N 16044 /000 /CL

. . _an_Q' o
This document was produced by SDC in performance of _ DOD-SD-Q7 e AUTHy_V{V{ K /! A raw7[\
. A, Slaybaugk

N@TE o 17 ST
an internal working paper 17 May 1962

System Development Corporation/2500 Colorado Ave./Santa Monica, California

Author Delivered

THE AN/F5Q-32

A Description and Coding Manual for Experienced Programmers

The intent of this document is to provide senior programmers
with & concise description of the Q-32. In general, instructions

have been described in terms of SCAMP mnemonics and instruction
effects rather than a detailed hardware analysis.

Although this document contains no classified information it has not been cleared for open publication by the Department of Defense.

SDC INTERNAL DISTRIBUTION

17 May 1962 -2- N-16044/000/01

TABLE OF CONTENTS

Page

1. General Description-----------eccccmrmcrcccc e e s s s n e 3
2, Instruction and Date Wordse-------c-c-cc-cmucmcrccecranrcacac-cuanne" 3
3. Addressing--------s---m-mmeecemem-eoeoccseseammcosscooos—coomsses 3
4, Arithmetic Operations--------=-----ccc-mcemmmcmmoooecccconcmenenee L
5, Interrupt System-------------eommmemooooeocooooooooscoonommomna oo 6
D ¥ Lo T e T e L L e e 6
7. Modifier and Instruction List------------c-ccmwocmonmnmomnooconommmo T
7.1 LoB4 ClaSBe=-=-=-==--=m=-m-=mc=mmmm—-—mememe=—eocoscooooooaeee T
7.2 Arithmetic Class--===-----------cecmcmmemmmooooooeooooooo-onooe 8

7.3 Floating Point=---=-m=ceccoomcmeece e ecmmeccmmo oo oo 10

7.4 Store Class-- =--=== =mcecc-mo-emcmeececeemeecoe—ceeoooeooeoma- 11

7.5 Branch Clegs-----=-ecemem-mocccmeecccccosmomom oo m oo oo o= 12

7.6 Branch Decrement Class------- T nL R EE L LR P T 15

7.7 Loglcal CleSs=---=mm===m-----mmocmemcecme—eecceao—ooooo--smsoes 16
7.7.1 Sub-byte Manipulation--------c-eeecmmemmoaoooooomoconnnn 16

7.7.2 Boolean Operations------ ==---=-c===-=-eommooo—-cooooooo- 18

7.7.3 Compare---=------semmcemceceme—ccecccoccooemoommooon— 0]

7.7.4 Index Instructions-----=----ce-emecmcmmancoecomnmocooconn- 21

7.7.5 Convert Instructions------=--+-------ceceemomomonomnomoo 22

7.8 Miscellaneous------- B L T L L P L P L L 2l
7.8.1 Miscellaneous-------===-==m--c--=-s-emm-momooo-----ooo-- 2k

7.8.2 Shifting and Cycling-----=---======-ecemcca-—-cccocoocon 25

Te8u3 I/0eccmmcm oo e mem oo 27
Appendix A - Addressable Registers-----------c-ce-c-momcocromcmmonoenon- 33
Appendix B - Bookkeeping Address Registers--------------c-----c--c----o- 35
Appendix C - Summary of Modifiers----------=--c----c-o-c-oo-coocooosoooo 36
Appendix D - Summary of Instructions--------=-=--------co-ocemmmmmooonoo 41
Appendix E - Summary of SCAMP Coding-------------===sce=-w-=-omcm-occoo- 52
Appendix F - I/O Typewriter Codes=---=-=--=ce-mmm=mmmmmmcmoooooooooooooo 55
Appendix G - Interrupt System Data for Central Processing and I/O ------- 56

1T May 1962 -3- N-160L44/000/01

General Description

This synchronous ones' complement machine has a very powerful and flexible

instruction list with which to operate on data contained in its 65K, 48 biv
word memory. The memory unit consists of 4 - 16K banks, each bank being

independently and simultaneously accessible during each 2.4 usec memory
cycle and a test memory unit of 4 switch registers, 2 live registers, and
32 pluggable registers. This permits truly simultaneous I/O on its "1401"

channel, typewriter channel, 1 to 4 tape channels (depending on specific
configuration, but normally two), and high-speed channel (drums, I/O Re-

gister, or, on duplexed machines, inter-computer memory to memory, and two
way drum-memory transfers). Further, instruction overlapping is possible
by accessing the next instruction simultaneously with the last data cycle
of an instruction. There is also a real-time clock, accurate to 1/2048 sec.

Instruction and Data Words

The instruction word, generally spesking, uses the left-half (24 bits) for
the instruction and the various instruction modifiers, and the right-half
(24 bits) for the address and addressing modifiers. The data word can be

arithmetically operated upon in floating point or fixed point and in the
latter case, as a function of the instruction modifiers, as a 48 bit signed
number, two 24 bit signed numbers (dual), one 24 bit signed number (either
half word), or a "twinned" dual number. Further, in fixed point, simul-
taneous with one of the above, the word may be treated as eight 6-bit
"BYTEs" which are masked and cycled. In logical operations, BYTEs may also
be manipulated, or a mask may be used on a word, or on & specific BYTE.

Addressing

Three different modes of addressing exist for most instructioms, (1) direct,
(2) indirect, and (3) immediate. Direct and indirect addressing include
address modification via arithmetic addition of the contents of none, one

or two index registers to the "address," using the sum for the effective
address. There are eight index registers (designated 1-8) plus the right

accumulator (designated 15 or the letter "A") and the program counter
(designated 14 or the letter "C"). Direct indexing is specified by setting
the "IX" modifier of the address half-word with the number of the index to

be used (see Appendices A and E for coding formats). (NOTE: The right
accumulator and program counter .iay NOT be specified as the index register

for functions which modify the index.) Double indexing, the use of a second
index in address modification, is accomplished by setting the "DI" modifier
in the address portion of the word. (NOTE: The right accumulator may NOT

be used as a Double Index.) The machine uses the contents of a special
register to select the index register to be used for the second, or double,

indexing sub-cycle. This register is called the Double Index Selection Re-
gister, or DISR. "Double indexing" may occur independently of direct in-
dexing and indexing does not normally affect cycle time.

17 May 1962 k- N-160L4Y4 /000,/01

Indirect addressing is accomplished by setting the "I" modifier in the
address half-word. Both forms of indexing apply in determining the
effective address of the indirect address. Further, the entire addressing
cycle is repeated for the indirect address, i.e., indexing and indirect
addressing apply to the indirect address, thus permitting an infinite number
of levels of indirect addressing with direct and double indexing at each
level.

Immediate addressing permits using the right-half of the instruction as

the operand and that operand is referred to as "real data." It is indicated

by setting the "R" modifier in the instruction half-word, but is coded in

the address field. When used in this manner, a full-word is assembled by
duplicating the right-half into both halves of a machine register, then
treating it as if the word had been accessed from core. That is, it is
subjected to the menipulation described in section 4.2. Modification of

real data via indexing applies ONLY for cycle, shift, LDX, and ATX instructionms.

An additional feature is that all significant machine registers are
addressable, most for both read and write (see Appendix A). However,
Internal Addressable Registers (addresses T776XX), are NOT addressable
for instructions nor indirect addresses.

Arithmetic Operations

The Arithmetic Element includes three significant registers, (1) the
Accumulator for holding results of operations and one operand, (2) the

B Register for holding masks*and low order bits of results of operations,
and (3) the Logical Register used in various logical operations.

‘4.1 Floating Point

A complete set of floating point instructions are available. The
configuration, from left to right, is sign, 11 bit characteristic,

and 36 bit mantissa. A characteristic of 2000, indicates a real

point immediately to the left of the most significant bit of the
mantissa. DPositive powers of two are represented by characteristics
exceeding 20005, etc. When the mantissa is in ones' complement

form (negative sign), so also is the characteristic. In most
operations, the B Register is set with the low order bits in floating
point format. A modifier (UN) permits results to be left unnormalized.

*

The Logical Register is actually a part of Test Memory, but is mentioned
here because of its close association with arithmetic operations.

T May 1962 -5- N-160k4k4/000/01

L,2 Fixed Point

The byte activity modifier (A, also called AC) permits bytes of the
memory word to be masked as the word is brought from memory. There-
fore, when packed data is brought from memory, if it coincides with

a machine byte or bytes, it is masked as a function of the fixed
point instruction. (In this context, a fixed point instruction is
any instruction of the Load, Arithmetic, and Store classes.) The
instruction modifier is actually an 8 bit mask, a "one" bit causing
the corresponding byte to be cleared. This modifier is also available
for some logical instructions. In store class instructions it refers
to bytes of the effectively addressed register.

The byte displacement modifier (P, also called PS) permits the cycling
of the memory word O to 7 byte positions to the right prior to the
fixed point operation, and prior to when byte activity has occurred.
The modifier itself is merely a 3-bit number. This function is

also available with Store class instructions, but refers to displace-
ment of the word to be stored. In coding, the activity and displace-
ment modifiers are coded as a single modifier. This consists of
coding, first, the active bytes of the register referred to in the
instruction (numbered O - 7), a comma, then the active bytes of the
register referred to in the director. For example:

LDA,012,567 10A

says, "Load the Accumulator, bytes O, 1, and 2 with bytes 5, 6, and 7
of location 10A," setting the other Aecumulator bytes to zero.

The mode modifier (M) sets the structure of the arithmetic element

for the particular instruction. The modes are full word, dusl, left,
right, and twin. TFull word permits operation on a signed 48 bit
number. Dual operates on 2 signed 24 bit numbers, in a manner similar
to the AN/FSQ-T. Left operates on the left-half of the arithmetic
element only, leaving the right-half unaffected. Right, of course, is
the converse of left. Twin, after displacement has taken place,
duplicates the left-half word into the right-half word, then functions
as dual. (NOTE: Byte activity takes place AFTER twinning.) Mode

in NO way affects displacement. Modg, except for the twin mode, is
also available with those Store class instructions which arithmetically
affect the memory word (A@R, S@R, ATR).

