N JAN 2 9 1960
WM FIELD NOTE A WORKING PAPER

FN-10-3:-2

The views. conclusions, and recommendations expressed Although this working paper contains no classified infor-

herein do not necessari
.cies of either the Air
"Corporation.

CALIFORNIA

>

SYSTEM DEVELOPMENT CORPORATION + 2500 COLORADO AVENUE » SANTA MONICA

%o

reflect the official views or poli- mation it has not been cleared for open publication by the
rce or the System Development Department of Defense. Open publication, wholly or in
gln. is prohibited without prior approval of the System

evelopment Corporation.

(Produced under System Development
.Corporation sub-contract No. 202
issued by International Electric
Corporation in performance of con-
tract AF-30(635)-11583.)

JOVIAL - A DESCRIPTION OF THE IANGUAGE

This Document Supersedes

FN-10-34-1
JOVIAL - REPORT #2
25 May 1959

and

All Supplements

lauer

WUQHOM/—M
ules I. Schwartsz

pace Lo [ffff paces.

70
1 February 1960

————

Chapter

10.

11.

FN-10-34-2
1 February 1960
Page 2

TABIE OF CONTENTS

Introduction. « « « ¢ o ¢ o 6 s e e e e

Varigble Definition . .
Ttem Declaration Statements .
Parameter Items .
Table Definition. . . e e e s
Table Declaration Statement o s e e e
Definition of Tables Identical to

Previously Defined Tebles .

Definition of Tables of Constents .

Types and Uses of Constants .

Arithmetic .
Addltlon, Subtractlon, Multlpllcatlon,
Division . .
Exponentiation . . e e e e e e e
Absolute Value « « « « « ¢ o« o « o o

Setting Items (The Assignment Statement) .
Use of the Assignment Statement for
Fixing and Floating .
Significance of Fixed Point Results

A Discussion of Statements and Statement Labels.

GOTO Statements . « « « « «

Decision Making .
Conditions.
IF Statements .

Compound. Statements .
STOP Statements . « « « « ¢ o o « o &

Subscripts and Indexing . - e e e e e
Some Examples of Tdbles . o e
Constant Subscripts . « « « « ¢« « « « &
Varisble Subscripts .
The FOR Statement . . .
Using Subscripts as Varlables .
Subscripts on the Same Level .

Subscripting two Tables Slmultaneously .

Variable ILength Tables .
Modifiers NENT, NWDS, NWDSEN, ALL

+d
;

O © [0 s RN O YO Y +

Nl el e i
3 oovw W

T
9

=
O

21

22
22
22

Cont.

Chapter

]
I\

1k,
15.
16.

17.
18.

FN-LO-34-2
1 February 1960
Page 3

ﬂ‘

ABLE OF CONTENTS

Page
Additional Remarks on the Boundaries of
aSubseript, . L4
The Operator TEST. e b5
Varigble B-Factor - Va.rlable Length
Entry Tebles R
Switches oL L . . Lo
Item Switches 49
Subscript Switches.+ 50
U31ng Parts of Items - The Modifiers BIT, BYTE, CHAR,
MANT. e e o e e e . . e e 52
Referencing Complete Entries - The Modifier ENT. . . Sl
Comment Statements 55

Closed Subroutines - Procedures and "Closed" Routines56

Definitions. 56
Formats . . . Y
General Rules for Procedures e . . 58
Special Rules for One-Output Procedures . . 59
The RETURN Statement. <« .« . .59
Examples of Procedures.59
"Closed"Routines. 62

Statement, Card, and Deck Format .

, e

Surmary of the Lenguage v o +66

1.

FN-10-34-2
1 February 1960
Page U4

INTRODUCTION

This document contains a complete description of the JOVIAL Language &s
of February 1, 1960. It reflects the capability of the JOVIAL Interpreter
Program vwhich has been delivered as of the same date. As time goes on,
sdditions will be made to the language. It is fairly certain that no
addition will obsolete any programming which follows the rules discussed
in this document. Chenges will be the type which add new areas to the
language or remove restrictions which now exist. In any case, these will
be noted in future documentation.

1.1 Remarks on Symbology

1.2

The symbology used in this document is the hardware language. This

is the lenguage which must be used for keypunching at the present time.
In meny cases the symbols used are the natural symbols for the particu-
lar operator or bracket. In other cases, the symbology is rather arti-
ficial. These latter symbols will be replaced as soon as hardware is
availsble which permits the punching of the true characters. The
following is a list of the less meaningful hardware symbols and their
respective "true" meanings.

Hardware Language True Symbol
$;
($ L
} v
*) i

Remerks on the Contents of this Document

People who are familiar with JOVIAL should have little trouble reading
end understending this document. At most, it might answer a few ques- ‘
tions which they have sbout hitherto unmentioned details. Much of the
detail is based on problems and questions which have arisen through

use of the language in the past year.

To those who are relatively unfamiliar with the language, it is hoped
that the mass of verbiage does not create the illusion of a language
which requires many months of intensive study before a coding sheet
end pencil may be used.

It is suggested that upon first reading one should attempt to get a
general impression rather than try to absorb all of the details and
rules (and, on occasion, exceptions to the rules). Chapter 18 has
been included as an aid to those striving for a general, rather than
a detailed, impression. Once a general impression is obtained, an
attempt to use the language for specific problems is recommended.

This will usually require references to this document as unknown' areas
are encountered. From this a gradual feeling of familiarity should
occur. A second or third reading after the problem solving phase

FN-10=-34-2
1 February 1960
Page 5

should serve to make one feel thoroughly acquattited vith the language.
Of course those who have at thu.i: ulsposal the use of the JOVIAL
Interpretor and/or Translator will be aided greatly in their attempt
at mastering JOVIAL.

For those who are privileged to attend classes in this language the
use of this document will probably be for reference only. Experience
has shown that verbal instruction as a supplement to documentation
has been extremely beneficial.

FN-10-34-2
1 February 1960
Page 6

2. VARIABIE DEFINITION

One of the striking differences in programming in this language as opposed
to programming in machine language is the fact that variebles must be de-
fined explicitly. When one wishes to use a register for a temporary com-
putation in machine language, he need only give a location for this value.
In the case of JOVIAL, however, one cannot use a variable without having
all its characteristics described by the progrem or the Communication
Pool.

Within the program, variables may be described by Varisble Declaration
Statements. Both tables and items may be described within the progrem.

There are two uses for defining variables within a program. One is the
definition of varisbles which will be used solely within the program
(i.e., not communication items). The other use is to override the
Communication Pool when changes are necessary but not yet physically
implemented in the system.

2.1 Ite: Declaratiun Statomenis

The format for an item definiticr dem~mAds on the type of coding
the item has, although al Iiem D@ arsfiz. slalements have several
fields in common (e.g., the word “Lliwm , tne name of the item).

Formats for the Item Declaraiion Suatements are x8 follows:

ITEM NAME F$

ITEM NAME I #BITS S/U$

ITEM NAME H #CHARACTERS$

ITEM NAME A #BITS S/U # BITS RIGHT OF BINARY POINT$
ITEM NAME S ST1 ST2 ST2 ...STN$

The sbove symbology has the following meaning:
ITEM declares this to be an Item Declaration Statement.
NAME is the field which contains the name of the item. It

is two to six alphanumeric symbols with the first character
always a letter.

F is a floating type item. (e.g., full word, characteristic, mantissa)

I is a fixed point integer type item (i.e., binary point assumed to
be after the least significant bit).

H is a binary coded Hollerith item (i.e., each character is a six
bit code).

A defines a fixed point number with a fractionél part (i.e., a
binary point is within the item).

2.2

FN-LO-34-2
1 February 1960
Page 7

S is a status type item. (i.e., each value of the item stands for
a unique status.)

ﬁ@ITS is the total nunber of bits an item contains (including sign,
if it is a signed item). (For the JOVIAL Interpreter, this must be
less than or equal to 36 bits.)

S/U designates that the item is signed or unsigned (i.e., it can
or cannot take on negative values.)

ﬁgHARACTERS is the nunber of characters a BCH type item contains.
The total number of bits in this type of item is 6 times the
#CHARACTERS. (For the JOVIAL Interpreter the number of characters
mst be less than or equal to 6.) .

#BITS RIGHT OF BINARY POINT specifies, for A type items, the
accuracy desired for the particular item.

STi is the status, given in one to six alphanumeric characters.

§ signifies the end of the Item Declaration Statement. It should
be noted that the order of the elements within an item definition

is important and cannot be changed. Between any two elements in

a statement, at least one blank must exist. (There may be more than
one blank, if desired).

2.1.1 Parameter Items:It is sometimes convenient to assign items
a value prior to the operation of a program. In effect,
this permits the use of a constant throughout a program by
use of a symbolic reference. This is done by adding the
letter "P", followed by one or more blenks and the value
of the item in the coding type specified by the Item
Declaration. (See Section 3. "Types and Uses of Constants".)

Examples:

ITEM PI F P 3.1416$

ITEM ABC H 4 P 4H(HELP)$
ITEM XY2 I 7U P 73%

ITEM PIFIX A 17 U 15 P 3.1416A15$

Taéble Definition

Note: The following pertains to "fixed length entry" tables only.
"Varieble-length entry" tables will be discussed only in
Section 11.12.

Section 2.1 described the technique for defining individual items.
In effect this permits the definition of single-valued quantities
unlike any other quantity in the program. The majority of items

in use, however, are usually not this unique type. More frequently,

FN-10-34-2
1 February 1960
Page 8

an item is part of a table, which is a collection of items. One entry
of & teble contains one repetition of all the items in the teble.
There may be any number of entries in a given teble. Thus the number
of entries determines the number of repetitions of each item in the
teble.

When one wishes to define a table, he must be sble to define the &above
situation. He must be @ble to neme all the items in the table and
then give the number of repetitions of these items in this table.

One further piece of information is necersary. This pertains to the
dynamic status of the number of entries. Either it is fixed at all
times, or it varies.

2,2.1 Table Declaration Statement

All of the preceding is specified in the Table Declaration
Statement. The format for Taeble Declaration Statements is
as follows:

TABIE NAME V/R #ENTRIES$
BEGIN ITEM...$ ITEM...$...END

TABIE declares this to be a Table Declaration Statement.

NAME is the field which contains the name of the teble.
This may be two to six alphanumeric symbols, the first
of which must be a letter.

V means that the tsble has a veriable number of entries.
This type of tseble will always have a control word appended
to it which contains the current nunmber of entries and num-
ber of words in the table.

R means that the table has a fixed number of entries.

ﬁgNTRIES is the number of entries for a fixed length table
or the maximum number of entries for a varisble length table.

Following the Teble Declaration Statement is a list of all
items to be contained in the table. These are preceded by
a "BEGIN" and followed by an "END". All item definitions
are as described in section 2.1. Every teble definition
must be followed by at least one item definition enclosed
by the brackets "BEGIN" and "END". Tables without items
have no meaning in JOVIAL.

2.2.2 Definition of Tebles Identical to Previously Defined Tsbles

It sometimes happens that one knows that he will have two or
more identical sets of data to which his program refers. Assuming
that one of these sets (tables) is defined in the Compool (or
by the program), it is somewhat awkward to have to redefine a

FN-10-34-2
1 February 1960
Page 9

completely new, but identical, table. The ability to describe
this situation has therefore been put into the JOVIAL language.
The following statement will permit the automatic definition
of a teble and all its items. (For this example, we assume
TAB has been defined previously.)

TABIE TAB/ R 1 L;$

A may be any letter or number. L states that we are defining
a table to be identical with the table whose name consists of
the first n-1 characters of the n characters given in the NAME
field of this statement (in this case TAB). A1l items will
then automatically be defined for this new table by adding the
character / to the name of every item and copying the properties
of the respective items.

The number "1" in this example states that there is 1 entry in the
“#ile TAB [; "R" means that it is a fixed-length teble. If

tnese two fields are left blank, it will be assumed that the

new table has the same number of entries and the same "V" or

"R" as the originally defined one. If either field is to be
included, both must be present. To refer to any item within

the table TAB,, the original item name plus the character /

must be used.)

