ITEM HIGH'COUNT fixed 3 Signed $
HIGH'COUNT = @ $
IF SCORE($P$) GR AVERAGE $
HIGH'COUNT = HIGH'COUNT+1 $
IF SCORE($P$) LS AVERAGE $
HIGH'COUNT = HIGH'COUNT-1 $
IF SCORE($1$) GR AVERAGE $
HIGH'COUNT = HIGH'COUNT+1l $
IF SCORE($1$) LS AVERAGE $
HIGH'COUNT = HIGH'COUNT-1 $
IF SCORE($2$) GR AVERAGE $
HIGH'COUNT = HIGH'COUNT+1 $
IF SCORE($2$) LS AVERAGE $
HIGH'COUNT = HIGH'COUNT-1 $
IF SCORE($3$) GR AVERAGE $
HIGH'COUNT = HIGH'COUNT+1 $
IF SCORE($3$) LS AVERAGE $
HIGH'COUNT = HIGH'COUNT-1 $
GAMMA = HIGH'COUNT EQ § $
END
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(d) Arrange the values of SCORE in ascending numerical order.

SORT. BEGIN |
sfl. IF SCORE($P$) GR
SCORE(#$18) 4

sg2. SCORE( $0$) ==
SCORE($1$) Flox;ofhart
Sp3. IF SCORE($13) GR
SCORE($23) $
BEGIN
Spk. SCORE($13) ==
SCORE($23) $
s@5. IF SCORE($p$)
GR SCORE($1$) $
SP6. SCORE( $6$)
== SCORE($1$) $
END

S¢7. IF SCORE($2$) GR
SCORE( $3$) $

BEGIN

sg8. SCORE( $2$) ==
SCORE( $3$) $

sg9. IF SCORE($1$)
GR SCORE($2$) $

BEGIN

s18. SCORE( $1$)
== SCORE($23) $

sii. IF SCORE
($6$) GR SCORE($1$) $

si2. SCORE

($0$) == SCORE($1$) $
END END END

The statement execution flow for SORT shows an interesting regularity,

which suggests how the statement might be extended to sort longer lists
of numbers

GOTO STATEMENTS. A GOTO statement, composed of the GOTO sequential
operator followed by a statement name and terminated by the $ separator
breaks the normal listed sequence of statement executions by causing the
computer to execute as the next statement the one bearing the given name.

statement Q GOTO nameof—statement-to-be-executed-next $
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A GOTO statement thus discontinues the execution of a set of consecutively
listed statements and initiates the execution of another such set beginning
at an explicitly specified statement. Examples of GOTO statements are:

GOTO STEP19 $
GOTO COMPUTE'TAX $

GOTO statements are important in JOVIAL, since they are needed for
any departure from the normal, listed sequence of statement executions
(except the conditional skipping provided by IF statements). Such de=-
partures are required whenever it is impossible, inconvenient, or inef=-
ficient to list a statement's successor immediately after it. For example,
when a statement must be the unconditional successor to many statements,
it can, obviously, be listed after only one of these; all the others must
be followed by GOTO statements. As a further example, when different
parts of a program are written as separate blocks and must finally be
Jjoined into a single program, their proper interleaving in the listing
sequence may be difficult to achieve. 1In such cases, GOTO statements
can easily supply the correct execution sequence.

The most noteworthy use of the GOTO statement, however, is to return
to an earlier point in the computation and thus form a loop in the sequence
of statement executions. Consider the following statement, which computes
the factorial of a number.

BEGIN COMPUTE 'FACTORIAL.
STEPl. FACTORIAL = 1 $
STEP2. IF NUMBER GR 1 $
STEP3. BEGIN ''Accumulate the product.''
FACTORIAL = FACTORIAL * NUMEER $
''"Compute the next factor.'!
NUMBER = NUMBER - 1 $
GOTO STEP2 $
END END
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The statements are executed in the
sequence: STEPl, STEP2, STEP3, STEPZ2,
STEP3, STEP2, STEP3, and so on until
the number is reduced to 1 and a
final comparison at STEP2 terminates
the computation. The loop in the
flow of statement executions is
shown in the accompanying diagram.

9 Flow Chart
for

COMPUTE

| 1 | FACTORIAL

———— .,

A similar loop may be used in
computing arcsin of x from the in-
finite series summation (where
-l<x<+l).

| R P

sin = x =34+ 3 %3 2 *L*T
1 3 5
PERTHEET A

In this case, the computation to be repeated consists of (a) accumu-
lating the sum, and (b) computing the next term. Here, the criterion
for completing the computation cannot be the exhaustion of the terms,
but must rather be: whether or not a particular term appreciably affects
the total. If the decision is to disregard all terms less than 1l.E=3
in magnitude, then the computation is done when the first term is dis-
carded, since the terms of the series form a sequence of decreasing
magnitude. Notice that each term in this series may be computed from
the previous term. This computation may be considerebly simplified,
however, by computing terms in two stages, as a partial term and as a
full term, using the previous partial term to compute each new term.
The fixed-point variable items ARCSIN, XX, and the necessary temporary
items PARTIAL, FULL, and POWER, are declared below, along with the
statement computing ARCSIN from XX.

ITEM ARCSIN fixed 16 Signed 1§ Rounded $ ''Angle measured in radiians''
ITEM XX fixed 16 Signed 15 Rounded $ ''Sine'’

ITEM PARTIAL fixed 16 Signed 15 Rounded $ ''Partial term in series'!
ITEM FULL fixed 16 Signed 15 Rounded $ ''Full term in series'®

ITEM POWER fixed 16 Unsigned $ "'Power of XX in term''

BEGIN

ARCSIN = @ $
PARTTAL = XX $
POWER = 1 $

COMPUTE 'FULL'TERM. FULL = PARTIAL/POWER $
IF (/FULL/) GR 1.E=3A15 $
BEGIN
ARCSIN = ARCSIN+FULL $
PARTIAL = PAR'I‘IAL*}O(**Z*POWER/ (POWER+1) $

POWER = POWER+2 $
GOTO COMPUIE'FULL"]ZERM $
EID

END
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EXERCISE (Basic Statements and Declarations)

(a) The following statement
computes a value for EPSILON. Con-
struct a simple assignment statement
performing the same function.

BEGIN
=1. §
EPSILON =@. $
Tl = TL*OMEGA $
EPSILON = EPSILON+T1+ALPHA($33) $
= TL*OMEGA $
EPSILON EPSILON+T1+ALPHA( $2$) $
Tl = T1*OMEGA $
EPSILON = EPSILON+T1+ALPHA($1$) $
T1 = TL*OMEGA $
EPSILON = EPSILON+T1+ALPHA($@$) $
END

(b) Write a JOVIAL statement to
compute ARCTAN of X from the infinite

series summations:

If x| <1,
3 5 T
-1 X X X X
ta.n x=‘i""3 +5 "7 + eee
-1
If |x] =1, tan “x =g
If 'X' > 1,
-1 -3 -5
tanlx= %-xl +x3 "'xs + eee

where terms less than l.E-3 in
megnitude may be discarded. In-
clude any necessary declarations,
other than

ITEM ARCTAN fixed 16 Signed 1§ $
ITEM XX fixed 3¢ Signed 15 $

(c) Describe the function of
the JOVIAL statement below and re=-
write it eliminating the items TY,
Tl, and T2.

BEGIN
MODE Floating Rounded $
= 2-*AA $
Rl = -BB/T¥ $
R2 = Rl $
TL = BB**2-L ¥AA*CC $
T2 = (/T1/)**.5/79 $
IF TL 1S ¢. $
BEGIN
I1 =12 $
I2 =12 $
END
IF T1 GR §. $
BEGIN
Rl = R1+T2 $
R2 = R2-T2 $
END
IF T1 GQ f. $
BEGIN
I1 = ¢. $
I2=¢. $
END
END

(d) Simplify the following
JOVIAL statement.

BEGIN
Sp. OMEGA = § $
sl. IF A s ¢ $
s2. GOTO S6 $
S3. IFBLS @ $
sh. GOTO S8 $
S5. GOTO EXIT $
S6. OMEGA = OMEGA+L $
ST. GOTO 83 $
S8. OMEGA = OMEGA+2 $
S9. GOTO EXIT $

END
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(e) Given: the item ALPHA'LENGTH
as designating the number of elements
in the linear array, ALPHA. The follow=-
ing three statements perform the same
function. Describe that function and
discuss the differences in its exe=
cution.

S1. BEGIN
IFIP IS @ $
BEGIN
IX = ALPHA'LENGTH+LP $
GOTO GET'ANSWER $

END
X =1f $
GET'ANSWER.
ANSWER = ALPHA($IX$) $
END

s2. BEGINL¢ ;
IF £.¢ Ls ¢ $
IX = ALPHA'LENGTH+IX $
ANSWER = ALPHA($IX$) $
END

S3. BEGIN
ANSWER = ALPHA($LOS$) $
IF L§ Ls § $ ANSWER = ALPHA
($ALPHA 'LENGTH+LE$) $
END

(f) Given the JOVIAL statement
below, construct reasonable decla-
rations for the items, on the as-~
sumption that object K is part of an
appliance dealer's inventory.

gg}gROFIT( $K$) = (PRICE($KS$)
-(-$§g§'ré $K$) ) ¥VOLUME ( $K$ ) ~OVERHEAD
EFFICIENCY($K$) = NET'PROFIT($K$)
l{WDJ:NVEscMEl\rT( $K$) $

™-555/003/00

(g) Given three Boolean items,
IND'A, IND'B, and IND'C. Write a
JOVIAL statement which selects its
successor according to the following
chart.

IND'A IND'B IND'C

6000 s 00000 00c0 0 LA N )

. False . False . False ! STEP@

o0 e s e L A N L 6ee0 00 e

: Fa.'l.se . Fa.lse True . STEP1

. False . True False . STEP2

. False . 'I‘rue . True . STEP3

: True . False . False . STEPL

000 e 0L 0000000000000

. True . False . True . STEPS

e ev st 0e 00000
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(h) The items INDICATORA,
INDICATORB, and INDICATORC are

Boolean. Simplify the following
JOVIAL statement.
BEGIN
INDICATORA = @ $
INDICATORB = @ $

INDICATORC = @ $

IF DIFFERENCE LS .@§¢5 $
GOTO SETABC $

IF DIFFERENCE LS .§5 $
GOTO SETBC $

IF DIFFERENCE LS .5 $

SETABC. INDICATORA
SETBC. INDICATORB
SETC. INDICATORC

END
NEXT.

nnn
]
€A
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LOOPS

The loop concept, touched on briefly in the previous section, is
undoubtedly the single most important concept in computer programming.
Loops are important because most modern computers can execute in=-
structions much faster than they can be input, and because the computer
is economical only when the same computation is performed on many sets
of data.

A loop mey be defined as the repeated execution (or, more ime
pressively, as the iterated execution) of a set of statements, usually
with some type of modification between repetitions. It would be point=
less, of course, to repeat exactly the same computation over and over
again; some of the information must be modified between repetitions.
Values thus modified become parameters for the loop; that is, they
(generally) remain constant during any particular repetition, but vary
between repetitions. Loop parameters may be involved in the computation
performed by the loop (as were the factors in the factorial loop and the
terms in the arcsin loop) or they may be, simply, counters counting the
number of repetitions. For the correct functioning of a loop, the loop
parameters must initially be assigned the values needed for the first
pass through the loop.

To avoid an endless loop, some sort of test must be made to determine
when to terminate the repetition. Such tests usually involve one of the
loop parameters, so that loops are either count-controlled or condition-
controlled, depending on whether or not the termination criterion is the
number of repetitions. The previous factorial loop is an instance of a
count-controlled loop (where the number of repetitions for N! equals N=1),
while the arcsin loop is an instance of a condition~controlled loop (where
the condition is: whether the new term appreciably affects the sum).

As seen above, the five basic functions of a loop are to:

1l. Initialize the loop parameters;

2. Execute the set of statements;

3. Modify the loop parameters; and

4, Test the controlling loop parameter, to determine whether to

5. Repeat the execution.
It should be realized, however, that the order of these five steps is
not necessarily always the same as listed above, for it is often de-
sirable to change the order of Execute, Modify and Test. The factorial
loop, for example, exhibits the pattern: Initialize; Test; Execute;

Modify; Repeat, while the arcsin loop exhibits the pattern: Initialize;
Modify; Test; Execute; Modify; Repeat.
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The five basic functions of a loop are very clearly illustrated
in the almost classic loop example, computing the sum of 5@ numbers.
A JOVIAL version of this computation appears below, along with the
necessary data declarations.

ARRAY ALPHA 5@ Floating Rounded $
ITEM SUM Floating Rounded $
ITEM COUNT fixed 6 Unsigned $

BEGIN SUMMATION. Flow Chart
INITIALIZE. COUNT = @ $ SUM = @. $ for
EXECUTE. SUM = SUM+ALPHA($COUNT$) $ INITIAL a
MODIFY. COUNT = COUNE+1$$ Typical
TEST. IF COUNT IQ 49 UMMA TION
REPEAT. GOTO EXECUTE $ S Loo I
END P
The above loop is, of course, a count=
controlled loop, and the device of EXECUTE
running the count from @ thru 49
allows it to both control the loop
and index the array item, ALPHA. The MODIFY
statement execution flow is shown in I T

the accompanying diagram.

FOR STATEMENTS. Counting and
count=controlled loops are among the
most common operations in program-
ming. For this reason, JOVIAL
includes a special set of signed,
integer valued variables == subscripts, designated by single letters.
Subscripts are activated and assigned initial values by the execution
of FOR statements. They are eminently suited for use as counters,
since an active subscript can be used for exactly the same purposes as
any other numeric variable.

Only an inactive subscript may be activated by a FOR statement and,
in general, the range of a subscript's activity is bounded by the acti=-
vating FOR statement and by the next (non=-FOR) statement listed. Outside
this range, a subscript is inactive, and references to it are undefined.
Furthermore, since it is the execution of the FOR statement that acti-
vates the subscript, a GOTO statement entering the subscript's nominal
range of activity from outside will find it inactive and its value unde=-
fined.
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ONE-FACTOR FOR STATEMENTS. The simplest FOR statement,
composed of the FOR sequential operator followed by a subscript letter,
the = separator, and a numeric formula, and terminated by the $ sepa=
rator, merely activates the subscript and assigns it the value speci-
fied by the formula.

statement & FOR letter = numeric-formula, ..o o000 $

The subscript is active and may be used as a numeric varisble until the
end of the next (non-FOR) statement listed, which may, of course, be
compound. For example:

ARRAY ALPHA 5@ Floating Rounded $
ARRAY BETA 5@ Floating Rounded $
ARRAY GAMMA 5@ Boolean $
BEGIN
INITIALIZE. FOR C = § $
BEGIN -
EXECUTE. GAMMA($C$) = ALPHA($C$) EQ BETA($CS) $
MODIFY. C=C+l $
TEST. IF C 1Q 49 $
REPEAT. GOTO EXECUTE $
END EID

This statement assigns the value True to those GAMMAs corresponding by
index to equal values of ALPHA and BETA, and False to all other GAMMAs.
The structure of this loop is identical to that of the loop for summing
the ALPHAs, but the explicit declaration of a count item is unnecessary,
since this function is assumed by the subscript, C.

Subscripts can, of course, be used for purposes other than counting.
The following example, which assumes the activity of subscripts A and Z,
transfers control to statement STEPT if the smaller of the integers de=-
signated by A and Z is a factor of the other.

BEGIN
IF (/a/) 1s (/2/) $
A == $

IFZNQ @ $
BEGIN
FOR K = A/Z $
IF K EQ A/Z $
GOTO STEPT $
END
END
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Note: The FOR statement activating the subscript K truncates any
fractional remsinder from the division, whereas the comparison re-
sulting from the relational operator EQ does not.

The following example requires that some initial conditions be
assumed. Given: two linear arrays, QUESTION and ANSWER, where the
QUESTIONs are arranged in ascending numeric order and correspond by
index to the ANSWERs; an item, QUE, of the same type as the QUESTIONs;
and two active subscripts, A and Z, which designate the indexes of the
first and last question~answer palr to be considered. Search the
bounded array of QUESTIONs for one designated by QUE and if successful,
set the Boolean item SUCCESS to True and the item ANS to the correspond=-
ing ANSWER, or if unsuccessful, set SUCCESS to False.

BEGIN BINARY 'SEARCH
STEP@l. SUCCESS = @ $
SEARCH. STEP@2. IFAIQ Z $

BEGIN

STEPP3 . FOR K = ''The midpoint,'' (A+Z)/2 $
BEGIN

STEPPL . IF QUE EQ QUESTION($K$) $

STEPP5 . BEGIN

ANS = ANSWER($K$) $
SUCCESS = 1 $
END
"'If QUE NQ QUESTION($A...K$), then
search QUESTION($K+l...2$). That is'!'
STEPP6. IF QUE GR QUESTION($K$) $
STEP@T . A=K+ $
'!'Tf QUE NQ QUESTION($K...Z$), then
search QUESTION($A...K=1$). That is''

STEP@S. IF QUE LS QUESTION($K$) $
STEPP9 . Z = K=1 $
STEP1{. IF NOT SUCCESS $

GOTO SEARCH $
END END END
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The search technigue
described above is
usually referred to

as a "binary search," Flow Chart
because each pass for
through the loop BINARY

splits the searched
list in two and, due
to its ascending
order, discards that
half of it which does
not include the value
sought. The exe~-
cution of this state-
ment is shown graphi=-
cally in the accompa~-
nying flow chart.

SEARCH

TWO-FACTOR
FOR STATEMENTS. The
two~factor FOR state-
ment, composed of the
FOR sequential oper=-
ator or followed by a
subscript letter, the
= separator, and two
numeric formulas sepa-
rated by the , sepa-
rator, and terminated
by the $ separator,
activates the sub-
script, assigns it the
velue specified by the
first numeric formula,
and causes the (non-
FOR) statement following it to be repeatedly executed an indefinite
number of times. After each repetition, the value of the subscript
is incremented by the value specified by the second numeric formula.
A two-factor FOR statement is useful, therefore, in condition-
controlled loops where one of the non=-controlling loop parameters is
a count.

statement § FOR letter = numerlc-formulainitial_value , numeric-

formula, $
increment
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The operation of the two-factor FOR statement is best explained
in terms of simpler statements. In effect, then,

FOR L = INITIAL, INCREMENT $
BEGIN

END
is just a shorthand way of writing

INITIALIZE. FOR L = INITIAL $

EXECUTE. BEGIN
BEGIN
MODIFY. L = L + INCREMENT $
REPEAT. GOTO EXECUTE $
END
END

The addition of a second numeric formula, forming a two=factor FOR
statement, automatically implies the compound, MODIFY-and-REPEAT
statement, so that the set of repeating statements should be
written with the existence of this implicit statement in mind. In
particular, since the two-factor FOR statement, by itself, creates
an endless loop, & terminating test must be supplied among these
statements. For example:

ARRAY ALPHA 5@ Floating Rounded $
ARRAY BETA 5@ Floating Rounded $
ARRAY GAMMA 5 Boolean $

BEGIN
FOR C = 9,1 $
BEGIN
IF NOT GAMMA($C$) $
BEGIN
ALPHA($CS) = §. $
EETA($C$) = P. $
END
IF C IS 49 $
''"Implicit MODIFY-and-REPEAT statement
inserted at this point.'!'
END
END

The above statement assigns zero as the value of those ALPHAs and BETAs
corresponding by index to False values of GAMMA. The IF statement
ultimately terminates the loop by skipping the implicitly inserted
MODIFY-and-REPEAT statement after C has reached a value of 49.
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To further illustrate the two-factor FOR statement, the evalu~
ation of the hyperbolic sine from the series summation,

w

5

»
»

+

sir].h.x=x+ + '..’

® oo
@ =)

3 >

provides a good example of a condition-controlled loop with a counter
as a non-controlling loop parameter. Terms less than @5 in magni-
tude are disregarded.

ITEM SINH fixed 16 Signed $¥8 Rounded P...7
ITEM XX fixed 16 Signed 12 Rounded P...§
ITEM TERM fixed 16 Signed 1 Rounded @...3
ITEM X2 fixed 16 Signed 1§ Rounded @...2

BEGIN

X2 = XX % 2 §

SINH = ¢ $

LN

SINH = SINH + TERM $
=TERM * X2 / (P * (P - 1)) $
IF (/TERM/) GQ .5E-2A8 $
END
END

The temporary storage item, X2, allows x2 to be computed once and not
each pass through the loop, since it is not a loop parameter.

COMPLETE FOR STATEMENTS. The complete, three-factor FOR
statement, composed of the FOR sequential operator followed by a sub-
script letter, the = separator, three numeric formulas separated by
the , separator, and terminated by the $ separator, activates the
subscript, assigns it the value specified by the first numeric formula,
and causes the (non-FOR) statement following it to be repeatedly exe-
cuted a definite number of times. After each repetition, the value of
the subscript is incremented by the value specified by the second
nuneric formula, and this modified value is compared with the limiting
value specified by the third numeric formula to determine whether to
terminate the loop. A complete FOR statement thus produces a count-
controlled loop.

statement & FOR letter = numerlc-formulainitial_value » numeric-

formula, numeric=formila. . . B
increment ’ limit=-value $
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Before discussing the iteration mechanism created by the complete
FOR statement, it would be well to consider a simple example: the evalu-
ation of the inner or dot product of the two numeric vectors, ALPHA and
BETA.

ARRAY ALPHA 5@ Floating Rounded $
ARRAY BETA 5§ Floating Rounded $
ITEM DOT Floating Rounded $
BEGIN INNER'PRODUCT.
STEPl. DOT = P. $
STEP2. FOR I = @,1,49 $
STEP3. DOT = DOT+ALPHA( $I$)*BETA($I$) $
END' ' INNER 'PRODUCT* !

STEP3, the repeating statement of
the loop, is executed 5@ times, as
the subscript I is stepped from an
initial value of § in increments
of 1 to the limit of 49. The ac=-
companying flow chart shows the PRODUCT
statement execution sequence.

(The branch in the flow line is

due to the implicit subscript test
created at that point by the com=-
plete FOR statement, STEP2.) Notice
that, since the increment factor in
a FOR statement can be negative as
well as positive,

Flow Chart

STEP2. FOR I = 49, -1, ¢ $

could also be used in the dot pro=-
duct computation above.

The complete FOR statement creates a complete, count-controlled
loop, with INITIALIZE, EXECUTIVE, MODIFY, TEST, and REPEAT steps. The
iteration mechanism consists of an implicit and compound MODIFY-TEST-
REPEAT statement which is automatically inserted by the compiler after
the repeating statements. This means that these statements will always
be executed at least once. Whether they are executed more than once
depends, of course, on the outcome of the implied subscript test follow=-
ing the subscript modification. This test compares the subscript's
modified value with the limiting value specified by the third numeric
formula in the FOR statement. The nature of this comparison depends
on the second, incremental, numeric formuwla of the FOR statement, and
whether it specifies a negative value. If it specifies a decrement or
negative increment, the loop is repeated only if the subseript's value
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is greater than or equal to the limit value. If, on the other hand, it
specifies a positive (non-negative) increment, the loop is repeated only
if the subscript's value is less than or equal to the limit value. Thus,
the loop is terminated when the subscript's modified value passes the
limit value, either in the positive direction for a positive increment,
or in the negative direction for & negative increment.

As with the two-factor FOR statement, the operation of the com=
rlete FOR statement can be explained in terms of simpler statements.
In effect, then,

FOR L = INITIAL, INCREMENT, LIMIT $
BEGIN

END
is just a shorthand way of writing

INITTIALIZE. FOR L = INITIAL $

EXECUTE. BEGIN
BEGIN

MODIFY. L = L + INCREMENT $

TEST. IF (INCREMENT GQ § AND L IQ LIMIT)

OR (INCREMENT LS § AND L GQ LIMIT) $

REPEAT. GOTO EXECUTE $
EID

END

The subscript test shown above can often be simplified. When the incre-
ment formula cannot specify a negative value (as with a positive constant
or an unsigned variable) the test is reduced to

TEST. IF L 1Q LIMIT $ REPEAT. GOTO EXECUTE $

and when the increment formula cannot specify a positive value (as with
a negative constant) the test is

TEST. IF L GQ LIMIT $ REPEAT. GOTO EXECUTE $

Consider some further examples of count-controlled loops created
by complete FOR statements.

The following statement exchanges the first 25 ALPHA value pairs.
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BEGIN
FOR T = §,2,48 $

- ALPHA($I$) == ALPHA(S$I+1$) $
EX

The following statement evaluates a polynomial of a given degree
whose coefficients, corresponding by index to the powers of the vari=-
able XX, are elements of the linear array, ALPHA.

POLYVAL. BEGIN
STEPl. POLYNOMIAL = @. $
STEP2. FOR P = DEGREE, =1, § $
STEP3. POLYNOMIAL = POLYNOMIAL**XX+ALPHA($P$) $
END ''POLYVAL''

In this loop, STEP3, the repeating statement, is executed DEGREE+1l times.

Given a JOVIAL program in the form of a linear array of Hollerith
coded, single character, literal values; the following statement counts
the number of $ separators (ignoring subscript brackets).

ARRAY CHARACTER 65536 Hollerith 1 $''JOVIAL program, 2%*16 signs max.''
ITEM TERM'COUNT fixed 16 Unsigned $''Number of termination separators'!
ITEM Ii'CHARACTERS fixed 16 Unsigned $
BEGIN TERM'COUNTER .
STEP1. TERM'COUNT = § $
STEP2. FOR C = §,1,N'CHARACTERS-1 $

BEGIN
STEP3. IF CHARACTER($C$) EQ 1H($) AND ((C NQ @ AND
CHARACTER($C-1$) NQ 1H(()) OR (C NQ N'CHARACTERS-1 AND CHARACTER($C+1$)
NQ 1H())) $ STEPL. TERM'COUNT = TERM'COUNT+1 $
END

END

The accompanying flow chart
graphically illustrates the
statement execution sequence

()  Flow Chart

. . for
of this routine. TERM
The following statement COUNTER

evaluates the algebraic
formula

Bix 1

A, =
1 T
1
J67(2.3826ci - 1/ci) + D

for i = @ thru 999, where

Xy = PP1(i+1).
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AA 19¢¢ Floating Rounded $''Values of A''
lggg Floating Rounded $''Values of B'!
1

ARRAY cC Floating Rounded $''Values of C''

ITEM DD Floating Rounded $''Value of D''

ITEM PD Floating Rounded $''Powers of D'!'

ITEM XX Floating Rounded $''Values of x''
BEGIN

XX = f¢L $ PD = 1. $
FOR I = $,1,999 $
BEGIN
AA($I$) = BB($I$)*xX/((2.3826%CC($I3)
-1./CC($1$) )+PD)**.5 $

PD = PD¥DD $
XX = XX+.0¢1 $
END

END
As still a further example, consider the following statement.

ARRAY CHARACTER 2@@@@ Hollerith 1 $
ITEM LENGTH fixed 15 Unsigned §...200¢0 $
REDUCE. ''A statement that shortens a given length string of
literal characters by reducing strings of blanks to single blanks.''
BEGIN
IF LENGTH GR @ $
BEGIN
FOR L = IENGTH-1 $
BEGIN
ITEM BLANKS Boolean $''True means that the last character was a blank'!'
BLANKS = 1 $''Which eliminates initial blanks'®'
LENGTH b
FOR I = §,1,L $
SKIP. BEGIN
IF NOT BLANKS OR CHARACTER($I$) NQ 1H( ) $
BEGIN
BLANKS = NOT BLANKS AND CHARACTER($I$) EQ 1H( ) $
CHARACTER( $LENGTHS$) = CHARACTER(S$I$) $
LENGTH = LENGTH+1 $
END END END END END

nn
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The action taken by SKIP, the repeated statement in the above loop, is
tabulated below.

= CHARACTER($I$)
= CHARACTER($IS$)
VI= CHARACTER( $I$)

LENGTH+1
LENGTH+1

]

It should be realized that the factors of a FOR statement are not
always constants as in most of the previous examples, but are occasion=-
ally variables or even numeric formulas. The loops created by such FOR
statements, though simple in structure, can be quite complex in operation,
especially if the repeating statements themselves modify the subscript's
value or the values specified by either the increment factor or the
limit factor.

For example, consider the following problem and its JOVIAL solution:
The 1@P@-element, linear array TERM consists of several interleaved but
separate lists of numbers. Another linear array, STEP, corresponds by
index to the array TERM, so that whenever TERM($N$) is a member of a
list, then STEP($N$) is the index increment and N+STEP($N$) is the index
of the next member of the list; except when TERM($N$) is the last member
of a list, and then N+STEP($N$) specifies 1f@f. The linear arrays FIRST,
SUM, and AVERAGE correspond by index and provide information about the
various lists. Assuming subscript L is active and FIRST($L$) designates
the TERM-index of the first member of list L, then it is necessary to
compute SUM($L$), the sum of all the members of the list, and AVERAGE($L$),
their average.