The other fixed point arithmetic modifier is the signed data tag

(T, also called SG). When this one bit modifier is set, all bits

of all inactive (masked out) bytes are set equal to the sign bit of
the leftmost active byte. This permits the setting of those bits to
ones when a negative number is being brought into the arithmetic

17 May 1962 -6~ N=-160kk/000/01

element. The operation of this modifier is a function of mode.
That is, if in dual mode, this function occurs independently in
each half-word, etc. The accessed word, after these modifications
(A, P, and S), is generally referred to as the "configured contents
Of ceoes

Interrupt System

An extremely complete interrupt system permits halt, branch; or ignore
interrupt on 48 separate conditions, with both manual and program control
of the options. Also, there are 12-48 bit registers available in the
complete system to indicate the presence of various machine conditions.
In addition to the machine malfunctions which could be refiected, there
are such program relevant conditions as several types of inactivity,

and various states of individual I/0 devices.

1/0

Input-output operations have separate loglc depending upon the speed.
High speed (HS) operations include drums (2.75 usec per word), Input
Memory, and I/O Register (2.4 usec per word) transfers, and output
Burst Time Counters. All transfers must be either to or from central
computer core memory. As is obvious from the transfer rates indicated
above, machine registers are used for I/0 word count and I/O address
count. For low speed I/O, core memory registers are used to maintain
this information, counts being established for each unit (see Appendix
B). This block of registers is located at the end of one of the banks
of memory, and they are referred to as Bookkeeping Address Registers or
BAR's. The specific bank is selected by an "operate" instruction. A
useful consequence of the low speed (LS) I/O logic is that the word
count or address can be changed under program control at any time. In
operation, when a word is ready to be transferred on LS operations, the
IS I/O Word Counter and LS I/O Address Counter are loaded from the memory
reglisters corresponding to the unit ready to send or receive a word, the
word is transferred, then the core memory registers are set with the new
values. For all cases except typewriter inputs; the word count is down
from a positive number to+ O. As may be deduced, all LS I/O devices may
be in operation simultaneously, except printer and punch. This one
limitation is because the punch uses part of the printer buffer.

I/0 operations are initiated by one of two instructions, SHP or SLP for HS
and LS operations, respectively. Various modifiers indicate read or write,
special operations, etc. The address portion indicates the starting address
of a one or two word set which supplies the additional data for the transfer.
Illegal operations, both non-existent and those pertaining to a temporary

17 May 1962 -T- N-1604k4/000/01

Te

unit status, will NOT hang-up the machine. They are ignored except
for the setting of certain indicators in the interrupt system.

The drum system consists of two units, DATOR and Storage. All drums
have seventeen fields, 8192 words per field. The DATOR unit has but

one drum, most fields of which are for output buffering. Drum registers
are addressable on all fields. The Storage Unit may have up to four
drums, used solely as auxiliary storage. The Q-32 has two auxiliary

storage drums. A time saving feature possible with drum transfers is
the block transfer. This permits a transfer to start immediately, i.e.,

access time of about 11 usec, and the entire drum field is transferred
in one drum revolution. For this type of transfer, the starting memory
location will be either the first or 8193rd register of a memory bank
and the number of words must be 8192.

Low speed I/O on the Q-32 includes a 600 line a minute printer via an
IBM 1401, 250 card & minute column binary or Hollerith reader, 100 card
e minute row binary punch, I/0 typewriter, output (FIX) typewriter, and

up to four tape adapters (TA), each TA handling up to eight IBM 729-IV
tape drives. The Q-32 has two TA's. The 729-IV handles high and low

density tapes (200 or 555.5 characters per inch) in either binary or
Hollerith format (binary and Hollerith differ in the nature of parity).
Parity is two dimensional, i.e., character and track. The 1401 may also
have up to 5 tapes and may be used as an off-line tape-to-printer unit
capable of reformatting data.

Modifier and Instruction List
The following abbreviations are used in the descriptions that follows:
c(x) - the contents of the addressed register
C - configured
ACC - Accumulator
A summary of modifiers and instructions is in Appendices C and D.
7.1 Load Class

T.1l.1 Modifiers

A and P Activity and displacement see 4,2
M mode see 4.2
T signed data see 4.2

R real data see 3

17 May 1962

-8- N-16044/000/01

T.1.2 Instructions

LDA -

1DB -

LBC
LBC -

LDL -

Load Accumulator
Transfers Cc(x) into ACC.

Load B Register
Transfers Cc(x) into the B Register.

Load B Register Complement
Transfers the complement of Cc(x) into the
B Register.

Load Magnitude
Transfers the magnitude of Cc(x) into ACC.

Load Magnitude Complement

Transfers the complement of the magnitude
of Cc(x) into ACC.

Load Complement
Transfers the complement of Cc(x) to ACC.

Load Logical Register
Transfers Cc(x) to the Logical Register.

Load Logical Complement

Transfers the complement of Cc(x) to the Logical
Register.

7.2 Arithmetic Class

T.2.1 Modifiers

Same

as Load Class (see T.l)

T.2.2 Instructions

ADD - Add

Adds Cc(x) to c(ACC), sum placed in ACC.

SUB - Subtract

Subtracts Cc(x) from c(ACC), difference
placed in ACC.

17 May 1962

SBM

DIM

DVD

-9- N-160k44/000/01

Add Magnitude
Adds the magnitude of Cc(x) to c(ACC),
sum placed in ACC.

Subtract Magnitude
Subtracts the magnitude of Cc(x) from

c(ACC), difference placed in ACC.

Difference in Magnitude
Subtracts the magnitude of Cc(x) from
the magnitude of c(ACC), placing the
result in ACC.

Multiply
Multiplies Cc(x) by the c(ACC) placing
the high order bits in the ACC and the
low order bits in the B Register. The

sign is placed in the sign bits of both
the ACC and the B Register.

Multiply and Round
Seme as MUL except upon completion of the
instruction the magnitude of c(ACC) will be
incremented by one if the most significant
B Register magnitude bit is different from
the sign bit. The B Reglster will be the
same as in MUL.

Divide
Divides the contents of the accumulator -

B Register (in the same format as following
a MUL) by Cc(x). The quotient is placed

in the ACC and the remainder in the B
Register. However, the remainder takes
on the sign of the quotient (being
complemented, &s necessary).

17 May 1962

-10- N-16044/000/01

7.3 Floating Point

T.3.1

T.3.2

Modifiers
UN - Unnormalized (see 4.1)

Instructions

FLT - Float
Using the rightmost eleven bits of c(x)
as the positive characteristic, floats
and normalizes the fixed point word in the

ACC. UN does NOT apply.

FRN ~ Floating Round
Increases the magnitude of the floating
point word in the ACC by one if the

most significant bit of the B Register
mantissa differs from the sign. B Register

is unaffected. UN does NOT apply.

FAD - Floating ADD
Using floating point arithmetic and word
format adds c% ? to c(ACC), placing the
most significant bits in the ACC and the
least significant in the B Register in
floating point format.

FAM - Floating Add Magnitude
Same as FAD except uses the magnitude of
c(x) instead of signed c(x).

FSB - Floating Subtract
Same as FAD except subtracts instead of
adds. \

FSM - Floating Subtract Magnitude
Same as FAD except subtracts the magnitude
of c(x) instead of adds c(x).

MP - Floating Multiply

Similar to FAD except multiplies instead

of adds. If either operand is not normalized,
the result will not be normalized.

17 May 1962 -11- N-160L44/000/01

FDV - Floating Divide
In floating point arithmetic and using

floating point formats, divides c(ACC)
by c(x). The quotient is placed in the

ACC and the remainder in the B Register. -
UN does not apply.

7.4 Store Class

All store class instructions involve two data cycles and are
"selective store" instructions. A one cycle store instruction
is included in the miscellaneous class.

T7.4.1 Modifiers

A and P Activity and displacement see 4.2

M mode applies only
to APR, SPR,
and ATR and

twin does not
apply. (see 4.2)

T signed data applies only to
APR, SPR, and ATR.
(see h.25

T-4.2 1Instructions

STA - Store Accumulator
Transfers Cc(ACC) to select bytes of x.

STB - Store B Register
Transfers Cc(B Register) to selected
bytes of x.

STP - Store Program Register
Transfers Cc(Program Register) to

selected bytes of x. For purposes
of this instruction, the Program

Register is treated as a 48 bit
register having zeros in bytes O - k.
The Program Register is set as a

result of a transfer of program
control and is further discussed

under branch instructions (see 7.5).

17 May 1962

7.5

ECH

STL

APR

SPR

ATR

STX

-12-

Exchange

Exchanges Cc(ACC) with selected bytes of

X and vice versa. Inactive bytes of both

registers are unaffected.

Store Logical Register
Transfers Cc(Logical Register) to selected

bytes of x.

Add One Right

Adds one to the rightmost bit of Cc(x),
according to mode. Only active memory
bytes are affected. ACC contains
incremented Cc(x), according to mode.

Subtract One Right

Same as AR except subtracts instead
of adds.

Add to Register

Adds Ce(x) to c(ACC), transferring
selected bytes back to x. ACC contains
sum of Cc(x) plus c(ACC).

Store Index

Transfers the c(index register "XR")
into rightmost three bytes of x, unless
H modifier is set (coded "L"), in which
case stored into rightmost three bytes
of left-half word (bytes 1, 2 and 3)

of x. Index register to be stored is
indicated by XR instruction modifier,
coded as the appropriate number. The
arithmetic configuration modifiers

(A, P, N, and T) do NOT apply. ACC and
Program éounter may NOT be used.

Branch Class

N-160k4k4/000/01

Whenever branching (transfer of program control) takes place,
the Program Register is loaded with the contents of the Program

Counter (location of instruction, plus 1).

The nature of some

of the modifiers 1s such that separate mnemonics are included in
SCAMP which set those modifiers.

17 May 1962

7.5.1 Modifiers

-13- N-16044/000/01

A byte activity Specifies which bytes to test.

Coded as letter "A" followed
by 1 to 8 digits (byte numbers).

B Byte (of logical Specifies byte of Logical Register

T.5.2 Instructions

Branch on Sign

Reglster) whose contents are to be used
for BAL, BLC, and BLN.

Conditional branch depending on signs of all active bytes.
(If "A" modifier is not coded, byte O will be active.)

BPP -

BNP -

BPM -

Branch on Zero

Branch on Plus
Branches if all active bytes positive.

Branch not Plus
Falls through 1f all active bytes
positive.

Branch on Minus
Branches if all active bytes negative
(minus).

Branch not Minus
Falls through if all active bytes
negative (minus).

. Basic instruction examines all active bytes for zero. The
Z modifier indicates plus only (coded P), minus zero only
(coded M), or plus or minus zero but all having the same
sign (coded "blank"). (If "A" modifier is not coded, all
bytes will be active.)

BYZ -

BNZ -

Branch on Zero
Branches if all active bytes zero.