Example: Assume that teble ABC has been defined in the
following fashion:

TABIE ABC R 50$
BEGIN ITEM XYZ F$
ITEM QRS I 7 U $ END

The following teble definition card can be used:
TABLE ABCD R 2 L$
It has the same effect as the following:

TABIE ABCD R 2%
BEGIN ITEM XYZD F$
ITEM QRSD I 7 U$ END

One of the big advantages of this feature is that the defini-
tion of the new teble will change automatically when the original
one changes (in the Commmication Pool or Program).

2,2.3 Definition of Tebles of Constants

In section 2.1.1, it was shown how to assign values to items
not belonging to tables. The present section demonstrates the
technique for assigning constant values to items which are
within tables.

FN-L10-34-2
1 February 1960
Page 10

The following illustrates the method with an example:

TABIE ABC R 5$
BEGIN ITEM XYZ F$
BEGIN 13.6 14.¢ 1.7 13.9 15.36% END
ITEM PQR H 2%
BEGIN 2H(AB) 2H($$) 2H(.1) 2H(3A)
2H (99)$ END
ITEM MN H 6 END

All items which are to contain constants have their definition
statements followed by the list of constants. The list of
constents is preceded by the bracket "BEGIN" and followed by
a "$" and the bracket "END". Note that all items in the
table do not have to be constants. If there are fewer con-
stants in a list than there are repetitions of the item,

the non-specified values will be set to §.

FN-LO-34-2
1 February 1960
Page 11

3. TYPES AND USES OF CONSTANTS

When programming in JOVIAL, constants are used in a similar fashion to
items which are not in tebles. Except for the fact that items can be

set and constants cannot, constants and items are manipulated in much

the same way.

The format for an item name is two to six arbitrary alphanumeric characters.
This set of characters has no meaning in itself. It is simply a symbol
which represents a particular number. The format for constants, on the
other hand, depends on the type of constant being used. In short, the
characteristics of a constant are described in the writing of the constant.
Corresponding to the five types of items, there are five types of con-
stants. These are described in the following.

(1) Floating point: A floating point constent consists of a sign (optional),
a set of numbers, and a decimal point.

Examples: .p¢156 -15.35 +17¢@. 1.

(2) Fixed Integers:A Tixed integer consists of a sign (optional), and a
set of numbers.

Examples: 13 +L -174p

(3) Fixed Numbers with Fractionsl Parts: This type of number consists of
a sign (optional), a set of numbers, a decimal point and the letter
"A" followed by an integer specifying the required number of binary
bits to the right of the binary point (the "accuracy" of the item).

Examples: .@P156A18 -1k.25A2 +179@.1Ak

() Hollerith constants: These have the following format: nH(cc..),
where n is the number of characters within the parentheses, and
the c¢'s are any legal Hollerith characters.

Examples: 2H(AB) L4H(ABCD) 6H($$A1,B)

The number of characters within the parentheses must be exactly equal
to the number specified preceding the "H". (For the JOVIAL Interpreter,
this number cennot exceed 6.)

(5) Status Value Constants: These constents are used only when setting
or testing status items. Their format is described in the following

examples:

V(GOOD) V(FAIR) V(ENEMY)

The number of characters within the parentheses can not be larger than
6.

FN-10-34-2
1 February 1960
Page 12

3.1 Expressing a Power of 1§

It is sometimes convenient, particularly with very large or very
small numbers, to express the constent as a coefficient and a power
of 1. The letter "E" followed by & positive or negative integer
mey be used to express the power of 1f.

Exemples: 13.1E3 13.1E-3 13.1A5E-3 13.1E3A5
The examples are equivalent to:

1319 floating, .f131 floating, .0131 fixed with 5 bits to the right
~ of the binery point. An optional representation for the symbol "E"
is the symbol "$$". Either may be used.

FN=-10-34-2
1 February 1960
Page 13

L. ARITHMETIC

This section will discuss some of the rules of arithmetic without attempting
to describe how the arithmetic is used in the language. In JOVIAL, arithmetic
is never done as an end in itself. It is used only as an instrument for
setting some value or meking a decision. Thus this discussion of arithmetic
by itself is somewhat out of context. However, since some basic rules exist
which apply no matter how the arithmetic is used, it is felt that a seperate
discussion has some value.

4.1 The Basic Operators +, -, *, /

As one would expect, the four basic arithmetic operations are addition,
subtraction, multiplication, and division. These operators, in com-
bination with a set of variables and constants, comprise what is called
an arithmetic expression. (In this document single terms, such as &
constant or a variable, will also be considered to be arithmetic
expressions.)

k.1.1 Expressions of almost any complexity are allowed

Examples: ABCY¥EFG+HIJ/KIM
ABC- (EFG+HIJ)-KIM
ABC*((BCD+EFG)/ (MNO-PQR)+ABIE)

One type of expression is not legal at present. This is
an expression completely enclosed in parentheses and pre-
ceded by a "+" or "-" sign.

4.1.2 No implied multiplication is allowed

Every multiplication must be represented by the symbol "*".
Example: (AB + BC) * (EF + GH)

4.1.3 Precedence of arithmetic operations

When two or more operations are involved in one arithmetic
expression, it is at times necessary to know which will
take precedence (e.g., be operated first, second, etc,) in
order to write the expression properly. Asanexample of
ambiguous expressions consider the following:

ABC/CDE/GHI
ABC/CDE + FGH

The rules may be summarized in the following fashion:
(1) All operations within parentheses are performed prior

to any not within parentheses. Those most deeply
imbedded in parentheses will be performed prior to

(2)

(3)

FN-10-34-2
1 February 1960
Page 1L

those less deeply imbedded.

Exemple: AB+((CD+EF)+GH)

In the sbove expression, the order of operation would
be the following:

(1) cD + EF>R1
(2) R1 + GH->R2
(3) AB + R25R3

Once parentheses have been eliminated (or none existed),
multiplication and division precede addition and sub-
traction.

Examples: (a) AB + CD * EF

_ The order for carrying out the sbove exemple is the

following:

(1) CD*EF~R1
(2) AB+R1-R2

(b) ABC/(CD+EF) + GH

" The order for this example is:

(1) CD+EF—R1
(2) ABC/RI¥R2
(3) R2+GH=>R3

Once parentheses have been eliminated (or none existed)

. operators on the same level will be performed proceeding

from left to right. (¥, / are on the same level. +, -
are on the same level).

Examples:

(a) AB/CD/EF ,

. This is performed in the following fashion:

(1) AB/CD—RL
(2) R1/EF>R2 o
Tn other words, AB/CD/EF is equivalent to AB/(CD*EF).

(b) AB/CD*EF

This is carried out in the following fashion:

(1) AB/CD-R1

(2) RI*EF-R2

In otherwords AB/CD*EF is equivalent to AB/(CD/EF).

FN-LO-34-2
1 February 1960
Page 15

4.1.h Mixing of different types of items and constants in an

expression:

(1) status Items and Status Constants may never be used in an
arithmetic c.pression.

(2) Floating items or constants may never be used in
the same arithmetic expression as fixed items or
constants.

L.1.5 The accuracy of fixed point arithmetic calculations:

A frequent problem is the determination of the significance
of the result of a fixed point arithmetic calculation.

If one wishes to determine this in JOVIAL, he can best
tell by looking at each operator and its two operands,
since rules govern the significance of each individual
arithmetic operation. '

These rules are:

(1) Whenever an operation between two integers takes
Place, the result will be an integer.

Examples: 3%7 results in the integer 21
7/3 results in the integer 2
3/7 results in the integer §

(2) When a calculation involving an integer and
an "A" type item or constant takes place, the
result will have the seme accuracy as the "A"
type item.

Example: 3¥7.1A2+6 produces the result 27.3A2
3.PA6/7 produces the result .429A6

(3) When a calculation involving two "A" type values

tekes place, the result will have the same significance
as the least significant "A" type item.

3.25A3*3.5Ah-l.¢A5 produces the result 10.375A3.
6.25A3+1.0AP produces the result T7.@Ad

4.2 Exponentiation

Another esrithmetic operation built into the language is exponentiation
(i.e., teking an arithmetic expression to a power which is an arithme-
tic expression).

When writing expressions containing exponents for mathematical texts,
one has a decided advantage, since he has at his disposal two dimensions.
Thus he can write as follows:

AB2+BCCL(EF+GH)

4.3

FN-10-34-2
1 February 1960
Page 16

Given a one dimensional IBM card, however, one must, in a sense, say
when he is going up (and down). Thus the brackets (%" %) are
used, and the ebove expression is written in the following fashion
in JOVIAL:

AB(%2%)+BC(*CD(*(EF+GH)*)*)

Note that there must be an equal number of up and down brackets.
Any legal arithmetic expression may be used in the exponent. A
certain amount of mixing may be done in exponentiation. An integer
value may be used as the exponent of a floating expression.
Example: AB(¥2%), where AB is a floating item.

-Teking the gbsolute value

It is frequently necessary to teke thé gbsolute value of an item or
arithmetic expression. Thus one might want to say:

ABIE°— BAKER®

ABIE| or — CHARLY-DOGI

These expressions are written in JOVIAL in the following fashion:

ABS(ABIE)
ABS (ABIE(*2%)-BAKER (*2%))-ABS (CHARLY-DOG)

FN-LO-34-2
1 February 1960
Page 17

SETTING ITEMS /The Assignment Statement)

Note: A good deal of what follows pertains to subscripts as well as items
although the Following will discuss items only.

A considersble portion of programming consists of the setting of items.
In JOVIAL, there is one basic format for the setting of items. This format
is called the Assignment Statement. It has the following structure:
IEFT TERM (ITEM TO BE SET) ASSIGNMENT OPERATOR "'=" RIGHT TERM $
The RIGHT TERM may be an arithmetic expression, and the symbol "$" represents

the end of the statement.

The following are legal Assignment Statements. They will accomplish the setting
of the item ABIE to the value of the right term.

ABIE = BAKER $

ABIE = -3 $

ABIE = 73* (BAKER - ABIE) $
ABIE = ABIE (*2%) + 1%

5.1 Use of the Assignment Statement for Fixing and Floating

It will be recalled that in Section 4.1.4t it was stated that one could
not mix fixed and floating numbers in an arithmetic expression. Therefore
all numbers in the right term of the assignment statement must be either
of a fixed or floating variety.

On the other hand, the left term (the item being set), does not have to
sgree with the right term. In other words, if the right term is a
floating item or produces a floating result, the left term may be defined
as fixed (either "I" or "A" types) and this will produce instructions to
fix the result prior to storing it in the left term. The converse is true
for a fixed to floating conversion. Thus the assignment statement may

be used for fixing and floating when these functions are required.

5.2 Significance of Fixed Point Results

As has been pointed out in section 5.1, the left term of the assignment
statement governs, in the final analysis, what should be done with the
right term. This applies to the final scaling of fixed point right
terms prior to storing them in fixed point left terms. Therefore, once
the result of the right term has been calculated, an examination is made
of the left term. If the left term has more places to the right of the
point than the result, trailing zeros are inserted following the least
significant bit of the result prior to storing into the left term.

If the left term has fewer places to the right of the point than the
right term, the right term is rounded prior to storing into the left
term.

FN-LO-3k-2
1 February 1960
Page 18

Examples:

Define the following item:

ITEM ABIE A 1/ U 3 $

(i.e., ABIE has 3 bits to the right of the binary point).

Thg following assignment statements produce the stated results.

() oz B it e

(b) ABIE = 1$.875 AL$
ABIE gets set to ($@pLp1p. lll)

(c) ABIE = 18.L4375Ak$
ABIE gets set to (P@gp1p1g. l¢¢)

6.1

6.2

FN-LO=-34-2
1 February 1960
Page 19

A DISCUSSION

Properties of Statements

In the preceding sections, a good deal of reference has been made to
statements. So far Item Declaration, Teble Declaration, and Assignment
Statements have been discussed. Statements represent the main means

of program writing in JOVIAL. The format of the particular statement
is a function of its purpose. In the case of Assignment Statements and
some others to be discussed later, one can describe in general the for-
mat of the statement. 1In other cases a general description of format
is quite difficult. ' ’

However, certain properties exist for all simple statements. '(Note:
The present discussion refers only to what are called simple statements.
Compound statements will be discussed in Chapter 9.)