ARRAY TERM 10¢¢ Floating Rounded $
ARRAY STEP 1@ fixed 1 Unsigned $
ITEM MEMBERS Floating Rounded $''Number of members in a list'®
BEGIN
SUM($L$) = #. $ MEMBERS = P. $
FOR N = FIRST($L$),STEP($N$),999 $
BEGIN
SUM($L$) = SUM($L$)+TERM($N$) $
MEMBERS = MEMBERS+l. $
END
AVERAGE($L$) = SUM($L$)/MEMBERS $
END
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As another example, consider the solution to the following problem:
A certain language consists entirely of U-letter words, which are sepa-
rated from each other by one or more blanks. In this language, a well=
formed sentence of a given length is represented by a linear array of
literal characters. It is necessary to determine the number of words
in such a sentence.

ARRAY CHARACTER 1§¢¢¢ Hollerith 1 $''The sentence.''
ITEM LENGTH fixed 14 Unsigned l...10@@@ $''Number of characters''
ITEM WORDS fixed 14 Unsigned l...20¢¢ $''Number of words''
BEGIN
WORDS = @ $
FOR K = @,1,IENGTH-4 $
BEGIN
IF CHARACTER($K$) NQ 1H( ) $
BEGIN
WORDS = WORDS+1 $
K = K+k $
END

END
END

LOOPS WITHIN LOOPS. It is often necessary to construct a program
loop that is itself repeated a number of times, in other words, a loop
within a loop. An example is an operation on each of the elements of
a matrix, which is repeated for each element in a row, and then for
each row in the matrix. Loops within loops may be constructed by
placing the inner loop within the compound statement being repeated
by the outer loop.

To illustrate this concept, consider the following statement,
which searches the square array, NODE, for its largest absolute value.

ARRAY NODE 1¢@ 10¢ fixed 64 Signed 32 $
ITEM AMAX fixed 64 Signed 32 $
BEGIN
AMAX = 0 $
FR I =£,1,99 $
BEGIN
FOR J = $,1,99 $
BEGIN
IF (/NODE($I,3$)/) GR AMAX $
AVMAX = (/NODE($I,J$)/) $
END END END
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As another example, the statement below divides off-diagonal
elements of each row of the same matrix by the diagonal element of
that row, if non=-zero.

BEGIN !

FOR I = $,1,99 $
BEGIN
FOR J = $,1,99 $

BEGIN
IF I NQ J AND NODE($I,J$) NQ @.A32 NQ NODE($I,I$) NQ 1.A32 $
NODE($I,J$) = NODE($L,J$)/NODE(S$I,I$) $
END END END

In both of the above examples, it can be seen that the IF statement
repeated by the inner loop is executed 1@@ times for each repetition
of the outer loop, which is itself executed 19§ times, thus making a
total of 1P@@@ repetitions.

As a further example, consider the following matrix transposition
routine, which interchanges the rows and columns of the same array, NODE.

TRANSPOSE. BEGIN
STEPl. FOR I = ¢,1,99 $

BEGIN

STEP2. FOR J = I+1,1,99 $

STEP3. NODE($I,J$) == NODE($J,I$) $
END

END

Notice in STEP2: The initial
factor of the inner FOR
statement loop varies with
each repetition of the outer
loop, so that only unex-
changed non~diagonal element
pairs are exchanged. The
statement execution sequence
for this routine, which is
similar in loop structure to
the other two, 1s shown in
the accompanying flow chart.
The following JOVIAL
statement computes new values
for each of the elements of
the array, NODE. The new
value for an element consists
of the average value of the
horizontally and vertically
adjacent elements. Note that
a corner element has only two

Flow Chart
for
TRANSPOSE
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adjacent elements, while other exterior elements have three, and
interior elements have four. An array of temporary storage must be
declared since no element of NODE can be reset until it is used in
computing new values for all elements adjacent to it.

ARRAY NODE 1f¢ 1¢¢ fixed 64 Signed 32 $
ARRAY TEMP 1f¢ 198 fixed 64 Signed 32 $

ITEM N'AE
BEGIN

fixed $3 Unsigned $''Number of Adjacent Elements''

FOR I = ¢,1,99 $
BEGIN
FOR J = $,1,99 $

BEGIN

END

N'AE

=43

TEMP($I,J3) = P.A32 $

Ir I

IF I

IF g

IF g

NQ 8 $

BEGIN

N'AE = N'AE+1 $

TEMP($I,J%) = TEMP($I,J$)+NODE($I-1,J%) $
END

NQ 99 $

BEGIN

N'AE = N'AE+l $

TEMP($I,J$) = TEMP($I,J$)+NODE($I+1,J$) $
END

NQ B $

BEGIN

N'AE = N'AE+1 $

TEMP($I,J$) = TEMP($L,J$)+NODE($I,J-1$) $
END

NQ 99 $

BEGIN

N'AE = N'AE+l $

TEMP($I,J$) = TEMP($I,J$)+NODE($I,T+1$) $
END

TEMP($I,J$) = TEMP(3$I,J$)/N'AE $

END

FOR I = $6,1,99 $
BEGIN
FOR J = $,1,99 $

NODE($I,J$) = TEMP($I,J$) $

END
END
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The following statement also computes new values for the elements
of an array, based on the values of adjacent elements.

ESTIMATE ‘WIND., BEGIN''A routine to update the estimate of an un-
reported current wind vector of given coordinates,
in a wind grid indexed by latitude, longitude, and
altitude, by adding the weighted average difference
between available adjacent current wind vectors and
corresponding seasonal wind vectors to the seasonal
wind vector with the given coordinates.'!

ARRAY REPORT 3¢ 6¢ 6 Status V(UNAVAILABLE) V(ESTIMATED)
V(AVAILABLE) $
ARRAY TIME 30 6¢ 6 fixed 6 Signed @...23''hours past midnight

zulu time. Plus=later, Minus=earlier''$
ARRAY SEASONAL'WIND 3¢ 6@ 6 Dual 12 Signed 3'‘'in knots East,North''s$
ARRAY CURRENT'WIND 3@ 6§ 6 Dual 12 Signed 3''in knots East,North''$

ITEM INCREMENT 'WIND Duel 12 Signed 3''in knots East,North''$
ITEM LAT fixed 6 Unsigned P...29''degrees North of 22
degrees North latitude''$
ITEM LON fixed 6 Unsigned @...59''degrees East of 127
degrees West longitude''$
ITEM ALT fixed 6 Unsigned @...05''19@@@ ft. intervals
above 100pd ft. altitude''$
ITEM CLOCK fixed 6 Unsigned @...23''hours past midnight
zulu time''$
ITEM REPORTED Boolean $
STEP@l. IF REPORT( $LAT,LON,ALT$) NQ V(AVAIIABLE) $
BEGIN
STEP@2 . INCREMENT 'WIND = D(@,0) $
STEP@3 . REPORTED = REPORT($LAT,LON,ALT$) EQ
V(AVAILABIE) $
STEPPY . FOR I = IAT-1,1,IAT+1 $
BEGIN
STEP@S . FOR J = LON-1,1,LON+1 $
BEGIN
STEPP6. FOR K = ALT=-1,1,ALT+1
BEGIN
STEPT . IF ¢ 1Q I 1S 3¢ AND @ 1Q J LS 6§
AND @ 1Q K LS 6 AND REPORT($I,J,K$) NQ V(UNAVAILABLE) AND (REPORTED OR
TIME( $LAT, LON,ALT$) IQ TIME($I,J,K$)) $ BEGIN
STEPYS. INCREMENT'WIND = INCREMENT'
WIND + (CURRENT'WIND($I,J,K$)-SEASONAL'WIND($I,JT,K$)) $
END END END END
STEP#9 . CURRENT '"WIND( $LAT,LON,ALT$) = INCREMENT 'WIND /
D(27,27) + SEASONAL'WIND($LAT,LON,ALT$) $
STEP1{. REPORT( $LAT, LON,ALT$) = V(ESTIMATED) $
STEP11. TIME($LAT,LON,ALT$) = CLOCK $

END END
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The flow chart for ESTIMATE'WIND is given below.

Flow Chart
for
ESTIMATE WIND

The statement below computes values of y from the algebraic
formula

X,
1

Yijk = :
x/ RSY 4 (2.3826F, - 1/F,)
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ARRAY YY 1¢@ 5§ 1§ Floating Rounded $
ARRAY FF 19 Floating Rounded $
ITEM RR Floating Rounded $
ITEM XX Floating Rounded $
BEGIN
XX = PPl $
FOR I = $6,1,99 $
BEGIN
FOR J = §,1,49 $
BEGIN
FOR K = $,1,9 $
BEGIN

YY($I,5,K$) = XX/ (RR¥*(2%J)+2 .3826*FF( $K$)
- 1./FF($K$) )**.5 $ END

END
XX = XX+.001 $
END

END

Multiple loops need not always be embedded one within the other,
as in the previous examples. Consider the following statement, which
arranges the 1¢@@, five-character, Transmission-coded literal values
of the linear array, WORD, into alphabetic order by searching the
array for out-of-order adjacent pairs (STEP2). When such & pair is
discovered, it is exchanged into correct order (STEP3) and the search
begins over, to terminate only when all adjacent pairs (and thus the
entire array) are correctly ordered.

ARRAY WORD 1f@¢ Transmission 5 $
BEGIN SIMPLE'SORT.
STEPl. FOR I = $,1,998 $

BEGIN
STEP2. IF WORD($I$) GR WORD($I+1$) $
STEP3. BEGIN
WORD($I$) == WORD($I+1$) $
GOTO STEP1 $
END
END

END
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This sorting technique is
probably the simplest of
all sorts, though it is by
no means the most efficient.
Notice the existence of two
loops, as shown in the ac=-
companying flow chart.

A much more efficient
sorting technique, the
shuttle exchange, is ex=
emplified in the following
statement, which, using
the loop within a loop
structure, also arranges
the literal values of the
linear array, WORD, into
alphabetic order.

BEGIN SHUTTLE'SORT.
STEPl. FOR I = $,1,998 $
BEGIN

STEP2. IF WORD($I$) GR WORD($I+1$) $

BEGIN

STEP3. WORD( $I$) == WORD($I+1$) $
STEPL. FORJ=1$

BEGIN

o7

™-555/003/00

Flow Chart
for
SIMPLE SORT

STEPS. IF J NQ § AND WORD($J-1$) GR WORD($J$) $

BEGIN

STEP6. WORD($J=1$) == WORD($J$) $
STEPT. J=J=1%

GOTO STEP5 $
END END END END END

This statement also searches down the array for out-of-order, adjacent

pairs. When such a pair is discovered, its values are exchanged and, in

this case, the exchanging continues up the array as far as necessary.

The search then resumes where it left off, leaving a correctly ordered set
of values behind. The statement execution sequence is shown in the follow-

ing flow chart.
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Flow Chart
for
SHUTTLE SORT

As a further example of a loop within a loop, consider the follow-
ing statement, INSERT.

ARRAY WORD
ITEM WORDS
ITEM NEW'WORD

INSERT.

STEP1.
STEP2.
STEP3.
STEPL .
STEPS .

STEP6.
STEPT.

1¢¢¢ Transmission 5 $
fixed 1f Unsigned @...1000 $''Number of words''
Transmission 5 $
"'A statement that inserts a new, 5-letter word into
an alphabetically ordered list of 5-letter words
whenever the new word is not already listed.'!'
BEGIN
FORK = ¢ $
BEGIN
IF K LS words $
BEGIN
IF NEW'WORD EQ WORD($K$) $
GOTO CONTINUE $
IF NEW'WORD GR WORD($K$) $
BEGIN
K = K+1 $ GOTO STEP2 $
END
FOR J = WORDS,-1,K+1 $
. WORD($J$) = WORD($J-1$) $
1
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STEPS. WORD( $K$) = NEW'WORD $
STEP9. WORDS = WORDS+1 $
END

END ''INSERT''
CONTINUE.

The execution sequence for this statement is shown in the following flow
chart.

Flow Chart
for

FOR-STATEMENT STRINGS. As was previously mentioned, a subscript's
range of activity begins with the activating FOR statement and extends
over intervening FOR statements to include the first non-FOR statement
listed. This allows many subscripts to be conveniently and, in effect,
simultaneocusly activated by a string of FOR statements. The following
diagram illustrates the activity ranges of three subscripts, A, B, and

AT

C, as supplied by a FOR-statement string.
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:""""FORA: - - $
: :00'00F0RB= .. $
Pl UFORC = === $
v BEGIN
A B C :
:Q.:OO:O.QOQ....E‘ND

A FOR-statement string consists of an unbroken sequence of FOR
statements, and may contain any number of incomplete, one- and two-
factor FOR statements. Only one complete, three-factor FOR statement
can appear in a FOR-statement string, however, and it must be listed
before any two-factor FOR statements in the string. A FOR~-statement
string containing increment factors creates a single loop by means of
an implicit iteration mechanism which includes a subscript modification
for each increment. And if the string begins with a complete FOR
statement, a corresponding subscript test is also included. This means
that the implicit, compound, subscript MODIFY, TEST, and REPEAT statement
inserted at the bottom of the loop will modify the values of all sub=-
scripts activated by two or three-factor FOR statements, but will test
only the value of that subscript activated by the single, complete,
three-factor FOR statement that is listed before the others. Sub=-
script modifications are supplied in reverse of the order in which the
subscripts are activated. Consequently, when a subscript test is in-
cluded, the modification of that subscript immediately precedes it.

For example:

FOR A = $,1,99 $

FOR B = 1,1

FOR C = §,B $
BEGIN
END

produces exactly the same effect as the more explicit version

FORA =0 $

FORB=1$

FORC =0 $

EXECUTE. BEGIN

BEGIN
C=CHB$
B = B+l $
A=A+ $
IF A 1Q 99 $

END
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FOR~statement strings are useful in count-controlled loops where
non-controlling loop parameters are also counters. A good example of
a FOR-statement string is included in the following statement which
computes

ac-1 i+l
y=’—lc¢+§l+%2+-l%3+"' = Z(Xi/z s)
i= s=1

where the subscript A is active and designates the positive value, a.

ARRAY XX 1§¢ fixed 36 Signed 15 $''Designates the values of x''
ITEM YY fixed 36 Signed 15 $''Designates the value of y''
BEGIN SERIES.
STEP1. YY = XX($03%) $
STEP2. FOR N = A¥¥,5-1 $
STEP3. FOR I = 1,1,N $

STEPL. FOR s 2,S5+1 $ Flow Chart
STEPS. = YY+XX($I$)/ S $ for
END SERIES

The incomplete, FOR N statement,
STEP2, computes the limiting value
of I so that it need not be re-
computed each pass thru the loop.
The flow chart for this statement
is shown alongside.

gligh

Consider, as another example
of FOR-statement strings, the
following statement, which camputes
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ARRAY XX 1f@ fixed 36 Signed 15 $
ITEM YY fixed 36 Signed 15 $
BEGIN '
YY = XX($6$) $
FOR I = 1,1,99 $
FOR M = =1,-2%41 $
YY = YYHOX($I$)*¥*M $
END

The increment factor in the FOR M statement merely reverses the sign of
M each pass thru the loop, so that M EQ (=1)%*I.

TEST STATEMENTS. The GOTO statement allows execution control to
be transferred to any statement in a program -- except an implicit sub-
script MODIFY-TEST-REPEAT statement automatically inserted at the
bottom of a FOR~loop. Since such a statement is only implied and not
written, it can't be named and thus may not be referenced by a GOTO.
Nevertheless, the ability to specify a jump from the middle of a loop
to a subscript modification at the loop's bottom is often desirable
and occasionally necessary. This change in the statement execution
sequence is accomplished with a TEST statement, which is therefore
defined only within a FOR-loop.

A TEST statement, composed of the TEST sequential operator followed
by an optional subscript letter and terminated by the $ separator, com=
pletes the current repetition of a FOR-loop by transferring execution
control to one of the implicit subscript modifications at the bottom of
the loop

statement § TEST (letter] $

A TEST statement without a subscript-letter goes to the first subscript
modification of the innermost applicable loop, and thus effects the
modification of all the subscripts active at that level. (Recall that
the subscript modifications in any given loop are in reverse of the
order of their activation.) A TEST statement with a subscript-letter,
on the other hand, goes to the modification of the indicated subscript,
and may consequently allow some of the subscript modifications to be
skipped.

In a relatively simple, one-subscript FOR~loop, the effect of a
TEST statement is obvious. Thus,
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FOR A = INITIAL,INCREMENT,LIMIT $
BEGIN

STEPP. 'I:IEST $

END
is entirely equivalent to:

FOR A = INITIAL $

EXECUTE. BEGIN
STEP@. GOTO MODIFY $
BEGIN
MODIFY. A = A+INCREMENT $

IF A GQ;LQ* LIMIT $
GOTO EXECUTE $
END
END

Scarcely less obvious is its effect in a loop within a loop.
For example,

FOR A = INITIALA,INCREMENTA,LIMITA $
BEGIN
FOR B = INITIALB, INCREMENTB, LIMITB $
BEGIN

STEP@. TEST @ $

END
END

has the same effect as:

* The choice of GQ or Ly depends on the sign of the increment, as
explained on pages 86, OT.
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FOR A = INITIALA $

EXECUTEA . BEGIN
FOR B = INITIALB $
EXECUTEB. BEGIN
STEPY . GOTO MODIFY® $
BEGIN
MODIFY. MODIFYB. B = B+INCREMENTB $
IF B GQ;1Q* LIMITB $
GOTO EXECUTEB $
END
END
BEGIN
MODIFYA. A = A+INCREMENTA $

IF A GQ;IQ* LIMITA $
GOTO EXECUTEA $
END
END

where @ stands for either A or B. In other words, if the TEST statement
in the above example were TEST A $, the effect would be to modify and
test subscript A, controlling the outer loop; and if the statement were
TEST B $, the effect would be to modify and test subscript B, controlling
the inner loop; and finally, if the subscript-letter (signified by @)
were omitted entirely, the effect would also be to modify and test sub-
seript B, since it belongs to the innermost loop.

In the remaining case, where the loop is created by a FOR-statement
string, the ability of a TEST statement to indicate a particular sub-
script modification allows a decision to be made within the loop to omit

the modification of some of the subscripts (those activated last). To
illustrate,

FOR A
FOR B
FOR C

INITIALA, INCREMENTA,LIMITA $
INITIALB, INCREMENTB $
INITTALC, INCREMENTC $

BEGIN

STEPP . TEST @ $

nonn

END

* The choice of GQ or IQ depends on the sign of the increment, as
explained on pages 86, 87.
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is equivalent to:

FOR A = INITIAIA $
FOR B = INITIALB $
FOR C = INITIAIC $
EXECUTE. EEGIN
STEP@. GOTO MODIFY® $
BEGIN
MODIFY. MODIFYC. C = C+INCREMENTC $
MODIFYB. B = B+INCREMENTB $
MODIFYA. A = A+INCREMENTA $
IF A GQ;IQ LIMITA $
GOTO EXECUTE $
END
END

In the preceding example, a TEST A $ statement skips the modifications
of both B and C; a TEST B $ statement skips the modification of C; and
a TEST C $ statement causes all three modifications to be performed, as
does the simpler but equivalent TEST $ statement.

As an example of the use of the TEST statement, consider the
statement PRIME'SIEVE, along with the flow chart illustrating its
execution sequence.

ARRAY PRIME 10¢@p@ fixed 2@ Unsigned $

ITEM MAXIMUM fixed 2@ Unsigned $

PRIME'SIEVE. ''Prime Sieve uses the Sieve of Eratosthenes to
find all prime numbers not greater than a given
integer, MAXIMUM, and stores them in an array,
PRIME. This version, due to T.C. Wood, sappeared
(in ALGOL) in the March 61 issue of the ACM

Communications.'!
TEPP1 gﬁ(%) 13
S . =
STEPP2. PRIME($1$) = 2 $
STEP@3. PRIME($2$) = 3 $

STEPP4. FOR N = 3,2,MAXIMUM $
STEPP5. FOR J = 2,1 $
BEGIN
STEPP6. FORI =2,1 $
BEGIN ''Try to factor N'!
STEPT . IF PRIME($I$)**2 GR N $
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- FRDE($78) = N §
. PRIME =N
gmpm. TEST J $
END
STEP1§. FOR K = N/PRIME($I$) $
STEP11. IF K EQ N/PRIME($I$) $
STEP12. TEST N $
END END END
Flow Chart

for
° PRIME SIEVE

EXERCISE (Loops)
(a) Describe the effect of the following loop.

ARRAY GROUP 5@ Hollerith 6 $
FOR I = §,1,48 $
GROUP($I$) == GROUP($I+13) $

() What effect would the following statement have on the values
given after it for the array, LETTER?
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ARRAY LETTER 5 5 Transmission 1 $
BEGIN
FOR I = §,1,4 $
BEGIN
FOR J = §,1,4 $

™-555/003/00

LETTER($I,J$) == IETTER($J,I$) $

END
END

00 0000800000000 CNI0OOCECEOEOSOLIOSIOLIOEBANIOINOIOSIEBNOIOINOIEDY

+1r(A) ¢ 1n(B) ¢ 1m(c) : 1T(D) + 1T(E)

00 00000000000 00000000 0000000000 0CCIGIGIOIOIOIEOIEPSLIOS

c17(F) . 1m(G) « 1m(H) : 1m(I) . 17(J) -

an() 3n) : 1n0n | 3ad) ¢ 1n(o)

. lT(I.’Z.: 1™(Q) * 1m(R) + 1T(s) : 1m(T) =

LN N ] 0 0 00000 PBOOLONOINOGOEPOSOENINNOIOSIOIOEOINOSIOSBOIEOIEOSTOSOIODS
L]

s 1n(y) ¢ 1n(v) ¢ 1T(W) ¢ 1T(X) § 1T(Y)

o0 00 000000 00 6600000006000 0000000s0R0CIOGIMD

(c) Analyze each of the following loops to determine the number
of times the named statement will be executed, assuming it does not

affect the operation of the loop.

FOR A = 2L4,-3,0 $ FOR R = §,1,number-1 $
BEGIN FOR S = NUMEER $
FOR B = §,1,A $ BEGIN
8l, === FOR T = S-1,-1,R $
END . -

FOR M = $,1,99 $
BEGIN
FR N = §,2,M $

FOR K = §,I+1,2%(J-1) $
s3. $

END

END

FOR X = 9,2,17 $

BEGIN
FOR Y = 1,1,X $
BEGIN
FOR 2 = 1,Y,100 $
BEGIN
S5. $
END

END
END

(d) Previous statements have activated subscripts M and N, and

assigned them values such that (§ LS M¥N
"Floogles" the linear array, ELEMENT, an

-~ maea) \

1Q 1E4). The statement below
operation that depends on the
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perameters M and N. Describe the effect of this statement by defining
the term, "Floogle."

ARRAY ELEMENT 10@@@ Floating Rounded $
ARRAY FLOOGLED 1§@@@ Boolean $
ITEM TEMPORARY Flosting Rounded $
FLOOGLE. BEGIN
"*Tnitialize each element to un-floogled.''
STEP1. FOR K = §,1,M*N-1 $
STEP2. FLOOGLED($K$) = § $
'1Floogle the array by means of cyclic
permutations.'’
STEP3. FOR K = @§,1,M*N=-1 $

BEGIN
STEPL. TEMPORARY = ELEMENT($K$) $
''Floogle this element if not already done.''
STEPS. IF NOT FLOUGLED($K$) $
BEGIN
STEP6. FLOOGIED($K$) = 1 $

''Compute K', floogled index of this
element. XK' = M*¥(K modulo(N))+(K/N).'?

STEPT . FORP=0¢ $
BEGIN
STEPS. IFKGQN $
STEP9. BEGIN
P=P+1 $ K=K=-N$
GOTO STEP8 $
END
STEP10. K = M¥K+P $
END
''Exchange elements.'!'
STEP1l. TEMPORARY == ELEMENT($K$) $
""Now floogle element just
floogled.'"'
GOTO STEPS $
END
END

''Exchange M and N for floogled array.''
STEP12. M == N $
END

(e) Compare the following statement with the one on page 98.
Make some estimates of their relative efficiency with regard to exe=-
cution time.
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ARRAY  WORD 1ff¢ Trensmission 5 $
ITEM  WORDS tixed 1P Unsigned @...1¢@¢ $''Number of words''
ITEM NEW'WORD Transmission 5 $
INSERT. ''A statement which inserts a new, S5-letter word
into an alphsietically ordered list of S-letter
words whenever the new word is not already listed.'!'
BEGIN
IF WORDS EQ § $
BEGIN
WORD($§$) = NEW'WORD $
GOTO UPDATE 'WORDS $
END
''Binary search to determine position of new word.'!
FORA =0 $
FOR Z = WORDS-1 $
SEARCH. FOR K = (A+Z)/2 $
BEGIN
IF NEW'WORD NQ WORD($K$) $
BEGIN
IF NEW'WORD GR WORD($K$) $
BEGIN
IFALSZ $
BEGIN
A=K+l $
GOTO SEARCH $
END
K=K+l $
END
IFALSZ $
BEGIN
Z =K-13%
GOTO SEARCH $
END
FOR J = WORDS $
BEGIN
MOVE "WORD 'DOWN. IFJGRK $
BEGIN
WORD($J$) = WORD($J-1$) $
J=J-1%
GOTO MOVE 'WORD 'DOWN $
END

END
WORD($K$) = NEW'WORD $
UPDATE 'WORDS. WORDS = WORDS+1 $
END END END
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(f) Describe the effect of the following statement on the value
of the item WORTH in terms of: the array, GAIN; and the next statement,
SUCCESS or FAILURE.

ARRAY GAIN 1§ 20 fixed 36 Signed $
ITEM WORTH fixed 36 Signed $
BEGIN
FRH=0$
FOR I = $,1,9 $
BEGIN
g3

WORTH
FOR J = $,1,19 $
BEGIN
IF GAIN($I,J$) GR WORTH $
BEGIN
WORTH = GAIN($I,J$) $
H=J $
END

END
FOR K = $,1,9 $
BEGIN
IF GAIN($K,H$) LS WORTH $
TEST I $
END
GOTO SUCCESS $
END
GOTO failure $
END

(g) Revise the example statement on page 90 to allow an empty
list, and to accept both positive and negative values for the item, STEP.

(h) Write a JOVIAL statement that lengthens a list of numbers by
successively appending sets of differences between adjacent pairs of
numbers. Each set of n=1 differences computed from the previous set of
n numbers becomes the new set of numbers to be differenced (as long as
n> 2). Include any necessary declarations. For the numbers a, b, c,
and d, the resulting array should be:

[oT eI « g+

a=b
b=-c
c=d
(a=b)=(b=c)
(b=c)=(c-a)

((a=b)=(b-c))=((b=c)-(c-d))
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(i) Write a JOVIAL statement that determines whether a square
array of Boolean values is symmetric along: (1) its horizontal axis;
(2) its vertical axis; or (3 & 4) either diegonal axis. Include
necessary declarations. The following array, for example,

00000==
Q==
—e=Qmm=Q
00000==

is symmetric only along its vertical axis.

(3) Write a JOVIAL statement to determine how many sets of
numbers, taken in index sequence from an unordered linear array of
floating=point numbers, sum to more than 2. but less than 3.

TABLES

A table is a matrix of item values. The rows of a table are called
entries, and an entry consists of a related set of different items,
perhaps named Il, I2, =--, Im. Typically, entry K, IL($K$), I2($K$), ===,
Im($K$), would consist of values measuring the m pertinent attributes of
"object" K. Such an entry would be associated with other entries in a
table, or list of entries. An n-entry table can be illustrated by the
following n by m matrix of subscripted item names:

I1($A$)  I2($8$)  --- Im($P%)
I1($1$)  12($1$)  --- Im($1$)

T1($K$)  T2($K$)  --- Im($K$)

I($n-13) I2($n-1$) --- In($n-1$)

All the entries of a table have the same composition and structure
in the sense that each consists of a similarly named and ordered set of
items, related to each other by index. The columns of a table are thus
linear arreys of index-related items so that, logically, a table is Just
a collection of such arrays. A particular table item value is designated,
as shown above, by item name and entry index. Table items are therefore
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processed in much the same manner that linear array items are, except
that a loop will usually process an entire entry each pass and not just
a single item. However, the advantages of a table over a set of linear
arrays make it the favored data structure in JOVIAL programming. The
table's advantages arise from the entry concept, which not only ex=
plicitly associates related sets of items, but which affords certain
processing efficiencies as well, due to the structure of entries and
the packing of items within them.