Branch not Zero
Falls through if all active bytes zero.

17 May 1962 ~14- N-~16044/000/01

Branch on Sense

~ Basic instruction branches if unit tested is on. For some units,
the unit 1s turned off after testing. Unit is specified dy U
modifier, coded as three octal digits. Units are listed in N-1733k.

BSN - Branch on Sense Unit On
»Branches if unit on.

BSF - Branch on Sense Unit Off
Branches if unit off. If used with a PER "U"
code, branches and performs operation.

Branch on Loglcal Compare

Basic instruction compares Logical Reglster byte specified by
Bz modifier (coded as a single octal digit preceeded by the
letter "L") with the BC modifier (coded as two octal digits).

BLC - Branch on Logical Compare
Branches on equality.

BLN - Branch on logical No Compare
Branches on inequality.

BAL - Branch to Address Plus Logical Register

Unconditional Branch. Branch location is determined by (after
indexing, etc.) taking the byte of the Logical Reglster specified
by Bo modifier (coded "L octal digit") masking out bits to the
left of the bit specified by L2 modifier, shifting right the
number of places specified by L3 modifier, and adding to effective
address for final effective address. The L, and L; modifiers
are coded as a single modifer, using the letter "G" followed by
two digits each in the range 1-6, where the first digit indicates
_the first bit to be used and the second digit the last bit to be
used. o

17 May 1562

-15-

N-160L4k4/000/01

BAR ~ Branch to Address Plus Register

Unconditional branch.

Branch location is

determined by (after indexing, etc.) adding

the AF modifier (coded as two octal digits)

to TT77600 to arrive at the address of an
addressable machine register (see Appendix A),
then takes the rightmost 18 bits of that word

(or rightmost 18 bits of left-half word, if

H modifier is set, coded L) and adds it to the
effective address for the final effective address.

7.6 Branch and Decrement Class

706.1

7.6.2

Modiflers

DF Decrement Field
IX Index
Instructions

18 bit modifier used for
modifying or comparing

with index value (op

code reduced to 6 bits

for this class). Coded

as one to six octal

digits, or in decimal, or tag.

L bit address modifier

(see section 3) used

to specify, for these.
instructions, the index

to be modified or compared.
Not used for address
modification except

on subsequent references
of indirect addressing.

The instructions may be segregated into three classes, those
which conditionally branch based on comparing c(index) and
c(DF), those which conditionally branch based on sign of
index then modify by amount of c(DF), and those which
unconditionally branch and modify c(index) with c(DF).

17 May 1962 -16- N-16044/000/01

T.6.2.1 Conditional Branch

BXH - Branch on Index High
. Branches if c(index) greater than c(DF).
(*0> -0 for this test.)

BXL - Branch on Index lLow

Branches if c(index) less than c(DF).
(+0>-0 for this test.)

BXE - Branch on Index Equal
Branches if c(index) equal to c(DF).
@0 # -0 for this test.)

T.6.2.2. Conditional Branch and Modify
(ACC and Program Counter may NOT be used.)

BPX - Branch on Plus Index
Branches if sign of index is positive.
If branching occurs, c(index) reduced
by c(DF). (Note: if c(DF) is negative,
the c(index) would be effectively
incremented.)

BMX - Branch on Minus Index
Branches 1f sign of index is negative.
If branching occurs, c(index) increased
by ¢(DF). ,

7.6.2.3 Unconditional Branch and Modify
(ACC and Program Counter may NOT be used.)

BSX - Branch and Set Index
Branches unconditionally and
sets c(index) = c(DF).
BAX - Branch and Add to Index
Branches Unconditionally and
set c(index) = c(index) +c(DF).
T.T Logical Class

The diversity of the logical instructions is such that they are
described herein as five sub-classes.

T.7-1 Sub-Byte Manipulation

These instructions operate upon bits within a particular byte.

17 May 1962

-17- N-160L4/000/01

TeTs1l.1 Modifiers

7.7.1.2

By Byte Designates byte to be used by
instruction. Coded "B* diglt.

BS Bits and Designates starting and ending

Shift bits of byte. Coded "G" and two
digits (digits in range 1-6).

MK Mask Deslgnates mask for byte. Coded
"K" and two octal digits. (Ones
designate active bits.)

Instructions

INS - Insert

The bits of the "V" modifier (coded as two octal

digits) are inserted into the byte of the addressed
register specified by the B; modifier as.masked.by the six
bit "MK" modifier. Or, if the "MK" modifier is coded "L"
and one octal digit, the three rightmost bits of the "MK"
modifier are used to select the byte of the logical
register to be used as a mask.

C¢M - Complement Bits

Complements those bits of the addressed register in
the byte specified by the By modifier, according to -
the mask in the "MK" modifier. That is, complements
only where there is a one bit in the mask.

IDS - Load and Shift

Clears the full accumulator, then loads, right
Justified, in the right accumulator, those bits
specified by the BS" modifier, of the byte spec-
ified by the B, modifier, of the addressed register.
Real data may be used (see section 3).

17 May 1962 -18- N-16044/000/01

STS - Store and Shift
Essentially the reverse of IDS. Takes the
least significant bits of byte 7 of the
accumulator and deposits them into the
"BS" bits of "By" byte of the addressed
register. It affects NO other bits of
the addressed register, does NOT change
the ACC, and may NOT use real data.

TST - Test
Increments the Program Counter by the
contents of bits "BS" of byte "B;" of
the addressed register. 1In effect, is
a test of from 1 to 6 bits resulting in
a "skip" of O to 64 instructions.

T.7.2. Boolean Operations

The following instructions are various mnemonics used with
the single "connect" instruction, the differences being
various "pre-set” modifiers. The heart of the instruction
is a 4 bit "truth table." Basically, the instruction
generates & word, on a bit by bit basis, as a function of
the addressed (or “"storage") word, the ACC, and the truth
table. The truth table 1s used as follows:

storage word bit o011
ACC word bit 0101
resulting word bit bibzbsbh

where, for a given bit position, finding the column which
represents the particular combination at a glven bit position,

the modifier bit (by, by, b3, or bly) designates how that bit
will be in the resulting wotrd. For example, a "CN" modifier

(the truth table) "b" values of 0001 would result in an "AND"
or "logical multiplication" operation.

The various mnemonics also include whether the generated
word is placed in storage (the addressed register) or in the
ACC. In all cases it is also possible to use byte activity
OR a mask, but not both. In either case, the inactive bytes,
or bits, of the receiving register are unaffected. Byte
activity is coded by the letter "A," followed by the numbers
of the active bytes. Masking is indicated by the letter "K."
The B Register is used as the mask.

17 May 1962 -19- N-160k44/000/01

Real data may be used for those instructions affecting ACC.
CTA Connect to Accumulator
CTS Connect to Storage

These instructions are the general case of
"Connect" and require the coding of the "CN"
modifier (coded as four binary digits immediately
following the mnemonic). CTA places the re-
sulting word (or portions thereof, due to
activity or masking) in the ACC. CTS, in a
similar manner places the result in storage
(addressed register).

ANA AND to Accumulator
AND AND to Storage

The truth table is automatically set to glive |
a "logical multiply" operation (CN = 000l1).
Otherwise same as CTA, CTS.

fRA OR to Accumulator
PRS OR to Storage

The truth table is automatically set to give
an "inclusive OR" operation (CN = 0111).
Otherwise same as CTA, CTS.

DEP Deposit

The truth table is automatically set to transfer
ACC zeros as zeros and ACC ones as ones

(CN = 0101). Otherwise identical to CTS.

Note: wunless a mask is used, the function may
be performed by STA.

EXT Extract
The truth table is automatically set to transfer
c(x) to the ACC(CN = 0011), otherwise identical
to CTA. Note: +this instruction, using byte
activity, differs from LDA in that inactive
bytes of the ACC are unaffected.

17 May 1962 -20- N-16044/000/01

T.7.3 Compare Operations

A single instruction is available which permits & wide range of
comparison operations. The varlety of these, and the affects,
are so different that they are discussed herein as four separate
instructions.

T.7T.3.1 Modifiers

MS Mask Selector Causes the B Register
to be used as a mask.
When a mask is used,
activity, displacement
and signed data do
not apply. (Coded "K")

A, P Activity and See section 4.2
Displacement
T Signed Data See section 4.2

T.7.3.2 Instructions
CML Compare logically

Compares Cc(x) with active bytes of ACC,
or the masked c(x) with the entire c(ACC),
and, if identical, skips one instruction.
T modifier does not apply, and c(x) and
c(ACC) are unaffected.

CDL Compare and Difference Ilogically

Same as CML plus, the "logical difference"
is left in the ACC active bits, or bytes.
(Logical difference is that value which
results from a "CTA01l0) instruction.)
Inactive bits or bytes are unaffected.

17 May 1962

-21- N-16044/000/01

CMA - Compare Arithmetically
Arithmetically compares Cc(x), or the masked
c(x) with the original c(ACC). If c(x)< c(ACC),
the next instruction is operated, if c(x) =
c(ACC), one instruction is skipped, and if
c(x) > c(ACC), two instructions are skipped.
c(x) and c(ACC) are unaffected. '

CDA - Compare and Difference Arithmetically
Same as CMA, plus the masked or configured
c(x) is subtracted from c(ACC), using "full"
mode, the difference being placed in the ACC.

7.7.4 Index Instructions

The index instructions are of two types, those pertaining
to the contents of index registers and those pertaining to
the contents of the "Double Index Selection Register."

7.7.4.1 Index Modification
7.7.4.1.1 Modifiers

XR Index Register Specifies index to
be modified. Not
to be confused with
IX which is the index
register to be used
in address modification
(Both apply.) Coded
as one decimal digit.

H Half Word Specifies half-word
of addressed register
to be used. Coded
as "L" or "R".

(Blank is equivalent
‘bO "R" .)

R Real Data For LDX and ATX, if
Real Data is specified,
indexing and double
indexing will modify
the Real Data.

17 May 1962 -22- N-160k4k4/000/01

7.7.4.1.2 Instructions

IDX - lLoad Index
Transfers rightmost 18 bits of the "H"
half-word of c¢(x) to index register "XR."

ATX - Add to Index Sty
Modifies c(index "XR") by addifig’:
rightmost 18 bits of the "H"
half-word of c(x).

he

7.7-4.2 DISR Manipulating Instructions

7.7.4.2.1 Modifiers

By Byte Designates byte of
addressed register to
be used. Coded "B" one
digit.