(1) Every statement has an operator or a declarator of some kind.
In the case of the Item and Table Declaration Statements, the
words "ITEM" and "TABIE" were the declarators. In the assign-
ment statement the symbol "=" was the operator.

(2) Every statement must end with the symbol "$". Other than the
above two comments, nothing can be said about the general nature
of all statements. As each operator and declarator is discussed,
the format for its particular statement will be discussed.

ILabeling Statements

A facility exists for naming any statement used in a program. The
need for lsbeling arises only when a reference is made to the state-
ment by another statement. In the current version of JOVIAL,
reference would be made to another statement only for the purpose
of changing the sequence of control in the program. For example,
no reference to a statement labelwould ever be made within an
Assignment Statement. However, the Assignment Statement, and most
of the other statements to be discussed, may themselves be labelled
(e.g., given a name).

o

The format of a statement lsbel is the same as that for item and
table nemes. That is, it consists of two to six alphanumeric synbols,
the first of which must be a letter. Indeed, one of the differences
between JOVIAL and machine language programming is that a varisble
neme and a statement label used by the same program may be the same
symbol. This does not imply that one should strive to use the same
names for varisbles and statement lebels, but it does point out that
the treatment of variables in JOVIAL is considerebly different than
their treatment in machine language programming.

FN-L0-3l-2
1 February 1960
Page 20

Once a symbol has been decided upon for & statement label, the state-
ment is lsbeled by preceding it with the label followea by the symbol
n." (period).

Examples:
A36. ABIE = 1T7$
77Y2. ABIE = 3*BAKER $

AMMONA .BAKER =.4*(ABIE +36)$

A particular symbol may not appear as a stetement label more than once
in the main progrem. (The main program does not include Procedures,
to be discussed in Chapter 16).

FN-LO-34-2
1 February 1960
Page 21

Given a sequence of Assignment Statements, control would proceed from one to

the other
to change
this is a
following

Note that

in the order they are presented. Frequently it becomes necessary
this "normal” sequence unconditionally. One means of accomplishing

GOTO statement. The format of the GOTO statement is shown in the
examples:

GOTO A36$

GOTO 2ZzZY2$

GOTO AMMONA $

the symbol "." is not used when the statement lakel is used as the

object of a GOTO statement.

Only statement lsbels can be used as objects of GOTO statements.

-

These lsbels must be used somewhere in the program to name a statement. In
brief, a GOTO statement must have someplace to go.

GOTO statements can themselves be lebeled, as can any statements whlch may be
referenced by other statements in the program.

Examples:

Al. GOTO ABIE3$
AYX. GOTO Al
DESK. GOTO DEN$

8.

FN-LO-34-2
1 February 1960
Page 22

DECISION MAKING - IF Statements

8.1

8.2

Conditidns

All decisions in progremming are based on the truth or falsity of some
condition or combination of conditions. A condition (Ci) has three
parts which are arranged in the following format:

IEFT TERM RELATIONAL OPERA&OR RIGHT TERM

where; (1) the IEFT TERM is an arithmetic expression
(2) the RELATIONAL OPERATOR is one of the following:

() EQ equal

(p) NQ not equal

(c) GR greater

(d) GQ greater than or equal
(e) IS less than

(f) 1Q less than or equal

(3) the RIGHT TERM is an arithmetic expression which is the
same type as the left term (e.g., fixed or rloating).

Examples:

ABIE EQ BAKER

A13B NQ BABY + 1

3%ABI® OR BAKER-~

ABIE * 2*Y + BAKER (* 2%) GQ CHARLY (¥2%)
13.6 » QRS+ 3. I& rGL + 17.€

SQUARE / CIRCIE I TRIANG (¥2¥%)

IF Statements

The main decision making statement in JOVIAL is the IF Statement. The
IF statement consists of the operator "IF", followed by at least one
condition or combination of conditions (see 8.2.2) and is followed by
the symbol “"$" to denote the end of the statement.

Function of the IF Statement

Tn the event the situation being tested is true, control proceeds to the
next statement. In the event it is false the next statement is skipped
and control proceeds from there.

8.2.1 The Simplest IF Statement

The simplest (and most frequently used) IF statement contains one
condition. Thus it has the following basic format:

IF C$ where C is a condition as described in Section 8.1.
Examples: IF ABIE EQ BAKER$

IF Al13B NQ BABY +1$
IF 3*ABIE GR BAKER-T$

FN-10-34-2
1 February 1960
Page 23

8.2.1.1 Some Programming Examples

The following are some problems and possible JOVIAL
programs to solve them.

Note: The STOP Statement (see Chapter 10) will be
used to denote completion of the problems.

(1) Given item NUMB defined as a fixed point integer.
compute the factorial of NUMB and store it in the
integer item FACT.

FACT = 1$

Al. IF NUMB 1IQ 1$
STOP$:
FACT = FACT*NUMB$

NUMB = NUMB-1$
GOTO A1$

(2) Given the floating item SQUAR, use Newton's
Method to compute the square root of SQUAR
and store it in the floating item SQRT.
Continue the iterations until |SQRT - SQUAR | < .ppga.

SQRT = .5%SQUAR$

A2.TF ABS(SQRT(*2%)-SQUAR) IS .@@@1$
STOP$
SQRT = .5%(SQRT+SQUAR/SQRT)$
GOTO A2$

8.2.2 More Interesting IF Statements - Logical Operators

Section 8.2.1 discussed decisions made on the basis of one
condition. Frequently a decision must be made on the basis
of more than one condition. Also, it is sometimes convenient
to express a decision meking statement as the negation of a
condition or set of conditions. These latter two functions
may be accomplished with the IF Statement and the logical
operators AND, OR, and NOT. Some illustrative examples will .
now be given to demonstrate the possible uses of these
operators.

(1) A Decision based on the simultaneous Truth of Two
or more conditions - ILogical Operator AND

If one wishes to perform some function based on the
simultaneous truth of two conditions, the format for
the IF Statement is:

IF C; AND Co$ where C, and C, are the conditions. .

FN-LO-3k-2
1 February 1960
Page 24

If either Cq or Cp (or both) are false, the statement
will result in a false transfer of control (i.e., the
next statement will be skipped). If both C1 and C2 are
true, the IF Statement is true, and the next statement
will be executed.

Examples:
The sequence of statements:

IF ABIE EQ 3*BZKER AND TPOS NQ 17.6%
BAKER = 15$
ABIE = 17%

is equivalent to the following sequence:

IF ABIE EQ 3% BAKER$
GOTO Al
GOTO A2$

Al. IF TPOS NQ 17.6$
BAKER = 15$

A2. ABIE = 17%
The sequence of statements:

IF TIDY EQ V(HOSTIL) AND POSN EQ V(NEWYRK)$
GOTO B1$

ALARM = #$

STOP$

Bl. ALARM = 13
STOP$

is equivalent to the following sequence:

IF TIDY EQ V(HOSTIL)$
GOTO Cl1$
GOTO Cc2$

Cl. IF POSN EQ V(NEWYRK)$
GOTO C3$

C2. ALARM = f$
STOP$

C3. ALARM'= 1$
STOP$

The use of the operator AND can be extended to testing
the simultaneous truth of three or more conditions. A
general example is:

IF C1 AND C2 AND C3...AND Ci...$

(2)

(3)

FN-L10-34-2
1 February 1960
Page 25

Decisions Based on the Truth of at Ieast one Condltlon -
Iogical Operator OR

!

The performance of a particular statement or set of state-
ments might be predicated on the truth of any one (or
more) of & set of conditions. The form of an IF_ statement
which makes this decision is: -

IF C1 OR Cp OR C3...$

In this statement the truth of the conditions are tested
(from left to right) until one is found that is true.
When this occurs, control proceeds to the next statement.
If no true condition is found, control skips one state-
ment and proceeds from there.

Examples:

(a) IF TIDY EQ V(HOSTIL) OR ALT@1¢¢$
GOTO C1$
ALARM =
STOP$
Cl. ALARM = 1$
STOP$

(v) IF XY/2.1 1S ABIE (*2.+BAKER*) OR MN EQ 3
OR CHARLY GR 17.6%D0OG$
GOTO D13

The Use of AND and OR in one statement

A decision may be based on any combination of conditions
and the operators AND and OR. There will be no attempt

to give all the rules for these combinations. However,

a study of elementary Boolean Algebra should suffice to

Prepare the reader for any situation.

Example:
IF C1 AND (C2 OR C3)$
GOTO TRUE$
GOTO FAISE$

is equivalent to:

IF Cq ANDC20RCJ_ANDC3$
GOTO TRUE$
GOTO FAISE$

1s equivalent to:
IF C1$

GOTO E1$
GOTO FALSE

El. IF C
2$TRUE$

IF Co$
GOTO- ‘I'RUE$

FN-10-3Lk-2
1 February 1960
Page 26

(4) Testing the Negative of a Condition or a Set of Conditions-
The Operator NOT

It is sometimes desirable to express an IF statement in
terms of the negative of a condition or a set of condi-
tions. The operator NOT is used for this purpose.
Again, a complete set of rules for this operator will
not be given here. A few examples will suffice:
(a) IF NOT ABIE EQ 3$

is equivalent to:

IF ABIE NQ 3$
(b) IF NOT (ABIE EQ 3 AND BAKER GR 4)$

is equivalent to:

IF ABIE NQ 3 OR BAKER IQ 4$
(c) IF NOT (ABIE IQ 3 OR BAKER GQ 4)$

is equivalent to:

IF ABIE GR 3 AND BAKER IS 4$
(4) IF ABIE EQ 3 AND NOT (BAKER EQ 4 OR NOT BAT IS 6)$

is equivalent to:

IF ABIE EQ 3 AND (BAKER NQ 4+ AND BAT IS 6)$

FN-10-34-2
1 February 1960
Page 27

9. COMPOUND STATEMENTS

9.1 Definition of Compound Statements

A compound statement is a group of consecutive simple statements
preceded by the left bracket "BEGIN" and followed by the right bracket

"END"-
Example:
BEGIN ABIE = 3%
BAKER = L$
IF XY EQ = 7$
MP = L4$
NO = ¢$ END

9.2 A Compound statement may be labelled

The lsbel must follow the bracket "BEGIN" and precede the first simple
statement of the compound statement. :

Example:
BEGIN Al. INT = 3%
IND = 1%
RST = 33 END

9.3 Compound statements may be nested

Any nunber of compound statements may appear on the same (or different)
levels within another compound statement. Care must be exercised to
have a bracket "END" for every bracket "BEGIN".

Example: (Assume Si's are simple statements)
BEGIN s1$
s2%
Sn$
BEGIN Sn+1$
Sn+m$

Sp$
BEGIN Sp+1$

END

sr$
BEGIN
Sg$

. ‘
l'l‘ N D ’

FN-10-34-2
1 February 1960
Page 28

9.4 Any simple or compound statement within a compound statement may be

9.5

lebelled.

A lsbelled statement within a compound statement may be transferred
to from inside or outside the compound statement.

Example:
IF ABIE EQ 3%
- GOTO B1$
BEGIN S1$
B2. 823
Bl. 83%
sk
GOTO B2$
END

(Note: The @bove example merely illustrates the sbility to go to
simple statements within compound statements. The particular
sequence of statements is not necessarily a meaningful one.)

Use of the compound statement following the IF Statement

The compound statement permits one to execute more than one simple
statement in the event an IF Statement is true. This follows from
the fact that the truth of an IF Statement will cause the execution
of the next statement (simple or compound), and the IF Statement
being false will cause control to skip the next complete statement
(simple or compound). Thus in the event an IF Statement is false,
and the statement immediately following is compound, the complete
compound statement is skipped.

Example:

(a) IF ABIE EQ T$
BEGIN RST = 6$
XYZ = 3$
STOP$
END RST = 7$
XYz = 4$
STOP$

In this example, if ABIE equals 7 RST will be set to 6 and XYZ to 3.
If ABIE doesn't equal 7 RST will be set to 7 and XY3 to L,

9.6

FN-10-34-2
1 February 1960
Page 29

(b) IF ABIE - BAKER IS 1.3

BEGIN ALARM = £$
DOG = 3$
IF ABIE-BAKER IS .5$

BEGIN
CAT = 7$
KITTEN = 12$
END”
STOP$
END ALARM = 13
STOP$

In this example, if the difference between ABIE and BAKER is less
than 1, the item ALARM is set to ¢, and the item DOG is set to 3.
If the difference is also less than .5, then CAT is set to 7 and
KITTEN to 12, prior to stopping. If the difference were greater
than or equal to 1, then ALARM would be set to 1 prior to halting,
and none of the other items would be -set.