TABLE DECLARATIONS. A table is declared by a table declaration
followed by & list of item declarations, enclosed in BEGIN and END
brackets, which declare the items comprising a table entry.

declaration § TABLE |neme . . ;1 | Verisble;Rigid, , py MUIOCT e onirieg

LSerial;Parallel

entry-structure) |No;Medium;Dense, ng! $ BEGIN

item=-packi

[ITEM name description $]s END

of=-table=item

A table name may be omitted from the declaration if only individual
table items are referred to in the program, and never the entire table.
The Variable or Rigid length descriptors determine whether the number
of entries will be allowed to vary during the execution of the program,
and for a Variable length table, number of entries indicates the table's
meximum length. The Serial or Parallel entry structure descriptors
allow the programmer, if he desires, to indicate one of two possible
storage configurations for the table: Serial entry structure means

that entries are allocated serial, or consecutive, blocks of storage
space; while Parallel entry structure means that the table is divided
into separate blocks, and entries are allocated parallel, or similarly
located, registers within then.
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The distinction between Serial and Parallel entry structure is graphi=-
cally illustrated below:

SERIAL AND PARALLEL ENTRY STRUCTURES

The No, Medium, or Dense item packing descriptors allow the programmer,
again if he desires, to indicate one of three possible storage allo-
cation schemes for the items in an entry: No packing means that storage
is allocated in full register units, so that each item in the entry will
occupy one or more consecutive computer words; Medium packing means that
storage is allocated in sub-register* units, so that each item in the
entry will occupy one or more consecutive sub-words; and Dense packing
means that storage is allocated in bit position units, so that each item
in the entry will occupy one or more consecutive bit positions.

*Many computers have instructions that, by effectively partitioning
memory registers into two or more segments, greatly facilitate extract-
ing values from or inserting them into these segments. Whether left-
half-word and right~half-word or prefix, decrement, tag, and address,
these natural segments are called sub=registers.
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The three item packing schemes are shown in the following diagram:

ALPHA ALPHA |BETA |GAMMA

NO, MEDIUM, AND DENSE ITEM PACKING

While No item packing may save the most execution time, Dense item
packing will usually save the most storage space, and Medium item pack-
ing will usually afford intermediate savings in both time and space.

The programmer need indicate neither entry structure nor item
packing for a table, and if either descriptor is omitted, the compiler
will supply its standard description.

To illustrate the table concept and to exemplify the TABLE decla-
ration, consider the following three tables, which contain information
on employees, alrbases, and air navigation beacons.

TABLE PAYROLL Variable 1@¢¢ $
BEGIN
ITEM EMP'NAME Hollerith 18 $
ITEM MAN'NMBR fixed 12 Unsigned $
ITEM ORG'CODE Status V(SALES) V(PROD) V(ENG) V(RES) V(PERS) $
ITEM PAY'RATE fixed 1f Unsigned $
ITEM JOB'TIME fixed $8 Unsigned 2 $
ITEM NET'EARN fixed 2@ Unsigned $
ITEM YTD'EARN fixed 24 Unsigned $
END
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TABIE ATRBASE'WEATHER Rigid 8f Serial Dense $

BEGIN
ITEM AIRBASE 'CODE Hollerith 3''letters''$
TTEM REPORT'HOUR fixed 5 Unsigned @...23''hours''$

ITEM  REPORT'MINUTE fixed 6 Unsigned @P...59''minutes''$

ITEM WEATHER'CHANGE Boolean $

ITEM CURRENT'SUMMARY Status V(OPEN) V(INSTRUMENT) V(CLOSED) $

ITEM FORECAST'SUMMARY Status V(OPEN) V(INSTRUMENT) V(CLOSED) $

ITEM CEILING fixed 9 Unsigned @...511''hundred feet. Maximum

of

511 means unlimited''$

ITEM VISIBILITY fixed 5 Unsigned 1 @...15.5A1''nautical miles.
Maximum of 15.5 means unlimited''s$

ITEM VISIBILITY'BLOCK Status V(NONE) V(FOG) V(DUST) V(SMOKE) V(HAZE) $

ITEM BLOCK'AMOUNT Status V(LIGHT) V(MODERATE) V(HEAVY) $

ITEM PRECIPITATION Status V(NONE) V(RAIN) V(SNOW) V(SLEET) V(HAIL) $

ITEM PRECIP 'AMOUNT Status V(LIGHT) V(MODERATE) V(HEAVY) $

ITEM RUNWAY'CONDITION Status V(OK) V(WET) V(ICY) V(SNOW) V(BLOCKED) $
END

TABLE ATRWAY'FIXES

ITEM LOCATION'IDENTIFIER
ITEM CONTROLLING'AGENCY

ITEM LOCATION
ITEM MAGNETIC 'VARTIATION
ITEM REPORTING
ITEM FACILITY
ITEM SECTOR

ITEM IN'OPERATION

Variable 8¢¢@¢ Medium $

BEGIN

Hollerith 3''letter teletype abbreviation''$
Status V(ATLANTA) V(BOSTON) V(CHICAGO)
V(CLEVELAND) V(DETROIT) V(FT'WORTH) V(GARDINER)
V(INDIANAPOLIS) V(KANSAS'CITY) V(MEMPHIS)
V(MIAMI) V(MINNEAPOLIS) V(MONTREAL) V(MONCTON)
V(NEW 'ORLEANS) V(NEW'YORK) V(NORFOLK)

V( OCEANIC 'NEW'YORK) V(PITTSBURGH) V(ST'LOUIS)
V(TORONTO) V(WASHINGTON) $

Dual 16 Unsigned 5''in nautical miles East,North
of sector center''$

fixed 16 Signed''in seconds of arc-=East=plus,
West=minus''$

Status V(UNNECESSARY) V(COMPULSORY) V(OPTIONAL) $
Status V(VORTAC) V(VOR) V(RANGE'STATION)
V(RADIO'BEACON) V(AIRPORT'AIRBASE)

V(REPORTING '"POINT) V(AIRWAY'INTERSECTION) $
Status V(EXTERNAL) V(NORTH) V(SOUTH) V(EAST)
V(WEST) $

Boolean $

END
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It is even possible to have a table of information about tables!

TABLE CTL ''COMPOOL Table List''Variable 5¢@ Serial Dense $
BEGIN

ITEM TAG Hollerith 8''characters maximum,right justified''$

ITEM TYPE Status V(VARIABLE'LENGTH) V(RIGID'LENGTH) $

ITEM IENGTH fixed 16 Unsigned''in entries''$

ITEM STORAGE fixed 16 Unsigned''in registers''$

ITEM FORM Status V(PARALLIEL) V(SERIAL) $

ITEM PACKING Status V(NONE) V(MEDIUM) V(DENSE) $

ITEM ITEM'ONE fixed 16 Unsigned''CIL (COMPOOL Item List) entry index
for lst item of table, wnich itself contains the entry
index of the 2nd item, etc.''$

ITEM IN'CORE Boolean $

ITEM ON'FILE Boolean $

ITEM ADDRESS ''If IN'CORE''fixed 16 Unsigned $

ITEM FILE'TAG ''If ON'FILE''Hollerith 8''characters maximum,right
justified''s

ITEM LOCATION ''If ON'FILE'‘'fixed 16 Unsigned''position index of
record''$
END

LIKE TABLE DECLARATIONS. In some cases, a program's environment
must contain two or more instances of tables with the same entry structure.
Assuming that one of the tables is already declared, either in the COMPOOL
or in the program, it is tedious to have to declare a new but essentially
similar table completely -~ especially one with many items. Such tables
may there fore be declared and named, using a previously defined table as
a pattern, by adding a distinguishing letter or numeral to the pattern
table's name.

declaration # TABLE name :letter;numeral |Variable;

of-pattern-table

Rigid number |Serial;Parallel

of-entries o) (NosMedium;

length entry-structur

Dense,

1tem-packing4 Like $

The like table may have its own descriptions of length, entry structure,
and item packing declared, or it may retain those of the pattern table.
No list of item declarations is necessary after a like table declaration,
for the composition and structure of the like table's entries are taken
as being generated by the declarations describing the pattern table's
entries, with the exception that all item names are suffixed with the
distinguishing letter or numeral. Thus, the declaration
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TABLE CTLY Like''CTL declared above''$

automatically declares the table items TAGPH, TYPEP, LENGTHP, and so on.
Care must be taken in choosing a distinguishing letter or numeral to
ensure that item names resulting from a like table declaration are
unique, and do not accidentally conflict with other identifiers.

The following declarations show some of the ways in which a like
table's description may differ from that of the pattern table.

TABLE PAYROLILA No Like $
TABLE PAYROLLB Rigid 1l Serial Dense Like $
TABLE PAYROLIC Variable 1@ Parallel Like $

FUNCTIONAL MODIFIERS

JOVIAL's functional modifiers are, in a sense, extensions to the
basic language, which is essentially an item manipulating language.
They allow the programmer to conveniently describe the manipulation
of both larger data structures than items (i.e., entries and tables)
and smaller data structures (i.e., segments of the machine symbols
representing item values). Functional modifiers have the general
form of functions, modifying a table or table item name, or an item
value.

TABLE MANTIPULATING FUNCTIONAL MODIFIERS. Tables are the important
data structures in most JOVIAL programs, so the language provides
several functional modifiers to aid in their manipulation.

NENT. A vital parameter in table processing is number of
entries. The functional modifier NENT allows this unsigned, integral
value to be designated for variable length tables, and specified for
rigid length tables.

variable ¢ N :ENT ( name

of-numeric=-type umber=of ries of=variable=-length-

table-or-table-item )

numeric-formula § N SENT . ( name .
Wwiliv iy >

table~iten )
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NENT performs two valuable services: for variable length tables, it
conveniently expresses current number of entries; and for rigid length
tables, it insulates from change those statements that refer to number
of entries. For variable length tables, NENT acts as a counter that
the program itself must update whenever it changes the table's length.
The following statement, for example, records the addition of a new
entry to the CTL table.

NENT(CTL) = NENT(CTL)+1l $

For rigid length tables, NENT acts as a preset parameter. Thus, when

a redesign changes the length of a fixed table, the new value for number
of entries is automatically compiled into the program wherever it is
specified by NENT.

NWDSEN. Another parameter in table processing is the amount
of storage allocated to a table entry (and thus to the entire table) .
This unsigned, integral value, which is constant throughout the execution
of the program is expressed in number of words, or registers, per entry
and may be specified with the functional modifier NWDSEN.

numeric-formula & N DS__ _:EN ( name

umber-of:wor: per’ T try of-table~or-table=-

)

item

Although number of words per entry is almost never used in ordinary JOVIAL
programming, its use 1s necessary in exeaitive programs that perform dynamic
storage allocation¥*. For example:

CTL'SIZE'IN'WORDS = NWDSEN(CTL)*NENT(CTL) $

ALL. A very common loop in JOVIAL programming cycles through
an entire table, processing one entry each repetition, with the number of
passes equal to the number of entries. While such a loop (for the CTL
table, for example) can be created by either

FOR T = @#,1,NENT(CTL)-1 $

which processes down from the top of the table, or

*Storage allocation at time of program execution rather than program
compilation.
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FOR T = NENT(CTL)-1,-1,$ $

which processes up from the bottom, it is shorter and much more descriptive
to use the functional modifier ALL in the abbreviated form of the complete
FOR statement.

statement $§ FOR letter = ALL ( name

) $

of=-table-or-table-item

For example:
FOR T = ALL (CTL) $

which is, in effect, an abbreviation of one of the previous two statements.
(Just which of these two statements the FOR - ALL statement abbreviates is
not defined, so that its usefulness is limited to those loops where di-
rection of processing is unimportent. The dependency of the correct
functioning of a loop on its direction of processing is often quite subtle,
however, especially where the loop itself affects the number of entries in
the (variable length) table, so that reasonable caution is necessary.

ENTRY. As mentioned before, a table entry is a conglomeration
of related items. The functional modifier ENTRY allows an entry to be
considered as a single value, represented by a single, composite symbol.
An entry's value may be denoted by ¢ if all its items have values repre=-
sented by zero; otherwise, its value is not denoteble. Entry values may
be compared (for equality/inequality), assigned, and exchanged.

entry-variable $ ENTRY ( name ($ index

$) )

of-table~or-table-item of=-entry
boolean formle #§ entry-variable EQ;NQ ¢;entry—variable
statement & entry-variable = ¢;entry-variable $

statement # entry-variable == entry-varisble $

The comparing, assigning, and exchanging of entry values operate as if

on unsigned integers, although this is not of interest unless entries of
different size are involved. In such cases, the shorter entry is effectively
prefixed by registers containing zero.
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The following statement, which eliminates empty or zero entries from
the previously declared PAYROLL table, illustrates the use of the ENTRY
modifier, and the NENT and ALL modifiers as well.

BEGIN
FOR I = ALL (PAYROLL) $
BEGIN
SEEK 'EMPTY . IF ENTRY (PAYROLL($I$)) EQ 9 $
BEGIN
NENT(PAYROLL) = NENT(PAYROLL)-1 $
IF I LS NENT(PAYROLL) $
BEGIN
ENTRY (PAYROLL($NENT(PAYROLL)$)) == ENTRY
(PAYROLL($I$)) $ GOTO SEEK'EMPTY $
END END END END

EXERCISE (Tables)

(a2) Declare an inventory table with the following information: part
nunber; part name; amount on hand; unit price; unit cost; gross sales to
date; reorder point; and reorder quantity.

(b) Declare a transaction table with the following information: part
number; quantity; shipment or receipt.

(¢) Write a JOVIAL statement to update the inventory table from the
information in the transaction table.

(d) Declare s table containing the information pertaining to a list
of machine instructions for any particular computer.

(e) Declare a table containing the information to be found on a
driver's license. Assume that storage space must be conserved.

SYMBOL MANIPULATING FUNCTIONAL MODIFIERS. Although the item is
normally the smallest unit of data in JOVIAL, it is occasionally necessary
to designate a value represented by part of an item's machine symbol. This
is especially true of literal items, which must often be considered as
linear arrays of individual signs.

BIT AND BYTE. The machine symbol representing any item's
value may be considered a string of bits or, in the case of literal items,
of 6-bit bytes. In either case, both bits and bytes are indexed, left to
right, from # to n-1 as shown below for an n-element symbol.
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BIT AND BYTE INDEXING

The BIT modifier allows any segment of the bit string representing the
value of any item to be designated as an unsigned, integral variable.
And, in a similar fashion, the BYTE modifier allows any segment of the
byte string representing the value of any literal item to be designated
as & literal variable. The first bit or byte of the segment and the
number of bits or bytes in the segment are specified by the 2-component
index, enclosed in the subscript brackets ($ and $), after the modifier.

varlableof-num.eric-type ¢ BIT ($ numeric-form &index-of-first-bit

|, numeric-formula o . oo .o $) ( name . ..o 1($ index $); )

variable ¢ BYTE ($ numeric-formula

of-literal=-type index~of-first~byte

L mm]'eric"fonm:l'a‘m,unber—of-by’cesf-l $) ( NAIE (r_literal-item L($ index $)J )

If a segment of length one 1is desired, the numeric formula specifying
number of bits or bytes may be omitted from the index subscripting the
modifier. Thus,

BIT($I$)(EMP'CODE)
and
BIT($I,1$)(EMP'CODE)

both specify the same 1l=-bit integer. A trio of more elaborate examples
illustrate the utility of the BIT and BYTE modifiers for symbol manipulation.
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Notice how the BIT modifier is used to designate the numeric encoding of
non=-numeric values.

The first routine converts a 12-row by 8¢-column punched card imsge,
as shown below, into an 8p-character literal value, in the Hollerith
coding of a particular computer.

— ——
Olg3egnrad A B C D EF DR F IR LM DR G RIT Y WETZ 0 += % .y =3
BN NENEN 11 1

CONVERT'IMAGE. BEGIN''A routine to convert from a punched card image
to an 8p-character, Hollerith-coded, literal value.
Illegal punch combinations are not rejected and may
cause spurious results.'

ARRAY PUNCH 12 8¢ Boolean $
ITEM CARD Hollerith 8¢ $
ITEM COLUMN Hollerith @1 $
STEP1. FOR J = $,1,79 $
BEGIN
STEP2. COLUMN = O(¢¢@) $
STEP3. FOR I = @,1,11 $
BEGIN
STEPL . IF PUNCH($I,J$) $
BEGIN
STEPS *6. IF T 1@ 2 $ BIT($p,6$)(COLUMN) =
BIT($¢,6$)(COLUW)+(I+1)*0(2¢) $
STEP7 '8 IF I GR 2 $ BIT($0,6$)(COLUMN) =
BIT($¢,6$)(COLUMN)+(I-2) $ END END
STEP9. BYTE($J$) (CARD) = COLUMN $

END END



26 December 1961 123 ™=~-555/003,/00

The statement execution flow chart for this routine follows:

Flow Chart
for
CONVERT IMAGE

The second routine analyzes an arbitrary symbol and places it in
a string of labels if it happens to be a grammatical JOVIAL label.
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PROCESS ' SYMBOL .

ITEM LABEL
ITEM SYMBOL
ITEM SYMBOL ' TYPE

ITEM SLOT
TABLE ILABEL'INDEX

ITEM ORIGIN
ITEM LENGTH

FIND'ORIGIN.

1 17(z) $

LABEL'TEST.

12k ™M-555/003/00

BEGIN''A routine to determine whether an arbitrary
symbol is & JOVIAL label and, if so, place it (in
the sense of either find or file) in a label string,
setting the slot to the index of the dictionary
entry describing the label.''’

Transmission 19@P@**characters''$

Transmission 64''characters, right justified''$
Status V(NON'LABEL) V(OLD'LAEEL) V(NEW'LABEL)
V(EXCESS'IABEL) $

fixed 11 Unsigned''dictionary index''s$

Variable 20@g*'entries*'$

BEGIN

fixed 14 Unsigned''character index''$

fixed $6 Unsigned''number of characters''$

END

FOR I = 64,-1 $
BEGIN
IF I EQ § OR BYTE($I-1$)(SYMBOL) EQ 1T( ) $
BEGIN
IF I LS 63 AND 1T(A) LQ BYTE($I$)(SYMBOL)
BEGIN
FOR J = I+1,1,63 $
BEGIN
IF NOT (1T(A) IQ BYTE($I$)

(SYMBOL) IQ 1T(z) OR 1T(#) LQ BYTE($J$)(SYMBOL) IR 1T(9) OR (BYTE($J$)
(syMBOL) EQ 1T(') AND J NQ 63 AND BYTE($J+1$)(SYMBOL) NQ 1T('))) $

PLACE 'LABEL.
FIND'LABEL.

GOTO NON'LABEL $

END
FOR K = 64=I $
BEGIN
FOR L = ALL (LABEL'INDEX) $

BEGIN
IF K EQ LENGTH($L$) AND

BYTE( $I,K$)(SYMBOL) EQ BYTE($ORIGIN($L$),LENGTH($L$)$)(LABEL) $

V(OLD 'LABEL) $

BEGIN
SILOT =L $
SYMBOL'TYPE =
GOTO EXIT $
END END
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FILE'LAEEL. FOR M = ORIGIN($NENT(INDEX 'LABEL)
- 1$) + LENGTH($NENT( INDEX 'LABEL)-1$) $ BEGIN
TEST 'CAPACITY. IF NENT(LABEL'INDEX) EQ 2¢¢¢
OR M+K GQ 1P¢@¢ $ BEGIN
SYMBOL 'TYPE =
V(EXCESS'LABEL) $ GOTO EXIT $
END

SLOT = NENT(IABEL'INDEX) $
SYMBOL'TYPE = V(NEW'LABEL) $
BYTE($M,K$)(LABEL) = BYTE
($1,K$)(SYMBOL) $ ORIGIN($SLOT$) = M $
LENGTH($SLOT$) = K $
NENT(LABEL'INDEX) = NENT

(LABEL'INDEX )+1 $ END END
GOTO EXIT $
END
NON 'LABEL. SYMBOL'TYPE = V(NON'LABEL) $
GOTO EXIT $

END END END
EXIT.
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And the third routine computes the length of the longest run in a
bridge hand, in thirteen steps.

RUN. BEGIN''A routine to compute the length of the longest
run or unbroken sequence of cards of the same suit in
a bridge hand of 13 playing cards. (The ace is either
high or low.)''

TABLE CARDS Rigid 13 $

BEGIN
ITEM CARD'SUIT Status 6 V(CLUB) V(DIAMOND) V(HEART) V(SPADE) $
ITEM CARD 'NAME Status 6 V(DEUCE) V(TREY) V(FOUR) V(FIVE) V(SIX)

v(sEVEN) V(EIGHT) V(NINE) V(TEN) V(JACK) V(QUEEN)
v(KING) V(ACE) $

END

ITEM RUN'LENGTH fixed 4 Unsigned $

ITEM SUIT Status 6 V(CLUB) V(DIAMOND) V(HEART) V(SPADE) $
ITEM NAME Status 6 V(DEUCE) V(TREY) V(FOUR) V(FIVE) V(SIX)

V(SEVEN) V(EIGHT) V(NINE) V(TEN) V(JACK) V(QUEEN)
V(KING) V(ACE) $
ITEM FIRST'CARD Boolean $
STEPP1. RUN'LENGTH = § $
STEP@2. FOR I = ALL (CARDS) $

BEGIN
STEPP3 . FIRST'CARD = 1 $
STEPPL . SUIT = CARD'SUIT($I$) $
STEP@S . NAME = CARD'NAME($I$) $
STEP@6. FORJ =1 $
FIND 'NEXT'CARD. BEGIN
STEPPT . FOR K = ALL (CARDS) $
BEGIN
STEP@S. IF CARD'SUIT($K$) EQ SUIT AND (BIT

($p,6%) (CARD'NAME($K$)) EQ BIT($P,6$)(NAME)+1 OR (FIRST'CARD AND NAME
EQ V(ACE) AND CARD'NAME($K$) EQ V(DEUCE))) $

BEGIN
STEP@9 . NAME = CARD'NAME($K$) $
STEP1§. J=J+1 $
STEP11. FIRST'CARD = ¢ $
GOTO FIND'NEXT'CARD $
END END
STEP12. IF J GR RUN'LENGTH $
STEP13. RUN'IENGTH = J $

END END END
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Flow Chart
for
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MANT AND CHAR. A floating=point machine symbol representing
a numeric value consists of: a mantissa, which is a signed fraction
representing the significant digits of the value; and a characteristic,
which is a signed integer representing the exponent of an implicit power
of two scaling factor for the mantissa. Either component of a simple or
subscripted floating-point item may be designated as fixed-point variables;
the mantissa with the functional modifier MANT, and the characteristic
with the functional modifier CHAR.

varieble . .oonic—type § MANT;CHAR ( name

of-floating-item |($ index $)) )

Thus, the fixed-point value of the floating-point item ALPHA($I$) can be
specified as:

MANT(ALPHA($1$) ) ¥2%*CHAR(ALPHA($I$))

and multiplication of a floating-point item by a power of two (e.g., 2¥%J)
can be stated as:

CHAR(ALPHA($I$)) = CHAR(ALPHA($I$))+J $

and whether two floating-point items are in the same range of magnitude
can be determined with the relational Boolean formula:

CHAR(ALPHA($I$)) EQ CHAR(ALPHA($I+1$))

ODD. 1In numeric computations, it is occasionally necessary to
determine whether the least significeant bit of the machine symbol repre-
senting the value of a subscript or a numeric item actually represents
the value one, or zero; for integers, in other words, whether the value
is odd or even. For subscripts or for simple or subscripted numeric (i.e.,
fixed or floating-point) items, this Boolean value, odd or even, may be
designated as a Boolean variable with the functional modifier ODD, which,
insulated from both the length and coding of the machine symbol it affects,
designates True if the least significant bit of that symbol represents a
magnitude of one, and False if it represents a magnitude of zero.

Varlableof—boolean—type & opD ( letter; [name

[($ index $)17 )

of=-fixed=-or=-floating=-item



26 December 1961 129 ™-555/003/00

Notice that, because of differences between computers in encoding negative
numeric velues,

ODD(BETA) AND BIT($5$)(BETA)

is not always True for a fixed-point, 6-bit, signed item, BETA, for
example. The functional modifier ODD, operating on a loop controlling
subscript, can be used as an alternator, which is a Boolean formula
within a loop that only specifies True every other pass. Consider the
ODD alternator in the following statement, which counts (1) all odd
integers and (2) all oddly indexed integers in an array of floating
point numbers.

ITEM COUNT'l fixed 9 Unsigned''count of odd integers in ALPHA''$
ITEM COUNT'2 fixed 9 Unsigned''count of oddly indexed integers in ALPHA''$
ARRAY ALPHA 1¢¢§ Floating Rounded $
COUNT'L = § $ COUNT'2 = @ $
FOR I = $,1,999 $
BEGIN
IF CHAR(ALPHA($I$)) EQ MANTISSA'LENGTH''in bits''$
BEGIN
IF ODD(I) $ COUNT'2 = COUNT'2+l $
IF ODD(ALPHA($I$)) $ COUNT'1+l $
END END

MISCELLANEOUS DECLARATIONS

OVERLAY DECLARATIONS. An OVERLAY declaration serves to arrange
previously declared items, arrays, and tables in memory by allocating
blocks of storage space to them. The declaration itself is composed
of one or more lists of item, array item, and table names, separated
from each other by the = separator and enclosed by the OVERLAY decla-
rator and the terminating $ separator. The individual names in each
list are separated by the , separator and are allocated, in sequence,
consecutive units of storage space from a common block of storage suf-
ficient to contain the largest set of data elements listed in the decla-
ration. Data elements in one list consequently "overlay" those in the
other lists of the declaration.

. s =
declaration § OVERLAY rnamesof-items-arrays-table§1S $
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The following declaration, for example, might produce the storage overlays
illustrated below.

OVERLAY ALPHA=BETA=GAMMA,DELTA,EPSILON $

STORAGE
OVERLAYS
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declaration, appearing inside the BEGIN and END brackets

of a TABLE declaration, can be used to overlay table items within the
table's entries, but may list only those item names previously declared

as part of the table.

used to declare

For example, the following declaration could be
e Hollerith input table whose items are to be converted

to more convenient representations for easier manipulation.

TABIE PAYROLL
ITEM H'EMP'NAME
ITEM EMP'NAME
OVERLAY
ITEM H'MAN'NMBR
ITEM MAN'NMBR
OVERLAY
ITEM H'ORG'CODE
ITEM ORG'CODE
OVERLAY
ITEM H'PAY'RATE
ITEM PAY'RATE
OVERLAY
ITEM H'JOB'TIME
ITEM JOB'TIME
OVERLAY
ITEM H'NET'EARN
ITEM KNET'EARN
OVERLAY
ITEM H'YTD'EARN
ITEM YTD'EARN
OVERIAY

To save storage
their Hollerith

Variable 1¢¢¢ $

BEGIN

Hollerith 18 $
Trensmission 18 $
H'EMP'NAME = EMP'NAME $
Hollerith 4 $

fixed 12 Unsigned $
H'MAN'NMBR = MAN'NMER $
Hollerith 5 $

Status V(SALES) V(PROD) V(ENG) V(RES) V(PERS) $
H'ORG'CODE = ORG'CODE $
Hollerith 5 $

fixed 1§ Unsigned $
H'PAY'RATE = PAY'RATE $
Hollerith 5 $

fixed 8 Unsigned 2 $
H'JOB'TIME = JOB'TIME $
Hollerith T $

fixed 2¢ Unsigned §$
H'NET'EARN = NET'EARN $
Hollerith 9 $

fixed 24 Unsigned $
H'YTD'EARN = YTD'EARN $
END

space, the converted items in the above table overlay
equivalents, under the assumption that, after conversion,

the Hollerith values are no longer needed.

As the result of an OVERLAY declaration, storage space is allocated
in blocks of consecutive units to the data elements named in the decla-

ration.