R Real Data see 3
T.7-4.2.2 Instructions

IDI - Load DISR
Sets c¢(DISR) = rightmost four bits
of byte "By" of c(x).

SDI - Store DISR
Sets byte "By" of c(x), first two
bits = 0, rightmost four bits =
¢ (DISR).

7.7-5 Convert Instructions

Basically, the convert instructions sequentially use bytes of
the ACC or B Register to modify an effective address, and replace
the byte with data found 1n the referenced register. This
permits very rapld conversion between various 6-bit coding
schemes. Since they also set an index on the final iteration,
they are very useful for multi-level table look-up operations.

18 May 1962 -23- N-160L4L/000/01

T7.7.5.1 Modifiers
XR Index Register Same as T7.7.4.1.1, above.

NC Number of Converts Number of iterations. Caution
must be exercised as number
used is modulo 128. Also, O
is equivalent to 1. Coded as
"N" and up to three decimal

digits.
G2 Direction of Direction in which operation
Operation proceeds. Applies only to

CRA. Coded "L" or "R", blank
is equivalent to "L,"

T.7.5.2 Instructions

CRA - Convert by Replacement from Accumulator

Computes final effective address by adding c(ACC, byte 0)

to effective address. Sets c(ACC, byte 0), = c(x, byte 0).
Cycles ACC left one byte position. (c(byte 0) moved to

byte 7.) Uses c(x, bytes 5, 6, and 7) as effective address
for next iteration. Continues for "NC" iterations.

Following last iteration, sets index "XR" = c(x final, bytes 5,
6, and 7). If H modifier indicates "right" direction uses

ACC byte 7 and cycles right, but use of ¢(x) remains same.

CAB - Convert by Addition from B Register

Addresses in a manner similar to CRA except the B Register

is used and only "left" is possible. However, instead of
replacing B Register bytes, c(x, bytes 0-4) are added to

the ACC, bytes 3-7, using full mode. "XR" and "NC" have

same use as with CRA. ACC is cleared prior to first iteration.

17 May 1962

-2k4- ‘ N-1604k4/000/01

7.8 Miscellaneous Class

Miscellaneous class instructions can be subdivided into three groups,
(1) miscellaneocus, (2) shifting and cycling, and (3) I/O.

7.8.1

PER -

HLT -

STE -

STF -

XEC -

BUC -

Miscellaneous Group

Operate

Performs an operation determined by the 9 bit "U" modifier (coded
as three octal diglts). These operations are listed in N-1733L.
Addressing does not apply.

Halt

_Stops program operation. A manual "Continue"” action restarts

operation with next instruction. Addressing does not apply.

Store Exchange Register
Transfers c(Exchange Reglster) to x. NO instruction modifiers

apply.

Store Full Word o
Trensfers c(ACC) to x. NO instruction modifiers apply. Uses
only one data cycle.

Store Zeros
Transfers zeros to x. Speclal case of STF with SZ modifier. set.
No other instruction modifiers apply.

Execute

Operates the instruction at location x. If c(x) = active branch,
branching occurs and the program register is set with the address
of the instruction following the XEC. If c(x) = any type of
"skip" instruction, location of the next instruction will be a
function of the location of the XEC. If c(x) = XEC, the effect is
the same as if the first XEC contained the addressing information
of the second (or final) XEC instruction. All other instructions
result in the instruction followlng the XEC to be operated after
the object instruction. XEC does NOT cause the program counter
to be stopped.

Branch Unconditionally

Unconditional transfer of program control to location x. (All
address modifiers, except real data, apply.) If the "XR"
modifier contains the number of an index, that index will bs set

18 May 1962 -25- N-16044/000/01

with the location of the instruction following the BUC. The
Program Register is set with the address of the instruction
following the BUC.

BUS - Branch Unconditionally with Same Program Register.

Special case of BUC with PR modifier set to 1. Inhibits changing
of program register.

7.8.2 Shifting and Cycling Group

There are three basic instructions in this group, shift, cycle, and
normalize, Shifting is moving all bits but the sign(s), losing bits
at one end and obtaining sign duplicates at the other. Cycling is
moving all bits as if the register were a ring register (no bits lost).

See NPR below for normalizing.

7.8.2.1 Modifiers

M Mode See section 4.2, Twin does
not apply.

Gl Direction Actually an "address" bit. Bit
30 (leftmost bit of the address

"field" of the data word)
indicates direction of movement

of bits, positive-right, negative-
left.

N Number Also "address" bits (41 - 4T of
the data word). Specifies number

of bit positions to shift (or
cycle), modulo 128. Will bve
complemented if "G," is negative.

R Real Data If on, director of imstruction,
after indexing and double indexing,

used to obtain "G," and "N". If
off, c(x) are used, without

further modification. Coded "R".

D Rounding Applies only to shifting. Effect
same as round with MLR. Coded "N".

17 May 1962 -26= N-160L44/000/01

7.8.2.2 Instructions

SFA - Shift Accumulator
Shifts ACC according to mode, "N" positions.
Rounds ACC if "D" is set.

SFB ~ Shift B Register
Shifts B Reglster according to mode, "N" positions.
Rounds ACC if "D" is set.

SFC - Shift Combined
Shifts combined ACC - B Reglster, according to mode,
"N" positions. ACC - B Register linkage is a
function of mode, but for the general case, it can
be sald the most significant B Register magnitude
bit 1s adjacent to the least significant ACC bit,
i.e.; the B Register sign bit is bypassed. Rounds
ACC if "D" is set.

CYA - Cycle Accumulator
Cycles ACC "N" positions, according to mode.

CYB - Cycle B Register
Cycles B Register "N" positions, according to mode.

CYC - Cycle Combined _
Cycles combined ACC - B Register "N" positions
according to mode. ACC - B Register linkage is
.a function of mode, but for the general case it
can be said, the B Register sign is adjacent to
the least significant ACC bit and the ACC sign is
adjacent to the least significant B Register bit.

CYI -« Cycle Inverted
Same as CYC except as follows: only "full" mode,
and, the B Register and ACC signs are adjacent,
and the B Register and ACC least significant bits
are adjacent. Direction refers to ACC.

NRA - Normalize Accumulator

Shifts the ACC left, according to mode, until the
most significant magnitude bit is different from

the sign. In dual mode, shifting stops when the
above condition first occurs in either half. The
number of shifts required is then placed in the

right balf of c¢(x). If there are no "1's", the
operation stops after 127 shifts. "R" does NOT apply.

NRC - Normalize Combined
Same as NRA except ACC and B register are linked
as for SFC.

17 May 1962 -26- N-16044/000/01

T7.8.2.2 Instructions

SFA - Shift Accumulator
Shifts ACC according to mode, "N" positions.
Rounds ACC if "D" is set.

SFB - Shift B Register
Shifts B Reglster according to mode, "N" positions.
Rounds ACC if "D" is set.

SFC ~ Shift Combined
Shifts combined ACC - B Register, according to mode,
"N" positions. ACC - B Register linkage is a
function of mode, but for the general case, it can
be said the most significant B Register magnitude
bit is adjacent to the least significant ACC bit,
i.e.;, the B Register sign bit is bypassed. Rounds
ACC if "D" is set.

CYA - Cycle Accumulator
Cycles ACC "N" positions, according to mode.

CYB - Cycle B Register
Cycles B Register "N" positions; according to mode.

CYC - Cycle Combined ,
Cycles combined ACC - B Register "N" positions
according to mode. ACC - B Register linkage is
a function of mode, but for the general case it
can be sald, the B Register sign is adjacent to
the least significant ACC bit and the ACC sign is
adjacent to the least significant B Register bit.

CYI - Cycle Inverted
Same as CYC except as follows: only "fuli" mode,
and, the B Register and ACC signs are adjacent,
and the B Reglster and ACC least significant bits
are-adjacent. Direction refers to ACC.

NRA - Normalize Accumulator
Shifts the ACC left, according to mode, until the
most significant magnitude bit is different from
the sign. In dual mode, shifting stops when the
above condition first occurs in either half. The
number of shifts required is then placed in & location X

bits 41-49 clearing S-yo,sieh ML oT—e¢s}. If there are no "1's", the
J

operation stops after 127 shifts. "R" does NOT apply.

NRC - Normalize Combined
Same as NRA except ACC and B register are linked
as for SFC.

17 May 1962

-27- N-16044/000/01

7.8.3 Input - Output Group

A partial discussion of I/0 is in Section 6. The various instruction
modifiers take on different meaning depending on the instruction,

and sometimes depending on other modifiers, therefore, they are
discussed only in specific contexts.

SHP - Start High-Speed Operation

Initiates an operation pertaining to a High-Speed (HS) I/O
unit. The RD and WR modifiers are used to indicate read or
write, (coded "R" and "W", respectively). The "8" modifier is
used to select the specific unit as follows: '

00 - Storage Drum A

01 - Storage Drum B

Ok - DATOR Drum

30 - Input Memory

60 - Burst Time Counters
70 - H.S. I/O Reglster

The "U" (operate) modifier is really three one-bit modifiers,
in that the values discussed below may be combined for multiple
operations. "UL" locks the I/O address counter, causing the
same reglster to be addressed for all words transferred. When
the I/O Reglister is selected, "UL" inhibits clearing the I/O
Register, thus permitting the generation of a.logical sum when
writing, or, on a subsequent read, transferring the same con-
stant into two or more comsecutive registers. When a drum is
selected, "UL" inhibits field stepping, that is, when the last
address on a fleld is reached, the next drum register to be
used is the first one on the same field instead of the normal
mode of the first register of the next higher numbered field.
However, field stepping is always inhibited at the end of DATOR
fields 5-17, that 1s, the buffer fields do not have field
stepping. Mode is NOT related to arithmetic mode. "MOO" (or
not coded) is normal, "addressable" transfer. "MOl" is inter-
leaved by 2 (every other drum address). "MO2" is inter-leaved
by 4. "MOL" is a block transfer (see Section 6). "MIO" is
destructive readout when Input Memory is selected. "M20" will
cause all registers of all flelds of the selected drum to be
erased, however, the computer must be in "test mode" for this
instruction. The balance of the data required for the transfer
is contained in control words, the first of which is in the
register addressed by the SHP instruction (IX, I, and D apply),
the second, 1if needed, immediately following the first. For
I/O Register transfers, a single word is used containing the
starting memory address in bytes 5, 6, and 7 and number of words
in bytes 1, 2, and 3. (IX, I and D do NOT apply to the control
word contents.)