Final Remarks on the Compound Statement

There are, in addition to compound statements » other places where

the brackets "BEGIN" and "END" must be used. Because of this s
experience has shown that a liberal use of these brackets leads

to some mild confusion regarding which BEGINS's and END's are

mates. If this becomes the case, or anyone has a particular aversion
to these brackets, their.use with compound statements may be avoided.
One example will suffice to demonstrate the means of avoiding the

use of compound statements following IF statements.

Example:
(a) IF ABIE EQ BAKER §
BEGIN S13%
s2%
S3$
sk$ END
STOP$
(az May be rewritten as (al)
(a’) IF ABIE NQ BAKER $
GOTO Al$
S1$
s2$
S3$
sk$

Al. STOP$

FN-LO-3k-2
1 February 1960
Page 30

10. STOP STATEMENTS

The operator STOP is used when it is desired to make the object program
come to & halt. In other words, the STOP statement is replaced by (or
is interpreted as) the machine language HALT instruction.

The simplest format of the STOP statement 1s the operator STOP followed
by the symbol "$".

Example: STOP $

Another format permits a statement label to be inserted between the operator
and the symbol "$". The effect will be to permit a transfer to the statement
with this lsbel if the "CONTINUE" button is depressed after the halt tekes

place. (At present, this feature does not operate in the JOVIAL Interpreter

System.)

Exemples: STOP Al$
STOP BCTY4 $

FN-I10-34-2
1 February 1960
Page 31

11. SUBSCRIPTS AND INDEXING

The preceding sections have used only non-subscripted items in all
examples. These are items which do not belong to tebles, or items
which belong to one entry -tebles. As mentioned previously in the
section on Item and Teble Definition, the maiority of references

are to iltems which are members of tables. To refer to one of the
latter items, the position (index value) of the item within the table
must be appended to the item name. This position is either a number or
& single letter, or has the format letter plus or minus a mmber It is
called a subscript.

Subscripts when used as index values for items are positive integers having
zero as the minimum quantity which they may attain. (This does not mean
that a letter subscript may not take on negative values. The letter I
when used as a part of the subscript I + 6 may teke on the values -1, -2,
-3, -4, -5, end -6.) The subscript stands for the relative position in

the teble to which an item belongs.

When used as an index value, the subscript immediately follows the item
being indexed and is enclosed in the brackets "($" AND "($" and "$)".

Examples:

ABIE(2)
BAKER(J)
CHARLY($I-4$)
DOG($K+3$)

11.1 Some Examples of Tables

For the ensuing discussion, it will be helpful to describe some
hypothetical tebles which can be used to illustrate the various
points which are made. Figure 1 will be used for this purpose.
Throughout the remainder of this section, it will be referenced
for examples.

399

FN-L0-34-2

1 February 1960

Page 32
FIGURE 1
TABL
LOCN. 1¢@| ABIE | BAKER ENTRY{ LOCN 209
191 ABIE [BAKER [ENTRY1
1f2| ABIE | BAKER
. . 263
266
149 ENTRY49
220
AUTOS AUTOL
'MAKE | YEAR |HP IOCN 3¢ | MAKE [YEAR| HP
MAXSPD 301 [MAKE | YEAR|HP
TRANS| COLOR[CYL .
NUMDR| DRIVER
! o
32k

TAB2
CHARLY [DOG
EASY ENTRY@
FOX| GEORGE [HOW
CHARLY | DOG
EASY ENTRY1
FOX| GEORGE [HOW
ENTRY6
AUTO2
Lpd MAXSPD
L@1 [TRANS[COLOR[CYL
Lg2 NUMDR| DRIVER
Lp3 .
L7l

FN-I10-34-2
1 February 1960
Page 33

11.2 Constant Subscripts

Sometimes specific members of a table must be referenced. This
implies that the relative position of the item being used is known
and does not vary. In this case the subscript within the brackets
is a constant.

Examples:
Using Figure 1, the following is a table of item references

in JOVIAL and the effective addresses which would be generated
by these references.

Reference Address
ABIE ($¢%) 1¢p
BAKER($5%) 165
ABIE ($49%) 149
DoG ($£$) 20¢
FOX (0) 2p2
EASY (3) 21
GEORGE($63) 220

Note that the number of words per entry has no effect on the subscript.

The subscript always represents the entry number. Therefore if one
is intevested in an item in the kth relative position of a table,
he need only specify k and need not be concerned with the number of
words per entry in the table.

11.3 Varisble Subscripts

The most frequent use of subscripts is for cycling through many entries
in a téble, that is, repeating the same operation a number of times,
changing the entry number of the items being used in the operation

on every repetition. For this and other reasons it is necessary to
use symbolic subscripts. Symbolic subscripts have two forms. One ,
is a single letter, the other a single letter plus or minus a constant.

Examples: ABIE (A)
BAKER (D)
CHARLY(1)
DOG (2)
EASY ($J+13)
FOX ($Y-3$)

GEORGE ($K~-4$)

Again, the meaning of the subscript is entry number. The means by
which subscripts are set and modified will be discussed in Section 11.k.

_ FN-L0-34-2
1 February 1960
Page 34

The following table presents some subscripted varisbles, the sub-
seript values, and the effective address derived from the latter,
based on Figure 1.

ITEM SUBSCRIPT VALUE EFFECTIVE ADDRESS
ABIE (I) I=¢ 1¢9
BAKER ($J3%) J=1 161
BAKER (K) K =149 149
BAKER ($L-1$) L=1 160
ABIE ($M+6$) M= k4p 146
CHARLY ($n3) N=1 263
FOX (0) 0=>5 217
EASY (P-3$) P=L ol
GEORGE ($Q + 2$) Q=4 220

11.4 Setting, Modifying and Testing Subscripts - The FOR Statement

In many respects, symbolic subscripts are like integer type items.
In fact, it will be seen later that as long as certain rules are
followed, subscripts can be manipulated exactly as items are.

However, certain major differences between items and subscripts
exist. First of all, subscripts are not defined in the Communication
Pool or with Item Declaration Statements. Secondly, the definition
of a subscript is done with a particular statement, called the FOR
Statement. Lastly, the definition of a subscript holds only for the
one statement (simple or compound) immediately following the FOR
Statement (unless the next statement is a FOR statement). Once

this statement is complete, it is illegal to use the subscript

in the following statements unless it is defined by another FOR
statement.

11.4.1 The Incomplete FOR Statement

There are two forms of the FOR Statement, each having a
different purpose. The incomplete form is used merely to
assign a subscript a single value. Its format looks like
the Assignment Statement's (Section 5) with the operator
FOR preceding it and the left term always a one letter

subscript.
Examples: FOR I = 6$
: FOR J =
FOR A = BAKER$
FOR B = CHNNUM/2+1$

Some programming examples:

(a) FORI = 1$
MAKE(I) = V(FORD)$

(Note: The above is not an example of good programing.
It would have been more efficient to meke the
following statement: MAKE (1) = V(FORD)$

FN-10-34-2
1 February 1960
Page 35

(b) FOR J = ABIE$

IF HP(J) IS 15¢$
GOTO Bl$

(c) FOR K = BAKER¥3/2$
BEGIN IF HP (K) IS 150$
(k) = 6p.04% END

11.4.2 The Complete FOR Statement

The purpose of the Incomplete FOR Statement was simply to

set a subscript to be used by the following statement. The
complete FOR Statement is used to generate a loop, that is,
cause the next statement to make a given number of iterations,
each time modifying the subscript by a given amount.

The general format of this statement is the following:

FOR S = A,B,C$
where; S is the subscript.
A is the initial value (erithmetic expression).
B is the amount by which to modify the subscript
for each iteration (plus or minus a constant or
variable).
C is the final value (arithmetic expression).

Examples:
(a) Clear all items ABIE in table TABL
(See Figure 1).

FOR I = §,1,49$
ABIE (1) = 63

Alternately, FOR I = 49, -1, @ $
ABIE (1) = £$

(b) set all items FOX in tsble TAB2 to - §

FOR J = §,1,6$
FOX (J) = - #3

Note that although there are three words per
entry in table TAB2, the B-term is 1 and the
C-term is 6. This illustrates again that
subscripts are expressed solely in terms of entry
nunber.

(c) Exchange the first ten pairs of items BAKER
in the table TABI.

FOR I = §,2,18%

BEGIN TEMF = BAKER (I)
BAKER (1) = BAKER ($I+1$)$
BAKER ($I1+1$) = TEMP$ END

FN-LO-34-2
1 February 1960
Page 36

(4) Find an item FOX in the same entry as a DOG
which equals 3 in teble TAB2. Then starting
with entry number FOX in table TABl, set the
BAKER's in TABl to §. If no such DOG exists,
stop. .

FOR I = §,1,7$
BEGIN IF DoGc (1) EQ 3%
BEGIN FOR J = FOX (I),1,49%
BAKER (J) = £$
STOP$
END
END STOP$

11.4.2.2 Method of Modification and Testing

It is sometimes helpful to know the sequence of
instructions which take place dynamically for a
complete FOR Statement.

The general sequence is as follows:

(1) 1In place of the complete FOR Statement,
an incomplete FOR Statement is produced.

FOR I = A$

(2) At the end of the ¢eTinition of the subscript
an assignment statement which modifies the
subscript is inserted.

i.e., I =1 +B$

(3) Immediately after the modification, the
test instruction is inserted.

i.e., IF I EQ C+B$
GOTO (STATEMENT FOLLOWING END OF LOOP)$
GOTO (BEGINNING OF LOOP)$

Of course, if A and/or C had been arithmetic expressions,
the necessary expansions would have been inserted prior
to the assignment and/or test statements.

Example: FOR I=0,1,24$
BEGIN Al.IF ABIE (I) EQ 3%
BAKER (1) = 4$
END
A2. GOTO 21$

The sbove example will have the same effect as the
following set of instructions when it is interpreted
(translated).

FN-10-34-2
1 February 1960
Page 37

FOR T = #3%
BEGIN Al. IF ABIE(I) EQ 3%

BAKER(I) = 4$
I=1I+13
IF I EQ 25%
GOTO A2$
GOTO Al$ END

A2. GOTO 21$

11.5 Using Subscripts as Varisables

Once a subscript has been defined with a FOR Statement, it may be

used both as an index value for items and as an integer type value.
(i,e., It may be used as a varisble in an arithmetic expression,
or be used as the left term of an Assignment Statement, etc.)

An example of a sort program will serve to illustrate the use of
subscripts in the fashion so described.
FOR I

9,1,488%
BEGIN TEMP1 = I$
Al.TF ABIE(I) IQ ABIE($I+1$)$
GOTO A23
TEMP2 = ABIE(I)$
ABIE(I) = ABIE($I+1$)$
ABIE($I+1$) = TEMP2$
IF I EQ &%
GOTO A2$
I=1-1%
GOTO Al$
A2. I=TEMP1$
END

nn

STOP$

A subscript may be used in the right term of a FOR Statement.
For example, the sequence:

FOR I = §,1,1¢$
BEGIN FOR J = #,1,I-3$

°

is a legitimate sequence of statements.

One further remark seems appropriate at this point. When a subscript
1s defined with a complete FOR Statement (i.e., The set, modify, and
test instructions are to be automatically generated.), the value
which will be modified and tested at the end of the loop is the value
which remains after an Assignment Statement has been executed within
the loop.

For example, the two statements following the FOR Statement will be
executed only once in the following situation:

FOR I = §,1,2%
BEGIN ABIE(I) = 3$
I = TI+2%

FN-10-34-2
1 February 1960
Page 3B

11.6 FOR Statements Defining Subscripts on the Same Ievel

In section 11.l4, there was a sentence which stated that the definition
of a subscript holds for one (simple or compound) statement which
immediately follows the FOR Statement. The alert reader probebly
noticed the parenthesized expression immediately following this remark.
Tt said "unless the next statement is a FOR Statement". The present
section will attempt to explain this previously off-hand remark.