For arrays and tables, these units are full memory registers;

and for items, the units are registers, sub=-registers, or bit positions -=-
depending on whether the item-packing mode is No packing, Medium packing,
or Dense packing. Each data element named in the declaration is thereby
allocated a block of consecutive registers, of consecutive sub-registers,
or of consecutive bit positions. Data elements whose names are preceded
in the declaration by either the OVERLAY declarator or the = separator

are allocated storage beginning at an unspecified origin, while elements
whose names are preceded by the , separator are allocated storage immedi-
ately after the block allocated the previously named element (except
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within Medium and Densely packed tables, where the declared item sequence
may occasionally be altered to conform to sub-register pertitions). To
take maximum advantage of whatever natural memory partitioning may exist
in a particular computer, data elements may be allocated more storage
than they actually require and, therefore, need not completely £ill up
the storage allocated to them. Thus, even with Dense item packing, a
less-than-register-size table item might be allocated an entire register,
to avoid other items in the entry being unnecessarily split between
registers. It is, therefore, often difficult to exactly determine how
many units of storage will be allocated any given data element, and this
in turn creates difficulties in declaring precise overlays.

An OVERIAY declaration can be used simply to declare a storage
sequence for a single set of data elements in order, for instance, to
form effective groupings for input/output purposes, or to conform to
some pre-established arrangement. For example, the following declaration,

OVERIAY HEAD,BODY,TAIL $

arranges the three data elements one after the other in storage, but does
not create any overlays.

The main function of the OVERIAY declaration, however, is that of
creating overlays =-- by allowing multiple descriptions of the structure
and coding of a single block of storage. The main purpose of an overlay
is to save storage. An OVERIAY declaration can easily establish a "common"
block of working storage for use by different parts of a program for
different purposes at different times. For example, if one part of a
program uses ALPHA, a floating-point array, while another part uses BETA,

a large Hollerith item, while still another part uses GAMMA, a table of
intermediate results, and if none of these uses conflicts with any of
the other uses, then the following declaration,

OVERLAY ALPHA = BETA = GAMMA $

by allocating all three data elements to the single block of storage
needed for the largest, would save the storage otherwise required for
the two remaining.

Another use of overlaying is in the construction of several small
items from one large item. To do this, an overlay is declared so that
the values of each of the small items are represented by specific por-
tions of the machine symbol representing the value of the large item.
The following set of declarations, for example, allow the left and
right components of a dual item to be individually designated.
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ITEM VECTOR Dual 24 Signed 1@ Rounded $
ITEM X 'COORD fixed 24 Signed 1§ Rounded $
ITEM Y'COORD fixed 24 Signed 1§ Rounded $
OVERIAY VECTOR = X 'COORD,Y'COORD $

This kind of precise overlaying requires exact knowledge of the amount
of storage allocated each of the data elements involved; knowledge that,
unfortunately, is not always easily available.

INITIAL VALUE DECLARATIONS. It is often necessary to declare items
with specific initial values, in other words, items that, although they
may later be assigned other values, must designate particular values
when the program initially refers to them, values that are known prior
to program compilation. Such items are useful as: parameters that are
changed from run to run; as arrays and tables of constants; or as initial
data.

The initial value of a simple item may be denoted within the item
declaration by a single constant, which must denote a value assignable
to the item. This constant, preceded by the Preset descriptor, is
usually inserted after the item description but may replace it entirely
for numeric and literal values, since item descriptions are somewhat
redundant in these two cases.

declaration § ITEM name item |description Preset] constant $

of-simple=-

As an example of a preset, parameter item, consider the declaration
ITEM ERROR 1.234E-5 $

which declares ERROR to be a floating-point item (since the constant is
floating-point) with an initial value of 1.234E-5. This item, ERROR,
might designate the maximum tolerable error in an arithmetic computation
and, though used in many different places, can easily be changed at any
recompilation of the program by replacing its declaration with a different
one, for example:

ITEM ERROR Floating Preset 1.23E-4 $

which illustrates the alternative form. Some further examples of parameter
item declarations are:
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ITEM DELTA fixed 17 Signed 3@ Rounded Preset §.5E-5A3p $
TTEM DISPIAY'CENTER D(-59.5A5,+$5.TA5) $
ITEM KEY'WORD G6H(ARACUS) $

ITEM STATE Status V(FIRST) V(SECOND) V(THIRD) V(FOURTH) V(FIFTH) V(SIXTH)
V(SEVENTH) V(IAST) Preset V(FIRST) $

ITEM OPERATIONAL Boolean Preset § $

Tnitial values for a subscripted item may be indicated by appending
an array of constants to the array item or table item declaration. Such
a constant array, composed of a list either of constants or of constant
arrays enclosed in BEGIN and END brackets, denotes a set of values that
a subscripted item is to initially designate.

constant-array & BEGIN constants;constant-arrays END

A one-dimensional constant array consists of a list of constants enclosed
in BEGIN and END brackets, for example:

BEGIN 8T( UNKNOWN) 8r( PENDING) 8T( HOSTILE) 8T(FRIENDLY) END

A two-dimensional constant array consists of a list of one=dimensional
constant arrays enclosed in BEGIN and END brackets, for example:

BEGIN BEGIN $1. g2. #3. fk. §5. END
BEGIN $2. Ph. p6. $8. 1p. END
BEGIN $3. $6. $9. 12. 15. END
BEGIN L. ¢8. 12. 16. 2. END
BEGIN $5. 1§. 15. 2. 25. END END

A three-dimensional constant array consists of a list of two-dimensional
constant arrays enclosed in BEGIN and END brackets, and so on. The di=-
mension of the constant array should agree with that of the item it
initializes. Thus, both a linear array item and a table item may be
initialized by a one-dimensional constant array. For example:

ARRAY ALPHA L Floating $ BEGIN 1.1498196 .6774323 .2¢8p@3¢. .1268089 END

declares a list of four floating-point coefficients for a third order
polynomial, and
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TABIE Rigid 12 $
BEGIN
ITEM MONTH Hollerith 3 $ BEGIN 3H(JAN) 3H(FEB) 3H(MAR) 3H(APR) 3H(MAY)
3H(JuN) 3u(JuL) 3H(AUG) 3H(SEP) 3H(0CT) 3H(NOV) 3H(DEC) END
TTEM LENGTH fixed 5 Unsigned $ BEGIN 31 28 31 3¢ 31 3¢ 31 31 3§ 31 3¢
31 END
END

declares a table, which (indexed by month-number - 1) associates a three=
letter abbreviation and a number of days for each month in the year.
Since a one-dimensional constant array may contain fewer constants than
there are items it could initialize, it is important to note that a list
of k constants in a constant array will initialize the first k of these
items. For instance:

ARRAY EMPTY 1¢@@ Boolean $ BEGIN 1 § END

presets EMPTY($f$) to 1, EMPTY($1$) to P, and leaves the rest undefined.
Such partial initialization is useful in providing a routine with just
enough initial data to determine whether it is operating correctly, with=-
out having to go to the tedious extreme of providing, say, a thousand
constants for a thousand element array.

Constant arrays of two or more dimensions serve, of course, to
initialize arrays of two or more dimensions. And here, the indexing
gets involved. Individual constants in a multi-dimensional constant
array are indexed by column number; one-dimensional constant arrays
are indexed by row number; two-dimensional constant arrays are indexed
by plane number, and so on. To illustrate, the following two-dimensional
array of dual fixed=-point items is preset so that each item designates
its own index value.

ARRAY XY 3 5 Dual U4 Unsigned $
BEGIN BEGIN D(§,8) D(#,1) D(4,2) D(#,3) D(F,4) END
BEGIN D(1,8) p(1,1) p(1,2) p(1,3) D(1,4) END
BEGIN D(2,¢) D(2,1) D(2,2) D(2,3) D(2,4) END END

~

To carry the illustration one step further, the following three dimension=-
al array of literal items is preset so that each item also designates its
index value, though in a literal fashion.

ARRAY XYZ 2 3 2 Transmission 5 $

BEGIN BEGIN BEGIN SH(®,9,$) 5H(P,1,8) SH(P,2,8) END
BEGIN 5H(1,$,$) 5H(1,1,¢) 5H(1,2,$) END END
BEGIN BEGIN SH(#,$,1) sH($,1,1) 5H(P,2,1) END
BEGIN 5H(1,8,1) 5H(1,1,1) 5H(1,2,1) END END END
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The constants in a constant array must, of course, denote values
that are assignable to the item being initialized, and in addition,
though integers and floating and fixed constants may be intermixed,
these constants must other-
wise all be of the same
type. The accompanying
chart summarizes the accept-

able pairing of item types SUMMARY OF
and constant types == both ITEM/CONSTANT <2
for initializing and for PRESETTING AND S
assigning. The following ASSIGNING & s
. o X S
abbreviations are used: F ADTH S B I
LF,A

- integer X1x1Xx
- Floating

- fixed

- Octal

= Dual
Transmission

- Hollerith

- Status

= Boolean

- acceptable

- acceptable but
undefined

X1 X

oXuwnmyaYyuordH
1

DEFINE DECLARATIONS. A define declaration, composed of the DEFINE
declarator followed by a name and s string of signs enclosed in the '!
brackets and terminated by the $ separator, establishes an equivalence
between the name and the string of signs by effectively causing the sign
string to be substituted for the name wherever it may subsequently occur
as a JOVIAL symbol.

declaration § DEFINE name '':signs

.1
of-signs except=the=~"'"'-gsymbol’ $

The define declaration allows the programmer to make simple additions to
the language, to abbreviate lengthy expressions, and to create symbolic
parameters. As an example of making simple additions to the language,
consider the following set of definitions, which have been tacitly
assumed in previous examples,
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DEFINE BINARY rigrr g DEFINE PARALIEL rprt
DEFINE BOOLEAN Igrt g DEFINE PRESET et ¢
DEFINE DENSE Tprr g DEFINE RIGID VIR''
DEFINE DUAL tiprt g DEFINE ROUNDED VIR §
DEFINE FIXED AT g DEFINE SERIAL g g
DEFINE FLOATING Tprt g DEFINE SIGNED tigrt $
DEFINE HOLLERITH gt DEFINE STATUS gt
DEFINE LIKE Lt DEFINE TRANSMISSION ''T'' §
DEFINE MEDIUM Mt S DEFINE UNSIGNED gt §
DEFINE NO Iyt § DEFINE VARIABLE Tyt g

along with the following definitions, which will be tacitly assumed
in subsequent examples.

DEFINE IFEITHER "'IFEITH'' $
DEFINE POSITION "1pos't $
DEFINE PROCEDURE V'PROC'! $

By means of define declarations, still further additions can be made to
JOVIAL to markedly improve its readability. For example:

DEFINE TRUE reprr g DEFINE STEP et g
DEFINE FALSE 1igrr g DEFINE UNTIL o g
DEFINE PLUS ettt g DEFINE THRU R B
DEFINE MINUS .t g DEFINE THEN gt g
DEFINE MULTIPLIED tixtr & DEFINE ALSO gt g
DEFINE DIVIDED /e § DEFINE TO 1o g
DEFINE EXPONENTIATED ''**'' ¢ DEFINE IS v g
DEFINE EQUAL 'EQ'Y $ DEFINE BY v g
DEFINE UNEQUAL TINQ $ DEFINE OF et g
DEFINE GREATER V'GR'' $ DEFINE THE e g
DEFINE I1ESS LSt § DEFINE WITH o g
DEFINE NOT'GREATER R $ DEFINE THAN ey g
DEFINE NOT'LESS ettt $ DEFINE FROM e g
DEFINE REPLACED =11 g

DEFINE EXCHANGED Pl==t1 ¢

With the above declarations, the following becomes a meaningful JOVIAL
statement

BEGIN

GROSS'PAY OF ($EMPLOYEE$) IS REPLACED WITH HOURS'WORKED OF
($EMPLOYEE$) MULTIPLIED BY PAY'RATE OF ($EMPLOYEES) $

IF HOURS'WORKED OF ($EMPLOYEE$) IS GREATER THAN 4§ THEN
GROSS'PAY OF ($EMPLOYEE$) IS REPLACED WITH GROSS'PAY OF ( $EMPLOYEE$)
PLUS (HOURS'WORKED OF ($EMPLOYEE$) MINUS 49) MULTTPLIED BY PAY'RATE
OF ($EMPLOYEE$) DIVIDED EY 2 $

END
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The use of the define declaration to abbreviate rather than expand
expressions is, of course, also possible. For example, if a particularly
lengthy status encoding is used in several item descriptions, the labor
of copying it out for each declaration can become unbearable. The
solution, obviously, is a define declaration.

DEFINE STATE'CODE ''V(ALABAMA) V(ALASKA) V(ARIZONA) V(ARKANSAS) V(CALIFORNIA)
V(COLORADO) V(CONNECTICUT) V(DELAWARE) V(FLORIDA) V(GEORGIA)
V(HAWAII) V(IDAHO) V(ILLINOIS) V(INDIANA) V(IOWA) V(KANSAS)
V(KENTUCKY) V(LOUISIANA) V(MAINE) V(MARYLAND) V(MASSACHUSETTS)
V(MICHIGAN) V(MINNESOTA) V(MISSISSIPPI) V(MISSOURI) V(MONTANA)
V(NEBRASKA) V(NEVADA) V(NEW'HAMPSHIRE) V(NEW'JERSEY)
V(NEW'MEXICO) V(NEW'YORK) V(NORTH'CAROLINA) V(NORTH'DAKOTA)
v(OHIO) V(OKLAHOMA) V(OREGON) V(PENNSYLVANIA) V(RHODE'ISLAND)
v(SOUTH'CAROLINA) V(SOUTH'DAKOTA) V(TENNESSEE) V(TEXAS)
v(UTAH) V(VERMONT) V(VIRGINIA) V(WASHINGTON) V(WEST'VIRGINIA)
V(WISCONSIN) V(WYOMING)'' $

The savings, even with just two item declarations

ITEM BIRTH'PLACE Status STATE'CODE $
ITEM RESIDENCE Status STATE'CODE $

using the STATE'CODE abbreviation, are considerable. The ability to
define abbreviations, then, so long as they do not adversely affect
readability, can be quite a convenience.

Although the define declaration can be almost spectacularly useful
in defining additions and abbreviations, probably its most significant
use is in defining symbolic parameters. For example, if a program is
written to invert a floating-point matrix of order 5@, then a name (say,
ORDER) can be defined as equivalent to 5¢ and used in the program wherever
a constant denoting the order of the matrix is required.

BEGIN INVERT'MATRIX
DEFINE ORDER ''s5¢'' $
ARRAY ALPHA ORDER ORDER Floating Rounded $
STEP1. FOR I = §,1,O0RDER-1 $
BEGIN

L]
.

Whenever the program must be altered to invert a matrix of a different
order, the change becomes trivial: merely the substitution of one defi-
nition of ORDER for another.

DEFINE ORDER '‘69'' $
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In using define declarations, several points should be remembered:
(1) The sign string being defined should contain at least one sign (which
may be a blank) but may not contain a '' symbol since this, of course,
terminates it; (2) No comments may appear among the symbols of a define
declaration without the chance of hopelessly confusing comment and de-
fined sign string, since both are delimited by '' brackets; (3) A de=~
fined name should be used only in a context where the sign string it de=-
fines will comprise an acceptable JOVIAL form; (4) The substitution of
defined sign strings for names occurs during compilation before any
other syntactic analysis is made, so that it is possible incautiously to
define away needed JOVIAL delimiters; (5) Defined names may themselves
appear in sign strings, defined either previously or subsequently, and
although this can be useful, the possibility of circular definition is
present; (6) A defined name may be redefined at a later point in the
program listing, and the latest definition will thereafter be substituted
for occurrences of the name.

SPECIFIED-ENTRY-STRUCTURE TABLE DECLARATIONS. It is occasionally
necessary to declare a table with a specific and predefined entry structure,
as when an input or output message must be declared as a table entry and
its format 1s fixed and part of the specifications of the message process-
ing program. In the table declarations discussed so far, the packing of
table items has been left to the JOVIAL compiler. And while the program-
mer can exercise considerable control over this packing by the No, Medium,
or Dense packing descriptors, such control is far from complete. Complete
control over the structure of table entries is provided the programmer by
the specified=entry=-structure table declaration. Such a declaration is
very similar to a regular table declaration, with the following exceptions:
(1) the table declaration includes number of words per entry; (2) the
component item declarations include the index number, within the entry, of
the first word containing the item, and the index number, within the word,
of the item's origin bit (BIT($@$)); the optional No, Medium, or Dense
packing descriptor is omitted from the table declaration but may be in-
cluded in any of the component item declarations to provide the compiler
with information on the type of item packing specified for that item;

(4) overlay declarations may not be included within the BEGIN and END
brackets since the table's items have already been allocated memory space.

number

declaration § TABIE |name dlength of-entries

of-table—J Variable;Rigi

|Serial;Parallel o] number $ BEGIN

entry-structur of-words~-per~entry

4 |No;Medium;Dense, $ |constant-array|ls END

bi 1tem-packing4
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The items of a specified-entry-structure table may be initialized in the
normal manner with a one-dimensional array of constantse.

A specified-entry=-structure table declaration is given below, for
a computer with a 36-bit word containing six 6-bit sub-words.

TABLE Variasble 5fp Serial 3 $
BEGIN ''Word Bit Packing'®

ITEM ALPHA Floating Rounded g P o $

ITEM BETA fixed 2@ Signed 5 $...1.E4A5 1 @@ Dense $

ITEM GAMMA Transmission 8 1 25 Medium $
END

The following entry diagram shows the memory allocation resulting from
this declaration

Notice that a floating-point machine symbol takes up a full computer
word, and while a Boolean machine symbol requires at least one bit, the
sizes of the symbols representing other types of values are given in
their descriptions.

Another example of a specified-entry-structure table is given below,
in a declaration describing the internal memory of the CDC 16¢h computer
as a JOVIAL table. Like those of all stored-program digital computers,
the 16@4's memory words are either instruction words (each containing two
single~address instructions == an upper instruction and a lower instruction)
or data words (each containing a single operand -- floating-point, integral,
fractional, or logical in type).
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DEFINE OPERATION'CODE ''V(HALTPP) V(ARS) V(QRS)
V(IRS) V(ENQ) V(ALS) v(QLs) V(LLS) V(ENA) V(INA)
v(IbA) v(1ac) v(aDD) V(suB) v(IQc) V(STA)
v(smq) v(AJP) v(QJp) v(mur) v(pvi) v(MUuF) V(DVF)
V(FAD) v(FsB) V(PMU) V(FDV) Vv(sScA) v(scq) V(ssK)
v(ssH) v(ssT) v(scL) v(scMm) v(ssu) V(ILDL) V(ADL)
Vv(sBL) v(sTL) V(ENI) V(INI) V(LUI) V(LIL) V(ISK)
v(IJp) v(sIU) Vv(sIL) v(sau) v(sAL) V(INT) v(oUT)
v(EQs) v(THS) V(MEQ) V(MTH) V(RAD) V(RSB) V(RAO)
V(RSL) V(EXF) V(SLJ) V(sLs) V(HALT7TT)'' $
TABLE CDC '1644 '"MEMORY Rigid 1 $
BEGIN ""Word Bit'!
''Instruction Word'!
ITEM UPPER 'OPERATION Status 6 OPERATION'CODE 1) g 3
ITEM UPPER 'INDEX fixed 3 Unsigned ¢ g6 3
ITEM UPPER 'CONDITION Status 3 V(J@) v(J1) v(J2)
v(J3) v(Rp) V(R1) V(R2) V(R3) g g6 s
ITEM UPPER 'ADDRESS fixed 15 Unsigned @ g9 $
ITEM UPPER 'COUNT fixed 15 Unsigned f...127 ) 99 3
ITEM UPPER 'OPERAND fixed 15 Signed g go
ITEM LOWER 'OPERATION Status 6 OPERATION'CODE ) 2L 3
ITEM LOWER 'INDEX fixed 3 Unsigned [ 3 $
ITEM LOWER 'CONDITION Status 3 V(J@) v(J1) v(J2)
v(J3) V(rg) V(RL) V(R2) V(R3) g 30 $
ITEM LOWER 'ADDRESS fixed 15 Unsigned g 33 &
ITEM LOWER 'COUNT fixed 15 Unsigned $...127 ) 33 %
ITEM LOWER 'OPERAND fixed 15 Signed ) 33 %
''Data Word''
ITEM FLOATING 'OPERAIID Floating Rounded g P9 S
ITEM INTEGRAL'OPERAND fixed 48 Signed ) o] I
ITEM FRACTIONAL'OPERAND fixed 48 Signed 47 g PP $
ITEM LOGICAL'OPERAND fixed 48 Unsigned ) 8 $

END

VARIABLE ENTRIES. With the exception of the table in the
last example, most of the tables appearing in this manual have been
"homogeneous" tables -- homogeneous in the sense that each entry in
such a table has the same structure. The CDC 16f4 MEMORY table was
an inhomogeneous table, however, since some of its entries had in-
struction word formats while others had data word formats, and even
within these two categories there were more than one format. For
obvious reasons, the entries in tables such as this are termed '"variable
format" entries. (Notice, in the diagram below, the common item whose
values distinguish between the various structures.)
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V(A)

V(B)

V(D)

VARIABLE FORMAT ENTRIES

Using overlay declarations, it is, of course, also possible to overlay
different, compiler-created entry formats.

"objects" can thus be declared in either way.

Tables of data on dissimilar
However, the entries in

such tables, though variable in format, are all the same length. And in
tables where different entries can contain widely differing amounts of
data, fixed=-length entries are quite wasteful of storage space.

Tables with variable entry formats
that also vary in length can be de=-
clared as specified-entry-structure,
one-word-per-entry tables. Such tables
are indexed by word rather than by entry
to allow entries to begin with any word
in the table. In using a FOR loop to
cycle through a table with variable
length entries, the subscript must be
incremented by the number of words in
the current entry in order to obtain
the index of the next entry. In the
accompanying diagram, for example, if
the current repetition of a loop was
processing a one-=word entry (whose
common, control item specifies the
status value A), then the correct index
increment would be one; but if the
current repetition was processing a two-
word entry (distinguished by the status
value B), then the correct increment
would be two.

V(B)

—

VARIABLE LENGTH
ENTRIES
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As an example of a table with variable=-length entries, consider
the following COMPOOL table for data elements =-- tables, items, arrays,
and strings (to be discussed in the next section). Each entry in this
table completely describes one data element. Just three items, LABEL,
TYPE, and WORDS'THIS'ENTRY are common to every entry in the table, while
the other items only appear in an entry if they are appropriate for the
type of data element described. Thus, the structure and length of an
entry in this table depends on the data element it describes.

TABLE DATA 'POOL Variable 3@@@ 1 $

BEGIN ""Word Bit Packing''
ITEM LABEL Hollerith 6 p  gp o $
ITEM CODING Status 3 V(FIXED) V(FLOATING)

V(TRANSMISSION) V(HOLLERITH)

V(STATUS) V(BOOLEAIN) 1 gp Medium $
ITEM ADDRESS fixed 15 Unsigned 1 $3 Medium $
ITEM TYPE Status 3 V(TABLE) V(ITEM) V(ARRAY)

V(STRING) 1 18 Medium $
ITEM BEADS 'PER'WORD fixed 6 Unsigned 1 21 Dense $
ITEM WORDS 'THIS'ENTRY fixed 9 Unsigned 1 27 Dense §
ITEM WORD'INDEX fixed 15 Unsigned 1 3 Medium §
ITEM SIGNED Boolean 2 ¢ Dense §
ITEM PACKING Status 2 V(NO) V(MEDIUM)

V(DENSE) 2 Pl Dense
ITEM VARIABLE 'LENGTH Boolean 2 P02 Medium
ITEM NUMBER'OF 'ENTRIES fixed 15 Unsigned 2 @3 Medium §
ITEM STRING'INTERVAL fixed 6 Unsigncd 2 3 Dense
ITEM NUMBER'OF 'DIMENSIONS fixed 9 Unsigned 2 P9 Dense g
ITEM NUMBER ' OF 'STATUSES fixed 9 Unsigned 2 $9 Dense §
ITEM FRACTION'BITS fixed 6 Unsigned 2 18 Dense $
ITEM PARALLEL'ENTRY Boolean 2 29 Medium $
ITEM WORDS 'PER'ENTRY fixed 15 Unsigned 2 21 Medium §
ITEM BITS'PER'ITEM fixed 6 Unsigned 2 24k Dense $
ITEM ORIGIN'BIT fixed 6 Unsigned 2 30 Dense
ITEM PRESET'VALUE fixed 36 Unsigned 3 g9 No $
ITEM TABLE 'NAME Hollerith 6 3 §p Wo $
ITEM DIMENSION'LIST'INDEX fixed 12 Unsigned 4 PP Dense
ITEM STATUS 'LIST'INDEX fixed 12 Unsigned i 12 Dense $
ITEM CONSTANT 'LIST'INDEX fixed 12 Unsigned L 2k Dense $

END

The DATA'POOL table above is based on the memory structure of the IBM
7090 computer, which has a 36-bit word divided 3/15/3/15 into four sub~-
words. A loop for cycling through this table could be created with the
following FOR statement.

FOR I = {,WORDS'THIS'ENTRY($I$),2999 $
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STRING ITEM DECLARATIONS. A string is an item occurring in a
specified~entry-structure table not just once per entry, but many times
per entry. The number of occurrences (or "beads") of a string item can
be allowed to vary from entry to entry, thus creating a table with var-
iable length entries, but in this case, a control item must be declared
in which a count is kept of the number of beads in each entry.

A string item declaration is very similar in form to the decla-
ration of other specified-entry-structure table items. Instead of the
declarator ITEM, however, the declarator STRING is used, and two ad=-
ditional factors are appended to the declaration: (1) an interval
factor giving the number of words from the first word of the entry con-
taining beads of the string to the next such word; (2) a packing factor
giving the number of beads per word.

declaration § STRING name description number,

of-string-item index~-of-word
num'berindex-of-origin-bit LNO;Medlum;Denseitem-packing# numberof-inter-
vening-words numberof-beads-per-word $ lconstent-array]

To illustrate the string item concept, consider the table AUTO'INDEX,
each item of which contains a topic phrase and a list of reference numbers
of pertinent documents.

TABLE AUTO'INDEX Variable 2¢¢gf 1 $

BEGIN "'"Word Bit Pack Skip B/W''
ITEM TOPIC Hollerith 33 o PP Dense $
ITEM COUNT fixed 12 Unsigned L 2L  Dense $
STRING REFERENCE fixed 18 Unsigned 5 PP Densel 2 $

END
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A typical entry in the AUTO'INDEX table
might contain the topic phrase "PROGRAM-
MING-LANGUAGES." and 23 document refer-
ences, ranging from document #@@71 to
document #9152. The string item, REFER-
ENCE, is packed in consecutive words,
two beads per word.

In designating the value of any
particular bead, a two~component index
must subscript the string item's name
specifying, first, the bead and, second,
the entry. Thus, if the entry in the
accompanying diagram is entry I, begin-
ning at word I in the table (entry I
and word I are synonymous here, since
the table is a one-word-per-entry table)
then

REFERENCE($8,1$)

specifies the value 71, and

REFERENCE( $22,13)

specifies 9152. Notice that the AUTO'INDEX
table's actual number of words per entry is

6+(COUNT($I$)+1)/2, discarding any fraction-
al remainder from the division. Thus

FOR I = §,6+(COUNT($I$)+1)/2,19999 $

would create a FOR loop to cycle through the table and process each entry.

T-555/003,/00

P|IR| O] G| R|A
M I G| -
L] A} N| G| U|A
G|E|S |.

gg71 R g1e2

1348 1763

Typical Auto Index
Entry

To show how string items are manipulated, the following routine
searches the AUTO'INDEX table and compiles a bibliography list of
reference numbers of those documents pertaining to all the topics in a
given list of topics. (For example, if the given list of topics con-
tained just "PROGRAMMING-LANGUAGES." and "PROCEDURE-ORIENTED.", the
bibliography list would contain just those references pertaining to

both topics.)
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BEGIN COMPILE 'BIBLIOGRAPHY.
ARRAY SEARCH'TOPIC 256 Hollerith 33 $

ITEM NUMBER 'OF ' SEARCH 'TOPICS fixed 8 Unsigned $

ARRAY PERTINENT 'REFERENCE 4§96 fixed 18 Unsigned $
ITEM NUMBER ' OF ' PERTINENT 'REFERENCES fixed 8 Unsigned $
ITEM FIRST'SEARCH'TOPIC Boolean $

STEPPl. FIRST'SEARCH'TOPIC = 1 $
STEPP2. FOR H = {,1,NUMBER 'OF 'SEARCH 'TOPICS-1 $

BEGIN
STEP@3. FOR I = @,6+(COUNT($I$)+1)/2,19999 $
BEGIN
STEPPL « IF SEARCH'TOPIC($H$) EQ TOPIC($I$) $
BEGIN
STEP@5 . IF FIRST'SEARCH'TOPIC $
BEGIN
STEPP6. FOR J = §,1,COUNT($I$)-1 $
STEP@T . PERTINENT 'REFERENCE( $J$) =
REFERENCE($J,1$) $
STEP@8. FIRST'SEARCH'TOPIC = ¢ $
STEPP9 . NUMEER * OF ' PERTINENT 'REFERENCES =
COUNT($I$) $
STEP1§. TEST H $
END
STEP11. FOR X = §,1,NUMBER 'OF 'PERTINENT 'REFERENCES-1 $
BEGIN
STEP12. FOR Y = §,1,COUNT($I$)-1 $
BEGIN
STEP13. IF PERTINENT 'REFERENCE({&X$) EQ
REFERENCE( $Y,I$) $
STEP1k. TEST X $
END
STEP15. NUMBER ' OF ' PERTINENT 'REFERENCES =
NUMEER ' OF ' PERTINENT 'REFERENCES - 1 $
STEP16. IF X LS NUMBER'OF'PERTINENT 'REFERENCES $
BEGIN
STEP17. FOR Z = X,1,
NUMBER ' OF ' PERTINENT 'REFERENCES $
STEP18. PERTINENT'REFERENCE( $2$) =
PERTINENT 'REFERENCE( $Z+1$) $
END END
STEP19. TEST H $

END END END END
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The following flow chart shows the sequence of statement executions for
this routine. Steps 6 thru 9 create a list of possible references from
those associated with the first topic found in the AUTO'INDEX table, and
steps 11 thru 18 eliminate those references that do not occur with each
of the other topics found in the table.