17 May 1962 -28- N-160kk/000/01

"See CTL, below, for coding. For drum transfers, the first
word contains the field selection in bits 30 - 34 and
drum address in bits 35 - 47. The second word has the
same format as the I/C Reglster control word.

CTL - Control Word - General
A Pseudo instruction to properly format a "general purpose”
control word. Director is, first the number of words to
be transferred, a comma, and the starting memory address
for the transfer. CTL may be used as an RC word.

DRC - Drum Control Words
Similar to CTL but used for drum control words. Address
field contains (1) drum field, (2) starting drum address,
(3) number of words, and (4) starting core memory address,
each separated by a comma. !

DRM ~ Start Storage Drum Operation
Equivalent to an SH@CO, or SHPOL,; the letters "A" or
"B", respectively, differentiating.

IgR - Start I/0 Register Operation
Equivalent to an SHYTO.

SL@ - Start Low-Speed Operation

Initiates an operation pertaining to a low-speed (LS)
unit. For LS transfers, the control information is
automatically transferred to the appropriate "Bookkeeping
Address Registers" (BAR) in core memory (see Section 6
and Appendix B), leaving the control word unchanged. As
words are transferred, the LS I/0C element obtains the
needed information from the appropriate BAR, modifies

- it and tests word count for transfer completion, then
restores modified values to the BAR. (The number of
words is maintained as a positive number, reaching + 0 when
all words are transferred, except as noted below for the
I/0 typewriter.) Reading and writing is as for SH@, above.
The unit selection codes ("S" modifier) are as follows:

Ol Reader
02 1401 (Printer)
03 Punch

ok I/0 Typewriter

06 Output (FIX) Typewriter

1x Tape Adapter 1

2x Tape Adapter 2

("x" represents the number of the Tape Drive (TD)
selection. A given TD is associated with only the

one Tape Adapter (TA). TD numbering is a function of
manual selection on each TD, using O - 7 for TDl - TDB.)

17 May 1962 -29- N-160L44 /000/01

The I/0 typewriter, as an output device, may be coded ("TM"
modifier) "A" for alphanumeric mode, in which case the code
in Appendix F is used. If the "A" is not coded, the octal
mode is used wherein the contents of the registers transferred
are automatically converted directly from binary to octal.

The control word is identical to that for I/O Register
transfers. The FIX typewriter operates only in alphanumeric.

For purposes of the SL@ instruction, the I/0 typewriter is

an output device only. However, when not being used as an
output device, it may be used either as a variable or fixed
entry device. As a variable entry device, it transfers

octal words to any register(s) of core memory, independent
of program control. As a fixed entry device, it transfers

up to 32 words of 6 bit characters under limited program
control. 1In this latter mode, the program must set the
starting memory address and number of words into the FMBW
(see Appendix B). For this operation only, word count
proceeds in a positive direction to 32. For example, an
original setting of 10 would permit 22 words (176 characters)
to be entered. After setting the FMBW, a PER330 is necessary
to "enable" the typewriter.

TYP - Typewriter
This mnemonic is equivalent to a SL@,0L.

Tape transfers are considerably more complex. The hierarchy
of data on tapes is character (six data bits plus parity
strung across the tape), record (a series of closely packed
characters separated from other records by a gap of about

3/4 inch plus a track parity character), file (a series

of records terminated by a special record consisting of

a single character 1111000, plus "track parity"), and

logical tape (a series of files terminated by a special
record consisting of four of the "file" characters plus track parity).
The end-of-logical-tape character has the same program effect
as the permanent physical-end-of-tape mark, except it may be
erased by writing over it. "U" modifier codes permit special
operations as follows:

UL Backspace one record

U2 Rewind to load point

U3 Write "end-of-file" (EOF)

Uk Write "logical-end-of-tape" (EOT)
U5 Backspace to end of previous file
U6 Set High Density

U7 Set Low Density

17 May 1962

-30- N-160kL/000/01

If none of the above are coded, it should be a data
transfer. Density refers to 555.5 characters per inch

or 200 characters per inch. Density control is set
manually at the TD but may be overridden under program
control, as above, but is effective ONLY if the tape is

at load point, i.e., a single tape may be high or low
density but not a mixture. Related to this, but serving

a different function, is a modifier indicating the density
expected. If the TD is set for the opposite density, no
transfer will occur and an indicator will be set in the
Interrupt System. Coding assumes high density unless an
"1" is coded. The "normal" "code" for tapes is assumed

to be binary. If it is a binary-coded-Hollerith tape,

the letter"H" should be included as a modifier of the

SL$ instruction. The difference between binary tapes

and binary-coded-Hollerity (BCH) is that binary have cdd
character parity whereas BCH have even character parity
and binary records have an additional, non-data, identi-
fication word. There are two control words used with

tape I/0. However, the second word is used only with
binary tapes. (Therefore, a "CTL" may be used in BCH
transfers.) The second control word contains, in bytes

0, 1, 2 and 3, the "identity," and in bytes 5, 6 and 7 the
"tape ldentity address." These may be coded with the
mnemonic TPL and the following four pieces of information
in the address field, separated by commas: (1) identity,
(2) identity address, (3) number of words, and (4) starting
memory address. "Identity" is used in reading and writing
binary tapes. The first "word" of a binary record contains
the "identity," but this word is not included as a data
word for word count or memory addressing purposes. In
writing, it 1s obtained from the second control word if

the "SI" modifier is set, or is zeros if the "SI' modifier
is not set. In reading, if the ldentity word is desired, the
modifier "s" ("TA" modifier) is used so that the identity
word from the tape will be stored in the register whose
address 1s found in the "tape identity address" portion of
the second control word. The identity word is also used in
the file search function. If an "I" is coded ("SI" modifier),
the TD will start reading the identity words of records, and,
when 1t finds a binary record whose identity matches the
"identity" portion of the control word, transfers the data
in THAT record. If it reaches an EfF or EfT before finding
such a record, no data is transferred and the E¢F indicator
is set.. "TA" and "SI" may NOT both be set.

17 May 1962

-31- N-160L44/000/01

The following mnemonics apply for SLO for tape:

TAP - Tape
Same as SLf, except will not accept "U" modifiers.

WEF - Write EQF
Equivalent to SL$U3.

WET - Write E@T

Equivalent to SLPUL.

REW - Rewind
Equivalent to sLgu2.

BKR - Backspace one Record
Equivalent to SLPUL.

BKF - Backspace to end of Previous File
Equivalent to SLPUS.

The card reader reads Hollerith or column binary cards,
columns 1 - 72, at the rate of 250 cards per minute.

The column binary mode is determined by a "T" and "9"
punch in column 1, Hollerith belng the absence of either
or both of these punches. In the binary mode, each

four columns determine a binary word, rows 12 - 9 of
column 1 being S-11 of the first word, etc. In this mode,
18 words per card may be transferred into core memory.
In the Hollerith mode, the punches of each column are
converted into six-bit codes such that column 1 goes

to byte O of the first word, column 2 to byte 1, ete.,
for a total of 9 words per .card. To initiate a read
card reader operation, a SL¢ instruction is used with

a select code of 01, and, of course, "R" to indicate
read. The general purpose control word (CTL) is used
for word count and number of words. The followlng
mnemonic also applies:

RCD - Read a Card
Equivalent to SLg,0L,R.

The punch produces row binary cards at the rate of 100 cards
per minute. For a full card, the punch uses an image of 24
words. The first word goes to the 9 row columns 1 - 48, the
left-half of the second word goes to the 9 row columns L9 -72
and the right-half of the second word is not used. The third
word goes to 8 row columns 1 - 48, etc. It is possible to
offset columns 1 - 8 into columns 77 - 80 and to

18 May 1962 -32- N-160kk/000/01

gang-punch columns 73 - 80. This is a function of plugboard
wiring and is accomplished by the PER37S5 and PER376 instructions
(see N-1T7474/009/00). The SLP instruction for the punch uses a
select code of 03. A general control word is used for number of
words and starting address. The following mnemonic also applies:

PUN - Punch
Equivalent to SL$O3.

The 1401 - printer consists of, at present, a 4K memory 1401,

a 1403 printer (600 lines per minute, 132 characters per line),
and a 729 IV tape. To transfer data to the 1401, the program
in the 1401 must first have set its "program ready" flip-flop.
If this has been done, a SLPO2 will initiate the transfer of
6-bit coded information to the 1401l. (NOTE: The 1401 can be
written only.) The 1401l program must then initiate a “"read"

of the data. If the above mentioned 1401 "program ready" flip-
flop was not set at the time the SLPO2 was executed, a 1401
(printer) not ready indication is set in the Q-32 and the SL¢02
is otherwise ignored. From the standpoint of the 1401, the
character having an octal code of 77 (group mark) will terminate
a transfer, but the 1401 program mey initiate another read if
the Q-32 has not reduced word count to zero. The consequence
of this is two-fold: (1) a "block" of printing may be sent
with group marks delineating the ends of lines of print and,
(2) the last byte of the last word transferred must contain

a group mark to avoid hanging-up the 1401. There are three
flip-flop indicators sensible in the 1401 which are set by

the Q-32, (1) the "P" flip-flop set by a Q-32 SLO2 instruction
when the 1401's program ready indication is on, (2) the "R"
flip-flop set by a PER373, and, (3) the "Q latch" set by a PER
374, All three of these are cleared as a result of the word
count going to zero. The 1401 "program ready" flip-flop can

be either set or cleared by 1401 instructions. The 1403
printer being not ready will also clear the "program ready”
flip-flop, causing & not ready indication if an SL¢02 is executed.

17 May 1962 -33- N-16044/000/01

APPENDIX A

ADDRESSABLE REGISTERS

REGISTER* EXCHANGE OCTAL SCAMP READ BAR?