All examples given so far in which more than one FOR Statement was
used (e.g., (d) in Section 11.4.2) have been examples of "loops
within loops". That is, the second FOR Statement is contained in

the compound statement following the first FOR Statement. A

little reflection will show that the statement following the second
FOR Statement will be repeated a total of (C2-A2+1) * (CI-"Al+l) times,
where the program appears as follows:

FOR I = Al.1.C1$
BEGIN FOR J = A2,1,C2$
BEGIN
sl
s2

END
END

In other words, the innermost loop (on J) is repeated C, = A, + 1
times for every one repetition of the outside loop (on %

Frequently (particularly with single dimensional subscripting) it

is desirsble to have two (or more) subscripts used at one time

within the "same" loop. One specifies the number of times a loop

is to be repeated with a complete FOR Statement. Following this
statement one (or more) FOR Statements (complete or incomplete)
defining other subscript(s) may exist. In the statement immediately
following the last FOR Statement in the sequence all defined subscripts
mey be used. At the end of the loop all subscripts which are defined
with a complete FOR Statement will be modified. However, only one
test will be generated. This test will be on the first subscript
defined with a complete FOR Statement in the sequence. Thus, although
more than one subscript may be set, used, and modified, only one test
and thus "one loop" is generated.

FN-10-34-2
1 February 1960
Page 39

Examples:
(a) FOR I = $,1,6$
FOR J = $,2,12%

S1.

A2. STOP$
(a) is equivalent to the sequence (a').
(a') FOR I = @$
FOR J = @3
N

[l

I- I+1$

IF I EQ 7$

GOTO A2$

GOTO S1$ END
A2. STOP$

,1, 175
ABIE$
53;'3) 2$

(b) FOR J
FOR K
FOR L
BEGTN S1$
s2$
S3$

END

Al.STOP

(b) is equivalent to the sequence (b').
(b') FOR J = ¢$

FOR K = ABIE$

FOR L = 53%
BEGIN S1$

s2$

= L-3$
= J+l$
IF J EQ 18%
GOTO Al$
GOTO S1$
END
A1.STOP$

]

L
J

It should be noted that (a') and (b'), which are legal examples,
demonstrate that all the FOR Statements may be incomplete.

One further remerk is that the order of incomplete and complete

FOR Statements in sequence is immaterial. The only significance the
order has is the designation of which subscript on which to test.
This will always be the subscript which appears in the first (or
the only) complete FOR Statement.

11.7

FN-10-34-2
1 February 1960
Page 40O

The following (C, C', and C") will produce equivalent results. In
all cases the test will be made on K.

(C) FOR I = HP$
FOR J = NUMDR$
FOR K = §,1,12%
FOR L = 1,5,NONSNS$
BEGIN .
(C') FOR J = NUMDR$
FOR K = $,1,12%
FOR I = HP$
FOR L = 1,5,NONSNS$
BEGIN .
(c") FOR K = §,1,12$
FOR L = 1,5,NONSNS$
FOR I =
FOR J = NUMDR$
BEGIN .

.

Note that the C-factor of any complete FOR Statement after the first
is never used. It must appear and be a legal expression. But it
has no meaning.

Cycling Through Two or More Tsbles at one Time

The teble AUTOS in Figure 1 contains the characteristics of a certain
set of automobiles. It is assumed that the nunber of automobiles is
fixed (25). Also, it takes 4 computer words containing 9 items to
describe each automobile.

A progrem which might wish to set MAXSPD (meximum speed) to 60 mph
if the horsepower (HP) is less than 90 and the year is earlier than
1947 or the number of cylinders is less than 6 might appear as
follows:

FOR A = §,1,24$

BEGIN

IF HP(A) IS 99 AND YEAR (A) IS 1947 OR CYL (A) IS 6%
MAXSFD = 60.0$

END

let's now assume that for some reason it is found necessary to break
the table AUTOS into the two tables AUTOLl and AUTO2 of FIGURE 1.

11.8

FN-10-3k-2
1 February 1960
Page Ui

Now the four words of information pertaining to each auto has been
split into two parts, one containing three words and one containing
one. The one further assumption will be that relative position has
significance. Thus the information in entry number k of AUTOl per-
tains to the same auto as the information in position k of AUTO2.

Using these assumptions, precisely the same program as was used to-
cycle through AUTOS may be used to perform the same function.

This is in general a property of the language. As long as relative
position has significance, the actual distribution of the items in
tables has no effect on programs which are written, and the same sub-
script may be used to cycle through two or more tebles even if they
don't have the same number of words per entry. Of course if items
in the same relative positions in the different tables did not per-
tain to the same object, the use of one subscript for both would
ordinarily not make much sense.

Varisble Iength Tebles

The tables of Figure 1 were considered to be fixed length (e.g-, R-type
tebles). This implies that the number of entries in the table has
been decided upon prior to the program's assembly and to cycle through
the complete table the same number of iterations is used every time

the particular ioop is operated. -

The nature of variable length tabies (V-type) on the other hand, is
such that during the dyramic operation of the program the number of
entries is subJject to change. Thus at any given time it is desira-
ble to have the number of entries (and number of words) availsble
to the object program. All varisble length tables are assumed to
have these latter items of information preceding the first data
word. Figure 2 illustrates a varisble length table.

FIGURE 2

DISABL
hboo| NENT | NWDS
5¢¢ | CHNNUM| REASON [DAY
5@1 | EXTENT | REPLAC
5¢2 | CHNNUM[REASON | DAY
503 [EXTENT | REPLAC

The table "DISABL" might be a file of all cars from table "AUTOS"
(FIGURE 1) which have become disabled. This list might contain
as few as no entries or, on particularly bad days, as many as 25.

FN-L0-34-2
1 February 1960
Page 42

11.9 The Modifiers NENT, NWDS, NWDSEN, ALL

Both fixed and variable length tables should be referenced in the
same fashion in a JOVIAL program. Of course, when an entry is

added or subtracted in a varieble length table, the control word con-
taining the number of entries must be changed accordingly by the
JOVIAL obJject program. Since this never can occur with a fixed
length table, one might say that their treatment is different in
this respect. However, all other programming references should

be identical.

Referring to varieble and fixed length tables in a flexible fashion,
("flexible" meaning keeping the object program the same even though
the teble lengths change) requires some modifiers heretofore not
discussed. The one most frequently needed is NENT, which stands
for "Number of Entries".

11.9.1 NENT

We may well imagine the possibility that the number of cars
in the table AUTOS might be increased or decreased, although
this was presumebly a fixed length table. If it were, any
examples so far given in this text, which assumed the num-
ber of entries to be 25, would have to be modified, which

as most programmers know, is a distasteful and dangerous
practice. Thus a modifier is available which obviates

the necessity of knowing or writing the exact nunber of
entries. This modifier is NENT.

Like other modifiers of the language, the format for
expressing NENT is similar to the standard mathematical no-
tation for functions of something (e.g., f(x), F(Y), etec.).
Thus immediately following the modifier NENT, the neme ,
of the table or an item of the table enclosed in parentheses

is placed.

Examples: NEN (TABIE)
NENL(ITEM)
NENT(AUTOS }
NENT(CYL}
NENT(HP }

When an iter e is used following NENT, which is the preferred
practice, it means the number of entries in the table containing
this item.

For example, NENT(AUTOS) is equivalent to NENT(CYL) and NENT(HP).

The use of the modifier NENT should be used to program the
example in Section 11.7, as follows:

FOR A = §, 1, NENT(YEAR) - 1$
BEGIN
IF HP(A) IS 99 AND ...

]
-
\Q
n

11.9.3

FN-L0-34-2
1 February 1960
Page 43

Now if the number of entries in AUTOS is changed, the
JOVIAL program is unaffected.

Whereas the use of NENT is highly desirasble when referrin,
to fixed length tables, in variable tables it is a necessity.

Thus, to cycle through all of the table DISABL, it is
essential that one uses NENT as the limit of the loop.

Example: FOR I = §,1. NENT(DAY) - 1$
BEGIN IF REASON(I) EQ V(ACCID)$
REPLAC(1) = 1u4$
END

11.9.1.1 Using and modifying the number of Entries

The modifier NENT with its object item or table
can be used and set as an integer.

Examples:
ABIE = NENT(DOG) + 1$
IF NENT (DISABL) GR 233
NENT(DAY) = NENT(DAY)+1$

When NENT is the left term of an Assignment Statement,
both the number of entries(NENT) and the number of
words (NWDS to be discussed in section 11.9.3) are
set, the latter not requiring a reference in the JOVIAL
obJject program. NWIBis set to the new number of entries
times the number or words per entry.

. ‘I_n: . AT T

The Modifier ALL

With the modifier NENT, one can write a FOR Statement to cycle
through a complete table in the following fashion:

Al. FOR I = §,1,NENT(TABIE)-1$

Since this is done frequently and is not convenient to write,
the special modifier ALL hes been added to the language for
this purpose.

Thus the statement,
Bl. FOR I = ALL(TABIE)$
is equivalent to the statement Al given sbove.

Examples: FOR A = ALL(AUTOS)$
FOR I = ALL(BAKER)$
FOR £ = ALL(MAXSPD)$

The Modifiers NWDS and NWDSEN

Two other less frequently used modifiers are NWDS and NWDSEN.

FN-10-34-2
1 February 1960
Page 4i

NWDS represents the number of words in a table. It is
used in a similar fashion to NENT, but of course will al-
ways be equal to the number of entries times the number of
words per entry.

If NWDS is used on the left side of an Assignment Statement,
the corresponding NENT is also set (automatically) at this
time.

NWDSEN is a modifier which stands for the number of words in
an entry. Occasions to use this modifier are unusual.

The reason NWDS and NWDSEN are used relatively infrequently
are that the language is entry oriented, so that the inter-
preter and translator usually read progrems written in
terms of entries snd entry numbers and supply automatically
the necessary informetion pertaining to number of words and
nunber of words per entry.

11.10 Additional Remarks on the Boundaries of a Subscript

Following M consecutive FOR Statements where M is greater than or
equal to 1, the M subscripts are defined, and thus legal, for one
y statement.

If the statement following the FOR Statement is compound, it must
be enclosed in a BEGIN and END. If it is simple, it doesn't have
to be so bracketed. However, one may imagine that a BEGIN and END
exists around a Simple statement, so that it will not hurt the
following discussion if it is assumed that a BEGIN and END always
exist around the statement following the FOR Statements. (In
fact, %he use of a BEGIN and END around a simple statement is
legal.

If the FOR Statement (or Statements) is incomplete the BEGIN and
END bracketing the statement following serve only one purpose,
that being the specification of the boundaries of the subscript.

ook at the series of statements:

BEGIN ABIE(I) = 6$
BAKER(1) = 2
GOTO Al$

END
This could have been written:

FOR I = NUMB$
BEGIN ABIE(I) =

BAKER(1) =
END

GOTO Al$

63
2%

since no I is used following the END.

FN=-10-34-2
1 February 1960
Page U

In this example one might wonder what happens when ABIE(J) is not
equal to 3. If J had been defined with an incomplete FOR Statement,
it would have executed A3 and thus performed a transfer of control
to A2. However, the END preceding statement A3 represents the
modify and test statements on J. Thus the false branch at Al would
cause the modification and test on J and consequently a return to
Al if not all ABIE‘s had been tested.

Now another case may be examined.

FOR K = ALL(BAKER)$
BEGIN BAKER(K) = ¢$,
Bl. IF ABIE(K) = 1$
END
STOP$

The effect of this sequence will be to set all BAKERs to § up to
the point where ABIE is not equal to 1. At this point, the false
branch at statement Bl will cause a transfer around the END, and
thus the loop will be left, and the STOP takes effect. Thus in
this case the true branch is the only one which will permit the
continuation of the loop, by executing the modify and test of K
at the END.

Now one more problem remains. Suppose the program is in the middle
of a rather long loop, one which is made up of a number of statements.
For some reason, it is deemed necessary to complete the particular
iteration (with the modify and test of the subscript) prior to the
execution of all the statementswpt the END.

For example, in the following sequence, it is desired to skip statements
Sk, S5, and S6 and proceed to the next iteration if ABIE(K) = @.