Flow Chart

for
COMPILE
BIBLIOGRAPHY
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MISCELLANEOUS STATEMENTS

STOP STATEMENTS. A STOP statement, composed of the STOP sequential
operator followed by an optional statement name and terminated by the $
separator, halts or indefinitely delays the sequence of statement exe-
cutions.

statement § STOP [Pale o next-statement $

A STOP statement usually indicates an operational end to the program in
which it appears, and no further program control exists until the computer
operator reinitiates it. However, if the program is restarted, execution
will resume either with the next statement listed, if no statement name

is given in the STOP statement, or with the indicated statement, if a
statement name is provided.

STOP statements are seldom used in system programs, since such programs
usually terminate their operation by transferring the sequence of statement
executions to the system control program. The control program itself, how-
ever, may use the STOP statement, for example: to give the computer operator
time to act after a programmed request for operator intervention, such as
"READY MORE INPUT AND RESUME COMPUTATION." logged out on the on-line printer.

Two examples of STOP statements are given below. Notice that, in
conjunction with the GOTO statement, the effect of the first is ldentical
to that of the second.

STOP $ GOTO STEPl $

STOP STEP1 $

DIRECT-CODE STATEMENTS. A direct-code statement allows the programmer
to include a routine coded in a "direct" or machine-oriented programming
language among the statements of a JOVIAL program. This can occasionally
be quite a convenience, especially if the programmer wants to take ad-
vantage of some of the more exotic features of the computer on which his
program will run. A direct-code statement is composed of a sequence of
machine-oriented, symbolic instructions enclosed in the DIRECT and JOVIAL
brackets. Such a sequence of instructions is an arbitrary string of signs
as far as JOVIAL is concerned, and the statement itself has a computer
dependent and therefore undefined operational effect.
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statement § DIRECT S1805 ., ont-the-JOVIAL-bracket JOVIAL

Machine-oriented programming languages are somewhat outside the scope of
this manual, so no examples of direct-code statements will be given here.
However, it is possible to designate the values of JOVIAL items within
a directly coded routine =- by using the JOVIAL-1like ASSIGN statement.

An ASSIGN statement has a format similar to that of a regular
JOVIAL assignment statement, but preceded by the ASSIGN symbol. The
other two elements of this statement, aside from the = and $ separators,
are interchangeable and consist of a JOVIAL variable designating an item
value, and a non-JOVIAL variable designating the value represented by
the contents of the computer's accumulator =- an undefined machine regis-
ter. The syntax of the ASSIGN statement is indicated below.

ASSIGN A(:|integer|:) = name (($ index $)) $

of-item

ASSIGN name . .. (($ index $)| = A(:|integer]:) $

The letter A, followed by an optional integer enclosed in the ( and )
parentheses, which may not be omitted, designates the value in the accumu-
lator. The precision of this value is given in number of fractional bits
by the integer, which is usually zero for all non-numeric and integral
values, and omitted entirely for floating=-point values. The other half
of the ASSIGN statement can designate the value of a subscripted as well
as a simple item, so it should be noted that there are no limitations on
the complexity of the numeric formulas in an index subscripting the item
name. All in all, the rules of the ASSIGN statement are the same as

those of the JOVIAL assignment statement, even to the automatic conversion
between fixed and floating=point representation.

Some examples of the ASSIGN statement are given below:
ASSIGN A() = ALPHA($I,d%¥2$) ¢

assigns the specified numeric value of ALPHA to the accumulator as a
floating~point machine symbol.

ASSIGN A(1f) = BETA $

assigns the numeric value of BETA to the accumulator as a fixed-point
machine symbol with 1§ fractional bits.
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assigns the value represented in the accumulator by a fixed=-point
machine symbol, whose least significant bit is precise to 64 units, to
be the value designated by GAMMA.

ASSIGN WORD($0$) = A(P) $

assigns the literal velue in the accumulator to be the value designated
by the first WORD.

ALTERNATIVE STATEMENTS. An alternative statement, composed of a
sequence of IF-like IFEITHer-ORIF substatements each followed by its own
conditional statement and finally terminated by the END bracket, selects
for execution fram its set of conditional statements the one associated
with the first True Boolean formula from the corresponding set of IFEITHer-
ORIF substatements. The effect of an alternative statement is therefore
equivalent to that of the selected statement by itself.

ORIF E

statement & IFEITHer [boolean-formula $ statement]s ND

To illustrate the use of the alternative statement, consider the
following example, which (given floating-point items Pl, P2, and P3, and
a linear, floating-point array ALPHA of length N'ALPHA, and assuming
Pl LS P2 LS P3) counts values of ALPHA that are (a) less than P1, (b)
less than P2 but not less than P1l, (c) less than P3 but not less than P2,
(d) not less than P3.

BEGIN TALLY.
MODE fixed 15 Unsigned $
STEPl. TALLY'A = § ¢ TALLY'B =@ $ TALLY'C =@ $ TALLY'D = ¢ $
STEP2. FOR A = §,1,N'ALPHA-1 $

STEP3. IFEITHer ALPHA($AS$) LS P1 $
STEPL. TALLY'A = TALLY'A+1 $
STEP5. ORIF P1 IQ ALPHA($A$) LS P2 $
STEP6. TALLY'B = TAILLY'B+l1 $
STEPT. ORIF P2 1Q ALPHA($A$) LS P3 $
STEP8. TALLY'C = TALLY'C+l $
STEP9. ORIF P3 IQ ALPHA($A$) $
STEP1. TALLY'D = TALLY'D+l $

END END
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The accompanying flow chart,
showing the execution

sequence of the statement
TALLY, is typical of alterna-
tive statements. Notice, how-
ever, that the set of Boolean
formulas in steps 3, 5, 7, and
9 exhaust all the possibili-
ties, so that if the formulas
in steps 3, 5, and T all speci=-
fy False, then the formula in
step 9 must specify True, and
the False branch from that
statement is never used. This
can be made more apparent by
replacing the statement with

Flow Chart
for

STEP9. ORIF 1 $

which is also more efficient,
since no comparison is made.
And by using a define decla=-
ration, this particular con-
struction, which is not un-
common, can be made much more
readable.

DEFINE OTHERWISE ''ORIF 1 $'' $
STEP9. STEP1f. OTHERWISE
TALLY'D = TALLY'D+1 $

Since the normal suc=-
cessor to each of the con-
ditional statements within
an alternative statement is
the statement listed after
the alternative statement,
it is important to realize
that no more than one of
these conditional statements will be executed, no matter how many of their
corresponding Boolean formulas specify True. (Of course, if none of the
Boolean formulas specify True, none of the conditional statements will be
executed and the alternative statement will have no operational effect.)
It is also important to note that, although an ORIF substatement can be
named, it is not actually a complete statement and cannot, therefore, be
combined with a preceding IF or FOR statement.
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As another illustration of the alternative statement, consider the
following example, which computes salesman's commissions.

BEGIN COMPUTE 'COMMISSIONS.

TABLE SALES Variable 10¢PP Serial Dense $
BEGIN
ITEM ARTICLE fixed 1¢ Unsigned $''Entry index to ARTICLES''
ITEM SALESMAN fixed @7 Unsigned $''Entry index to SALESMEN''
END
TABLE ARTICLES Varisble 1¢@¢ Serial Dense $
BEGIN
ITEM COST fixed 36 Unsigned $''In cents'!
ITEM SALE'PRICE fixed 36 Unsigned $''In cents''
END
TABIE SATESMEN Variable 1f@ Serial Dense $
BEGIN

ITEM NET'COMMISSIONS fixed 27 Unsigned $''In cents''
ITEM COMMISSION'PIAN Status V(A) v(B) v(c) v(D) V(E) $
END
FOR S = ALL (SALESMEN) $
NET'COMMISSIONS($S$) = 9 $
FOR I = ALL (SAILES) $

BEGIN
FOR A = ARTICLE($I$) $
FOR 8 = SALESMAN($I$) $

IFEITHer COMMISSION'PLAN($S$) EQ V(A) $
NET'COMMISSIONS($S$) = NET'COMMISSIONS($S$)
+ J15A15 * SALE'PRICE($A$) $
ORIF COMMISSION'PIAN($S$) EQ V(B) $
NET'COMMISSIONS($S$) = NET'COMMISSIONS($S$)
+ JL4gA15 * (SAIE'PRICE($A$)-COST($A3)) $
ORIF COMMISSION'PLAN($S$) EQ V(C) $
NET'COMMISSIONS($S$) = NET'COMMISSIONS($S$)
+ .1PA15 * (COoST($A$) + (SALE'PRICE($A$)-coST($4%))) $
ORIF COMMISSION'PLAN($S$) EQ V(D) $
NET 'COMMISSIONS($S$) = NET'COMMISSIONS($S$)
+ Jf5A15 * COST($A$) + 1f8P $
ORIF COMMISSION'PIAN($S$) EQ V(E) $
NET'COMMISSIONS($S$) = NET'COMMISSIONS($S$)
+ 1500 $ END
END END



26 December 1961 153 ™-555/003/00

The flow chart for this statement is shown below.

Flow Chart
for
COMPUTE
COMMISSIONS

CLOSED STATEMENTS. Often, the same list of statements is needed
at several different places in a program. One solution would be to
define the list (with a define declaration) and use the defined name in
the program wherever the list of statements is required. It seems in-
tuitively wasteful, however, to repeat the same statements many times
throughout the program and thus generate many identical sequences of
machine instructions, so another solution is to write the list of




26 December 1961 154 Mi-555/003/00

statements once, and call for its execution wherever in the program it
is required. This function is performed with the closed statement.

A closed statement, composed of the CLOSE sequential operator
followed by the name of the statement, the $ separator, and the
statement itself, is, in effect, removed from the normal, listed sequence
of statement executions, and may be correctly invoked only by a GOTO
statement. The normal successor to0 a closed statement 1s the statement
listed after the invoking GOTO statement.

statement & CLOSE name $ statement

of-statement

A closed statement is a closed and parameterless subroutine =--
closed in the sense of being removed from the statement execution
sequence, and parameterless in the sense that it must already "know"
the data on which it is to operate, since its operation may not be
adjusted at execution time.

As an example of a closed statement, consider SHELL'SORT below.
CLOSE SHELL'SORT $''A closed statement which sorts a table's entries by

KEY item, using Shell's sorting algorithm, as described
in ACM Communications = July 59.''

BEGIN
DEFINE KEY '! '" $'!'70 be filled in with the name of a

table item by the user of this routine before its

compilation.'!'
STEP1. IF NENT(KEY) GR 1 $

BEGIN
STEP2. FOR M = NENT(KEY)/2,-(M+1)/2,1 $
BEGIN
STEP3 . FOR J = 1,1,NENT(KEY)~-M $
BEGIN
STEPk. FOR I = J-1,-M,0 $
BEGIN

STEPS . IF KEY($I$) GR KEY($I+M$) $
STEP6. ENTRY (KEY($I$)) == ENTRY

(KEY($T+M3)) ¢ END END END END END

The user of SHELL'SORT would copy it into his program, filling in the
define declaration with the name of the table item on which the table

is to be ordered. Then, whenever the table must be sorted, the statement

GOTO SHELL'SORT $

will cause the sorting to be done.
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The flow chart below shows the statement execution sequence for
SHELL 'SORT.

Flow Chart
for
SHELL SORT
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As further examples, consider the following set of closed statements,
which convert between longitude and latitude, and rectangular X,y coordi-

nates.

ITEM LONORG'LATORG

ITEM LONORG

ITEM LATORG
OVERLAY

ITEM LON'LAT
ITEM LON
TTEM LAT
OVERLAY

ITEM XPOS'YPOS
ITEM XPOS
ITEM YPOS
OVERLAY

DEFINE EDE
DEFINE PP
DEFINE Pl
DEFINE P2
DEFINE P3
DEFINE P4
ITEM K1'K3
ITEM K1
ITEM K3
OVERLAY

ITEM K2 'Kl
ITEM K2
ITEM K4
OVERLAY

ITEM TL'T2
ITEM T1
ITEM T2
OVERLAY

ITEM BN 'AN
TITEM BN
ITEM AN
OVERLAY

"'Lon,Lat/x,y Coordinate Conversion Subroutines'

Dual 16 Signed 7 $''Longitude,Latitude of Orlgln in
degrees. East,North=plus, West,South=minus.

fixed 16 Signed T $

fixed 16 Signed T $

LONORG'LATORG = LONORG,LATORG $

Dual 16 Signed T $''Longitude,Llatitude of point in
degrees.''

fixed 16 Signed 7 $

fixed 16 Signed 7 $

LON'LAT = LON,LAT $

Dual 16 Signed 5 $''X,Y coordinates of point in
nautical miles from origin.''

fixed 16 Signed 5 $

fixed 16 Signed 5 $

XPOS'YPOS = XPOS,YPOS $

116883. h6¢26A18" $"Equatorial Diameter of the
Earth, in nautical mlles

113.1415927A28/148¢8" ' $

"EDE/2*P¢" $

] |_P1*P¢l [

vippt! $

1 'Pl/l{'*P¢' t

Dual 16 Slgned 1
fixed 16 Signed 1
fixed 16 Signed 1
K1'K3 = K1,K3 $
Dual 16 Signed
fixed 16 Signed
fixed 16 Signed
K2'Kh = K2,K4 $
Dual 16 Signed
fixed 16 Signed
fixed 16 Signed
TL'T2 = T1,T2 $
Dual 16 Signed
fixed 16 Signed
fixed 16 Signed
BW'AN = BN,AN $

LA e e R
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CLOSE
LONGITUDE 'ADAPTATION $'‘'Adapts the K-parameters for the longitude of
any given Origin.''’
BEGIN
K1 = P1*COS(LONORG) $
K2 = P2*SIN(LONORG) $
K3 =P3 $
K4 = PU*SIN(2¥LONORG) $
END
CLOSE
LONIAT'TO'XY $ ''Converts Longitude,Latitude to x,y'!
BEGIN
T1 = LAT $
T2 = LON $
XPOS'YPOS = K1 'K3*LON'LAT+K2 'KU*T1'T2*LON $
END
CLOSE
XY'TO'LONLAT $ ''Converts X,y to Longitude,Latitude'’
BEGIN :
BN'AN = D(f.AT,0.A7) $
XY'TO'LONLAT1. LON'LAT = BN'AN $
TL = AN $
T2 = BN $
BN'AN = (XPOS'YPOS+T1'T2*BN-K2'KL)/K1'K3 $
IF (/BN'AN-LON'LAT/) GQ D(.5AT, .5AT) $
GOTO XY'TO'LONLATL $
LON'LAT = (LONORG'LATORG+(BN'AN+LON'IAT)/D(+2,-2))
/ D(6g,68) $ END

wuw nn

\
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The above coordinate conversion subroutines presume, of course,
the existence of appropriate SIN and COS functions. The solution to
the following problem illustrates how
these closed statements would be used.
Given points a and b whose locations
are designated in degrees of longi-
tude and latitude by the dual items
LONA'IATA and LONB'LATB, and point c¢
whose location is designated by x,y
coordinates in nautical miles from
point b by the dusl item XBC'YBC.
Compute the location of point ¢ in
X,y coordinates in nautical miles
from point a, to be designated by
the dual item XAC'YAC.

Flow Chart
for
ORIGIN SHIFT

BEGIN ORIGIN'SHIFT.
ITEM NEW'LONGITUDE Boolean $
STEP1. NEW'LONGITUDE = LONORG NQ LONA $
STEP2. LONORG'LATORG = LONA'LATA $
STEP3. IF NEW'LONGITUDE $
STEPL . GOTO LONGITUDE 'ADAPTATION $
STEP5. LON'LAT = LONB'IATB $
STEP6. GOTO LONLAT'TO'XY $
STEPT. XAC'YAC = XBC'YBC+XPOS'YPOS $
END

In the accompanying flow chart for
ORIGIN'SHIFT, note that o and g refer
to other, omitted flow charts -- i.e.,
those for LONGITUDE 'ADAPTATION and
LONLAT'TO'XY.

In using any closed statement, it is the programmer's responsibility
to see that it is entered only by a GOTO statement referring to it by
name, never by a name labeling one of the statements within it, and never
as part of the normal listed sequence of statement executions. Further-
more, although a closed statement may call other closed statements, it
may not call itself, either directly or indirectly.

RETURN STATEMENTS. A closed statement, and a procedure as well, is
enclosed in two automatically generated and inserted routines -=- an entrance,
and an exit. The entrance routine saves the memory location of the statement
invoking the closed statement or procedure, and the exit routine uses this
memory location to return to the main sequence of statement executions,
immediately after the invoking statement. Since the exit routine is an
implied statement, similar in this respect to the implicit Modify-Test-
Repeat statement inserted at the bottom of FOR loops, the problem of
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transferring execution control to it from the middle of a closed
statement or procedure is similar to that solved in FOR loops by the
TEST statement. In closed statements and procedures, however, this
function is performed by the RETURN statement.

A RETURN statement, composed of the RETURN sequential operator and
terminated by the $ separator, indicates a Jump to the exit routine that
is automatically inserted after the last listed statement of the closed
statement or procedure. A RETURN statement may therefore appear only
within a closed statement or a procedure.

statement § RETURN $

Step 3 in the following closed statement shows how RETURN statements
are used.

CLOSE
COMPUTE 'GREATEST 'COMMON 'DIVISOR $
''Every pair of numbers ALPHA and
BETA not both zero have a positive
greatest common divisor GAMMA. ENTER
This closed statement uses the
Euclidean algorithm as given by
Claussen in the April 6f AcM
Communications.'!’

BEGIN
MODE Floating Rounded $
OVERIAY GAMMA = TEMP $
STEP1. IF ALPHA NQ P. $

Flow Chart for COMPUTE
GREATEST COMMON DIVISOR

BEGIN
STEP2. IF BETA EQ §. $
STEP3. BEGIN
GAMMA = ALPHA $
RETURN $
END
STEPk. FOR G = ALPHA/BETA $
STEPS. TEMP = ALPHA-EETA*G $
STEP6. IF TEMP NQ §. $
STEPT . BEGIN
ALPHA = BETA $
BETA = TEMP $
GOTO STEP4 $
END END

STEPS8. GAMMA = BETA $
END
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PROCEDURES

A procedure is a self-contained routine with a fixed and ordered
set of parameters, permanently defined by a procedure declaration and
invoked either by a procedure statement or by a function. A procedure,
like a closed statement, is a closed subroutine. But, unlike a closed
statement, a procedure's parameters allow the data and other environ-
mental elements on which the procedure operates to be expressed when
the procedure is executed, rather than when it is compiled. A pro-
decure's parameters are parameters, therefore, because the information
they supply the procedure, while fixed for any particular execution of
the procedure, may differ from execution to execution.

In classifying procedure parameters, three different dichotomies
are useful. Thus, a procedure parameter is either (1) formal or call-
ing, (2) input or output, and (3) value or name. (In consequence,
there are eight different types of procedure parameters, from formal
input value parameters to output name calling parameters.) These
dichotomies may be explained as follows: (1) A formal parameter is a
dummy name within the procedure declaration by which the procedure's
parametric information is referenced for every execution of the pro-
cedure, while a calling parameter is a formula, a variable, or a name
within the procedure statement or function by which the procedure's
parametric information is expressed for a single execution of the
procedure; (2) The information referenced or expressed by an input
parameter is provided to the procedure before its execution, while the
information referenced or expressed by an output parameter is provided
by the procedure after its execution; (3) The information provided by
a procedure parameter is either a value, or a name denoting a statement,
an array, or a table. The main difference between value and name parame-
ters is that formal value parameters are allocated memory space since
they refer to values designated by items declared within the procedure,
whereas no memory space 1s allocated for formal name parameters since
they refer to arrsys, tables, or statements outside the procedure.

PROCEDURE DECLARATIONS. A procedure declaration is composed of a
procedure declarastion proper, which declares the procedure's name and
lists its formal parameters, followed by an optional list of heading
declarations, which describe the information enviromment peculiar to
the procedure, and followed by a statement, which constitutes the body
of the procedure.

declaration § PROCedure name |( |nemes’| |= [name |.|7s’]

of=procedure

)] $ |declarations| statement
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The procedure declaration proper, composed of the PROCedure decla=-
rator followed by a name and an optional list of formal parameters
enclosed in the ( and ) brackets and terminated by the $ separator,
declares the procedure's name and lists its formal parameters, if any,
thus declaring their names, their number, and their order. The dummy
names comprising this list of formal parameters are separated by commas
and may be divided by a single = separator into formal input parameters
on the left and formal output parameters on the right. A procedure may
thus have no parameters at all, or it may have both input and output
parameters, just input parameters, or just output parameters depending
on the presence and position of the = separator. Formal parameters,
both input and output, are either value parameters or name parameters
and consequently refer either to data values or to the names of statements,
arrays, or tables. A formal output parameter that refers to a statement
name is suffixed by the . separator.

The optional list of heading declarations describe whatever infor-
mation enviromment is peculiar to the procedure. Procedure declarations
themselves may not be nested, but declarations of any other type may
appear in a procedure heading, all describing environmental elements
local to the procedure. (Identifiers declared inside a procedure thus
do not conflict with identical identifiers declared outside the procedure.)
Environmental elements that the procedure shares with the main program
consequently must not be redeclared within the procedure, but all of the
procedure's formal parameters are considered part of the procedure's
local environment and must therefore be declared in the procedure heading,
except those formal name parameters referring to statement names. Value
parameters must be declared as items, and name parameters must be declared
as arrays or tables in order to provide the procedure with a fixed de-
scription of their structure. A formal input value parameter can also
be used as an output value parameter in the same procedure, but only one
item declaration in the procedure heading is necessary to define it.

The following procedure declaration illustrates many of the con-
cepts just discussed. The procedure it describes, SET'DIAGONAL, sets
the items on the main diagonal of any 5¢ by 5¢ floating=point matrix to
any given numeric value.

PROCedure SET'DIAGONAL (VALUE=MATRIX) $

ITEM VALUE Floating Rounded $
ARRAY MATRIX 5@ 5¢ Floating Rounded $
BEGIN

FOR I = @,1,49 §
MATRIX($I,I$) = VALUE $
END
Notice that VALUE is a formal input value parameter, while MATRIX is &
formal output name parameter.
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The following procedure, BRANCH, shows
how formal output parameters that refer to Flow Chart
statement names are used as alternate exits, ENTER for
as graphically illustrated in the accompany- BRANCH
ing flow diagram.

PROCedure BRANCH (ALPHA=HIGH.,LOW.) $
ITEM AIPHA Floating Rounded $
BEGIN
STEP1. IF ALPHA GR §. $
GOTO HIGH $
STEP2. IF ALPHA LS §. $
GOTO LOW $
END

Formal input parameters that refer to
statement names, on the other hand,
usually refer to closed statements and
consequently are not alternate exits.

The following procedure declaration declares a typical procedure,
PIACE, which is of interest mainly because it performs its searching
function much quicker than would an equivalent entry-by-entry search,
or even g binary search. Notice that PLACE invokes another procedure
via the HASH function. Procedures may invoke other procedures, either
through functions or through procedure statements, but they may not
invoke themselves, either directly or indirectly.
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TABLE WORDS Rigid 1¢@@P Serial Dense $

BEGIN
ITEM WORD Hollerith 6 $
ITEM OVERFLOW fixed 15 Unsigned $
ITEM COUNT fixed 15 Unsigned $
END

PROCedure PLACE (CODE'WORD=CHANNEL,FULL) $''A procedure that places, in
the sense of either find or file, a 6-character code word in a table of
such words and responds with a channel number indexing the table entry
where the code word was either found or filed. An indication is given
if the table is so full that a new code word may not be filed. The HASH
function maps a 6-character code word into a l¢-bit integer, a many-to-
one mapping.''

ITEM CODE'WORD Hollerith 6 $

ITEM CHANNEL fixed 15 Unsigned $

ITEM FULL Boolean Preset § $
ITEM NEXT fixed 15 Unsigned Preset 1 $
BEGIN
STEPl. FOR N = HASH (CODE'WORD) $
BEGIN
STEP2. IF WORD($N$) EQ 6H( ) $''which means that the
entry is vacant'! BEGIN
STEP3. WORD($N$) = CODE'WORD $
STEPL . CHANNEL = N $
RETURN $
END
STEPS. IF WORD($N$) EQ CODE'WORD $
GOTO STEP4 $
STEP6. IF OVERFLOW($N$) EQ @ $''which means that there has
been no overflow from this entry'!
BEGIN
STEPT. IF WORD($NEXT$) NQ 6H( ) 3
BEGIN
STEP8. NEXT = NEXT+1 $
STEP9. IF NEXT LS NENT(WORDS) $
GOTO STEPT $
STEP1§. FULL = 1 $
RETURN $
END
STEP11. OVERFLOW( $N$) = NEXT $
GOTO STEP3 $
END
STEP12. N = OVERFLOW($N$) $
GOTO STEP5 $

END END
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Notice, in the PLACE procedure above, that the WORDS table is part of
the environment of both the procedure and the program containing the

procedure. The flow chart below shows the rather complicated sequence
structure of the PLACE procedure.

ENTER Flow Chart
for
PLACE

EXIT




26 December 1961 165 T™-555/003/00

FUNCTION DECLARATIONS. A procedure declaration declaring a
procedure to specify a function value differs from other procedure decla=
rations in one respect only: it has only one formal output parameter, a
velue parameter that is taken to be the name of the procedure itself.

The procedure declaration for a function therefore lists no formal oute-
put paraemeters since the procedure name itself serves this purpose.
And because the procedure name does serve as a formal output value
parameter, it must be declared among the procedure's heading decla-
rations as an item, to which the function's value is assigned during
the procedure's execution.

To illustrate function declarations, the following procedure de-
clares a Boolean function, NEAR, that specifies True when the floating-
point values of its two input parameters are similar in magnitude, and
False when they are not.

PROCedure NEAR (AA,BB) $

ITEM NEAR Boolean $
ITEM AA Floating $
ITEM BB Floating $

NEAR = CHAR(AA) EQ CHAR(BB) $

The following procedure declaration, defining the CUBER function,
shows how a mode declaration can be used to declare all the formal value
parameters of a procedure, as long as they are the same type.

PROCedure CUBER (AA,CC) $''This procedure specifies the function value
CUBER such that CUBER**3+AA*CUBER*¥2+CC EQ ., where AA and CC have the
same sign.''

MODE Floating Rounded $
OVERLAY AA, CUBER, CC=T{, T1,T2 $
BEGIN
¥ = AA/3. %
TL = TP**3 §
T = T1+CC/2. $
Tl = (TR¥X2-TL¥*Q)*%,5 §

CUBER
END

(T1~T2)**.3333333333~(T1+T2)**.3333333333-T¢ $

In the above procedure, the formal value parameters AA, CUBER, and CC
are used as temporary items, and the overlay declaration merely gives
them the new names TP, T1l, and T2 to make this explicit.