INTERNAL REGISTER BITS . REGISTER BITS ADDRESS TAG ONLY INSTR.
Positive Zero T77600 $2 X X
Index Register 1-8 5-17 30-47 TT7601 to $X1 to X
‘ 777610 $x8
Program Register 1-18 30-47 777620 $P X
Accumulator 777621 $A X
B Reglster 777622 $B X
Interrupt Control Reg. 777623 $1
Real Time Clock 1-24 s-23 777624 $CLK
Double Index Sel. Reg. 1-4 Lh-47 777651 $D X
@Switch Reg. A 777700 $as X
@Switch Reg. B. TT7701 $BS X
@Switch Reg. C 777702 $cs X
@Switch Reg. D _ 777703 $Ds X
@TM Control Panel TTT704 to $T1 to X
TTTT43 $T32
@Live Register TTTT44 $LIV
@Logical Register TTTT45 L
@Detail Cond. Reg. 1 TTTT46 pc1 1
@Detall Cond. Reg. 2-11 TTTT4T to $DC2 to X
TTT760 $DC11
@Detall Cond. Reg. 12 777761 $pC12 1

FIX REGISTERS

Index Buffer Storage S-17 6-23 777640 X
P. C. Storage I 1-18 30-47 777640 X
P. C. Storage II 1-18 6-23 177641 X
P. C. Storage III 1-18 30-47 777641 X
Instruction Storage 0-23 5-23 177642 X
ACC Storage TT7643 X
B Reg. Storage 777644 X
First Alarm Register 1-6 L1-47 TT7645 $F X X
H.S. I/0 Word Ctr. s-17 6-23 TT7646 $HW X
H.S. I/0 Addr. Ctr. 1-18 30-47 777646 $HA X
Drum Control Reg. 1-18 30-47 777650 - X
Angular Position Stor. Reg 1-13 35-47 777652 $APS X
Alarm Time Reg. 1-k Wl -Lh7 777653 X
@System Status Reg. 777762 X

(NOTE: See Page 34 for footnotes)

17 May 1962 -34- N-1604k4/000/01

REGISTERS AS INDEX REGISTERS

REGISTER OCTAL CODE
Index Register 1-8 1-10
Program Counter 16
Accumulator 17

* If Not a 4B8-bit register.

@ Addressable for instruction words and indirect addresses.

1

2

Storing into these registers causes bits of the register to be
complemented where there is a "1" in the word being stored, and
no action where there is a "Q" in the word being stored.

Addressable for Bar Instruction incrementing.

SCAMP TAG

1-8
1k or C
15 or A

17 May 1962 -35- N-16044/000/01

APPENDIX B

BOOKKEEPING ADDRESS REGISTER ASSIGNMENTS

Identity or

Control Fixed Mode
Bookkeeping Bookkeeping Bookkeeping

Unit Word Word Word
Reader 37751 37750 _
1k01 37753 37752 -
Punch 3TTHT 37746 -
Tape Adapter 1 37775 37774 37773
Tape Adapter 2 37772 37771 37770

I/0 Typewriter 37745 37TLk 37743
FIX Typewriter 37740 - -

APPENDIX C

SUMMARY OF MODIFIERS

I. Modifiers coded in address field

Bit
Abbreviation Positions Name
X 26-29 Index
DI 24 Double Index
I 25 Indirect Address
R 8 Real Data
: (Tmmediate Addres-

sing)

II. Arithmetic and Store Instruction Modifiers

A-P Activity 16-23 Byte Activity and
Displacement 9-11 Dlisplacement

MD 12-1L Mode

SG 15 Signed Data

Coding

One or two decimal digits, A or C

D
I

(n)R where "n" represents
the value to be placed in
address field of instruction
word.

Two sets of octal digits
separated by a comma
(omission = 01234567, 01234567)

L,R,D,F, or T
(omission = F.)

S

296T L8y LT

98‘

10/000/1709T-N

Bit

Abbreviation Positions

ITT. Loglc Class Instruction Modifiers

CN

Cp

BS

NC

12-15

start bit 18-20
shift 21-23

9-11

(15-17 for INS)
9-11
11-17
(form a) 9 (12 for
compare instructions)

(form b) 12-17

12-17
(18-23 for INS)

Name

Connective
(truth table)

Convert Position
(Convert Direction)

Bit and Shift
(Starting and
Ending Bit)

Logical Register
Byte

Memory Byte
‘Number of Converts
Mask Selector

(use B Register for

mask)

Byte - Mask

Value

Coding

four binary digits

LorR
(omission = L)

G and two digits in range 1-6.
Second digit must be = first
digit.

"L" and one octal digit

(May NOT be used if MK is used)
"B" and one octel digit
"N" and up to three decimal digits.

" K“

"K" and two octal digits (may NOT
be used if LB is used)

Two octal d:lg;l.ts

296T LoW LT

L
w
T}

T0/000/tM09T-N

Abbreviation

Bit
Positions

IV. Input-Output Instruction Modifiers

CD

RD-WR

ST

15

R-11
w-12

1k

16

13-17

8-10

18-23

13

Name

Coding

Read~Write

Status-Identity

Tape Identity
Address (Store
Identity)

Mode
Operate Code

Selection
Select Drum
Selectlon

Density of Tape
Operation
Typewriter mode

}.J
Coding ~
=
&
5
H (Hollerith, as opposed to binary) o
R or W,or neither if "U" is used
I
S
"M" and two octal digits
(omission = MOO) ‘
wr
'

"U" and one octal digit
(omission = UO)

two octal digits

A or B (with DRM instruction)
I (for I/0 Register with SHO)
L (for low density)

A (for alphanumeric)

T0/000/1h09T-N

Bit
Abbreviation Positions
v. Other Modifiers
AR 18-23
H 9
UT 15-23
XR 20-23
RD 15
UN 8
ZD 10-11
AC (or A) 16-23
DF 6-23

Name

Addressable
Machine Register

Half-Word
Unit (PER-SEN code)

Index Register
(to be manipulated)

Round

Unnormalized
(do not normalize)

Zero Definition

Byte Activity

Decrement Field

Coding

296T LeW LT

Two octal diglits

"L" or “R", blank = "R"
‘i‘hree oété.l digits

One digit (1-8), blank = none,
where legal. . .

N

U

-6¢€-

P or M or blank (either)
"A" and up to eight octal digits

(Omission = A01234567 except for
BNM, BOM, BNP and BPP where
omission = AO)

One to six optionally signed

decimal digits or one to six

octal digits. If octal, followed
by a "prime." May also be an address
tag.

10/000/4H09T-N

Bit

Abbreviation Positions Name Remarks

VI. Modifiers Inherent in Instruction Mnemonics

NB

SV

RS

DA

CT

Sz

RC

PR

SX

8

10

13

1h

9-11

10

No Branch

Sign Variation

Mask Selector

Results Stored
Difference in
Accumulator
Comparé Type
Store Zeros
Register Con-
nective

Program
Register

Store Exchange
Register

Causes conditional branch to reverse
logic of testing conditional branch

instructions not pertaining to index
registers.

Differentiates between positive and

negative test on branch on sign instructions.

Indicates MK used to select logical
register byte rather.than being used
directly. Implied by coding MK as 1f
it were LB.

Select ACC or x to store results for
connect instructions.

Permits storage of difference in ACC for

connect instructions.
Logical or Arithmetic comparison.

Zeros instead of c¢(ACC) allowing
STF to become STZ. .

ACC and/or B Register for shift,
cycle and normalize instructions.

If set, unconditional branch will not
cause Program Register to be changed.

¢(Exchange Reg) stored if SX and SZ
modifiers both set, making STF
instruction an STE.

2961 L= LT

-O-n-

T0/000/7H09T-N

17 May 1962

41- N-16044/000/01

APPENDIX D

Summary of Instructions

The following abbreviations are used:

* +

S~

ESBE® &

QEE QO
=

(@]
l\\
B8

|Q

o o
<
NN
A

minus or complemented
plus

wmultiplied by

divided by

absolute magnitude

Boolean AND
Boolean inclusive OR

Boolean exclusive OR
is set equal to
is set equal to, and calculations and formet are

according to floating point arithmetic
is set equal to, according to fixed point arithmetic

mode

cycled

is not equal to
is equal to

is greater than
is less than
the contents of
configured

masked bits of
unmasked bits of

configured OR mesked bits of

the inactive bytes or unmasked bits of

the inactive bytes of

bits

bytes

as determined by the indicated modifier

as determined by the first set of digits coded in the
A-P modifier

as determined by the second set of digits coded in
the A-P modifier '

Accumulator
B Register
Combined ACC and B

Logical Register
Program Register

Program Counter
Double Index Selection Register
effectively addressed register

Octal Coded

Mnemonic Name Code Modifiers Description -
-3
Load Instructions 5
ed
LBC Load B Register 224 A-P,MD, SG, R B =M ~Ce(x) o
Complement b4
LDA Load Accumulator 200 " ACC = M Ce(x) o
LDB Load B Register 220 " B = M Ce(x)
LDC Load Complement 210 " ACC = M -Ce(x)
LDL Load Logical 230 " L=M Cc(x)
LDM Load Magnitude 204 " AcC = M (/Ce(x)/)
LLC Load Logical 23k " L =M -Ce(x)
Complement
IMC Load Magnitude 21k " ACC = M -(/ce(x)/)
Complement .
Arithmetic
ADD Add 100 A-P,MD, SG,R ACC = M c(ACC) + C;(x) /)
ADM Add Magnitude 104 " Acc = M c(Acc) + (/ce(x)
DIM Difference in 130 " Acc = M (/e(acc)/) - (/ee(x)/) .
Magnitude £
DVD Divide 13k " ACC = M c(ACCB) / Ce(x) v

B=M (/remainder/) if
new ACC sign =

or
- (/remainder/) if
new ACC sign = -

MLR Multiply and Round 124 " ACCB = M c(ACC) ¥ Ce(x)
“and c(ACC) is increased in
magnitude by "one" if the
most significant B magnitude bit
differs from the new sign.

MUL Multiply 120 " ACCB = M c(ACC) * Ce(x)
SBM Subtract Magnitude 114 " ACC = M e(Acc) - (/ee(x)/)
SUB Subtract , 110 " ACC = M c(ACC) - Ce(x)

10/000/7H709T-N

IIT.

Mnemonic

Name

Floating Point

FAD
FAM

FDv

FLT

FSB

FaM

Floating Add
Floating Add
Magnitude
Floating Divide

Float

Floating Multiply
Floating Round

Floating Subtract
Floating Subtract
Magnitude

Octal
Code

300
304

334

320

330
324

310
31k

Code
Modifiers

g8

Descrigtion

ACCB
ACCB

F c(ACC) + c(x)

F c(ace) + (Je(x)/)

F e(AcC) / e(x)

(/remainder/) if new ACC sign = +
or

- (/remainder/) if new ACC sign + -

ACCbi(1l 11) (characteristic) =

(/e(x0i{37_k7)) -n/) if ACC sign

-(/c(xbi(37_z;))-n/) if ACC sign

ACC bi (12 47) = c(ACCbi(1l+n 3€+n))
(mantissa)” -

Bbi(0) = c(ACCbi(0))

(sign)

Bbi(l 11 = new c(ACC bi(1 11)) -36
(characteristic) -

Bbi(1l2 47) = c(ACCbi(37+n 47))

"n" in the above represents the number of
leading zero-magnitude bits in the
original c(AcCC).