FOR K = ALL(ABIE)$
BEGIN S1$

IF ABIE(K) EQ £$

GOTO?27

sk$

S5%

S6$
END

Section 11.11 will discuss the mechanism for accomplishing this problem
of getting to the END from the middle of the loop.

11.11 The Qperator TEST

The operator TEST permits a jump to the END of a subscript from anywhere
inside a compound statement for which a subscript is defined with a
complete FOR Statement. ‘

Its simplest form is illustrated in the following example.

FN-10-34-2
1 February 1960
Page k4

It could not, however, be written in the following (illegal)
example:

FOR I = NUMB$
BEGIN ABIE(1) = 6%

END
BAKER(I) = 4$
GOTO Al$

Once the END has been reached, no more use
of I is permitted.

The sbove example illustrates the purely "grammatical” nature of the
END when used as the right bracket following the definition of a
subscript with an incomplete FOR Statement. '

When a subscript is defined with a complete FOR Statement, on the
other hand, the END takes on additional significance.

Take the following example:
FOR I = ALL(ABIE)$
BEGIN ABIE(I) = 6
BAKER(I) = 2

GOTO Al$

This is significantly different than the following:

[

END

FOR T = ALL(ABIE)$

BEGIN ABIE(I) = 6%
BAKER(I) = 2%
GOTO Al$

END

In the latter ABIE($@$) will be set to 6 and BAKER($$$) to 2, and
the GOTO will cause an immediate exit from the loop. In the former
example, however, all ABIE and BAKER will be set prior to the trans-
fer of control to Al. In other words, the END of the definition

of a complete subscript stands for some actual statements, which
are the modification and test of the subscript and return to the

vadt sVl Y Ll

statement following the BEGIN. (In addition it serves the “"grammatical"
purpose of defining the end of the legal use of the subscripts.)

The fact that this END serves a dual purpose has some interesting
effects on programming which must be made clear.

Examine the following example:

FOR J = ALL(ABIE)$

BEGIN Al. IF ABIE(J) EQ 3Q
BAKER(J) = 1$

A3. GOTO A2$

END

FN-10-34-2
1 February 1960
Page 47

FOR I = ALL(ABIE)$
BEGIN IF BAKER(I) EQ 0%

TEST$

ABIE(I) = 3* BAKER(T)$
END

The operator TEST as used above causes a transfer of control to the
first END of a subscript defined with a complete FOR Statement.

Another example is the following:

FOR I = ALL(BAKER)$
BEGIN FOR J = ALL(AUTOS)$

BEGIN S1$
s2$
S3$
sk, TEST$
S5$
S6%
END

END

This time the operator TEST will cause a transfer to the modify and test
on subscript J, and therefore statements S5 and S6 will not be performed
when statement Sk is executed.

If in the latter example, one had desired to modify and test I rather
than J at statement Sk, the format TEST 1$ is availsble, which says
skip the normal TEST transfer and go to ine subscript specified.

Example: FOR A
BEGIN FOR B
BEGIN FOR C
BEGIN FOR D
BEGIN 82%

S3. TEST$
Sh$

S5. TEST B$
S6$

ST. TEST A$
s8%

Aw o foam

weononon
=
,gm
A%
—r
<~

END
END
END
END

At 83, control would transfer to the second end. At S5, control would
be given to the third END, and at statement ST, control goes to the
fourth END in the sequence. Note that no test ever goes to the first
END, which ends a subscript defined with an incomplete FOR Statement.

FN-10-34-2
1 February 1960
Page 48

11.12 Use of a Varieble B-Factor - Varisble Length Entry Tables

All examples used thus far have considered fixed length entry tebles.

At present, there is nothing in the language or the method of variegble
definition which pertains directly to tebles with varieble length

entries. (Undoubtedly there will be someday.) Also not discussed

so far has been the use of a varisble B-factor in the complete FOR

Statement. Although the varisble B-factor can have many applications,

it can be used most directly in the handling of varisble length entry

tebles. For an example of its use and the handling of varigble length entries
we shall discuss a hypothetical problem.

First of all, we shall consider a taeble of messages made up of Hollerith
characters. Each message may consist of a variable number of characters,
and thus each entry (message) in the table may consist of a varisble
number of computer words. This teble will be called MESTAB. To make
possible the handling of this variable length entry table it will be
defined as a table with one item (only one word per entry). This

will be defined as a 6 character Hollerith type item (assuming 36

bit computer words). The name of this item will be MESWRD.

Another table, called COUNT, will be defined. It also has only one
item, called NUMWRD. This item is an integer which contains the number
of words in the message which is placed in the same relative position
within MESTAB as itself. Thus both MESTAB and COUNT are varisable
length tables which have equal numbers of entries at any given time.
But, whereas MESTAB in fact has variable length entries, COUNT has
actually a fixed entry length of one.

Lastly, there is a varisble length teble called HURRY. This table

also has one item, called FLLOCN. This item is assumedto have the
-address, relative to the location of MESTAB, of a message which con-
tains the characters "FLASH" in the first five positions of the message.
There may be any number of this type of message.

Figure 3 contains a diagram of these three hypothetical tables.

FIGURE 3
MESTAB COUNT HURRY
NENT | NWDS NENT | NWDS NENT | NWDS
MESWRD NUMWRD FLLOCN
ACTUAL MESWRD NUMWRD FLLOCN
MESSAGE VESWRD
LENGTH /(VESWRD
MESWRD
§ MESWRD

FN-10-34k-2
1 February 1960
Page 49

The problem to be solved is the cycling through all of MESTAB, and
placing the location of all FLASH messages in the tsble HURRY.

The solution will now be presented. (Note: The solution requires
the use of the modifier BYTE, which is described in Section 13.2.)

TABIE MESTAB V 1§¢d$
BEGIN ITEM MESWRD H 6$ END

TABIE COUNT V 500$
BEGIN ITEM NUMWRD I 6 U$ END

TABIE HURRY V 5p4¢$
BEGIN ITEM FLIOCN I 1§ U$ END

FOR I = ALL(NUMWRD)$
FOR J = f, NUMWRD(1), NWDS(MESTAB)$
FOR K = ALL(FLLOCN)$

BEGIN IF BYTE($@,5%)(MESWRD($J$)) EQ SH(FLASH)$
- FLIOCN(K) = J$
END STOP$

FN-LO-3L4-2
1 February 1960
Page 50

12. SWITCHES - THE SWITCH DECLARATION AND SWITCH CALL

So far the only decision meking function discussed has been the IF Statement. A
frequently necessary type of function is a switch, or n-way branch, based on the
velue of a particular item or subscript.

Tn order to set up a switch in JOVIAL, one must define it with a SWITCH Declaration.

The purpose of the declaration is the listing of the statement labels to which to
transfer and the conditions under which the respective transfers are to be made.

The actual switch (or n-way branch) is accomplished with a SWITCH CALL. This is a
particular type of GOTO Statement.

There are two types of switches, one on items and the other on subscripts.

12.1 Item Switches

12.1.1 TItem SWITCH Declarations

For the following discussion, the notation will be as follows:

SNAMEi is the name of the switch.
NAMEi is the name of an item.

Vi is a particular value of the item.
Si is a statement label.

i=1,2,...1

The form for an item SWITCH declaration is the following:
SWITCH SNAMEL(NAME1) =(V1=31,V2=S2,...Vn=Sn)$.

where NAMEl can be any type of item, V1, ...Vn can be any

legitimate value of NAMEl, and Sl...S5n can be any statement

label of the object program. Vi cannot equal Vj, but any Si

can equal any Sj-

12.1.2 TItem SWITCH Call

If NAMEL belongs to a table, the format of the Item SWITCH Call
is: GOTO SNAMEL(I)$

where I can be any legally defined subscript.

TIf NAMEL is an item in a one entry table or it is not a member of
any table, the proper format is: '

GOTO SNAME$

12.1.2.1 The Effect of the Ttem Switch Call

At the Switch Call Statement, all values named in the SWITCH
Declaration are compared against the item (subscripted, if

FN-LO-34-2
1 February 1960
Page 51

necessary). If any Vj agrees with the current state of the

item, a transfer of control is made to the respective statement
SJj. If no Vj agrees with the current value of the item, then
control procedes to the statement following the SWITCH call.
Examples:
(a) For ABLE an Integer Type Item:
Declaration: SWITCH ALPHA(ABLE)=(1=S1,5@¢=B1A,18¢=ABC)$
Call: GOTO ALPHA(J)$
In this example, if the Jth ABLE =1, transfer of control is
to S1, if it is 5@, the transfer is to Z1A, and if 10§ it goes
to ABC. If ABLE‘(J) equals any other value control procedes
to the statement following the call.
(b) For COL a Hollerith Type Item with 2 Hollerith characters:
Declaration:
SWITCH BETA(COL)=(2H($))=CDE, 2H(0Q)=S@k, 2H(PQ)=SST, 2H(1H)=PQR)$
Call: GOTO BETA(K)$
(¢) TFor TAPSTT a Status Type Item not in a table:

Declaration: SWITCH GAMMA(TAPSTT)= (READY,=GO, NOTRED=STOP,
EOF=Z3A)$

Call: GOTO GAMMA$
(Note the currently existent inconsistency of format. The
status constant in this case does not have the letter "V" and

parentheses, as it usually does).

12.2 Subscript Switches

12.2.1 Subscript SWITCH Declarations

Subscripts are assumed to take on only positive, or zero, integer values
for switches. In the subscript SWITCH Declaration, all possible values of
the particular subscript must be accounted for.
The form of the SWITCH Declaration is:
SWITCH SNAME2 = (S1,S2,S3,...5n)

If it is desired to have control procede to the next statement for certain
values of the subscript, this is signified by consecutive comas, such as:

FN-LO-34-2
1 February 1960
Page 52
SWITCH SNAME3 = (,S1,,S2,83,8L,,,S5)

In this example, the values @, 2,6, and T will cause a transfer to the
statement following the SWITCH Call. :

12.2.2 Subscript SWITCH Calls

The form for this type of call is:
GOTO SNAME2(1)$, where I is any legal subscript.
Example: B
Declaration: SWITCH EPSLON=(S@A,,ZEBO, ,AMOS)$
Call: GOTO EPSLON ($J%) '
In this example, if J=1 or 3, control proceeds to the statement following

the call. If J equals ¢, control goec to SPA if 2, control goes to BEBO,
and 4 to AMOS.

Note: It is the programmer's responsibility to make certain that J is not
greater than 4, or, in general, n-1 where n is the number of values
accounted for in the declaration.

FN-10-34-2
1 February 1960
Page 53

13. USING PARTS OF ITEMS - THE MODIFIERS BIT, BYTE, CHAR, MANT

Access to parts of items is permitted in JOVIAL. Certain modifiers preceding
an item name will allow one to get the information and use it, or, when used
as the left term of an Assignment Statement, will permit the setting of just
the specified part of the item. One general rule prevails whenever these
modifiers are used. The information used or set in this fashion is treated
as if it were an unsigned Integer Type Item, even if the part of the item
being used includes a sign or non-integer information (e.g., bits to the -
right of the binary point).

13.1 The Modifier BIT"

The modifier BIT allows access to specified bits of an item. The
starting bit and number of bits are specified by subscripts enclosed
in the brackets "($" and "$)" following the modifier.

Examples: - BIT($0,2$)(ABIE)
BIT($I,3$)(BAKER)
BIT($3,J$)(CHARLY)
BIT(K,L)(DOG)

If it is desired to specify just one bit, two alternative notations
are available. In this case, the number of bits does not have to
be specified.

Examples: BIT($2,1$)(ABIE) is equivalent to BIT(2)(ABIE).
BIT($0,1$)(DOG) is equivalent to BIT($#$)(DOG).

BIT($#$) has special significance. For signed items, it re-
presents the sign bit. For unsigned items, it is the first
magnitude bit.

Example of programming Using the modifier BIT:

$,1,7%
ALL(BAKER)$

FOR I
FOR J

[

BEGIN IF BIT(I)(ABIE(J))EQ 1$
BIT($J,2$)(BAKER(1)) = 33
END

13.2 The Modifier BYTE

The operator BIT permits access to the bits of any item. The
operator BYIE permits access to any number of 6 bit Hollerith
characters within a Hollerith Type Item.