Some further examples of procedure declarations, which define the
functions BINOCO, POLY, INTEGRAL, and ABBREVIATION, are given
on the following pages.
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PROCedure BINOCO (NN,MM) $''This procedure specifies the binomial co=-
efficient, BINOCO, the number of combinations of NN things taken MM at

a time = FACTORIAL(NN)/(FACTORIAL(NN-MM)*FACTORIAL(MM)) using the re-
cursion algorithm described by Kenyon in ACM Communications for Oct. 6¢"
ITEM BINOCO fixed 48 Unsigned $

ITEM NN fixed @6 Unsigned 1l...50 $
ITEM MM fixed @6 Unsigned 1l...50 $
BEGIN
BINOCO = 1 $
IF 2¥MM GR NN $
MM = NN-MM $

FOR I = @,1,MM $
BINOCO = (NN=-I)*BINOCO/(I+1) $
END '

PROCedure POLY (AA,MM,XX) $''This procedure specifies the function, POLY,
as the value of the polynomial AA($MM$)¥XX*¥¥MM + AA(MM=1$)*XX¥*(MM=-1) +
eoo + AA($1$)*%XX + AA($P$), where AA is a linear array of coefficients,
MM is the degree of the polynomial, and XX is the variable.''

ITEM POLY Floating Rounded $
ITEM MM fixed 1f Unsigned $
ITEM XX Floating Rounded $
ARRAY AA 12k Floating Rounded $
BEGIN
POLY = . $

FOR M = MM,-1,0 $
POLY = POLY = POLY*XX+AA($M$) $
END
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PROCedure INTEGRAL (ALPHA,BETA,GAMMA,DELTA) $
''"This procedure specifies the INTEGRAL of any
numeric FUNCTION(ALPHA...BETA) by Simpson's
one-third rule. GAMMA is greater than the
maximum absolute value of FUNCTION(ALPHA...
BETA) and DELTAis the magnitude of the per-
missible difference between two successive
approximations. The user of this procedure
must fill in the following define declaration
with the name of the function he wishes to
integrate.'!
DEFINE FUNCTION ‘! g
MODE Floating Rounded $

BEGIN
STEPPl. TEMPl = GAMMA*( BETA-ALPHA) $
STEPf2. TEMP2 = (BETA-ALPHA)/2. $
STEP@3. TEMP3 = TEMP2*( FUNCTION(ALPHA)

+ FUNCTION(BETA)) $
STEPP4. FOR N = 1,N $

BEGIN
STEP@S . TEMPY = §. $
STEPP6 . FOR K = 1,1,N $
STEPPT . TEMP4 = TEMPL+FUNCTION
(ALPHA+(2%K~-1)*TEMP2) $
STEP@S. TEMP5 = TEMP3+l .*TEMP2*TEMPL $
STEPO . IF DELTA GQ (/TEMP5-TEMP1/) $
BEGIN
STEP1§. INTEGRAL = TEMP5/3. $
RETURN $
END
STEP11. TEMP1 = TEMP5 $
STEP12. TEMP3 = (TEMPS+TEMP3)/4. $
STEP13. TEMP2 = TEMP2/2. $
END END

PROCedure ABBREVIATION (WORD) $

''"This procedure specifies a systematic,
six-letter abbreviation of an English
word of T...36 letters. A word of six

or less letters is its own sbbreviation.'®
ITEM ABBREVIATION Hollerith 6 $

ITEM WORD Hollerith 36 $
ITEM IETTER Hollerith 1 $
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DEFINE FREQUENCY ''V(E) v(T) v(a) v(0) v(N) v(I) v(s) V(R) V(H) V(L)
v(D) v(c) v(u) v(M) v(F) v(Y) V(W) v(c) v(P) V(K)
v(B) v(v) v(x) v(J) v(Q) v(z)'" $

ARRAY CIASS 2 Status V(OTHER) FREQUENCY $

TABLE Rigid 26 $
BEGIN

ITEM P'CLASS Status V(OTHER) FREQUENCY $ BEGIN FREQUENCY END

ITEM P'IETTER Hollerith 1 $ BEGIN 1H(E) 1H(T) 1H(A) 1H(O0) 1H(N)

18(1) 1H(s) 1H(R) 1H(H) 1H(L) 1H(D) 1H(c) 1H(U) 1H(M)
18(F) 1H(Y) 1H(w) 1H(G) 1H(P) 1H(X) 1H(B) 1H(V) 1H(X)
1H(J) 1H(Q) 1H(Z) END

END

BEGIN
STEP@l. FOR J = § $
COMPRESS. BEGIN
STEP@2. FOR M = 35,-1,8 $
STEP@3. FOR N = 35,-1 $
BEGIN
STEPPL . LETTER = BYTE($M$)(WORD) $
STEPPS . IF IETTER EQ 1H( ) $
STEPP6 . TEST M $
STEPAT . BYTE($M$) (WORD) = 1H( ) $
STEP@S. BYTE($N$)(WORD) = IETTER $
END
COMPLETE  STEP@9. IF BYTE($@,30)(WORD) NQ
3¢H( ) $
_ BEGIN
ELIMINATE. STEP1p. IFJ IS 3 $
BEGIN
STEP11. FOR I = 35,-1,1 $
BEGIN
STEP12. IF BYTE($I$)(WORD) EQ 1H( ) $
STEP13. BEGIN
J=J+1 $
GOTO ELIMINATE $
END
STEP14 . LETTER = BYTE($I-1$)(WORD) $
STEP15. IF (J EQ @ AND BYTE($I$)(WORD)

EQ 1H(U) AND IETTER EQ 1H(Q)) OR (J EQ 1 AND BYTE($I$)(WORD) EQ LETTER)
OR (J EQ 2 AND (BYTE($I$)(WORD) EQ 1H(A) OR BYTE($I$)(WORD) EQ 1H(E) OR
BYTE( $I$)(WORD) EQ 1H(I) OR BYTE($I$)(WORD) EQ 1H(O) OR BYTE($I$)(WORD)
EQ 1H(U)) AND (LETTER EQ 1H(A) OR ILETTER EQ 1H(E) OR LETTER EQ 1H(I) OR

LETTER EQ 1H(O) OR LETTER EQ 1H(U))) $ BEGIN
STEP16. BYTE($I$)(WORD) = 1H( ) $
GOTO COMPRESS $
END END
STEPLT. J =J+1 $ GOTO ELIMINATE $

END
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STEP18.
STEP19.
STEP2§.

STEP21.
STEP22.
STEP23.
STEP2k.

CLASSIFY. STEP25.
STEP26.

STEP27 .

STEP28.
($L3) $

STEP29.

STEP38.
STEP31.

STEP32.

ABBREVIATE. STEP33.

169 ™-555/003,/00

FOR I = $,1,35 $
FOR K = §,1 $
BEGIN

LETTER = BYTE($I$)(WORD) $
IF LETTER EQ 1H( ) $
TEST I $
IFKG 3 $
BEGIN
CLASS($#$) = V(OTHER) $
FOR L = §,1,25 $
BEGIN
IF LETTER EQ P'LETTER($L$) §
CLASS($p$) = P'CLASS

END
IF CIASS($f$) IR crass($1$) $
BEGIN
CLASS($1$) = CLASS($$) $
J=1I%
END END END
BYTE($J$)(WORD) = 1H( ) $
GOTO COMPRESS $
END
ABEREVIATION = BYTE($38,6$)(WORD) $

END END

Flow Chart
for
ABBREVIATION
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Flow Chart
for
ABBREVIATION

(continued)
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PROCEDURE STATEMENTS. To execute the process defined in a procedure
declaration, it is necessary to invoke the procedure by a procedure
statement (or a function). A procedure statement, which may be thought
of as a shorthand description of the process it invokes, has a format
similar to that of the procedure declaration proper =~ with the PROCedure
declarator removed. In other words, a procedure statement is composed
of a procedure name followed by an optional list of calling parameters
enclosed in the ( and ) brackets and terminated by the $ separator. The
= separator, when it appears, separates input calling parameters on the
left from output calling parameters on the right.

statement & name |( Iformila;names’| |=[variable;

of=-procedure

Mmame |.J717s”) )] $

As mentioned before, the information provided a procedure by one of
its parameters is eilther a data value or the name of an array, a table,
or a statement. This information, as expressed or denoted by the calling
parameters of a procedure statement, is transmitted to the procedure when=
ever its execution is invoked by the execution of a procedure statement.
Input values are specified by calling parameter formulas, output “ralues
are designated by calling parameter variables, and both input and output
names are directly denoted by calling parameter names. (An output call-
ing parameter statement name must have a . separator after it.)

A procedure statement's calling parameters must correspond exactly
to the formal parameters of the synonymous procedure declaration, both
in number and in sequence. Calling parameters may not therefore be omitted.
In addition, a calling parameter must agree with its corresponding formal
perameter -- in data type for value parameters, and in grammatical usage
for name parameters. Thus, if a formal value parameter is declared in
the procedure heading as a numeric, literal, status, or Boolean item, then
the corresponding calling parameter formula or variable must express a
numeric, literal, status, or Boolean value. And if a formal name parameter
is declared as an array or table, or used as a statement name, then the
corresponding calling parameter must be an array name, a table name, oOr
&a statement name.

The following statement includes examples of procedure statements
that invoke the previously declared procedures SET'DIAGONAL and BRANCH.



26 December 1961 172

BEGIN

ARRAY COEFFICIENT 5@ 5§ Floating Rounded $
ITEM AVERAGE Floating Rounded $

STEP1. AVERAGE = f. $
STEP2. FOR I = §,1,49 $

™-555/003,/00

BEGIN
STEP3. FOR J = §,1,49 $
STEPL . AVERAGE = AVERAGE+COEFFICIENT($I,J$) $

END
STEP5. AVERAGE = AVERAGE/25@p. $

STEP6. BRANCH (AVERAGE=STEP8.,NEXT'STATEMENT.) $
STEPT. SET'DIAGONAL (1.=COEFFICIENT) $

GOTO NEXT'STATEMENT $

STEPS. SET'DIAGONAL (AVERAGE=COEFFICIENT) $

END
NEXT'STATEMENT.

The above statement computes AVERAGE,
the average of all the elements of the
COEFFICIENT matrix, and sets those ele=-
ments on the main diagonal to one if
AVERAGE is zero and to the average it-
self if AVERAGE is greater than zero.
The accompanying partial flow chart
shows the execution sequence for the
more relevant portion of the statement,
steps 5 through 8.

To further illustrate procedure
statements, consider the following
procedure declaration, which contains
a procedure statement, STEP8, within
its compound body statement.

Partial Flow Chart

« = BRANCH
8= SET'DIAGONAL
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PROCedure COUNT'FREQUENCY (CHARACTER,LENGTH=FULL'EXIT.) $''This procedure,
using the previously declared PLACE procedure and the ABBREVIATION function,
adds to a count of the frequency of occurrence of identical word abbrevi-
ations from a body of English text, provided as a character array of a
given length. (For this procedure, a word is the first 36 letters of any
unbroken string of letters.) This procedure will take the FULL'EXIT after
19PPg different abbreviations have been filed by the PLACE procedure .

This procedure also uses a Boolean function, LETTER, which specifies True
only when its one=character input parameter is a Hollerith coded letter.'!
ARRAY CHARACTER § Hollerith 1 $

ITEM LENGTH fixed 17 Unsigned l...1E5 $

ITEM CHANNEL fixed 15 Unsigned $

ITEM FULL Boolean $
ITEM WORD Hollerith 36 $
BEGIN
STEPL. FOR C = @,1,LENGTH-1 $
STEP2. FOR W = $,1 $
BEGIN
STEP3. IF LETTER (CHARACTER($C$)) $
BEGIN
STEPL. BYTE($W$) (WORD) = CHARACTER($CS$) $
STEPS . IF W LS 35 $
STEP6. TEST $
END
STEPT . IFWGR § $
BEGIN
STEPS. PLACE (ABBREVIATION (WORD) = CHANNEL,FULL) $
STEP9. IF FULL $ GOTO FULL'EXIT $
STEP1§. COUNT( $CHANNEL$) = COUNT( $CHANNEL$)+L $
GOTO STEP2 $

END END END
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The accompanying flow chart
shows the statement execution

ENTER Flow Chart sequence for CQUNT'FREQUENCY,
for and the following statement --
COUNT which reads a deck of punched
FREQUENCY

cards with the aid of a READ
procedure, counts abbreviation
frequencies, and prints them
out with the aid of a special
PRINT procedure -- shows how
COUNT'FREQUENCY might be em=-
ployed.

BEGIN
ARRAY CARD 8 Hollerith 1 $
Sl. FOR I = ALL (WORDS) $
s2. BEGIN
WORD($I$) = 6H( ) $
OVERFLOW($I$) = ¢ $
COUNT($1$) = § $
END
S3. READ (=CARD,S5.,56.) $
Sh. COUNT'FREQUENCY (CARD,
80 = S5.) $ GOTO S3 $
S5. PRINT(WORDS=S6.) $
S6. STOP $

EXIT 1 END

In the above routine: statements
Sl and S2 initialize the WORDS
table; S3 reads a card, going
to 85 if there are no more cards
and to 86 if the read operation
is unsuccessful; Sk counts ab-
breviation frequencies; S5 con-
verts the WORDS table to a
legible Hollerith format and prints it out on the line printer, going to

S6 if the print operation is unsuccessful; and S6 stops the computer.

To better understand the relationship between a procedure's calling
parameters and its formel parameters, consider the following procedure
declaration along with an equivalent closed statement.
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PROCedure P§ (P1=P2,P3) $ CLOSE PP S
ITEM Pl Floating $ BEGIN
ITEM P2 Floating $ ITEM Pl Floating $
ARRAY P3 1fP Floating $ ITEM P2 Floating $
BEGIN ARRAY P3 16§ Floating $
P2 =@, $ P2 = §. $
FOR I = $,1,99 $ FOR I = $,1,99 $
BEGIN BEGIN
P3($I$) = P3($I$)/P1 $ P3($1$) = P3($1$)/P1 $
P2 = P2+P3($I$) $ P2 = P2+P3($I3$) $
END END
P2 = P2/1¢¢. $ P2 = P2/1¢p. $
END END

Both procedure and closed statement perform the same ostensive function,
that of dividing vector P3 by value Pl and assigning the norm (component
average) of the resulting vector to P2. Their actual effects, however,
differ slightly in several minor details: (1) no memory space is allo-
cated the procedure's P3 array, whereas the closed statement's P3 array
is, of course, allocated memory space; (2) the identifiers P1l, P2, and
P3 naming the procedure's formal parameters are local to the procedure,
whereas the same identifiers in the closed statement are defined for the
listed remainder of the program; (3) the closed statement, being a
statement, may be part of a compound statement with active subscripts
that would also be active over the closed statement, while a procedure
declaration, being a declaration, cannot be within a subscript's range
of activity even if it is listed within such a compound statement. (A
procedure must activate its own subscripts; the values of program-acti=
vated subscripts can only be imparted to a procedure as calling parameters.)

The following pair of statements, by invoking the process deseribed
by both the procedure declaration and the closed statement above, produce
exactly the same operational effect as far as ALPHA, BETA, and GAMMA are
concerned. The only difference is that, in the closed statement call on
the right, the declared overlay of GAMMA and P3 is permanent, while the
overlaying effect implied by the procedure's call=by-name of GAMMA is
temporary and only lasts for the duration of the procedure's execution.

PP (ALPHA+T.=BETA,GAMMA) $ BEGIN
OVERLAY GAMMA = P3 $
Pl = ALPHA+T. $
GOTO PP $
BETA = P2 $
END
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The mechanism for assigning formal parameter values generated by the
procedure statement on the left is similar in effect (if not in operation)
to the assignment statements before and after the GOTO invoking the
closed statement P¢. Output value calling parameters are thus assigned
the values designated by their corresponding formal parameters immediately
after the completion of the procedure's execution and before any other
statement is executed. A procedure's execution is "completed" by the
execution of its last listed statement, or by a RETURN statement, or by

a GOTO statement referring to an alternate exit (i.e., one of the pro-
cedure's formal output, statement name parameters). It should be noted
that a GOTO statement transferring execution control to any other
statement outside the procedure does not in this sense complete the pro-
cedure's execution, though it may well terminate it.

THE REMQUO PROCEDURE. A JOVIAL procedure can be considered an
extension to the language and, in this sense, JOVIAL is an open-ended
language since any number of procedures can be added to the COMPOOL's
library of procedures. These library procedures then become, as far as
the programmer is concerned, part of the language itself. The REMQUO
(REMainderQUOtient) procedure is one such procedure and, since it reme-
dies a basic lack in the language, it is a common procedure available to
all JOVIAL programmers, who may think of it as an intrinsic part of the
language.

REMQUO is used when, in performing integer division, both quotient
and remainder are required, which would otherwise be available only after
a much less efficient process of repeated subtractions. Like any other
procedure, REMQUO is invoked by a procedure statement, which has the
format:

REMQUO (DIVIDEND,DIVISOR=QUOTIENT,REMAINDER) $

In other words, the following pair of rather simple-minded, compound
statements are operationally equivalent:

BEGIN BEGIN

NUM =T $ NUM = T $

DEN = 3 $ DEN = 3 $

REMQUO (NUM,DEN=QUO,REM) $ QUO =2 $

END REM = 1 $
END

Although REMQUO's parameters are formelly integers, both dividend and
divisor can be specified by any mono-valued numeric formula, and quotient
and remainder can be designated by any numeric variable, for truncation
and conversion between fixed and floating-point representation are, of
course, automatic =-- as with any numeric parameter in other procedures.
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The following procedure, which employs REMQUO, will serve to illus-
trate its use.

PROCedure STERLING (CENTS=POUNDS,SHILLINGS,PENCE) $''STERLING converts
up to a million dollars of American money (in cents) to British money

(in pounds, shillings, and pence). Twelve pence make one shilling and
twenty shillings make one pound. The current exchange rate ($2.81 per
pound) is given in a define declaration, which must be altered if the

rate should change.''

ITEM CENTS fixed 27 Unsigned @...1E8 $
ITEM POUNDS fixed 19 Unsigned $
ITEM SHILLINGS fixed $5 Unsigned $
ITEM PENCE fixed @4 Unsigned $
DEFINE RATE ''281'' $
BEGIN

REMQUO (CENTS, RATE=POUNDS, CENTS) $
REMQUO (CENT,RATE/2@=SHILLINGS,CENTS) $
PENCE = CENTS*24@/RATE $

END

EXERCISE (Procedures)
(a) The following three procedures presume to compute the factorial
of a number between ¢ and 15. Examine them, verify this, and comment on

their various methods of operation.

PROCedure FACTORIAL (NUMBER) $

ITEM FACTORIAL fixed 41 Unsigned 1...130767L368¢¢¢ $

ITEM NUMBER fixed 4 Unsigned @...15 $
ARRAY FACTORIALS 16 fixed Ul Unsigned $

BEGIN 1 'ggre

1 t|¢lta

2 ll¢2lt

6 ll¢3ll

24 ll¢hll

12¢ ll¢sll

72¢ ll¢6tt

5¢h¢ t|¢7l|

h¢32¢ v|¢8ru

362888 ''gg!t

36288¢¢ t|l¢tn

399168¢¢ ''11'!

k79ppLepg 1ot

6227¢2p844 ' 113!
871782912¢@ ''141!

13B7674368p099 ''15'!
END
FACTORTAL = FACTORIALS($NUMBER$) $
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PROCedure FACTORIAL (NUMEER) $

ITEM FACTORIAL fixed 41 Unsigned 1...13@7674368098 $
ITEM NUMBER fixed 4 Unsigned §...15 $
BEGIN

FACTORIAL = 1 $

FOR N = 1,1,NUMBER $
FACTORIAL = N¥FACTORIAL $

END

PROCedure FACTORIAL (NUMEER) $
ITEM FACTORIAL fixed 41 Unsigned 1...13@76743680¢9 $
ITEM NUMBER fixed 4 Unsigned @...15 $
BEGIN
IF NUMBER EQ @ $
BEGIN
FACTORIAL = 1 $
RETURN $
END
FACTORIAL = NUMBER*FACTORIAL(NUMEER-1) $
END

(b) The ABBREVIATION function was declared as a procedure be-
ginning at the bottom of page 167. Choose three English words of at
least ten letters and determine what abbreviation the procedure would
map them into.

(¢) Write a JOVIAL procedure to reverse the order of characters
in any linear array of l-character literal values. Thus, if "MEMORANDUM"
is input to this procedure, its output should be "MUDNAROMEM'".

(a) The following parameterless procedure is meant to sort a
table's entries, by KEY item, into ascending order. Examine it care-
fully and suggest some improvements.

PROCedure QUIK'SORT $
DEFINE KEY ''To be filled in by the procedure's user with the name
of & table item.'' $
BEGIN
FOR M = NENT(KEY)-1,~-(M+1)/2,0 $
BEGIN
FOR J = §,1,NENT(KEY)=-(M+1) $
BEGIN
FOR I = J,-M,0 $
BEGIN
IF KEY($I$) GR KEY($I+M$) $
KEY($I$) == KEY($I+M$) $

END END END END
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(e) Integer numbers may be expressed in English with the following
vocabulary: ONE; TWO; THREE; FOUR; FIVE; SIX; SEVEN; EIGHT; NINE; TEN;
ELEVEN; TWELVE; THIRTEEN; FOURTEEN; FIFTEEN; SIXTEEN; SEVENTEEN; EIGHTEEN;
NINETEEN; TWENTY; THIRTY; FORTY; FIFTY; SIXTY; SEVENTY; EIGHTY; NINETY;
HUNDRED; THOUSAND; MILLION. Examples are: THREE HUNDRED NINETEEN THOUSAND
TWENTY FOUR; NINE HUNDRED NINETY NINE MILLION NINE HUNDRED NINETY NINE
THOUSAND NINE HUNDRED NINETY NINE. Write a JOVIAL procedure to evaluate
numbers expressed in this fashion.

SWITCHES

A switch is a routine for computing a statement name and, thus, for
deciding among many alternate sequences of operation. As a closed statement
or procedure is useful when the same computation must be done at many
Places in a program, so a switch is useful when the same decision mist be
made at many places in the program. By presetting switches at the start
of program execution, the program's main logical flow may also be preset,
adepting its operation for a particular pattern of initial input data.

A switch computes a statement name, and a sequential formuls specifies
& statement name -~ either directly, by name; or indirectly, by invoking a
switch. Switches are, ultimately, always invoked by GOTO statements, again,
either directly, or indirectly through other switches.

sequential-formula § nAME o totement’ TRME e b 1($ index $)]1

statement § GOTO sequential-formulaspecifying-next-statement $

A switch call invoking a switch consists of the name of the switch sub-
scripted by an index, which may be omitted if the switch type allows.

The switch name refers to the switch declaration defining it, which lists
a set of sequential formulas specifying the statement names that the
switch call itself may specify. (Since these statement names may theme
selves be specified by switch calls, the evaluation of a switch call is
obviously a recursive process.) An index subscripting a switch name
serves elther directly to index the list of sequential formulas given

in the switch declaration, or to index an item, named in the switch
declaration, whose value is then used in comparison with a list of
constants to determine which sequential formula in the 1list is to specify
the switch's statement-name value.
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As the preceding paragraph implied, there are two kinds of switches
-= indexed switches, and item switches.

INDEXED SWITCHES. The statement names that may be computed by an
indexed switch are specified as a list of sequential formulas in the
switch declaration. Any position in this list may be empty, thus ef=-
fectively specifying the statement listed after the switch invoking GOTO
statement. The declaration for an indexed switch is composed of the
SWITCH declarator followed by a name, the = separator, a list of option-
2l sequential formulas separated by commas and enclosed in the ( and )
brackets, and terminsted by the $ separator.

declaration # SWITCH name = ( |sequential-formula|s’ ) $

of=switch

An n-position list of sequential formulas is indexed in the switch call
by a one-component index subscripting the switch name. This index may
range in value from § to n-1l.

The following simple example will illustrate the declaration and
call of an indexed switch:

SWITCH GET'RATE = (PLAN@,PLAN1,PLAN2,PLAN3, ,PLAN5,PLAN6,PLANT) $
The call for this switch might be:
STEP27. GOTO GET'RATE(S$I$) $

so that when I designates ¢, the statement named PLAN¢ is executed next,
and when I designates 1, the statement named PLIAN1 is executed next, and
so on, except that when I designates 4, the GOTO statement above has no
operational effect whatever and merely transfers execution control to the
next statement listed, since position 4 in the switch declaration's list
of sequential formulas is empty. Notice also that since this list has
eight positions (even though one is empty), the subscript I may only
range from ¢ through 7 in value. A value outside this range not only
makes the effect of the switch call undefinable, but is a serious program
error as well. This switch-invoking statement, STEP2T above, would appear
in & flow chart as follows:
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Flow Chart for
o GET RATE Switch

Call

OOO0QO 0 O

The following example, a more complicated version of the previous
one, illustrates two additional features of switches, namely, that the
list of sequential formulas in a switch declaration may contain both
switch calls, and closed statement names.

SWITCH GET'RATE = (GET'RATE($DAY$),PLAN1,PLAN2, PLAN3, FIND 'RATE, PLANS,
PLANG,PIANT) $

In the abové declaration, FIND'RATE is presumed to be the name of s
closed statement. Notice that the list of sequential formulas in a
switch declaration may include not only switch calls, but switch calls
for the switch being declared. This, of course, raises the possibility
of an infinite loop caused by a circular switch call, as would be the
case, for example, if both I and DAY designated zero when the following
GOTO statement was executed.

STEP27. GOTO GET'RATE($I$) $

This switch-invoking GOTO statement would appear in a flow chart as
follows:
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o Flow Chart for
Modified GET RATE
Switch Call

ééééééé

which graphically re-emphasizes the fact that a closed statement's normal
successor is always the statement listed after the GOTO statement invoking
it, even if it is indirectly invoked through one or more switches.

ITEM SWITCHES. The statement names that may be computed by an item
switch are specified in a list of constant = sequential-formula pairs
within the switch declaration, which is composed of the SWITCH declarator
followed by the name of the switch, the name of an item enclosed in the
( and ) brackets, the = separator, a list of constant = sequential=-formila
pairs separated by commas and enclosed in the ( and ) brackets, and termi-
nated by the $ separator.

declaration & SWITCH name ( name ) = ( [constant =

of=switch of=-item

sequential-formulals’ ) $
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The item name given in the switch declaration and the index (if any)
subscripting the switch name in the call together designate an item value.
This value selects from the declared list of sequential formlas the one
paired with the first listed constant that denotes a value equal to it.
If no constant equal to this item value is listed in the declaration,

then the switch effectively specifies the statement listed after the
switch=-invoking GOTO statement.

As an example of an item switch, consider the following pair of
declarations, which might have been taken from the JOVIAL compiler itself.

ITEM SYMBOL'TYPE Status V(OTHER)
V(DELIMITER) V(IDENTIFIER)
V(CONSTANT) $

SWITCH PROCESS'SYMBOL (SYMBOL'TYPE) Flow
= (V(OTHER)=PROCESS 'ERROR, Chart
V(DELIMITER )=PROCESS 'DELIMITER, for
V( IDENTIFIER)=PROCESS ' IDENTIFIER, PHASE A

V(CONSTANT)=PROCESS 'CONSTANT) $

The call for the above switch is in the
third GOTO statement below. The other
two invoke closed statements, as may be
seen from the accompanying flow chart.

BEGIN PHASE'A
STEP1. GOTO GET'SYMBOL $
STEP2. GOTO DETERMINE 'SYMBOL'TYPE $
STEP3. GOTO PROCESS'SYMBOL $
END''PHASE'A'®

INPUT/OUTPUT AND FILES

Many date storage devices impose accessing restrictions in that
inserting or obtaining a particular value may involve the transfer of
an entire block of data. Such devices are termed "external" storage
devices, as contrasted with the "internal" memory of the computer.

To allow a reasonably efficient description of input/output processes,
therefore, all data entering or leaving the computer's internal memory
is organized into files. A file is thus a body of data contained in
some external storage device, such as punched cards, and magnetic tape
or drums.

FILE DECIARATIONS. Data processed by a digital computer falls into
two major categories: data that is contained in the computer's internal
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memory and is organized into items, arrays, and tables; and data that is
contained in external storage devices and is organized into files and
enters or leaves the internal memory of the computer. The operation of
any data processing system is marked by a flow of data into the computer
and a flow of data out of the computer, for the basic function of any
such system is the creation, maintenance, and manipulation of files of
data.

A file consists of a string of individual machine language symbols
called records. A file of length k may therefore be considered as a
k-component vector, arranged as follows:

p(#) Rg (1) B p@) Ry ... p(1) R, p(k)

where the R's are records and the p's are partitions¥* separating the
records. Partitions may be interpreted

p(k) = end of file partition; p(n < k) = end of record partition.

Each record in a file is itself a string, either of bits or of
six~-bit, Hollerith=-coded bytes. The records of a file are either all
binary or all Hollerith, and they are generally similar to each other
in size, content, and format. (When differing records are organized
into a file, the programmer must provide for distinguishing between
them.) A record, then is a single, usually composite, machine symbol,
which may represent an entire block of values when stored in the com-
puter's memory, but which has no internal structure whatever when
stored in the file.