ACCB = F c(ACC) * c(x)

ACC = F c(ACC) if c(Bbi(1)) EQ c(ACCbi(0))

296T LN LT

ACC =
B=TF

1]

+

-217-

c(Ac3§+1 if c(Bbi(1l)) NQ c(Accpi(0))

F c(ACC) -
F ggAgcg - ?%c()x)/)

ACCB
ACCB

T0/000/ 1409 T-N

Mnemonic

Name

IV, Store

A, Non-Arithmetic Store

ECH

STA
STB
STE

STF
STL

STP

STX

STZ

Exchange

Store Accumulator
Store B Register

Store Exchange
Register

Store Full Word

Store Loglcal
Register

Store Program
Register

Store Index

Store Zero

B, Arithmetic Store

AgR
ATR

S@R

Add One Right

Add to Register

Subtract One Right

Octal Coded

Code Modifiers

52l A=P

500 A-P

50k A-P

050 -

050 -

510 A-P

51k A-P

520 H, XR

050 -

530 A-P, SG, M
MgT)

540 A-P, SG, M
(M # T)

53k A-P, SG, M
(M #T)

Description

xpy("AP2") = c(ACCby("APL"))
ACCby("APL") = c(xby("AP2"))

xby("AP2") = c(ACCby("APL"))
xoy("AP2") = c(Bby("AFL"))
c(Exchange Register)

X

c(Acc)
be(llAP2||) = c(Lby("APl"))

X

xby("AP2") = c(PRby("APL"))

Note: 1if APl NQ 5,6,7, zeros will be
““stored for the other byte positions.

xby(5,6,7) = c(index "XR") if H EQ R or blank
xby(1,2,3) = c(index "XR') if HEQ L

x=0

ACC = M Ce(x) + 1 '
xoy("AP2") = new c(ACCby("APL"))

ACC = M c(ACC) + Ce(x)

xby("AP2") = new c(ACCby("AF1"))
ACC = M Ce(x) - 1

xby("AP2") = new c(ACCby("AP1"))

296T AeW LT

]
=
T

T0/000/7709T-N

Mnemonic

Name

V. Branch Class

A.

Octal Coded
Code Modifiers
62k LB, BS
614 H, AF
o1k XR

oLk XR

010 -

Description
PR = c(PC) + 1
PC = effective address + c(Lby(LB) bi(BS))
PR=c(PC) + 1
PC =

effective address + c((7776oo8 + AF) by(h))
"h" represents 5,6,7 if H = R or

blank and 1,2,3 if H= L

PR = c(PC) + 1

index "XR" = ¢(PC) + 1 if c(XR) NQ O

PC = effective address

index "XR" = c(PC) + 1 if ¢(XR) NQ O

PC = effective address

Operates as if c(x) were at location c(PC)

Where conditions for branching are not met, these instructions are equivalent to s

Unconditional
BAL Branch to Address
Plus Logical
~ BAR Branch to Address
Plus Register
BUC Branch
Unconditionally
BUS Branch
Unconditionally
with same Program
Register
XEC Execute
Conditional
"no operation."
effective address.
BLC Branch on Logical
Compare
BLN Branch on Logical
No Compare
BNM Branch on Not Minus
BNP Branch on Not Plus
BNZ Branch on Not Zero
BEM Branch on Minus
B@P Branch on Plus
B¢Z ‘Branch on Zero

620
620

610
610
600

610
610
600

LB, VL

LB, VL

Where conditions for branching are met, PR = c¢(PC) + 1l and PC =

Branch if:

‘c'('—"'(Lby ":L' _B-n)) EQ C("VL")
C(Lby("LB")) NQ C(HVL")

c(ACCoy("A")bi(0)) not all EQ 1 (minus)
c(ACCby("A")bi(0)0 not all EQ O (plus)
c(ACCby("A")) not all EQ zero
zero is +0 only or -0 only or all the
same form of O depending on c(ZD)
c(ACCby("A") bi(0)) all EQ 1
c(ACCby("A") bi(0)) all EQ O
c(ACCby("A") all EQ zero
see BNZ

~$h- 296T £on T

T0/000/h09 T-N

mnemonic

BSF

BSN

Name

Branch on Sense
. Unit Off '
Branch on Sense
Unit On

Octal Coded
Code Modifiers
60k U
6ok

U

Description
Branch if:
Unit "U" is off, see BSN

Unit "U" is on
For certain units, BSN and BSF
also turn the unit off. See

N-1733kL.

296T AsW L T

-9-'-(—

T10/000/th09T-N

A,

B.

Octal
Mnemonic Name Code

Code
Modifiers

Branch Decrement

Description

For all instructions in this class, when branch occurs, PR = C(PC) + 1 and PC = effective

address.

If branching does not occur, the instruction has the same effect as "no operation."

Also, for these instructions, the IX modifier, in first level addressing only, is used NOT
for address modification, but to specify the index used by the instruction.

Unconditional Branch and Modify

BAX Branch and Add 740
to Index

BSX Branch and Set T30
Index

Conditional Branch

For all instructions of this sub-class, +0 GR -0

BXE Branch on Index 720
Equal

BXH Branch on Index T00
High

BXL Branch on Index 710
Low

Conditional Branch and Mbdify

BMX Branch on Minus 760
Index '

BPX Branch on Plus 750
Index

DF

DF

DF

DF

DF

DF

DF

Index "IX" = c(index "IX") + c(DF)

Index "IX" = c(DF)

Branch If:
c(index "IX") EQ

c(index "IX") GR

c(index "IX") LS

Branch If:

c(index "IX") LS

c(index "IX") GR

c(DF)
c(DF)

c(DF)

+0 index ("IX")=
c(index "IX")+
c(DF)

-0 index ("IX")=
c(index "IX")-
¢(DF)

296T fel LT

'Lﬁ‘

T0/000/4H09T-N

Mnemonic

Octal
Name Code

VII. Logical and Miscellaneous

A.

B.

Manipulate Bits of a Byte

coM

INS

1DS
STS

Complement Bits 410
Insert Bits Lok
Load and Shift hBM
Store and Shift 440

Skip Instructions

CDA

CDL

CMA.

Compare and Difference,
Arithmetic Loo

Compare and Difference
Logican 400

Compare, Arithmetic 400

Coded
Modifiers

MB, MK
(MK = form b)

MB, MK, VL

MB, BS, R
MB, BS

A“P, SG
or

(form a)

A"‘P or MK,
(form a)

A-P, SG’
or

(form a)

Description

xby("MB") = c(xby("MB") QR
xoy("MB") = (c(xby("MB")) AND
-c(MK)) OR (c(VL) AND c(MK))
ACC = C(be("MB")bi("BS"))

xby("MB")bi("BS") = c(ACCby(7) bi(n_6))

n is in the range 1
through 6 according to
the range between the
first and second digits
of c(BS).

ACC = c(ACC) - C/m c(x) (note: Full
mode used)

IF C/m c(x) LS c(ACC), PC = c(PC) + 1
IF C/m c(x) EQ c(ACC), BC = c(PC) + 2
IF C/m c(x) GR c(ACC), PC = c(PC) + 3

ACC = Cc(ACC) OR (Cc(ACC) OR Ce(x))
unless MK is set, in which case:
ACC = c(B) AMD (c(ACC) OR c(x)) OR
-¢/B) AND c/ACC), in any event:
IF C/me(x) NQ C/me(ACC), PC
IF C/me(x) EQ C/me(ACC), PC = c(PC) +

same as CDA except ACC = c(ACC)

o

c(Pc) + 1

2

-gh- 2961 Lel LT

T0/000/ 7109 T-N

D.

Mnemonic Name

CML Compare, Logical
TST Test

Boolean Operations

ANA AND to Accumulator

ANS AND to Storage

CTA Connect to
Accumulator

CTS Connect to Storage

DEP Deposit

EXT Extract

@RA OR to Accumulator

¢RS OR to Storage

Index Manipulation
ATX Add to Index

DT Load Double Index

Octal
Code

Loo
b1k

430
430
430
430
430
h30.

430

La4

Lhl,

Coded
Modifiers

A-P or MK
(form &)
MB, BS, R

A, R
or

MK, R

A

or

MK

A, CN, R
-or

MK, CN, R

A, CN
or

MK, CN

Description
same as CDL except ACC = c(ACC)

PC = c(PC) +1 + c(xBY("MB")bi("BS"))

C/mACC = (C/mc(ACC) AND C/me(x))
C/mx = (C/mc(ACC) AND C/mc(x))

C/mACC = (C/me(ACC) "CN" C/mc(x))
where CN determines the truth table
for the Boolean operation

C/mx = (C/mec(ACC) "CN" C/mc(x))

see CTA)

C/mx = C/mc(ACC)
C/mACC = C/me(x)
ACC = c(ACC) OR C/me(x)

x = ¢(x) OR C/mec(AcCC)

index "YR" = c(index "XR") + c(xby(h))

"n" is 1,2,3, if HEQ L or 5,6,7 if
H EQ R ur blank
DISR = c(xby("MB")bi(3 6))

296T £8H LT

- 6-’-(_

T0/000/4709T-N

Mnemonic Name
LDX Load Index
SDI Store Double Index

Selection Register

Convert

Octal
Code

420

450

Coded

Modifiers

XR,H,R

MB

xby("MB" Jbi(1-2)

Description

index "XR" = c(xby(h))

"' is k,2,3 if H EQ L or 5,6,7 if

H EQ R or blank.
xby("MB")bi(3 6) = c(DISR)

0

0o

The convert instructions set-up & loop within themselves, where the number of iterations is

indicated in the "NC" modifier.

5, 6, and 7 of the most recent data word referenced, plus byte O of the ACC or B.
index "XR" = c(xby(5,6,7))-

iteration:

CAB Convert, by Addition
from the B Register

CRA Convert by Replacement
from the Accumulator

Shift and Cycle

460

L5k

On each iteration:

XR, NC

XR,NC, CP

After the first data reference "x" is determined from bytes

On the last

ACC = O prior to first cycle

B = C(B by T1,2,3;1F,5,5,7,0))
ACC by(0 6) = c(AcC by(1_T)
ACC by (T) = c(xpy(0))

unless CP = R, in which case
ACC by(1_T) = c(AcC by(0_6))
AcC by (0) = c(xby(0))

For the shift and cycle instructions, the data word has a speciel format, bytes 5, 6, and T
only, are used. The leftmost bit (30) is used as a sign for bits b1 to 47 and indicates

direction (positive is right), and the seven rightmost b

its (in ones' complement if a nega-

tive sign) are used for "bit count,” i.e., modulo 128. In immediate addressing only, the
IX, and D modifiers will change the effective "pit count”" and possibly the sign.