FN-LO-34-2
1 February 1960
Page Sk

Examples: BYTE(2)(COL)
BYTE(J) (COL)
BYTE(@, 3) (CcOL)
BYTE(I,2)(COL)
BYTE(3,K) (COL)
BYTE(A,B)(COL)

13.3 The Modifier CHAR

The characteristic of a floating point number may be referred to
with the modifier CHAR.

Example: CHAR(MAXSPD)

13.4 The Modifier MANT

The mantissa of a flosting point item may be referred to with this
modifier. This will include only the magnitude bits. The sign is
not referenced with this modifier.

Example: MANT (MAXSPD)

FN-I10-34-2
1 February 1960
Page 55

14. REFERENCING COMPIETE ENTRIES - THE MODIFIER ENT

A limited amount of manipulation of complete entries of tables is
available with the modifier ENT. An entry can be set to ¢ (or some
other constent, which isn't advissble) or one entry can be set to
another entry.

When an entry is set to zero, all words in the entry are set to zero.
When one entry is set to another, the number of words in each must be
equal.

The formeat for the use of this modifier assumes that one wishes to refer
to "the entry containing some ITEM(I)", where I is any subscript.

Thus the format is:

ENT(ITEM(J))
OR ALTERNATIVELY, ENT(TABIE(J))

Examples of use:

ENT(CYL(3)) = £$
ENT(HP(K)) = ENT(HP(L))$

FN-LO-34-2
1 Februarv 1960
Page 56

15. COMMENT STATEMENTS - THE COMM DECLARATION

Although JOVTAL has a fair amount of readability inherent in its structure,
occassions arise when additional text is desirable to shed light on the statements
of the object program. Statements for this purpose, called Comment Statements, are
preceded with the declaration COMM. Following this declarator, any set of words,
numbers and characters may be used, with two restrictions.

1) The first character of the comment must be a letter or number.

2) Within the body of the comment, the symbol "$" can be used only
in one of the combinations "($" or "$)".

The symbol "$" is used to mark the end of a comment statement.
Examples:
COMM THIS IS A */.)(- PROGRAM $

COMM IS ABLE (I) OVER 16$

FN-LO-34-2
1 February 1960
Page 57

[}
ON
(@]

LOSED SUBROUTINES -

(%) WS i¥. EEaS A\ L

The discussion so far has described the various properties of JOVIAL as they
would be used in programming the "main" program, that is, no mention has been made
of the technique for writing closed subroutines. Since writing and using subroutines
in JOVIAL require some special devices and knowledge of certain rules, this chapter
will be devoted to a discussion of these.

16.1 Definitions

This section will define certain terminology which is peculiar to the writing
and using closed subroutines.

a) Procedure - A closed subroutine in JOVIAL is in general called a procedure.
(One exception is a "Closed" routine, described in Section 16.7.) A pro-
cedure has one entrance and one exit point. It cannot be entered via a
direct flow of the program.

b) Procedure Declaration - A procedure declaration is a statement which declares
a set of statements to be a procedure.

c) Procedure Call - A procedure call is the link from the main program to a
procedure. It is the only place from which a procedure may be entered.

d) Input Parameter - An input parameter is an arithmetic expression specified
in the procedure call which represents a value on which the procedure is to
operate.

e) Output Parameter - An output parameter is an item spécified in the_proce-
dure call which is to contain an output of the procedure.

) Dummy Input Parameter - A dummy input parameter is an item specified in the
procedure declaration which represents a value to be used by the procedure
as an input parameter.

g) Dummy Output Parsmeter - A dummy output parameter is an item specified in
the procedure declaration which represents a value to be set by the pro-
cedure as an output parameter.

“h) No Output Procedure - A no output procedure is one which uses input par-
ameters only. If it sets any items or tables, they are always the same
ones, since no output parameter may be specified in the procedure call.

i) Multiple Output Procedures - A multiple output procedure is one which
sets one or more output parameters.

j) One Output Procedures - A one output procedure is one in which no output
parameters are specified but which produces as its output a single value
which is to be used immediately for further calculation by the main program.

FN-LO-34-2
1 February 1960
Page 58

16.2 TFormats

This section describes the format for the various procedure declarations and
calls.
complete statement.

In all cases except the one output procedure call, the format is a

Note: The notation is as follows:
ID - The name of the procedure. (This must be 2 to 6 alphanumeric characters,
of which the first must be a letter.)
Pi - Input Parameter - This may be any arithmetic expression.
0i - Output Parameter - This must be an item.
Di - Dumy Input Parameter - This must be an item.
Qi - Dummy Output Parameter - This must be an item.
a) No Output Procedure Declaration:
PROC ID (Dy,Dp...Dw) $ {W = 1)>
b) No Output Procedure Call:
ID (Py,Ps...Bs) $ {/wv_i 1 }
c) Multiple Output Procedure Declaration:
PROC 1ID (Dl,De,MDm= Ql,qg,.a.Qm}$; 2 1, nL 2 1)2
d) Multiple Output Procedure Call:
ID(Py,Pp, . . -Bry=01,0,, . .0 i ({Mw 21, 2 l}
e) One Output Procedure Declaration:
PROC ID(Dy,Dp,...Dr$ [,m, By 1:
f) One Output Procedure Call:

ID(P,P,, .. .Pon) /» = 1)}

Note that (f) is never a complete statement. It is always part of an
arithmetic expression. (It may be the only part.)

FN-LO-34-2
1 Februarv 1960
Page 59

16.3 General Rules for Procedures

a)

e)

f)

3)

All dummy input and output parameters must be defined with Item Declaration
Statements immediately following the Procedure Declaration. In addition,
all items and tables which are used solely by the procedure (those which are
not defined in the Communication Pool or the main program) must be defined
with Item and Table Declaration Statements following the Procedure Declar-
ation. The Procedure Declaration plus the list of variable declarations is
called the Procedure Heading. All items and tables defined in the Procedure
Heading may have the same name as items and tables defined outside the pro-
cedure.

Ttems and tables used by a procedure which are defined outside of the pro-
cedure must not be defined in the Procedure Heading.

Immediately following the Procedure Heading (preceding the first dynamic
statement of the procedure) the bracket "BEGIN" must appear. Immediately
following the last statement of the procedure, the bracket "END" must
appear. The latter bracket serves as the unique exit from the procedure.

A Procedure Declaration may not appear within a procedure, or within any
vair of BEGIN, END brackets.

One or more Procedure Calls (of other procedures) may appear within a pro-
cedure. At present, only four "levels" of calls may exist.

Statement Labels within procedures are considered to be unique for the pro-
cedure. Therefore statement labels used within a procedure may duplicate
those in the main nrogram or in other procedures. Procedure names, however,
can not be duplicated.

All subscripts referred to by a procedure must be defined by FOR Statements
within the procedure. However, the current value of a subscript used out-
side che procedure may be transmitted to a procedure via an input parsmeter.
Likewise, the value of a subscript set within a procedure may be transmitted
to the outside of the procedure with an output parameter.

There must be a one-one correspondence of input and output parameters to
dunmy input and output parameters, respectively. In other words, there must
be one parameter for each dummy parameter. The respective positions of the
parameters must be identical to the positions of the dummy parameters within
the Procedure Declaration. Also the type and scaling of each parameter must
agree exactly with the type and scaling of its respective dummy parameter as
defined in the procedure heading.

Multiple Output and No Output Procedure Calls cannot be used as input par-
ameters.

The exit of a Multiple Output or No Output Procedure is to the statement
following the Procedure Call.

FN-10-34-2
1 February 1960
Page

16.4 Special Rules for One-Output Procedures

Although all rules mentioned in Section 16.3 hold for One-Output
Procedures as well as others, the following rules apply to One-
Output Procedures only.

a) In the heading of a One-Output Procedure Declaration &n Ttem
Declaration Statement for an iter with the same name &s the procedure
must appear. This is called the Ouipuc item.

b) The Output Item must be set prior to exiting from a procedure.
This item must contain the value which is the result of the
procedure's operation.

16.5 The RETURN Statement

In (c) of Section 16.3 it was stated that the bracket "END" which
merks the physical end of a procedure. also serves as the dynamic

exit point of the procedure. Therefore if a procedure consists of

o series of statements which always dynamically reach the point

of the END, no additional operators are necessary. However, procedures
which do not have this required linearity need some means of reaching
the dynamic and physical END of the procedure. The means provided

for this is the operator "RETURN" which is used in a RETURN statement.
The RETURN Statement always has the format; .

RETURN$
The function of this statement is to perform & transfer of control
to the END"of the procedure, which in turn causes an exit from the
procedure. :

16.6 Examples:

In Example (2) of Section 8.2.1.1, a program to compute the square
root of an item was written. To illustrate as many points from this
chapter as possible a number of variations on the theme of this
square root will be given.

16.6.1 One Output Procedure with One Input Parameter

One Output Procedures are usually thought of in terms of
mathematical functions like square root, sin, arctan, etc.
This example will illustrate the writing of a simple square
root routine which computes the square root of any posivite
floating point item. Then the use of this procedure will
be illustrated in a program which computes the hypotenuse
of 100 triangles.

FN-10-34k-2
1 February 1960
Pagc 61

How to write the procedure:

PROC SQRT(SQUAR)$
ITEM SQRT F$ COMM THIS IS THE OUTPUT$
ITEM SQUAR .'$ COMM THIS IS THE INPUT$

BEGIN SQRT = .5% SQUAR$
A2. IF ABS(SQRT(*2%) - SQUAR) GQ -.@o@1$
BEGIN SQRT = .5%(SQRT+SQUAR/SQRT)$
GOTO A2$ ~END
END

How to use the proéedure in a program:

START$
TABIE TRIANG R 1p¢$
BEGIN ITEM ISIDE F$
ITEM RSIDE F$
ITEM HYPOT F$ END
FOR I = ALL(HYPOT)$
HYP%(I) = SQRT(LSIDE(I)(*2%)+RSIDE(I)(*2%))$
TER

Note that the input parameter is one floating arithmetic expression
and therefore meets the requirement of the one dummy input parameter
which has been defined as a floating point item.

16.6.2 One Output Procedure with two Input Pararmeters

The procedure in section 16.6.1 always computed the square
root so that the difference between its square and the true
sgquare was less Uhan ¢¢¢l. We shall now write and use the
same routine, except that this time we shall permit the differ-
ence to be specified in the call of the procedure rather than

the constant .@@g1.

PROC VSQRT(SQUAR,EPSLON)$
ITEM VSQRT F$
ITEM SQUAR F$
ITEM EPSION F$
BEGIN VSQRT = .5% SQUAR$
A2. IF ABS(SQRT(*2%) - SQUAR) GQ EPSLON$
BEGIN VSQRT = .5%(VSQRT + SQUAR/VSQRT)$
GOTO A2$ END END

Computing the 100 hypotenuses:

START $
TABIE TRIANG R 1p90$
BEGIN ITEM LSIDE F$ ITEM RSIDE F$
ITEM HPOT F$ ITEM DELTA F$ END
FOR I = ALL(ISIDE)$
HYPOT(inﬁ) = SQRT(ISIDE(I)(*2%)+RSIDE(I)(*2%),DELTA(1))$
TE

FN-10-34-2
1 February 1960
Page 62

16.6.3 Multiple Output Procedure

‘Until now, we have been assuming that the input parameter
is always positive, and therefore the square root could be
computed. Also, using the procedures so far written we
could use the square .oot computed in eny fashion as long
as it were part of an arithmetic expression. Now we shall
write and use a procedure which, using a varieble EPSION,
tests for a negative square, and if found sets an item

to 1. In addition, it will always set an item to the
computed square root. This is an example of a Multiple
Output Procedure.