A file declaration is composed of the FILE declarator followed by
the name of the file, either the Binary or Hollerith type descriptor,
the estimated maximum number of records, either the Variable or Rigid
record length descriptor, the estimated maximum number of bits or bytes
per record, a list of status constants, the name of the storage device
containing the file, and finally, the $ separator.

* The exact nature of the partitions between records is left undefined.
In general, a partition separating one record from the next may result
from the operation of the external storage device containing the file,
or it may result from the operation of the compiler-created input/out-
put routine processing the file.
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declaration 4 FILE name Binary;Hollerith number

of-file of-records

va'ria'ble;R]‘g]'drecord.-length numberof-bits-or-bytes-per-record

$

status=-

constants name,._storage-device

The status constants listed in the file declaration are associated with
the file name and denote the possible states of the storage device con-
taining the file*. File status may thus be determined with a relational
Boolean formula wherein the file name is considered as a status varieble
that is automatically updated prior to comparison according to the current
state of the file's storage device.

boolean-formula # name . ..., BQ;GR;GQ;IQ;LS;NQ status-constant

A file name may also be substituted for an item name in the declaration
of an item switch, so that file status may also be determined by a GOTO
statement invoking such a switch.

declaration § SWITCH name ( name . .1 ) = ( [status-constant

of=switch

= sequential-formuls]s’ ) $

* For purposes of this manual, it will be assumed that storage devices
have four possible states, in order:

state f: storage device is not ready, either because it has not been
connected to the computer or because the end-of-file partition
has been encountered.

state 1: storage device has transmitted a record or is ready to trans-
mit a record.

state 2: storage device is busy transmitting a record.

state 3: storage device is unsuccessful in transmitting a record due
to an uncorrectable error.

It must be realized, however, that the names of storage devices and the
number and meaning of their possible states are ¢ puter=dependent, so
that anyone wishing to declare a workable file must refer to the pertinent
documentation for a particular JOVIAL compiler.
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The following example illustra%es file declarations and the mecha=-
nisms for determining file status.

FILE INVENTORY Binary 1¢¢@@¢ Rigid 5¢¢ V(UNREADY) V(READY) V(BUSY)
V(ERROR) TAPE'A $
SWITCH CHECK'INVENTORY'FILE (INVENTORY) = (V( UNREADY )=PROCESS'FILE'END,
V(BUSY)=WAIT, V(ERROR)=PROCESS'ERRCR) $
CLOSE WAIT $ BEGIN
STEP1. IF INVENTORY EQ V(BUSY) $ GOTO STEPl $
STEP2. GOTO CHECK'INVENTORY'FILE $
END

The above file declaration declares a binary INVENTORY file of no more
than one hundred thousand, 5¢¢-bit records, each containing information
on a single article in stock. The file is contained on a reel of mag-
netic tape, mounted on a tape drive with the symbolic name TAPE'A (which
presumably has meaning to some JOVIAL compiler). Each of the states of
the tape drive is assigned its own arbitrary but mnemonic status constant,
and these are used by the CHECK'INVENTORY'FILE switch in determining file
status. The statement

STEP3@§. GOTO CHECK'INVENTORY'FILE $
STEP31.

will transfer execution control to PROCESS'FILE'END if the file is not
ready, to PROCESS'ERROR if the file has encountered an uncorrectable
data transmission error, to STEP31l if the file is ready, and to the
closed statement WAIT if the file is busy. The closed statement, WAIT,
will re-execute its STEPL1 until the file is no longer busy, when it will
transfer execution control, via the CHECK'INVENTORY'FILE switch, to
PROCESS 'FILE 'END, PROCESS'ERROR, or STEP3l. The following pair of flow
charts show the entire, involved, execution sequence.

Flow Chart for WAIT
Flow Chart for

STEP 3¢

ENTER
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POSITIONING, AND READING AND WRITING FILES. A JOVIAL file is a
self-indexing storage device, meaning that the record availsble for
transfer to or from the file depends on the file's current position.
The POSition functional modifier, operating on the name of an active*
file, is a numeric variable designating a positive, integral value
that determines, or is determined by, the current position of the file.

variable ¢ POsition ( name

of-numeric=-type of-active~file )

For example, if record 3 is currently available for transfer to or from
the INVENTORY file, then that file is positioned at partition p(3) and
the value designated by

POSition (INVENTORY)
is three. File position, for a file of k records, ranges from ¢ (indi-
cating "rewound") through k (indicating "end-of-file") and, where the
characteristics of the storage device allow, file position, as a variable,
may be altered by the assignment of a value within this range. Thus,
POSition (INVENTORY) = POSition (INVENTORY) - 1 §
"backspaces” the file, while
POSition (INVENTORY) = § $
"rewinds" the file, and
POsition (INVENTORY) = N $
moves the file to an arbitrary position specified by the subscript, N.
Any file for which such a general positioning operation is to be avoided
as inefficient (e.g., tape) or impossible (e.g., cards, printer) is
celled a serial, as opposed to an addressable, file.

The position of a file 1s also affected by the transfer of a record

to or from the file; both a read operation and a write operation increment
file position by one.

* An active file is one that has been "activated" by the execution of
an OPEN INPUT or an OPEN OUTPUT statement, as described in the following

sections

[~ SRVE LS} $ 4S5



26 December 1961 188 ™-555/003/00

A read operation moves a record from a file into the computer's
internal memory so as to represent a block of values; a write operation
moves, as a record, the machine symbol representing a block of values
(or the value denoted by a constant) from the computer's internal memory
out to the file. 1In either case, the block of values may be designated
by a single variable, by an entire array or table, or by a consecutive
set of table entries.

block & variable;name ; [name ($ index

of-array of=table specifying~first=

ess index

entry L specifying-last-entryJ $)

Some examples designating blocks of values are given below:
ALPHA($I$)

BYTE( $I,86$) (LINE)

MATRIX

PAYROLL( $I...I+31$)

A record is a string of bits or bytes with no other explicit
structure, and its only implicit structure is supplied by the item,
array, or table from which a block of values is designated for transfer
to or from the file. Thus, reading and writing are just data transfers,
and no editing or conversion occurs, except that required for converting
from punched card code to six~bit Hollerith code. A read operation
transfers just the bits or bytes of the record, to the maximum designated
for the input block, whereas a write operation transfers just the bits
or bytes specified for the output block. Consequently, a read operation.
is terminated either when the entire block of values has been represented
by the bits or bytes of the record, or when the last bit or byte of the
record has been transferred into the computer's internal memory. A
write operation, on the other hand, is terminated only when all the bits
or bytes representing the block of values have been transferred, as a
record, out to the file.

In general, an active file (i.e., one that has been "opened") may
be positioned, read, and written. Some file characteristics, however,
occasionally preclude some of these operations. For example: some files
are read-only files while others are write-only files; and some files
are serial files that may not easily be positioned while others are
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addressable files that can be positioned. The end of a file is indi-
cated by an end-of-file partition. In some files, notably rigid-record-
length addressable files and all input files, record partitions are pre-
determined, so that a read or write operation initiated at the end-of=-
file partition will (at least in the examples given in this manual) cause
the file to become '"unready". In other files, however, notably serial
output files and variable-record-length addressable output files, end-
of-record partitions are created by writing the file and the end=of=
file partition is created by deactivating the file. In such files, no
records may exist after the last one written, so that a position or

read operation beyond this point would result in an error.

The file characteristics mentioned in the paragraph above are listed
here.

a. Read-only files; Write-only files; Read-write files.

b. Input files; Output files; Input and output files.

c. Serial files; Addressable files.

d. Variable record length files; Rigid record length files.

Most of these file characteristics depend on the particular storage device
containing the file and must, obviously, be taken into account when writing
file processing algorithms in JOVIAL.,
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INPUT STATEMENTS. A file may be read, one record at a time, by the
execution of a sequence of INPUT statements. The first statement executed
in such a sequence must be an
OPEN INPUT statement, which acti=-
vates the file, and the last
statement executed must be a SHUT

Flow Chart for

INPUT statement, which deactivates PROCESS
the file. Before discussing the INVENTORY
grammar of INPUT statements, con-

sider the following, almost self=-

explanatory example, which pro- a= WAIT
cesses the previously declared 8= PROCESS

INVENTORY file using the CHECK' ARTICLE
INVENTORY 'FILE switch, a one-entry
table, ARTICLE, describing the
record format of the file, and a
closed statement, PROCESS'ARTICLE,
which processes the table and,

thus, an INVENTORY record.

BEGIN PROCESS'INVENTORY.
STEPl. OPEN INPUT INVENTORY $
STEP2. INPUT INVENTORY ARTICIE $
STEP3. GOTO CHECK'INVENTORY'FILE $
STEP4. GOTO PROCESS'ARTICIE $

GOTO STEP2 $
PROCESS'FILE 'END.
STEPS5. SHUT INPUT INVENTORY $

END' '"PROCESS ' INVENTORY * !

In the above statement, STEP1
"activates" the INVENTORY file,
determining whether it is availa-
ble for reading -~ perhaps whether
a reel of magnetic tape with the correct identification has been mounted
on the proper tape drive. STEPl also "rewinds" the file, positioning it

so that the first record is ready for transfer. STEP2 initiates a read
operaticon, which will transfer a record from the INVENTORY file to the
ARTICILE table and increment the position of the file by one. By invoking
the CHECK'INVENTORY'FILE switch, STEP3 will "wait' if the file is "busy",
execute an error routine if a data transmission error has occurred, execute
STEP5 if the file is "unready" (indicating a read was attempted from the
end-of-file position), and execute STEP4 if and when the file is "ready"”
(indicating the previous record has been successfully transferred).

STEP4 "processes" the record just read into the ARTICLE table, perhaps
computing a statistical summary of stock shipments, and then returns to
execute STEP2 again. And finally, STEP5 "deactivates' the file, releasing
the tape drive for possible other use.
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An OPEN INPUT statement is composed of the OPEN file operator
followed by the INPUT file operator, a file name, the optional desig-
nation of a block of values, and terminated by the $ separator.

statement § OPEN INPUT name . ., ... ... [block] $

An OPEN INPUT statement activates an inactive file and positions it to
zero. If a block of values is designated, it also initiates a read
operation that will transfer the first record from the file into the

computer's internal memory to represent the block of values, thus incre-
menting the file's position by one.

An INPUT statement is composed of the INPUT file operator followed

by a file name, the designation of a block of values, and terminated by
the $ separator.

statement § INPUT name o o tive-file PLOCK $

An INPUT statement initiates a read operation on an active file that will
transfer a record from the file into the computer's internal memory to

represent the designated block of values, thus incrementing the file's
position by one.

A SHUT INPUT statement is camposed of the SHUT file operator followed
by the INPUT file operator, a file name, the optional designation of a
block of values, and terminated by the $ separator.

statement § SHUT INPUT name o o tive-rile LP1OCK] $

A SHUT INPUT statement deactivates an active file. If a block of values
is designated, it also initiates a final read operation that will, prior
to the deactivation of the file, transfer a record from the file into the
computer's internal memory to represent the designated block of values.

As another example of reading a file with a sequence of INPUT
statements, consider the following statement, which reads a deck of cards
punched with the following sales=-slip data from a chain of department
stores, and updates the accompaenying summaries:
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Clerk number
Department number
Article number
Quantity sold
Price (dollars)
Price (cents)

192

columns @1...04
columns P6...09
columns 1l...1l5
columns lT...2¢
columns 23...26
columns 28...29
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For each sales clerk
Volume of sales
Number of sales
Gross commissions

For each sales department
Volume of sales
Number of sales

For each article stocked
Number sold

The statement utilizes a function, NUMBER, which converts a Hollerith
coded decimal number of up to ten digits, to a binary numeric value

(e.g., NUMBER (9H(999999999)) EQ 999999999) -
BEGIN UPDATE'SALES'SUMMARIES.

FILE SATES'SLIP

Hollerith 25000 Rigid 72 V(UNREADY) V(READY) V(BUSY)

V(ERROR) CARD'READER $

ITEM CARD Hollerith T2 $ DEFINE Is ' ' §
DEFINE CIERK ''BYTE($P,4$)(CARD)'' $ DEFINE OF *' '* §
DEFINE DEPARTMENT ''BYTE($5,4$)(CARD)'* $ DEFINE PLUS ''+'!' §
DEFINE ARTICIE ''BYTE($10,5$)(CARD)'' $ DEFINE TIMES ''*'' §
DEFINE QUANTITY ''BYTE($16,4$)(CARD)'' $ DEFINE  EQUALS ''EQ'' $
DEFINE DOLIARS ''BYTE($22,4$)(CARD)'' $ DEFINE LESS'THAN ''LS'' $
DEFINE CENTS ''BYTE($27,2$)(CARD)'' $ DEFINE NUMBER'OF ''NENT'' $

TABLE SATES 'CLERKS

ITEM COMMISSION'RATE

BEGIN

Variable 50@@ Serial Dense $''Indexed by''

ftelerk number'!

fixed 15 Unsigned 15 $

ITEM COMMISSIONS fixed 15 Unsigned $''In cents'!'
ITEM SAIES'VOLUME fixed 2@ Unsigned $''In cents''
ITEM SAIES'NUMBER fixed 1§ Unsigned $
END
TABLE DEPARTMENTS Variable 1@ Serial Dense $''Indexed by''
BEGIN ''department number''

ITEM VOLUME'OF'SALES fixed 25 Unsigned $''In cents''
ITEM NUMBER'OF'SALES fixed 15 Unsigned $

END

TABLE ARTICIES Variable 350@@ Serial Dense $''Indexed by''
BEGIN ''article number'!

ITEM NUMBER 'SOLD fixed 15 Unsigned $

END
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STEP@1.
STEPg2.
STEP@3.
STEPPL .
STEP@5.

STEPP6.

STEP@T .

STEP@S8.
STEP@9.
STEP14.

STEP11.
STEP12.

STEP13.

STEP1k4.

STEP15.

OPEN INPUT SALES'SLIP $
INPUT SALES'SLIP CARD $
IF SALES'SLIP EQUALS V(BUSY) $ GOTO STEP@3 $
IF SALES'SLIP EQUALS V(ERROR) $ GOTO STEP15 $
IF SAIES'SLIP EQUALS V(READY) $

BEGIN

FOR C = NUMBER OF (CLERK) $
FOR D = NUMBER OF (DEPARTMENT) $
FOR A = NUMBER OF (ARTICLE) $

BEGIN
IF C IS LESS'THAN NUMBER'OF (SALES'CLERKS) AND D IS LESS'THAN
NUMBER'OF (DEPARTMENTS) AND A IS LESS'THAN NUMBER'OF (ARTICLES) $
BEGIN
SALES'NUMBER OF ($C$) = SAIES'NUMBER OF ($C$) PLUS 1 $
NUMBER 'OF 'SALES OF ($D$) = NUMBER'OF'SAIES OF ($D$) PLUS 1 $
FOR P = 1§ TIMES NUMBER OF (DOLIARS) PLUS NUMBER OF (CENTS) $
BEGIN
SALES'VOLUME OF ($C$) = SALES'VOLUME OF ($C$) PLUS P $
VOLUME 'OF 'SALES OF ($D$) = VOLUME'OF'SALES OF ($D$) PLUS P $
END
NUMBER 'SOLD OF ($A$) = NUMBER'SOLD OF ($A$) PLUS NUMBER OF
(QUANTITY) $ GOTO STEP@2 $
END END END
FOR C = ALL (SALES'CLERKS) $ COMMISSIONS OF ($C$) =
COMMISSION'RATE OF ($C$) TIMES SALES'VOLUME OF ($C$) $
SHUT INPUT SALES'SLIP $
END' 'UPDATE 'SALES ' SUMMARIES ' !
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The flow chart for this statement is given below.

Chart for UPDATE SALZ SUMMARIES

QUTPUT STATEMENTS. A file may be written, one record at a time, by
the execution of a sequence of OUTPUT statements. The first statement
executed in such a sequence must be an OPEN OUTPUT statement, which acti-
vates the file, and the last statement executed must be a SHUT OUTPUT
statement, which deactivates the file.

An OPEN OUTPUT statement is composed of the OPEN file operator,
followed by the OUTPUT file operator, a file name, an optional constant
or specification of a block of values, and terminated by the $ separator.

statement § OPEN OUTPUT name . . ... . ...  |constant;block| $
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An OPEN OUTPUT statement activates an inactive file and positions it to
zero. If a constant or a block of values is specified, it also initiates
a write operation that will transfer the machine symbol representing the
constant or specified block of values from the computer's internal memory
out to the file as its first record, thus incrementing the file's position
by one.

An OUTPUT statement is composed of the OUTPUT file operator followed
by a file name, a constant or the specification of a block of values, and
terminated by the $ separator.

statement & OUTPUT name constant;block $

of=active~-file

An OUTPUT statement initiates a write operation on an inactive file that
will transfer the machine symbol representing the constant or the specified
block of values from the computer's internal memory out to the file as a
record, thus incrementing the file's position by one.

A SHUT OUTPUT statement is composed of the SHUT file operator followed
by the OUTPUT file operator, a file name, an optional constant or specifi-
cation of a block of values, and terminated by the $ separator.

statement § SHUT OUTPUT name |constant ;block] $

of=active=file

A SHUT OUTPUT statement deactivates an active file. If a constant or a
block of values is specified, it also initiates a fimal write operation
that will, prior to the deactivation of the file, transfer the machine
symbol representing the constant or specified block of values from the
computer's internal memory out to the file, as its last record.

The following routine, UPDATE'ACCOUNTS, shows how a file may be
written by the execution of a sequence of OUTPUT statements. This
routine reads a file of checking account records and a file of trans-
action records. Each account record contains an account number and s
balance, and each transaction record contains an account number and
elther a deposit or a withdrawal, and both files are arranged in order
of ascending account number. The routine uses the transaction file to
update the account file, writing an updated account file and a file of
rejected transactions -~ rejected either because they are out of sequence,
or because they have left a negative balance.
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BEGIN UPDATE 'ACCOUNTS.

FILE ACCOUNT Binary 32768 Rigid 36 V(UNREADY) V(READY) V(BUSY)
V(ERROR) TAPE'A $

FILE TRANSACTION Binary 5@@@ Rigid 36 V(UNREADY) V(READY) V(BUSY)
V(ERROR) TAPE'B $

FILE UPDATED'ACCOUNT Binary 32768 Rigid 36 V(UNREADY) V(READY) V(BUSY)
V(ERROR) TAPE'C $

FILE REJECTED'TRANSACTION Binary SP@¢ Rigid 36 V(UNREADY) V(READY)
V(BUSY) V(ERROR) TAPE'D $

TABLE RECORD Rigid 2 Dense $
BEGIN
ITEM NUMBER fixed 15 Unsigned $''Account number'®

ITEM BALANCE fixed 21 Signed $''In cents. Account file. Negative
balance means overdrawn.'!®

ITEM DEPOSIT fixed 21 Signed $''In cents. Transaction file.
Negative deposit means withdrawal.''

OVERLAY BALANCE=DEPOSIT $
END

DEFINE TO ' ' §

DEFINE FROM '' '' $

STEPP1l. OPEN INPUT TRANSACTION $
OPEN INPUT ACCOUNT $
OPEN OUTPUT REJECTED'TRANSACTION $
OPEN OUTPUT UPDATED'ACCOUNT $
STEPP2. INPUT TRANSACTION TO RECORD($8%) $
STEP@3. INPUT ACCOUNT TO RECORD($13$) $
STEPPL. IF TRANSACTION EQ V(BUSY) OR ACCOUNT EQ V(BUSY) OR
REJECTED 'TRANSACTION EQ V(BUSY) OR UPDATED'ACCOUNT EQ V(BUSY) $
GOTO STEPPL $
STEP@5. IF TRANSACTION EQ V(ERROR) OR ACCOUNT EQ V(ERROR) OR
REJECTED 'TRANSACTION NQ V(READY) OR UPDATED'ACCOUNT NQ V(READY) $
GOTO ERROR'ROUTINE $
STEPP6. IF TRANSACTION EQ V(READY) AND ACCODNT EQ V(READY) $

BEGIN

STEPPT . IF NUMEI;($¢$) EQ NUMBER($13$) $

BEGIN

STEP@S. BATANCE( $1$) = BALANCE($1$)+DEPOSIT($0$) $

STEPP9 . OUTPUT UPDATED'ACCOUNT FROM RECORD($1$) $

STEP18. IF BALANCE($1$) 1S ¢ $

BEGIN

STEP11. DEPOSIT($0$) = © $

STEP12. OUTPUT REJECTED 'TRANSACTION FROM
RECORD( $6$) $ END

GOTO STEP §2 $
END
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STEP13. OUTPUT UPDATED 'ACCOUNT FROM RECORD($1$) $
STEP1k4. IF NUMBER($§$) LS NUMBER($1$) $
GOTO STEP12 $
GOTO STEPP3 $
END
STEP15. IF TRANSACTION EQ V(UNREADY) AND ACCOUNT EQ V(READY) $
BEGIN
STEP16. OUTPUT UPDATED'ACCOUNT FROM RECORD($1$) $
GOTO STEPP3 $
END
STEP17. IF TRANSACTION EQ V(READY) AND ACCOUNT EQ V(UNREADY) $
BEGIN
STEP18. OUTPUT REJECTED 'TRANSACTION FROM RECORD($9$) $
STEP19. INPUT TRANSACTION TO RECORD($@9$) $
GOTO STEPPL $
END

STEP2@. SHUT INPUT TRANSACTION $
SHUT INPUT ACCOUNT $
SHUT OUTPUT UPDATED'ACCOUNT $
SHUT OUTPUT REJECTED 'TRANSACTION $
END ' '"UPDATE 'ACCOUNTS ' !

The sequence of statement executions for UPDATE'ACCOUNTS is graphically
illustrated below.
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Where the file characteristics allow, a file may be both written
and read, one record at a time, by a sequence of INPUT and OUTPUT
statements. The first statement executed in such a sequence must be an
OPEN statement, which activates the file, and the last statement executed
must be a SHUT statement, which deactivates the file. As an example of
this, consider the following routine, which computes a solution vector
for a system of linear equations¥* stored on a magnetic drum as & matrix
of coefficients.

BEGIN SOLVE 'LINEAR 'EQUATION 'SYSTEM.

DEFINE RANK ''as the number of equations and unknowns, less than
l¢¢¢, to be filled in by the routine's user.'' $

DEFINE SIZE '‘as (RANK+1)*RANK, also to be filled in by the
routine's user.'' $

DEFINE WORD ''as the number of bits in a computer word, to be

filled in by the routine's user.'' $

FILE COEFFICIENT Binary SIZE Rigid WORD V(UNREADY) V(READY) V(BUSY)
V(ERROR) DRUM $

ARRAY SOLUTION RANK Floating Rounded $

MODE Floating Rounded $
ARRAY NORMALIZED RANK Boolean $
ARRAY ROW RANK fixed 1§ Unsigned $

*¥ A system of n linear equations in n unknowns

a¢:¢x¢ a¢,lxl e a¢:n“lxn‘1 - a¢)n

. .
. . [ .
L] . .

Sn-1,8%%  %n-1,17%1  °** ®p-l,n-1®n-1 T %n-1,n

can be represented as an n by n+l matrix of coefficients

a¢)¢ a¢,l tt a¢:n'l a¢}n

%p-1,¢ %n-1,1 " %n-1,n-1  ®n-1,n

For large n, this matrix may exceed available memory space, and must
therefore be stored as a file in some external storage device. It may
be assumed that record number ((n+l)¥i+j) represents 8y the co=
efficient in row i and column j of the nmatrix. J
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PROCedure INPUT'COEFFICIENT (ROW,COLUMN=ELEMENT,ERROR.) $

ITEM ROW  fixed 1f Unsigned $
ITEM COLUMN fixed 1§ Unsigned $
BEGIN

POSition (COEFFICIENT) = (RANK+L1)¥ROW+COLUMN $
INPUT COEFFICIENT ELEMENT $

XX. IF COEFFICIENT EQ V(BUSY) $ GOTO XX $
IF COEFFICIENT EQ V(ERROR) $ GOTO ERROR $

END
PROCedure OUTPUT'COEFFICIENT (ROW,COLUMN,ELEMENT=ERROR.) $
ITEM ROW  fixed 1§ Unsigned $
ITEM COLUMN fixed 1§ Unsigned $
BEGIN

POSition (COEFFICIENT) = (RANK+1)*ROW+COLUMN $
OUTPUT COEFFICIENT ELEMENT $

XX. IF COEFFICIENT EQ V(BUSY) $ GOTO XX $
IF COEFFICIENT EQ V(ERROR) $ GOTO ERROR $
END
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STEP@@. OPEN INPUT COEFFICIENT $
''A1] rows must initially be unnormalized, steps 1,2.''
STEPl. FOR R = §,1,RANK-1 $
STEP@2. NORMALIZED($R$) = # $
"'Compute a solution, steps 3...22.'°
STEPP3. FOR C = @,1,RANK-1 $
BEGIN
''Search column C for the row of its highest, unnormalized, non=zero
velue, steps 4...11.'!

STEPPL. HIGH 'COLUMN 'VALUE = @. $
STEP@S . FOR R = §,1,RANK-1 $
BEGIN
STEP@6. IF NOT NORMALIZED($R$) $
BEGIN
STEPPT. INPUT'COEFFICIENT (R,C=ELEMENT,FAILURE.) $
STEP@8 . IF (/ELEMENT/) GR HIGH'COLUMN'VALUE $
BEGIN
STEPP9 . HIGH'COLUMN 'VALUE = (/ELEMENT/) $
STEP1{. ROW($C$) =R $
END END END
STEP11. IF HIGH'COLUMN'VALUE EQ $. $ GOTO FAILURE $
"'"Normalize this row, steps 12...15.'!
STEP12. NORMALIZED( $ROW($C$)$) = 1 $
STEP13. FOR I = C,1,RANK $
BEGIN
STEP1k. INPUT'COEFFICIENT (ROW($C$),I=ELEMENT,FAILURE.) $
STEP15. OUTPUT(COEFFICIENT (ROW($C$),I,ELEMENT/HIGH 'COLUMN 'VALUE
= FAILURE.) $
END
'!Clear other coefficients in column C, steps 16...22."!
STEP16. FOR R = §,1,RANK=-1 $
BEGIN
STEP1T . IF R NQ ROW($c$) $
BEGIN
STEP18. INPUT'COEFFICIENT (R,C=TEMPA,FAILURE.) $
STEP19. FOR I = C,1,RANK $
BEGIN
STEP2@ . INPUT'COEFFICIENT (ROW($C$),I=TEMPB,FAILURE.) $
STEP21. INPUT'COEFFICIENT (R,I=ELEMENT,FAILURE.) $
STEP22. OUTPUT'COEFFICIENT (R,I,ELEMENT-TEMPA*TEMPB
= FAILURE.) $

END END END END
"'Find Solution, steps 23,24.'!
STEP23. FOR C = {§,1,RANK~1 $
STEP24 . INPUT'COEFFICIENT (ROW($C$),RANK=SOLUTION($C$),FATLURE.) $
STEP25. SHUT OUTPUT COEFFICIENT $
GOTO SUCCESS $
END' 'SOLVE 'LINEAR 'EQUATION'SET' '
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The above routine, though mathematically (and computationally) un-
sophisticated, could be used as the framework for a more sgatisfactory
algorithm. It serves here to show how a file may be both written and
read.. The sequence of statement executions for the routine is illuse
trated in the following diagram.

Flow Chart
for
SOLVE
LINEAR
EQUATION
SET

a = INPUT
COEFFICIENT

B = OUTPUT
COEFFICIENT

X =SUCCESS
Y =FAILURE

21 p ¢ | (%)

22
(Dullm(t) ()




26 December 1961 202 ™-555/003/00

EXERCISE (Input/Output and Files)

(a) Each record of a warehouse inventory file contains: article
name; reorder quantity; quantity on hand; and quantity on back order.
Each record of an inventory transaction file contains serial number,
quantity, and one of the following transaction status codes: received
from supplier; shipped to customer; shipped to customer on back order;
returned by customer; returned to supplier; change in reorder quantity.
Write a JOVIAL routine to generate an updated inventory file and a file
of data on articles where the quantity on hand is below the reorder
quantity. Each record of this second file should contain: article name;
serial number; quantity on hand - quantity on back order; and reorder
quantity. Make any convenient assumptions about the structure of the
files invclved.