CYA Cycle Accumulator
CYB Cycle B Register
CcYC Cycle Combined
CcYI Cycle Inverted
NRA Normelize
Accumulator

o2k
o024
02L
o2k

o34

M,
M,
M,
M,

0o 0 o

M

AcC =M ®c(acc)

B =M ® c(B)

ACCB =M @ c(ACCB)

ACCB =M ® c(ACCB) using inverted
ACC to B connec&ions

ACC =M c(ACC @2~ where n is the
number of consecutive zero
magnitude bits in ACCbi(1l n)

=N

ACC = c(xby(0 4)right Jjustified)+ACC

296T LeW LT

T0/000/09T-N

G.

H.

Mnemonic Name

NRC Normalize Combined
SFA Shift Accumulator
SFB Shift B Reglster
SFC Shift Combined

Input-Output

BKF Backspace File

BKR Backspace Record

‘DRM Start Drum

I¢R Start I/0 Register
Operation

REW Rewind

SH@ Start High Speed
Operation

SLg Start Low Speed

: Operation

TAP Start Tape

. Operations

WEF Write end-of-file

WET Write end-of-tape

Miscellaneous

HLT Halt

PER Operate

Octal Coded

Code Modifiers

03k M

020 M,RD, R

020 M,RD,R

020 M,RD,R

040 S

0Lko S

Ok RD-WR,
U,M,S

024-14 RD"WR, U

oko S

ohly U,M, RD-WR, S

oko U, RD-WR, TM,
SI,cD,TA,S

oko RD-WR, TM
SI,CD,TA,S

oko s

oLko S

000 -

ook U

Description

ACCB = M c(ACCB) * 2%
xbEfET =n

see NRA for "n"

ACC = M c(ACC)*s

where "s" = 2 c¢(xbi(30_47)), Modulo 128

B=Mc(B) *s
see SFA for "s"
ACCB = M c(ACCB) * s
see SFA for "s"

equivalent to SL@US
equivalent to SL@UL
equivalent to SH{

equivalent to SH@TO

equivalent to SL¢U2

Starts operation on selected
high-speed device.

Starts operation on selected

-low-speed device

equivalent to SL@

equivelant to SL@U3
equivalent to SLPUL

Stops central computer operation
Operates unit U. U codes listed in
N-1733k.

296T £eW /T

‘Tg‘

10/000/H709T-N

17 May 1962 -52- N-160k4k4/000/01

APPENDIX E

SUMMARY OF SCAMP CODING

The coding sheet consists of four fields;

1. Location field - columns 2 - 7 fixed length field used for "tagging"
instructions.

2. Operation field - starting in column 8, operation code in columns
8 - 10, modifiers, if any, starting in column 1l. Modifiers

consisting of digits only must start in column 1ll. Modifiers
are separated by commas. The first blank terminates the field.

3. Address field - starting one or more blanks after operation field,
but not to the left of column 24. Modifiers follow the address
and are preceeded by single commas. $ is used for "self reference".

4, Comments filed - starting one or more blanks after address field.

Columns 67 - 72 reserved for numbering and identification.
73 - 80 is not used.

Program Organization Pseudos
BEG - first card of every program

END - last instruction of every program indicating termination of
inputs. If address field contains an address, program will
start at that location.

ORG (Origin) - contents of address field indicates the starting location
for the instructions that follow.

Pseudos Pertaining to Tags

SYN (Synonym) - location field contains location label being defined.
Address field indicates definition of label. This instruction
is used to define address tags only.

SYM (Symbolic Modifier) - location field contains label to be used in place
of some instruction modifier or address modifier or group of

such modifiers. The address field contains the code for the
modifiers represented by the label. This instruction permits.
the use of tags to replace modifiers which may be used repeatedly.

17 May 1962 -53- N-16044/000/01

T¢P - Used to initlate a program area wherein tags may be exclusively defined
for that area. That is, a given label can be defined more than one
time in a program if each occurrance is in a different ares of the
program and that area is bracketed with T@P and BPT instructions.
These instructions may be nested.

BYT - terminates the zone initiated by a T4P.

Data Representation

Numbers, except where specifically required to be otherwise, are assumed to
be decimal. An octal number may be coded by immediately following the number
with a "prime."

"Prime" 1s written on the coding sheet as an inverted delta (V) to avoid
confusion with the digit "1."

Constants must be enclosed in parenthesis and the open parenthesis must be in
column 8. Constants representing a dual word have the two half words sepa-
rated by a double comma. Two byte numbers within a half word are separated
by a single comma. One byte numbers within a half word are also separated by
single commas and there must be four values represented for each half word.
In general, constants will be right Jjustified.

Floating point constants must contain a period, or decimal point, and may
include, following the constant, the letter E followed by a number. The
number following the E represents the power of 10 by which the constant is
to be multiplied before conversion to machine format.

Fixed polnt constants are written in the same manner as floating point with
the additional requirement that they are followed by the letter B and a
number. The number following the letter B indicates the number of bit -
positions to the left of the end of the word or half word that the binary
point 1s to be located. Single Hollerith constants are labelled as one byte
constants and the Hollerith nature of the constant is indicated by preceding
the character with an asterisk.

Integer constants may be indicated as decimal or octal with the mnemonics

DEC and ¢CT respectively. The number desired appears in the address field

and if it 1s not to be a full word constant, the modifier R, L or D must
precede, or follow, the number, indicating right half word, left half word,

or a dual word constant. More than one constant can be designated with this
pseudo by separating the constants, one from another with commas. The place

in which these integer constants will be stored depends on which type constant
is used, but in general they will occupy the next avallable word or half word.
If 1t is desired to have a string of half word constants wherein they alternate

17 May 1962 -5k~ N-160k4/000/01

left-half word, right half-word, etc., the R and L modifiers in the address
field may be omitted and the letter A, indicating alternate, placed in the
instruction modifier field.

Binary coded information for a card image on the printer may be set up with

a single BCI instruction. Since blanks are regular Hollerith characters,

the string of characters which are placed in the address field is terminated
with a "$". A carriage control character may be indicated immediately fol-
lowing the BCI pseudo as follows: S (suppress space), A (single space), B
(double space), C (triple space), and D (quadruple space). If a termination
character other than $ is desired it may be indicated as the second modifier
following the BCI pseudo. That is, a single modifier would always be carriage
control and if there are two modifiers the first taken as the carriage control
character and the second as the termination character. When a special termi-
nation character is used $ may be used as one of the characters to be converted.
The necessary record mark will be placed in byte 7 of the last memory location
used for the converted information.

A recurring set of constants may be designated with the DUP pseudo. This
instruction uses two numbers in the address field, separated from each other
by a comma. The first number represents the number of input cards immediately
feliwwing the DUP instruction which are in effect to be duplicated. The
second number indicates the number of times they are to be duplicated. The
instructions or constants being duplicated should not contain a location tag
as it will result in multiple definition. However; the DUP instruction may
have a location tag.

A block of registers internal to a program may be set aside with the BIXK
pseudo. The address field contalns the number of registers being reserved
for this block. This pseudo instruction may have a location tag.

Symbolic Tags

Tags or location labels consist of a string of 1 - 6 alpha numeric characters

of which at least one must be alphabetic. In addition, an address may consist
of a string of tags or constants arithmetically combined. The tags, of course,
must be defined within the program. To indicate the arithmetic operation, +

is used for addition, - for subtraction, * for multipiication and / for division.
In computing such addresses any fractions that are generated are dropped at

each step of the computation.

17 May 1962 -55- | N-1604k4/000/01

1/0 TYPEWRITER CODES

Character Character
Shift Shift Octal Shift Shift Octal
Down Up Code Down Up Code
A a 61 W W 26
B b 62 X X 27
C c 63 Y y 30
D d 6l Z Z 31
E e 65 0 (Input) $ 00
F f 66 0 (Output)$ 12
G g 67 1 J o1
H h T0 2 C 02
I i 71 3 @ 03
J J 41 b o ol
K k 42 5 & 05
L 1 L3 6 < 06
M m Ll T > o7
N n L5 8 ? 10
o o 46 9 A 11
P P L7 { ' 21
Q q 50 # Th
R r 51 (9% 34
S s 22 - : Lo
T t 23 + LV 60
8] u 2k . = 73
\'A v 25 3 ; 33
Functions

Carriage Return 77 Tabulate 17

Shift Up 16 Shift Down 32

Space Bar 20

17 May 1962

Condition

Selected Unit
Not Ready

Reader
Punch
1401
TAL

TA2

1/0 Type
FIX Type

Operation Complete

DCR1 Bit

28

30
31
39
LT
29

DCR2-23

Reader
Punch
1401
TAl
TA2

I/0 Type (Output)
1/0 Type (Input)

Selected Uint
Busy

All but Tapes
TAL '

TAZ2

E.0.T,

TAl
TA2

E.O0.F.

TAl
TA2

Selected Tape
Rewinding

TAl
TA2

2k

27
32

25
10

23
35
L3

33
41

34
L2

37

-56_

APPENDIX G

BSN Sense & Clear

675

677
700

705
T06
676

671

673
674

TOU
712
672

Th3

TO01
707

702
T10

703
711

37
37
37
L2

L3
37

Ll
L1

Lo
43

L2
k3

41
b1

N-160L4L4/000/01

INTERRUPT SYSTEM DATA FOR CENTRAL PROCESSING AND 1/0

ICR/ICS Bit

17 May 1962

Condition

Illegal Motion

TAl
TA2

File Protected

Write or
Wrong Density

TAL
TA2

Overflow

Left, Full
Floating Acc
Right

Floating - BReg
Precision

Underflow

Floating - B Reg

Floating - Acc

Illegal Divide

Left, Full
Right
Floating

Illegal Selection

Memory Address
Drum Field
Index Register

High Speed I/0

Complete
Conflict

Protected
Field Write

Channel in Use

DCR1 Bit

36
L

38
L6

12
12
13
13
16

15
1k

17
18
18

o\

21
22

-57-
(Last page)

BSN Sense & Clear

657
657

660
663

662
661

664
665
665

667
670

N-160k44/000/01

ICR/ICS Bit

L1
41

41
L1

31
32
1
32
32

32
32

31
31
32

33
33

35
39

34

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	26a
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57