PROC SSQURT(SQUAR, EPSLON = ERR, SQRT)$
ITEM SQUAR F$
ITEM EPSLON F$
ITEM ERR I 1 U$
ITEM SGRT F$
BEGIN ERR = £$
IF SIGN(SQUAR) EQ 1$
BEGIN ERR = 1$ RETURN$ END
SQRT = .5%SQUAR$
A2. IF ABS(SQRT(*2%) - SQUAR) GQ EPSION$
BEGIN SGRT = .5%(SQRT + SQUAR/SQRT)$ GOTO A2$ END
END

Now, using the procedure in a program:

START$
TABIE TRIANG R 1fp$
BEGIN ITEM ISIDE F$ ITEM RSIDE F$ ITEM HYPOT F$
ITEM ALARM I 1 U$ END
ITEM DELTA F$
DELTA = .@@5$
FOR I = ALL(TRIANG)$
SSQRT(ISIDE(I)(*2%)+RSIDE(I)(*2*),DELTA = ALARM (I),
HYPOT(I))$

16.6.4 No Output Procedure

No -Output Procedures always set a compool or main program
defined tsble or item. The following example will illustrate
the writing of a procedure which always sets the compool

defined floating item SQROOT to the square root of the input
parameter and the use of it to set all HYPOT's as in the previous
examples.

Writing the procedure:

PROC SQRR (SQUAR)$
ITEM SQUAR F$
BEGIN
SQROOT = .5%SQUAR$
A2. TF ABS (SQROOT(*2%) - SQUAR) GQ .PPg1$
BEGIN SQROOT = .5%(SQROOT+SQUAR/SQROOT)$
GOTO A2$ END END

FN-L0-34-2
1 Februarv 1960
Page 63

(Note that this type of procedure looks very similar to a One
Output Procedure, except that there is no item defined with the
same name as the name of the procedure.j_

Using the procedure:
| START$
TABIE TRIANG R 1¢¢$
BEGIN ITEM LSIDE F$ ITEM RSIDE F$
ITEM HYFOT F$ END
FOR I = ALL(HYPOT)$

BEGIN SQRR(LSIDE(I)(*2%) + RSIDE(I)(*2%))$
HYPOT(I) = SQROOT$ END TERMS$

16.7 "Closed Routines - The CLOSE Declaration

A procedure is the commonest form of closed subroutine used in
JOVIAL. On€ other form of closed subroutine exists. It is called
a "Closed" Routine. It has many different properties than a pro-
cedure.

rroperties of “Closed" Routines are described in the following
list:

(a) The CLOSE Declaration is used to head a "Closed" Routine.
The format of the "Closed" Routine is the following:

CLOSE ID$
BEGIN S1$ S2$...S»$ END

where the Si's are the statements of the routine.
(b) A "Closed" Routine has no input or output parameters.

(c) A "Closed" Routine has no special Item or Teble Declaration
Statements within its body or heading.

(d) A "Closed" Routine may be included, and usually is, within
the brackets BEGIN and END. In other words, it may be
contained within a procedure, another "Closed" Routine, or
a compound statement.

(e) Like & procedure, the bracket BEGIN following the CLOSE
Declaration is the unique entry point of the "Closed"
Routine. Also, the bracket END represents the unique exit
from the routine. The RETURN Statement may be used within
a "Closed” Routine.

(f) The entry to a"Closed" Routine is made with a GOTO Statement,
not a special Call Statement.

Example: GOTO ID$

FN-10-34-2
1 February 1960
Page 64

(g) When a "Closed" Routine is enclosed within the boundaries of
definition of a subscript, the definition of the subscript holds
for the body of the "Closed" Routine. If the subscript is modi-
fied within the "Closed" Routine. the modified value will exist
upon exit from the routine.

16.7.1 The following program illustrates the writing and use of a
"Closed" Routine. The use of the "Closed" Routine in this
case creates a rather inefficient program. The example is
for illustrative purposes only.

START$
TABIE TALL V 5@$
BEGIN ITEM ABIE F$
ITEM BAKER F$
END ITEM ALARM I 1 U$
FOR I = NENT(ABIE)-1,-1,0$
BEGIN IF ABIE(I) EQ 0.3
BEGIN GOTO SUBT$
Al. IF ALARM EQ 1$
STOP$ TEST$
END IF BAKER(I) = 1.0$
BEGIN GOTO SUBT$
GOTO Al$ END TEST$
CLOSE SUBT$ BEGIN ALARM = @$
IF NENT(ABIE) EQ 1$
BEGIN ALARM = 1$ RETURN$
END ABIE($I-1$) = ABIE($1-1$) + 1.6$
END
END STOP$
TERM$

FN-10-34-2
1 February 1960
Page 65

17. STATEMENT, CARD AND DECK FORMAT

JOVIAL is, in a fashion, a programming language which approaches the English,
or program specification language. Therefore, an attempt has been made to
keep the structural rules as relaxed as possible. Programming and computers
being what they are, however, complete laissez faire on a punched card is
somewhat beyond our grasp, so that certain rules must be followed.

Experience on the part of the individual JOVIAL programmer will probably

be the best teacher in the matter of statement, card, and deck construction.
At best, a list of general rules can be given here. The remarks pertaining
to the deck construction are reasonably accurate, but remarks pertaining

to statement and card format are probably incomplete.

17.1 Statement Format

(1) single terms, such as variebles, constants, operators, etc.,
which consist of consecutive strings of letters or numbers,
must not have any spaces between the first and last character,
and they cannot be broken onto two consecutive cards.

(2) Where two consecutive entities of the type mentioned in (1)
appear, they must be separated by at least one space. (e.g.
SWITCH ALPHA ...)

(3) It is not necessary (although it might sometimes be desirsble)
tc separate special characters (non-alphanumeric) from entities
men ..oned in (1) and (under some circumstances) from each other.
Example: AB = 3%(BC-CD)/(EF+GH)$

In this statement, no spaces need appear.

(4) Wherever one space is required, or permitted, any number of
spaces may exist.

(5) No implied multiplication is allowed. The expression (AB+BC)(CI+IF)
is illegal. It should be written (AB + BC) * (CD + EF).

(6) For Hollerith Type Constants, the number of characters within
the parentheses must agree precisely with the number stated
outside the parentheses. A blank is a legal Hollerith Character
and should be included in the count.

17.2 Card Format
(1) Coding can begin at any column on the card.

(2) Coding can stop at any column on the card, but must not extend
beyond column 66.

FN-10-34-2
1 Februarv 1960
Page 66
(3) More than one statement can eppear on one card.

Example: The following "cards"

FOR I=NUMB$ BEGIN XY(I) = 6% AB(I) = £$
oPQ(1) = I $ END

are equivalent to:
FOR I = NUMB$
BEGIN
6%

XY(1) :
OPQ(I) = I$
END

AB(1) =

(4) A statement may continue for as meny cards as necessary.
The end of any one card, however, cannot be the middle of a
single entity such as a varisble name, etc.

17.3 Deck Format

(1) The first card in any deck must be a card beginning with the
declarator, START. Following this declarator, there can be
no other JOVIAL Statement on the same card. Any remarks, pre-
ferably program name, date, etc., should be added since this
card is logged on the printer when recognized.

(2) All Item and Tsble Declaration Statements except those for
procedures must follow the START card and precede the first
dynamic JOVIAL instruction.

(3) All procedure varisble declarations must precede the first
procedure dynamic instructions.

(&) The last card in the deck must have the operator TERM followed
by the symbol "$" or a statement label followed by the symbol ngY.,
If the TERM is nct followed by a statement lsbel, the first
operating instruction is considered to be the first JOVIAL dynamic
instruction. If it has a label, then the statement having this
lebel will be considered to be the first dynamic instruction.
Other JOVIAL Statements may precede the operator TERM on the
same card, but none can follow<

(5) Procedure declarations may not appear where they will be operated
in the normal flow of the program.

The following two examples are illegal.

(a) ABIE = BAKER$
CHARLY = DOG$
PROC ID...

(b) IF ABIE EQ 3$
BAKER = T$
PROC ID...

FN-10-34-2
1 February 1960
Page 67

(6) Switch Declarations may not appear immediately following
an IF Statement.

The following example is illegal:

IF ABIE EQ 3%
SWITCH ID...

18. SUMMARY

This section contains a concise summery of the language. The detailed
descriptions of the various facets of the language have been omitted
in an effort to describe the main components.

I Definitions:

is
is
is
is
is
is
is
is
is

B0 K O <

a table.

an item or an item with a modifier.

the output of a one output procedure.

a constant.

a subscript.

an arithmetic operator (+,-,%,/,(%*,%),ABS).

a relational operator (EQ,NQ,IS,GR,IR,GQ).

a logical operator (AND,OR,NOT)

an erithmetic expression (a concatenation of v's, k's,

o's connected by A's).

is
is

W Q

a condition (Ei R Ej)
a logical expression (a concatenation of C's connected by

L's)

=

is

a string of 2 to 6 alphanumeric characters beginning with

a letter.

> is
1 is

a statement.
a statement label.

II Statements:

A) Item Declarations:

ITEM N F$ (Floating)
ITEM N I #BITS S/U$ (Integer)

ITEM N H #CHARACTERS$(Hollerith)
ITEM N A #BITS S/U ACCURACY$(Mixed)
ITEM N S ST1 ST2...$ (Status)

i

FN-10-34-2 -
1 February 1960
Page 68

B) Item Parameter Declarations

ITEM N... P k$

C) Teble Declarations

TABIE N R/V #ENTRIES$
BEGIN ITEM N...$
ITEM N...$

END

D) Tsble of Constants Declarations

TABIE N R #ENTRIES$
BEGIN ITEM N...$ BEGIN k k...$ END
ITEM N...$
END

E) Like Table Declarations

TABIE N ... L$

F) Assignment

E$
E$

G) Unconditional Transfer of Control

v
s

GOTO 1%
H) Conditional Transfer of Control

IF B$
In the event B is true, the next statement in sequence will
be executed. If B is false, the next (simple or compound)
statement will be skipped.

I) Unconditional Halts

STOP$
or STOP 1$

J) Complete FOR Statements

FOR s = E, k, E$
FOR s = E, v, E$
FOR s = E, s, E$
FOR s = ALL(v)$
FOR s = ALL(%)$

K)

0)

P)

Q) .

U)

FN-10-34-2
1 February 1960
Page 69

Incomplete FOR Statements

FOR s = E$.
In J and K, the subscript is defined for the next statement
only.. '

Unconditional Transfer to the Boundary of a ILoop

TEST$
or,TEST s$

Subsceript Switch Decleration
SWITCH N = (1,1,...)$, where some 1 positions may be omitted.
Subseript Switch Call

GOTO N(s)$

Item Switch Decleration

SWITCH N(v) = (k = 1, k = 1 ...)$
(v may not have a modifier)

Item Switch Call

GOTO N$
or,GOTO N(s)$

One Output Procedure Declaration

- j P

xr e P . T - W R ¥
V,Vy ..)$ (v may not have a modifier)

Multiple Output Procedure Declaration
PROC N(v,v,v... = v,v,v...)$(v may not have a modifier)

Multiple Output Procedure Call

N(A,X,... X =v, v, v...)$(v may not have a modifier)
whiere can be v, o, s, or k.

No Output Procedure Declaration

PROC N(v,v,...)$(v may not have a modifier)
No Output Procedure Call

N (£,)8

FN-LO-34-2
1 February 1960

Page TO
Distribution
SDC (Lodi) RAND
All SACCS Programming Group (1 ea.) c/o Margaret Anderson for:
All CUSS Project
B. H. Bragen C. Baker
W. R. Goodwin M. Bernstein
L. Ngou I. Greenwald
H. R. Patton
A. M. Rosenberg BTL
V. S. Thurlow
c/o Mrs. R. M. Riley for:
SDC (Senta Monica)
G. Clement
E. Book c. Sherrerd (2)
R. Bosak
H. Bratman IBM
W. Fitzgerald (5) :
E. S. Gordon c/o L. F. Witte for:
D. E. Henley
E. Jacobs "~ R. Washburne
H. A. Kinslow P. Metzger
J. L. Koory
R. E. Olsen IBM (At IEC)
C. J. Mosmenn (5)
R. Schaub B. Iorber
G. Dobbs (5)
MITRE
SDC (Omsha) i
c/o Mrs. Jean Claflin for:
S. Dorresteyn
G. J. Keckhut J. Burrows (3)
S. Levy J. Porter
J. C. Rea E. Bensley
mEC RADC
c/ o Ruth Prabetz for: Commander, Rome Air Development Center
Attn: Mr. J. Widrewitz (RCCS)
IEC Standard Distribution Rome, New York (2 copies)

SAC
¢/o Margaret Cameron for:

Captain Phythyan (3)
DOCOA

Hq. SAC

Offutt Air Force Base
Nebraska

JIS:1b

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70