(b) Given the inventory file described above and a file of prices
in which each record contains a serial number and a price (in cents).
Write a JOVIAL routine to create (1) a priced inventory file in which
the item PRICE has been added to each record, and (2) an unpriced inven-
tory file without the item PRICE, for those articles not included in
the file of prices.

(¢) Given two similarly structured and ordered files, where each
record has a 6-character, Hollerith-coded identification on which the
records of both files are sequenced. Write a JOVIAL routine to merge
these two files into a third, also ordered file. Assume any convenient
format for the records of the files.

PROGRAMS

A JOVIAL program is a list of declarations and statements enclosed
in the START and TERM brackets. If a statement name is not provided
after the TERM, the first statement in the program's execution sequence
is the first statement listed that is not part of a procedure declaration.
And if this first listed statement is named, its name can also be con-
sidered as the name of the program. The $ separator indicates the typo-
graphic end of the progran.

program § START |declarations| |name .| statements TERM

of-program

E eof-first-statement-to-be-executedJ $
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Little can be said about constructing programs that has not already
been said about constructing their major components: declarations and
statements. It is important to realize, however, that the examples in
this manual, though occasionally complex, do not begin to approach the
complexity required of actual progrems that solve actual problems. The
following program, & PAYROLL COMPUTATION, is a good example of this. An
actual payroll computation program for a large, multi-structured firm
might easily require a report as large as this manual for complete docu-
mentation. It would therefore be well to consider the program below in
the light of the many simplifying assumptions that have been made. The
first of these is the relegation of all the hard and uninteresting parts
of the program to a separate existence as COMPOOL procedures. The headings
for these procedures are given below, and their parameters should be self-

explanatory. They are all functions.

PROCedure BINARY'OF (HOLLERITH 'NUMEER) $

ITEM BINARY'OF fixed 2 Unsigned @...999999 $
ITEM HOLLERITH 'NUMBER Hollerith 6 $

PROCedure HOLIERITH'OF ( BINARY 'NUMBER) $

ITEM HOLLERITH'OF Hollerith 6 $

ITEM BINARY 'NUMBER fixed 2¢ Unsigned @...999999 $
PROCedure COMPUTED'GROSS'PAY (MAN 'NUMBER,HOURS) $

ITEM COMPUTED 'GROSS 'PAY fixed 17 Unsigned $...99999 $
ITEM MAN ' NUMBER fixed 13 Unsigned P...4999
ITEM HOURS fixed $7 Unsigned @...99 $
PROCedure COMPUTED 'FEDERAL 'WITHOLDING (MAN'NUMBER,GROSS'PAY) $

ITEM COMPUTED ' FEDERAL 'WITHOLDING fixed 17 Unsigned §...99999 $
ITEM MAN 'NUMBER fixed 13 Unsigned @...4999 $
ITEM GROSS 'PAY fixed 17 Unsigned @...99999 $
PROCedure COMPUTED 'FICA (MAN *NUMBER,GROSS 'PAY) $

ITEM COMPUTED 'FICA fixed 14 Unsigned $...9999 $
ITEM MAN ' NUMBER fixed 13 Unsigned $...4999 §$
ITEM GROSS'PAY fixed 17 Unsigned §...99999 $
PROCedure COMPUTED 'STATE 'WITHOLDING  (MAN'NUMBER,GROSS'PAY) $

ITEM COMPUTED 'STATE 'WITHOLDING  fixed 14 Unsigned $...9999 $
ITEM MAN 'NUMBER fixed 13 Unsigned @...4999 §
ITEM GROSS 'PAY fixed 17 Unsigned $...99999 $
PROCedure COMPUTED 'RETIREMENT (MAN 'NUMBER , ADJUSTED 'GROSS) $
ITEM COMPUTED 'RETIREMENT fixed 14 Unsigned $...9999 §
ITEM MAN 'NUMBER fixed 13 Unsigned @...1999 $
ITEM ADJUSTED 'GROSS fixed 17 Unsigned ¢...99999 $
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PROCedure COMPUTED 'MEDICAL 'PLAN (MAN *NUMBER, ADJUSTED 'GROSS) $
ITEM COMPUTED 'MEDICAL 'PLAN fixed 14 Unsigned $...9999 $
ITEM MAN ' NUMBER fixed 13 Unsigned $...4999 $
ITEM ADJUSTED 'GROSS fixed 17 Unsigned @...99999 $
PROCedure COMPUTED 'MISCELLANEOUS (MAN'NUMBER , ADJUSTED 'GROSS) $
ITEM COMPUTED 'MISCELLANEOUS fixed 14 Unsigned $...9999 $
ITEM MAN ' NUMBER fixed 13 Unsigned §...4999 $
ITEM ADJUSTED 'GROSS fixed 17 Unsigned §...99999 $

In addition to their parameters, most of these COMPOOL procedures use
data from a file of PERSONNEL RECORDS. The PERSONNEL file and the
RECORDS table that describes its format are also, conveniently, declared
in the COMPOOL. These declarations are partly given below; the body

of the table declaration has been omitted.

FILE PERSONNEL Binary 1 Variable 15@@¢¢@ V(UNREADY) V(READY)
V(BUSY) V(ERROR) TAFE'A §
TABLE RECORDS Variable 5@@¢ Serial Dense $

The PAYROLL COMPUTATION program, which automatically incorporates
the COMPOOL declarations incompletely given ebove, reads in a deck of
employee time cards and writes, on the line printer, paychecks for these
employees. The employee's time cards are punched with the employee's
name, his number, the hours he's worked, and his department code, as
shown below.

A.B. WORKER 3333 4p Xvz

The deck of time cards must be prefaced with a card giving the date, as
follows:

CURRENT DATE IS 13 OCT 61

The paychecks that are the program's output are printed on continuous
paycheck forms, with four lines of print per paycheck. Paycheck format
is defined in the program, but a sample paycheck printout is shown below.

3333 XYZ 13 OCT 61 13784 8ldyly
2679 T4 1198 33 5pp 5349

A.B. WORKER 8L Ll
HHEIGHTY FOUR DOLLARS AND FORTY FOUR CENTS*¥¥

The program also updates certain accumulated totals in the PERSONNEL
RECORDS file, such as year-to-date gross earnings, etc., but as this is
done by the appropriate COMPOOL procedure, (e.g., COMPUTED'GROSS'PAY),
it need not concern us here.
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1.

;3.

The operating procedures for the PAYROLL COMPUTATION program are:
Load program into memory.
Ready inputs and outputs.

a. Place Date Card followed by deck of Employee Time Cards
in card reader.

b. Insert continuous Paycheck form in line printer.

c. Place tape containing Personnel file on tape drive "A".
Execute the program.
Program stops:

a. If the program stops at step 11, then ready card reader
and continue program execution.

b. If the program stops at step 54, ready line printer and
continue program execution.

c. If the program stops at step 6@, either it has completed
its operation or it hasn't started. If no checks have
been printed, begin over.
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FILE

ITEM

DEFINE
DEFINE
DEFINE

DEFINE
DEFINE
DEFINE
DEFINE

FILE

ITEM

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

SWITCH

START PAYROLL'COMPUTATION.
BEGIN

™-555/003/00

TIME Hollerith 5@@¢ Rigid 72 V(UNREADY) V(READY) v(BUSY)

V(ERROR) CARD'READER $
CARD Hollerith 72 $
'"'"Date Card Format'!

CURRENT ‘DAY "'EYTE($20,2$) (CARD) ' $
CURRENT '"MONTH ' 'BYTE( $23,3$)(CARD) ' $
CURRENT ' YEAR V'RYTE($27,2$)(CARD) "' $
"Employee Card Format''
EMPLOYEE 'NAME VRYTE( $0,20%) (CARD) ' ' $
EMPLOYEE 'NUMBER "'BYTE($22,4$)(CARD) "' $
HOURS 'WORKED "BYTE($28,2$)(CARD)" $
DEPARTMENT * CODE "'BYTE($32,3$)(CARD) "' $

PAY Hollerith 5¢@@ Rigid T2 V(UNREADY) V(READY) V(BUSY)

V(ERROR) LINE’PRINIEER $
CHECK Hollerith 72 $
''Check Format, Line #''

NUMBER ' 'BYTE( $09, 4$) (CHECK) ' ' $
DEPARTMENT "'BYTE( $67,3%$) (CHECK) '' $
DAY V'BYTE( $13,2$) (CHECK) '* $
MONTH "'BYTE($16,3%) (CHECK) '' $
YEAR ' BYTR( 500, 23) (CHECK) '*
GROSS VYBYTE( $25,5%) (CHECK) '* $
NET "'BYTE( $34, 5$)(CHECK)” $
NET'DOLIARS "'BYTE( $34,3$) (CHECK) '' $
NET'CENTS "'BYTE($37,2$) (CHECK) ' $
''Check Format, Line 1''
FEDERAL 'WITHOLDING ' 'BYTE($p®,5%)(CHECK)'"' $
STATE 'WITHOIDING ' 'BYTE($@7,4$)(CHECK)'' $
FICA ''BYTE($13,L4$) (CHECK) ' $
RETIREMENT "'BYTE($21, 4$) (CHECK) ' ' $
MEDICAL'PLAN "'BYTE( $27,L4$)(CHECK) '* $
MISCELLANEOUS "'BYTE( $33, 4$) (CHECK) '' $
TOTAL 'DEDUCTIONS "Bym($4¢,5$)(cmc1<)" $
"1Check Format, Line 2'"
NAME ' 'BYTE( $5,20$) (CHECK) ' ' $
AMOUNT 'DOLLARS V' BYTE( $44,3$) (CHECK) ** $
DECIMAL'POINT V'BYTE($47$) (CHECK) ' $
AMOUNT 'CENTS "'BYTE( $48,2$)(CHECK)'* $
"!'Check Format, Line 3'?
ENGLISH'AMOUNT ''"CHECK'' $

FILL'IN'LINE = (LINE@,LINEl,LINE2,LINE3) $
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PROCedure NUMERIC'TO'ENGLISH'CONVERSION (NUMERIC'VALUE=SIZE,
ENGLISH'EQUIVALENT) $

ITEM NUMERIC'VALUE fixed 1§ Unsigned $...999 $

ITEM SIZE fixed 5 Unsigned §...30 $

ITEM ENGLISH'EQUIVALENT Hollerith 3§ $

TABLE NUMERIC 'TO'ENGLISH Rigid 9 $
BEGIN

ITEM UNIT Hollerith 5 $ BEGIN S5H(ONE ) SH(TWO ) 5H(THREE)
SH(FOUR ) SH(FIVE ) SH(SIX ) SH(SEVEN) SH(EIGHT)
5H(NINE ) END

ITEM UNIT'SIZE fixed 3 Unsigned $ BEGIN 33 5L 4 355 4 END

ITEM TEEN Hollerith 9 $ BEGIN 9H(ELEVEN ) 9H(TWELVE )

OH(THIRTEEN ) 9H(FOURTEEN ) OH(FIFTEEN ) OH(SIXTEEN )
9H(SEVENTEEN) 9H(EIGHTEEN ) 9H(NINETEEN ) END
ITEM TEEN'SIZE fixed 4 Unsigned $ BEGIN 6 6 8 8 77 9 8 8 END
ITEM TEN Hollerith 7 $ BEGIN TH(TEN ) TH(TWENTY ) TH(THIRTY )
TH(FORTY ) TH(FIFTY ) TH(SIXTY ) TH(SEVENTY)
TH(EIGHTY ) TH(NINETY ) END
ITEM TEN'SIZE fixed 3 Unsigned $ BEGIN3I 6 6 6 55 7 6 6 END
END
BEGIN
ENGLISH 'EQUIVALENT = 3@H( ) $
SIZE = § $
FORA = ¢ $
FRB=0 ¢
FRRC =0 $
BEGIN
REMQUO (NUMERIC 'VALUE,1¢@=A,B) $
REMQUO (B,1$=B,C) $ ‘
IFANQ @ $
BEGIN
BYTE( $@, 5$) (ENGLISH 'EQUIVALENT) = UNIT($A-1$) $
SIZE = UNIT'SIZE($A-1$)+8 $
BYTE($SIZE-T,7$) (ENGLISH 'EQUIVALENT) = TH(HUNDRED) $
END
IFBEQLAND CNQ § $
BEGIN
BYTE( $SIZE+1,9%) (ENGLISH 'EQUIVALENT) = TEEN($C-1$) $
SIZE = SIZE+TEEN'SIZE($C-1$)+1 $
RETURN $
END
IFBNQ § $
BEGIN
BYTE( $SIZE+1,7$) (ENGLISH '"EQUIVALENT) = TEN($B-13$) $
SIZE = SIZE+TEN'SIZE($B-1$)+1 $

END
IFCNQ @ $
BEGIN
BYTE($SIZE+1, 5$) (ENGLISH 'EQUIVALENT) = UNIT($C-1$) $
SIZE = SIZE+UNIT'SIZE($C-1$)+1 $
END END EIND
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STEP@l. OPEN INPUT PERSONNEL RECORDS $

STEP$2. OPEN INPUT TIME CARD $

STEPP3. OPEN OUTPUT PAY §$

STEPPL. IF PERSONNEL EQ V(BUSY) OR TIME EQ V(BUSY) $ GOTO STEPP: $
STEPP5. IF PERSONNEL EQ V(READY) AND TIME EQ V(READY) $

BEGIN
STEPP6. DAY = CURRENT'DAY $
STEPPT . MONTH = CURRENT'MONTH $
STEP@8. YEAR = CURRENT'YEAR $
STEP@9 . INPUT TIME CARD $
STEP1§. IF TIME EQ V(BUSY) $ GOTO STEP1f $
STEP11. IF TIME EQ V(ERROR) $ STOP STEPP9 $
STEP12. IF TIME EQ V(READY) $
BEGIN

STEP13.''C '' FOR A = BINARY'OF (EMPLOYEE 'NUMBER) $
STEP14.'' O '' FOR B = BINARY'OF (HOURS'WORKED) $
STEP15.'' M '' FOR C = COMPUTED'GROSS'PAY (A,B) $
STEP16.'' P '' FOR D = COMPUTED 'FEDERAL'WITHOLDING (A,C) $
STEP1T.''P U '' FOR E = COMPUTED'STATE 'WITHOLDING (A,C) $
STEP18.''" A T '' FOR F = COMPUTED'FICA (A,C) $
STEP19.'' Y E '' FOR G = COMPUTED'RETIREMENT (A,C-(D+E+F)) $
STEP2@.'' C "' FOR H = COMPUTED 'MEDICAL'PLAN (A,C~(D+E+F+G)) $
STEP21.''D H '' FOR I = COMPUTED'MISCELLANEOUS (A,C-(D+E+F+G+H)) $
STEP22.'' A E ''! FOR J = D+E+F+G+G+I $
STEP23.'' T C '' FOR K = C-J $
STEP24.'* A K''FOR L = §,1,3 $

BEGIN
STEP25. CHECK = 1H( ) $
STEP26. GOTO FILL'IN'LINE ($L$) $
STEP2T . LINEf. NUMBER = EMPLOYEE'NUMBER $
STEP28. DEPARTMENT = DEPARTMENT 'CODE $
STEP29. GROSS = HOLLERITH'OF (C) $
STEP30. NET = HOLIERITH'OF (K) $

GOTO STEPS2 $
STEP31. LINEl. FEDERAL'WITHOLDING = HOLLERITH'OF (D) $
STEP32. STATE '"WITHOLDING = HOLLERITH'OF (E) $
STEP33. FICA = HOLLERITH'OF (F) $
STEP34. RETIREMENT = HOLIERITH'OF (G) $
STEP35. MEDICAL'PIAN = HOLLERITH'OF (H) $
STEP36. MISCELLANEOUS = HOLLERITH'OF (I) $
STEP37 . TOTAL 'DEDUCTIONS = HOLLERITH'OF (J) $
STEP38. LINE2. NAME = EMPLOYEE'NAME $
STEP39. AMOUNT'DOLLARS = NET'DOLLARS $
STEPLY . DECIMAL'POINT = 1H(.) $
STEPL41. AMOUNT'CENTS = NET'CENTS $

GOTO STEP52 $
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STEP42. LINE3. ENGLISH'AMOUNT
= 3fH(**x ) $
STEP43. FORX =3 $
STEPLL. FORY =0 $
STEPL4S . FOR Z = BINARY'OF (AMOUNT'DOLIARS) $
BEGIN
STEP46. GOTO CONVERT $
STEPLT. BYTE( $X,13$) (ENGLISH 'AMOUNT)
= 13H( DOLIARS AND ) $
STEPLS. X = X+13 $
STEP49 . Z = BINARY'OF (AMOUNT'CENTS) $
STEP5@ . GOTO CONVERT $
STEP51. BYTE( §X,9$) (ENGLISH 'AMOUNT)
= 9H( CENTS***) §$
GOTO STEP52 $
CLOSE
CONVERT $ BEGIN
NUMERIC 'TO'ENGLISH'CONVERSION
(z=Y,BYTE($X,30$) (ENGLISH'AMOUNT) ) $
IFYEQ P $
BEGIN
BYTE( X ,2$ ) (ENGLISH 'AMOUNT)
= 2H(NO) $
Y=23%
END
X =X+Y $
END END
STEP52. OUTPUT PAY CHECK ''LINE($L$)'' $
STEP53. IF PAY EQ V(BUSY) $ GOTO STEP53 $
STEPSk. IF PAY NQ V(READY) $ STOP STEPS2 $
END
STEP55. POSition (PAY) = POSition (PAY) + 2 $
GOTO STEPP9 $
STEP56. POSition (PERSONNEL) = @ $
STEP5T . SHUT OUTPUT PERSONNEL RECORDS $

END

STEPS58. SHUT INPUT TIME $
STEP59. SHUT OUTPUT PAY $

STEP6@. STOP STEPPL $

END

TERM PAYROLL'COMPUTATION $
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EXERCISE (Programs)

(a) The SWAC is a small, medium-speed binary computer with but
256 words of high-speed memory. It has a command structure of just 13
instructions, which is, however, quite powerful because the SWAC is a
L-address computer. SWAC interprets its 36-bit memory words in one of
two ways: as numbers (sign bit and 35 fractional magnitude bits); and
as instructions (4 addresses of 8 bits each, and a L-bit operation code).
The cells of an instruction word are called ALPHA, BETA, GAMMA, DELTA,
and OP, where OP is the operation code. At present, writing programs
for the SWAC is a rather tedious exercise in punching binary cards; a
symbolic assembly program is needed. To be useful, a SWAC assembler
should accomplish at least three things:

(1) Translate mnemonic operation codes to their numeric
equivalents.

The SWAC Instruction List

MNEMONIC  NUMERIC
OPERATION OPERATION

CODE CODE TITLE

INIPUT o)) INItial inPUT

SINPUT g1 Standard INPUT

OUTPUT P2 OUTPUT

BIOADD Pl Branch If Overflow ADDition
NORADD 5 NORmal ADDition

BIOSUB @6 Branch If Overflow SUBtraction
NORSUB g NORmal SUBtraction

COMPAR g8 COMPARe

COMMAG $9 COMpare MAGnitudes

SPEMUL 19 SPEcial MULtiplication

NORMUL 11 IORmal MULtiplication

MULTIP 12 double-precision MULTIPlication
ETRASH 14 ExTRAct and SHift

(2) Accept symbolic location labels from a location label
field, assign them numeric addresses, and decode them when they occur
in an address field. Location labels are left justified and consist of
two to six characters: a letter followed by one to five letters or numerals.

(3) Convert octal numbers appearing in an address field or the
operation code field. In an address field, an octal number may range from
¢ to 377, and in the operation code field, an octal nurber may range from
$ to 17, right justified in both cases.
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The input for SWACAP, the SWAC Assembly Program, is a deck of
punched cards, with six fields: Label; Alpha; Beta; Gamma; Delta; Op-
code; and Remarks. A blank field indicates a corresponding cell of
zeros, and the first card in the deck is to be associated with location
zero in the SWAC memory.

The output of SWACAP is an internal table, declared as follows:

TABLE MEMORY Rigid 256 Serial Dense $''Memory image of SWAC machine
language program'’
BEGIN
ITEM ALPHA fixed 8 Unsigned $
ITEM BETA fixed 8 Unsigned $
ITEM GAMMA fixed 8 Unsigned
ITEM DELTA fixed 8 Unsigned $
ITEM OP Status 4 V(INIPUT) V(SINPUT) V(OUTPUT) V(NULL@) V(BIOADD)
V(NORADD) V(BIOSUB) V(HORSUB) V(COMPAR) V(COMMAG) V(SPEMUL)
V(NORMUL) V(MULTIP) V(NULLL) V(ETRASH) V(NULL2) $
END

-GG

Write SWACAP in JOVIAL, assuming any convenient card format. Declare
vhatever environmental elements are required. No indication need be given
if a field in an input symbolic instruction contains an error; the corre-
sponding cell in the output machine instruction may be assigned an arbi-
trary value. Do not, however, expect that no errors will occur.

NOTE: To increase the difficulty and scope of this exercise, many
refinements to SWACAP can be specified, for example:

. Error indications;

« The ability to convert an octal constant for an entire word, instead
of just four or eight bit chunks. (This could be accomplished by using
an extra field, and a pseudo-instruction named OCTNUM. )

« The ability to specify an arbitrary program origin (with the pseudo-
instruction ORIGIN and an octal constant in the Alpha field).

. The ability to repeat the next (Alpha) symbolic instructions (Beta)
times == with octal constants in the Alpha and Beta fields, and the
pseudo~instruction REPEAT.

- The ability to use a location label to denote a pre-set parameter,
with the pseudo-instruction EQUALS and an octal constant in the Alpha
field.

(b) The previous exercise involved writing SWACAP, an assembly
program for the SWAC, whose output was the 256-entry MEMORY table, an
image of SWAC's 256=word memory. In order to code-check SWAC programs
thus assembled, an interpreter program, SWACIN, is required. SWACIN
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mist simulate not only the operation of SWAC and its memory, but also
its auxiliary storage and its input/output components.

SWAC's auxiliary storage consists of an 8192-word magnetic drum,
which contains 256 channels of 32 words each. Its input/output com=~
ponents consist of this drum, a card reader, a card punch, and a line
printer. Input/output transfers in the SWAC are block transfers: an
entire 32-word channel for the drum, and 24-word card images for the
reader, punch, and printer.

The enviromment for the SWAC interpreter program, SWACIN, will
consist of: the MEMORY table simulating the SWAC's 256-word high-speed
memory, as declared in the previous exercise; a DRUM array simulating
the SWAC's 8192-word magnetic drum, declared as follows:

ARRAY DRUM 256°'‘'channels''32''words per channel'‘fixed 36 Signed 35 $
and three binary files, READER, PUNCH, anmd PRINTER simulating the SWAC's
card reader, card punch, and line printer. Each of the rigid length

records for these files contains twenty-four 36-bit words, comprising
a T2=column, binary card image.

Operational Description of SWAC Instructions

Unless otherwise stated, or a branch occurs, instructions are exe=-
cuted in sequential order, starting with location zero.

BIOADD Branch If Overflow ADDition
ALPHA: address of augend
BETA: address of addend
GAMMA: address of sum
DELTA: address of next instruction if overflow

NORADD NORmald ADDition
ALPHA: address of augend
BETA: address of addend
GAMMA: address of sum
DELTA: address of next instruction

BIOSUB Branch If Overflow SUBtraction
AIPHA: address of minuend
BETA: address of subtrahend
GAMMA: address of difference
DELTA: address of next instruction if overflow
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NORSUB

SPEMUL

NORMUL

MULTTP

COMPAR

COMMAG

ETRASH

NORmal SUBtraction

ALPHA:
BETA:

GAMMA:
DELTA:

SPEcial
ALPHA:
BETA:
GAMMA :
DELTA:

address of minuend

address of subtrahend
address of difference
address of next instruction

MULtiplication

address of multiplier

address of multiplicand

address of most significant part of product, rounded
not used

NORmal MULtiplication

ALPHA:
BETA:
GAMMA :
DELTA:

sddress of multiplier

address of multiplicand

address of most significant part of product, rounded
address of next instruction

MULTIPlication, double-precision

ALPHA:
BETA:
GAMMA :
DELTA:

COMPARe
ALPHA:
BETA:
GAMMA ;
DELTA:

COMpaxr
ALPHA:
BETA:

GAMMA :
DELTA:

ExTRAct
ALPHA:

BETA :
GAMMA :

DELTA:

address of multiplier

address of multiplicand

address of most significant part of product
address of least significant part of product

address of minuend

address of subtrahend

address of difference

address of next instruction if difference GQ zero

MAGnitudes

address of minuend

address of subtrahend

address of difference of magnitudes

address of next instruction if difference GQ zero

and SHift

address of extractor (mask determining bits to be ex-
tracted

address of extractee

address of extracted and shifted result (bits of the
extractee corresponding to 1 bits of the extractor are
set to zero, then shifting occurs)

amount and direction of shift (first bit not used. If
second bit is: @ -~ shift left; 1 -- shift right. Re-
maining bits specify number of bit positions to shift.
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INIPUT INItial inPUT Input is placed in 24 or 32-word memory
ALPHA: not used block beginning with the register con-
BETA: not used taining this instruction.

GAMMA: drum channel address, if pertinent; otherwise not used
DELTA: specifies input device

SINPUT Standard INPUT
ALPHA: address of first word of memory block for input
BETA: not used
GAMMA: drum channel address, if pertinent; otherwise not used
DELTA: specifies input device

OUTPUT OUTPUT
ALPHA: address of first word of memory block to output
BETA: not used
GAMMA: drum channel address, if pertinent, otherwise not used
DELTA: specifies output device

For the three input/output instructions, the input or output device
is specified by DELTA with the following 3=digit octal code:

Line Printer @@¢¢ (2h-word block transfer)
Card Reader 1f¢ (2k-word block transfer)
Card Punch 12¢ (24=-word block transfer)
Drum 160 (32-word block transfer)

All three instructions transfer program control to the next instruction

in sequence only after the input/output transfer has been completed. Thus,
specifying the printer or punch for input, or the reader for output, will
cause the SWAC to halt its operation. An illegal code in the DELTA field
will also cause a halt. The most commonly used "stop" instruction, how-
ever, is a word of all zero bits.

The spare operation codes, denoted by the statuses NULLf, NULLl, and
NULLZ in the declaration of the OP item, are currently executed by the SUWAC
as OUTPUT, MULTIP, and ETRASH, respectively. A programming convention,
however, forbids such use to avold program obsolescence when and if new
instructions are incorporated into the circuitry of the computer. SWACIN
should therefore interpret these instructions as halts.

Write SWACIN in JOVIAL, declaring the three binary files READER, PUNCH,
and PRINTER, along with whatever other envirommental elements may be required.
Where the preceding description of the SWAC is incomplete or ambiguous --
and several important characteristics must be inferred since they are never
explicitly stated -~ individual judgment must be exercised.

NOTE: Some slight simplifications have been made in the above de=-
scription of the SWAC computer at U.C.L.A. Programs written for SWACIN
would, however, operate perfectly well on the SWAC; even, perhaps, with
the same results.
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(¢) Write, in JOVIAL, a program that will accept and interpre-
tively execute programs coded in SIMPAL (SIMPle Algebraic Language),
vhich is constructed in the following way:

1. number & [P;1;2;3;4;5;6;7;8;91s

Numbers are no more than ten digits in length, and thus range in value

from § to 9999999999.
2. variable § V(:formula:)
There are 1PP@P integer valued variables, V(@) thru V(9999), which are

distinguished from each other by the value of the parenthesized formula.
Variables have the same range of values as do numbers.

3. formula § number;variable; [( formula )7;[|-] formulas F+;-;*5/3**11

Formulas follow the rules of integer arithmetic, where any fractional
part of the result of an operation is trurmcated. They have the same
range of values as do variables and numbers.

4, statement § number:) statement
Statements may be labeled by arbitrary numbers.
5. statement 4 GO number .

The next statement to be executed is the one labeled with the given
number .

6. statement § IF formula = formula |... formula| , statement

i

If the value specified by the formula on the left of the = separator
equals the value specified by the formula on the right (or any value in
the range of values if one is specified) then the component statement
is to be executed; otherwise, it is to be skipped.

T. statement § variable = formula .

The variable is assigned the value specified by the formula.

8. program § START statements FINISH

A SIMPAL program is a string of statements enclosed in the START and

FINISH brackets. The statements are normally executed in the sequence
in which they are listed.
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SIMPAL may be illustrated by
the accompanying routine, which
sets V(§) to the sum of V(1f@) thru
v(199).
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v(g) = ¢.
v(1) = p.
1) v(g) = v(@)+v(1pp+v(1)).
v(1) = v(1)+1.
IF V(1) = $...99, GO 1.
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